WO2018037600A1 - Ultrasound imaging apparatus and ultrasound image generation method - Google Patents

Ultrasound imaging apparatus and ultrasound image generation method Download PDF

Info

Publication number
WO2018037600A1
WO2018037600A1 PCT/JP2017/009765 JP2017009765W WO2018037600A1 WO 2018037600 A1 WO2018037600 A1 WO 2018037600A1 JP 2017009765 W JP2017009765 W JP 2017009765W WO 2018037600 A1 WO2018037600 A1 WO 2018037600A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical property
body temperature
ultrasonic
subject
temperature
Prior art date
Application number
PCT/JP2017/009765
Other languages
French (fr)
Japanese (ja)
Inventor
悠史 坪田
川畑 健一
崇秀 寺田
文晶 武
一宏 山中
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018037600A1 publication Critical patent/WO2018037600A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/15Transmission-tomography

Definitions

  • the present invention relates to an ultrasonic imaging apparatus and an ultrasonic image generation method.
  • An ultrasonic CT (Computed Tomography) device is a method for irradiating a subject in a medium with ultrasonic waves from a plurality of directions and receiving the ultrasonic waves transmitted through the subject from the transmission signals obtained from the physical properties (sound speed and It is a device that obtains a distribution of transmission signal attenuation rates) and generates a tomographic image.
  • Ultrasonic waves are generated using an ultrasonic element that converts an electrical signal such as a piezoelectric element into ultrasonic waves.
  • the ultrasonic wave transmitted through the subject is received again by the ultrasonic element and converted into an electric signal to obtain a transmission signal.
  • the ultrasonic elements are arranged in a ring array, for example, and a subject is inserted into the opening of the ring to shoot.
  • Patent Document 1 discloses a basic configuration and imaging technique of ultrasonic CT.
  • the ultrasonic CT apparatus is expected to be a breast cancer screening apparatus that can be applied to younger people because it does not have radiation exposure unlike mammography.
  • the ultrasonic CT apparatus In order to measure the degree of progression of breast cancer using an ultrasonic CT apparatus and lead to early diagnosis and early treatment, it is necessary to accurately discriminate changes in a plurality of images obtained by imaging the same subject multiple times in time series.
  • various background factors other than the progression of breast cancer change the physical property value and are reflected in the image, whether the change in the image indicates a change in the physical property value due to the progression of breast cancer or the background. It is difficult to determine whether a change in physical property value due to a factor is present, making early diagnosis difficult.
  • An object of the present invention is to reduce the influence of background factors on an ultrasound CT image and to easily grasp the degree of progression of a lesion.
  • an ultrasonic element that transmits an ultrasonic wave to an imaging region of a subject, receives a transmitted wave of the ultrasonic subject, and outputs a reception signal;
  • an ultrasonic imaging apparatus including an image generation unit that processes a signal and generates an image indicating a distribution of predetermined physical property values in a subject.
  • the image generation unit uses the body temperature of the subject at the time of transmission and reception of ultrasonic waves to generate a standard body temperature image that generates a standard body temperature converted image indicating a distribution of physical property values when the body temperature of the subject is a predetermined standard body temperature
  • a generator that uses the body temperature of the subject at the time of transmission and reception of ultrasonic waves to generate a standard body temperature image that generates a standard body temperature converted image indicating a distribution of physical property values when the body temperature of the subject is a predetermined standard body temperature.
  • an ultrasonic CT image excluding the influence of a change in body temperature, which is one of background factors, can be obtained, so that it is easy to grasp the temporal change of the subject.
  • FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic imaging apparatus (ultrasonic CT apparatus) according to Embodiment 1 of the present invention.
  • Sectional drawing which shows schematic structure of the ring array of the apparatus of FIG. 1 is a flowchart showing the operation of the ultrasonic CT apparatus according to the first embodiment.
  • Body temperature acceptance screen example of the ultrasonic CT apparatus of the first embodiment Graph showing the temperature dependence of the sound speed of water
  • the graph which shows the kind of living tissue of Embodiment 2, and the range of the sound speed and attenuation factor which those can take 7 is a flowchart showing the operation of the ultrasonic CT apparatus according to the second
  • Embodiment 1 Since the physical property value (especially the sound velocity value) of the living tissue depends on the temperature, in this embodiment, the influence of temperature is removed as one of the background factors that affect the ultrasonic image of the subject. Since the body temperature of the subject varies depending on the temperature of the medium with which the imaging site is in contact, the physiological cycle of the subject itself, and the like, in this embodiment, the body temperature of the subject is set to a predetermined standard body temperature using the body temperature information of the subject. The standard body temperature conversion image which shows distribution of the physical-property value in the case of being is generated.
  • FIG. 1 is a schematic configuration diagram of the ultrasonic imaging apparatus (ultrasonic CT apparatus) of the present embodiment, and a cross-sectional view of the ultrasonic element array of FIG.
  • the ultrasonic imaging apparatus of the present embodiment includes a plurality of ultrasonic elements 13 and an image generation unit 11 as shown in FIGS.
  • the ultrasonic element 13 transmits ultrasonic waves to the imaging region of the subject 1, receives the ultrasonic waves transmitted through the subject 1, and outputs a reception signal.
  • the image generation unit 11 processes this received signal to generate an image indicating a distribution of predetermined physical property values in the subject 1.
  • the image generation unit 11 includes a standard body temperature image generation unit 12, and the standard body temperature image generation unit 12 uses the body temperature of the subject 1 at the time of transmission and reception of the ultrasonic wave so that the body temperature of the subject 1 is predetermined.
  • a standard body temperature converted image showing a distribution of physical property values in the case of the standard body temperature is generated.
  • the standard body temperature image generation unit 12 calculates the physical property value at the body temperature at the time of reception of the ultrasonic wave using the received signal, and calculates the calculated physical property value between the physical property value of the imaging region and the temperature obtained in advance. Based on the relationship, it is converted into a physical property value at standard temperature. And the standard body temperature image generation part 12 produces
  • the ultrasonic CT apparatus of the present embodiment will be specifically described.
  • an ultrasonic CT apparatus suitable for using the breast as an imaging site in breast cancer screening or the like will be described.
  • the ultrasonic CT apparatus includes a bed 2 on which the subject 1 is placed, a water tank 4 having a cylindrical side surface, a spare tank 5, a control unit 6, and an image generation unit 11.
  • a built-in signal processing unit 7, a storage unit 8, and an input / output unit 9 are provided.
  • the storage unit 8 may be connected to an external server connected via a network. Thereby, all or a part of the data stored in the storage unit 8 can be transferred or copied to an external server and saved.
  • the bed 2 has an opening so that the chest can be inserted, and a cylindrical water tank 4 is attached to the opening.
  • the bed 2 includes a bed driving mechanism (not shown) that moves the bed 2 up and down.
  • a bed driving mechanism (not shown) that moves the bed 2 up and down.
  • an array hereinafter referred to as a ring array 3 in which ultrasonic elements 13 are arranged in a ring shape is provided inside the water tank 4, as shown in FIG. 2, an array (hereinafter referred to as a ring array) 3 in which ultrasonic elements 13 are arranged in a ring shape is provided.
  • the ring array 3 is provided with an array drive mechanism (not shown) that enables parallel movement in the axial direction of the water tank 4.
  • the ultrasonic element 13 is a piezoelectric element or the like, and is an element that converts an electric signal into an ultrasonic wave and transmits it, and converts the reached ultrasonic wave into an electric signal.
  • the water tank 4 is filled with warm water.
  • the reserve tank 5 purifies the hot water in the water tank 4, heats it to a predetermined temperature, deaerates it, and supplies it to the water tank 4 again.
  • Thermometers 114a and 114b are attached to the lower part of the water tank 4 and the reserve tank 5 to monitor the water temperature.
  • the input / output unit 9 includes a touch panel and a keyboard.
  • the imaging conditions of the ultrasonic CT apparatus are set by the user via the input / output unit 9.
  • the set shooting conditions and the like are stored in a memory of the storage unit 8, a hard disk drive, or the like.
  • the signal processing unit 7 includes a processor (for example, a CPU (Central Processing Unit)) and a memory in which a program is stored in advance, and the function of the signal processing unit 7 is read and executed by the processor. Is realized by software. Note that part or all of the signal processing unit 7 may be realized by hardware. For example, the signal processing unit 7 is configured by using a custom IC such as ASIC (Application Specific Integrated Circuit) or a programmable IC such as FPGA (Field-Programmable Gate Array), and the operation of the image processing unit 11 and the like described later is performed. A circuit design may be performed so as to realize it.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the signal processing unit 7 generates a control signal based on the imaging conditions and the like, and sends it to various controllers constituting the control unit 6.
  • the controller performs transmission / reception and switching of ultrasonic signals, control of vertical movement of the array drive mechanism of the ring array 3 and the bed drive mechanism of the bed 2, water pressure control of the reserve tank 5, feedback control of hot water temperature, and the like.
  • the received signal is recorded in the storage unit 8 and is subjected to image processing calculation by the image generation unit 11 of the signal processing unit 7 to generate a cross-sectional image indicating the distribution of physical property values of the subject 1.
  • the generated image is displayed on a monitor of the input / output unit 9 or the like.
  • FIG. 3 is a flowchart showing the operation of each unit for obtaining a standard body temperature converted image by the ultrasonic CT apparatus of the present embodiment. Hereinafter, the operation of each unit will be described.
  • the signal processing unit 7 displays an inquiry table for the subject 1 on the monitor of the input / output unit 9, and the input / output unit 9 Prompts the user to input an answer, and displays a prompt to change to examination clothes and to measure body temperature using the armpit method, radiation thermometer, etc. Thereafter, the signal processing unit 7 displays on the monitor of the input / output unit 9 a screen for accepting input of the name or ID (identification) of the subject 1, the body temperature T 1 of the subject 1 , and the desired standard body temperature T 0. Then, the input from the subject 1 or the operator is accepted (step 101).
  • FIG. 4 is an example of an input reception screen for standard body temperature and the like.
  • the input reception screen 40 in FIG. 4 includes an area 41 that receives an input of a subject ID number, an area 42 that receives an input of a body temperature of the subject, and an area 43 that receives an input of a standard body temperature.
  • the signal processing unit 7 stores the received body temperature and standard body temperature in the storage unit 8.
  • the signal processing unit 7 displays on the input / output unit 9 a display that prompts the subject 1 to lie down on the bed 2 and insert one breast into the aquarium 4 (step 102). If the signal processing unit 7 grasps that the breast of the subject 1 has been inserted into the water tank 4 by the operation of the input / output unit 9 by the subject 1, the signal processing unit 7 operates the spare tank 5. A control signal is output to the control unit 6.
  • the control unit 6 controls the reserve tank 5 to take in the temperature of the water in the reserve tank 5 with the thermometer 114b and heats the water until the temperature of the water reaches a predetermined temperature (about body temperature). After deaeration, the pump is driven and moved to the water tank 4. Thereby, the water tank 4 is filled with the deaerated water adjusted to a predetermined temperature (step 103).
  • the signal processing unit 7 controls the control unit 6 to transmit / receive ultrasonic waves as follows.
  • a 2048 channel piezoelectric element (ultrasonic element 13) with a pitch of 0.5 mm is arranged in a ring shape to form a ring array 3 having a diameter of 326 mm.
  • the axial thickness of the water tank 4 of the piezoelectric element is 1 mm.
  • the center frequency of the ultrasonic wave irradiated from the ring array 3 is 1.5 MHz (the wavelength of the ultrasonic wave in water is about 1 mm).
  • the control unit 6 delivers the transmission signals delayed by a predetermined delay amount to the continuous 512-channel piezoelectric elements of the ring array 3. Thereby, the ultrasonic wave of the plane wave which aligned the phase is irradiated from the piezoelectric element of 512 channels. Then, the reflected wave reflected by the imaging region (breast) of the subject 1 is received by the same 512-channel piezoelectric element. In addition, a transmitted 512-channel piezoelectric element is received by a continuous 512-channel piezoelectric element located opposite to the transmitted 512-channel. As a result, a field of view (Field of view, Field of view, 230 mm) can be secured.
  • the control unit 6 repeats the irradiation operation and the reception operation while shifting the 512-channel piezoelectric elements that irradiate ultrasonic waves on the ring array 3 by 4 channels, so that a slice (cross section) of the water tank 4 has a certain depth. ), A transmitted wave and a reflected wave signal from 360 degrees around the water tank 4 are obtained in 512 views by 0.7 degrees (step 104).
  • the controller 6 moves the ring array 3 in the depth direction that is the axial direction of the water tank 4, for example, at a pitch of 0.5 mm, while moving (displaces) the ring array 3 at each depth until the predetermined depth is reached. Is repeated (steps 105 and 106). Therefore, when the ring array 3 is repeated until it is displaced by, for example, 20 mm, reception signal data for 40 slices of the imaging region is obtained. With the above procedure, three-dimensional information (received signal) of the breast of the subject 1 is obtained for a predetermined depth range.
  • the image generation unit 11 of the signal processing unit 7 receives the received signals of the transmitted wave and the reflected wave, processes them as follows, and an image based on the transmitted wave of the subject 1 from the received signal of the transmitted wave (transmitted wave image). Then, a reflection boundary image is generated (reconstructed) as an image of the physical property value distribution and an image based on the reflected wave of the subject 1 (reflected wave image) from the received signal of the reflected wave (steps 107 and 108).
  • the physical property value distribution specifically assumes a sound velocity distribution and / or attenuation rate (coefficient) distribution, but may be replaced by an equivalent physical quantity.
  • a refractive index or “slowness” may be imaged instead of the speed of sound. “Slowness” is the reciprocal of the speed of sound.
  • the image generation unit 11 performs Hilbert transform on the transmitted wave reception wave signal in the time direction to generate the sound velocity distribution image, obtains the timing of the maximum amplitude of the reception wave, and generates the attenuation rate distribution image. If so, the maximum amplitude of the received wave is obtained.
  • the image generation unit 11 determines the arrival time difference between the reception signals at which the amplitudes of the reception waves before and after insertion of the subject 1 are maximum, and when generating the attenuation rate distribution image. The logarithmic difference of the maximum amplitude before and after insertion of the subject 1 is calculated for each view and each reception channel. This collection of data is called a sinogram. A sinogram is obtained for each slice.
  • the image generation unit 11 processes the sinogram of the difference between the received signals and the sinogram of the logarithm difference of the maximum amplitude by a filtered back projection method (Filtered Back Projection, FBP) widely used in the field of X-ray CT, respectively. By doing so, a tomographic image is reconstructed. From the sinogram of the difference in arrival time of the received signal, a distribution image (tomographic image) of the difference in ultrasonic “slowness” before and after insertion of the subject 1 is obtained. A distribution image (tomographic image) of the difference in attenuation rate before and after insertion of the subject 1 is obtained from the sinogram of the logarithmic difference of the maximum amplitude.
  • FBP Filtered Back Projection
  • the image generation unit 11 uses the sound velocity and attenuation rate of water at the temperature measured by the thermometer 114a, so that the distribution image of the difference of the “slowness” and the distribution image of the difference of the attenuation rate of the subject 1 can be obtained. Images of sound velocity distribution and attenuation rate distribution are generated.
