WO2018037499A1 - Pwmコンバータ用入力フィルタの通電評価試験装置 - Google Patents

Pwmコンバータ用入力フィルタの通電評価試験装置 Download PDF

Info

Publication number
WO2018037499A1
WO2018037499A1 PCT/JP2016/074640 JP2016074640W WO2018037499A1 WO 2018037499 A1 WO2018037499 A1 WO 2018037499A1 JP 2016074640 W JP2016074640 W JP 2016074640W WO 2018037499 A1 WO2018037499 A1 WO 2018037499A1
Authority
WO
WIPO (PCT)
Prior art keywords
pwm converter
input filter
evaluation test
energization
under test
Prior art date
Application number
PCT/JP2016/074640
Other languages
English (en)
French (fr)
Inventor
亮 飯田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2016/074640 priority Critical patent/WO2018037499A1/ja
Priority to JP2018535975A priority patent/JP6821685B2/ja
Priority to CN201680088641.4A priority patent/CN109642918B/zh
Publication of WO2018037499A1 publication Critical patent/WO2018037499A1/ja
Priority to US16/273,430 priority patent/US11163012B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/30Structural combination of electric measuring instruments with basic electronic circuits, e.g. with amplifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation

Definitions

  • Embodiments of the present invention relate to an energization evaluation test apparatus for an input filter for a PWM converter.
  • an input filter is provided to suppress harmonics.
  • a large-capacity PWM converter used as a common converter it may be difficult to evaluate the energization of the input filter at the rated voltage / rated current due to power supply facility capacity limitations.
  • FIG. 5 is a diagram showing an energization test method for a PWM converter input filter by a conventional load energization method.
  • the illustrated example shows a case where the transformer 10, the PWM converter filter 21 ⁇ / b> C, the PWM converter 22 ⁇ / b> C, the PWM control unit 50, and the load 40 are configured.
  • the transformer 10 converts the AC voltage supplied from the system into an AC voltage suitable for driving the load 40.
  • the PWM converter input filter 21 ⁇ / b> C suppresses harmonic components of the AC voltage supplied from the transformer 10.
  • the PWM converter 22C includes a plurality of switching elements (for example, IGBT), a diode, and the like, is controlled by a PWM control unit 50 described later, and is an alternating current in which harmonic components are suppressed by the PWM converter input filter 21C. Converts voltage to DC voltage.
  • the PWM control unit 50 controls the gate G of a switching element (for example, IGBT) constituting the PWM converter, and converts the above-described AC voltage into a DC voltage.
  • a switching element for example, IGBT
  • the rated voltage and the rated current are supplied to the load 40, and the energization evaluation test of the PWM converter input filter 21C is performed. .
  • the evaluation method measures, for example, a temperature rise of the PWM converter input filter 21C when a rated voltage and a rated current are supplied to the load 40.
  • a large-capacity PWM converter used as a common converter has a problem in that it may be difficult to evaluate the energization of the input filter at the rated voltage / rated current due to restrictions on the power supply facility capacity. .
  • the present invention has been made in order to solve the above-described problems. Even when the capacity of the power supply facility cannot be secured, an energization evaluation test at a rated voltage and a rated current is applied to an input filter of a large-capacity PWM converter. It is an object of the present invention to provide an energization evaluation test apparatus for an input filter for a PWM converter capable of performing the above.
  • the PWM converter input filter energization evaluation test device is connected to the output terminal of the AC power supply and to the output terminal of the input filter, A PWM converter for converting an alternating current power source into a direct current power source; PWM converter input filter and PWM converter configured in the same manner as the filter and PWM converter, and connected in parallel to the device under test, and the output terminal of the PWM converter of the device under test and the output terminal of the current evaluation test apparatus
  • the DC reactor connected in between and the PWM converter of the device under test are voltage controlled, and the energization evaluation test PWM converter location is characterized in that and a PWM controller for current control.
  • the energization evaluation of the input filter for the PWM converter capable of conducting the energization evaluation test at the rated voltage and the rated current for the input filter of the large capacity PWM converter.
  • a test device can be provided.
  • FIG. 10 is a diagram illustrating a test method using an energization evaluation test apparatus for an input filter for a PWM converter using a reactive current energization method according to a second embodiment.
  • the analysis waveform by the simulation in the structure shown in FIG. The waveform in the real machine with the configuration shown in FIG.
