WO2018037713A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2018037713A1
WO2018037713A1 PCT/JP2017/023908 JP2017023908W WO2018037713A1 WO 2018037713 A1 WO2018037713 A1 WO 2018037713A1 JP 2017023908 W JP2017023908 W JP 2017023908W WO 2018037713 A1 WO2018037713 A1 WO 2018037713A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
valve
fuel
lift amount
chamber
Prior art date
Application number
PCT/JP2017/023908
Other languages
French (fr)
Japanese (ja)
Inventor
戸田 直樹
利明 稗島
友基 藤野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018037713A1 publication Critical patent/WO2018037713A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle

Definitions

  • This disclosure relates to a fuel injection device that injects fuel from an injection hole toward a combustion chamber.
  • the needle opening speed for injecting fuel is made variable.
  • two solenoids are installed, and the solenoids are operated independently to control the discharge speed of the fuel flowing out from the control chamber in two stages.
  • the present disclosure aims to provide a fuel injection device capable of variably controlling the fuel discharge speed while suppressing an increase in size.
  • the fuel injection device injects fuel from the injection hole toward the combustion chamber.
  • the fuel injection device includes an injection hole, a supply flow path for supplying fuel to the injection hole, a pressure control chamber into which a part of the fuel flowing through the supply flow path flows, and an outflow flow path for discharging the fuel in the pressure control chamber to the low pressure side ,
  • a valve member that opens and closes the nozzle hole by being relatively displaced with respect to the valve body due to fluctuations in fuel pressure in the pressure control chamber, and a first valve body disposed in the outflow passage
  • a switching valve mechanism for switching the flow area of the outflow passage and a valve body, and a driving force is applied to the first valve body for switching the flow passage area by the switching valve mechanism.
  • the first valve body is lifted, and the first valve body and the second valve body house the drive unit that controls the lift amount of the first valve body to the first lift amount or the second lift amount larger than the first lift amount.
  • a communication passage is formed to communicate the switching chamber and the supply flow path, and the first valve body Including a third valve body for opening and closing the communication passage in accordance with the shift amount.
  • the outflow channel is limited to the first throttle state, and the first valve body is in the second lift amount
  • the first valve body is separated from the valve body, and the first valve body first
  • the third valve body is displaced by the pressing of the contact portion, and the second valve body is in a position away from the valve body due to the pressing of the second valve body to the second contact portion by the first valve body.
  • the flow path is limited to a second throttle state having a different channel area from the first throttle state.
  • the third valve body is separated from the first valve body to open the communication passage, and the first valve body is positioned at the first lift amount or the second lift amount. If it is in the position, it contacts the first valve body and closes the communication passage.
  • the first valve body that is separated from the valve body is the second valve body. It is set as the state contact
  • the position of the first valve body is held by contact with the first contact portion of the third valve body, so that the flow area of the outflow passage in the first throttled state, and hence the fuel from the pressure control chamber The outflow will be stable.
  • the third valve body is displaced by the pressing of the first contact portion by the first valve body, The second valve body is separated from the valve body by pressing the second valve body against the second contact portion by the first valve body.
  • the switching valve mechanism can switch the channel area of the outflow channel by adjusting the lift amount of the first valve body.
  • the lift amount of a 1st valve body can be controlled by one drive part. Therefore, since the drive part should just be the structure which controls the lift amount of one 1st valve body, a drive part can suppress an enlargement.
  • the third valve body when the first valve body is in the position of the first lift amount or the second lift amount, the third valve body is in contact with the first valve body and closes the communication passage.
  • the third valve body When the first valve body is not lifted, the third valve body is separated from the first valve body and opens the communication passage, so that the first valve body is separated from the valve body.
  • the fuel from the supply channel can be immediately allowed to flow into the switching chamber. Therefore, the fuel that has flowed out to the low pressure side when the first valve body is separated from the valve body can be filled with the high pressure fuel supplied from the communication passage of the third valve body in a short time. Thereby, the time from when the first valve body is seated on the valve body to when the valve member is closed can be shortened.
  • FIG. 1 is a diagram showing an overall configuration of a fuel supply system
  • FIG. 2 is a longitudinal sectional view showing the fuel injection device
  • FIG. 3 is an enlarged longitudinal sectional view showing the vicinity of the three-way valve and the bypass valve
  • FIG. 4 is a diagram showing the operation of the three-way valve
  • FIG. 5 is a time chart showing the correlation between the displacement of the three-way valve and the nozzle needle.
  • the fuel supply system 10 shown in FIG. 1 uses the fuel injection device 100 according to the first embodiment.
  • the fuel supply system 10 supplies fuel to each combustion chamber 22 of a diesel engine 20 that is an internal combustion engine by a fuel injection device 100.
  • the fuel supply system 10 includes a feed pump (F / P) 12, a supply pump 13, a common rail 14, an engine control device 17, a plurality of fuel injection devices 100, and the like.
  • the feed pump 12 is, for example, a trochoid pump built in the supply pump 13.
  • the feed pump 12 pumps light oil as fuel stored in the fuel tank to the supply pump 13.
  • the feed pump 12 may be a separate body from the supply pump 13.
  • the supply pump 13 is, for example, a plunger type pump that is driven by the output shaft of the diesel engine 20.
  • the supply pump 13 is connected to the common rail 14 by a fuel pipe 13a.
  • the supply pump 13 further boosts the fuel supplied from the feed pump 12 and supplies the fuel to the common rail 14.
  • the common rail 14 is connected to each fuel injection device 100 via a high-pressure fuel pipe 14a.
  • the common rail 14 temporarily stores high-pressure fuel supplied from the supply pump 13 and distributes the fuel to each fuel injection device 100 while maintaining the pressure.
  • the common rail 14 is provided with a pressure reducing valve 14b.
  • the pressure reducing valve 14b discharges the surplus fuel in the common rail 14 to the surplus fuel pipe connected to the fuel tank.
  • the engine control device 17 includes an arithmetic circuit mainly composed of a microcomputer or a microcontroller including a processor, a RAM, and a rewritable nonvolatile storage medium, and a drive circuit that drives each fuel injection device 100. It is.
  • the engine control device 17 is electrically connected to each fuel injection device 100 as indicated by a broken line in FIG.
  • the engine control device 17 controls the operation of each fuel injection device 100 according to the operating state of the diesel engine 20.
  • the fuel injection device 100 is attached to the head member 21 in a state of being inserted into the insertion hole of the head member 21 that forms the combustion chamber 22.
  • the fuel injection device 100 directly injects fuel supplied through the high-pressure fuel pipe 14 a from the plurality of injection holes 30 toward the combustion chamber 22.
  • the fuel injection device 100 includes a valve mechanism that controls fuel injection from the injection hole 30.
  • the fuel injection device 100 uses part of the fuel supplied through the high-pressure fuel pipe 14 a to open and close the injection hole 30.
  • the fuel injection device 100 includes a valve body 31, a nozzle needle 32, a drive unit 33, a high-pressure valve 34, an in-orifice body 35, and a switching valve mechanism 36.
  • the switching valve mechanism 36 includes a bypass valve 37 and a three-way valve 38.
  • the valve body 31 is configured by combining a plurality of members such as a cylinder formed of a metal material.
  • the valve body 31 includes an injection hole 30, a seat portion 39, a high-pressure passage 40, an inflow passage 41, a low-pressure passage 42, a pressure control chamber 43, a bypass valve chamber 44, a three-way valve chamber 45, a drive portion accommodation chamber 46, and An orifice chamber 47 is formed.
  • the injection hole 30 is formed at the distal end in the insertion direction in the valve body 31 inserted into the combustion chamber 22.
  • the tip is formed in a conical or hemispherical shape.
  • a plurality of nozzle holes 30 are provided radially from the inside to the outside of the valve body 31.
  • High-pressure fuel is injected from each injection hole 30 toward the combustion chamber 22.
  • the high-pressure fuel is atomized by passing through the nozzle holes 30 and is easily mixed with air.
  • the seat part 39 is formed in a conical shape inside the tip part of the valve body 31.
  • the seat portion 39 faces the high-pressure channel 40 on the upstream side of the nozzle hole 30.
  • the high-pressure channel 40 supplies high-pressure fuel supplied from the common rail 14 to the nozzle hole 30 through the high-pressure fuel pipe 14a shown in FIG.
  • the inflow channel 41 allows the high-pressure channel 40 and the pressure control chamber 43 to communicate with each other.
  • the inflow channel 41 causes a part of the fuel flowing through the high-pressure channel 40 to flow into the pressure control chamber 43.
  • the inflow channel 41 is provided with a second in orifice 48 as an inflow orifice.
  • the second in-orifice 48 restricts the flow rate of fuel flowing from the high-pressure channel 40 to the pressure control chamber 43.
  • the low pressure channel 42 extends in the valve body 31 along the high pressure channel 40.
  • the low-pressure channel 42 is a part of the outflow channel that allows the fuel (leak fuel) in the pressure control chamber 43 to flow out to the surplus fuel pipe on the low-pressure side outside the fuel injection device 100.
  • the outflow passage is constituted by a low pressure passage 42, a bypass valve chamber 44 and a three-way valve chamber 45, an upstream communication passage 51, an intermediate communication passage 52, a downstream communication passage 53, and the like.
  • the pressure of the fuel flowing through the low pressure channel 42 is lower than the pressure of the fuel in the pressure control chamber 43.
  • the pressure control chamber 43 is provided inside the valve body 31 on the opposite side of the nozzle hole 30 with the nozzle needle 32 interposed therebetween.
  • the pressure control chamber 43 is a cylindrical space defined by the high pressure valve 34, the cylinder 49, and the nozzle needle 32.
  • High pressure fuel flows into the pressure control chamber 43 through the inflow passage 41.
  • the fuel pressure in the pressure control chamber 43 varies depending on the inflow of high-pressure fuel from the inflow passage 41 and the outflow of fuel to the bypass valve chamber 44.
  • the nozzle needle 32 is reciprocated by the fluctuation of the fuel pressure in the pressure control chamber 43.
  • the bypass valve chamber 44 is a cylindrical space that houses the bypass valve 37.
  • the axial direction of the bypass valve chamber 44 is along the axial direction of the pressure control chamber 43 and the cylinder 49.
  • An upstream communication path 51 is formed between the bypass valve chamber 44 and the pressure control chamber 43.
  • the fuel discharged from the pressure control chamber 43 flows into the bypass valve chamber 44 through the upstream communication passage 51.
  • the fuel pressure in the upstream communication passage 51 is substantially the same as the fuel pressure in the bypass valve chamber 44.
  • a cylindrical hole-shaped intermediate communication passage 52 is formed between the bypass valve chamber 44 and the three-way valve chamber 45. The fuel in the bypass valve chamber 44 is discharged to the three-way valve chamber 45 through the intermediate communication passage 52.
  • a second seat portion 50 is formed on a partition wall that partitions the bypass valve chamber 44.
  • the second seat portion 50 is an annular region surrounding the periphery of the opening of the intermediate communication path 52 in the partition wall of the bypass valve chamber 44.
  • the second seat portion 50 is a region where the bypass valve 37 is seated.
  • the three-way valve chamber 45 is a cylindrical space that houses the three-way valve 38.
  • the three-way valve chamber 45 is located between the bypass valve chamber 44 and the drive unit accommodation chamber 46.
  • the axial direction of the three-way valve chamber 45 is along the axial direction of the bypass valve chamber 44.
  • the three-way valve chamber 45, the bypass valve chamber 44, and the intermediate communication passage 52 are formed so as to be coaxial with each other.
  • the volume of the three-way valve chamber 45 is larger than the volume of the bypass valve chamber 44.
  • a downstream communication passage 53 is formed between the three-way valve chamber 45 and the drive unit accommodation chamber 46.
  • the downstream side communication passage 53 mainly causes the fuel discharged from the three-way valve chamber 45 to flow through the low pressure passage 42.
  • a first sheet portion 54 and a first placement portion 55 are formed on a partition wall that partitions the three-way valve chamber 45.
  • the first seat portion 54 is an annular region surrounding the periphery of the opening of the downstream communication passage 53 in the partition wall of the three-way valve chamber 45.
  • the first seat portion 54 is a region where the three-way valve 38 is seated.
  • the first placement portion 55 is a region surrounding the periphery of the opening of the intermediate communication passage 52 in the partition wall of the three-way valve chamber 45.
  • the lower end of the three-way valve spring 56 is placed on the first placement portion 55.
  • the orifice chamber 47 is a cylindrical space that houses the in-orifice body 35.
  • the axial direction of the orifice chamber 47 is along the axial direction of the pressure control chamber 43 and the cylinder 49.
  • An in-orifice passage 57 is formed between the orifice chamber 47 and the high-pressure channel 40.
  • the fuel supplied from the high-pressure channel 40 flows into the orifice chamber 47 through the in-orifice passage 57.
  • the fuel pressure in the orifice chamber 47 is substantially the same as the fuel pressure in the high-pressure channel 40.
  • a second mounting portion 58 is formed on the partition wall that partitions the orifice chamber 47.
  • the second placement portion 58 is an area surrounding the periphery of the opening of the in-orifice passage 57 in the partition wall of the orifice chamber 47.
  • the lower end of the orifice spring 59 is placed on the second placement portion 58.
  • the drive unit accommodation chamber 46 is a columnar space that houses the drive unit 33.
  • the drive unit accommodation chamber 46 is filled with part of the fuel discharged from the three-way valve chamber 45.
  • the axial direction of the drive unit accommodating chamber 46 is along the axial directions of the bypass valve chamber 44 and the three-way valve chamber 45.
  • the drive unit accommodation chamber 46, the three-way valve chamber 45, and the bypass valve chamber 44 are provided so as to be coaxial with each other.
  • the nozzle needle 32 is formed in a cylindrical shape as a whole by a metal material.
  • the nozzle needle 32 is accommodated in the valve body 31.
  • the nozzle needle 32 is urged toward the nozzle hole 30 by a coiled nozzle spring 60 in which a metal wire is spirally wound.
  • the nozzle needle 32 has a valve pressure receiving surface 61 and a face portion 62.
  • the nozzle needle 32 is reciprocally displaced in the axial direction along the inner peripheral wall surface of the cylinder 49 formed in a cylindrical shape by receiving the fuel pressure in the pressure control chamber 43 on the valve pressure receiving surface 61.
  • the nozzle needle 32 is displaced relative to the valve body 31, thereby causing the face portion 62 to be separated from and seated on the seat portion 39.
  • the face portion 62 forms a main valve portion that opens and closes the nozzle hole 30 together with the seat portion 39.
  • the drive unit 33 is accommodated in the drive unit accommodation chamber 46.
  • the drive unit 33 generates a driving force for driving the three-way valve 38 and the bypass valve 37 of the switching valve mechanism 36, so that the pressure control chamber 43 and the low-pressure flow path 42 are switched from the cut-off state to the communication state.
  • the driving unit 33 can change the magnitude of the driving force to be generated based on the driving signal output from the engine control device 17, and can generate the first driving force or the second driving force.
  • the second driving force is a force larger than the first driving force.
  • the driving unit 33 includes a piezoelectric element laminate 63, a transmission mechanism 64, and the like.
  • the piezoelectric element laminate 63 is a laminate in which, for example, layers called PZT (PbZrTiO3) and thin electrode layers are alternately stacked.
  • the piezoelectric element laminate 63 receives an input drive signal output from the engine control device 17.
  • the piezoelectric element stacked body 63 expands and contracts along the axial direction of the drive unit accommodation chamber 46 by the inverse piezoelectric effect that is a characteristic of the piezoelectric element, according to the drive voltage that is a voltage corresponding to the drive signal.
  • the transmission mechanism 64 is a mechanism that transmits expansion and contraction of the piezoelectric element laminate 63.
  • the transmission mechanism 64 includes a piston 65, a buffer cylinder 66, and a piston spring 67.
  • the piston 65 is formed in a cylindrical shape.
  • the piston 65 is in contact with the piezoelectric element laminate 63.
  • the movement of the piezoelectric element laminate 63 that expands and contracts is input to the piston 65.
  • the piston 65 is formed with a first drive transmission pin 68 that protrudes in a cylindrical shape toward the three-way valve chamber 45.
  • the first drive transmission pin 68 is inserted through the downstream communication path 53.
  • the distal end surface of the first drive transmission pin 68 is in contact with the three-way valve 38.
  • the buffer cylinder 66 is formed in a cylindrical shape and is fitted on the piston 65.
  • the piston spring 67 is a metal spring that generates an elastic force in the axial direction. The piston spring 67 urges the piston 65 toward the three-way valve 38 with respect to the buffer cylinder 66.
  • the drive unit 33 reciprocally displaces the first drive transmission pin 68 in the axial direction by transmitting the expansion and contraction of the piezoelectric element stack 63 along the axial direction by the transmission mechanism 64.
  • the drive voltage input to the drive unit 33 increases, the drive force input from the first drive transmission pin 68 to the three-way valve 38, and thus the lift amount of the first drive transmission pin 68 and the three-way valve 38, increases.
  • the high-pressure valve 34 is formed in a disk shape from a metal material.
  • the high-pressure valve 34 is disposed on the inner peripheral side of the cylinder 49 in a state where the high-pressure valve 34 can be reciprocally displaced along the axial direction of the valve body 31.
  • a space between the high pressure valve 34 and the valve pressure receiving surface 61 is substantially the pressure control chamber 43.
  • the high pressure valve 34 is urged toward the upstream communication path 51 with respect to the cylinder 49 by a high pressure valve spring 69.
  • a first out orifice 70 is formed in the high pressure valve 34.
  • the first out orifice 70 is formed in a through hole that penetrates the high-pressure valve 34 in the plate thickness direction.
  • the first out orifice 70 is a flow rate of fuel flowing from the pressure control chamber 43 to the upstream communication passage 51 and the bypass valve chamber 44 in a state where the high pressure valve 34 closes the second in orifice 48 of the inflow passage 41.
  • the switching valve mechanism 36 is a mechanism for switching the channel area of the outflow channel by opening and closing the bypass valve 37 and the three-way valve 38.
  • the switching valve mechanism 36 closes the outflow channel.
  • the switching valve mechanism 36 restricts the outflow channel to the first throttle state. Further, when the drive unit 33 generates the second driving force, the switching valve mechanism 36 restricts the outflow channel to the second throttle state.
  • the bypass valve 37 is formed in a disk shape from a metal material or the like.
  • the bypass valve 37 is disposed in the bypass valve chamber 44 and can be displaced along the axial direction in the bypass valve chamber 44.
  • a through hole 71 that penetrates the bypass valve 37 in the axial direction is formed in the center of the bypass valve 37 in the radial direction.
  • a small diameter cylindrical portion 72 of the three-way valve 38 is inserted into the through hole 71 of the bypass valve 37, and guides the small diameter cylindrical portion 72 of the three-way valve 38 along the inner wall of the through hole 71 in the axial direction.
  • the bypass valve 37 is provided with an upper end side contact portion 73, a lower end side contact portion 74, and a second out orifice 75.
  • the upper end side contact portion 73 is formed on the upper end surface of the bypass valve 37 facing the intermediate communication path 52.
  • the upper end side contact portion 73 is formed in a flat annular shape.
  • the upper end side contact portion 73 contacts the second sheet portion 50 by the elastic force of the orifice spring 59.
  • the bypass valve 37 is closed by the seating of the upper end side contact portion 73 on the second seat portion 50.
  • the lower end side contact portion 74 is formed on the end surface of the bypass valve 37 facing the opening of the upstream communication passage 51 in both axial end surfaces. In the lower end side contact portion 74, the tip portion of the in-orifice body 35 comes into contact with the elastic force of the orifice spring 59. When the three-way valve 38 is in the closed position, the in-orifice body 35 and the lower end side contact portion 74 are in contact with each other.
