JP2008278991A - Heel bone sound velocity measuring device - Google Patents

Heel bone sound velocity measuring device Download PDF

Info

Publication number
JP2008278991A
JP2008278991A JP2007124249A JP2007124249A JP2008278991A JP 2008278991 A JP2008278991 A JP 2008278991A JP 2007124249 A JP2007124249 A JP 2007124249A JP 2007124249 A JP2007124249 A JP 2007124249A JP 2008278991 A JP2008278991 A JP 2008278991A
Authority
JP
Japan
Prior art keywords
heel
temperature
rib
ultrasonic
sound velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007124249A
Other languages
Japanese (ja)
Other versions
JP5531307B2 (en
Inventor
Yoshihisa Mizuguchi
義久 水口
Koichi Nagai
宏一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2007124249A priority Critical patent/JP5531307B2/en
Publication of JP2008278991A publication Critical patent/JP2008278991A/en
Application granted granted Critical
Publication of JP5531307B2 publication Critical patent/JP5531307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heel bone sound velocity measuring device that improves the precision of a heel bone sound velocity measurement taking account of heel temperatures instantly measurable by the device with a simple means, and also performs the measurement within a short time. <P>SOLUTION: The device is provided with a pair of ultrasonic probes 8a, 8b to be placed at both the sides of a heel 2, a pair of digital calipers 11 to measure heel width when the heel 2 is placed between the ultrasonic probes 8a, 8b and a thermocouple 15 installed near the ultrasonic probe 8a to measure the temperature of the heel surface. The device measures the sound velocity of whole heel from the ultrasonic waves made to enter the interior of the heel 2 from the ultrasonic probes 8a, 8b. When the device calculates the heel bone sound velocity from the measured whole heel sound velocity and the heel width obtained with the digital calipers 11, the heel bone sound velocity calculated using the measured heel surface temperature obtained from the thermocouple 15 is corrected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は超音波を利用した踵骨音速測定装置に関するものである。   The present invention relates to a rib sound velocity measuring device using ultrasonic waves.

近年、高齢者人口の増加に伴い、骨粗鬆症による腰椎部、大腿骨部、橈骨遠位部などの骨折が大きな社会問題となっており、骨粗鬆症の原因となる骨密度を簡易かつ正確に測定できる装置の開発が求められている。   In recent years, with the increase in the elderly population, fractures such as lumbar spine, femur, and distal radius due to osteoporosis have become a major social problem, and a device that can easily and accurately measure the bone density causing osteoporosis Development is required.

超音波を用いて踵の骨密度を測定する装置としては、例えば、一対の超音波探触子で踵を挟んで超音波を送受信し、踵の骨を透過した超音波を受信した受信信号から骨中の音速を求め、この音速に基づいて骨密度を測定するものが知られている。   As an apparatus for measuring the bone density of the heel using ultrasonic waves, for example, a pair of ultrasonic probes sandwiches the heel and transmits and receives ultrasonic waves, and from a reception signal that receives ultrasonic waves transmitted through the heel bone. It is known that the speed of sound in bone is obtained and the bone density is measured based on this speed of sound.

ところで、このような超音波を利用した骨粗鬆症の診断においては、踵骨の音速の測定精度が診断結果に大きく影響してくるが、その測定精度は被測定物の温度による影響を受け易いことが知られている。特に、踵が身体の末端にあるために踵の温度は個人差が大きく、また、季節によっても温度変化が大きいことから、正確な音速を測定する妨げとなっていた。   By the way, in the diagnosis of osteoporosis using such an ultrasonic wave, the measurement accuracy of the sound speed of the rib greatly affects the diagnosis result, but the measurement accuracy may be easily influenced by the temperature of the object to be measured. Are known. In particular, since the heel is located at the end of the body, the temperature of the heel varies greatly from person to person, and the temperature changes greatly depending on the season, which hinders accurate sound speed measurement.

従来、超音波を利用した骨密度の測定において、温度による誤差を加味した生体組織評価装置が提案されている(特許文献1参照)。この生体組織評価装置は、被験者の踵に対して送受信を行い、踵骨を伝搬する超音波の音速を測定する測定部を備える装置本体と、この装置本体の上面及び側面の全体をカバーするカバー部材とを有しており、カバー部材の裏面側に温度制御装置が設けられたものである。温度制御装置はペルチェ素子を有しており、前記測定部の周囲を加熱又は冷却することで、カバー部材の内部を所定の温度に保つようにしている。   2. Description of the Related Art Conventionally, there has been proposed a biological tissue evaluation apparatus that takes into account an error due to temperature in measurement of bone density using ultrasonic waves (see Patent Document 1). This biological tissue evaluation apparatus transmits / receives to / from a subject's heel, and includes a device main body including a measurement unit that measures the sound velocity of ultrasonic waves propagating through the ribs, and a cover that covers the entire upper surface and side surfaces of the device main body. And a temperature control device is provided on the back side of the cover member. The temperature control device includes a Peltier element, and the inside of the cover member is maintained at a predetermined temperature by heating or cooling the periphery of the measurement unit.

しかしながら、上記従来の生体組織評価装置にあっては、装置本体の内部全体を温度制御するものであり、カバー部材によって被覆された装置本体が所定の温度になるまで測定待機しなければならないために、測定開始までに時間が掛かるといった問題があった。また、踵の表面温度を直接測定するものではないので、正確な温度に基づいた音速測定は難しいものであった。
特開2002−136518号公報
However, in the above-described conventional biological tissue evaluation apparatus, the temperature of the entire inside of the apparatus main body is controlled, and measurement must be waited until the apparatus main body covered with the cover member reaches a predetermined temperature. There was a problem that it took time to start the measurement. Further, since the surface temperature of the ridge is not directly measured, it is difficult to measure the speed of sound based on an accurate temperature.
JP 2002-136518 A

そこで、本発明が解決しようとする課題は、簡易な手段でありながら踵の表面温度を即座に測定し、その測定温度を考慮した補正によって、踵骨の音速の測定精度を向上させると共に短時間で音速測定ができる踵骨音速測定装置を提供することにある。   Therefore, the problem to be solved by the present invention is to measure the surface temperature of the heel immediately while being a simple means, and improve the measurement accuracy of the sound speed of the ribs by correcting in consideration of the measurement temperature and for a short time. An object of the present invention is to provide a rib sound speed measuring device capable of measuring sound speed with the use of the above.