  • FIG. 1 is a diagram illustrating a test method using an energization evaluation test system 1A for an input filter for a PWM converter using an active current energization method according to the first embodiment.
  • the function of the PWM controller 50 may be included in one or both of the machine under test 20A and the test apparatus 30A.
  • the machine under test 20A and the current-carrying evaluation test apparatus 30A according to the present embodiment are connected in parallel to the output of the transformer 10.
  • the device under test 20A includes a PWM converter input filter 21A and a PWM converter 22A.
  • the PWM converter input filter 21A and the PWM converter 22A are the same as the PWM converter input filter 21C and the PWM converter 22C described in the background art.
  • the energization evaluation test apparatus 30A includes a PWM converter input filter 21A and a PWM converter 22A configured in the same manner as the machine under test 20A. Further, a direct current reactor DCL having the same capacity is connected to the output of the machine under test 20A and the output of the energization evaluation test apparatus 30A. Since these DC reactors DCL are used in the PWM converter input filter energization evaluation test, they are included in the energization evaluation test apparatus in FIG.
  • the PWM converter 22 of the device under test and the PWM converter 32 of the energization evaluation test apparatus are controlled by the PWM control unit 50, respectively.
  • the gates of the switching elements (IGBT and the like) constituting the PWM converters 22 and 32 are controlled by the gate signal output from the PWM control unit 50, and the AC voltage input to the PWM converters 22 and 32 is DC. Converted to voltage.
  • the PWM converter 22 of the machine under test 20A is voltage-controlled, and the PWM converter 32 of the power supply evaluation test apparatus 30A is current-controlled, so that an effective current for the rated load can flow through the PWM converter.
  • the power source capacity can be reduced with respect to the device under test.
  • An electric conduction evaluation test apparatus can be provided.
  • FIG. 2 is a diagram illustrating a test method by the energization evaluation test system 1B of the PWM converter input filter according to the reactive current energization method according to the second embodiment.
  • the DUT 20B and the energization evaluation test apparatus 30B are connected in parallel to the output of the transformer 10, but the DC output and energization of the PWM converter 22A of the DUT 20B.
  • the direct current output of the PWM converter 22A of the evaluation test apparatus 30B is connected by the direct current reactor DCL in the first embodiment, but is not connected in this embodiment and is used separately. Since the second embodiment is the same as the first embodiment except for the above-described separation configuration, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
  • a delayed reactive current Id1 is passed through the device under test 20B, and a forward reactive current Id2 equivalent to the delayed reactive current Id1 is passed through the energization evaluation test device 30B to cancel each other.
  • the delayed reactive current Id1 and the advanced reactive current Id2 are controlled by the PWM controller 50.
  • FIG. 3 shows an analysis waveform obtained by simulation in the configuration shown in FIG.
  • An advance current Id2 I (MASTERA, b, c) in the figure) serving as a reactive current command value is applied to the conduction evaluation test apparatus 30B, and a delay current Id1 (I (SLAVEa, b, c) in the figure) is applied to the conduction evaluation test apparatus.
  • Id1 follows Id2.
  • FIG. 4 is a waveform in an actual machine having the configuration shown in FIG.
  • the vertical axis is the current value I [A]
  • the horizontal axis is the time t [s].
  • Current waveform A is a lead current Id2 that flows to the PWM converter input filter 21A by the lead current control of the PWM converter 22A of the energization evaluation test apparatus 30B.
  • the current waveform B is a delay current Id1 that flows through the PWM converter input filter 21A by the delay current control of the PWM converter 22A of the device under test 20B.
  • Both the current waveform A and the current waveform B show the case where the frequency is 50 [Hz].
  • the phase of the current waveform B is opposite to that of the current waveform A.
  • the phase difference is in principle 180 °. It can be confirmed that the test method shown in FIG. 2 is realized. It can be said that the current waveform B is slightly different from the current waveform A by 180 ° (phase lag) due to the effective current component by DC voltage control.
  • the DC reactor DCL is not necessary, and the space cost is also the first embodiment. It becomes advantageous compared with.
  • the input voltage for the PWM converter with a large capacity can be reduced with the rated voltage and the rated current.
  • An electric conduction evaluation test apparatus can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rectifiers (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