  • the second out orifice 75 is configured to restrict the flow area from the bypass valve chamber 44 to the intermediate communication path 52.
  • the second out orifice 75 restricts the flow rate of fuel flowing out from the bypass valve chamber 44 to the intermediate communication passage 52 when the bypass valve 37 is in a closed state, so that the flow of the outflow passage in the first throttle state is reduced.
  • the throttle area that is the flow path area throttled by the second out orifice 75 is defined to be narrower than that of the first out orifice 70. That is, the second out orifice 75 is an orifice having a smaller diameter than the first out orifice 70.
  • the three-way valve 38 is formed of a metal material or the like into a three-stage cylindrical shape having a smaller diameter than the bypass valve 37.
  • the three-way valve 38 and the bypass valve 37 are arranged in series in the outflow channel.
  • the three-way valve 38 has a large-diameter disk portion 76, a medium-diameter column portion 77, and a small-diameter column portion 72.
  • the large-diameter disk portion 76 is formed with a larger diameter than the intermediate communication path 52.
  • the medium diameter cylindrical portion 77 and the small diameter cylindrical portion 72 are formed to have a smaller diameter than the intermediate communication path 52.
  • the medium-diameter cylindrical portion 77 protrudes from the large-diameter disk portion 76 in a cylindrical shape along the axial direction.
  • the small diameter cylindrical portion 72 protrudes in a cylindrical shape from the medium diameter cylindrical portion 77 along the axial direction.
  • the axial length of the medium-diameter cylindrical portion 77 is longer than the axial length of the intermediate communication path 52.
  • the axial length of the small diameter cylindrical portion 72 is longer than the length of the through hole 71 of the bypass valve 37.
  • the diameter of the medium diameter cylindrical portion 77 is larger than the diameter of the through hole 71 of the bypass valve 37. Therefore, the step between the middle diameter cylindrical portion 77 and the small diameter cylindrical portion 72 becomes a portion in contact with the bypass valve 37.
  • the medium-diameter cylindrical portion 77 is formed with a flat portion 77a including the axial direction so that a part of the outer peripheral portion is concave in the radially inward direction.
  • the flat surface portion 77a is formed in order to secure a flow path area in the intermediate communication path 52.
  • the plane portion 77a is set in position and size so as not to block fuel flowing out from the second out orifice 75 of the bypass valve 37.
  • the three-way valve 38 is disposed in the three-way valve chamber 45.
  • the three-way valve 38 can be displaced in the three-way valve chamber 45 along the axial direction.
  • the three-way valve 38 is urged toward the drive unit accommodation chamber 46 with respect to the first placement unit 55 by a three-way valve spring 56 formed in a coil spring shape.
  • the pilot face portion 78 is formed on the three-way valve 38.
  • the pilot face portion 78 is formed on the upper end surface of the three-way valve 38 that faces the downstream communication passage 53.
  • the pilot face portion 78 is formed in a flat annular shape.
  • the pilot face portion 78 comes into contact with the first seat portion 54 by the elastic force of the three-way valve spring 56.
  • the pilot face portion 78 is pressed against the first seat portion 54 by the urging force of the three-way valve spring 56 and the fuel pressure difference between the three-way valve chamber 45 and the low pressure passage 42.
  • the three-way valve 38 is closed by the seating of the pilot face portion 78 on the first seat portion 54.
  • the three-way valve 38 uses the distance that is displaced in the axial direction when the driving unit 33 generates the first driving force as the first lift amount, and is displaced in the axial direction when the driving unit 33 generates the second driving force.
  • the distance to be used is the second lift amount.
  • the first lift amount is longer than the second lift amount.
  • the in-orifice body 35 is formed in a cylindrical shape from a metal material or the like.
  • the in-orifice body 35 is disposed in the orifice chamber 47 and can be displaced along the axial direction in the orifice chamber 47.
  • a through-hole 35 a that penetrates the in-orifice body 35 in the axial direction is formed in the center of the in-orifice body 35 in the radial direction.
  • the in-orifice body 35 is urged toward the bypass valve chamber 44 with respect to the second placement portion 58 by an orifice spring 59 formed in a coil spring shape.
  • the in-orifice body 35 has a recess 79 and a first in-orifice 80 formed therein.
  • the recess 79 is formed so as to be recessed from the upper end side of the in-orifice body 35. At the bottom of the recess 79, an opening of the through hole 35a is formed.
  • a plurality of insertion holes 81 are formed in the side wall of the recess 79.
  • the tip of the recess 79 comes into contact with the bypass valve 37 by the elastic force of the orifice spring 59.
  • the inner diameter of the recess 79 is larger than the diameter of the small-diameter cylindrical portion 72 of the three-way valve 38. Therefore, the tip of the small diameter cylindrical portion 72 of the three-way valve 38 can contact the bottom of the recess 79 to close the through hole 35a.
  • the first in-orifice 80 is configured to restrict the flow area of the through-hole 35a of the in-orifice body 35.
  • the first in-orifice 80 restricts the flow rate of the fuel flowing out from the high-pressure channel 40 to the bypass valve chamber 44 when the three-way valve 38 is in a closed state.
  • the direction from the bypass valve chamber 44 toward the drive unit accommodation chamber 46 along the axial direction is the valve closing direction, and the direction from the drive unit storage chamber 46 toward the bypass valve chamber 44 along the axial direction.
  • the direction is the valve opening direction.
  • the driving unit 33 does not generate a driving force
  • the outflow passage is closed by the seating of the three-way valve 38 and the bypass valve 37 on the valve body 31.
  • a valve opening gap 82 is formed between the three-way valve 38 in the valve closing position and the in-orifice body 35 in the valve closing position.
  • the valve opening gap 82 functions as a space that allows displacement in the valve opening direction only by the three-way valve 38.
  • the application of the drive voltage from the engine control device 17 to the drive unit 33 is interrupted before the start of injection. Therefore, the drive unit 33 does not substantially generate forces such as the first drive force and the second drive force. Therefore, the three-way valve 38 and the bypass valve 37 are both stationary at the valve closing position where the pilot face portion 78 and the upper end side contact portion 73 are in contact with the first seat portion 54 and the second seat portion 50.
  • a valve opening gap 82 is formed between the three-way valve 38 and the in-orifice body 35.
  • the fuel pressures in the three-way valve chamber 45 and the bypass valve chamber 44 are substantially increased to the same level as the fuel pressure in the pressure control chamber 43. .
  • the high pressure valve 34 is pressed against the wall surface around the opening of the inflow passage 41 by the elastic force of the high pressure valve spring 69.
  • the nozzle needle 32 is stationary at the valve closing position where the face portion 62 is in contact with the seat portion 39.
  • the first drive transmission pin 68 When the drive unit 33 generates the first driving force, the first drive transmission pin 68 is displaced over the first lift amount.
  • the three-way valve 38 pushed down by the first drive transmission pin 68 causes the pilot face portion 78 to be separated from the first seat portion 54 due to the displacement in the valve opening direction over the first lift amount.
  • the three-way valve 38 causes the tip of the small-diameter cylindrical portion 72 to contact the in-orifice body 35 so that the bypass valve 37 is not separated from the valve body 31. Due to the displacement of the three-way valve 38 in the valve opening direction, the valve opening gap 82 disappears.
  • the pressure control chamber 43 and the low-pressure channel 42 are switched from the shut-off state to the communication state as shown in the first lift position of FIG.
  • the high-pressure fuel in the pressure control chamber 43 flows through the first out orifice 70, the upstream communication passage 51, the second out orifice 75, the intermediate communication passage 52, and the three-way valve chamber 45 of the high pressure valve 34 in this order. It is discharged to the path 42.
  • the flow area of the outflow flow path is defined by the throttle area of the first out orifice 70 and the throttle area of the second out orifice 75 which is smaller than the pilot opening area of the three-way valve 38. Therefore, the outflow passage is in the first throttle state in which the outflow flow rate of the fuel from the pressure control chamber 43 to the low pressure passage 42 is limited by the second out orifice 75.
  • the pilot opening area is a flow area between the first seat part 54 and the pilot face part 78.
  • the valve opening gap 82 is defined in advance so that the pilot opening area is larger than the throttle area of the second out orifice 75.
  • the orifice spring 59 urges the in-orifice body 35 and the bypass valve 37 toward the three-way valve 38 in the valve closing direction, thereby separating the bypass valve 37 from the valve body 31. I won't let you.
  • the small-diameter cylindrical portion 72 of the three-way valve 38 is pressed against the bottom of the concave portion 79 of the in-orifice body 35 and can be stationary while being sandwiched between the first drive transmission pin 68 and the in-orifice body 35. It becomes.
  • the driving force generated by the drive unit 33 is maintained at the first driving force, the closed state of the bypass valve 37 in the first throttle state is maintained.
  • the fuel pressure in the bypass valve chamber 44 and the pressure control chamber 43 gradually decreases due to the outflow of fuel through the outflow passage in the first throttle state.
  • the nozzle needle 32 is displaced in the valve opening direction while being gradually accelerated toward the pressure control chamber 43 by the pressure of the high-pressure fuel acting on the face portion 62.
  • the fuel injection from the nozzle hole 30 is started by opening the main valve portion as described above.
  • the first drive transmission pin 68 When the drive unit 33 generates the second driving force, the first drive transmission pin 68 is displaced over the second lift amount.
  • the three-way valve 38 pushed down by the first drive transmission pin 68 causes the pilot face portion 78 to be separated from the first seat portion 54 by displacement in the valve opening direction over the second lift amount.
  • the bypass valve 37 is displaced in the valve opening direction by the upper end side contact portion 73 being pushed by the step of the three way valve 38, and the upper end side contact portion 73 is separated from the second seat portion 50. Sit down.
  • the fuel in the pressure control chamber 43 passes through the first out orifice 70, the upstream communication passage 51, and the second seat in the bypass valve chamber 44.
  • the bypass passage between the portion 50 and the upper end side contact portion 73, the intermediate communication passage 52, and the three-way valve chamber 45 are sequentially circulated.
  • the configuration that defines the flow passage area of the outflow passage and restricts the outflow flow rate of the fuel is switched from the second out orifice 75 to the first out orifice 70. Since the first out orifice 70 has a larger throttle area than the second out orifice 75, the flow area of the outflow channel in the second throttle state is larger than that in the first throttle state. As a result, the flow rate of the fuel flowing out from the pressure control chamber 43 in the second throttle state increases more than in the first throttle state.
  • Both the opening area of the bypass passage and the pilot opening area of the three-way valve 38 are made larger than the throttle area of the first out orifice 70.
  • the second lift amount is defined in advance so that the opening area thereof is larger than the throttle area of the first out orifice 70.
  • the fuel pressure in the bypass valve chamber 44 and the pressure control chamber 43 drops significantly due to the outflow of fuel whose flow rate is controlled by the first out orifice 70.
  • the nozzle needle 32 accelerates in the valve opening direction, and rapidly expands the gap between the seat portion 39 and the face portion 62.
  • the flow area of the high-pressure flow path 40 connected to the injection hole 30 is increased, so that the fuel injection amount injected from the injection hole 30 is increased.
  • a clear change occurs in the characteristics of the injection amount (injection rate) of the fuel injected from the injection hole 30 per unit time.
  • valve closing operation During the valve closing operation, the application of the drive voltage from the engine control device 17 to the drive unit 33 is interrupted. Then, the driving force of the driving unit 33 falls below the valve opening force of the three-way valve 38 and the bypass valve 37 and eventually disappears. As described above, the three-way valve 38 and the bypass valve 37 are displaced in the valve closing direction by the respective elastic forces of the three-way valve spring 56 or the orifice spring 59 and the fuel pressure. As a result, the pilot face portion 78 and the upper end side contact portion 73 are returned to the closed state in which the first seat portion 54 and the second seat portion 50 are contacted. As a result, the pressure control chamber 43 and the low-pressure channel 42 are switched from the communication state to the cutoff state, and the outflow channel returns to the closed state.
  • the high pressure valve 34 is pushed down by the fuel pressure of the high pressure fuel flowing from the inflow passage 41.
  • the three-way valve 38 is displaced in the valve closing direction and separated from the in-orifice body 35, the first in-orifice 80 of the in-orifice body 35 is opened.
  • the high-pressure fuel in the pressure control chamber 43 flows through the in-orifice passage 57, the first in-orifice 80, the bypass valve chamber 44, the second out-orifice 75, the intermediate communication passage 52, and the three-way valve chamber 45 in this order.
  • each fuel pressure in the three-way valve chamber 45, the bypass valve chamber 44, and the pressure control chamber 43 is recovered integrally.
  • the nozzle needle 32 is pushed down by the fuel pressure in the pressure control chamber 43 and returns to the state where the face portion 62 is brought into contact with the seat portion 39 at the valve closing position.
  • the fuel injection from the nozzle hole 30 is interrupted by closing the main valve portion.
  • the flow area of the outflow flow path is switched by the switching valve mechanism 36 due to an increase in the generated drive force of the drive unit 33 from the first drive force to the second drive force.
  • the displacement speed of the nozzle needle 32 is clearly changed by changing the pressure drop mode of the pressure control chamber 43. Therefore, the passage area rapidly increases in the orifice portion between the face portion 62 and the seat portion 39 through which the high-pressure fuel supplied to the injection hole 30 passes.
  • the injection amount injected from the nozzle hole 30 per unit time also clearly changes before and after the driving force is switched by the driving unit 33. Therefore, the fuel injection device 100 can change the injection rate characteristic of the fuel injection by controlling the driving force generated by the single drive unit 33.
  • the three-way valve 38 when the three-way valve 38 is in the first lift amount position and the outflow passage is in the first throttle state, the three-way valve 38 separated from the valve body 31 separates the bypass valve 37.
  • the in-orifice body 35 is in contact with the recess 79 so as not to be seated.
  • the position of the three-way valve 38 is maintained by contact with the recess 79 of the in-orifice body 35, so that the flow area of the outflow passage in the first throttled state, and hence the outflow amount of fuel from the pressure control chamber 43, is , Become stable.
  • the position of the first lift amount is also referred to as a first lift position.
  • the in-orifice body 35 is displaced by pressing the recess 79 by the three-way valve 38.
  • the bypass valve 37 is separated from the valve body 31 by pressing the upper end side contact portion 73 of the bypass valve 37 by the three-way valve 38. In this way, the position of the bypass valve 37 is held by the pressing of the three-way valve 38, so that the flow area of the outflow passage in the second throttle state, and hence the amount of fuel discharged from the pressure control chamber 43, is also stable. .
  • the switching valve mechanism 36 can switch the channel area of the outflow channel by adjusting the lift amount of the three-way valve 38.
  • the lift amount of the three-way valve 38 can be controlled by one drive unit 33. Therefore, since the drive part 33 should just be the structure which controls the lift amount of the one three-way valve 38, the drive part 33 can suppress enlargement.
  • the in-orifice body 35 is in contact with the three-way valve 38 and closes the in-orifice passage 57 when the three-way valve 38 is in the first lift amount position or the second lift amount position.
  • the in-orifice body 35 is separated from the three-way valve 38 to open the in-orifice passage 57.
  • the fuel from the high-pressure flow path 40 can immediately flow into the bypass valve chamber 44.
  • the fuel that has flowed out to the low pressure side when the three-way valve 38 is separated from the valve body 31 can be filled with the high pressure fuel supplied from the in-orifice passage 57 of the in-orifice body 35 in a short time.
  • the time from when the three-way valve 38 is seated on the valve body 31 until the nozzle needle 32 is closed can be shortened.
  • the drive unit 33 of the first embodiment switches between the first throttle state and the second throttle state of the outflow channel not by the lift amount of the first drive transmission pin 68 but by the generated driving force of the drive unit 33. Yes.
  • the positions of the three-way valve 38 and the bypass valve 37 can be maintained even if the driving force varies to some extent in the first throttle state and the second throttle state. Therefore, since the highly accurate control of the lift amount of the first drive transmission pin 68 is not necessarily required, the control of the drive unit 33 can be simplified. Further, the dimensional accuracy required for each member can be relaxed.
  • the first out orifice 70 and the second out orifice 75 which are throttle holes provided in a specific member
  • the road area is specified. As described above, if the flow path area is not defined by the gap between the plurality of members, the variation in the flow rate of the fuel flowing through the outflow flow path in each throttled state is further reduced.
  • a valve opening gap 82 is formed as a space that allows a stroke in the valve opening direction of the three-way valve 38. Therefore, the fuel injection device 100 can displace the three-way valve 38 and the bypass valve 37 in the valve opening direction at different timings by a simple linear operation of the single drive unit 33.
  • one end portion of the three-way valve spring 56 is placed on the first placement portion 55. Therefore, the elastic force of the three-way valve spring 56 does not urge the bypass valve 37 in the valve opening direction. Therefore, even if the spring constant of the orifice spring 59 is kept low, the bypass valve 37 can maintain the closed state when the valve is opened at low speed. According to the above, the drive energy consumed by the drive unit 33 for opening the bypass valve 37 can be reduced.
  • the three-way valve 38 is separated from the in-orifice body 35, and the in-orifice body 35 abuts on the lower end side abutting portion 74 of the bypass valve 37 by pressing by the orifice spring 59.
  • the service passage 57 is opened.
  • the three-way valve 38 is in the first lift amount position or the second lift amount position, the state in which the three-way valve 38 is in contact with the recess 79 of the in-orifice body 35 is maintained by the pressure by the orifice spring 59.
  • the in-orifice passage 57 is closed.
  • the closed state can be maintained by maintaining the contact state between the three-way valve 38 and the recess 79 by the orifice spring 59.
  • the position of the second lift amount is also referred to as a second lift position.
  • the flow area of the first in-orifice 80 is set smaller than the flow area of the second in-orifice 48 that flows into the pressure control chamber 43 from the high-pressure flow path 40.
  • the fuel flowing into the bypass valve chamber 44 at the valve closing position can be restricted by the first in orifice 80. This facilitates control of the valve closing speed.
  • the high-pressure channel 40 corresponds to a supply channel
  • the first placement portion 55 corresponds to a recess
  • the nozzle needle 32 corresponds to a valve member.
  • the three-way valve 38 corresponds to the first valve body
  • the bypass valve 37 corresponds to the second valve body
  • the in-orifice body 35 corresponds to the third valve body
  • the orifice spring 59 corresponds to the biasing member.
  • the recess 79 corresponds to the first contact portion
  • the upper end side contact portion 73 corresponds to the second contact portion
  • the lower end side contact portion 74 corresponds to the third contact portion.
  • the bypass valve chamber 44 and the three-way valve chamber 45 correspond to a switching chamber
  • the in-orifice passage 57 corresponds to a communication passage.
  • the channel area of the outflow channel in each throttled state is defined by each orifice formed in a hole shape.
  • the channel area of the outflow channel in each throttled state may be defined by a gap provided between the two members.
  • the present invention is applied to the fuel injection device 100 that injects light oil as fuel, but it can also be applied to a fuel injection device that injects fuel other than light oil, for example, liquefied gas fuel such as dimethyl ether.