上記課題を解決するために、本発明に係る踵骨音速測定装置は、踵の両側を挟む一対の超音波探触子と、この超音波探触子で踵の両側を挟んだ時の踵幅を測定する踵幅測定手段と、前記超音波探触子から踵の内部に入射させた超音波に基づいて踵全体の音速を測定する音速測定手段と、踵全体の音速測定値と前記踵幅の測定値に基づいて踵骨の音速を算出する演算手段と、前記超音波探触子の近傍に設置されて踵表面の温度を測定する温度センサと、この温度センサから得られた踵表面の測定温度に基づいて、前記演算部で算出された踵骨の音速を補正する補正手段とを備えていることを特徴とする。   In order to solve the above-mentioned problems, a rib sound speed measuring device according to the present invention includes a pair of ultrasonic probes that sandwich both sides of a heel, and a heel width when both sides of the heel are sandwiched between the ultrasonic probes.踵 width measuring means for measuring 音, sound speed measuring means for measuring the sound speed of the entire heel based on the ultrasonic wave incident on the inside of the heel from the ultrasonic probe, sound speed measurement value of the entire heel and the heel width Calculation means for calculating the sound speed of the ribs based on the measured value of the rib, a temperature sensor installed in the vicinity of the ultrasonic probe for measuring the temperature of the rib surface, and the rib surface obtained from the temperature sensor And a correction means for correcting the sound speed of the rib calculated by the calculation unit based on the measured temperature.

本発明によれば、踵の表面温度を直接測定し、その測定値に基づいて踵骨の音速を温度補正するので、音速の精度を向上させることができる。また、本発明によれば、踵の表面温度を測定しているので、即座に音速測定の開始が可能となり、測定時間の短縮を図ることができる。   According to the present invention, since the surface temperature of the heel is directly measured and the sound speed of the rib is corrected based on the measured value, the accuracy of the sound speed can be improved. Further, according to the present invention, since the surface temperature of the ridge is measured, the sound speed measurement can be started immediately and the measurement time can be shortened.

以下、本発明に係る踵骨音速測定装置の最良の形態を添付図面に基づいて詳細に説明する。本発明の踵骨音速測定装置は、図1及び図2に示されるように、踵2の音速を測定する測定部3と、この測定部3の操作を行なう超音波探傷器4と、測定条件などを設定するコンピュータ装置5とを備える。   Hereinafter, the best mode of a rib sound speed measuring device according to the present invention will be described in detail with reference to the accompanying drawings. As shown in FIGS. 1 and 2, the rib sound speed measuring device of the present invention includes a measuring unit 3 that measures the sound speed of the heel 2, an ultrasonic flaw detector 4 that operates the measuring unit 3, and measurement conditions. And a computer device 5 for setting the above.

前記測定部3は、ケーシング6の中央部に踵2をセットする凹所7と、この凹所7の左右両側に配置され踵2を両側から挟む一対の超音波探触子8a,8bと、踵幅を測定する踵幅測定手段とを備える。前記超音波探触子8a,8bの先端にはアタッチメント10a,10bが取り付けられ、このアタッチメント10a,10bを介して超音波探触子8a,8bの先端の振動子面に超音波が伝搬し易いように構成されている。アタッチメント10a,10bは、例えばプラスチックによって円錐台形状に作られ、超音波探触子8a,8bの振動子面に基端部が圧着された状態でネジ部材9a,9bによって締め付け固定されている。なお、超音波探触子8a,8bに超音波が伝搬し易いように、超音波探触子8a,8bとアタッチメント10a,10bとの圧着面に、例えば、ソノゼリー(東芝医療用品株式会社製)のような音響媒質を塗ってから固定するのが望ましい。   The measurement unit 3 includes a recess 7 for setting the flange 2 in the center of the casing 6, and a pair of ultrasonic probes 8a and 8b that are disposed on both the left and right sides of the recess 7 and sandwich the flange 2 from both sides. A heel width measuring means for measuring the heel width. Attachments 10a and 10b are attached to the tips of the ultrasonic probes 8a and 8b, and the ultrasonic waves easily propagate to the transducer surface at the tips of the ultrasonic probes 8a and 8b via the attachments 10a and 10b. It is configured as follows. The attachments 10a and 10b are made of, for example, plastic in a truncated cone shape, and are fastened and fixed by screw members 9a and 9b in a state where the base ends are crimped to the transducer surfaces of the ultrasonic probes 8a and 8b. Note that, for example, sono jelly (manufactured by Toshiba Medical Supplies Co., Ltd.) is attached to the crimping surfaces of the ultrasonic probes 8a and 8b and the attachments 10a and 10b so that the ultrasonic waves can easily propagate to the ultrasonic probes 8a and 8b. It is desirable to fix after applying an acoustic medium such as

前記踵幅測定手段は、例えばデジタルキャリパ11によって構成される。このデジタルキャリパ11はキャリパプレート12を備えており、このキャリパプレート12の一端に立設されたアーム13aに一方の超音波探触子8aが固定され、キャリパプレート12にスライド可能に取り付けられたキャリパスケール14に他方の超音波探触子8bがアーム13bを介して固定されている。   The heel width measuring means is constituted by a digital caliper 11, for example. The digital caliper 11 includes a caliper plate 12. One caliper 8 a is fixed to an arm 13 a erected on one end of the caliper plate 12, and the caliper is slidably attached to the caliper plate 12. The other ultrasonic probe 8b is fixed to the scale 14 via an arm 13b.