被試験機に対する電源容量を小さくすることにより、大容量のPWMコンバータ用入力フィルタに対して定格電圧・定格電流での通電評価試験装置を提供する。 交流電源の出力端子に接続される入力フィルタと、この入力フィルタの出力端子に接続され、交流電源を直流電源に変換するPWMコンバータと、を備えた被試験機の前記入力フィルタの通電評価試験装置であって、前記通電評価試験装置は、前記被試験機の入力フィルタ及びPWMコンバータと同様に構成された入力フィルタ及びPWMコンバータと、前記被試験機と並列に接続され、かつ、被試験機のPWMコンバータの出力端子と当該通電評価試験装置の出力端子間に接続した直流リアクトルと、前記被試験機のPWMコンバータは電圧制御し、前記通電評価試験装置のPWMコンバータは電流制御するPWM制御部と、を備えた。

Description

PWMコンバータ用入力フィルタの通電評価試験装置
 本発明の実施形態は、PWMコンバータ用入力フィルタの通電評価試験装置に関する。
 一般的にPWMコンバータにおいては、高調波抑制のために入力フィルタが設けられている。しかし、コモンコンバータとして使用される大容量のPWMコンバータにおいては、電源設備容量の制約により、入力フィルタに対しての定格電圧・定格電流での通電評価が困難になる場合がある。
 図5は、従来の負荷通電方式によるPWMコンバータ用入力フィルタの通電試験方法を示す図である。図示した例は、変圧器10、PWMコンバータ用フィルタ21C、PWMコンバータ22C、PWM制御部50及び負荷40などで構成されている場合を示す。
 変圧器10は、系統から供給される交流電圧を、負荷40を駆動するのに適した交流電圧に変換する。
 PWMコンバータ用入力フィルタ21Cは、変圧器10から供給された交流電圧の高調波成分を抑制する。
 PWMコンバータ22Cは、複数のスイッチング素子(例えば、IGBTなど)、ダイオードなどを有して構成され、後述するPWM制御部50によって制御され、PWMコンバータ用入力フィルタ21Cによって高調波成分が抑制された交流電圧を直流電圧に変換する。
 PWM制御部50は、PWMコンバータを構成するスイッチング素子(例えば、IGBTなど)のゲートGを制御し、上述した交流電圧を直流電圧に変換する。
 図示した例の場合は、PWMコンバータ用入力フィルタ21Cの通電評価試験を行うために、当該負荷40に対して定格電圧・定格電流を供給し、当該PWMコンバータ用入力フィルタ21Cの通電評価試験を行う。
 評価方法は、負荷40に対して定格電圧・定格電流を供給した際に、当該PWMコンバータ用入力フィルタ21Cの、例えば、温度上昇を測定する。
 PWMコンバータ用入力フィルタ21Cの温度上昇が所定の範囲に含まれる場合には、正常であると判定する。一方、当該温度上昇が所定の範囲に含まれない場合には、何らかの異常があると判定する。
特開2003-168778号公報
 しかしながら、コモンコンバータとして使用される大容量のPWMコンバータにおいては、電源設備容量の制約により、入力フィルタに対しての定格電圧・定格電流での通電評価が困難になる場合があるという課題があった。
 本発明は、上述した課題を解決するためになされたもので、電源設備の容量が確保できない場合においても、大容量のPWMコンバータの入力フィルタに対して、定格電圧・定格電流での通電評価試験が可能なPWMコンバータ用入力フィルタの通電評価試験装置を提供することを目的とする。
 上記目的を達成するために、本発明の請求項記載のPWMコンバータ用入力フィルタの通電評価試験装置は、交流電源の出力端子に接続される入力フィルタと、この入力フィルタの出力端子に接続され、交流電源を直流電源に変換するPWMコンバータと、を備えた被試験機の前記PWMコンバータ用入力フィルタの通電評価試験装置であって、前記通電評価試験装置は、前記被試験機のPWMコンバータ用入力フィルタ及びPWMコンバータと同様に構成されたPWMコンバータ用入力フィルタ及びPWMコンバータと、前記被試験機と並列に接続され、かつ、被試験機のPWMコンバータの出力端子と当該通電評価試験装置の出力端子間に接続した直流リアクトルと、前記被試験機のPWMコンバータは電圧制御し、前記通電評価試験装置のPWMコンバータは電流制御するPWM制御部と、を備えたことを特徴とする。
 この発明によれば、電源設備の容量が確保できない場合においても、大容量のPWMコンバータの入力フィルタに対して、定格電圧・定格電流での通電評価試験が可能なPWMコンバータ用入力フィルタの通電評価試験装置を提供することができる。
実施例1に係る有効電流通電方式によるPWMコンバータ用入力フィルタの通電評価試験装置による試験方法を示す図。 実施例2に係る無効電流通電方式によるPWMコンバータ用入力フィルタの通電評価試験装置による試験方法を示す図。 図2に示す構成におけるシミュレーションによる解析波形。 図2に示す構成での実機での波形。 従来の負荷通電方式によるPWMコンバータ用入力フィルタの通電評価試験方法を示す図。
 以下、図面を参照して本発明の実施例について説明する。
 図1は、実施例1に係る有効電流通電方式によるPWMコンバータ用入力フィルタの通電評価試験システム1Aによる試験方法を示す図である。図1に示す有効電流通電方式によるPWMコンバータ用入力フィルタの通電評価試験システム1Aは、被試験機20A、通電評価試験装置30A及びPWM制御部50などで構成される。なお、PWM制御部50の機能は、被試験機20A及び試験装置30Aの何れか一方に又は両方に含まれる構成であってもよい。