Abstract

A fuel injection device including: a valve body (31) having formed therein an injection hole (30), a supply flow path (40), a pressure control chamber (43), and an outflow flow path (42); a valve member (32) that opens and closes the injection hole; a switching valve mechanism (36) that has a first valve body (38) and a second valve body (37) and switches the flow path area of the outflow flow path; a drive unit (33) that controls the amount of lift of the first valve body to a first lift amount or a second lift amount; and a third valve body (35) that has switching chambers (44, 45) and a communication path (57) formed therein and opens and closes the communication path in accordance with the lift amount for the first valve body. The switching valve mechanism restricts to a first throttle state when the first valve body is not lifting and restricts to a second throttle state when the first valve body is positioned at the second lift amount. The third valve body separates from the first valve body and opens the communication path when the first valve body is not lifting and comes in contact with the first valve body and blocks the communication path when the first valve body is at the first lift amount position or the second lift amount position.

Description

燃料噴射装置Fuel injection device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年8月24日に出願された日本特許出願番号2016-164004号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-164004 filed on August 24, 2016, the contents of which are incorporated herein by reference.
 本開示は、燃焼室へ向けて噴孔から燃料を噴射する燃料噴射装置に関する。 This disclosure relates to a fuel injection device that injects fuel from an injection hole toward a combustion chamber.
 従来、例えば特許文献1に開示されているように、燃料を噴射させるためのニードル開弁速度を可変にしている。ニードル開弁速度を可変にする具体的な機構として、ソレノイドを2個設置し、ソレノイドをそれぞれ独立して作動させることで、制御室から流出する燃料の排出速度を2段階に制御にしている。 Conventionally, as disclosed in Patent Document 1, for example, the needle opening speed for injecting fuel is made variable. As a specific mechanism for making the needle valve opening speed variable, two solenoids are installed, and the solenoids are operated independently to control the discharge speed of the fuel flowing out from the control chamber in two stages.
米国特許出願公開第2013/0233941号明細書US Patent Application Publication No. 2013/0233941
 前述の従来技術では、ソレノイドを2個搭載して排出速度を可変しているので、ソレノイドが1個の構成に比べて燃料噴射装置が大形化するおそれがある。 In the above-described prior art, since the discharge speed is varied by mounting two solenoids, there is a possibility that the fuel injection device may be increased in size as compared with the configuration having one solenoid.
 本開示は、大形化を抑制しつつ、燃料の排出速度を可変に制御することができる燃料噴射装置を提供することを目的とする。 The present disclosure aims to provide a fuel injection device capable of variably controlling the fuel discharge speed while suppressing an increase in size.
 本開示の一態様による燃料噴射装置は、燃焼室へ向けて噴孔から燃料を噴射する。燃料噴射装置は、噴孔、噴孔に燃料を供給する供給流路、供給流路を流通する燃料の一部が流入する圧力制御室、圧力制御室の燃料を低圧側に流出させる流出流路、が形成された弁ボデーと、圧力制御室の燃料圧力の変動により弁ボデーに対して相対変位することで、噴孔を開閉させる弁部材と、流出流路内に配置された第1弁体および第2弁体を有し、流出流路の流路面積を切り替える切替弁機構と、弁ボデーに収容され、切替弁機構によって流路面積を切り替えるために第1弁体に駆動力を与えて第1弁体をリフトし、第1弁体のリフト量を第1リフト量または第1リフト量よりも大きい第2リフト量に制御する駆動部と、第1弁体および第2弁体が収容されている切替室と供給流路とを連通する連通通路が形成されており、第1弁体のリフト量に応じて連通通路を開閉する第3弁体と、を含む。切替弁機構は、第1弁体がリフトしていない場合には、第1弁体が弁ボデーに着座して流出流路を閉鎖し、第1弁体が第1リフト量の位置にある場合には、第1弁体が弁ボデーから離座し、第1弁体が第3弁体の第1当接部に当接し、弁ボデーから第2弁体が離座していない位置にあることで流出流路を第1絞り状態に制限し、第1弁体が第2リフト量に位置にある場合には、第1弁体が弁ボデーから離座し、第1弁体による第1当接部の押圧で第3弁体が変位し、第1弁体による第2弁体の第2当接部への押圧によって第2弁体を弁ボデーから離座した位置にあることで流出流路を第1絞り状態とは流路面積が異なる第2絞り状態に制限する。第3弁体は、第1弁体がリフトしていない場合には、第1弁体と離座して連通通路を開放し、第1弁体が第1リフト量の位置または第2リフト量の位置にある場合には、第1弁体と接触して連通通路を閉鎖する。 The fuel injection device according to one aspect of the present disclosure injects fuel from the injection hole toward the combustion chamber. The fuel injection device includes an injection hole, a supply flow path for supplying fuel to the injection hole, a pressure control chamber into which a part of the fuel flowing through the supply flow path flows, and an outflow flow path for discharging the fuel in the pressure control chamber to the low pressure side , A valve member that opens and closes the nozzle hole by being relatively displaced with respect to the valve body due to fluctuations in fuel pressure in the pressure control chamber, and a first valve body disposed in the outflow passage And a switching valve mechanism for switching the flow area of the outflow passage and a valve body, and a driving force is applied to the first valve body for switching the flow passage area by the switching valve mechanism. The first valve body is lifted, and the first valve body and the second valve body house the drive unit that controls the lift amount of the first valve body to the first lift amount or the second lift amount larger than the first lift amount. A communication passage is formed to communicate the switching chamber and the supply flow path, and the first valve body Including a third valve body for opening and closing the communication passage in accordance with the shift amount. When the first valve body is not lifted, the switching valve mechanism is seated on the valve body to close the outflow passage, and the first valve body is at the position of the first lift amount. The first valve body is separated from the valve body, the first valve body is in contact with the first contact portion of the third valve body, and the second valve body is not separated from the valve body. Thus, when the outflow channel is limited to the first throttle state, and the first valve body is in the second lift amount, the first valve body is separated from the valve body, and the first valve body first The third valve body is displaced by the pressing of the contact portion, and the second valve body is in a position away from the valve body due to the pressing of the second valve body to the second contact portion by the first valve body. The flow path is limited to a second throttle state having a different channel area from the first throttle state. When the first valve body is not lifted, the third valve body is separated from the first valve body to open the communication passage, and the first valve body is positioned at the first lift amount or the second lift amount. If it is in the position, it contacts the first valve body and closes the communication passage.
 このような本開示に従えば、第1弁体が第1リフト量の位置にあり、流出流路が第1絞り状態にある場合では、弁ボデーから離座した第1弁体は、第2弁体を離座させないように、第3弁体の第1当接部に当接した状態とされる。これによって第3弁体の第1当接部との当接によって第1弁体の位置が保持されるので、第1絞り状態における流出流路の流路面積、ひいては圧力制御室からの燃料の流出量は、安定的となる。 According to the present disclosure as described above, when the first valve body is at the position of the first lift amount and the outflow passage is in the first throttle state, the first valve body that is separated from the valve body is the second valve body. It is set as the state contact | abutted to the 1st contact part of the 3rd valve body so that a valve body may not be separated. As a result, the position of the first valve body is held by contact with the first contact portion of the third valve body, so that the flow area of the outflow passage in the first throttled state, and hence the fuel from the pressure control chamber The outflow will be stable.
 また第1弁体が第2リフト量に位置にあり、流出流路が第2絞り状態にある場合では、第1弁体による第1当接部の押圧で第3弁体を変位させて、第1弁体による第2弁体の第2当接部への押圧によって第2弁体を弁ボデーから離座させた状態とされる。このように、第1弁体の押圧によって第2弁体の位置が保持されるので、第2絞り状態における流出流路の流路面積、ひいては圧力制御室からの燃料の排出量も安定的となる。 Further, when the first valve body is in the second lift amount and the outflow channel is in the second throttle state, the third valve body is displaced by the pressing of the first contact portion by the first valve body, The second valve body is separated from the valve body by pressing the second valve body against the second contact portion by the first valve body. As described above, since the position of the second valve body is maintained by the pressing of the first valve body, the flow area of the outflow passage in the second throttled state, and hence the amount of fuel discharged from the pressure control chamber is stable. Become.
 このように切替弁機構は、第1弁体のリフト量を調整することによって、流出流路の流路面積を切り替えることができる。そして第1弁体のリフト量は、1つの駆動部によって制御することができる。したがって駆動部は、1つの第1弁体のリフト量を制御する構成であればよいので、駆動部が大形化を抑制することができる。 Thus, the switching valve mechanism can switch the channel area of the outflow channel by adjusting the lift amount of the first valve body. And the lift amount of a 1st valve body can be controlled by one drive part. Therefore, since the drive part should just be the structure which controls the lift amount of one 1st valve body, a drive part can suppress an enlargement.
 さらに第3弁体は、第1弁体が第1リフト量の位置または第2リフト量の位置にある場合には、第1弁体と接触して連通通路を閉鎖している。そして第3弁体は、第1弁体がリフトしていない場合には、第1弁体と離座して連通通路を開放するので、第1弁体が弁ボデーに離座している状態から着座すると、切替室に供給流路からの燃料を直ちに流入させることができる。したがって第1弁体が弁ボデーから離座することで低圧側に流出した燃料を、第3弁体の連通通路から供給される高圧燃料で短時間で満たすことができる。これによって第1弁体が弁ボデーに着座してから、弁部材が閉弁するまでの時間を短くすることができる。 Furthermore, when the first valve body is in the position of the first lift amount or the second lift amount, the third valve body is in contact with the first valve body and closes the communication passage. When the first valve body is not lifted, the third valve body is separated from the first valve body and opens the communication passage, so that the first valve body is separated from the valve body. When seated from above, the fuel from the supply channel can be immediately allowed to flow into the switching chamber. Therefore, the fuel that has flowed out to the low pressure side when the first valve body is separated from the valve body can be filled with the high pressure fuel supplied from the communication passage of the third valve body in a short time. Thereby, the time from when the first valve body is seated on the valve body to when the valve member is closed can be shortened.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、燃料供給システムの全体構成を示す図であり、 図2は、燃料噴射装置を示す縦断面図であり、 図3は、三方弁およびバイパスバルブの近傍を拡大して示す縦断面図であり、 図4は、三方弁の作動を示す図であり、 図5は、三方弁とノズルニードルの変位などの相関を示すタイムチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram showing an overall configuration of a fuel supply system, FIG. 2 is a longitudinal sectional view showing the fuel injection device, FIG. 3 is an enlarged longitudinal sectional view showing the vicinity of the three-way valve and the bypass valve, FIG. 4 is a diagram showing the operation of the three-way valve, FIG. 5 is a time chart showing the correlation between the displacement of the three-way valve and the nozzle needle.
 (第1実施形態)
 本開示の第1実施形態に関して、図1~図5を用いて説明する。図1に示す燃料供給システム10には、第1実施形態による燃料噴射装置100が用いられている。燃料供給システム10は、内燃機関であるディーゼル機関20の各燃焼室22に、燃料噴射装置100によって燃料を供給する。燃料供給システム10は、フィードポンプ(F/P)12、サプライポンプ13、コモンレール14、機関制御装置17、および複数の燃料噴射装置100等から構成されている。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. 1 to 5. The fuel supply system 10 shown in FIG. 1 uses the fuel injection device 100 according to the first embodiment. The fuel supply system 10 supplies fuel to each combustion chamber 22 of a diesel engine 20 that is an internal combustion engine by a fuel injection device 100. The fuel supply system 10 includes a feed pump (F / P) 12, a supply pump 13, a common rail 14, an engine control device 17, a plurality of fuel injection devices 100, and the like.
 フィードポンプ12は、サプライポンプ13に内蔵された例えばトロコイド式のポンプである。フィードポンプ12は、燃料タンク内に貯留された燃料としての軽油をサプライポンプ13に圧送する。フィードポンプ12は、サプライポンプ13と別体であってもよい。 The feed pump 12 is, for example, a trochoid pump built in the supply pump 13. The feed pump 12 pumps light oil as fuel stored in the fuel tank to the supply pump 13. The feed pump 12 may be a separate body from the supply pump 13.
 サプライポンプ13は、ディーゼル機関20の出力軸によって駆動される例えばプランジャ式のポンプである。サプライポンプ13は、燃料配管13aによってコモンレール14と接続されている。サプライポンプ13は、フィードポンプ12から供給された燃料をさらに昇圧し、コモンレール14に供給する。 The supply pump 13 is, for example, a plunger type pump that is driven by the output shaft of the diesel engine 20. The supply pump 13 is connected to the common rail 14 by a fuel pipe 13a. The supply pump 13 further boosts the fuel supplied from the feed pump 12 and supplies the fuel to the common rail 14.
 コモンレール14は、高圧燃料配管14aを介して各燃料噴射装置100と接続されている。コモンレール14は、サプライポンプ13から供給される高圧の燃料を一時的に蓄え、圧力を保持したまま各燃料噴射装置100に分配する。コモンレール14には、減圧弁14bが設けられている。減圧弁14bは、コモンレール14において余剰となった燃料を、燃料タンクに繋がっている余剰燃料配管へ排出する。 The common rail 14 is connected to each fuel injection device 100 via a high-pressure fuel pipe 14a. The common rail 14 temporarily stores high-pressure fuel supplied from the supply pump 13 and distributes the fuel to each fuel injection device 100 while maintaining the pressure. The common rail 14 is provided with a pressure reducing valve 14b. The pressure reducing valve 14b discharges the surplus fuel in the common rail 14 to the surplus fuel pipe connected to the fuel tank.
 機関制御装置17は、プロセッサ、RAM、および書き換え可能な不揮発性の記憶媒体を含むマイクロコンピュータまたはマイクロコントローラを主体に構成された演算回路と、各燃料噴射装置100を駆動する駆動回路とを含む構成である。機関制御装置17は、図1にて破線で示すように、各燃料噴射装置100と電気的に接続されている。機関制御装置17は、ディーゼル機関20の稼動状態に応じて各燃料噴射装置100の作動を制御する。 The engine control device 17 includes an arithmetic circuit mainly composed of a microcomputer or a microcontroller including a processor, a RAM, and a rewritable nonvolatile storage medium, and a drive circuit that drives each fuel injection device 100. It is. The engine control device 17 is electrically connected to each fuel injection device 100 as indicated by a broken line in FIG. The engine control device 17 controls the operation of each fuel injection device 100 according to the operating state of the diesel engine 20.
 燃料噴射装置100には、燃焼室22を形成するヘッド部材21の挿入孔に挿入された状態で、ヘッド部材21に取り付けられている。燃料噴射装置100は、高圧燃料配管14aを通じて供給される燃料を、複数の噴孔30から燃焼室22へ向けて直接的に噴射する。燃料噴射装置100は、噴孔30からの燃料の噴射を制御する弁機構を備えている。燃料噴射装置100は、高圧燃料配管14aを通じて供給される燃料の一部を、噴孔30の開閉に使用する。 The fuel injection device 100 is attached to the head member 21 in a state of being inserted into the insertion hole of the head member 21 that forms the combustion chamber 22. The fuel injection device 100 directly injects fuel supplied through the high-pressure fuel pipe 14 a from the plurality of injection holes 30 toward the combustion chamber 22. The fuel injection device 100 includes a valve mechanism that controls fuel injection from the injection hole 30. The fuel injection device 100 uses part of the fuel supplied through the high-pressure fuel pipe 14 a to open and close the injection hole 30.
 次に、燃料噴射装置100に関して、図2および図3を用いて説明する。燃料噴射装置100は、図2に示すように、弁ボデー31、ノズルニードル32、駆動部33、高圧バルブ34、インオリフィスボデー35および切替弁機構36を含んで構成される。切替弁機構36は、バイパスバルブ37および三方弁38を有する。 Next, the fuel injection device 100 will be described with reference to FIGS. As shown in FIG. 2, the fuel injection device 100 includes a valve body 31, a nozzle needle 32, a drive unit 33, a high-pressure valve 34, an in-orifice body 35, and a switching valve mechanism 36. The switching valve mechanism 36 includes a bypass valve 37 and a three-way valve 38.
 弁ボデー31は、金属材料よって形成されたシリンダ等の複数の部材を組み合わせることによって構成されている。弁ボデー31には、噴孔30、シート部39、高圧流路40、流入流路41、低圧流路42、圧力制御室43、バイパスバルブ室44、三方弁室45、駆動部収容室46およびオリフィス室47が形成されている。 The valve body 31 is configured by combining a plurality of members such as a cylinder formed of a metal material. The valve body 31 includes an injection hole 30, a seat portion 39, a high-pressure passage 40, an inflow passage 41, a low-pressure passage 42, a pressure control chamber 43, a bypass valve chamber 44, a three-way valve chamber 45, a drive portion accommodation chamber 46, and An orifice chamber 47 is formed.
 噴孔30は、燃焼室22へ挿入される弁ボデー31において、挿入方向の先端部に形成されている。先端部は、円錐状または半球状に形成されている。噴孔30は、弁ボデー31の内側から外側に向けて放射状に複数設けられている。高圧の燃料は、各噴孔30から燃焼室22へ向けて噴射される。高圧の燃料は、噴孔30を通過することによって霧化され、空気と混合し易い状態となる。シート部39は、弁ボデー31の先端部の内側に、円錐状に形成されている。シート部39は、噴孔30の上流側において高圧流路40に臨んでいる。 The injection hole 30 is formed at the distal end in the insertion direction in the valve body 31 inserted into the combustion chamber 22. The tip is formed in a conical or hemispherical shape. A plurality of nozzle holes 30 are provided radially from the inside to the outside of the valve body 31. High-pressure fuel is injected from each injection hole 30 toward the combustion chamber 22. The high-pressure fuel is atomized by passing through the nozzle holes 30 and is easily mixed with air. The seat part 39 is formed in a conical shape inside the tip part of the valve body 31. The seat portion 39 faces the high-pressure channel 40 on the upstream side of the nozzle hole 30.
 高圧流路40は、図1に示す高圧燃料配管14aを通じてコモンレール14から供給される高圧の燃料を、噴孔30に供給する。流入流路41は、高圧流路40と圧力制御室43とを連通させている。流入流路41は、高圧流路40を流通する燃料の一部を圧力制御室43に流入させる。流入流路41には、流入オリフィスとして第2インオリフィス48が設けられている。第2インオリフィス48は、高圧流路40から圧力制御室43に流れる燃料の流量を制限する。 The high-pressure channel 40 supplies high-pressure fuel supplied from the common rail 14 to the nozzle hole 30 through the high-pressure fuel pipe 14a shown in FIG. The inflow channel 41 allows the high-pressure channel 40 and the pressure control chamber 43 to communicate with each other. The inflow channel 41 causes a part of the fuel flowing through the high-pressure channel 40 to flow into the pressure control chamber 43. The inflow channel 41 is provided with a second in orifice 48 as an inflow orifice. The second in-orifice 48 restricts the flow rate of fuel flowing from the high-pressure channel 40 to the pressure control chamber 43.