  • the image generation unit 11 performs the above processing on the received signal of the transmitted wave for each slice, and generates an image of the sound velocity distribution and the attenuation rate distribution for each slice (step 107).
  • the image generation unit 11 stores the generated sound speed distribution image and / or attenuation rate distribution image in the storage unit 8.
  • the image generation unit 11 performs Hilbert transform in the time direction on the received signal of the reflected wave.
  • the image generation unit 11 determines the time (timing) at which the reflected wave from the subject 1 returns to the ultrasonic element 13 after irradiating the ultrasonic wave from the ultrasonic element 13 from the transmitted ultrasonic element 13 to the target pixel (The sum of the distance to the point 1 in the subject 1 and the distance to the ultrasonic element 13 received from the target pixel is divided by the ultrasonic speed of sound (for example, the speed of water). Alternatively, this timing is obtained in advance and stored in the storage unit 8.
  • the image generation unit 11 adds the signals received by each ultrasonic element 13 at the timing when the reflected wave reflected by the target pixel in the subject 1 reaches each ultrasonic element 13 that performs reception, and adds the signals.
  • the later signal intensity is taken as the value of that pixel.
  • This method is called a delay addition method (Delay and Sum, DAS).
  • Delay and Sum, DAS a delay addition method
  • a B-mode image widely used in ultrasonic echo inspection can be obtained.
  • a reflection boundary image of a slice of the subject 1 is obtained.
  • the image generation unit 11 generates a reflection boundary image for each slice (step 108).
  • the image generation unit 11 stores the generated reflection boundary image in the storage unit 8.
  • the standard body temperature image generation unit 12 in the image generation unit 11 performs an operation for converting the physical property value of the physical property value distribution image generated in Step 107 into a physical property value when the body temperature of the subject 1 is the standard body temperature.
  • the human body changes its body temperature depending on the circadian rhythm, menstrual cycle and physical condition.
  • the physical property value (especially the speed of sound) of the subject biological tissue depends on the temperature.
  • FIG. 5 shows a graph of the temperature dependence of the sound speed of water.
  • the vertical axis of this graph represents sound velocity [m / s], and the horizontal axis represents temperature [° C.].
  • the sound speed of water has a slope of about 1.6 m / s / ° C.
  • a standard body temperature converted image obtained by removing the influence of temperature as a background factor and converting the physical property value into a physical property value at a standard body temperature is used. Generate as follows.
  • a function indicating the relationship between the physical property value of the imaging region and the temperature obtained in advance specifically, the relationship between the physical property value (here, the speed of sound) of the imaging region (breast tissue) and the temperature T.
  • g (T) is stored in advance.
  • the standard body temperature image generation unit 12 reads the function g (T) indicating the relationship between the physical property value (sound speed) of the imaging region (breast tissue) and the temperature T from the storage unit 8, and the subject 1 received in step 101.
  • the sound velocity value of each pixel of the sound velocity distribution C (T 1 , X) of the sound velocity distribution image generated in step 107 is calculated.
  • the sound velocity distribution C in the standard body temperature T 0 (T 0, X) to produce a (standard body temperature in terms of image) (step 109).
  • the standard body temperature image generation unit 12 stores the generated standard body temperature converted image in the storage unit 8.
  • C (T 0 , X) C (T 1 , X) ⁇ ⁇ g (T 1 ) ⁇ g (T 0 ) ⁇ (1)
  • C (T 0 , X) C (T 1 , X) / ⁇ g (T 1 ) / g (T 0 ) ⁇ (2)
  • X represents the three-dimensional position coordinate (x, y, z) of the pixel of the sound velocity distribution image. Either formula (1) or formula (2) may be used.
  • the signal processing unit 7 displays the standard body temperature converted image generated by the standard body temperature image generation unit 12 in step 109 on the display unit of the input / output unit 9.
  • FIG. 6A is an example of information displayed in the header of the display screen
  • FIG. 6B shows an image display area 51 such as a standard body temperature converted image and a display method from the subject 1 or the user.
  • An example of the selection reception area 52 for receiving selection is shown.
  • the header displays a unique ID number, body temperature, water temperature, standard body temperature, imaging date, and the like of the subject 1.
  • Information displayed in these headers is stored in the storage unit 8 or an external server connected to the storage unit according to a predetermined standard (for example, DICOM (Digital Imaging and Communication Communication in Medicine)).
  • DICOM Digital Imaging and Communication Communication in Medicine
  • a sound velocity distribution image, an attenuation rate distribution image, a standard body temperature converted image, and a relationship g (T) between a physical property value (for example, sound velocity) of an imaging region (breast tissue) and a temperature T, or a physical property value photographed in the past The distribution image and the standard body temperature converted image are also managed in an integrated manner and stored in the storage unit 8 or an external server.
  • the signal processing unit 7 receives the type of image to be displayed in the display area 51 in the selection receiving area 52, and stores the selected type of image and the image of the same subject ID.
  • the data is read from the unit 8 or an external server and displayed on the display unit of the input / output unit 9. For example, by selecting a shooting date and a shooting number, image data for each shooting is displayed. Specifically, for example, the sound speed distribution image and the standard temperature-converted image (sound speed) are displayed side by side with the current imaging and the past shooting date.
  • the cross-sectional position (slice depth) of each image can be changed by the slider bar 53 and the mouse wheel. Thereby, it is possible to compare the current and past captured images side by side.
  • the switch 55 when the depth is changed by the slider bar 53, the switch 55 is selected.
  • the tomographic positions of all displayed images may be changed synchronously (linked) in accordance with the operation of the slider bar 53.
  • whether or not to interlock is switched by the switch 54.
  • the direction of the display section may be selectable from a sagittal image, a coronal image, and an axial image, which are typical MPR (multi-planar reconstruction) sections.
  • the standard temperature conversion images may be sequentially displayed in the order of photographing date in one image display area in accordance with the operation of moving the slider bar 53 by the user. Thereby, a change with time can be easily grasped.
  • the switch 56 is selected.
  • corresponding cross sections of the left and right breasts may be displayed on the screen.
  • the left-right difference of the sagittal section including the nipple can be confirmed.
  • selection of a reference image may be accepted from the user, and a difference image from the current image may be displayed.
  • images of different physical property values that is, a sound speed distribution image, an attenuation rate distribution image, and a reflection boundary image may be displayed side by side for a certain cross section. As a result, the structure and properties of the tissue can be confirmed in association with each other.
  • only pixels included in a specific sound velocity value range and attenuation rate value range may be extracted and the corresponding area of the reflection boundary image may be displayed in color.
  • the set value of the standard body temperature T 0 may be changed on the display screen.
  • images can be compared with standard body temperature converted images from which the influence of temperature as a background factor is removed. It becomes easy to increase the effectiveness of screening.
  • the difference in arrival time of the received signal with and without the holder and / or the difference in logarithm of the maximum amplitude is obtained, and the average sound velocity of the breast tissue is determined using the size (known) of the holder. And / or determining the decay rate.
  • a function g (T) indicating the temperature dependence of the physical property value can be obtained.
  • the function g (T) is stored in the storage unit 8 as a data table or in the form of a coefficient when it is approximated by a polynomial or the like.
  • Embodiment 2 the function value g (T) indicating the temperature dependence of the average physical property value of the breast tissue is used to convert the physical property value obtained by imaging into the physical property value at the standard body temperature. Varies by In order to obtain a physical property value at a standard temperature with higher accuracy, in the second embodiment, a different temperature dependency function is used for each living tissue.
  • FIG. 7 is a block diagram of the image generation unit 11 of the ultrasonic CT apparatus according to the second embodiment.
  • the image generation unit 11 includes a biological tissue determination unit 15 that determines the type of biological tissue from the distribution image of physical property values.
  • the storage unit 8 stores in advance the relationship between the physical property value of the imaging region and the temperature obtained in advance for each type of tissue constituting the imaging region. Further, the storage unit 8 stores each living tissue (water, fat, mammary tissue, cyst, malignant tumor (cancer), and the like), a range of sound velocity values and a range of attenuation rate values that each living tissue can take. .
  • FIG. 1 is a block diagram of the image generation unit 11 of the ultrasonic CT apparatus according to the second embodiment.
  • the image generation unit 11 includes a biological tissue determination unit 15 that determines the type of biological tissue from the distribution image of physical property values.
  • the storage unit 8 stores in advance the relationship between the physical property value of the imaging region and the temperature obtained in advance for each type of tissue constituting the imaging region.
  • each living tissue water, fat, mammary tissue, cyst, malignant tumor (cancer), etc.
  • the vertical axis of this graph represents the sound velocity [m / s]
  • the horizontal axis represents the attenuation rate [dB / cm / MHz].
  • FIG. 9 shows a processing flow of the signal processing unit 7 from measurement to image display in the case of using different temperature dependent functions for each tissue.
  • Steps 101 to 108 are the same as in the first embodiment, and the arrival time and intensity of the ultrasonic wave are analyzed for the received signal obtained for the subject 1 by transmission and reception of ultrasonic waves.
  • the image generation unit 11 Based on such information, the image generation unit 11 performs an image reconstruction process, and a distribution image and a reflection boundary image of the physical property values (sound speed value and attenuation rate) of the subject 1 are obtained.
  • the living tissue discriminating unit 15 in the image generating unit 11 obtains the sound speed value and the attenuation rate of the corresponding pixels of the sound speed distribution image and the attenuation rate distribution image, and is stored in the storage unit 8.
  • the biological tissue of each pixel is classified into water, fat, breast tissue, cyst, malignant tumor (cancer), etc. ( Identify).
  • the standard body temperature image generation unit 12 reads the relationship between the physical property value corresponding to the identified type of biological tissue and the temperature (function g (T)) from the storage unit 8, and uses that function.
  • the physical property value for example, sound velocity value
  • the physical property value at the standard body temperature T 0 is converted into the physical property value at the standard body temperature T 0 to generate a standard body temperature converted image.
  • the physical property value at a standard body temperature with high accuracy can be calculated.
  • a standard body temperature converted image in which physical property values are accurately converted for each living tissue can be created.
  • the region (region) in the set range is identified as a different biological tissue.
  • the standard body temperature image generation unit 12 converts the physical property value of the biological tissue in the identified region range into a physical property value at the standard temperature T 0 using a temperature dependence function corresponding to the biological tissue of the region.
  • the biological tissue discriminating unit 15 may accept the setting of the range (boundary) of the site (region) of the biological tissue from the user via the input / output unit 9 on the physical property value (for example, sound velocity) distribution image. .
  • tissue identification is performed by providing an appropriate threshold value.
  • the biological tissue determination unit 15 selects a pixel having a predetermined sound speed value and attenuation rate value range, for example, a sound speed of 1570 m / s or higher and an attenuation rate of 1.0 dB / cm / MHz or higher. Thereby, only the cancer tissue is extracted from the sound velocity distribution image.
  • the temperature dependence function g cancer (T) of the physical property value of cancer, which has been obtained in advance, is stored in the storage unit 8 or an external server as a database.
  • Standard body temperature conversion is performed on the extracted physical property values of the pixels according to the above-described equations (1) and (2).
  • the standard body temperature conversion is similarly performed on the extracted pixels of other tissues. For pixels whose tissue is unknown, for example, a temperature-dependent function of the physical property value of water may be assumed and applied. By fusing the converted physical property values of each pixel, a standard body temperature-converted image that takes into account the temperature dependence that differs for each tissue is obtained.
  • the relationship between the physical property value of the imaging region and the temperature (temperature dependence function of the physical property value) obtained in advance for each tissue constituting the imaging region stored in the storage unit 8 is received from the user via the input / output unit 9. May be.
  • the relationship between the physical property value of the imaging region and the temperature is obtained in advance for each tissue having a different mammary gland density of the subject 1 and stored in the storage unit 8. Is desirable. This is because the temperature dependence of physical properties varies depending on the density of the mammary gland.
  • the standard body temperature image generation unit 12 selects the corresponding one from the temperature dependence functions of the physical property values obtained in advance for each mammary gland density, and uses them for converting the physical property values of the standard temperature T 0 .
  • the biological tissue discrimination unit 15 may further classify the mammary gland tissue into a follicular phase, an ovulation phase, a secretion phase, and a menstrual phase.
  • the temperature-dependent function of the physical property value of the mammary gland tissue obtained in advance for each menstrual cycle is stored in the storage unit 8, and the standard body temperature image generation unit 12 reads out the function of the corresponding cycle to obtain the standard temperature T 0 . Used for physical property conversion.
  • the above-mentioned various temperature dependence relationships are stored in advance in the storage unit 8 of the apparatus, but the user may generate and use their own temperature dependence functions.
  • the user may arbitrarily specify the region and composition, and perform standard temperature conversion according to the setting.
  • the ultrasonic CT apparatus of the second embodiment described above is the same as the apparatus configuration and operation of the first embodiment except for the configuration and operation described above, and a description thereof will be omitted.
  • Embodiment 3 In the first and second embodiments, it is assumed that the body temperature distribution in the imaging region of the subject 1 is uniform, but generally the body temperature varies depending on the location of the body. For example, when the water temperature of the water tank 4 is higher than the body temperature of the subject 1, a temperature gradient depending on the distance from the body surface is generated. Therefore, the image generation unit 11 calculates the distribution of the body temperature of the imaging region based on the body temperature T1 of the subject 1 and the distance from the body surface, and the standard body temperature image generation unit 12 serves as a standard body temperature converted image. Then, an image showing the distribution of the physical property values when the body temperature distribution is a uniform standard body temperature T 0 is generated.
  • the image generation unit 11 adds the body temperature T 1 of the subject 1 and the distance from the body surface to the medium (here, water) in contact with the body surface of the imaging region.
  • the temperature, the temperature conductivity of the living tissue at the imaging site, and the time from when the imaging site touches the medium until the ultrasound is transmitted are used.
  • the measured body temperature of the subject 1 is T 1
  • the temperature of the thermometer 114 a attached to the lower part of the water tank 4 is T 2
  • the distance from the body surface is x
  • the temperature conductivity of the body surface tissue is a.
  • the temperature conductivity a is obtained by dividing the thermal conductivity by the specific heat and the density.
  • the physical property value is converted into the physical property value of the standard temperature T 0 , thereby obtaining a more accurate standard body temperature conversion image. Can be generated.
  • Control unit 7 Signal processor 8 ... Memory part 9 ... Input / output section DESCRIPTION OF SYMBOLS 11 ... Image generation part 12 ... Standard body temperature image generation part 13 ... Ultrasonic element 15 ... Biological tissue discrimination