 本実施例に係る被試験機20A及び通電評価試験装置30Aは、変圧器10の出力に並列に接続される。
 被試験機20Aは、PWMコンバータ用入力フィルタ21A、PWMコンバータ22Aで構成されている。PWMコンバータ用入力フィルタ21A及びPWMコンバータ22Aは、背景技術で説明したPWMコンバータ用入力フィルタ21C及びPWMコンバータ22Cと同様である。
 通電評価試験装置30Aは、被試験機20Aと同様に構成されたPWMコンバータ用入力フィルタ21A及びPWMコンバータ22Aを備える。また、被試験機20Aの出力及び通電評価試験装置30Aの出力にそれぞれ同一容量の直流リアクトルDCLが接続される。これら直流リアクトルDCLは、PWMコンバータ用入力フィルタ通電評価試験の際に使用される物であるため、図1では、通電評価試験装置に含まれる。
 被試験機のPWMコンバータ22及び通電評価試験装置のPWMコンバータ32は、それぞれPWM制御部50により制御される。具体的には、PWMコンバータ22及び32を構成するスイッチング素子(IGBTなど)のゲートが、PWM制御部50から出力されるゲート信号により制御され、PWMコンバータ22、32に入力された交流電圧が直流電圧に変換される。
 被試験機20AのPWMコンバータ22は電圧制御され、通電評価試験装置30AのPWMコンバータ32は電流制御することにより、PWMコンバータに定格負荷に対する有効電流を流すことができる。
 この方法によれば、系統側からは損失分だけのエネルギー供給ができればよく、被試験機に対して電源容量を小さくすることができる。
 以上説明したように、本発明の実施例1によれば、被試験機に対して電源容量を小さくすることができるため、大容量のPWMコンバータ用入力フィルタに対して定格電圧・定格電流での通電評価試験装置を提供することができる。
 図2は、実施例2に係る無効電流通電方式によるPWMコンバータ用入力フィルタの通電評価試験システム1Bによる試験方法を示す図である。
 図2に示す無効電流通電方式による試験方法は、変圧器10の出力に被試験機20B及び通電評価試験装置30Bが並列に接続されるが、被試験機20BのPWMコンバータ22Aの直流出力及び通電評価試験装置30BのPWMコンバータ22Aの直流出力は、実施例1では、直流リアクトルDCLによって接続されていたが、本実施例では接続されず、切り離して用いられる。なお、本実施例2は、上述した切り離し構成以外の部分は、実施例1同様であるため、同一部分には同一符号を付し、その説明を省略する。
 本実施例においては、被試験機20Bには、遅れ無効電流Id1を流し、通電評価試験装置30Bには、遅れ無効電流Id1と同等の進み無効電流Id2を流し、互いに相殺する。なお、遅れ無効電流Id1及び進み無効電流Id2の制御は、PWM制御部50によって行われる。
 図3は、図2に示す構成におけるシミュレーションによる解析波形である。無効電流指令値となる進み電流Id2(図中I(MASTERa、b、c))を通電評価試験装置30Bに与え、遅れ電流Id1(図中I(SLAVEa、b、c))を通電評価試験装置20Bに与えると、Id1がId2に追従していることが分かる。
 図4は、図2に示す構成での、実機での波形である。縦軸が電流値I[A]であり、横軸が時間t[s]である。
 電流波形Aは、通電評価試験装置30BのPWMコンバータ22Aの進み電流制御によってPWMコンバータ用入力フィルタ21Aに流れる進み電流Id2である。
 電流波形Bは、被試験機20BのPWMコンバータ22Aの遅れ電流制御によってPWMコンバータ用入力フィルタ21Aに流れる遅れ電流Id1である。
 電流波形A及び電流波形Bは、何れも周波数が50[Hz]使用の場合を示しており、図から明らかなように、電流波形Aに対して電流波形Bの位相は逆相であり、位相差は原則180°である。図2に示す試験手法が実現できていることが確認できる。なお、電流波形Bは、電流波形Aに対して位相差が180°より若干ズレ(位相遅れ)があるのは、直流電圧制御による有効電流成分によるものであると言える。
 この結果、系統側への電流流出は発生せず、図1に示す実施例1記載の試験方法同様、損失分のみを系統側から供給すればよく、被試験機に対して電源容量を小さくすることが可能になる。
 また、被試験機のPWMコンバータ22Aの直流出力及び通電評価試験装置30BのPWMコンバータ22Aの直流出力は、切り離されているため、直流リアクトルDCLは不要になり、スペースコストの面でも実施例1に比べて有利になる。
 以上説明したように、本発明の実施例2によれば、被試験機に対して電源容量を小さくすることができるため、大容量のPWMコンバータ用入力フィルタに対して定格電圧・定格電流での通電評価試験装置を提供することができる。
Id1 遅れ電流
Id2 進み電流
10 変圧器
20A 被試験機
20B 被試験機
21 PWMコンバータ用入力フィルタ
22 PWMコンバータ
30A 通電評価試験装置
30B 通電評価試験装置
31 PWMコンバータ用入力フィルタ
31B PWMコンバータ用入力フィルタ
32 PWMコンバータ
32A PWMコンバータ
32B PWMコンバータ