踵幅を測定する際には、前記測定部3の凹所7に踵2をセットしたのち、固定側の超音波探触子8aに踵2を押し付け、その状態で移動側の超音波探触子8bをキャリパスケール14と共に移動させ、踵2に超音波探触子8bを適当な力で押し付けて踵2を挟む。踵2の両側を挟んだときの超音波探触子8a,8b間の踵幅データは、キャリパスケール14からコンピュータ装置5に出力される。なお、前記超音波探触子8a,8bは各アーム13a,13bに対し上下方向の位置調整が可能であり、踵幅を測定する際および超音波を入射させる際などには、超音波探触子8a,8bが踵2の底面から約30mmの位置に接触するように予め高さ調整しておくのが望ましい。   When measuring the heel width, after setting the heel 2 in the recess 7 of the measuring unit 3, the heel 2 is pressed against the fixed-side ultrasonic probe 8a, and in this state, the moving-side ultrasonic probe is pressed. The child 8 b is moved together with the caliper scale 14, and the ultrasonic probe 8 b is pressed against the heel 2 with an appropriate force to sandwich the heel 2. The width data between the ultrasonic probes 8a and 8b when both sides of the heel 2 are sandwiched are output from the caliper scale 14 to the computer device 5. The ultrasonic probes 8a and 8b can be adjusted in the vertical direction with respect to the arms 13a and 13b. The ultrasonic probes are used when measuring the width of the eyelids and when entering ultrasonic waves. It is desirable to adjust the height in advance so that the children 8a and 8b come into contact with the position of about 30 mm from the bottom surface of the basket 2.

この発明において特徴的な点は、前記固定側の超音波探触子8aに温度センサ15が取り付けてある点である。この温度センサ15は、一対の超音波探触子8a,8bで踵2を両側から挟んだときに、温度センサ15の先端検出部が踵2の表面を適度に押圧するように超音波探触子8aの外周面に取り付けられている。取付手段としては、例えばバネなどの弾性部材で付勢された温度センサ15の先端検出部をアタッチメント10aの先端より僅かに突出させておき、アタッチメント10aの先端が踵2に接触する際に温度センサ15の先端検出部を弾性部材の付勢力によって踵2の表面に確実に当るように構成することもできる。この温度センサ15は、例えば熱電対によって構成され、先端検出部を踵2の表面に接触させるだけで容易に測定することができる。熱電対は温度変化に対する対応が速いので測定時間の短縮化に有効である。測定した踵表面の温度データはコンピュータ装置5に出力され、踵全体の音速測定値を温度補正する際に利用される。   A characteristic point of the present invention is that a temperature sensor 15 is attached to the fixed-side ultrasonic probe 8a. This temperature sensor 15 has an ultrasonic probe so that when the heel 2 is sandwiched from both sides by a pair of ultrasonic probes 8a and 8b, the tip detection part of the temperature sensor 15 presses the surface of the heel 2 appropriately. It is attached to the outer peripheral surface of the child 8a. As the attachment means, for example, the tip detection portion of the temperature sensor 15 urged by an elastic member such as a spring is protruded slightly from the tip of the attachment 10a, and the temperature sensor is in contact with the tip of the attachment 10a. It is also possible to configure the 15 tip detection portions so as to surely hit the surface of the flange 2 by the biasing force of the elastic member. The temperature sensor 15 is configured by, for example, a thermocouple, and can be easily measured simply by bringing the tip detection unit into contact with the surface of the basket 2. Thermocouples are effective in shortening the measurement time because they respond quickly to temperature changes. The measured temperature data of the surface of the kite is output to the computer device 5 and used when correcting the temperature of the sound velocity measurement value of the entire kite.

なお、この実施形態では温度補正の他に、超音波によって測定される音速のエコー波形を位置補正している。例えば図3は、超音波によって踵全体の音速を測定した時の超音波探傷器4のモニタ上にあらわれた透過エコーの波形である。透過エコーとしては、踵全体を最初の透過した時の第1エコー(a)と、透過した後に反射し再び透過した時の第2エコー(b)とが得られる。モニタ上には第1エコー(a)の波形は明瞭に表示されるが、第2エコー(b)の波形は必ずしも明瞭には表示されない。そのため、第1エコー(a)のみの位置から踵全体の音速を測定するのが望ましいが、モニタ上に表示されるX軸上の0点の位置と、イニシャルパルス(c)の位置とがX軸上でずれていることから、両者間の距離Cが誤差量となり正確な音速が測定できない。   In this embodiment, in addition to the temperature correction, the position of the echo waveform of the sound velocity measured by the ultrasonic wave is corrected. For example, FIG. 3 shows a waveform of a transmitted echo that appears on the monitor of the ultrasonic flaw detector 4 when the sound speed of the entire eyelid is measured by ultrasonic waves. As the transmission echo, a first echo (a) when first transmitted through the entire bag and a second echo (b) when reflected after being transmitted and transmitted again are obtained. The waveform of the first echo (a) is clearly displayed on the monitor, but the waveform of the second echo (b) is not necessarily clearly displayed. Therefore, it is desirable to measure the sound speed of the entire kite from the position of only the first echo (a), but the position of the zero point on the X axis displayed on the monitor and the position of the initial pulse (c) are X Since it is shifted on the axis, the distance C between the two becomes an error amount, and an accurate sound velocity cannot be measured.