 低圧流路42は、弁ボデー31内を高圧流路40に沿って延伸している。低圧流路42は、圧力制御室43の燃料(リーク燃料)を、燃料噴射装置100の外部の低圧側である余剰燃料配管に流出させる流出流路の一部である。流出流路は、低圧流路42、バイパスバルブ室44および三方弁室45と、上流側連通路51、中間連通路52、および下流側連通路53等とによって構成されている。低圧流路42を流通する燃料の圧力は、圧力制御室43の燃料の圧力よりも低くなっている。 The low pressure channel 42 extends in the valve body 31 along the high pressure channel 40. The low-pressure channel 42 is a part of the outflow channel that allows the fuel (leak fuel) in the pressure control chamber 43 to flow out to the surplus fuel pipe on the low-pressure side outside the fuel injection device 100. The outflow passage is constituted by a low pressure passage 42, a bypass valve chamber 44 and a three-way valve chamber 45, an upstream communication passage 51, an intermediate communication passage 52, a downstream communication passage 53, and the like. The pressure of the fuel flowing through the low pressure channel 42 is lower than the pressure of the fuel in the pressure control chamber 43.
 圧力制御室43は、弁ボデー31の内部において、ノズルニードル32を挟んで噴孔30の反対側に設けられている。圧力制御室43は、高圧バルブ34、シリンダ49、およびノズルニードル32によって区画された円柱状の空間である。圧力制御室43には、流入流路41を通じて高圧の燃料が流入する。圧力制御室43の燃料圧力は、流入流路41からの高圧の燃料の流入と、バイパスバルブ室44への燃料の流出とにより変動する。圧力制御室43における燃料圧力の変動によってノズルニードル32が往復変位する。 The pressure control chamber 43 is provided inside the valve body 31 on the opposite side of the nozzle hole 30 with the nozzle needle 32 interposed therebetween. The pressure control chamber 43 is a cylindrical space defined by the high pressure valve 34, the cylinder 49, and the nozzle needle 32. High pressure fuel flows into the pressure control chamber 43 through the inflow passage 41. The fuel pressure in the pressure control chamber 43 varies depending on the inflow of high-pressure fuel from the inflow passage 41 and the outflow of fuel to the bypass valve chamber 44. The nozzle needle 32 is reciprocated by the fluctuation of the fuel pressure in the pressure control chamber 43.
 バイパスバルブ室44は、バイパスバルブ37を収容する円柱状の空間である。バイパスバルブ室44の軸方向は、圧力制御室43およびシリンダ49の軸方向に沿っている。バイパスバルブ室44と圧力制御室43との間には、上流側連通路51が形成されている。バイパスバルブ室44には、上流側連通路51を通じて、圧力制御室43から排出された燃料が流入する。上流側連通路51の燃料圧力は、バイパスバルブ室44の燃料圧力と実質的に同一となる。加えて、バイパスバルブ室44と三方弁室45との間には、円筒孔状の中間連通路52が形成されている。バイパスバルブ室44の燃料は、中間連通路52を通じて、三方弁室45に排出される。 The bypass valve chamber 44 is a cylindrical space that houses the bypass valve 37. The axial direction of the bypass valve chamber 44 is along the axial direction of the pressure control chamber 43 and the cylinder 49. An upstream communication path 51 is formed between the bypass valve chamber 44 and the pressure control chamber 43. The fuel discharged from the pressure control chamber 43 flows into the bypass valve chamber 44 through the upstream communication passage 51. The fuel pressure in the upstream communication passage 51 is substantially the same as the fuel pressure in the bypass valve chamber 44. In addition, a cylindrical hole-shaped intermediate communication passage 52 is formed between the bypass valve chamber 44 and the three-way valve chamber 45. The fuel in the bypass valve chamber 44 is discharged to the three-way valve chamber 45 through the intermediate communication passage 52.
 バイパスバルブ室44を区画する区画壁には、第2シート部50が形成されている。第2シート部50は、バイパスバルブ室44の区画壁のうちで、中間連通路52の開口周囲を囲む円環状の領域である。第2シート部50は、バイパスバルブ37を着座させる領域となる。 A second seat portion 50 is formed on a partition wall that partitions the bypass valve chamber 44. The second seat portion 50 is an annular region surrounding the periphery of the opening of the intermediate communication path 52 in the partition wall of the bypass valve chamber 44. The second seat portion 50 is a region where the bypass valve 37 is seated.
 三方弁室45は、三方弁38を収容する円柱状の空間である。三方弁室45は、バイパスバルブ室44と駆動部収容室46との間に位置している。三方弁室45の軸方向は、バイパスバルブ室44の軸方向に沿っている。三方弁室45、バイパスバルブ室44、および中間連通路52は、互いに同軸となるように形成されている。三方弁室45の容積は、バイパスバルブ室44の容積よりも大きい。三方弁室45と駆動部収容室46との間には、下流側連通路53が形成されている。下流側連通路53は、三方弁室45から排出された燃料を主に低圧流路42に流通させる。 The three-way valve chamber 45 is a cylindrical space that houses the three-way valve 38. The three-way valve chamber 45 is located between the bypass valve chamber 44 and the drive unit accommodation chamber 46. The axial direction of the three-way valve chamber 45 is along the axial direction of the bypass valve chamber 44. The three-way valve chamber 45, the bypass valve chamber 44, and the intermediate communication passage 52 are formed so as to be coaxial with each other. The volume of the three-way valve chamber 45 is larger than the volume of the bypass valve chamber 44. A downstream communication passage 53 is formed between the three-way valve chamber 45 and the drive unit accommodation chamber 46. The downstream side communication passage 53 mainly causes the fuel discharged from the three-way valve chamber 45 to flow through the low pressure passage 42.
 三方弁室45を区画する区画壁には、第1シート部54および第1載置部55が形成されている。第1シート部54は、三方弁室45の区画壁のうちで、下流側連通路53の開口周囲を囲む円環状の領域である。第1シート部54は、三方弁38を着座させる領域となる。第1載置部55は、三方弁室45の区画壁のうちで、中間連通路52の開口周囲を囲む領域である。第1載置部55には、三方弁用スプリング56の下端が載置されている。 A first sheet portion 54 and a first placement portion 55 are formed on a partition wall that partitions the three-way valve chamber 45. The first seat portion 54 is an annular region surrounding the periphery of the opening of the downstream communication passage 53 in the partition wall of the three-way valve chamber 45. The first seat portion 54 is a region where the three-way valve 38 is seated. The first placement portion 55 is a region surrounding the periphery of the opening of the intermediate communication passage 52 in the partition wall of the three-way valve chamber 45. The lower end of the three-way valve spring 56 is placed on the first placement portion 55.
 オリフィス室47は、インオリフィスボデー35を収容する円柱状の空間である。オリフィス室47の軸方向は、圧力制御室43およびシリンダ49の軸方向に沿っている。オリフィス室47と高圧流路40との間には、インオリフィス用通路57が形成されている。オリフィス室47には、インオリフィス用通路57を通じて、高圧流路40から供給された燃料が流入する。オリフィス室47の燃料圧力は、高圧流路40の燃料圧力と実質的に同一となる。 The orifice chamber 47 is a cylindrical space that houses the in-orifice body 35. The axial direction of the orifice chamber 47 is along the axial direction of the pressure control chamber 43 and the cylinder 49. An in-orifice passage 57 is formed between the orifice chamber 47 and the high-pressure channel 40. The fuel supplied from the high-pressure channel 40 flows into the orifice chamber 47 through the in-orifice passage 57. The fuel pressure in the orifice chamber 47 is substantially the same as the fuel pressure in the high-pressure channel 40.
 オリフィス室47を区画する区画壁には、第2載置部58が形成されている。第2載置部58は、オリフィス室47の区画壁のうちで、インオリフィス用通路57の開口周囲を囲む領域である。第2載置部58には、オリフィス用スプリング59の下端が載置されている。 A second mounting portion 58 is formed on the partition wall that partitions the orifice chamber 47. The second placement portion 58 is an area surrounding the periphery of the opening of the in-orifice passage 57 in the partition wall of the orifice chamber 47. The lower end of the orifice spring 59 is placed on the second placement portion 58.
 駆動部収容室46は、駆動部33を収容する円柱状の空間である。駆動部収容室46は、三方弁室45から排出された燃料の一部によって満たされている。駆動部収容室46の軸方向は、バイパスバルブ室44および三方弁室45の各軸方向に沿っている。駆動部収容室46、三方弁室45、およびバイパスバルブ室44は、互いに同軸となるように設けられている。 The drive unit accommodation chamber 46 is a columnar space that houses the drive unit 33. The drive unit accommodation chamber 46 is filled with part of the fuel discharged from the three-way valve chamber 45. The axial direction of the drive unit accommodating chamber 46 is along the axial directions of the bypass valve chamber 44 and the three-way valve chamber 45. The drive unit accommodation chamber 46, the three-way valve chamber 45, and the bypass valve chamber 44 are provided so as to be coaxial with each other.
 ノズルニードル32は、金属材料によって全体として円柱状に形成されている。ノズルニードル32は、弁ボデー31に収容されている。ノズルニードル32は、金属製の線材を螺旋状に巻設したコイル状のノズルスプリング60により、噴孔30側へ向けて付勢されている。ノズルニードル32は、弁受圧面61およびフェース部62を有している。ノズルニードル32は、圧力制御室43の燃料圧力を弁受圧面61に受けることで、円筒状に形成されたシリンダ49の内周壁面に沿って、軸方向に往復変位する。ノズルニードル32は、弁ボデー31に対して相対変位することにより、フェース部62をシート部39に離着座させる。フェース部62は、噴孔30を開閉する主弁部を、シート部39と共に形成している。 The nozzle needle 32 is formed in a cylindrical shape as a whole by a metal material. The nozzle needle 32 is accommodated in the valve body 31. The nozzle needle 32 is urged toward the nozzle hole 30 by a coiled nozzle spring 60 in which a metal wire is spirally wound. The nozzle needle 32 has a valve pressure receiving surface 61 and a face portion 62. The nozzle needle 32 is reciprocally displaced in the axial direction along the inner peripheral wall surface of the cylinder 49 formed in a cylindrical shape by receiving the fuel pressure in the pressure control chamber 43 on the valve pressure receiving surface 61. The nozzle needle 32 is displaced relative to the valve body 31, thereby causing the face portion 62 to be separated from and seated on the seat portion 39. The face portion 62 forms a main valve portion that opens and closes the nozzle hole 30 together with the seat portion 39.
 駆動部33は、駆動部収容室46に収容されている。駆動部33は、切替弁機構36の三方弁38およびバイパスバルブ37を駆動するための駆動力を発生させることで、圧力制御室43と低圧流路42との間を遮断状態から連通状態へと切り替える。駆動部33は、機関制御装置17から出力された駆動信号に基づき、発生させる駆動力の大きさを変更可能であり、第1駆動力または第2駆動力を発生させることができる。第2駆動力は、第1駆動力よりも大きい力である。 The drive unit 33 is accommodated in the drive unit accommodation chamber 46. The drive unit 33 generates a driving force for driving the three-way valve 38 and the bypass valve 37 of the switching valve mechanism 36, so that the pressure control chamber 43 and the low-pressure flow path 42 are switched from the cut-off state to the communication state. Switch. The driving unit 33 can change the magnitude of the driving force to be generated based on the driving signal output from the engine control device 17, and can generate the first driving force or the second driving force. The second driving force is a force larger than the first driving force.
 駆動部33は、圧電素子積層体63および伝達機構64等によって構成されている。圧電素子積層体63は、例えばPZT(PbZrTiO3)と呼ばれる層と薄い電極層が交互に積まれた積層体である。圧電素子積層体63には、機関制御装置17から出力された入力駆動信号が入力される。圧電素子積層体63は、駆動信号に応じた電圧である駆動電圧に従って、ピエゾ素子の特性である逆圧電効果により、駆動部収容室46の軸方向に沿って伸縮する。 The driving unit 33 includes a piezoelectric element laminate 63, a transmission mechanism 64, and the like. The piezoelectric element laminate 63 is a laminate in which, for example, layers called PZT (PbZrTiO3) and thin electrode layers are alternately stacked. The piezoelectric element laminate 63 receives an input drive signal output from the engine control device 17. The piezoelectric element stacked body 63 expands and contracts along the axial direction of the drive unit accommodation chamber 46 by the inverse piezoelectric effect that is a characteristic of the piezoelectric element, according to the drive voltage that is a voltage corresponding to the drive signal.
 伝達機構64は、圧電素子積層体63の伸縮を伝達する機構である。伝達機構64は、ピストン65、緩衝シリンダ66およびピストンスプリング67を有している。ピストン65は、円柱状に形成されている。ピストン65は、圧電素子積層体63と接している。ピストン65には、伸縮する圧電素子積層体63の動きが入力される。ピストン65には、三方弁室45へ向かって円柱状に突出する第1駆動伝達ピン68が形成されている。第1駆動伝達ピン68は、下流側連通路53に挿通されている。第1駆動伝達ピン68の先端面は、三方弁38に接触している。 The transmission mechanism 64 is a mechanism that transmits expansion and contraction of the piezoelectric element laminate 63. The transmission mechanism 64 includes a piston 65, a buffer cylinder 66, and a piston spring 67. The piston 65 is formed in a cylindrical shape. The piston 65 is in contact with the piezoelectric element laminate 63. The movement of the piezoelectric element laminate 63 that expands and contracts is input to the piston 65. The piston 65 is formed with a first drive transmission pin 68 that protrudes in a cylindrical shape toward the three-way valve chamber 45. The first drive transmission pin 68 is inserted through the downstream communication path 53. The distal end surface of the first drive transmission pin 68 is in contact with the three-way valve 38.
 緩衝シリンダ66は、円筒状に形成されており、ピストン65に外嵌されている。ピストンスプリング67は、軸方向に弾性力を発生させる金属ばねである。ピストンスプリング67は、緩衝シリンダ66に対してピストン65を三方弁38へ向けて付勢している。 The buffer cylinder 66 is formed in a cylindrical shape and is fitted on the piston 65. The piston spring 67 is a metal spring that generates an elastic force in the axial direction. The piston spring 67 urges the piston 65 toward the three-way valve 38 with respect to the buffer cylinder 66.
 このように駆動部33は、圧電素子積層体63の伸縮を伝達機構64によって軸方向に沿って伝達することで、第1駆動伝達ピン68を軸方向に往復変位させる。駆動部33に入力される駆動電圧が高くなるほど、第1駆動伝達ピン68から三方弁38に入力される駆動力、ひいては第1駆動伝達ピン68および三方弁38のリフト量が大きくなる。 Thus, the drive unit 33 reciprocally displaces the first drive transmission pin 68 in the axial direction by transmitting the expansion and contraction of the piezoelectric element stack 63 along the axial direction by the transmission mechanism 64. As the drive voltage input to the drive unit 33 increases, the drive force input from the first drive transmission pin 68 to the three-way valve 38, and thus the lift amount of the first drive transmission pin 68 and the three-way valve 38, increases.
 高圧バルブ34は、金属材料によって円盤状に形成されている。高圧バルブ34は、弁ボデー31の軸方向に沿って往復変位可能な状態で、シリンダ49の内周側に配置されている。高圧バルブ34と弁受圧面61との間の空間が、実質的に圧力制御室43となる。高圧バルブ34は、高圧バルブ用スプリング69により、シリンダ49に対して上流側連通路51へ向けて付勢されている。高圧バルブ34には、第1アウトオリフィス70が形成されている。第1アウトオリフィス70は、高圧バルブ34を板厚方向に貫通する貫通孔に形成されている。第1アウトオリフィス70は、高圧バルブ34が流入流路41の第2インオリフィス48を塞いでいる状態において、圧力制御室43から上流側連通路51およびバイパスバルブ室44へと流通する燃料の流量を制限する。 The high-pressure valve 34 is formed in a disk shape from a metal material. The high-pressure valve 34 is disposed on the inner peripheral side of the cylinder 49 in a state where the high-pressure valve 34 can be reciprocally displaced along the axial direction of the valve body 31. A space between the high pressure valve 34 and the valve pressure receiving surface 61 is substantially the pressure control chamber 43. The high pressure valve 34 is urged toward the upstream communication path 51 with respect to the cylinder 49 by a high pressure valve spring 69. A first out orifice 70 is formed in the high pressure valve 34. The first out orifice 70 is formed in a through hole that penetrates the high-pressure valve 34 in the plate thickness direction. The first out orifice 70 is a flow rate of fuel flowing from the pressure control chamber 43 to the upstream communication passage 51 and the bypass valve chamber 44 in a state where the high pressure valve 34 closes the second in orifice 48 of the inflow passage 41. Limit.
 切替弁機構36は、バイパスバルブ37および三方弁38の開閉によって流出流路の流路面積を切り替える機構である。駆動部33が第1駆動力および第2駆動力のいずれも発生させていない場合には、切替弁機構36は、流出流路を閉鎖させる。一方、駆動部33が第1駆動力を発生させている場合には、切替弁機構36は、流出流路を第1絞り状態に制限する。さらに、駆動部33が第2駆動力を発生させている場合には、切替弁機構36は、流出流路を第2絞り状態に制限する。 The switching valve mechanism 36 is a mechanism for switching the channel area of the outflow channel by opening and closing the bypass valve 37 and the three-way valve 38. When the drive unit 33 generates neither the first drive force nor the second drive force, the switching valve mechanism 36 closes the outflow channel. On the other hand, when the drive unit 33 generates the first driving force, the switching valve mechanism 36 restricts the outflow channel to the first throttle state. Further, when the drive unit 33 generates the second driving force, the switching valve mechanism 36 restricts the outflow channel to the second throttle state.
 バイパスバルブ37は、金属材料等によって円盤状に形成されている。バイパスバルブ37は、バイパスバルブ室44に配置されており、バイパスバルブ室44内を軸方向に沿って変位可能である。バイパスバルブ37の径方向の中央には、バイパスバルブ37を軸方向に貫通する貫通孔71が形成されている。バイパスバルブ37の貫通孔71には、三方弁38の小径円柱部72が挿通されており、貫通孔71の内壁に沿って三方弁38の小径円柱部72を軸方向に案内する。 The bypass valve 37 is formed in a disk shape from a metal material or the like. The bypass valve 37 is disposed in the bypass valve chamber 44 and can be displaced along the axial direction in the bypass valve chamber 44. A through hole 71 that penetrates the bypass valve 37 in the axial direction is formed in the center of the bypass valve 37 in the radial direction. A small diameter cylindrical portion 72 of the three-way valve 38 is inserted into the through hole 71 of the bypass valve 37, and guides the small diameter cylindrical portion 72 of the three-way valve 38 along the inner wall of the through hole 71 in the axial direction.
 バイパスバルブ37には、上端側当接部73、下端側当接部74および第2アウトオリフィス75が設けられている。上端側当接部73は、中間連通路52と対向するバイパスバルブ37の上端面に形成されている。上端側当接部73は、平坦な円環状に形成されている。上端側当接部73は、オリフィス用スプリング59の弾性力により、第2シート部50に接触する。上端側当接部73の第2シート部50への着座により、バイパスバルブ37は閉弁状態となる。 The bypass valve 37 is provided with an upper end side contact portion 73, a lower end side contact portion 74, and a second out orifice 75. The upper end side contact portion 73 is formed on the upper end surface of the bypass valve 37 facing the intermediate communication path 52. The upper end side contact portion 73 is formed in a flat annular shape. The upper end side contact portion 73 contacts the second sheet portion 50 by the elastic force of the orifice spring 59. The bypass valve 37 is closed by the seating of the upper end side contact portion 73 on the second seat portion 50.
 下端側当接部74は、バイパスバルブ37の軸方向の両端面のうちで、上流側連通路51の開口と対向する端面に形成されている。下端側当接部74は、インオリフィスボデー35の先端部がオリフィス用スプリング59の弾性力により接触する。三方弁38が閉弁位置の場合、インオリフィスボデー35と下端側当接部74とが接触している。 The lower end side contact portion 74 is formed on the end surface of the bypass valve 37 facing the opening of the upstream communication passage 51 in both axial end surfaces. In the lower end side contact portion 74, the tip portion of the in-orifice body 35 comes into contact with the elastic force of the orifice spring 59. When the three-way valve 38 is in the closed position, the in-orifice body 35 and the lower end side contact portion 74 are in contact with each other.