Claims (3)

  1.  交流電源の出力端子に接続される入力フィルタと、この入力フィルタの出力端子に接続され、交流電源を直流電源に変換するPWMコンバータと、を備えた被試験機の前記PWMコンバータ用入力フィルタの通電評価試験装置であって、
    前記通電評価試験装置は、
    前記被試験機のPWMコンバータ用入力フィルタ及び当該PWMコンバータと同様に構成されたPWMコンバータ用入力フィルタ及びPWMコンバータと、
    前記被試験機と並列に接続され、かつ、被試験機のPWMコンバータの出力端子と前記通電評価試験装置の出力端子間に接続した直流リアクトルと、
    前記被試験機のPWMコンバータは電圧制御し、前記通電評価試験装置のPWMコンバータは電流制御するPWM制御部と、
    を備えたことを特徴とするPWMコンバータ用入力フィルタの通電評価試験装置。
  2.  交流電源の出力端子に接続される入力フィルタと、この入力フィルタの出力端子に接続され、交流電源を直流電源に変換するPWMコンバータと、を備えた被試験機の前記PWMコンバータ用入力フィルタの通電評価試験装置であって、
    前記通電評価試験装置は、
    前記被試験機のPWMコンバータ用入力フィルタ及びPWMコンバータと同様に構成されたPWMコンバータ用入力フィルタ及びPWMコンバータを備え、
    当該PWMコンバータ用入力フィルタの入力端子は、前記交流電源の出力端子に接続され、前記被試験機のPWMコンバータの出力端子と当該通電評価試験装置のPWMコンバータの出力端子間は非接続とし、
    前記被試験機のPWMコンバータは遅れ電流制御し、前記通電評価試験装置のPWMコンバータは進み電流制御するPWM制御部と、
    を備えたことを特徴とするPWMコンバータ用入力フィルタの通電評価試験装置。
  3.  前期通電評価試験装置のPWMコンバータの進み電流制御によってPWMコンバータ用入力フィルタに流れる進み電流と、前記被試験機のPWMコンバータの遅れ電流制御によってPWMコンバータ用入力フィルタに流れる遅れ電流との位相は逆相であり、位相差は原則180°であることを特徴とする請求項2記載のPWMコンバータ用入力フィルタの通電評価試験装置。
PCT/JP2016/074640 2016-08-24 2016-08-24 Pwmコンバータ用入力フィルタの通電評価試験装置 WO2018037499A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/074640 WO2018037499A1 (ja) 2016-08-24 2016-08-24 Pwmコンバータ用入力フィルタの通電評価試験装置
JP2018535975A JP6821685B2 (ja) 2016-08-24 2016-08-24 Pwmコンバータ用入力フィルタの通電評価試験装置
CN201680088641.4A CN109642918B (zh) 2016-08-24 2016-08-24 脉冲宽度调制转换器用输入滤波器的上电评价试验装置
US16/273,430 US11163012B2 (en) 2016-08-24 2019-02-12 Energization evaluation test equipment of a PWM converter input filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074640 WO2018037499A1 (ja) 2016-08-24 2016-08-24 Pwmコンバータ用入力フィルタの通電評価試験装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/273,430 Continuation US11163012B2 (en) 2016-08-24 2019-02-12 Energization evaluation test equipment of a PWM converter input filter