そこで、本発明では前記の距離Cを予め求めておき、これを位置補正値としてコンピュータ装置5内の測定ソフトに組み込んでおくことで、踵全体の音速を測定する際には補正された測定値を得るようにしている。具体的には第1エコー(a)と第2エコー(b)とのエコー間距離L’は正確な値として求められるので、モニタ上に表示されるX軸上の0点から第1エコー(a)及び第2エコー(b)までの各距離A,Bを測定し、下の(1)式によりエコー間距離L’を求め、(2)式により補正距離Cを得る。また、(3)式により補正時間Zとして得ることもできる。本実施形態では5人について測定したところ、Z=2.9μsを得たので、この値を補正時間として用いた。このように位置補正を予め行っておくことで、踵全体の音速測定では透過エコーの波形が非常に鮮明である第1エコーのみの測定で済むので、エコーのピーク値の読み取りが非常に容易となり、計測の精度が向上する。
’=B−A・・・・・(1)
C=A−L’/2・・・・・(2)
Z=C/V’・・・・・(3)
なお、(3)式において、V’は踵全体の音速を測定した時の超音波の仮音速値である。
Therefore, in the present invention, the distance C is obtained in advance, and this is incorporated in the measurement software in the computer device 5 as a position correction value, thereby correcting the measured value when measuring the sound speed of the entire kite. Like to get. Specifically, since the inter-echo distance L T ′ between the first echo (a) and the second echo (b) is obtained as an accurate value, the first echo from the zero point on the X axis displayed on the monitor. The distances A and B to (a) and the second echo (b) are measured, the distance between echoes LT ′ is obtained by the following equation (1), and the correction distance C is obtained by the equation (2). Further, the correction time Z can also be obtained from the equation (3). In this embodiment, when five people were measured, Z = 2.9 μs was obtained, and this value was used as the correction time. By performing position correction in advance in this way, the sound velocity measurement of the entire kite requires only the measurement of the first echo with a very clear waveform of the transmitted echo, making it very easy to read the peak value of the echo. , Measurement accuracy is improved.
L T ′ = B−A (1)
C = A-L T '/ 2 ····· (2)
Z = C / V T '(3)
In Equation (3), V T ′ is a provisional sound velocity value of the ultrasonic wave when the sound velocity of the entire kite is measured.

上記の位置補正は、踵の軟部組織の肉厚を測定する際の反射エコーに対しても行うのが望ましい。上記と同様にして5人について補正距離C又は補正時間Zを求めたところ、Z=1.45μsを得たので、この値を補正時間として用いた。   It is desirable to perform the above-described position correction also for the reflected echo when measuring the thickness of the soft tissue of the eyelid. When the correction distance C or the correction time Z was obtained for five people in the same manner as described above, Z = 1.45 μs was obtained, and this value was used as the correction time.

次に、上記構成からなる踵骨音速測定装置を用いた踵骨の音速測定のステップを図4に基づいて説明する。先ず、図1及び図2に示したように、測定部3の凹所7に踵2をセットし、上述した一対の超音波探触子8a,8bで踵2の両側を挟み込む。その際、踵2の底面及び後面からそれぞれ30mmの位置にアタッチメント10a,10b各先端面が当るように調整する。また、踵2の内部に超音波が入射し易いように、踵2の両側にソノゼリー(東芝医療用品株式会社製)などゼリー状の音響媒質を塗っておくのが望ましい。   Next, the step of measuring the sound speed of the rib using the rib sound speed measuring apparatus having the above-described configuration will be described with reference to FIG. First, as shown in FIGS. 1 and 2, the scissors 2 are set in the recesses 7 of the measuring unit 3, and both sides of the scissors 2 are sandwiched between the pair of ultrasonic probes 8 a and 8 b described above. At that time, the attachments 10a and 10b are adjusted so that the front end surfaces of the attachments 10a and 10b come into contact with the positions of 30 mm from the bottom surface and the rear surface, respectively. In addition, it is desirable to apply a jelly-like acoustic medium such as sono jelly (manufactured by Toshiba Medical Supplies Co., Ltd.) on both sides of the cocoon 2 so that ultrasonic waves can easily enter the cocoon 2.

超音波探触子8a,8bを位置決めしたのち測定開始スイッチを入れて測定を開始する。まず、測定部3のデジタルキャリパ11によって踵幅寸法Lを実測し、その測定データをコンピュータ装置5に出力する(ステップ1)。前記踵幅寸法Lを実測するのと同時に温度センサ15により踵2の表面温度Tを実測し、その測定データをコンピュータ装置5に出力する(ステップ2)。 After positioning the ultrasonic probes 8a and 8b, the measurement start switch is turned on to start measurement. First, by the digital caliper 11 of the measuring unit 3 actually measured heel width L T, and outputs the measurement data to the computer device 5 (Step 1). Wherein the temperature sensor 15 at the same time as the actual measurement of the heel width L T by actually measuring the surface temperature T of the heel 2, and outputs the measurement data to the computer device 5 (Step 2).

次に、踵骨2aの周囲を取り囲む軟部組織2b,2cの各肉厚寸法L,Lを超音波測定によって求める(ステップ3)。一対の超音波探触子8a,8bのそれぞれから踵2の両側に超音波(音速V=1531m/s)を入射し、踵骨2aからの反射エコーを測定することで左右の軟部組織2b,2cの各肉厚寸法L,Lを求める。具体的には、前記測定した反射エコーの波形を超音波探傷器4のモニタに映し出し、その映像のエコー位置から左右の軟部組織2b,2cの肉厚寸法L,Lを得ることができる。なお、モニタに映し出される反射エコーの波形は位置補正がなされている。なお、踵2に入射する超音波の音速V=1531m/sおよび位置補正時間Z=1.45μsをコンピュータ装置5内の測定ソフトに予め入力しておくことにより、位置補正された肉厚寸法L,Lを求めることができる。また、反射エコーのピーク位置を求め易くするために波形高さを約80%程度にゲイン調整するのが好ましい。 Next, the thickness dimensions L 1 and L 2 of the soft tissue 2b and 2c surrounding the rib 2a are obtained by ultrasonic measurement (step 3). Ultrasonic waves (sound velocity V M = 1531 m / s) are incident on both sides of the heel 2 from each of the pair of ultrasonic probes 8a and 8b, and the reflected echoes from the ribs 2a are measured to thereby measure the left and right soft tissue 2b. , 2c, thicknesses L 1 and L 2 are obtained. Specifically, the waveform of the measured reflected echo is displayed on the monitor of the ultrasonic flaw detector 4, and the wall thickness dimensions L 1 and L 2 of the left and right soft tissues 2b and 2c can be obtained from the echo position of the image. . The position of the reflected echo waveform displayed on the monitor is corrected. It should be noted that the position-corrected thickness dimension is obtained by previously inputting the sound velocity V M = 1531 m / s and the position correction time Z = 1.45 μs of the ultrasonic wave incident on the bowl 2 into the measurement software in the computer device 5. L 1 and L 2 can be obtained. Further, in order to easily obtain the peak position of the reflected echo, it is preferable to adjust the gain to about 80% of the waveform height.