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The present invention reduces the influence exerted by a background factor on an ultrasonic CT image so as to facilitate recognizing the progression of a lesion. An ultrasonic element transmits ultrasonic waves to a region of a subject to be imaged, and obtains a reception signal by receiving the ultrasonic waves in the form of transmitted waves that have transmitted through the subject. An image generation unit processes the reception signal so as to generate an image representing a distribution of a given physical property value in the subject. The image generation unit uses the subject's temperatures measured at the time of transmission and reception of ultrasonic waves so as to generate a standard temperature conversion image that represents a distribution of the physical property value in the case when the subject's temperature is at a given standard temperature.

Description

超音波撮像装置、および、超音波画像生成方法Ultrasonic imaging apparatus and ultrasonic image generation method
 本発明は、超音波撮像装置、および、超音波画像生成方法に関する。 The present invention relates to an ultrasonic imaging apparatus and an ultrasonic image generation method.
 超音波CT(Computed Tomography)装置とは、媒質中の被写体へ、複数の方向から超音波を照射し、被写体を透過した超音波を受信して得た透過信号から被写体内部の物性値(音速や透過信号の減衰率)の分布を得て、断層画像を生成する装置である。超音波は、圧電素子等の電気信号を超音波に変換する超音波素子を用いて発生する。被検体を透過した超音波は、再び超音波素子で受信して電気信号に変換することにより透過信号を得る。超音波素子は、例えばリングアレイ状に並べ、リングの開口に被写体を挿入して撮影する。 An ultrasonic CT (Computed Tomography) device is a method for irradiating a subject in a medium with ultrasonic waves from a plurality of directions and receiving the ultrasonic waves transmitted through the subject from the transmission signals obtained from the physical properties (sound speed and It is a device that obtains a distribution of transmission signal attenuation rates) and generates a tomographic image. Ultrasonic waves are generated using an ultrasonic element that converts an electrical signal such as a piezoelectric element into ultrasonic waves. The ultrasonic wave transmitted through the subject is received again by the ultrasonic element and converted into an electric signal to obtain a transmission signal. The ultrasonic elements are arranged in a ring array, for example, and a subject is inserted into the opening of the ring to shoot.
 特許文献1には、超音波CTの基本構成と画像化技術が開示されている。 Patent Document 1 discloses a basic configuration and imaging technique of ultrasonic CT.
特表平08-508925号公報Japanese Translation of National Publication No. 08-508925
 超音波CT装置は、マンモグラフィと違って放射線被曝がないため、より若年層に適用可能な乳癌検診装置として期待されている。超音波CT装置によって乳癌の進行度を測り、早期診断・早期治療に繋げるためには、時系列に複数回にわたって同じ被検体を撮影した複数の画像の変化を正確に判別する必要がある。しかしながら、乳癌の進行以外の種々の背景因子が物性値を変化させ、それが画像に反映されるため、その画像の変化が、乳癌の進行等による物性値の変化を示しているのか、それとも背景因子による物性値の変化を示しているのかを判別することは難しく、早期診断を困難にしている。 The ultrasonic CT apparatus is expected to be a breast cancer screening apparatus that can be applied to younger people because it does not have radiation exposure unlike mammography. In order to measure the degree of progression of breast cancer using an ultrasonic CT apparatus and lead to early diagnosis and early treatment, it is necessary to accurately discriminate changes in a plurality of images obtained by imaging the same subject multiple times in time series. However, since various background factors other than the progression of breast cancer change the physical property value and are reflected in the image, whether the change in the image indicates a change in the physical property value due to the progression of breast cancer or the background. It is difficult to determine whether a change in physical property value due to a factor is present, making early diagnosis difficult.
 本発明の目的は、背景因子が超音波CT画像に与える影響を低減し、病変の進行度の把握を容易にすることにある。 An object of the present invention is to reduce the influence of background factors on an ultrasound CT image and to easily grasp the degree of progression of a lesion.
 上記目的を達成するために、本実施形態によれば、被検体の撮像部位に超音波を送信し、超音波の被検体の透過波を受信し、受信信号を出力する超音波素子と、受信信号を処理して、被検体における所定の物性値の分布を示す画像を生成する画像生成部とを有する超音波撮像装置が提供される。画像生成部は、超音波の送信および受信時の被検体の体温を用いて、被検体の体温が所定の標準体温である場合の物性値の分布を示す標準体温換算画像を生成する標準体温画像生成部を含む。 In order to achieve the above object, according to the present embodiment, an ultrasonic element that transmits an ultrasonic wave to an imaging region of a subject, receives a transmitted wave of the ultrasonic subject, and outputs a reception signal; There is provided an ultrasonic imaging apparatus including an image generation unit that processes a signal and generates an image indicating a distribution of predetermined physical property values in a subject. The image generation unit uses the body temperature of the subject at the time of transmission and reception of ultrasonic waves to generate a standard body temperature image that generates a standard body temperature converted image indicating a distribution of physical property values when the body temperature of the subject is a predetermined standard body temperature Includes a generator.
 本発明によれば、背景因子の一つである体温の変化の影響を除いた超音波CT画像を得ることができるため、被検体の経時変化の把握が容易になる。 According to the present invention, an ultrasonic CT image excluding the influence of a change in body temperature, which is one of background factors, can be obtained, so that it is easy to grasp the temporal change of the subject.
本発明の実施形態1における超音波撮像装置(超音波CT装置)の概略構成を示すブロック図1 is a block diagram showing a schematic configuration of an ultrasonic imaging apparatus (ultrasonic CT apparatus) according to Embodiment 1 of the present invention. 図1の装置のリングアレイの概略構造を示す断面図Sectional drawing which shows schematic structure of the ring array of the apparatus of FIG. 実施形態1の超音波CT装置の動作を示すフローチャート1 is a flowchart showing the operation of the ultrasonic CT apparatus according to the first embodiment. 実施形態1の超音波CT装置の体温の受付画面例Body temperature acceptance screen example of the ultrasonic CT apparatus of the first embodiment 水の音速の温度依存性を示すグラフGraph showing the temperature dependence of the sound speed of water (a)超音波CT装置の表示画面のヘッダーに表示される情報の一例を示す説明図、(b)超音波CT装置の表示画面の画像の表示領域と選択受付領域の一例を示す説明図(A) Explanatory drawing which shows an example of the information displayed on the header of the display screen of an ultrasonic CT apparatus, (b) Explanatory drawing which shows an example of the display area of a display screen of an ultrasonic CT apparatus, and a selection reception area | region. 実施形態2の画像生成部の構成を示すブロック図A block diagram showing composition of an image generation part of Embodiment 2. 実施形態2の生体組織の種類と、それらの取りうる音速と減衰率の範囲を示すグラフThe graph which shows the kind of living tissue of Embodiment 2, and the range of the sound speed and attenuation factor which those can take 実施形態2の超音波CT装置の動作を示すフローチャート7 is a flowchart showing the operation of the ultrasonic CT apparatus according to the second embodiment.
 本発明の一実施形態の超音波撮像装置について説明する。 An ultrasonic imaging apparatus according to an embodiment of the present invention will be described.
 <<実施形態1>>
 生体組織の物性値(特に音速値)は、温度に依存するため、本実施形態では、被検体の超音波画像に影響を与える背景因子の一つとして、温度の影響を除去する。被検体の体温は、撮像部位が接する媒体の温度や、被検体自身の生理周期等によって変化するため、本実施形態では、被検体の体温情報を用いて、被検体の体温が所定の標準体温である場合の物性値の分布を示す標準体温換算画像を生成する。
<< Embodiment 1 >>
Since the physical property value (especially the sound velocity value) of the living tissue depends on the temperature, in this embodiment, the influence of temperature is removed as one of the background factors that affect the ultrasonic image of the subject. Since the body temperature of the subject varies depending on the temperature of the medium with which the imaging site is in contact, the physiological cycle of the subject itself, and the like, in this embodiment, the body temperature of the subject is set to a predetermined standard body temperature using the body temperature information of the subject. The standard body temperature conversion image which shows distribution of the physical-property value in the case of being is generated.
 図1に本実施形態の超音波撮像装置(超音波CT装置)の概略構成図を、図2の超音波素子アレイの断面図を示す。本実施形態の超音波撮像装置は、図1、図2のように、複数の超音波素子13と、画像生成部11とを備えている。超音波素子13は、被検体1の撮像部位に超音波を送信し、この超音波の被検体1の透過波を受信し、受信信号を出力する。画像生成部11は、この受信信号を処理して、被検体1における所定の物性値の分布を示す画像を生成する。このとき、画像生成部11は、標準体温画像生成部12を備え、標準体温画像生成部12は、超音波の送信および受信時の被検体1の体温を用いて、被検体1の体温が所定の標準体温である場合の物性値の分布を示す標準体温換算画像を生成する。 FIG. 1 is a schematic configuration diagram of the ultrasonic imaging apparatus (ultrasonic CT apparatus) of the present embodiment, and a cross-sectional view of the ultrasonic element array of FIG. The ultrasonic imaging apparatus of the present embodiment includes a plurality of ultrasonic elements 13 and an image generation unit 11 as shown in FIGS. The ultrasonic element 13 transmits ultrasonic waves to the imaging region of the subject 1, receives the ultrasonic waves transmitted through the subject 1, and outputs a reception signal. The image generation unit 11 processes this received signal to generate an image indicating a distribution of predetermined physical property values in the subject 1. At this time, the image generation unit 11 includes a standard body temperature image generation unit 12, and the standard body temperature image generation unit 12 uses the body temperature of the subject 1 at the time of transmission and reception of the ultrasonic wave so that the body temperature of the subject 1 is predetermined. A standard body temperature converted image showing a distribution of physical property values in the case of the standard body temperature is generated.
 例えば、標準体温画像生成部12は、受信信号を用いて、超音波の受信時の体温における物性値を算出し、算出した物性値を、予め求めておいた撮像部位の物性値と温度との関係に基づいて、標準温度における物性値に換算する。そして、標準体温画像生成部12は、換算後の物性値を用いて、標準体温換算画像を生成する。 For example, the standard body temperature image generation unit 12 calculates the physical property value at the body temperature at the time of reception of the ultrasonic wave using the received signal, and calculates the calculated physical property value between the physical property value of the imaging region and the temperature obtained in advance. Based on the relationship, it is converted into a physical property value at standard temperature. And the standard body temperature image generation part 12 produces | generates a standard body temperature conversion image using the converted physical property value.
 以下、本実施形態の超音波CT装置について、具体的に説明する。ここでは、乳癌検診等における乳房を撮像部位とするのに適した超音波CT装置について説明する。 Hereinafter, the ultrasonic CT apparatus of the present embodiment will be specifically described. Here, an ultrasonic CT apparatus suitable for using the breast as an imaging site in breast cancer screening or the like will be described.
 超音波CT装置は、上述の超音波素子13および画像生成部11の他に、被検体1を乗せるベッド2、側面が円筒形の水槽4、予備タンク5、制御部6、画像生成部11が内蔵された信号処理部7、記憶部8および入出力部9を備えている。 In addition to the ultrasonic element 13 and the image generation unit 11 described above, the ultrasonic CT apparatus includes a bed 2 on which the subject 1 is placed, a water tank 4 having a cylindrical side surface, a spare tank 5, a control unit 6, and an image generation unit 11. A built-in signal processing unit 7, a storage unit 8, and an input / output unit 9 are provided.
 なお、記憶部8は、ネットワークで接続された外部のサーバーと接続されていてもよい。これにより、記憶部8に格納されたデータの全部またはその一部を外部のサーバーに転送またはコピーして保存することができる。 Note that the storage unit 8 may be connected to an external server connected via a network. Thereby, all or a part of the data stored in the storage unit 8 can be transferred or copied to an external server and saved.
 ベッド2には、胸部を挿入できるように開口が設けられ、開口には円柱形の水槽4が取り付けられている。ベッド2には、ベッド2を上下動させるベッド駆動機構(不図示)が内蔵されている。水槽4の内部には、図2に示すように、超音波素子13をリング状に並べたアレイ(以下、リングアレイと呼ぶ)3が備えられている。また、リングアレイ3には、水槽4の軸方向に平行移動可能にするアレイ駆動機構(不図示)が備えられている。 The bed 2 has an opening so that the chest can be inserted, and a cylindrical water tank 4 is attached to the opening. The bed 2 includes a bed driving mechanism (not shown) that moves the bed 2 up and down. Inside the water tank 4, as shown in FIG. 2, an array (hereinafter referred to as a ring array) 3 in which ultrasonic elements 13 are arranged in a ring shape is provided. Further, the ring array 3 is provided with an array drive mechanism (not shown) that enables parallel movement in the axial direction of the water tank 4.
 超音波素子13は、圧電素子等であり、電気信号を超音波に変換して送信し、また、到達した超音波を電気信号に変換する素子である。水槽4には、温水が満たされている。予備タンク5は、水槽4内の温水を浄化し、所定の温度に加熱し、脱気して、水槽4に再び供給する。水槽4の下部および予備タンク5には、温度計114a、114bが取り付けられており、それぞれの水温をモニタする。 The ultrasonic element 13 is a piezoelectric element or the like, and is an element that converts an electric signal into an ultrasonic wave and transmits it, and converts the reached ultrasonic wave into an electric signal. The water tank 4 is filled with warm water. The reserve tank 5 purifies the hot water in the water tank 4, heats it to a predetermined temperature, deaerates it, and supplies it to the water tank 4 again. Thermometers 114a and 114b are attached to the lower part of the water tank 4 and the reserve tank 5 to monitor the water temperature.
 入出力部9は、タッチパネルやキーボード等を含む。超音波CT装置の撮影条件は、入出力部9を介して、ユーザーにより設定される。設定された撮影条件等は、記憶部8のメモリやハードディスクドライブ等に保存される。 The input / output unit 9 includes a touch panel and a keyboard. The imaging conditions of the ultrasonic CT apparatus are set by the user via the input / output unit 9. The set shooting conditions and the like are stored in a memory of the storage unit 8, a hard disk drive, or the like.
 信号処理部7は、プロセッサ(例えば、CPU(Central Processing Unit))と、プログラムが予め格納されたメモリとを備えて構成され、プロセッサがプログラムを読み込んで実行することにより、信号処理部7の機能をソフトウエアにより実現する。なお、信号処理部7は、その一部または全部をハードウエアによって実現してもよい。例えば、ASIC(Application Specific Integrated Circuit)のようなカスタムICや、FPGA(Field-Programmable Gate Array)のようなプログラマブルICを用いて信号処理部7を構成し、後述する画像処理部11等の動作を実現するように回路設計を行えばよい。 The signal processing unit 7 includes a processor (for example, a CPU (Central Processing Unit)) and a memory in which a program is stored in advance, and the function of the signal processing unit 7 is read and executed by the processor. Is realized by software. Note that part or all of the signal processing unit 7 may be realized by hardware. For example, the signal processing unit 7 is configured by using a custom IC such as ASIC (Application Specific Integrated Circuit) or a programmable IC such as FPGA (Field-Programmable Gate Array), and the operation of the image processing unit 11 and the like described later is performed. A circuit design may be performed so as to realize it.
 信号処理部7は、撮像条件等を基に、制御信号を生成し、制御部6を構成する各種コントローラーに送る。コントローラーは、超音波信号の送受信やスイッチング、リングアレイ3のアレイ駆動機構やベッド2のベッド駆動機構の上下動の制御、予備タンク5の水圧制御、温水温度のフィードバック制御などを行う。受信信号は、記憶部8に記録されると共に、信号処理部7の画像生成部11によって画像処理演算が施され、被検体1の物性値の分布を示す断面画像等が生成される。生成された画像は、入出力部9のモニタ等に表示される。 The signal processing unit 7 generates a control signal based on the imaging conditions and the like, and sends it to various controllers constituting the control unit 6. The controller performs transmission / reception and switching of ultrasonic signals, control of vertical movement of the array drive mechanism of the ring array 3 and the bed drive mechanism of the bed 2, water pressure control of the reserve tank 5, feedback control of hot water temperature, and the like. The received signal is recorded in the storage unit 8 and is subjected to image processing calculation by the image generation unit 11 of the signal processing unit 7 to generate a cross-sectional image indicating the distribution of physical property values of the subject 1. The generated image is displayed on a monitor of the input / output unit 9 or the like.
 このような構成により、水槽4内の被検体1の物性値の断層画像を表示する。 With such a configuration, a tomographic image of the physical property value of the subject 1 in the aquarium 4 is displayed.
 図3は、本実施形態の超音波CT装置により標準体温換算画像を得る各部の動作を示すフローチャートである。以下、各部の動作を説明する。 FIG. 3 is a flowchart showing the operation of each unit for obtaining a standard body temperature converted image by the ultrasonic CT apparatus of the present embodiment. Hereinafter, the operation of each unit will be described.
 被検体1または操作者が、入出力部9のスタートボタンを押下した場合、信号処理部7は、入出力部9のモニタに、被検体1への問診表を表示して、入出力部9を介して回答を入力するように促すとともに、検査着への着替え、および腋下法や放射温度計等で体温を計測するように促す表示を行う。その後、信号処理部7は、被検体1の氏名又はID (identification)、被検体1の体温T、および、所望する標準体温Tの入力を受け付ける画面を、入出力部9のモニタに表示し、被検体1または操作者による入力を受け付ける(ステップ101)。図4は、標準体温等の入力受付画面の一例である。図4の入力受付画面40では、被検体ID番号の入力を受け付ける領域41と、被検体の体温の入力を受け付ける領域42と、標準体温の入力を受け付ける領域43と、を有する。信号処理部7は、受け付けた体温および標準体温を、記憶部8に格納する。 When the subject 1 or the operator presses the start button of the input / output unit 9, the signal processing unit 7 displays an inquiry table for the subject 1 on the monitor of the input / output unit 9, and the input / output unit 9 Prompts the user to input an answer, and displays a prompt to change to examination clothes and to measure body temperature using the armpit method, radiation thermometer, etc. Thereafter, the signal processing unit 7 displays on the monitor of the input / output unit 9 a screen for accepting input of the name or ID (identification) of the subject 1, the body temperature T 1 of the subject 1 , and the desired standard body temperature T 0. Then, the input from the subject 1 or the operator is accepted (step 101). FIG. 4 is an example of an input reception screen for standard body temperature and the like. The input reception screen 40 in FIG. 4 includes an area 41 that receives an input of a subject ID number, an area 42 that receives an input of a body temperature of the subject, and an area 43 that receives an input of a standard body temperature. The signal processing unit 7 stores the received body temperature and standard body temperature in the storage unit 8.
 続けて、信号処理部7は、被検体1に対して、ベッド2へうつ伏せになり、水槽4に片方の乳房を挿入するように促す表示を入出力部9に表示する(ステップ102)。被検体1の乳房が水槽4に挿入されたことを、被検体1による入出力部9の操作により、信号処理部7が把握したならば、信号処理部7は、予備タンク5を動作させるように制御部6に制御信号を出力する。制御部6は、予備タンク5を制御して、予備タンク5内の水の温度を温度計114bにより取り込んで、水の温度が所定の温度(体温程度)になるまで加熱し、脱気装置により脱気した後、ポンプを駆動させて、水槽4に移動させる。これにより、水槽4は、所定の温度に調整した脱気水で満たされる(ステップ103)。 Subsequently, the signal processing unit 7 displays on the input / output unit 9 a display that prompts the subject 1 to lie down on the bed 2 and insert one breast into the aquarium 4 (step 102). If the signal processing unit 7 grasps that the breast of the subject 1 has been inserted into the water tank 4 by the operation of the input / output unit 9 by the subject 1, the signal processing unit 7 operates the spare tank 5. A control signal is output to the control unit 6. The control unit 6 controls the reserve tank 5 to take in the temperature of the water in the reserve tank 5 with the thermometer 114b and heats the water until the temperature of the water reaches a predetermined temperature (about body temperature). After deaeration, the pump is driven and moved to the water tank 4. Thereby, the water tank 4 is filled with the deaerated water adjusted to a predetermined temperature (step 103).
 つぎに、信号処理部7は、制御部6を制御して、以下のように超音波を送受信させる。ここでは、ピッチが0.5mmで2048チャネルの圧電素子(超音波素子13)がリング状に並べられ、直径326mmのリングアレイ3が構成されているものとする。なお、圧電素子の水槽4の軸方向の厚みは1mmとする。リングアレイ3から照射する超音波の中心周波数を1.5MHz(水中での超音波の波長約1mm)とする。 Next, the signal processing unit 7 controls the control unit 6 to transmit / receive ultrasonic waves as follows. Here, it is assumed that a 2048 channel piezoelectric element (ultrasonic element 13) with a pitch of 0.5 mm is arranged in a ring shape to form a ring array 3 having a diameter of 326 mm. The axial thickness of the water tank 4 of the piezoelectric element is 1 mm. The center frequency of the ultrasonic wave irradiated from the ring array 3 is 1.5 MHz (the wavelength of the ultrasonic wave in water is about 1 mm).
 制御部6は、リングアレイ3の連続した512チャネルの圧電素子に、所定の遅延量でそれぞれ遅延させた送信信号を受け渡す。これにより、512チャネルの圧電素子から位相を揃えた平面波の超音波を照射させる。そして、同じ512チャンネルの圧電素子で、被検体1の撮像部位(乳房)で反射された反射波を受信させる。また、送信した512チャネルに対して、撮像部位を挟んで対向する位置にある連続した512チャネルの圧電素子で、撮像部位の透過波を受信させる。これによって撮影視野(Field of View, FOV)を直径230mm確保することができる。制御部6は、リングアレイ3上で超音波を照射させる512チャネルの圧電素子を4チャネルずつずらしながら、上記照射動作および受信動作を繰り返し行わせることにより、水槽4のある深さのスライス(断面)において、水槽4の周囲360度からの透過波及び反射波の信号を0.7度ずつ512ビュー得る(ステップ104)。 The control unit 6 delivers the transmission signals delayed by a predetermined delay amount to the continuous 512-channel piezoelectric elements of the ring array 3. Thereby, the ultrasonic wave of the plane wave which aligned the phase is irradiated from the piezoelectric element of 512 channels. Then, the reflected wave reflected by the imaging region (breast) of the subject 1 is received by the same 512-channel piezoelectric element. In addition, a transmitted 512-channel piezoelectric element is received by a continuous 512-channel piezoelectric element located opposite to the transmitted 512-channel. As a result, a field of view (Field of view, Field of view, 230 mm) can be secured. The control unit 6 repeats the irradiation operation and the reception operation while shifting the 512-channel piezoelectric elements that irradiate ultrasonic waves on the ring array 3 by 4 channels, so that a slice (cross section) of the water tank 4 has a certain depth. ), A transmitted wave and a reflected wave signal from 360 degrees around the water tank 4 are obtained in 512 views by 0.7 degrees (step 104).
 制御部6は、水槽4の軸方向である深さ方向に、例えば0.5mmピッチでリングアレイ3を移動(変位)させながら、所定の深さに到達するまで、各深さにおいて、上記撮影を繰り返す(ステップ105,106)。よって、リングアレイ3が、例えば20mm変位するまで繰り返した場合、撮像部位の40スライス分の受信信号データが得られる。上記手順で、予め定めた深さ範囲について、被検体1の乳房の三次元情報(受信信号)を得る。 The controller 6 moves the ring array 3 in the depth direction that is the axial direction of the water tank 4, for example, at a pitch of 0.5 mm, while moving (displaces) the ring array 3 at each depth until the predetermined depth is reached. Is repeated (steps 105 and 106). Therefore, when the ring array 3 is repeated until it is displaced by, for example, 20 mm, reception signal data for 40 slices of the imaging region is obtained. With the above procedure, three-dimensional information (received signal) of the breast of the subject 1 is obtained for a predetermined depth range.
 信号処理部7の画像生成部11は、透過波および反射波の受信信号を受け取って、以下のように処理し、透過波の受信信号から被検体1の透過波に基づく画像(透過波画像)として物性値分布の画像を、反射波の受信信号から被検体1の反射波に基づく画像(反射波画像)として反射境界画像をそれぞれ生成する(再構成する)(ステップ107,108)。 The image generation unit 11 of the signal processing unit 7 receives the received signals of the transmitted wave and the reflected wave, processes them as follows, and an image based on the transmitted wave of the subject 1 from the received signal of the transmitted wave (transmitted wave image). Then, a reflection boundary image is generated (reconstructed) as an image of the physical property value distribution and an image based on the reflected wave of the subject 1 (reflected wave image) from the received signal of the reflected wave (steps 107 and 108).
 物性値分布とは、具体的には音速分布および/または減衰率(係数)分布などを想定しているが、等価な物理量で置き換えても良い。例えば、音速の代わりに屈折率や「遅さ(Slowness)」を画像化しても良い。なお、「遅さ」は音速の逆数である。 The physical property value distribution specifically assumes a sound velocity distribution and / or attenuation rate (coefficient) distribution, but may be replaced by an equivalent physical quantity. For example, a refractive index or “slowness” may be imaged instead of the speed of sound. “Slowness” is the reciprocal of the speed of sound.
 まず、画像生成部11は、透過波の受信波信号について、時間方向にヒルベルト変換を実施し、音速分布画像を生成する場合は、受信波の最大振幅のタイミングを求め、減衰率分布画像を生成する場合は、受信波の最大振幅を求める。画像生成部11は、音速分布画像を生成する場合は、被検体1の挿入前後それぞれの受信波の振幅が最大となる受信信号の到達時間の差を、減衰率分布画像を生成する場合は、被検体1の挿入前後それぞれの最大振幅の対数の差とを、各ビュー、各受信チャネル毎にそれぞれ計算する。このデータの集まりはサイノグラムと呼ばれる。サイノグラムは、スライス毎に得られる。画像生成部11は、受信信号の差のサイノグラムおよび最大振幅の対数の差のサイノグラムをそれぞれ、X線CTの分野で広く利用されているフィルタ補正逆投影法(Filtered Back Projection, FBP)等で処理することにより、断層画像を再構成する。受信信号の到達時間の差のサイノグラムからは、被検体1の挿入前後の、超音波の「遅さ」の差の分布画像(断層画像)が得られる。最大振幅の対数の差のサイノグラムからは、被検体1の挿入前後の減衰率の差の分布画像(断層画像)が得られる。画像生成部11は、温度計114aで測った温度における水の音速や減衰率を用いることにより、上記「遅さ」の差の分布画像および上記減衰率の差の分布画像から、被検体1の音速分布および減衰率分布の画像をそれぞれ生成する。画像生成部11は、スライスごとの透過波の受信信号について上記処理を行って、スライスごとの音速分布および減衰率分布の画像を生成する(ステップ107)。画像生成部11は、生成した音速分布画像および/または減衰率分布画像を、記憶部8に格納する。 First, the image generation unit 11 performs Hilbert transform on the transmitted wave reception wave signal in the time direction to generate the sound velocity distribution image, obtains the timing of the maximum amplitude of the reception wave, and generates the attenuation rate distribution image. If so, the maximum amplitude of the received wave is obtained. When generating the sound velocity distribution image, the image generation unit 11 determines the arrival time difference between the reception signals at which the amplitudes of the reception waves before and after insertion of the subject 1 are maximum, and when generating the attenuation rate distribution image. The logarithmic difference of the maximum amplitude before and after insertion of the subject 1 is calculated for each view and each reception channel. This collection of data is called a sinogram. A sinogram is obtained for each slice. The image generation unit 11 processes the sinogram of the difference between the received signals and the sinogram of the logarithm difference of the maximum amplitude by a filtered back projection method (Filtered Back Projection, FBP) widely used in the field of X-ray CT, respectively. By doing so, a tomographic image is reconstructed. From the sinogram of the difference in arrival time of the received signal, a distribution image (tomographic image) of the difference in ultrasonic “slowness” before and after insertion of the subject 1 is obtained. A distribution image (tomographic image) of the difference in attenuation rate before and after insertion of the subject 1 is obtained from the sinogram of the logarithmic difference of the maximum amplitude. The image generation unit 11 uses the sound velocity and attenuation rate of water at the temperature measured by the thermometer 114a, so that the distribution image of the difference of the “slowness” and the distribution image of the difference of the attenuation rate of the subject 1 can be obtained. Images of sound velocity distribution and attenuation rate distribution are generated. The image generation unit 11 performs the above processing on the received signal of the transmitted wave for each slice, and generates an image of the sound velocity distribution and the attenuation rate distribution for each slice (step 107). The image generation unit 11 stores the generated sound speed distribution image and / or attenuation rate distribution image in the storage unit 8.
 次に、画像生成部11は、反射波の受信信号について、時間方向にヒルベルト変換を実施する。画像生成部11は、超音波素子13から超音波を照射してから被検体1からの反射波が超音波素子13に返って来る時間(タイミング)を、送信した超音波素子13から注目画素(被検体1内の点)までの距離と、注目画素から受信した超音波素子13までの距離の和を、超音波の音速(例えば水の音速)で割ることで求める。もしくは、このタイミングを予め求めておいて、記憶部8内に格納しておく。そして、画像生成部11は、被検体1内の注目画素で反射した反射波が、受信を行う各超音波素子13にそれぞれ到達するタイミングで各超音波素子13が受信した信号を加算し、加算後の信号強度をその画素の値とする。この方法は、遅延加算法(Delay and Sum, DAS)と呼ばれている。これを視野内の全画素について行うことで、超音波エコー検査で広く利用されているBモード画像が得られる。各照射角度(ビュー)で求まったBモード画像を加算することで、被検体1のあるスライスの反射境界画像が得られる。この処理をスライスごとの反射波の受信信号に行うことにより、画像生成部11は、スライスごとの反射境界画像を生成する(ステップ108)。画像生成部11は、生成した反射境界画像を記憶部8に格納する。 Next, the image generation unit 11 performs Hilbert transform in the time direction on the received signal of the reflected wave. The image generation unit 11 determines the time (timing) at which the reflected wave from the subject 1 returns to the ultrasonic element 13 after irradiating the ultrasonic wave from the ultrasonic element 13 from the transmitted ultrasonic element 13 to the target pixel ( The sum of the distance to the point 1 in the subject 1 and the distance to the ultrasonic element 13 received from the target pixel is divided by the ultrasonic speed of sound (for example, the speed of water). Alternatively, this timing is obtained in advance and stored in the storage unit 8. Then, the image generation unit 11 adds the signals received by each ultrasonic element 13 at the timing when the reflected wave reflected by the target pixel in the subject 1 reaches each ultrasonic element 13 that performs reception, and adds the signals. The later signal intensity is taken as the value of that pixel. This method is called a delay addition method (Delay and Sum, DAS). By performing this for all pixels in the field of view, a B-mode image widely used in ultrasonic echo inspection can be obtained. By adding the B-mode images obtained at each irradiation angle (view), a reflection boundary image of a slice of the subject 1 is obtained. By performing this process on the reception signal of the reflected wave for each slice, the image generation unit 11 generates a reflection boundary image for each slice (step 108). The image generation unit 11 stores the generated reflection boundary image in the storage unit 8.
 つぎに、画像生成部11内の標準体温画像生成部12は、ステップ107で生成した物性値分布画像の物性値を、被検体1の体温が標準体温である場合の物性値に換算する演算を行う(ステップ109)。人体は、概日リズムや生理周期、体調などによって体温が変化する。そして、被検体生体組織の物性値(特に音速)は温度に依存する。図5に、水の音速の温度依存性のグラフを示す。このグラフの縦軸は、音速[m/s]を表し、横軸は、温度[℃]を表す。図5のように、水の音速は、40℃付近ではグラフの傾きが約1.6m/s/℃であり、音速は温度が上昇するにつれて増加する。そこで、本実施形態では、腫瘍の硬さなどの性状を精度よく経時評価するために、背景因子である温度の影響を取り除き、物性値を標準体温での物性値に換算した標準体温換算画像を以下のように生成する。 Next, the standard body temperature image generation unit 12 in the image generation unit 11 performs an operation for converting the physical property value of the physical property value distribution image generated in Step 107 into a physical property value when the body temperature of the subject 1 is the standard body temperature. Perform (step 109). The human body changes its body temperature depending on the circadian rhythm, menstrual cycle and physical condition. The physical property value (especially the speed of sound) of the subject biological tissue depends on the temperature. FIG. 5 shows a graph of the temperature dependence of the sound speed of water. The vertical axis of this graph represents sound velocity [m / s], and the horizontal axis represents temperature [° C.]. As shown in FIG. 5, the sound speed of water has a slope of about 1.6 m / s / ° C. around 40 ° C., and the sound speed increases as the temperature rises. Therefore, in this embodiment, in order to accurately evaluate properties such as tumor hardness over time, a standard body temperature converted image obtained by removing the influence of temperature as a background factor and converting the physical property value into a physical property value at a standard body temperature is used. Generate as follows.
 記憶部8には、予め求めておいた撮像部位の物性値と温度との関係、具体的には、撮像部位(乳房組織)の物性値(ここでは音速)と温度Tとの関係を示す関数g(T)、が予め格納されている。標準体温画像生成部12は、記憶部8から撮像部位(乳房組織)の物性値(音速)と温度Tとの関係を示す関数g(T)を読み出して、ステップ101で受け付けた被検体1の体温Tと標準体温T、および、下記式(1)または式(2)を用いて、ステップ107で生成した音速分布画像の音速分布C(T、X)の各画素の音速値を、標準体温Tにおける音速値に換算し、標準体温Tにおける音速分布C(T、X)(標準体温換算画像)を生成する(ステップ109)。標準体温画像生成部12は、生成した標準体温換算画像を記憶部8に格納する。
  C(T、X) = C(T、X)-{g(T)-g(T)} (1)
  C(T、X) = C(T、X)/{g(T)/g(T)} (2)
 なお、Xは、音速分布画像の画素の三次元位置座標(x, y, z)を表す。なお、式(1)と式(2)は、どちらを用いてもよい。
In the storage unit 8, a function indicating the relationship between the physical property value of the imaging region and the temperature obtained in advance, specifically, the relationship between the physical property value (here, the speed of sound) of the imaging region (breast tissue) and the temperature T. g (T) is stored in advance. The standard body temperature image generation unit 12 reads the function g (T) indicating the relationship between the physical property value (sound speed) of the imaging region (breast tissue) and the temperature T from the storage unit 8, and the subject 1 received in step 101. Using the body temperature T 1 and the standard body temperature T 0 , and the following equation (1) or equation (2), the sound velocity value of each pixel of the sound velocity distribution C (T 1 , X) of the sound velocity distribution image generated in step 107 is calculated. , in terms of sound speed value in the standard temperature T 0, the sound velocity distribution C in the standard body temperature T 0 (T 0, X) to produce a (standard body temperature in terms of image) (step 109). The standard body temperature image generation unit 12 stores the generated standard body temperature converted image in the storage unit 8.
C (T 0 , X) = C (T 1 , X) − {g (T 1 ) −g (T 0 )} (1)
C (T 0 , X) = C (T 1 , X) / {g (T 1 ) / g (T 0 )} (2)
X represents the three-dimensional position coordinate (x, y, z) of the pixel of the sound velocity distribution image. Either formula (1) or formula (2) may be used.
 信号処理部7は、標準体温画像生成部12がステップ109で生成した標準体温換算画像を入出力部9の表示部に表示させる。図6(a)は、表示画面のヘッダーに表示される情報の一例であり、図6(b)は、標準体温換算画像等の画像の表示領域51と、被検体1やユーザーから表示方法の選択を受け付ける選択受付領域52の一例を示す。図6(a)のように、ヘッダーには、被検体1の固有のID番号、体温、水温、標準体温、撮影日等が表示される。これらヘッダーに表示される情報は、所定の規格(例えばDICOM(Digital Imaging and Communication in Medicine))にしたがって、記憶部8や記憶部に接続された外部サーバーに格納されている。また、音速分布画像、減衰率分布画像、標準体温換算画像、および、撮像部位(乳房組織)の物性値(例えば、音速)と温度Tとの関係g(T)や、過去に撮影した物性値分布画像や、標準体温換算画像も、統合的に管理され、記憶部8や外部サーバーに格納されている。 The signal processing unit 7 displays the standard body temperature converted image generated by the standard body temperature image generation unit 12 in step 109 on the display unit of the input / output unit 9. FIG. 6A is an example of information displayed in the header of the display screen, and FIG. 6B shows an image display area 51 such as a standard body temperature converted image and a display method from the subject 1 or the user. An example of the selection reception area 52 for receiving selection is shown. As shown in FIG. 6A, the header displays a unique ID number, body temperature, water temperature, standard body temperature, imaging date, and the like of the subject 1. Information displayed in these headers is stored in the storage unit 8 or an external server connected to the storage unit according to a predetermined standard (for example, DICOM (Digital Imaging and Communication Communication in Medicine)). In addition, a sound velocity distribution image, an attenuation rate distribution image, a standard body temperature converted image, and a relationship g (T) between a physical property value (for example, sound velocity) of an imaging region (breast tissue) and a temperature T, or a physical property value photographed in the past The distribution image and the standard body temperature converted image are also managed in an integrated manner and stored in the storage unit 8 or an external server.
 図6(b)のように、信号処理部7は、選択受付領域52において、表示領域51に表示させる画像の種類を受け付け、選択された種類の画像であって同じ被検体IDの画像を記憶部8や外部サーバーから読み出して、入出力部9の表示部に表示させる。例えば、撮影日や撮影番号を選択することで、撮影毎の画像データを表示する。具体的には例えば、音速分布画像と標準温度換算画像(音速)をそれぞれ、今回の撮像と、過去の撮影日の画像とを並べて表示する。スライダーバー53やマウスホイールによって、それぞれの画像の断面位置(スライス深さ)を変更可能とする。これにより、現在と過去の撮影の画像を並べて比較することができる。なお、図6(b)の画面例において、スライダーバー53で深さを変更する場合、スイッチ55を選択する。表示されている全ての画像の断層位置をスライダーバー53の操作に応じて、同期(連動)して変化させてもよい。なお、図6(b)の画面例においては、連動させるかどうかは、スイッチ54によって切り替える。また、図6(b)の画面例のように、表示断面の方向を、代表的なMPR(multi-planar reconstruction)断面である、サジタル像、コロナル像、アキシャル像から選択可能にしてもよい。 As shown in FIG. 6B, the signal processing unit 7 receives the type of image to be displayed in the display area 51 in the selection receiving area 52, and stores the selected type of image and the image of the same subject ID. The data is read from the unit 8 or an external server and displayed on the display unit of the input / output unit 9. For example, by selecting a shooting date and a shooting number, image data for each shooting is displayed. Specifically, for example, the sound speed distribution image and the standard temperature-converted image (sound speed) are displayed side by side with the current imaging and the past shooting date. The cross-sectional position (slice depth) of each image can be changed by the slider bar 53 and the mouse wheel. Thereby, it is possible to compare the current and past captured images side by side. In the screen example of FIG. 6B, when the depth is changed by the slider bar 53, the switch 55 is selected. The tomographic positions of all displayed images may be changed synchronously (linked) in accordance with the operation of the slider bar 53. In the screen example of FIG. 6B, whether or not to interlock is switched by the switch 54. Further, as in the screen example of FIG. 6B, the direction of the display section may be selectable from a sagittal image, a coronal image, and an axial image, which are typical MPR (multi-planar reconstruction) sections.
 また、別の表示方法としては、ユーザーがスライダーバー53を移動させる操作に応じて、一つの画像表示領域に、標準温度換算画像を撮影日順に順次表示させてもよい。これにより、経時変化を容易に把握できる。図6(b)の画面例において、スライダーバー53で日付を変更する場合、スイッチ56を選択する。 As another display method, the standard temperature conversion images may be sequentially displayed in the order of photographing date in one image display area in accordance with the operation of moving the slider bar 53 by the user. Thereby, a change with time can be easily grasped. In the screen example of FIG. 6B, when the date is changed by the slider bar 53, the switch 56 is selected.
 さらに別の表示方法としては、乳房の左右差を比較するため、画面に左右の乳房の対応する断面を表示してもよい。例えば、乳頭を含むサジタル断面の左右差を確認できる。 As yet another display method, in order to compare the difference between the left and right breasts, corresponding cross sections of the left and right breasts may be displayed on the screen. For example, the left-right difference of the sagittal section including the nipple can be confirmed.
 また、基準となる画像の選択をユーザーから受け付け、今回の画像との差分画像を表示してもよい。 Also, selection of a reference image may be accepted from the user, and a difference image from the current image may be displayed.
 また、ある断面について、異なる物性値の画像、つまり音速分布画像、減衰率分布画像、反射境界画像を並べて表示してもよい。これによって組織の構造と性状を対応付けて確認できる。 Further, images of different physical property values, that is, a sound speed distribution image, an attenuation rate distribution image, and a reflection boundary image may be displayed side by side for a certain cross section. As a result, the structure and properties of the tissue can be confirmed in association with each other.
 また、ある特定の音速値の範囲内及び減衰率値の範囲内に含まれる画素だけを抽出し、反射境界画像の該当する領域を色づけて表示してもよい。例えば、悪性腫瘍の疑いのある高音速、高減衰率領域の画素を赤く色づけることで、読影者の診断支援が可能である。 Alternatively, only pixels included in a specific sound velocity value range and attenuation rate value range may be extracted and the corresponding area of the reflection boundary image may be displayed in color. For example, it is possible to provide diagnostic support for a radiogram interpreter by coloring a pixel in a high sound velocity and high attenuation rate area suspected of being a malignant tumor in red.
 上記のそれぞれの画像表示方法で、標準体温換算画像で表示を行うかどうかをユーザーが選択できるようにする。 ∙ Allow the user to select whether or not to display the standard body temperature converted image in each of the above image display methods.
 また、標準体温Tの設定値を、表示画面上で変更してもよい。 Further, the set value of the standard body temperature T 0 may be changed on the display screen.
 本実施形態では、無侵襲で定量的な乳癌検診システムである超音波CT装置において、背景因子である温度の影響を取り除いた標準体温換算画像で画像を比較することができるため、経時変化の評価が容易になり、検診の有効性を高めることが可能となる。 In the present embodiment, in an ultrasonic CT apparatus that is a non-invasive and quantitative breast cancer screening system, images can be compared with standard body temperature converted images from which the influence of temperature as a background factor is removed. It becomes easy to increase the effectiveness of screening.
 なお、上記ステップ109の式(1)、式(2)において、乳房の温度Tと体温計が示す温度T’に一定のずれδがある場合、T=T’+δとして修正して、音速値の換算を行っても良い。 In the equations (1) and (2) of step 109, if there is a constant deviation δ between the breast temperature T and the temperature T ′ indicated by the thermometer, it is corrected as T = T ′ + δ and the sound velocity value Conversion may be performed.
 以下、撮像部位(乳房組織)の物性値と温度Tとの関係g(T)の求め方の一例を示す。ポリエチレン製の直方体のホルダーの中に、外科摘出された人または動物の乳房組織を詰める。ホルダーの底面に錘をつけて水槽4に沈める。水槽4の上面の開口を、断熱材で塞ぐ。水槽4下部の温度計114aで水温をモニタリングしながら、サンプルが水温と熱平衡になるまで待つ。直方体の面に垂直になる方向に平面波を照射し、その透過波信号を計測する。これにより、上記透過波信号処理と同様に、ホルダー有無の受信信号の到達時間の差及び/または最大振幅の対数の差を求め、ホルダーのサイズ(既知)を用いて、乳房組織の平均の音速および/または減衰率を求める。この測定を異なる水温で繰り返すことで、物性値の温度依存性を示す関数g(T)を求めることができる。なお、統計誤差を減らすため、複数の異なるサンプルで求めた関数g(T)を平均することが望ましい。 Hereinafter, an example of how to obtain the relationship g (T) between the physical property value of the imaging region (breast tissue) and the temperature T will be described. Pack the breast tissue of a surgically removed person or animal in a polyethylene cuboid holder. A weight is attached to the bottom surface of the holder and submerged in the water tank 4. The opening on the upper surface of the water tank 4 is closed with a heat insulating material. While monitoring the water temperature with the thermometer 114a at the bottom of the water tank 4, the sample waits until the sample reaches thermal equilibrium with the water temperature. A plane wave is irradiated in a direction perpendicular to the surface of the rectangular parallelepiped, and the transmitted wave signal is measured. Thus, similar to the transmitted wave signal processing, the difference in arrival time of the received signal with and without the holder and / or the difference in logarithm of the maximum amplitude is obtained, and the average sound velocity of the breast tissue is determined using the size (known) of the holder. And / or determining the decay rate. By repeating this measurement at different water temperatures, a function g (T) indicating the temperature dependence of the physical property value can be obtained. In order to reduce statistical errors, it is desirable to average the function g (T) obtained from a plurality of different samples.
 関数g(T)は、データテーブルとして、もしくは、それを多項式等で近似した際の係数の形で、記憶部8に格納される。 The function g (T) is stored in the storage unit 8 as a data table or in the form of a coefficient when it is approximated by a polynomial or the like.
 <<実施形態2>>
 実施形態1では、乳房組織の平均の物性値の温度依存性を示す関数g(T)を用いて、撮像で得た物性値を標準体温における物性値に換算したが、一般に温度依存性は組織により異なる。より高精度の標準温度における物性値を求めるために、実施形態2では、生体組織ごとに、異なる温度依存性関数を用いる。
<< Embodiment 2 >>
In the first embodiment, the function value g (T) indicating the temperature dependence of the average physical property value of the breast tissue is used to convert the physical property value obtained by imaging into the physical property value at the standard body temperature. Varies by In order to obtain a physical property value at a standard temperature with higher accuracy, in the second embodiment, a different temperature dependency function is used for each living tissue.
 図7に、実施形態2の超音波CT装置の画像生成部11のブロック図を示す。図7のように、画像生成部11には、標準体温画像生成部12に加えて、物性値の分布画像から生体組織の種類を判別する生体組織判別部15が配置されている。また、記憶部8には、撮像部位を構成する組織の種類ごとに予め求めた前記撮像部位の前記物性値と温度との関係が、予め格納されている。さらに記憶部8には、各生体組織(水、脂肪、乳腺組織、のう胞、悪性腫瘍(癌)等)と、各生体組織が取りうる音速値の範囲と減衰率値の範囲が格納されている。図8に、各生体組織(水、脂肪、乳腺組織、のう胞、悪性腫瘍(癌)等)と、各生体組織が取りうる音速値の範囲と減衰率値の範囲の一例を示す。このグラフの縦軸は、音速[m/s]を表し、横軸は、減衰率[dB/cm/MHz]を表す。 FIG. 7 is a block diagram of the image generation unit 11 of the ultrasonic CT apparatus according to the second embodiment. As shown in FIG. 7, in addition to the standard body temperature image generation unit 12, the image generation unit 11 includes a biological tissue determination unit 15 that determines the type of biological tissue from the distribution image of physical property values. Further, the storage unit 8 stores in advance the relationship between the physical property value of the imaging region and the temperature obtained in advance for each type of tissue constituting the imaging region. Further, the storage unit 8 stores each living tissue (water, fat, mammary tissue, cyst, malignant tumor (cancer), and the like), a range of sound velocity values and a range of attenuation rate values that each living tissue can take. . FIG. 8 shows an example of each living tissue (water, fat, mammary tissue, cyst, malignant tumor (cancer), etc.), and the range of sound velocity values and attenuation rate values that each living tissue can take. The vertical axis of this graph represents the sound velocity [m / s], and the horizontal axis represents the attenuation rate [dB / cm / MHz].
 図9に、組織毎に異なる温度依存関数を用いる場合の、計測から画像表示までの信号処理部7の処理フローを示す。ステップ101~108は、実施形態1と同様であり、超音波の送受信で被検体1について得た受信信号に対し、超音波の到達時間や強度の解析が行われる。それらの情報を基に、画像生成部11が画像再構成処理を行って、被検体1の物性値(音速値および減衰率)の分布画像と反射境界画像が得られる。 FIG. 9 shows a processing flow of the signal processing unit 7 from measurement to image display in the case of using different temperature dependent functions for each tissue. Steps 101 to 108 are the same as in the first embodiment, and the arrival time and intensity of the ultrasonic wave are analyzed for the received signal obtained for the subject 1 by transmission and reception of ultrasonic waves. Based on such information, the image generation unit 11 performs an image reconstruction process, and a distribution image and a reflection boundary image of the physical property values (sound speed value and attenuation rate) of the subject 1 are obtained.
 つぎに、ステップ201では、画像生成部11内の生体組織判別部15が、音速分布画像と減衰率分布画像の対応する画素の音速値と減衰率を求め、記憶部8に格納されている、生体組織が取りうる音速値の範囲と減衰率値の範囲(図8)を参照することにより、各画素の生体組織を、水、脂肪、乳腺組織、のう胞、悪性腫瘍(癌)等に分類(識別)する。 Next, in step 201, the living tissue discriminating unit 15 in the image generating unit 11 obtains the sound speed value and the attenuation rate of the corresponding pixels of the sound speed distribution image and the attenuation rate distribution image, and is stored in the storage unit 8. By referring to the range of sound velocity values and attenuation rate values that can be taken by the biological tissue, the biological tissue of each pixel is classified into water, fat, breast tissue, cyst, malignant tumor (cancer), etc. ( Identify).
 次に、ステップ202では、標準体温画像生成部12が、識別した生体組織の種類に対応する物性値と温度との関係(関数g(T))を記憶部8から読み出し、その関数を用いて、生体組織ごとにその画素の物性値(例えば、音速値)を標準体温Tにおける物性値に換算し、標準体温換算画像を生成する。画素毎に対応する生体組織の物性値の温度依存性関数を用いることにより、精度の高い標準体温での物性値を算出することができる。これをすべての画素について行うことにより、生体組織ごとに精度よく物性値を換算した標準体温換算画像を作成できる。 Next, in step 202, the standard body temperature image generation unit 12 reads the relationship between the physical property value corresponding to the identified type of biological tissue and the temperature (function g (T)) from the storage unit 8, and uses that function. For each living tissue, the physical property value (for example, sound velocity value) of the pixel is converted into the physical property value at the standard body temperature T 0 to generate a standard body temperature converted image. By using the temperature dependence function of the physical property value of the living tissue corresponding to each pixel, the physical property value at a standard body temperature with high accuracy can be calculated. By performing this operation for all the pixels, a standard body temperature converted image in which physical property values are accurately converted for each living tissue can be created.
 このとき、生体組織判別部15は、ステップ201において、ステップ107で生成した超音波の受信時の体温Tにおける物性値の分布を示す画像上で、所定の範囲の物性値を設定することで、設定した範囲の部位(領域)を異なる生体組織として識別する。標準体温画像生成部12は、識別された部位の範囲の生体組織の物性値を、その部位の生体組織に対応する温度依存性関数を用いて、標準温度Tにおける物性値に変換する。 At this time, the living tissue discrimination section 15, at step 201, on the image showing the distribution of physical properties at body temperature T 1 of the ultrasound at the time of reception generated in step 107, by setting the physical property value of a predetermined range The region (region) in the set range is identified as a different biological tissue. The standard body temperature image generation unit 12 converts the physical property value of the biological tissue in the identified region range into a physical property value at the standard temperature T 0 using a temperature dependence function corresponding to the biological tissue of the region.
 また、生体組織判別部15は、物性値(例えば、音速)分布の画像上で、ユーザーから生体組織の部位(領域)の範囲(境界)の設定を入出力部9を介して受け付けてもよい。 Further, the biological tissue discriminating unit 15 may accept the setting of the range (boundary) of the site (region) of the biological tissue from the user via the input / output unit 9 on the physical property value (for example, sound velocity) distribution image. .
 以下、生体組織判別部15による生体組織識別と、物性値の換算の具体例を示す。図8に示した乳房に含まれる主な生体組織の音速と減衰率の分布範囲において、個体差によるばらつきはあるが、適当な閾値を設けることで組織識別を行う。生体組織判別部15は、予め定めた音速値と減衰率値の範囲、例えば音速1570m/s以上、減衰率1.0dB/cm/MHz以上の画素を選択する。これにより、音速分布画像から癌組織のみを抽出する。予め求めておいた、癌の物性値の温度依存関数gcancer(T)を、データベース化して記憶部8または外部サーバーに格納しておく。抽出された画素の物性値に対して、前述した式(1)や式(2)による標準体温換算を行う。別の組織についても抽出された画素について同様に標準体温換算を行う。組織が不明な画素については、例えば、水の物性値の温度依存関数を仮定して適用してもよい。変換された各画素の物性値を融合することで、組織毎に異なる温度依存関係を考慮した標準体温換算画像が得られる。 Hereinafter, specific examples of biological tissue identification and physical property value conversion by the biological tissue discrimination unit 15 will be described. Although there are variations due to individual differences in the distribution range of the sound speed and attenuation rate of the main biological tissue included in the breast shown in FIG. 8, tissue identification is performed by providing an appropriate threshold value. The biological tissue determination unit 15 selects a pixel having a predetermined sound speed value and attenuation rate value range, for example, a sound speed of 1570 m / s or higher and an attenuation rate of 1.0 dB / cm / MHz or higher. Thereby, only the cancer tissue is extracted from the sound velocity distribution image. The temperature dependence function g cancer (T) of the physical property value of cancer, which has been obtained in advance, is stored in the storage unit 8 or an external server as a database. Standard body temperature conversion is performed on the extracted physical property values of the pixels according to the above-described equations (1) and (2). The standard body temperature conversion is similarly performed on the extracted pixels of other tissues. For pixels whose tissue is unknown, for example, a temperature-dependent function of the physical property value of water may be assumed and applied. By fusing the converted physical property values of each pixel, a standard body temperature-converted image that takes into account the temperature dependence that differs for each tissue is obtained.
 なお、記憶部8に格納する撮像部位を構成する組織ごとに予め求めた撮像部位の物性値と温度との関係(物性値の温度依存関数)は、入出力部9を介して、ユーザーから受け付けてもよい。 The relationship between the physical property value of the imaging region and the temperature (temperature dependence function of the physical property value) obtained in advance for each tissue constituting the imaging region stored in the storage unit 8 is received from the user via the input / output unit 9. May be.
 また、被検体1の撮像部位が乳房である場合、撮像部位の物性値と温度との関係は、被検体1の乳腺密度が異なる組織ごとに予め求められ、記憶部8に格納されていることが望ましい。乳腺密度によって、物性値の温度依存関係が異なるためである。例えば、事前のマンモグラフィ等の撮影によって、被検体1の乳腺密度がBI-RADS(Breast Imaging Reporting and Data System)分類におけるFatty, Scattered, Heterogeneously, Extremely Denseの何れかであることが分かっている場合、それぞれの乳腺密度について予め求めておいた物性値の温度依存関数から対応するものを標準体温画像生成部12が選択して、標準温度Tの物性値換算に用いる。 When the imaging region of the subject 1 is the breast, the relationship between the physical property value of the imaging region and the temperature is obtained in advance for each tissue having a different mammary gland density of the subject 1 and stored in the storage unit 8. Is desirable. This is because the temperature dependence of physical properties varies depending on the density of the mammary gland. For example, when the mammary gland density of the subject 1 is known to be one of Fatty, Scattered, Heterogeneously, Extremely Dense in the BI-RADS (Breast Imaging Reporting and Data System) classification by imaging such as mammography in advance, The standard body temperature image generation unit 12 selects the corresponding one from the temperature dependence functions of the physical property values obtained in advance for each mammary gland density, and uses them for converting the physical property values of the standard temperature T 0 .
 さらに、生理周期によって乳腺の見え方が異なることを考慮して、生体組織判別部15は、乳腺組織を卵胞期、排卵期、分泌期、月経期にさらに分類してもよい。予め求めておいたそれぞれの生理周期の乳腺組織の物性値の温度依存関数を記憶部8に格納しておき、標準体温画像生成部12は、対応する周期の関数を読み出して標準温度Tの物性値換算に用いる。 Furthermore, considering that the appearance of the mammary gland varies depending on the menstrual cycle, the biological tissue discrimination unit 15 may further classify the mammary gland tissue into a follicular phase, an ovulation phase, a secretion phase, and a menstrual phase. The temperature-dependent function of the physical property value of the mammary gland tissue obtained in advance for each menstrual cycle is stored in the storage unit 8, and the standard body temperature image generation unit 12 reads out the function of the corresponding cycle to obtain the standard temperature T 0 . Used for physical property conversion.
 上記の各種温度依存関係は、予め装置の記憶部8に保存されているが、ユーザーが独自の温度依存関数を生成し、使用してもよい。図8の生体組織の音速と減衰率の分布範囲についても、ユーザーが任意に領域と組成を指定し、その設定に応じた標準温度換算を行ってもよい。 The above-mentioned various temperature dependence relationships are stored in advance in the storage unit 8 of the apparatus, but the user may generate and use their own temperature dependence functions. As for the distribution range of the sound velocity and attenuation rate of the biological tissue in FIG. 8, the user may arbitrarily specify the region and composition, and perform standard temperature conversion according to the setting.
 上述してきた実施形態2の超音波CT装置において、上述した構成および動作以外は、実施形態1の装置の構成及び動作と同様であるので説明を省略する。 The ultrasonic CT apparatus of the second embodiment described above is the same as the apparatus configuration and operation of the first embodiment except for the configuration and operation described above, and a description thereof will be omitted.
 <<実施形態3>>
 実施形態1,2では、被検体1の撮像部位における体温分布は一様であることを仮定していたが、一般に体温は身体の場所によって異なる。例えば、水槽4の水温が、被検体1の体温より高い場合、体表からの距離に依存した温度勾配が生じる。よって、画像生成部11は、被検体1の体温Tと、体表からの距離とに基づいて、撮像部位の体温の分布を算出し、標準体温画像生成部12は、標準体温換算画像として、体温の分布が一様な標準体温Tである場合の前記物性値の分布を示す画像を生成する。
<< Embodiment 3 >>
In the first and second embodiments, it is assumed that the body temperature distribution in the imaging region of the subject 1 is uniform, but generally the body temperature varies depending on the location of the body. For example, when the water temperature of the water tank 4 is higher than the body temperature of the subject 1, a temperature gradient depending on the distance from the body surface is generated. Therefore, the image generation unit 11 calculates the distribution of the body temperature of the imaging region based on the body temperature T1 of the subject 1 and the distance from the body surface, and the standard body temperature image generation unit 12 serves as a standard body temperature converted image. Then, an image showing the distribution of the physical property values when the body temperature distribution is a uniform standard body temperature T 0 is generated.
 画像生成部11は、撮像部位の体温の分布を算出するために、被検体1の体温Tと、体表からの距離に加えて、撮像部位の体表が接する媒体(ここでは水)の温度と、撮像部位の生体組織の温度伝導率と、撮像部位が媒体に触れてから超音波の送信を受けるまでの時間とを用いる。 In order to calculate the distribution of the body temperature of the imaging region, the image generation unit 11 adds the body temperature T 1 of the subject 1 and the distance from the body surface to the medium (here, water) in contact with the body surface of the imaging region. The temperature, the temperature conductivity of the living tissue at the imaging site, and the time from when the imaging site touches the medium until the ultrasound is transmitted are used.
 具体的には、計測した被検体1の体温をT、水槽4下部に取り付けた温度計114aの温度をT2とする。体表からの距離をx、体表組織の温度伝導率をaとする。温度伝導率aは、熱伝導率を比熱と密度で割ったものである。式(3)の熱伝導方程式を、T、Tを熱浴の温度とする境界条件の下で数値的に解くことで、入水からの時間tと共に、乳房表皮近傍の組織の温度T(x,t)がどう変化するかを求めることができる。ここでは簡単のため、血流や水槽内の対流による熱の移動は考慮せず、一次元のモデルとした。
Figure JPOXMLDOC01-appb-M000001
入水から計測までの時間tと、再構成画像から求めた体表からの距離xを与えることで、乳房表皮近傍の組織の温度が推定できる。
Specifically, the measured body temperature of the subject 1 is T 1 , and the temperature of the thermometer 114 a attached to the lower part of the water tank 4 is T 2 . The distance from the body surface is x, and the temperature conductivity of the body surface tissue is a. The temperature conductivity a is obtained by dividing the thermal conductivity by the specific heat and the density. By solving numerically the heat conduction equation of Equation (3) under the boundary condition where T 1 and T 2 are the temperature of the heat bath, the temperature T ( It can be determined how x, t) changes. Here, for simplicity, a one-dimensional model was used without considering heat transfer due to blood flow or convection in the water tank.
Figure JPOXMLDOC01-appb-M000001
The temperature of the tissue in the vicinity of the breast epidermis can be estimated by giving the time t from entering the water and the distance x from the body surface obtained from the reconstructed image.
 求めた乳房内部の温度分布を基に,式(1)または式(2)を用いて、物性値の標準温度Tの物性値への換算を行うことで,より精度の高い標準体温換算画像を生成することが可能になる。 Based on the calculated temperature distribution inside the breast, using the formula (1) or formula (2), the physical property value is converted into the physical property value of the standard temperature T 0 , thereby obtaining a more accurate standard body temperature conversion image. Can be generated.
1…被検体 
2…ベッド 
3…リングアレイ
4…水槽 
5…予備タンク 
6…制御部 
7…信号処理部 
8…記憶部 
9…入出力部 
11…画像生成部
12…標準体温画像生成部
13…超音波素子
15…生体組織判別部
1 ... Subject
2 ... Bed
3 ... Ring array 4 ... Water tank
5 ... Reserve tank
6. Control unit
7: Signal processor
8 ... Memory part
9 ... Input / output section
DESCRIPTION OF SYMBOLS 11 ... Image generation part 12 ... Standard body temperature image generation part 13 ... Ultrasonic element 15 ... Biological tissue discrimination | determination part

Claims (13)

  1.  被検体の撮像部位に超音波を送信し、前記超音波の前記被検体の透過波を受信し、受信信号を出力する超音波素子と、
     前記受信信号を処理して、前記被検体における所定の物性値の分布を示す画像を生成する画像生成部とを有し、
     前記画像生成部は、前記超音波の送信および受信時の前記被検体の計測または推定された体温を用いて、前記被検体の体温が所定の標準体温である場合の前記物性値の分布を示す標準体温換算画像を生成する標準体温画像生成部を含むことを特徴とする超音波撮像装置。
    An ultrasonic element that transmits an ultrasonic wave to an imaging region of the subject, receives a transmitted wave of the ultrasonic wave of the subject, and outputs a reception signal;
    An image generation unit that processes the received signal and generates an image showing a distribution of predetermined physical property values in the subject;
    The image generation unit uses the measured or estimated body temperature of the subject at the time of transmission and reception of the ultrasonic waves to indicate the distribution of the physical property values when the body temperature of the subject is a predetermined standard body temperature. An ultrasonic imaging apparatus including a standard body temperature image generation unit that generates a standard body temperature converted image.
  2.  請求項1に記載の超音波撮像装置であって、前記標準体温画像生成部は、前記受信信号を用いて、前記超音波の受信時の前記体温における前記物性値を算出し、算出した前記物性値を、予め求めておいた前記撮像部位の前記物性値と温度との関係に基づいて、前記標準温度における物性値に換算することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 1, wherein the standard body temperature image generation unit calculates the physical property value at the body temperature at the time of reception of the ultrasonic wave using the received signal, and calculates the physical property. An ultrasound imaging apparatus, wherein a value is converted into a physical property value at the standard temperature based on a relationship between the physical property value and the temperature of the imaging region determined in advance.
  3.  請求項2に記載の超音波撮像装置であって、前記画像生成部は、前記撮像部位を構成する組織の種類ごとに予め求めた前記撮像部位の前記物性値と温度との関係が格納された記憶部をさらに有し、
     前記標準体温画像生成部は、前記受信信号から得た前記超音波の受信時の前記体温における前記物性値に基づいて、所定の範囲の前記物性値を示す部位の生体組織を識別し、識別した前記生体組織の種類に対応する前記物性値と温度との関係を前記記憶部から読み出して、前記生体組織の前記部位についての前記物性値の前記換算に用いることを特徴とする超音波撮像装置。
    3. The ultrasonic imaging apparatus according to claim 2, wherein the image generation unit stores a relationship between the physical property value of the imaging part and a temperature obtained in advance for each type of tissue constituting the imaging part. A storage unit;
    The standard body temperature image generation unit identifies and identifies a living tissue of a part exhibiting the physical property value within a predetermined range based on the physical property value at the body temperature at the time of reception of the ultrasonic wave obtained from the reception signal. An ultrasonic imaging apparatus, wherein the relationship between the physical property value corresponding to the type of the biological tissue and the temperature is read from the storage unit and used for the conversion of the physical property value for the part of the biological tissue.
  4.  請求項3に記載の超音波撮像装置であって、
     前記標準体温画像生成部は、生体組織ごとに予め求めた前記物性値の値あるいは値の範囲の組み合わせを参照することにより、前記受信信号から得た前記物性値の組み合わせに対応する生体組織を識別することを特徴とする超音波撮像装置。
    The ultrasonic imaging apparatus according to claim 3,
    The standard body temperature image generation unit identifies a biological tissue corresponding to the combination of physical property values obtained from the received signal by referring to the value of the physical property value or a combination of value ranges obtained in advance for each biological tissue. An ultrasonic imaging apparatus.
  5.  請求項3に記載の超音波撮像装置であって、前記標準体温画像生成部は、前記超音波の受信時の前記体温における前記物性値の分布を示す画像を生成し、当該画像上で、前記所定の範囲の前記物性値を示す前記部位の範囲を設定し、設定した前記部位の範囲の生体組織を識別し、識別した前記部位の範囲の生体組織の物性値を前記標準温度における物性値に換算することを特徴とする超音波撮像装置。 The ultrasound imaging apparatus according to claim 3, wherein the standard body temperature image generation unit generates an image indicating a distribution of the physical property values at the body temperature at the time of reception of the ultrasound, and on the image, the The range of the part showing the physical property value of a predetermined range is set, the biological tissue of the set range of the part is identified, and the physical property value of the biological tissue of the identified range of the part is set as the physical property value at the standard temperature An ultrasonic imaging apparatus characterized by converting.
  6.  請求項1に記載の超音波撮像装置であって、前記標準体温の設定をユーザーから受け付ける受付部をさらに有することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 1, further comprising a reception unit that receives a setting of the standard body temperature from a user.
  7.  請求項3に記載の超音波撮像装置であって、前記記憶部に格納する前記撮像部位を構成する組織ごとに予め求めた前記撮像部位の前記物性値と温度との関係を、ユーザーから受け付ける受付部をさらに有することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 3, wherein a reception is received from a user of a relationship between the physical property value of the imaging part and a temperature obtained in advance for each tissue constituting the imaging part stored in the storage unit. An ultrasonic imaging apparatus further comprising a unit.
  8.  請求項4に記載の超音波撮像装置であって、前記生体組織ごとに予め求めた前記物性値の値あるいは値の範囲の組み合わせを、ユーザーから受け付ける受付部をさらに有することを特徴とする超音波撮像装置。 5. The ultrasonic imaging apparatus according to claim 4, further comprising a reception unit that receives from the user a value of the physical property value or a combination of value ranges obtained in advance for each living tissue. Imaging device.
  9.  請求項3に記載の超音波撮像装置であって、前記撮像部位の前記物性値と温度との関係は、前記被検体の乳腺密度が異なる組織ごとに予め求められ、前記記憶部に格納されていることを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 3, wherein the relationship between the physical property value of the imaging region and the temperature is obtained in advance for each tissue having a different mammary gland density of the subject, and is stored in the storage unit. An ultrasonic imaging apparatus.
  10.  請求項2に記載の超音波撮像装置であって、前記予め求めておいた前記撮像部位の前記物性値と温度との関係は、被検体の生理周期に応じて、複数種類用意され、前記標準体温画像生成部は、ユーザーから受け付けた前記被検体の生理周期に対応する前記関係を選択して、前記換算に用いることを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 2, wherein a plurality of types of the relationship between the physical property value and the temperature of the imaging part determined in advance are prepared according to a physiological cycle of the subject, and the standard The ultrasound imaging apparatus, wherein the body temperature image generation unit selects the relationship corresponding to the physiological cycle of the subject received from the user and uses the relationship for the conversion.
  11.  請求項1に記載の超音波撮像装置であって、前記画像生成部は、前記被検体の体温と、体表からの距離とに基づいて、前記撮像部位の体温の分布を算出し、
     前記標準体温画像生成部は、前記標準体温換算画像として、前記体温の分布が一様な標準体温である場合の前記物性値の分布を示す画像を生成することを特徴とする超音波撮像装置。
    The ultrasonic imaging apparatus according to claim 1, wherein the image generation unit calculates a body temperature distribution of the imaging region based on a body temperature of the subject and a distance from a body surface,
    The ultrasonic imaging apparatus, wherein the standard body temperature image generation unit generates an image showing a distribution of physical property values when the body temperature distribution is a uniform standard body temperature as the standard body temperature converted image.
  12.  請求項11に記載の超音波撮像装置であって、前記画像生成部は、前記撮像部位の体温の分布を算出する際に、前記被検体の体温と、体表からの距離に加えて、前記撮像部位の体表が接する媒体の温度と、前記撮像部位の生体組織の温度伝導率と、前記撮像部位が前記媒体に触れてから前記超音波の送信を受けるまでの時間とを用いることを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 11, wherein the image generation unit calculates the body temperature distribution of the imaging region in addition to the body temperature of the subject and the distance from the body surface, The temperature of the medium that is in contact with the body surface of the imaging region, the temperature conductivity of the biological tissue of the imaging region, and the time from when the imaging region touches the medium until the transmission of the ultrasonic wave is received are used. An ultrasonic imaging apparatus.
  13.  超音波を送信された被検体の撮像部位の透過波を受信して得られた受信信号を処理して、前記被検体における所定の物性値の分布を示す画像を生成する超音波画像生成方法であって、
     前記超音波の送信および受信時の前記被検体の体温を用いて、前記被検体の体温が所定の標準体温である場合の前記物性値の分布を示す標準体温換算画像を生成することを特徴とする超音波画像生成方法。
    An ultrasonic image generation method for generating an image indicating a distribution of predetermined physical property values in the subject by processing a reception signal obtained by receiving a transmitted wave of an imaging region of the subject to which an ultrasonic wave has been transmitted. There,
    Using the body temperature of the subject at the time of transmission and reception of the ultrasonic wave, a standard body temperature converted image showing a distribution of the physical property values when the body temperature of the subject is a predetermined standard body temperature is generated. An ultrasonic image generation method.
PCT/JP2017/009765 2016-08-22 2017-03-10 Ultrasound imaging apparatus and ultrasound image generation method WO2018037600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-161981 2016-08-22
JP2016161981A JP6539620B2 (en) 2016-08-22 2016-08-22 ULTRASONIC IMAGING DEVICE, AND ULTRASONIC IMAGE GENERATION METHOD

Publications (1)

Publication Number Publication Date
WO2018037600A1 true WO2018037600A1 (en) 2018-03-01

Family

ID=61246487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009765 WO2018037600A1 (en) 2016-08-22 2017-03-10 Ultrasound imaging apparatus and ultrasound image generation method

Country Status (2)

Country Link
JP (1) JP6539620B2 (en)
WO (1) WO2018037600A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3756789A4 (en) 2018-02-22 2021-11-24 LINTEC Corporation Film-like firing material and film-like firing material with support sheet
JP7125356B2 (en) * 2019-01-15 2022-08-24 富士フイルムヘルスケア株式会社 Ultrasonic CT device, image processing device, and image processing program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509777A (en) * 2004-08-17 2008-04-03 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド Treatment of tissue damage by image guidance using ultrasound
JP2008278991A (en) * 2007-05-09 2008-11-20 Univ Of Yamanashi Heel bone sound velocity measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509777A (en) * 2004-08-17 2008-04-03 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド Treatment of tissue damage by image guidance using ultrasound
JP2008278991A (en) * 2007-05-09 2008-11-20 Univ Of Yamanashi Heel bone sound velocity measuring device

Also Published As

Publication number Publication date
JP6539620B2 (en) 2019-07-03
JP2018029653A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US7996066B2 (en) Topographic optical infrared tomography system for biophysical imaging with infrared diagnostic exploratory algorithm sequencing (IDEAS) scripting language
US8870771B2 (en) Method and apparatus for categorizing breast density and assessing cancer risk utilizing acoustic parameters
KR100932472B1 (en) Ultrasound Diagnostic System for Detecting Lesions
US10772608B2 (en) Medical image diagnostic apparatus and medical information display control method
US11147537B2 (en) Method for representing tissue stiffness
CN104622509A (en) Ultrasonic diagnostic apparatus and elastic evaluation method
KR101500481B1 (en) Average glandular dose calculation method for digital mammography and digital breast tomosynthesis and computer readable record-midium on which program for excuiting method thereof
CN113260329B (en) Method and system for monitoring tissue temperature
KR20160025083A (en) Untrasound dianognosis apparatus, method and computer-readable storage medium
KR20170032775A (en) Method of obtaining information from a contrast image and ultrasound apparatus thereof
KR20150072222A (en) The method and apparatus for displaying an additional information ralated to measured value of an object
JP6739318B2 (en) Ultrasonic diagnostic equipment
WO2018037600A1 (en) Ultrasound imaging apparatus and ultrasound image generation method
JP2009261493A (en) Ultrasonic diagnostic method and apparatus
JP2015163186A (en) Image capturing device, image capturing method, and program
KR20150072910A (en) The method and apparatus for indicating a point adjusted based on a type of a caliper in a medical image
JP5291999B2 (en) Adipose tissue detection method and adipose tissue detection apparatus
Miyague et al. Importance of pulse repetition frequency adjustment for 3‐and 4‐dimensional power Doppler quantification
JP2019069025A (en) Information processing device and information processing method
JP7187734B1 (en) Image processing device and program
JP2018088990A (en) Ultrasonic imaging device, image processing device, and image processing method
KR20180100925A (en) Ultrasound diagnostic apparatus and method of ultrasound diagnostic apparatus
KR101956460B1 (en) Method for detecting microcalcification using ultrasound medical imaging device and ultrasound medical imaging device thereof
Soceanu et al. [P047] Ultrasound imaging: Towards smaller portable systems using signal and image processing tools
Opieliński et al. Breast ultrasound tomography: preliminary in vivo results

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843091

Country of ref document: EP

Kind code of ref document: A1