Publications (1)

Publication Number Publication Date
WO2018037499A1 true WO2018037499A1 (ja) 2018-03-01

Family

ID=61246532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074640 WO2018037499A1 (ja) 2016-08-24 2016-08-24 Pwmコンバータ用入力フィルタの通電評価試験装置

Country Status (4)

Country Link
US (1) US11163012B2 (ja)
JP (1) JP6821685B2 (ja)
CN (1) CN109642918B (ja)
WO (1) WO2018037499A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074933A (ja) * 1983-09-29 1985-04-27 富士通電装株式会社 電源装置試験システム
JPH04264271A (ja) * 1991-02-20 1992-09-21 Toshiba Corp 電力変換装置の試験方法
JPH11299263A (ja) * 1998-04-16 1999-10-29 Shinko Electric Co Ltd インバータ試験装置
JP2004104891A (ja) * 2002-09-09 2004-04-02 Toshiba Corp 自励式変換器の試験方法
JP2004201360A (ja) * 2002-12-16 2004-07-15 Mitsubishi Electric Corp コンバータ装置
CN102116850A (zh) * 2010-12-09 2011-07-06 中国北车集团大连机车车辆有限公司 整流器试验装置及方法
WO2013018185A1 (ja) * 2011-08-01 2013-02-07 三菱電機株式会社 電力変換装置
JP2015106948A (ja) * 2013-11-28 2015-06-08 ファナック株式会社 Lcフィルタの異常検知機能を備えた電力変換装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795724A (ja) * 1993-09-20 1995-04-07 Fujitsu Ltd 電源異常検出機能付き電源装置
JPH09325823A (ja) * 1996-06-03 1997-12-16 Shigeisa Imoto 負荷装置
JP4526130B2 (ja) * 2004-03-15 2010-08-18 株式会社日立メディコ 電力変換装置、インバータx線高電圧装置、x線透視撮影装置、x線ct装置、mri装置
JP5167631B2 (ja) * 2006-11-30 2013-03-21 株式会社デンソー モータの制御方法及びそれを利用するモータ制御装置
JP2009232541A (ja) 2008-03-21 2009-10-08 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置及びその試験方法
ES2519165T3 (es) * 2010-01-14 2014-11-06 Siemens Aktiengesellschaft Método y sistema de control para controlar la conversión de potencia en un convertidor de potencia
FR2965684B1 (fr) * 2010-10-04 2012-09-07 Schneider Toshiba Inverter Procede et systeme de commande pour reduire le courant de mode commun dans un convertisseur de puissance
US8878501B2 (en) * 2011-09-01 2014-11-04 Micrel, Inc. Multi-phase power block for a switching regulator for use with a single-phase PWM controller
CN102508072B (zh) * 2011-11-03 2014-03-05 天津电气传动设计研究所 采用有源前端的大功率三电平变频器温升和损耗试验方法
JP5624577B2 (ja) * 2012-03-16 2014-11-12 株式会社東芝 車両用電力変換装置
IN2014DN08834A (ja) * 2012-03-30 2015-05-22 Toshiba Mitsubishi Elec Inc
CN103743981B (zh) * 2014-01-17 2017-10-27 海南金盘电气有限公司 一种静止无功发生器的测试系统
EP3116117B1 (en) * 2014-03-07 2023-07-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Inverter testing apparatus
JP5946880B2 (ja) * 2014-09-26 2016-07-06 ファナック株式会社 Lclフィルタ保護機能を有するモータ制御装置
CN105823992B (zh) * 2016-03-28 2019-01-01 江苏方程电力科技有限公司 一种应用于微电网的逆变器自检电路及其开机自检方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074933A (ja) * 1983-09-29 1985-04-27 富士通電装株式会社 電源装置試験システム
JPH04264271A (ja) * 1991-02-20 1992-09-21 Toshiba Corp 電力変換装置の試験方法
JPH11299263A (ja) * 1998-04-16 1999-10-29 Shinko Electric Co Ltd インバータ試験装置
JP2004104891A (ja) * 2002-09-09 2004-04-02 Toshiba Corp 自励式変換器の試験方法
JP2004201360A (ja) * 2002-12-16 2004-07-15 Mitsubishi Electric Corp コンバータ装置
CN102116850A (zh) * 2010-12-09 2011-07-06 中国北车集团大连机车车辆有限公司 整流器试验装置及方法
WO2013018185A1 (ja) * 2011-08-01 2013-02-07 三菱電機株式会社 電力変換装置
JP2015106948A (ja) * 2013-11-28 2015-06-08 ファナック株式会社 Lcフィルタの異常検知機能を備えた電力変換装置

Also Published As

Publication number Publication date
JP6821685B2 (ja) 2021-01-27
CN109642918A (zh) 2019-04-16
US11163012B2 (en) 2021-11-02
JPWO2018037499A1 (ja) 2019-01-17
CN109642918B (zh) 2021-03-09
US20190173371A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
Kwak et al. Switching strategy based on model predictive control of VSI to obtain high efficiency and balanced loss distribution
Rivera et al. Instantaneous reactive power minimization and current control for an indirect matrix converter under a distorted AC supply
Hassanpoor et al. Tolerance band modulation methods for modular multilevel converters
WO2015101164A1 (zh) 一种模块化多电平变换器单相逆变试验电路及其试验方法
CN102686351A (zh) 利用并联功率模块的通用输入电源
JP2011114920A (ja) 電力変換装置
Cvetkovic et al. Modular scalable medium-voltage impedance measurement unit using 10 kV SiC MOSFET PEBBs
Shukla et al. Control of dc capacitor voltages in diode-clamped multilevel inverter using bidirectional buck–boost choppers
Zhang et al. Predictive voltage control of direct matrix converter with reduced number of sensors for the renewable energy and microgrid applications
KR20160013176A (ko) 병렬로 접속된 다단 컨버터들을 가지는 컨버터 어셈블리 및 상기 다단 컨버터들을 제어하기 위한 방법
Zheng et al. Fast dynamic control of stacked low inertia converters
CN101860249A (zh) 一种三电平逆变器及其过零切换逻辑控制方法
Rabbeni et al. Finite states modulated model predictive control for active power filtering systems
US20160013721A1 (en) Device for controlling and balancing currents for dc/dc converters
Feroura et al. Finite-set model predictive voltage control for islanded three phase current source inverter
CN106134053B (zh) 具有以线性运行方式运行的子模块的模块化的换流器电路
WO2018037499A1 (ja) Pwmコンバータ用入力フィルタの通電評価試験装置
CN107147130B (zh) 集散均衡式高压svg控制装置及控制方法
CN103836682B (zh) 一种具有多个灶头的电磁炉
JP2015116052A (ja) エレベーターかご給電装置
Maldonado et al. Simulation, design, hardware implementation, and control of a 9-level Flying Capacitor Multilevel Inverter with Particle Swarm Optimization algorithm
Banaeı et al. A ladder multilevel inverter topology with reduction of on-state voltage drop
Arab et al. Power quality enhancement in single phase energy distribution systems using DQ optimal control
Guo et al. A double-voltage vector based model predictive control method for three phase four-switch fault-tolerant converter
Wu et al. Eliminating the influence of capacitor voltage ripple on current control for grid-connected modular multilevel converter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018535975

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914173

Country of ref document: EP

Kind code of ref document: A1