次に、上記超音波探触子8a,8bを用いて踵全体を伝搬する音速の測定を行ない、踵全体の踵幅寸法L’を求める(ステップ4)。この測定ではコンピュータ装置5内の測定ソフトに仮の音速として例えばV’=1500m/sと、踵全体の位置補正時間Z=2.9μsを入力しておく。そして、コンピュータ装置9内の測定ソフトを動作させ、超音波探傷器4により一方の超音波探触子8aから1500m/sの超音波を踵2に入射する。透過法により踵全体を伝搬する時の透過エコーを測定することで踵全体の音速を算出する。具体的には、第1エコー(a)の波形を超音波探傷器4のモニタ上に映し出し、エコーのピーク位置から仮音速における踵全体の踵幅寸法L’を得る。この踵幅寸法L’は自動的に位置補正して算出され、そのデータはコンピュータ装置5に出力される。 Next, the ultrasonic probe 8a, 8b performs measurement of speed of sound propagating through the entire heel using a seek heel width of the entire heel L T '(step 4). In this measurement, for example, V T ′ = 1500 m / s and the position correction time Z = 2.9 μs of the entire kite are input to the measurement software in the computer apparatus 5 as temporary sound speed. Then, the measurement software in the computer device 9 is operated, and an ultrasonic flaw detector 4 causes 1500 m / s ultrasonic waves to be incident on the cage 2 from one ultrasonic probe 8a. The sound velocity of the entire kite is calculated by measuring the transmission echo when propagating through the kite using the transmission method. Specifically, the waveform of the first echo (a) is projected on the monitor of the ultrasonic flaw detector 4 and the overall width L T ′ of the eyelid at the temporary sound speed is obtained from the peak position of the echo. The heel width dimension L T ′ is calculated by automatically correcting the position, and the data is output to the computer device 5.

コンピュータ装置5内の演算処理部では、上記で得られた仮音速での踵幅寸法L’、デジタルキャリパ11によって実測された踵幅寸法L及び仮音速V’から、下記の(4)式により踵全体の音速Vが計算される(ステップ5)。
=V’×L’/L・・・・・(4)
The arithmetic processing unit of the computer apparatus 5, the heel width L T of the temporary sound velocity obtained above from ', and heel width L T and the temporary sound speed V T measured by a digital caliper 11', the following (4 ) of the entire heel acoustic velocity V T is calculated by equation (step 5).
V T = V T '× L T ' / L T (4)

次に、温度センサ15によって測定した踵2の表面温度Tを考慮して前記で計算された踵全体の音速Vを温度補正する(ステップ6)。本発明者らは踵全体の音速が踵2の表面温度によって影響を受けることに注目し、踵2の表面温度が上がるのに従って踵全体の音速が線形的に下がる傾向を見い出した。以下の実施例3に基づいた結果では踵2の表面温度が1℃上がる毎に踵全体の音速は約2.48m/sずつ下がることが判明し、温度係数−2.48(m/s)/℃を得た。この温度係数−2.48(m/s)/℃を用いて、基準温度を例えば30℃としたときの踵全体の音速を補正した。この温度補正の計算は、コンピュータ装置5に入力された踵2の表面温度Tの測定データを基準温度(30℃)における音速として換算するもので、コンピュータ装置5内の演算処理手段によって、以下の(5)式より補正後の踵全体の音速V″を算出した。
″=V−(30−T)×(−2.48)・・・・・(5)
Next, temperature compensation sound velocity V T of the entire heel calculated in the taking into account the surface temperature T of the heel 2, as measured by the temperature sensor 15 (Step 6). The inventors noticed that the sound speed of the entire kite is affected by the surface temperature of the kite 2, and found that the sound speed of the entire kite decreases linearly as the surface temperature of the kite 2 increases. According to the results based on Example 3 below, it was found that the sound speed of the entire bowl decreased by about 2.48 m / s every time the surface temperature of the bowl 2 increased by 1 ° C., and the temperature coefficient −2.48 (m / s) / ° C. Obtained. Using this temperature coefficient of −2.48 (m / s) / ° C., the sound speed of the entire kite when the reference temperature was set to 30 ° C., for example, was corrected. This calculation of temperature correction is performed by converting the measurement data of the surface temperature T of the bowl 2 input to the computer device 5 as the sound velocity at the reference temperature (30 ° C.). The sound speed V T ″ of the entire kite after correction was calculated from the equation (5).
V T ″ = V T − (30−T) × (−2.48) (5)

次に、前記で求めた基準温度(30℃)における踵全体の音速V″から踵骨2aのみの音速Vを下記の(6)式によって算出した(ステップ7)。ここでLは踵骨2aのみの幅寸法であり、前記した踵左右の軟部組織2b,2cの肉厚寸法L,Lと、デジタルキャリパ11により計測した踵全体の幅寸法Lから、下記の(7)式により算出した。
/V″=(L+L)/V+L/V・・・・・(6)
=L−(L+L)・・・・・(7)
Next, the acoustic velocity V B of the from the reference temperature (30 ° C.) the acoustic velocity V T "of the entire heel at determined in calcaneus 2a only calculated by the following formula (6) (step 7). Where L B is the width dimension of only calcaneus 2a, the the heel lateral soft tissue 2b, a wall thickness L 1, L 2 of 2c, the width L T of the entire heel measured by digital caliper 11, the following (7 ).
L T / V T ″ = (L 1 + L 2 ) / V M + L B / V B (6)
L B = L T − (L 1 + L 2 ) (7)