 第2アウトオリフィス75は、バイパスバルブ室44から中間連通路52に至る流路面積を絞る構成である。第2アウトオリフィス75は、バイパスバルブ37が閉弁状態である場合に、バイパスバルブ室44から中間連通路52へ流出する燃料の流量を制限することで、第1絞り状態において流出流路の流路面積を規定する。第2アウトオリフィス75によって絞られた流路面積である絞り面積は、第1アウトオリフィス70よりも狭く規定されている。即ち、第2アウトオリフィス75は、第1アウトオリフィス70よりも小径のオリフィスである。 The second out orifice 75 is configured to restrict the flow area from the bypass valve chamber 44 to the intermediate communication path 52. The second out orifice 75 restricts the flow rate of fuel flowing out from the bypass valve chamber 44 to the intermediate communication passage 52 when the bypass valve 37 is in a closed state, so that the flow of the outflow passage in the first throttle state is reduced. Define the road area. The throttle area that is the flow path area throttled by the second out orifice 75 is defined to be narrower than that of the first out orifice 70. That is, the second out orifice 75 is an orifice having a smaller diameter than the first out orifice 70.
 三方弁38は、金属材料等により、バイパスバルブ37よりも小径の三段円柱状に形成されている。三方弁38およびバイパスバルブ37は、流出流路内に直列に配置されている。三方弁38は、大径円盤部76、中径円柱部77および小径円柱部72を有している。大径円盤部76は、中間連通路52よりも大径に形成されている。一方、中径円柱部77および小径円柱部72は、中間連通路52よりも小径に形成されている。中径円柱部77は、大径円盤部76から軸方向に沿って円柱状に突出している。小径円柱部72は、中径円柱部77から軸方向に沿って円柱状に突出している。 The three-way valve 38 is formed of a metal material or the like into a three-stage cylindrical shape having a smaller diameter than the bypass valve 37. The three-way valve 38 and the bypass valve 37 are arranged in series in the outflow channel. The three-way valve 38 has a large-diameter disk portion 76, a medium-diameter column portion 77, and a small-diameter column portion 72. The large-diameter disk portion 76 is formed with a larger diameter than the intermediate communication path 52. On the other hand, the medium diameter cylindrical portion 77 and the small diameter cylindrical portion 72 are formed to have a smaller diameter than the intermediate communication path 52. The medium-diameter cylindrical portion 77 protrudes from the large-diameter disk portion 76 in a cylindrical shape along the axial direction. The small diameter cylindrical portion 72 protrudes in a cylindrical shape from the medium diameter cylindrical portion 77 along the axial direction.
 中径円柱部77の軸方向の長さは、中間連通路52の軸方向の長さよりも長い。小径円柱部72の軸方向の長さは、バイパスバルブ37の貫通孔71の長さよりも長い。中径円柱部77の直径は、バイパスバルブ37の貫通孔71の直径よりも大きい。したがって中径円柱部77と小径円柱部72との段差が、バイパスバルブ37と接触する部分となる。 The axial length of the medium-diameter cylindrical portion 77 is longer than the axial length of the intermediate communication path 52. The axial length of the small diameter cylindrical portion 72 is longer than the length of the through hole 71 of the bypass valve 37. The diameter of the medium diameter cylindrical portion 77 is larger than the diameter of the through hole 71 of the bypass valve 37. Therefore, the step between the middle diameter cylindrical portion 77 and the small diameter cylindrical portion 72 becomes a portion in contact with the bypass valve 37.
 中径円柱部77は、外周部の一部が径内方向に凹となるように、軸方向を含む平面部77aが形成されている。平面部77aは、中間連通路52における流路面積を確保するために形成されている。平面部77aは、バイパスバルブ37の第2アウトオリフィス75から流出する燃料を遮らないように位置および大きさが設定されている。 The medium-diameter cylindrical portion 77 is formed with a flat portion 77a including the axial direction so that a part of the outer peripheral portion is concave in the radially inward direction. The flat surface portion 77a is formed in order to secure a flow path area in the intermediate communication path 52. The plane portion 77a is set in position and size so as not to block fuel flowing out from the second out orifice 75 of the bypass valve 37.
 三方弁38は、三方弁室45に配置されている。三方弁38は、三方弁室45内を軸方向に沿って変位可能である。三方弁38は、コイルばね状に形成された三方弁用スプリング56により、第1載置部55に対して、駆動部収容室46へ向けて付勢されている。 The three-way valve 38 is disposed in the three-way valve chamber 45. The three-way valve 38 can be displaced in the three-way valve chamber 45 along the axial direction. The three-way valve 38 is urged toward the drive unit accommodation chamber 46 with respect to the first placement unit 55 by a three-way valve spring 56 formed in a coil spring shape.
 三方弁38には、パイロットフェース部78が形成されている。パイロットフェース部78は、下流側連通路53と対向する三方弁38の上端面に形成されている。パイロットフェース部78は、平坦な円環状に形成されている。パイロットフェース部78は、三方弁用スプリング56の弾性力により、第1シート部54と接触する。三方弁用スプリング56の付勢力と、三方弁室45および低圧流路42間における燃料圧力差とにより、パイロットフェース部78は、第1シート部54に押し付けられる。パイロットフェース部78の第1シート部54への着座により、三方弁38は、閉弁状態となる。 The pilot face portion 78 is formed on the three-way valve 38. The pilot face portion 78 is formed on the upper end surface of the three-way valve 38 that faces the downstream communication passage 53. The pilot face portion 78 is formed in a flat annular shape. The pilot face portion 78 comes into contact with the first seat portion 54 by the elastic force of the three-way valve spring 56. The pilot face portion 78 is pressed against the first seat portion 54 by the urging force of the three-way valve spring 56 and the fuel pressure difference between the three-way valve chamber 45 and the low pressure passage 42. The three-way valve 38 is closed by the seating of the pilot face portion 78 on the first seat portion 54.
 三方弁38は、駆動部33が第1駆動力を発生させた場合に軸方向に変位する距離を第1リフト量とし、駆動部33が第2駆動力を発生させた場合に軸方向に変位する距離を第2リフト量とする。第1リフト量は、第2リフト量よりも長い。 The three-way valve 38 uses the distance that is displaced in the axial direction when the driving unit 33 generates the first driving force as the first lift amount, and is displaced in the axial direction when the driving unit 33 generates the second driving force. The distance to be used is the second lift amount. The first lift amount is longer than the second lift amount.
 インオリフィスボデー35は、金属材料等によって円柱状に形成されている。インオリフィスボデー35は、オリフィス室47に配置されており、オリフィス室47内を軸方向に沿って変位可能である。インオリフィスボデー35の径方向の中央には、インオリフィスボデー35を軸方向に貫通する貫通孔35aが形成されている。インオリフィスボデー35は、コイルばね状に形成されたオリフィス用スプリング59により、第2載置部58に対して、バイパスバルブ室44へ向けて付勢されている。 The in-orifice body 35 is formed in a cylindrical shape from a metal material or the like. The in-orifice body 35 is disposed in the orifice chamber 47 and can be displaced along the axial direction in the orifice chamber 47. A through-hole 35 a that penetrates the in-orifice body 35 in the axial direction is formed in the center of the in-orifice body 35 in the radial direction. The in-orifice body 35 is urged toward the bypass valve chamber 44 with respect to the second placement portion 58 by an orifice spring 59 formed in a coil spring shape.
 インオリフィスボデー35には、凹部79および第1インオリフィス80が形成されている。凹部79は、インオリフィスボデー35の上端側から凹となるように形成されている。凹部79の底には、貫通孔35aの開口が形成されている。凹部79の側壁には、複数の挿通孔81が形成されている。 The in-orifice body 35 has a recess 79 and a first in-orifice 80 formed therein. The recess 79 is formed so as to be recessed from the upper end side of the in-orifice body 35. At the bottom of the recess 79, an opening of the through hole 35a is formed. A plurality of insertion holes 81 are formed in the side wall of the recess 79.
 凹部79の先端は、オリフィス用スプリング59の弾性力によってバイパスバルブ37に接触する。また凹部79の内径は、三方弁38の小径円柱部72の直径よりも大きい。したがって三方弁38の小径円柱部72の先端は、凹部79の底に接触して貫通孔35aを閉弁することができる。 The tip of the recess 79 comes into contact with the bypass valve 37 by the elastic force of the orifice spring 59. The inner diameter of the recess 79 is larger than the diameter of the small-diameter cylindrical portion 72 of the three-way valve 38. Therefore, the tip of the small diameter cylindrical portion 72 of the three-way valve 38 can contact the bottom of the recess 79 to close the through hole 35a.
 第1インオリフィス80は、インオリフィスボデー35の貫通孔35aの流路面積を絞る構成である。第1インオリフィス80は、三方弁38が閉弁状態である場合に、高圧流路40からバイパスバルブ室44へ流出する燃料の流量を制限する。 The first in-orifice 80 is configured to restrict the flow area of the through-hole 35a of the in-orifice body 35. The first in-orifice 80 restricts the flow rate of the fuel flowing out from the high-pressure channel 40 to the bypass valve chamber 44 when the three-way valve 38 is in a closed state.
 バイパスバルブ37および三方弁38では、軸方向に沿ってバイパスバルブ室44から駆動部収容室46へ向かう方向が閉弁方向となり、軸方向に沿って駆動部収容室46からバイパスバルブ室44へ向かう方向が開弁方向となる。駆動部33が駆動力を発生させていない場合には、三方弁38およびバイパスバルブ37の弁ボデー31への着座により、流出流路は閉鎖された状態となる。また、閉弁位置にある三方弁38と閉弁位置にあるインオリフィスボデー35との間には、開弁ギャップ82が形成されている。開弁ギャップ82は、三方弁38のみでの開弁方向への変位を許容する空間として機能する。 In the bypass valve 37 and the three-way valve 38, the direction from the bypass valve chamber 44 toward the drive unit accommodation chamber 46 along the axial direction is the valve closing direction, and the direction from the drive unit storage chamber 46 toward the bypass valve chamber 44 along the axial direction. The direction is the valve opening direction. When the driving unit 33 does not generate a driving force, the outflow passage is closed by the seating of the three-way valve 38 and the bypass valve 37 on the valve body 31. A valve opening gap 82 is formed between the three-way valve 38 in the valve closing position and the in-orifice body 35 in the valve closing position. The valve opening gap 82 functions as a space that allows displacement in the valve opening direction only by the three-way valve 38.
 次に、燃料噴射装置100の噴射作動の詳細を、図3~図5を用いて説明する。図3に示すように、噴射開始前では、機関制御装置17から駆動部33への駆動電圧の印加は中断されている。故に、駆動部33は、第1駆動力および第2駆動力といった力を実質的に発生させていない。そのため、三方弁38およびバイパスバルブ37は、共にパイロットフェース部78および上端側当接部73を第1シート部54および第2シート部50に当接させた閉弁位置にて静止している。また三方弁38とインオリフィスボデー35との間には、開弁ギャップ82が形成されている。三方弁38およびバイパスバルブ37が共に閉弁状態にあることで、三方弁室45およびバイパスバルブ室44の各燃料圧力は、実質的に圧力制御室43の燃料圧力と同程度まで上昇している。以上の状態では、高圧バルブ34は、高圧バルブ用スプリング69の弾性力により、流入流路41の開口周囲の壁面に押し当てられている。また、ノズルニードル32は、フェース部62をシート部39に当接させた閉弁位置にて静止している。 Next, details of the injection operation of the fuel injection device 100 will be described with reference to FIGS. As shown in FIG. 3, the application of the drive voltage from the engine control device 17 to the drive unit 33 is interrupted before the start of injection. Therefore, the drive unit 33 does not substantially generate forces such as the first drive force and the second drive force. Therefore, the three-way valve 38 and the bypass valve 37 are both stationary at the valve closing position where the pilot face portion 78 and the upper end side contact portion 73 are in contact with the first seat portion 54 and the second seat portion 50. A valve opening gap 82 is formed between the three-way valve 38 and the in-orifice body 35. Since both the three-way valve 38 and the bypass valve 37 are closed, the fuel pressures in the three-way valve chamber 45 and the bypass valve chamber 44 are substantially increased to the same level as the fuel pressure in the pressure control chamber 43. . In the above state, the high pressure valve 34 is pressed against the wall surface around the opening of the inflow passage 41 by the elastic force of the high pressure valve spring 69. The nozzle needle 32 is stationary at the valve closing position where the face portion 62 is in contact with the seat portion 39.
 まず低速開弁時に関して説明する。図4および図5に示すように、低速開弁時では、機関制御装置17から駆動部33への駆動電圧の印加が開始される。これにより駆動部33は、第1駆動力を発生させる。機関制御装置17は、三方弁38の開弁力よりも大きく、かつ、インオリフィスボデー35を変位させないような第1駆動力が三方弁38に作用するよう、駆動部33に印加する駆動電圧を制御する。 First, we will explain when the valve opens at low speed. As shown in FIGS. 4 and 5, when the valve is opened at low speed, application of a drive voltage from the engine control device 17 to the drive unit 33 is started. As a result, the drive unit 33 generates the first drive force. The engine control device 17 applies a drive voltage applied to the drive unit 33 so that a first drive force that is greater than the opening force of the three-way valve 38 and does not displace the in-orifice body 35 acts on the three-way valve 38. Control.
 駆動部33が第1駆動力を発生させている場合、第1駆動伝達ピン68が第1リフト量にわたって変位する。第1駆動伝達ピン68によって押し下げられた三方弁38は、第1リフト量にわたる開弁方向への変位により、パイロットフェース部78を第1シート部54から離座させる。そうしたうえで、三方弁38は、バイパスバルブ37を弁ボデー31から離座させないように、インオリフィスボデー35に小径円柱部72の先端を当接させる。こうした三方弁38の開弁方向への変位により、開弁ギャップ82は消失する。 When the drive unit 33 generates the first driving force, the first drive transmission pin 68 is displaced over the first lift amount. The three-way valve 38 pushed down by the first drive transmission pin 68 causes the pilot face portion 78 to be separated from the first seat portion 54 due to the displacement in the valve opening direction over the first lift amount. In addition, the three-way valve 38 causes the tip of the small-diameter cylindrical portion 72 to contact the in-orifice body 35 so that the bypass valve 37 is not separated from the valve body 31. Due to the displacement of the three-way valve 38 in the valve opening direction, the valve opening gap 82 disappears.
 以上の三方弁38の開弁により、図3の第1リフト位置に示すように、圧力制御室43と低圧流路42との間は、遮断状態から連通状態へと切り替わる。その結果、圧力制御室43の高圧燃料は、高圧バルブ34の第1アウトオリフィス70、上流側連通路51、第2アウトオリフィス75、中間連通路52、三方弁室45を順に流通し、低圧流路42へ排出される。 By opening the three-way valve 38 as described above, the pressure control chamber 43 and the low-pressure channel 42 are switched from the shut-off state to the communication state as shown in the first lift position of FIG. As a result, the high-pressure fuel in the pressure control chamber 43 flows through the first out orifice 70, the upstream communication passage 51, the second out orifice 75, the intermediate communication passage 52, and the three-way valve chamber 45 of the high pressure valve 34 in this order. It is discharged to the path 42.
 このとき、第1アウトオリフィス70の絞り面積および三方弁38のパイロット開口面積よりも狭い第2アウトオリフィス75の絞り面積により、流出流路の流路面積が規定される。故に、流出流路は、圧力制御室43から低圧流路42への燃料の流出流量が第2アウトオリフィス75によって制限された第1絞り状態となる。 At this time, the flow area of the outflow flow path is defined by the throttle area of the first out orifice 70 and the throttle area of the second out orifice 75 which is smaller than the pilot opening area of the three-way valve 38. Therefore, the outflow passage is in the first throttle state in which the outflow flow rate of the fuel from the pressure control chamber 43 to the low pressure passage 42 is limited by the second out orifice 75.
 パイロット開口面積は、第1シート部54およびパイロットフェース部78の間の流路面積である。第2アウトオリフィス75による流量制御を可能にするため、開弁ギャップ82は、パイロット開口面積が第2アウトオリフィス75の絞り面積よりも大きくなるように予め規定されている。 The pilot opening area is a flow area between the first seat part 54 and the pilot face part 78. In order to enable flow control by the second out orifice 75, the valve opening gap 82 is defined in advance so that the pilot opening area is larger than the throttle area of the second out orifice 75.
 以上の第1絞り状態において、オリフィス用スプリング59は、三方弁38へ向けてインオリフィスボデー35およびバイパスバルブ37を閉弁方向に付勢することにより、このバイパスバルブ37を弁ボデー31から離座させない。その結果、三方弁38の小径円柱部72は、インオリフィスボデー35の凹部79の底に押し当てられて、第1駆動伝達ピン68とインオリフィスボデー35とに間に挟持された状態で静止可能となる。加えて、駆動部33の発生させている駆動力が概ね第1駆動力に保たれることにより、第1絞り状態におけるバイパスバルブ37の閉弁状態は維持される。 In the first throttle state, the orifice spring 59 urges the in-orifice body 35 and the bypass valve 37 toward the three-way valve 38 in the valve closing direction, thereby separating the bypass valve 37 from the valve body 31. I won't let you. As a result, the small-diameter cylindrical portion 72 of the three-way valve 38 is pressed against the bottom of the concave portion 79 of the in-orifice body 35 and can be stationary while being sandwiched between the first drive transmission pin 68 and the in-orifice body 35. It becomes. In addition, since the driving force generated by the drive unit 33 is maintained at the first driving force, the closed state of the bypass valve 37 in the first throttle state is maintained.
 第1絞り状態の流出流路を通じた燃料の流出により、バイパスバルブ室44および圧力制御室43の燃料圧力は、徐々に低下する。その結果、ノズルニードル32は、フェース部62に作用する高圧燃料の圧力により、圧力制御室43へ向けて徐々に加速しつつ開弁方向に変位する。以上による主弁部の開弁により、噴孔30からの燃料噴射が開始される。 The fuel pressure in the bypass valve chamber 44 and the pressure control chamber 43 gradually decreases due to the outflow of fuel through the outflow passage in the first throttle state. As a result, the nozzle needle 32 is displaced in the valve opening direction while being gradually accelerated toward the pressure control chamber 43 by the pressure of the high-pressure fuel acting on the face portion 62. The fuel injection from the nozzle hole 30 is started by opening the main valve portion as described above.
 次に、高速開弁時に関して説明する。高速開弁時では、機関制御装置17から駆動部33に印加される駆動電圧が引き上げられる。これにより駆動部33は、バイパスバルブ37の開弁力を上回る第2駆動力を発生させる。機関制御装置17は、バイパスバルブ37の開弁力よりも大きい第2駆動力の発生が維持されるように、駆動部33に印加する駆動電圧を制御する。 Next, a description will be given of when the valve is opened at high speed. When the valve is opened at high speed, the drive voltage applied from the engine control device 17 to the drive unit 33 is increased. As a result, the drive unit 33 generates a second drive force that exceeds the opening force of the bypass valve 37. The engine control device 17 controls the drive voltage applied to the drive unit 33 so that the generation of the second drive force larger than the opening force of the bypass valve 37 is maintained.
 駆動部33が第2駆動力を発生させている場合、第1駆動伝達ピン68が第2リフト量にわたって変位する。第1駆動伝達ピン68によって押し下げられた三方弁38は、第2リフト量にわたる開弁方向への変位により、パイロットフェース部78を第1シート部54から離座させる。さらに三方弁38の変位により、バイパスバルブ37は、三方弁38の段差によって上端側当接部73を押されて開弁方向に変位し、第2シート部50から上端側当接部73を離座させる。 When the drive unit 33 generates the second driving force, the first drive transmission pin 68 is displaced over the second lift amount. The three-way valve 38 pushed down by the first drive transmission pin 68 causes the pilot face portion 78 to be separated from the first seat portion 54 by displacement in the valve opening direction over the second lift amount. Further, due to the displacement of the three-way valve 38, the bypass valve 37 is displaced in the valve opening direction by the upper end side contact portion 73 being pushed by the step of the three way valve 38, and the upper end side contact portion 73 is separated from the second seat portion 50. Sit down.
 以上のバイパスバルブ37の開弁により、図3の第2リフト位置のように、圧力制御室43の燃料は、第1アウトオリフィス70、上流側連通路51、バイパスバルブ室44内の第2シート部50と上端側当接部73との間のバイパス通路、中間連通路52、三方弁室45を順に流通する。その結果、流出流路の流路面積を規定し、かつ、燃料の流出流量を制限する構成は、第2アウトオリフィス75から第1アウトオリフィス70へと切り替えられる。第2アウトオリフィス75よりも第1アウトオリフィス70の方が絞り面積が大きいため、第2絞り状態における流出流路の流路面積は、第1絞り状態よりも大きくなる。その結果、第2絞り状態にて圧力制御室43から流出する燃料の流出流量は、第1絞り状態よりも増加する。 By opening the bypass valve 37 as described above, as in the second lift position of FIG. 3, the fuel in the pressure control chamber 43 passes through the first out orifice 70, the upstream communication passage 51, and the second seat in the bypass valve chamber 44. The bypass passage between the portion 50 and the upper end side contact portion 73, the intermediate communication passage 52, and the three-way valve chamber 45 are sequentially circulated. As a result, the configuration that defines the flow passage area of the outflow passage and restricts the outflow flow rate of the fuel is switched from the second out orifice 75 to the first out orifice 70. Since the first out orifice 70 has a larger throttle area than the second out orifice 75, the flow area of the outflow channel in the second throttle state is larger than that in the first throttle state. As a result, the flow rate of the fuel flowing out from the pressure control chamber 43 in the second throttle state increases more than in the first throttle state.
 バイパス通路の開口面積および三方弁38のパイロット開口面積は共に、第1アウトオリフィス70の絞り面積よりも大きくされている。第1アウトオリフィス70による流量制御を可能にするため、第2リフト量は、これらの開口面積が第1アウトオリフィス70の絞り面積よりも大きくなるように予め規定されている。 Both the opening area of the bypass passage and the pilot opening area of the three-way valve 38 are made larger than the throttle area of the first out orifice 70. In order to enable the flow rate control by the first out orifice 70, the second lift amount is defined in advance so that the opening area thereof is larger than the throttle area of the first out orifice 70.
 第1アウトオリフィス70によって流量を制御された燃料の流出により、バイパスバルブ室44および圧力制御室43の各燃料圧力は、顕著に降下する。その結果、ノズルニードル32は、開弁方向へと加速し、シート部39とフェース部62との間隙を急速に拡大させる。このようにして、噴孔30へ繋がる高圧流路40の流路面積が拡大することで、噴孔30から噴射される燃料噴射量が増加する。その結果、単位時間当たりに噴孔30から噴射される燃料の噴射量(噴射率)の特性に明確な変化が生じる。 The fuel pressure in the bypass valve chamber 44 and the pressure control chamber 43 drops significantly due to the outflow of fuel whose flow rate is controlled by the first out orifice 70. As a result, the nozzle needle 32 accelerates in the valve opening direction, and rapidly expands the gap between the seat portion 39 and the face portion 62. As described above, the flow area of the high-pressure flow path 40 connected to the injection hole 30 is increased, so that the fuel injection amount injected from the injection hole 30 is increased. As a result, a clear change occurs in the characteristics of the injection amount (injection rate) of the fuel injected from the injection hole 30 per unit time.
 次に、閉弁動作時に関して説明する。閉弁動作時では、機関制御装置17から駆動部33への駆動電圧の印加が中断される。すると、駆動部33の駆動力は、三方弁38およびバイパスバルブ37の各開弁力を下回り、やがて消失する。以上により、三方弁38およびバイパスバルブ37は、三方弁用スプリング56またはオリフィス用スプリング59の各弾性力と燃料圧力とによって閉弁方向へ向けて変位する。これによってパイロットフェース部78および上端側当接部73を第1シート部54および第2シート部50に当接させた閉弁状態に戻る。その結果、圧力制御室43と低圧流路42との間が連通状態から遮断状態へと切り替えられ、流出流路は、閉鎖された状態に戻る。 Next, the valve closing operation will be described. During the valve closing operation, the application of the drive voltage from the engine control device 17 to the drive unit 33 is interrupted. Then, the driving force of the driving unit 33 falls below the valve opening force of the three-way valve 38 and the bypass valve 37 and eventually disappears. As described above, the three-way valve 38 and the bypass valve 37 are displaced in the valve closing direction by the respective elastic forces of the three-way valve spring 56 or the orifice spring 59 and the fuel pressure. As a result, the pilot face portion 78 and the upper end side contact portion 73 are returned to the closed state in which the first seat portion 54 and the second seat portion 50 are contacted. As a result, the pressure control chamber 43 and the low-pressure channel 42 are switched from the communication state to the cutoff state, and the outflow channel returns to the closed state.
 一方、高圧バルブ34は、流入流路41から流入する高圧燃料の燃料圧力によって押し下げられる。そして三方弁38が閉弁方向に変位して、インオリフィスボデー35と離間すると、インオリフィスボデー35の第1インオリフィス80が開放される。その結果、圧力制御室43の高圧燃料は、インオリフィス用通路57、第1インオリフィス80、バイパスバルブ室44、第2アウトオリフィス75、中間連通路52、三方弁室45を順に流通する。 On the other hand, the high pressure valve 34 is pushed down by the fuel pressure of the high pressure fuel flowing from the inflow passage 41. When the three-way valve 38 is displaced in the valve closing direction and separated from the in-orifice body 35, the first in-orifice 80 of the in-orifice body 35 is opened. As a result, the high-pressure fuel in the pressure control chamber 43 flows through the in-orifice passage 57, the first in-orifice 80, the bypass valve chamber 44, the second out-orifice 75, the intermediate communication passage 52, and the three-way valve chamber 45 in this order.
 これにより、三方弁室45、バイパスバルブ室44、および圧力制御室43の各燃料圧力は、一体的に回復する。その結果、ノズルニードル32は、圧力制御室43の燃料圧力によって押し下げられて、閉弁位置にてフェース部62をシート部39に当接させた状態に戻る。以上の主弁部の閉弁により、噴孔30からの燃料噴射は中断される。 Thereby, each fuel pressure in the three-way valve chamber 45, the bypass valve chamber 44, and the pressure control chamber 43 is recovered integrally. As a result, the nozzle needle 32 is pushed down by the fuel pressure in the pressure control chamber 43 and returns to the state where the face portion 62 is brought into contact with the seat portion 39 at the valve closing position. The fuel injection from the nozzle hole 30 is interrupted by closing the main valve portion.
 ここまで説明した第1実施形態では、第1駆動力から第2駆動力への駆動部33の発生駆動力の増加により、切替弁機構36によって流出流路の流路面積が切り替えられる。以上により、圧力制御室43の圧力降下の態様を変化させることで、ノズルニードル32の変位速度は、明確に変化する。故に、噴孔30に供給される高圧燃料を通過させるフェース部62およびシート部39の間のオリフィス部分について、流路面積の拡大が急速に生じる。その結果、単位時間あたりに噴孔30から噴射される噴射量も、駆動部33による駆動力の切り替えの前後で、明確に変化する。したがって、燃料噴射装置100は、一つの駆動部33によって発生させる駆動力の制御により、燃料噴射の噴射率特性を変化させることが可能になる。 In the first embodiment described so far, the flow area of the outflow flow path is switched by the switching valve mechanism 36 due to an increase in the generated drive force of the drive unit 33 from the first drive force to the second drive force. As described above, the displacement speed of the nozzle needle 32 is clearly changed by changing the pressure drop mode of the pressure control chamber 43. Therefore, the passage area rapidly increases in the orifice portion between the face portion 62 and the seat portion 39 through which the high-pressure fuel supplied to the injection hole 30 passes. As a result, the injection amount injected from the nozzle hole 30 per unit time also clearly changes before and after the driving force is switched by the driving unit 33. Therefore, the fuel injection device 100 can change the injection rate characteristic of the fuel injection by controlling the driving force generated by the single drive unit 33.
 また第1実施形態では、三方弁38が第1リフト量の位置にあり、流出流路が第1絞り状態にある場合では、弁ボデー31から離座した三方弁38は、バイパスバルブ37を離座させないように、インオリフィスボデー35の凹部79に当接した状態とされる。これによってインオリフィスボデー35の凹部79との当接によって三方弁38の位置が保持されるので、第1絞り状態における流出流路の流路面積、ひいては圧力制御室43からの燃料の流出量は、安定的となる。本実施形態では、第1リフト量の位置は、第1リフト位置とも言う。 Further, in the first embodiment, when the three-way valve 38 is in the first lift amount position and the outflow passage is in the first throttle state, the three-way valve 38 separated from the valve body 31 separates the bypass valve 37. The in-orifice body 35 is in contact with the recess 79 so as not to be seated. As a result, the position of the three-way valve 38 is maintained by contact with the recess 79 of the in-orifice body 35, so that the flow area of the outflow passage in the first throttled state, and hence the outflow amount of fuel from the pressure control chamber 43, is , Become stable. In the present embodiment, the position of the first lift amount is also referred to as a first lift position.
 また三方弁38が第2リフト量に位置にあり、流出流路が第2絞り状態にある場合では、三方弁38による凹部79の押圧でインオリフィスボデー35を変位させる。そして三方弁38によるバイパスバルブ37の上端側当接部73への押圧によってバイパスバルブ37を弁ボデー31から離座させた状態とされる。このように、三方弁38の押圧によってバイパスバルブ37の位置が保持されるので、第2絞り状態における流出流路の流路面積、ひいては圧力制御室43からの燃料の排出量も安定的となる。 Further, when the three-way valve 38 is at the second lift amount and the outflow channel is in the second throttle state, the in-orifice body 35 is displaced by pressing the recess 79 by the three-way valve 38. Then, the bypass valve 37 is separated from the valve body 31 by pressing the upper end side contact portion 73 of the bypass valve 37 by the three-way valve 38. In this way, the position of the bypass valve 37 is held by the pressing of the three-way valve 38, so that the flow area of the outflow passage in the second throttle state, and hence the amount of fuel discharged from the pressure control chamber 43, is also stable. .
 このように切替弁機構36は、三方弁38のリフト量を調整することによって、流出流路の流路面積を切り替えることができる。そして三方弁38のリフト量は、1つの駆動部33によって制御することができる。したがって駆動部33は、1つの三方弁38のリフト量を制御する構成であればよいので、駆動部33が大形化を抑制することができる。 Thus, the switching valve mechanism 36 can switch the channel area of the outflow channel by adjusting the lift amount of the three-way valve 38. The lift amount of the three-way valve 38 can be controlled by one drive unit 33. Therefore, since the drive part 33 should just be the structure which controls the lift amount of the one three-way valve 38, the drive part 33 can suppress enlargement.
 さらにインオリフィスボデー35は、三方弁38が第1リフト量の位置または第2リフト量の位置にある場合には、三方弁38と接触してインオリフィス用通路57を閉鎖している。そしてインオリフィスボデー35は、三方弁38がリフトしていない場合には、三方弁38と離座してインオリフィス用通路57を開放する。三方弁38が弁ボデー31に離座している状態から着座すると、バイパスバルブ室44に高圧流路40からの燃料を直ちに流入させることができる。したがって三方弁38が弁ボデー31から離座することで低圧側に流出した燃料を、インオリフィスボデー35のインオリフィス用通路57から供給される高圧燃料で短時間で満たすことができる。これによって三方弁38が弁ボデー31に着座してから、ノズルニードル32が閉弁するまでの時間を短くすることができる。 Further, the in-orifice body 35 is in contact with the three-way valve 38 and closes the in-orifice passage 57 when the three-way valve 38 is in the first lift amount position or the second lift amount position. When the three-way valve 38 is not lifted, the in-orifice body 35 is separated from the three-way valve 38 to open the in-orifice passage 57. When the three-way valve 38 is seated from the state where it is separated from the valve body 31, the fuel from the high-pressure flow path 40 can immediately flow into the bypass valve chamber 44. Therefore, the fuel that has flowed out to the low pressure side when the three-way valve 38 is separated from the valve body 31 can be filled with the high pressure fuel supplied from the in-orifice passage 57 of the in-orifice body 35 in a short time. As a result, the time from when the three-way valve 38 is seated on the valve body 31 until the nozzle needle 32 is closed can be shortened.
 さらに第1実施形態の駆動部33は、第1駆動伝達ピン68のリフト量によってではなく、駆動部33の発生駆動力によって、流出流路の第1絞り状態と第2絞り状態とを切り替えている。以上の形態であれば、第1絞り状態および第2絞り状態にて駆動力がある程度変動しても、三方弁38およびバイパスバルブ37の位置は維持され得る。故に、第1駆動伝達ピン68のリフト量の高精度な制御は、必ずしも必要とされないため、駆動部33の制御が簡素化され得る。また、各部材に要求される寸法精度の緩和も可能となる。 Furthermore, the drive unit 33 of the first embodiment switches between the first throttle state and the second throttle state of the outflow channel not by the lift amount of the first drive transmission pin 68 but by the generated driving force of the drive unit 33. Yes. With the above configuration, the positions of the three-way valve 38 and the bypass valve 37 can be maintained even if the driving force varies to some extent in the first throttle state and the second throttle state. Therefore, since the highly accurate control of the lift amount of the first drive transmission pin 68 is not necessarily required, the control of the drive unit 33 can be simplified. Further, the dimensional accuracy required for each member can be relaxed.
 加えて第1実施形態では、第1絞り状態および第2絞り状態のそれぞれにおいて、特定の部材に設けられた絞り孔である第1アウトオリフィス70および第2アウトオリフィス75が、流出流路の流路面積を規定している。このように、複数部材の隙間によって流路面積を規定しない構成であれば、各絞り状態にて流出流路を流通する燃料流量のばらつきは、さらに低減される。 In addition, in the first embodiment, in each of the first throttle state and the second throttle state, the first out orifice 70 and the second out orifice 75, which are throttle holes provided in a specific member, The road area is specified. As described above, if the flow path area is not defined by the gap between the plurality of members, the variation in the flow rate of the fuel flowing through the outflow flow path in each throttled state is further reduced.
 さらに第1実施形態の切替弁機構36には、三方弁38の開弁方向へストロークを許容する空間として、開弁ギャップ82が形成されている。故に、燃料噴射装置100は、一つの駆動部33の単純な直線状の作動により、三方弁38およびバイパスバルブ37を、異なるタイミングで開弁方向へ変位させることが可能になる。 Furthermore, in the switching valve mechanism 36 of the first embodiment, a valve opening gap 82 is formed as a space that allows a stroke in the valve opening direction of the three-way valve 38. Therefore, the fuel injection device 100 can displace the three-way valve 38 and the bypass valve 37 in the valve opening direction at different timings by a simple linear operation of the single drive unit 33.
 加えて第1実施形態によれば、三方弁用スプリング56の一方の端部は、第1載置部55に載置されている。故に、三方弁用スプリング56の弾性力は、バイパスバルブ37を開弁方向に付勢しない。そのため、オリフィス用スプリング59のばね定数を低く抑えても、バイパスバルブ37は、低速開弁時において閉弁状態を維持し得る。以上によれば、バイパスバルブ37の開弁のために駆動部33の消費する駆動エネルギーが軽減され得る。 In addition, according to the first embodiment, one end portion of the three-way valve spring 56 is placed on the first placement portion 55. Therefore, the elastic force of the three-way valve spring 56 does not urge the bypass valve 37 in the valve opening direction. Therefore, even if the spring constant of the orifice spring 59 is kept low, the bypass valve 37 can maintain the closed state when the valve is opened at low speed. According to the above, the drive energy consumed by the drive unit 33 for opening the bypass valve 37 can be reduced.
 また第1実施形態では、三方弁38がインオリフィスボデー35と離座して、オリフィス用スプリング59による押圧によって、インオリフィスボデー35がバイパスバルブ37の下端側当接部74に当接してインオリフィス用通路57を開放する。そして三方弁38が第1リフト量の位置または第2リフト量の位置にある場合には、オリフィス用スプリング59による押圧によって、三方弁38がインオリフィスボデー35の凹部79に当接した状態が維持されてインオリフィス用通路57を閉鎖する。オリフィス用スプリング59によって三方弁38と凹部79との接触状態を維持して、閉鎖状態を維持することができる。本実施形態では、第2リフト量の位置は、第2リフト位置とも言う。 In the first embodiment, the three-way valve 38 is separated from the in-orifice body 35, and the in-orifice body 35 abuts on the lower end side abutting portion 74 of the bypass valve 37 by pressing by the orifice spring 59. The service passage 57 is opened. When the three-way valve 38 is in the first lift amount position or the second lift amount position, the state in which the three-way valve 38 is in contact with the recess 79 of the in-orifice body 35 is maintained by the pressure by the orifice spring 59. Thus, the in-orifice passage 57 is closed. The closed state can be maintained by maintaining the contact state between the three-way valve 38 and the recess 79 by the orifice spring 59. In the present embodiment, the position of the second lift amount is also referred to as a second lift position.
 さらに第1実施形態では、第1インオリフィス80の流路面積は、高圧流路40から圧力制御室43に流入する第2インオリフィス48の流路面積よりも小さく設定されている。これによって閉弁位置にバイパスバルブ室44に流入する燃料を第1インオリフィス80によって制限することができる。これによって閉弁速度の制御が容易となる。 Furthermore, in the first embodiment, the flow area of the first in-orifice 80 is set smaller than the flow area of the second in-orifice 48 that flows into the pressure control chamber 43 from the high-pressure flow path 40. As a result, the fuel flowing into the bypass valve chamber 44 at the valve closing position can be restricted by the first in orifice 80. This facilitates control of the valve closing speed.
 第1実施形態において、高圧流路40が供給流路に相当し、第1載置部55が凹部に相当し、ノズルニードル32が弁部材に相当する。また、三方弁38が第1弁体に相当し、バイパスバルブ37が第2弁体に相当し、インオリフィスボデー35が第3弁体に相当し、オリフィス用スプリング59が付勢部材に相当する。さらに、凹部79が第1当接部に相当し、上端側当接部73が第2当接部に相当し、下端側当接部74が第3当接部に相当する。さらにバイパスバルブ室44および三方弁室45が切替室に相当し、インオリフィス用通路57が連通通路に相当する。 In the first embodiment, the high-pressure channel 40 corresponds to a supply channel, the first placement portion 55 corresponds to a recess, and the nozzle needle 32 corresponds to a valve member. The three-way valve 38 corresponds to the first valve body, the bypass valve 37 corresponds to the second valve body, the in-orifice body 35 corresponds to the third valve body, and the orifice spring 59 corresponds to the biasing member. . Further, the recess 79 corresponds to the first contact portion, the upper end side contact portion 73 corresponds to the second contact portion, and the lower end side contact portion 74 corresponds to the third contact portion. Further, the bypass valve chamber 44 and the three-way valve chamber 45 correspond to a switching chamber, and the in-orifice passage 57 corresponds to a communication passage.
 (その他の実施形態)
 以上、本開示の好ましい実施形態について説明したが、本開示は前述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。
(Other embodiments)
The preferred embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present disclosure.
 前述の実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。 The structure of the above-described embodiment is merely an example, and the scope of the present disclosure is not limited to the scope of these descriptions. The scope of the present disclosure is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.
 前述の第1実施形態では、各絞り状態での流出流路の流路面積は、孔状に形成された各オリフィスによって規定されていた。しかし、各絞り状態での流出流路の流路面積は、二つの部材の間に設けられた隙間によって規定されてもよい。 In the first embodiment described above, the channel area of the outflow channel in each throttled state is defined by each orifice formed in a hole shape. However, the channel area of the outflow channel in each throttled state may be defined by a gap provided between the two members.
 前述の第1実施形態では、燃料として軽油を噴射する燃料噴射装置100に適用してるが、軽油以外の燃料、例えばジメチルエーテル等の液化ガス燃料を噴射する燃料噴射装置にも適用可能である。 In the first embodiment described above, the present invention is applied to the fuel injection device 100 that injects light oil as fuel, but it can also be applied to a fuel injection device that injects fuel other than light oil, for example, liquefied gas fuel such as dimethyl ether.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (4)

  1.  燃焼室(22)へ向けて噴孔(30)から燃料を噴射する燃料噴射装置(100)であって、
     前記噴孔、前記噴孔に燃料を供給する供給流路(40)、前記供給流路を流通する燃料の一部が流入する圧力制御室(43)、前記圧力制御室の燃料を低圧側に流出させる流出流路(42)、が形成された弁ボデー(31)と、
     前記圧力制御室の燃料圧力の変動により前記弁ボデーに対して相対変位することで、前記噴孔を開閉させる弁部材(32)と、
     前記流出流路内に配置された第1弁体(38)および第2弁体(37)を有し、前記流出流路の流路面積を切り替える切替弁機構(36)と、
     前記弁ボデーに収容され、前記切替弁機構によって流路面積を切り替えるために前記第1弁体に駆動力を与えて前記第1弁体をリフトし、前記第1弁体のリフト量を第1リフト量または前記第1リフト量よりも大きい第2リフト量に制御する駆動部(33)と、
     前記第1弁体および前記第2弁体が収容されている切替室(44,45)と前記供給流路とを連通する連通通路(57)が形成されており、前記第1弁体のリフト量に応じて前記連通通路を開閉する第3弁体(35)と、を含み、
     前記切替弁機構は、
      前記第1弁体がリフトしていない場合には、前記第1弁体が前記弁ボデーに着座して前記流出流路を閉鎖し、
      前記第1弁体が前記第1リフト量の位置にある場合には、前記第1弁体が前記弁ボデーから離座し、前記第1弁体が前記第3弁体の第1当接部(79)に当接し、前記弁ボデーから前記第2弁体が離座していない位置にあることで前記流出流路を第1絞り状態に制限し、
      前記第1弁体が前記第2リフト量に位置にある場合には、前記第1弁体が前記弁ボデーから離座し、前記第1弁体による前記第1当接部の押圧で前記第3弁体が変位し、前記第1弁体による前記第2弁体の第2当接部(73)への押圧によって前記第2弁体を前記弁ボデーから離座した位置にあることで前記流出流路を前記第1絞り状態とは流路面積が異なる第2絞り状態に制限し、
     前記第3弁体は、
      前記第1弁体がリフトしていない場合には、前記第1弁体と離座して前記連通通路を開放し、
      前記第1弁体が前記第1リフト量の位置または前記第2リフト量の位置にある場合には、前記第1弁体と接触して前記連通通路を閉鎖する燃料噴射装置。
    A fuel injection device (100) for injecting fuel from a nozzle hole (30) toward a combustion chamber (22),
    The nozzle hole, a supply channel (40) for supplying fuel to the nozzle hole, a pressure control chamber (43) into which a part of the fuel flowing through the supply channel flows, and the fuel in the pressure control chamber to the low pressure side A valve body (31) formed with an outflow channel (42) for allowing outflow;
    A valve member (32) for opening and closing the nozzle hole by relative displacement with respect to the valve body due to a change in fuel pressure in the pressure control chamber;
    A switching valve mechanism (36) having a first valve body (38) and a second valve body (37) disposed in the outflow passage, and for switching a flow passage area of the outflow passage;
    The first valve body is lifted by applying a driving force to the first valve body in order to switch the flow passage area by the switching valve mechanism, and the lift amount of the first valve body is set to a first amount. A drive unit (33) for controlling the lift amount or a second lift amount larger than the first lift amount;
    A communication passage (57) that connects the switching chamber (44, 45) in which the first valve body and the second valve body are accommodated and the supply flow path is formed, and the lift of the first valve body A third valve body (35) for opening and closing the communication passage according to the amount,
    The switching valve mechanism is
    When the first valve body is not lifted, the first valve body is seated on the valve body to close the outflow channel,
    When the first valve body is in the position of the first lift amount, the first valve body is separated from the valve body, and the first valve body is a first contact portion of the third valve body. (79), and the second valve body is not separated from the valve body, thereby restricting the outflow passage to the first throttle state,
    When the first valve body is in the second lift amount, the first valve body is separated from the valve body, and the first abutting portion is pressed by the first valve body to The three valve bodies are displaced, and the second valve body is in a position separated from the valve body by the pressing of the second valve body to the second contact portion (73) by the first valve body. Limiting the outflow channel to a second throttled state having a different channel area from the first throttled state,
    The third valve body is
    When the first valve body is not lifted, it is separated from the first valve body to open the communication passage,
    A fuel injection device that contacts the first valve body and closes the communication passage when the first valve body is in the position of the first lift amount or the second lift amount.
  2.  前記第2絞り状態は、前記第1絞り状態よりも流路面積の大きい絞り状態である請求項1に記載の燃料噴射装置。 2. The fuel injection device according to claim 1, wherein the second throttle state is a throttle state having a larger flow path area than the first throttle state.
  3.  前記連通通路の流路面積は、前記供給流路から前記圧力制御室に流入する際の流路面積よりも小さい請求項1または2に記載の燃料噴射装置。 The fuel injection device according to claim 1 or 2, wherein a flow passage area of the communication passage is smaller than a flow passage area when flowing from the supply flow passage into the pressure control chamber.
  4.  前記第3弁体を前記第1弁体へ向けて付勢する付勢部材(59)をさらに含み、
     前記第1弁体がリフトしていない場合には、前記第1弁体が前記第3弁体と離座して、前記付勢部材による押圧によって、前記第3弁体が前記第2弁体の第3当接部に当接して前記連通通路を開放し、
     前記第1弁体が前記第1リフト量の位置または前記第2リフト量の位置にある場合には、前記付勢部材による押圧によって、前記第1弁体が前記第3弁体の前記第1当接部に当接した状態が維持されて前記連通通路を閉鎖する請求項1~3のいずれか1つに記載の燃料噴射装置。

     
    A biasing member (59) for biasing the third valve body toward the first valve body;
    When the first valve body is not lifted, the first valve body is separated from the third valve body, and the third valve body is moved to the second valve body by pressing by the urging member. The third abutment portion to open the communication passage,
    When the first valve body is at the position of the first lift amount or the position of the second lift amount, the first valve body is the first of the third valve body by pressing by the biasing member. The fuel injection device according to any one of claims 1 to 3, wherein a state of contact with the contact portion is maintained and the communication passage is closed.

PCT/JP2017/023908 2016-08-24 2017-06-29 Fuel injection device WO2018037713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016164004A JP6508146B2 (en) 2016-08-24 2016-08-24 Fuel injection device
JP2016-164004 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018037713A1 true WO2018037713A1 (en) 2018-03-01

Family

ID=61245611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023908 WO2018037713A1 (en) 2016-08-24 2017-06-29 Fuel injection device

Country Status (2)

Country Link
JP (1) JP6508146B2 (en)
WO (1) WO2018037713A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471142B1 (en) * 1999-04-01 2002-10-29 Delphi Technologies, Inc. Fuel injector
JP2004204813A (en) * 2002-12-26 2004-07-22 Denso Corp Control valve and fuel injection valve
JP2008309015A (en) * 2007-06-13 2008-12-25 Toyota Motor Corp Fuel injection control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471142B1 (en) * 1999-04-01 2002-10-29 Delphi Technologies, Inc. Fuel injector
JP2004204813A (en) * 2002-12-26 2004-07-22 Denso Corp Control valve and fuel injection valve
JP2008309015A (en) * 2007-06-13 2008-12-25 Toyota Motor Corp Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JP6508146B2 (en) 2019-05-08
JP2018031298A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP2008309015A (en) Fuel injection control device for internal combustion engine
JP2017075532A (en) Fuel injection valve
JP6296948B2 (en) Fuel injection valve
JP2006233853A (en) Injector
JP6376988B2 (en) Fuel injection valve
JP6387985B2 (en) Fuel injection device
US10808661B2 (en) Fuel injection device
JP4208847B2 (en) Fuel injection nozzle, fuel injection valve, and fuel injection device
WO2018037713A1 (en) Fuel injection device
JP2008202417A (en) Fuel injection control device of internal combustion engine
WO2018037714A1 (en) Fuel injection device
JP6686931B2 (en) Fuel injector
JP5146837B2 (en) Fuel injection device
JP6281296B2 (en) Fuel injection valve
JP2016050561A (en) Fuel injection valve
JP2016084774A (en) Fuel injection valve
JP6828443B2 (en) Fuel injection device
JP6284860B2 (en) Fuel injection valve
JP6766711B2 (en) Fuel injection device
JP2019044655A (en) Fuel injection device
JP6919345B2 (en) Fuel injection device
JP6547660B2 (en) Fuel injection valve
JP2016050562A (en) Fuel injection valve
JP6458747B2 (en) Fuel injection device
JP2018204562A (en) Fuel injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843201

Country of ref document: EP

Kind code of ref document: A1