上記で説明したような超音波探傷器4の操作、超音波による音速測定およびコンピュータ装置5内での演算処理は、コンピュータ装置5内に組み込まれた測定ソフトにしたがって自動的に行なわれ、温度補正および位置補正を加えた踵骨2aのみの音速Vが最終的に求められる。 The operation of the ultrasonic flaw detector 4 as described above, the measurement of the sound velocity by ultrasonic waves, and the arithmetic processing in the computer device 5 are automatically performed according to the measurement software incorporated in the computer device 5 to correct the temperature. Finally, the sound velocity V B of only the rib 2a to which position correction has been applied is obtained.

次に、踵左右の軟部組織2b,2cの肉厚寸法L,Lを測定せずに、踵全体の音速のみを用いて簡易的に踵骨2aの音速を求める方法について述べる。この方法は、踵全体の幅寸法Lと踵骨2aの幅寸法Lとがほぼ比例関係にあるという事実を用いて行なうものである。多少の個人差はあるものの踵全体の約64%を踵骨2aが占めると云われている。そのことから、踵骨2aの幅寸法Lを以下の(8)式により簡易的に算出し、これを上記の(6)式に算入することで簡易に算出することができる。
=L×0.64・・・・・(8)
Next, a method for simply obtaining the sound speed of the rib 2a using only the sound speed of the entire rib without measuring the wall thickness dimensions L 1 and L 2 of the left and right soft tissues 2b and 2c will be described. This method is performed using the fact that the width L B of width L T and calcaneus 2a of the entire heel almost proportional. Although there are some individual differences, it is said that the rib 2a occupies about 64% of the entire heel. Since the, the width of the heel bone 2a L B simplified manner calculated from the following equation (8), which can be easily calculated by inclusion in the above (6).
L B = L T × 0.64 (8)

なお、この簡易方法では軟部組織2b、2cの肉厚寸法L,Lの測定を行なわないが、その他の測定や演算処理は上記と同様の手段で行なう。その場合、踵全体の音速測定では透過エコーの波形が非常に鮮明である第1エコーのみの測定で済むので、エコーのピーク値の読み取りが非常に容易であり、自動計測の精度が向上すると共に計測し易いといった利点がある。 In this simple method, the thicknesses L 1 and L 2 of the soft tissues 2b and 2c are not measured, but other measurements and arithmetic processes are performed by the same means as described above. In that case, the sound velocity measurement of the entire kite requires only the measurement of the first echo whose transmitted echo waveform is very clear, so that it is very easy to read the peak value of the echo, and the accuracy of automatic measurement is improved. There is an advantage that it is easy to measure.

(実施例1)
温度補正値を加味した時の踵骨の音速と加味しない時の踵骨の音速とを、二重エネルギーX線吸収法(DXA法)によって得た骨密度(BMD)と比較した。踵骨の音速は上記で説明した演算手段により算出し、BMDはX線骨密度測定装置QDR−4500W(Hologic,USA)を用いて第2〜第4腰椎を測定し、その平均値を採用した。なお、被験者は23〜25歳の男性6名(A〜F)である。
Example 1
The speed of sound of the rib when the temperature correction value was taken into account and the speed of sound of the rib when not taken into account were compared with the bone density (BMD) obtained by the dual energy X-ray absorption method (DXA method). The speed of sound of the ribs was calculated by the calculation means described above, and the BMD measured the second to fourth lumbar vertebrae using the X-ray bone density measuring device QDR-4500W (Hologic, USA) and adopted the average value thereof. . In addition, a test subject is six men (AF) 23-25 years old.

踵骨の音速およびBMDの測定値を表1に示す。表1の結果から、BMDと踵骨の音速との相関係数rは、温度補正値を加味しない時が0.929であったのに対して、温度補正値を加味した時が0.948であり、温度補正値を加味することにより両者の相関性が増すことがわかった。   Table 1 shows the sound velocity of the ribs and the measured values of BMD. From the results in Table 1, the correlation coefficient r between the BMD and the sound speed of the ribs was 0.929 when the temperature correction value was not taken into account, and 0.948 when the temperature correction value was taken into account. It was found that the correlation between the two increases by adding the temperature correction value.

Figure 2008278991
Figure 2008278991

(実施例2)
上記(6)式において、踵骨幅Lとして簡易的に算出した(8)式の値を用いて踵骨の音速Vを演算した。被験者は実施例1の場合と同じである。踵骨の音速およびBMDの測定値を表2に示す。表2の結果から、BMDと踵骨の音速との相関係数rは、温度補正値を加味しない時が0.903であったのに対して、温度補正値を加味した時が0.936であり、この場合にも温度補正値を加味することにより両者の相関性が増すことがわかった。
(Example 2)
In the above (6), and calculates the sound velocity V B of the calcaneus using the value of the simple calculated as calcaneus width L B (8) below. The subject is the same as in Example 1. Table 2 shows the measured values of sound velocity and BMD of the ribs. From the results in Table 2, the correlation coefficient r between the BMD and the sound speed of the ribs was 0.903 when the temperature correction value was not taken into account, and 0.936 when the temperature correction value was taken into account. In this case also, it was found that the correlation between the two increases by adding the temperature correction value.

Figure 2008278991
Figure 2008278991

(実施例3)
踵2の温度が踵骨の音速に及ぼす影響について調べた。図5は測定装置の略図であり、この測定装置は、水槽20と、水槽20内に配置した一対の超音波探触子21a,21b、熱電対22およびヒータ23とを備える。水槽20内の水24の温度をヒータ23によって徐々に上げていき、水槽20内に沈めた踵2全体の音速をそれぞれの温度について測定した。このとき、踵2の温度より水24の温度の方が低いため、踵2の温度が安定するまで時間を置き、熱電対22で踵2の温度を測定した後、踵全体の音速測定を開始した。具体的には仮音速をV’=1500m/sとして一方の超音波探触子21aから入射させ、他方の超音波探触子21bで得られた透過エコーのピーク位置から踵全体の音速Vを上述の(4)式より求めた。実際には被験者4名(A〜D)について、熱電対22による踵2の温度が約28〜36℃まで変化した場合について、約1℃上がることに踵全体の音速を測定し、その結果から踵2の表面温度が音速に及ぼす影響の値である温度係数αを求めた。被験者4名について、踵の温度変化に伴う踵全体の音速の測定結果を図6にグラフで示し、また、温度係数およびその平均値を表3に示す。この実験結果から、温度係数−2.48(m/s)/℃が得られた。
(Example 3)
The effect of the temperature of the heel 2 on the speed of sound of the ribs was examined. FIG. 5 is a schematic diagram of a measuring apparatus, which includes a water tank 20 and a pair of ultrasonic probes 21 a and 21 b, a thermocouple 22, and a heater 23 disposed in the water tank 20. The temperature of the water 24 in the water tank 20 was gradually raised by the heater 23, and the speed of sound of the entire basket 2 submerged in the water tank 20 was measured for each temperature. At this time, since the temperature of the water 24 is lower than the temperature of the cocoon 2, it takes time until the temperature of the cocoon 2 is stabilized, and after measuring the temperature of the cocoon 2 with the thermocouple 22, the sound speed measurement of the entire cocoon starts. did. Specifically, the provisional sound velocity is set as V T ′ = 1500 m / s, and is made incident from one ultrasonic probe 21a, and the sound velocity V of the entire kite is determined from the peak position of the transmitted echo obtained by the other ultrasonic probe 21b. T was determined from the above equation (4). Actually, for four subjects (A to D), when the temperature of the cocoon 2 by the thermocouple 22 changes from about 28 to 36 ° C., the sound speed of the whole cocoon is measured to increase by about 1 ° C. A temperature coefficient α, which is a value of the influence of the surface temperature of 踵 2 on the sound speed, was obtained. FIG. 6 is a graph showing the measurement results of the sound velocity of the entire cocoon accompanying the temperature change of the cocoon, and Table 3 shows the temperature coefficient and the average value thereof. From this experimental result, a temperature coefficient of −2.48 (m / s) / ° C. was obtained.

Figure 2008278991
Figure 2008278991

本発明に係る踵骨音速測定装置は、踵骨の音速を測定する際に踵の表面温度を考慮した補正ができるので、簡易な測定法でありながら正確な踵骨の音速を測定することが可能となり、超音波を利用した骨粗鬆症の診断装置の精度を高められる。   The rib sound speed measuring apparatus according to the present invention can correct the sound speed of the ribs in consideration of the surface temperature of the ribs, so that the accurate sound speed of the ribs can be measured while being a simple measurement method. This makes it possible to improve the accuracy of an osteoporosis diagnostic apparatus using ultrasound.

本発明に係る踵骨音速測定装置の測定部の概略図である。It is the schematic of the measurement part of the radius sound speed measuring apparatus which concerns on this invention. 本発明の踵骨音速測定装置のシステムを示す全体図である。It is a general view which shows the system of the radius sound speed measuring apparatus of this invention. 踵全体を透過するエコー波形の概略図である。It is the schematic of the echo waveform which permeate | transmits the whole bag. 本発明の踵骨音速測定装置を用いた踵骨の音速測定のステップ図である。It is a step figure of the sound speed measurement of a rib using the rib sound speed measuring apparatus of this invention. 踵の温度と踵全体の音速との関係を測定するための実験モデル図である。It is an experimental model diagram for measuring the relationship between the temperature of the kite and the sound speed of the entire kite. 踵の温度変化と踵全体の音速との関係を示すグラフである。It is a graph which shows the relationship between the temperature change of a kite, and the sound speed of the whole kite.

符号の説明Explanation of symbols

2 踵
2a 踵骨
2b,2c 軟部組織
3 測定部
4 超音波探傷器
5 コンピュータ装置
8a,8b 超音波探触子
10a,10b アタッチメント
11 デジタルキャリパ(踵幅測定手段)
12 キャリパプレート
14 キャリパスケール
15 熱電対(温度センサ)
2 踵 2a Ribs 2b, 2c Soft tissue 3 Measuring unit 4 Ultrasonic flaw detector 5 Computer device 8a, 8b Ultrasonic probe 10a, 10b Attachment 11 Digital caliper (踵 width measuring means)
12 Caliper plate 14 Caliper scale 15 Thermocouple (temperature sensor)

Claims (4)

踵の両側を挟む一対の超音波探触子と、この超音波探触子で踵の両側を挟んだ時の踵幅を測定する踵幅測定手段と、前記超音波探触子の近傍に設置されて踵表面の温度を測定する温度センサとを備え、
前記超音波探触子から踵の内部に入射させた超音波に基づいて踵全体の音速を測定し、この踵全体の音速測定値と前記踵幅測定手段により測定した踵幅の測定値とに基づいて踵骨の音速を算出する際に、前記温度センサから得られた踵表面の測定温度に基づいて前記算出された踵骨の音速を補正することを特徴とする踵骨音速測定装置。
A pair of ultrasonic probes sandwiching both sides of the heel, a heel width measuring means for measuring the heel width when the both sides of the heel are sandwiched by the ultrasonic probe, and installed in the vicinity of the ultrasonic probe And a temperature sensor for measuring the temperature of the heel surface,
The sound speed of the entire eyelid is measured based on the ultrasonic wave incident on the inside of the eyelid from the ultrasonic probe, and the sound speed measurement value of the whole eyelid and the measurement value of the eyelid width measured by the eyelid width measuring means When calculating the sound speed of the rib based on this, the calculated sound speed of the rib is corrected based on the measured temperature of the rib surface obtained from the temperature sensor.
前記一対の超音波探触子の各先端には踵の表面に接触するアタッチメントが取り付けられている請求項1記載の踵骨音速測定装置。   The rib sound speed measuring device according to claim 1, wherein an attachment contacting the surface of the heel is attached to each tip of the pair of ultrasonic probes. 前記温度センサは、前記一対の超音波探触子の少なくとも一方側に取り付けられ、一対の超音波探触子で踵の両側を挟んだ時に踵の表面に接触する請求項1記載の踵骨音速測定装置。   The rib speed of sound according to claim 1, wherein the temperature sensor is attached to at least one side of the pair of ultrasonic probes, and contacts the surface of the rib when both sides of the rib are sandwiched between the pair of ultrasonic probes. measuring device. 前記温度センサは、熱電対からなる請求項1又は3記載の踵骨音速測定装置。   The rib sound speed measuring device according to claim 1 or 3, wherein the temperature sensor is a thermocouple.
JP2007124249A 2007-05-09 2007-05-09 Radial sound velocity measuring device Expired - Fee Related JP5531307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124249A JP5531307B2 (en) 2007-05-09 2007-05-09 Radial sound velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124249A JP5531307B2 (en) 2007-05-09 2007-05-09 Radial sound velocity measuring device

Publications (2)

Publication Number Publication Date
JP2008278991A true JP2008278991A (en) 2008-11-20
JP5531307B2 JP5531307B2 (en) 2014-06-25

Family

ID=40140328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124249A Expired - Fee Related JP5531307B2 (en) 2007-05-09 2007-05-09 Radial sound velocity measuring device

Country Status (1)

Country Link
JP (1) JP5531307B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171852B1 (en) 2012-01-04 2012-08-09 주식회사 오스테오시스 Bone density measurement device using temperature compensation
WO2018037600A1 (en) * 2016-08-22 2018-03-01 株式会社日立製作所 Ultrasound imaging apparatus and ultrasound image generation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197895A (en) * 1992-12-28 1994-07-19 Shimadzu Corp Ultrasonic wave transmissive inspection device
JPH09192129A (en) * 1995-09-26 1997-07-29 Hologic Inc Device and method for calibration and quality guarantee for ultrasonic bone analyzer
JPH09201357A (en) * 1996-01-30 1997-08-05 Aloka Co Ltd Ultrasonic bone evaluation device
JP2006167097A (en) * 2004-12-15 2006-06-29 Koshiya:Kk Ultrasonic diagnostic apparatus
JP2006289072A (en) * 2005-03-17 2006-10-26 Furuno Electric Co Ltd Apparatus and method for ultrasonic evaluation of bone tissue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197895A (en) * 1992-12-28 1994-07-19 Shimadzu Corp Ultrasonic wave transmissive inspection device
JPH09192129A (en) * 1995-09-26 1997-07-29 Hologic Inc Device and method for calibration and quality guarantee for ultrasonic bone analyzer
JPH09201357A (en) * 1996-01-30 1997-08-05 Aloka Co Ltd Ultrasonic bone evaluation device
JP2006167097A (en) * 2004-12-15 2006-06-29 Koshiya:Kk Ultrasonic diagnostic apparatus
JP2006289072A (en) * 2005-03-17 2006-10-26 Furuno Electric Co Ltd Apparatus and method for ultrasonic evaluation of bone tissue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171852B1 (en) 2012-01-04 2012-08-09 주식회사 오스테오시스 Bone density measurement device using temperature compensation
WO2018037600A1 (en) * 2016-08-22 2018-03-01 株式会社日立製作所 Ultrasound imaging apparatus and ultrasound image generation method

Also Published As

Publication number Publication date
JP5531307B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
US20180070915A1 (en) Ultrasonic diagnostic device
JP4549853B2 (en) Instantaneous measurement device for bladder volume
CN111386070B (en) Pressure measuring device, pressure measuring system and method
WO2015029651A1 (en) Diagnostic ultrasound apparatus and elasticity evaluation method
JP2018000460A (en) Electronic apparatus and estimation system
EP0957768A1 (en) Ultrasonic densitometer with width compensation
US7942819B2 (en) Ultrasonic bone evaluation apparatus
WO2004073517A1 (en) Visceral fat measuring instrument, visceral fat measuring method, program, and recording medium
JP5531307B2 (en) Radial sound velocity measuring device
JP7210010B2 (en) Lens hardness measuring device
JP5787286B2 (en) Ultrasound biological tissue measuring device
JP2009531119A (en) Method and apparatus for determining moisture level
JP6081744B2 (en) Ultrasonic diagnostic equipment
JP2010005271A (en) Fatty tissue detecting method and fatty tissue detecting device
JP4745871B2 (en) Ultrasonic tissue evaluation apparatus and ultrasonic tissue evaluation method
RU2332164C2 (en) Device of tympanum state evaluation
JP4962711B2 (en) Visceral fat measuring device, visceral fat measuring method and program therefor
EP3247279B1 (en) Noninvasive fluid and electrolyte balance monitor
JP2010051380A (en) Ultrasonic diagnostic apparatus
JP5354599B2 (en) Tissue hardness evaluation device
JP7392858B2 (en) Component concentration measurement method and device
JP4342962B2 (en) Bone strength measuring device
JP2010213896A (en) Method and apparatus for measuring acoustic impedance, and method and apparatus for evaluating object characteristics
Sandrin Liver stiffness measurement using vibration-controlled transient elastography
Williams et al. A retrospective method for pulse-wave velocity measurement in the mouse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5531307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees