WO2018036363A1 - 传输数据的方法、装置及系统、终端 - Google Patents

传输数据的方法、装置及系统、终端 Download PDF

Info

Publication number
WO2018036363A1
WO2018036363A1 PCT/CN2017/095834 CN2017095834W WO2018036363A1 WO 2018036363 A1 WO2018036363 A1 WO 2018036363A1 CN 2017095834 W CN2017095834 W CN 2017095834W WO 2018036363 A1 WO2018036363 A1 WO 2018036363A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
narrowband
air interface
base station
broadband
Prior art date
Application number
PCT/CN2017/095834
Other languages
English (en)
French (fr)
Inventor
黄梅青
戴谦
沙秀斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018036363A1 publication Critical patent/WO2018036363A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method, an apparatus, a system, and a terminal for transmitting data.
  • MTC Machine Type Communication
  • IOT Internet of Things
  • 3GPP has introduced the narrowband technology NB-IOT to provide extensive coverage. Support the access of massive MTC devices.
  • MTC devices come in a wide range, basic sensors and actuators. These devices are usually fixedly installed somewhere, report measurement information (such as temperature, humidity, pressure, etc.) according to the specified time, or perform some actions according to the instructions. Unlike conventional 3GPP services, MTC services have unique features:
  • Massive connection There are a large number of MTCs, and it is generally predicted that the number of connections is about 100 times that of smart terminals.
  • the amount of business data is very small.
  • the MTC service model that is currently reported by the 3GPP in the R13, the MTC service reported periodically is 20 bytes.
  • the content of monitoring data such as temperature and humidity is very small.
  • MTC chips The cost of MTC chips is generally very low. Considering the massive IoT devices and competing with wide-area wireless IoT technologies such as Lora, the cost is much lower than that of smart terminal chips. This means that the processing of the terminal must be as simple as possible, and the terminal capability is much lower than that of the conventional intelligent terminal.
  • MTC devices are typically battery powered and are expected to have a 10-year lifespan, ie no battery replacement for many years.
  • MTC devices are embedded in walls and basements, and are deployed in farms and forests. Compared with conventional smart terminals, wireless coverage is relatively poor.
  • 3GPP proposes a method to support MTC services by using NB-IOT narrowband technology. Because its bandwidth is relatively narrow, air interface resource scheduling granularity is smaller than LTE technology, so it has higher air interface resource utilization. It has a higher system capacity and a wider coverage.
  • NB-IOT technology Compared with LTE technology, NB-IOT technology has the following characteristics:
  • the coverage is very wide: in the same frequency band, eMTC (enhanced machine type communication) or NB-IOT is 20dB higher than LTE, the coverage is theoretically more than 100 times that of the LTE cell, so it can cover a wide area. .
  • the narrowband bandwidth makes the terminal more power efficient.
  • NB-IOT uses only 200k bandwidth, which requires less overhead for the physical layer processing of the terminal, thus saving power.
  • the terminal Compared with the 5M/10M bandwidth conventionally used by LTE, the terminal only needs to handle much smaller bandwidth, and its resource consumption is much smaller.
  • High-level signaling is optimized for small data transfers.
  • the CP ⁇ UP optimization mode is introduced, which reduces the signaling overhead of small data packet transmission.
  • the CP mode refers to the small data being transmitted in the NAS (Non-access stratum) PDU (Packet Data Unit);
  • the UP mode refers to the introduction of the bearer suspension and recovery mode to transmit small
  • the data in order to reduce the number of signaling, further saves power for the terminal, and also reduces the signaling processing load of the network.
  • a method of transmitting small data using a connectionless method is also proposed, that is, a method of transmitting a message containing small data without transmitting a Radio Resource Control (RRC) connection. More signal saving.
  • RRC Radio Resource Control
  • Co-site deployment is a common networking solution, in which multiple frequency points of a site are divided into multiple cells with different bandwidths to provide different coverage services.
  • the resource utilization of the narrowband cell may not be high.
  • the MTC service also has the feature of reporting infrequently. Even when the number of MTC users is relatively large, most of the MTC services may be in a dormant state.
  • the narrowband cell resources are relatively idle.
  • the smart terminal When the broadband cell load is relatively high, it is desirable to be able to use idle narrowband resources, but currently it is not possible to directly access the smart terminal into the narrowband cell. According to the current cell access rule, the smart terminal does not select the narrowband cell access as long as it can search for the available broadband cell; the narrowband cell resource cannot be used in the subsequent cell reselection or handover.
  • the utilization of the inter-cell spectrum resources can also be used to improve the utilization of the resources of the narrow-band cells, this method may affect the online service, such as dropped calls.
  • This method is also not flexible enough.
  • the network generally adjusts the frequency of the cell's frequency resources for a long period of time. It cannot be adjusted in time with the resource utilization in the cell. Therefore, there is still room for improvement in the resource utilization of the narrowband cell.
  • a broadband cell often has a coverage dead zone or a weak signal zone because its coverage is not large.
  • communication with the network cannot be performed, and even small data cannot be transmitted.
  • the signaling overhead is still relatively large.
  • an intelligent terminal transmits small data, an RRC connection is still required.
  • the embodiments of the present invention provide a method, an apparatus, a system, and a terminal for transmitting data, so as to at least solve the problem that the UE cannot flexibly select to use broadband resources or narrowband resources to transmit data in the related art.
  • a method for transmitting data includes: a method for transmitting data, including: determining, by a user equipment UE, a coverage area of a broadband cell and/or a narrowband cell of a base station; Cell information of a narrowband cell of the base station and/or cell information of the broadband cell; the UE selects to transmit data using a narrowband air interface and/or a broadband air interface.
  • the acquiring, by the UE, the cell information of the narrowband cell of the base station and/or the cell information of the broadband cell includes: when the UE currently accesses the broadband cell, acquiring the narrowband cell from the base station Cell information and/or cell information of the broadband cell; when the UE currently accesses the narrowband cell, the cell information of the broadband cell and/or the cell information of the narrowband cell are acquired from the base station.
  • the UE selecting to use the narrowband air interface and/or the broadband air interface to transmit data includes: the UE selectively uses the narrowband air interface and/or the broadband air interface to transmit data according to at least one of the following: current coverage, service type, to be transmitted. The amount of data.
  • the cell information includes at least one of the following: a cell identifier ID, a cell type, a cell bandwidth information, a cell frequency point information, and a Public Land Mobile Network ID (PLMN) to which the cell belongs.
  • Cell load cell capacity.
  • the method for the UE to acquire the cell information of the narrowband cell from the base station by using the broadband cell includes at least one of: receiving the cell information that is carried by the base station in a broadcast message of the broadband cell; Receiving, by the base station, the cell information that is sent by using radio resource control RRC signaling.
  • the acquiring, by the UE, the cell information of the broadband cell from the base station by using the narrowband cell includes: receiving the cell information that is carried by the base station in a broadcast message of the narrowband cell.
  • the method before the acquiring, by the UE, the cell information of the narrowband cell by using the broadband cell, the method further includes: sending, by using RRC signaling, a request message for requesting the cell information to the base station.
  • the request message carries indication information for characterizing the capability of the UE to have narrowband air interface transmission and/or broadband air interface transmission.
  • the request message carries terminal capability information of the UE, where the terminal capability information is used to indicate that the UE has the capability of narrowband air interface transmission.
  • the RRC signaling includes at least one of the following: RRC connection reconfiguration complete signaling, RRC connection reestablishment complete signaling, RRC connection reestablishment request signaling, RRC connection request signaling, RRC connection setup complete signaling, Uplink information transfer signaling, UE information response signaling, and other newly added downlink air interface signaling.
  • the method further includes: listening to the paging message or the location of the broadband cell according to a preset period. Decoding a paging message of the narrowband cell; determining the data to be transmitted according to the paging message.
  • the transmitting, by the UE, the data by using the narrowband air interface includes: determining whether the service type of the data is a specified type, and/or determining whether the rate threshold of the data meets a preset condition, and/or determining the Whether the radio coverage condition currently in which the UE is located has narrowband cell coverage; when the determination result is yes, it is determined that the UE uses narrowband air interface to transmit data.
  • the transmitting, by the UE, the data by using the narrowband air interface includes: receiving an RRC message sent by the base station to instruct the UE to use the narrowband air interface to transmit data, and receiving, by the receiving core network device, the UE to use the narrowband air interface.
  • An attachment response message that transmits data.
  • the transmitting, by the UE, the data by using the narrowband air interface includes: the UE transmitting the uplink data by using the narrowband air interface and the base station; and/or the UE transmitting the downlink data by using the narrowband air interface and the base station.
  • the transmitting, by the UE, the uplink data by using the narrowband air interface and the base station includes: when the UE and the base station maintain an RRC state, encapsulating the data into a non-access stratum NAS packet data unit PDU cell IE; The UE sends a first air interface message to the base station by using a narrowband air interface, where the first air interface message carries the encapsulated data.
  • the air interface message is one of the following: an uplink information transfer message, and a newly created uplink air interface message.
  • the transmitting, by the UE, the downlink data by using the narrowband air interface and the base station includes:
  • the second air interface message sent by the base station is received by using a narrowband air interface, where the data is encapsulated in a NAS PDU IE (information element, hereinafter referred to as IE) of the second air interface message.
  • a NAS PDU IE information element, hereinafter referred to as IE
  • the method further includes: using a key set identifier of the evolved unified terrestrial access network and a sequence number eKSI and Sequence Number "IEs to the second The air interface message performs decryption and integrity check; when the second air interface message is IP service data, the second air interface message is decompressed by the IP header based on the robust header compression ROHC to obtain the data.
  • the data comprises: machine type communication MTC data.
  • an apparatus for transmitting data comprising: a determining module configured to determine a coverage area of a broadband cell and/or a narrowband cell located in a base station; and an obtaining module configured to acquire the base station Cell information of a narrowband cell and/or cell information of a broadband cell; a transmission module configured to selectively transmit data using a narrowband air interface and/or a broadband air interface.
  • the acquiring module includes: a first acquiring unit, configured to acquire cell information of a narrowband cell and/or cell information of a broadband cell from a base station when the UE currently accesses a broadband cell; When the UE currently accesses the narrowband cell, the cell information of the broadband cell and/or the cell information of the narrowband cell are acquired from the base station.
  • the transmission module is further configured to select to use the narrowband air interface and/or the broadband air interface to transmit data according to at least one of the following: a current coverage range, a service type, and a data volume size to be transmitted.
  • the cell information includes at least one of the following: a cell identifier ID, a cell type, a cell bandwidth information, a cell frequency point information, a public land mobile network PLMN to which the cell belongs, a cell load, and a cell capability.
  • a terminal including: a communication interface, configured to acquire cell information of a narrowband cell of the base station when the terminal is located in a coverage area of a broadband cell and/or a narrowband cell of the base station And/or cell information of the broadband cell; the radio frequency circuit is configured to select to transmit data using the narrowband air interface and/or the broadband air interface.
  • a system for transmitting data includes: a terminal, a base station, and the terminal includes: a communication interface, configured to be located in a coverage area of a broadband cell and/or a narrowband cell where the terminal is located in the base station Obtaining cell information of the narrowband cell of the base station and/or cell information of the broadband cell; the radio frequency circuit is configured to select to use the narrowband air interface and/or the broadband air interface to transmit data; the base station includes: a sending module, configured to The terminal transmits the cell information of the narrowband cell and the cell information of the broadband cell.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the user equipment UE determines that the coverage area of the broadband cell and/or the narrowband cell of the base station is located; the UE acquires the cell information of the narrowband cell of the base station and/or the cell information of the broadband cell; Selecting to use narrowband air interface and/or broadband air interface to transmit data, and by acquiring cell information of the narrowband cell and the broadband cell, the UE may select to use narrowband air interface and broadband air interface to transmit data with the base station, thereby expanding the communication area of the UE, and the UE can not only use the broadband.
  • the air interface can also use narrow-band air interface to improve resource utilization, and can solve the problem that the UE cannot flexibly choose to use broadband resources or narrow-band resources to transmit data in the related art.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal for transmitting data according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method of transmitting data in accordance with an embodiment of the present invention
  • FIG. 3 is a structural block diagram of an apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a system for transmitting data according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method for determining whether a smart terminal service uses an NB-IOT transmission according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a typical co-site deployment scenario in accordance with an embodiment of the present invention.
  • FIG. 1 is a hardware structural block diagram of a mobile terminal for transmitting data according to an embodiment of the present invention.
  • the mobile terminal 10 may include one or more (only one shown) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA).
  • FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the method for transmitting data in the embodiment of the present invention, and the processor 102 executes each by executing a software program and a module stored in the memory 104.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a method for transmitting data according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the user equipment UE determines to be located in a coverage area of the broadband cell and/or the narrowband cell of the base station;
  • Step S204 The UE acquires cell information of a narrowband cell of the base station and/or cell information of the broadband cell.
  • Step S206 the UE selects to use the narrowband air interface and/or the broadband air interface to transmit data.
  • the communication object may be a base station or the like, and the cell information includes an air interface resource.
  • the user equipment UE determines the coverage area of the broadband cell and/or the narrowband cell located in the base station; the UE acquires the cell information of the narrowband cell of the base station and/or the cell information of the broadband cell; the UE selects to use the narrowband air interface and/or The broadband air interface transmits data.
  • the UE can select to use the narrowband air interface and the broadband air interface to transmit data with the base station, thereby expanding the communication area of the UE.
  • the UE can use not only the broadband air interface but also the narrowband air interface.
  • the resource utilization rate is improved, and the problem that the UE cannot flexibly select to use broadband resources or narrowband resources to transmit data in the related art can be solved.
  • the execution subject UE of the above step may be a mobile phone or the like having a communication function, but is not limited thereto.
  • the UE acquiring the cell information of the narrowband cell of the base station and/or the cell information of the broadband cell includes the following situations:
  • the cell information of the narrowband cell and/or the cell information of the broadband cell are acquired from the base station;
  • the cell information of the broadband cell and/or the cell information of the narrowband cell are obtained from the base station.
  • the UE obtains the cell information of the narrowband cell from the base station by using the broadband cell; the UE acquires the cell information of the broadband cell from the base station by using the narrowband cell; the UE acquires the cell information of the broadband cell from the base station by using the broadband cell; and the UE obtains the narrowband from the base station by using the narrowband cell.
  • Cell information of the cell is the cell information of the cell.
  • the embodiment includes: when the UE is located in a coverage area of the narrowband cell, the UE acquires cell information of the broadband cell from the base station by using the narrowband cell; and the UE uses the broadband air interface to transmit data.
  • the UE may select to use the narrowband air interface and/or the broadband air interface to transmit data according to at least one of the following: a current coverage range, a service type, and a data volume size to be transmitted.
  • the cell information includes at least one of the following: a cell identifier ID, a cell type, a cell bandwidth information, a cell frequency point information, a public land mobile network PLMN to which the cell belongs, a cell load, and a cell capability.
  • the method for the UE to obtain the cell information of the narrowband cell from the base station by using the broadband cell includes at least one of the following:
  • the acquiring, by the UE, the cell information of the broadband cell from the base station by using the narrowband cell includes: receiving the cell information carried by the base station in the broadcast message of the narrowband cell.
  • the method further includes: sending, by using RRC signaling, a request message for requesting cell information to the base station, where the request message is carried in the Indication of the capability of narrowband air interface transmission and/or broadband air interface transmission.
  • the request message carries terminal capability information of the UE, where the terminal capability information is used to indicate that the UE has the capability of narrowband air interface transmission.
  • the RRC signaling includes at least one of the following: RRC connection reconfiguration complete signaling, RRC connection reestablishment complete signaling, RRC connection reestablishment request signaling, RRC connection request signaling, RRC connection setup completion signaling, and uplink information. Transfer signaling, UE information response signaling, and other newly added downlink air interface signaling.
  • the method further includes:
  • the UE uses the narrowband air interface to transmit data, including:
  • S21 Determine whether the service type of the data is a specified type, and/or determine whether the rate threshold of the data meets a preset condition, and/or determine whether the wireless coverage condition currently in the UE has a narrowband cell. cover;
  • the determination result is yes, determine that the UE uses the narrowband air interface to transmit data, and the determination result may be that the three determining processes of S21 pass simultaneously, or at least one pass.
  • the transmitting, by the UE, the data by using the narrowband air interface is: receiving an RRC message sent by the base station to instruct the UE to use the narrowband air interface to transmit data, and receiving an attach response message sent by the core network device to instruct the UE to use the narrowband air interface to transmit data.
  • the UE uses the narrowband air interface to transmit data, where the UE uses the narrowband air interface to transmit uplink data with the base station; and/or the UE uses the narrowband air interface to transmit downlink data with the base station.
  • the transmitting, by the UE, the uplink data by using the narrowband air interface and the base station includes: when the UE and the base station maintain the RRC state, the data is encapsulated into a non-access stratum NAS packet data unit PDU cell IE; and the UE sends the first to the base station by using the narrowband air interface.
  • the air interface message is one of the following: an uplink information transfer message, and a newly created uplink air interface message.
  • the transmitting, by the UE, the downlink data by using the narrowband air interface and the base station includes:
  • the second air interface message sent by the base station is received by using the narrowband air interface, where the data is encapsulated in the NAS PDU IE of the second air interface message.
  • the method further includes:
  • the data in this embodiment may be machine type communication MTC data.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods of various embodiments of the present invention.
  • a device, a terminal, and a system for transmitting data are provided, which are used to implement the foregoing embodiments and preferred embodiments, and are not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of an apparatus for transmitting data according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes:
  • Determining module 30 configured to determine a coverage area of the broadband cell and/or the narrowband cell located in the base station;
  • the obtaining module 32 is configured to acquire cell information of a narrowband cell of the base station and/or cell information of the broadband cell;
  • the transmission module 34 is configured to select to transmit data using the narrowband air interface and/or the broadband air interface.
  • the obtaining module 32 includes: a first acquiring unit, configured to be currently in the UE When accessing the broadband cell, the cell information of the narrowband cell and/or the cell information of the broadband cell are obtained from the base station; the second acquiring unit is configured to acquire the cell information of the broadband cell from the base station when the UE currently accesses the narrowband cell / or cell information of a narrowband cell.
  • the cell information includes at least one of the following: a cell identity ID, a cell type, a cell bandwidth information, a cell frequency point information, a public land mobile network PLMN to which the cell belongs, a cell load, and a cell capability.
  • FIG. 4 is a structural block diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 4, the terminal includes:
  • the communication interface 40 is configured to acquire cell information of a narrowband cell of the base station and/or cell information of the broadband cell when the terminal is located in a coverage area of the broadband cell and/or the narrowband cell of the base station;
  • the RF circuit 42 is configured to selectively transmit data using narrowband air ports and/or wide band air ports.
  • FIG. 5 is a structural block diagram of a system for transmitting data according to an embodiment of the present invention.
  • the method includes: a terminal 50, a base station 52, and a terminal 50, including: a communication interface 502, configured to be located in a broadband cell of the base station and/or Or acquiring the cell information of the narrowband cell of the base station and/or the cell information of the broadband cell when the coverage area of the narrowband cell is in the coverage area; the radio frequency circuit 504 is configured to select to use the narrowband air interface and/or the broadband air interface to transmit data;
  • the base station 52 includes a sending module 522 configured to send cell information of the narrowband cell and/or cell information of the broadband cell to the terminal.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present invention, which is used to describe the present application in detail in conjunction with a specific scenario:
  • an intelligent terminal such as a mobile phone
  • MTC data small amount of data
  • MTC service massively connected MTC service in a considerable amount of time.
  • this paper fully explores the use of narrowband technology such as NB-IOT/eMTC to implement small data transmission methods for intelligent terminals, in order to enhance coverage and improve system resource utilization for intelligent terminals. Achieve improved user experience and increased wireless system capacity.
  • the embodiment provides a data transmission method, device and system, and realizes the transmission of the smart terminal small data by using the narrowband frequency point.
  • the specific scheme for the intelligent terminal to flexibly use the narrowband air interface to transmit small data is as follows:
  • the intelligent terminal acquires the narrow-band cell information of the common site from the base station. There are several ways to get it, including:
  • the first way the base station adds narrowband cell information to the cell broadcast. For example, in a broadband broadcast message, the narrowband cell information of the co-site is added, including information necessary for the terminal to access the narrowband cell, such as frequency information.
  • the second mode the base station sends the narrowband cell information to the smart terminal by using RRC signaling.
  • the base station may request to send the narrowband cell information through the RRC signaling, and the base station selectively transmits the terminal capability according to the terminal capability and the requested content.
  • the intelligent terminal indicates to the base station that the narrowband air interface transmits data through the uplink cell, and the indication manners are various, including:
  • Mode 1 3GPP appoints that the type or higher type of intelligent terminal supports narrowband air interface transmission capability through the terminal type.
  • the uplink RRC message includes but is not limited to the following messages: RRC Connection Reconfiguration Complete, RRC Connection Reestablishment Complete, RRC Connection Reestablishment Request, RRC Connection Request, RRC Connection Setup Complete, UL Information Transfer, UE Information Response, or new uplink air interface message.
  • the intelligent terminal When the intelligent terminal is in the coverage of the broadband cell, it keeps listening to the paging of the broadband cell.
  • the downlink paging interval of a narrowband cell is generally long, and cannot respond to the downlink service requirement of the real-time service in time. Because the narrowband cell is mainly designed for the MTC service, and the MTC service is generally infrequent, the time interval between two small data transmissions may be very long. In the normal data reporting model considered in 3GPP R13, the minimum interval is 30 minutes. . In order to save power, the paging interval of the narrowband cell is generally configured to be relatively long. This time interval does not meet the needs of real-time business.
  • the intelligent terminal first needs to guarantee the QoS guarantee of the high-priority service, especially the delay requirement of the real-time service, the paging still maintains the broadband paging mechanism, so that the terminal can respond to the downlink service transmission requirement in time.
  • terminal capability whether there is a narrow-band cell configuration at the same site, whether there are other services currently, the delay requirement of the current service, the current traffic data size, and the current Whether the service is a real-time service or other service Qos feature, and a comprehensive decision on the cell load situation.
  • the load balancing strategy of broadband frequency points and narrowband frequency points in the base station also needs to be considered.
  • the broadband frequency point load is relatively large and the narrowband frequency point resources are relatively idle, it may be considered to equalize the intelligent terminal small data transmission to the narrowband cell, thereby achieving the effect of reducing the load by the broadband and making full use of the narrowband resources; otherwise, when the narrowband frequency point load is used If the load is not high and the bandwidth of the broadband is not high, it is not suitable for transmitting the intelligent terminal service in the narrowband cell, because the narrowband resource congestion will affect the MTC service transmission.
  • FIG. 6 is a schematic diagram of a method for determining whether the smart terminal service uses the NB-IOT transmission according to an embodiment of the present invention. As shown in FIG. 6, the method includes:
  • Mode 1 Base station decision.
  • the core network transmits the Qos (Quality of Service) information of the service to the base station, and the base station determines whether the service can be transmitted on the narrowband. And the decision result is indicated to the UE in the air interface downlink RRC message.
  • Qos Quality of Service
  • the advantage of this approach is that the core network protocol changes are small.
  • the eNodeb base station determines the air interface usage mode of the service, and the core network has no perception.
  • Method 2 Core network decision.
  • the core network determines whether the service can be transmitted on the narrowband according to the terminal capability and the QoS information of the service, and indicates the decision result to the UE in the Attach Rsp message.
  • the advantage of this approach is that the base station protocol changes are small.
  • the core network determines the air interface usage mode of the service.
  • Method 3 The smart terminal makes its own decisions.
  • the smart terminal decides by itself whether the current service uses narrowband transmission.
  • the OMCR Wireless Operation and Maintenance Center
  • the base station acquires the OMCR and then allocates it to the intelligent terminal through RRC signaling or broadcast signaling.
  • the intelligent terminal compares the service type and rate threshold of the current service with the narrowband transmission if the condition of the narrowband transmission is met.
  • the smart terminal uses a connectionless method to transmit small data on a narrowband air interface.
  • the smart UE transmits data using the narrowband air interface
  • the current RRC state of the terminal is not changed, and the data is transmitted using the connectionless mode.
  • the UE When the smart terminal uplink uses narrowband to transmit small data, the UE encapsulates the small data into a NAS PDU IE. The UE sends a connectionless message on the air interface, which carries the cell: the small data to be sent is sent to the eNodeb. In the above process, the UE remains in the RRC state.
  • the air interface message includes, but is not limited to, UL information transfer, adding an uplink air interface message, and the like.
  • the narrowband cell instance of the base station After receiving the message, finds the UE instance established in the corresponding broadband cell according to the UE ID tag of the terminal, and sends the UE instance to the core network after receiving the message.
  • the S1 interface bearer also adopts the connectionless mode or the common S1 bearer mode, thereby reducing the signaling overhead of the S1 interface.
  • the core network parses the uplink data with the existing CP mode.
  • the Mobile Management Entity MME performs integrity detection and decryption on the NAS data PDU to obtain data.
  • MME Mobile Management Entity
  • Mode 1 When the terminal has both the broadband cell coverage and the narrowband cell coverage, when the core network detects that the downlink small data needs to be transmitted to the intelligent terminal, it is sent to the terminal through the broadband air interface.
  • the intelligent terminal Because of the good support for the real-time downlink service of the intelligent terminal, the intelligent terminal maintains paging listening to the broadband cell without listening to the narrowband cell paging.
  • the broadband air interface is still used for transmission.
  • the paging message may be used to carry the small data to carry the transmission, and the signaling overhead of the RRC is reduced.
  • the public bearer or the dedicated bearer is used to transmit the small data.
  • mode 1 is that the downlink receiving process of the intelligent terminal is simple; however, the downlink air interface cannot take advantage of the narrowband air interface technology.
  • Mode 2 The intelligent terminal simultaneously listens to broadband cell paging and narrowband paging:
  • the core network When the core network detects that downlink data needs to be transmitted, it first determines whether the service is suitable for transmission using a narrowband air interface. If appropriate, the S1 port connectionless message is transmitted to the eNodeb along with the path carrying small data. The core network encapsulates the small data into the NAS PDU IE, and the downlink connectionless S1 message carries the cell: NAS data PDU IE. If encrypted, it brings in the eKSI and Sequence Number "IEs, and sends the S1 interface to the eNodeb's narrowband cell information. .
  • the narrowband cell of the eNodeb After receiving the information, the narrowband cell of the eNodeb sends a downlink air interface paging message to the UE. It is brought into the NAS data PDU IE. If encrypted, it is brought into the eKSI and Sequence Number "IEs.
  • the UE listens for paging of the narrowband cell and parses the small data therefrom.
  • the UE performs integrity detection and decryption on the NAS data PDU to acquire data.
  • ROHC Robot Header Compression
  • the smart terminal When the smart terminal currently only has a narrowband cell coverage, the smart terminal is degraded to a conventional MTC terminal to access the narrowband cell for small data transmission, and the communication processing with the network is the same as the conventional MTC terminal.
  • the above broadband technology is also applicable to other air interface technologies using broadband frequency points, including but not limited to 2G ⁇ 3G, 5G new broadband air interface technology;
  • the above narrowband technology in addition to the narrowband technology mentioned above, is also applicable to other air interface technologies using narrowband frequency points, including but not limited to 5G new narrowband air interface technology.
  • Part I Implementation method for acquiring narrowband cell information by intelligent terminal
  • FIG. 7 is a schematic diagram of a typical co-site deployment scenario according to an embodiment of the present invention.
  • the HSS is a Home Subscriber Server.
  • the broadband cell and the narrowband cell in the wireless network are generally deployed at the same site.
  • the typical scenario is as follows: a small part of the narrowband low-bandwidth bandwidth is provided to provide narrow-band cell coverage, and the MTC service is supported; the remaining bandwidth is used for the broadband cell. Support large rate business or real time business.
  • the coverage of narrowband cells is wider than that of broadband cells.
  • the NB-IOT narrowband coverage is very wide.
  • NB-IOT is 20dB better than LTE in the same frequency band.
  • an intelligent terminal accesses a broadband cell, it generally has a narrowband cell that covers the same time. Narrow band The wide-area coverage feature of the cell, the intelligent terminal can be in the wireless coverage of the broadband cell and the narrow-band cell at the same time, so that the two air interfaces can be flexibly used to transmit data, and in particular, the narrow-band cell can be used to transmit small data.
  • the implementation method of the smart terminal acquiring the narrowband cell information is as follows:
  • Embodiment 1 Broadband Cell Broadcast Message Notification Method:
  • the broadband cell broadcast information has newly added narrow-band cell information deployed by the common site, including but not limited to frequency points, cell IDs, and the like.
  • some threshold parameters such as 1K sent by the narrowband frequency point, such as data threshold parameters, may also be added to the broadcast message.
  • the narrowband cell information is parsed and saved in the smart terminal broadband cell broadcast.
  • Embodiment 2 RRC signaling configuration mode.
  • the base station sends the narrowband cell information to the smart terminal through RRC signaling.
  • the capability indication IE is brought into the RRC Request message to the base station;
  • the base station After receiving the base station, the base station brings the narrowband cell information to the terminal in the RRC Setup message.
  • the IE that carries the capability of the narrowband air interface can also be carried in other uplink RRC messages, for example:
  • the smart terminal uses a narrowband cell to transmit small data as follows:
  • Preferred Embodiment 1 The pedometer provided by the mobile phone reports the number of running steps of the user to the motion monitoring center.
  • the number of running steps of the user is reported to the sports monitoring center through the pedometer provided by the mobile phone.
  • the terminal has obtained narrowband cell information from the base station and the rate threshold for using narrowband transmission is 1K.
  • the first step the terminal decides that the current service is small data suitable for narrowband transmission.
  • the smart terminal is currently in the IDLE state.
  • the application layer has small data (20BYTE) generated by the tread recorder that needs to be sent.
  • the terminal determines that the amount of data is smaller than the data volume gate sent by the narrowband frequency point Limit, decided to use narrowband air interface to send.
  • Step 2 The terminal uses a narrowband cell to send small data by means of no connection.
  • the UE initiates a random access procedure to the narrowband cell.
  • the UE encapsulates the small data into a NAS PDU IE.
  • the UE sends a connectionless message UL information transfer on the air interface, where the incoming cell: NAS data PDU IE, if encrypted, carries the corresponding encrypted information: eKSI and Sequence Number "IEs.
  • the UE sends the message to the base.
  • the UE keeps the current RRC state unchanged.
  • Step 3 After receiving the base station, the small data is parsed and sent to the MME through a connectionless message.
  • the eNodeb parses out the NAS PDU from the Uu port connectionless message.
  • the eNodeb keeps the RRC state of the UE unchanged.
  • Step 4 The MME parses the uplink data:
  • the MME performs integrity detection and decryption on the NAS data PDU to obtain data.
  • the mobile phone has a weather forecast APP, and the weather monitoring center periodically (at intervals of 30 minutes) push weather information to the mobile phone.
  • Step 1 The base station deploys the LTE cell and the NB-IOT cell of the common site.
  • the NB-IOT cell information deployed by the co-site is added to the LTE cell broadcast information, including the frequency point, the cell ID, and the like.
  • the data message threshold for small data transmission using narrowband frequency points is also added to the broadcast message: 1K.
  • Step 2 The smart phone parses the narrowband cell information from the LTE cell broadcast and saves it.
  • Step 3 The weather monitoring center sends the latest weather information, 500BYTE, to the core network; the core network sends it to the base station.
  • the eNodeb After receiving the eNodeb, the eNodeb decides that the current service is suitable for narrowband transmission. Because the amount of data is 500 BYTE, which is smaller than the threshold of narrowband transmission for downlink data, it is decided to use narrowband transmission.
  • Step 4 The eNodeb uses the narrowband cell downlink paging message to transmit downlink data.
  • the eNodeb sends a paging message in the narrowband cell, which carries the downlink small data.
  • the eNodeb encapsulates the small data into a NAS PDU IE.
  • the paging message is brought into the cell:
  • the eNodeb keeps the RRC state of the UE unchanged.
  • Step 5 The UE receives small data from the narrowband cell.
  • the UE listens for paging of the narrowband cell and parses the small data therefrom.
  • the UE performs integrity detection and decryption on the NAS data PDU to acquire data.
  • the terminal When the smart terminal moves, if the accessed LTE cell changes, the terminal acquires the latest narrowband cell information from the newly accessed LTE cell.
  • the terminal reads the newly accessed LTE cell broadcast information, and obtains the latest NB-IOT cell information of the common site deployment.
  • Method 2 RRC signaling configuration mode.
  • the base station sends the narrowband cell information to the smart terminal through RRC signaling.
  • the capability indication IE is brought in the RB reconfig message or the RRC request message;
  • the base station After the base station receives it, it is carried in the RB reconfiguration complete or RRC setup message. Enter the narrowband cell information to the terminal.
  • 3GPP R13 In order to support massive IoT terminal equipment, 3GPP R13 has introduced narrowband technology NB-IOT for its massive, small data and low cost characteristics. In the 5G research, the research on massive IoT device support has been further strengthened. The application of the narrowband technology in 3GPP will be further enhanced, and the characteristics of high resource utilization and coverage of light will be fully utilized.
  • the small data service of the intelligent terminal can be transmitted at a narrowband frequency point, and the following benefits are achieved:
  • the smart terminal can enhance coverage for smart terminals.
  • the communication area is expanded for the smart terminal, and in areas where there is no broadband cell coverage but there is coverage of the narrowband cell, the smart terminal can still communicate with the network.
  • the NB-IOT cell resources may have idleness and vacancy, which can be used for data transmission of the smart phone and improve resource utilization.
  • the method directly uses the narrowband resource, and does not need to adjust the frequency point through the cell reconfiguration process. The use of the narrowband resource timely and does not affect the online service, and the utilization of the narrowband resource is more effectively improved.
  • NB-IOT optimized signaling is used to save network side signaling overhead.
  • the terminal side signaling overhead is reduced, thereby saving power for the terminal.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • S3 choose to use narrowband air interface and / or broadband air interface to transmit data.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a random access memory (RAM, Random).
  • ROM Read-Only Memory
  • RAM random access memory
  • the processor performs determining to determine a coverage area of the broadband cell and/or the narrowband cell located in the base station according to the stored program code in the storage medium;
  • the processor performs, according to the stored program code in the storage medium, the cell information of the narrowband cell of the base station and/or the cell information of the broadband cell.
  • the processor performs selection to use the narrowband air interface and/or the broadband air interface to transmit data according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the method, device, system, and terminal for transmitting data have the following beneficial effects: by acquiring cell information of a narrowband cell and a broadband cell, the UE can select a narrowband air interface and a broadband air interface to use the base station. Transmitting data, expanding the communication area of the UE, The UE can not only use the broadband air interface, but also use the narrowband air interface to improve the resource utilization rate, and can solve the problem that the UE cannot flexibly select to use the broadband resource or the narrowband resource to transmit data in the related art.

Abstract

本发明实施例提供了一种传输数据的方法、装置及系统、终端,其中,该方法包括:对于同时部署了宽带和窄带覆盖的站点,用户设备UE接入该站点时,可以同时获取窄带小区和宽带小区的信息,从而可以灵活使用宽带小区资源或者窄带小区资源进行数据收发。通过本发明实施例,解决了相关技术中UE不能灵活选择使用宽带资源或者窄带资源来传输数据的问题。

Description

传输数据的方法、装置及系统、终端 技术领域
本发明实施例涉及通信领域,具体而言,涉及一种传输数据的方法、装置及系统、终端。
背景技术
随着物联网业务的兴起,机器类通信MTC(Machine Type Communication)设备也叫IOT(Internet of Things)设备,最近几年蓬勃兴起,3GPP为此引入了窄带技术NB-IOT来提供广泛的覆盖,以支持海量MTC设备的接入。
MTC设备范围很广,基本的是传感器和执行器。这些设备一般固定安装在某个地方,按照规定时间上报测量信息(例如温度、湿度、压力等),也可以按照指令执行一些动作。和常规的3GPP业务不同,MTC业务具有独有的特性:
海量连接。MTC数量众多,一般预测其连接数量为智能终端的100倍左右。
业务数据量非常小。3GPP目前在R13中统计的MTC业务模型中,周期上报的MTC业务为20个字节。例如温度、湿度等监控数据的内容,都很少。
低成本。MTC芯片成本一般很低,考虑到海量物联网设备,以及和Lora等广域无线物联网技术相竞争,其成本远低于智能终端芯片。也就意味着,终端的处理必须尽量简化,终端能力远低于常规智能终端能力。
耗电量低。MTC设备一般是电池供电,期望10年寿命,即很多年内无需更换电池。
连接发起不频繁。像温度测量用传感器,可能半个小时或者十分钟才上报一次;而像湿度传感器,可能一天上次一次即可。
覆盖比较差。很多MTC设备嵌入到墙里、地下室,设置部署在农场、森林中,和常规智能终端相比,无线覆盖比较差。
3GPP目前为了支持这些物联网设备业务,提出了使用NB-IOT窄带技术来支持MTC业务的方法,因为其带宽比较窄,空口资源调度粒度比LTE技术更小,所以有着更高的空口资源利用率,其系统容量更高,覆盖范围更广。
和LTE技术相比,NB-IOT技术有如下特点:
1,覆盖非常广泛:在同样的频段下,eMTC(增强型的机器类通信)或者NB-IOT比LTE高20dB,覆盖范围理论上是LTE小区的100多倍多,所以可以覆盖很广的区域。
窄带带宽使得终端比较省电。
和LTE很宽的带宽相比,NB-IOT仅使用200k带宽,对终端物理层处理的开销要求少,从而非常省电。和LTE常规使用的的5M/10M带宽相比,终端仅仅需要处理小得多的带宽,其资源消耗小很多。
高层信令为小数据传输进行了优化。
3GPP R13中,考虑到海量终端的信令冲击可能影响网络安全,对终端耗电也比较大,需要优化,因此引入了CP\UP优化模式,减少了小数据包发送的信令开销。CP模式是指将小数据在NAS(Non-access stratum,非接入层)PDU(Packet Data Unit,分组数据单元)中随路传输;UP模式是指引入承载的挂起和恢复模式来传输小数据,以此减少信令的条数,进一步为终端省电,同时也减少了网络的信令处理负荷。
在最新的5G研究中,也提出了使用无连接方式发送小数据的方法,即无需建立无线资源控制(Radio Resource Control,简称为RRC)连接,仅发送一条包含小数据的消息来传输的方法,更加节省信令。
共站点部署是一个普遍的布网方案,即一个站点的多个频点划分为多个带宽不同的小区,来分布提供覆盖不同的服务。
当MTC业务部署初期的适合,窄带小区的资源利用率可能不高;此外,MTC业务也有不频繁上报的特性,即使MTC用户数量比较多的时候,可能大部分MTC业务都处于休眠状态,也会导致窄带小区资源比较空闲。
当宽带小区负荷比较高时,希望能够使用空闲的窄带资源,但是目前不能直接将智能终端接入到窄带小区中。根据目前的小区接入规则,智能终端只要能够搜索到可用的宽带小区,就不会选择窄带小区接入;后续的小区重选或者切换时,都不能使用窄带小区资源。
虽然也可以通过调整小区间频谱资源的方式来提升窄带小区资源的利用率,不过这种方式会对在线业务有影响,例如掉线等。此种方式也不够灵活,网络对小区频点资源的调整一般周期比较长,不能随着小区内资源利用率及时的调整,所以窄带小区的资源利用率还是存在提高空间。
相关技术中,宽带小区由于其覆盖范围并不大,经常存在覆盖盲区或者弱信号区,智能终端处于此种区域时,则无法和网络通讯,即使小数据也无法发送。信令开销依然比较大。目前智能终端发送小数据时,仍然需要RRC连接。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种传输数据的方法、装置及系统、终端,以至少解决相关技术中UE不能灵活选择使用宽带资源或者窄带资源来传输数据的问题。
根据本发明的一个实施例,提供了一种传输数据的方法,包括:传输数据的方法,包括:用户设备UE确定位于基站的宽带小区和/或窄带小区的覆盖区域内;所述UE获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;所述UE选择使用窄带空口和/或宽带空口传输数据。
可选地,所述UE获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息包括:所述UE当前接入宽带小区时,从基站获取窄带小区的 小区信息和/或宽带小区的小区信息;所述UE当前接入窄带小区时,从基站获取宽带小区的小区信息和/或窄带小区的小区信息。
可选地,所述UE选择使用窄带空口和/或宽带空口传输数据包括:所述UE根据以下至少之一选择使用窄带空口和/或宽带空口传输数据:当前覆盖范围、业务类型、待传输的数据量大小。
可选地,所述小区信息包括以下至少之一:小区标识ID、小区类型、小区带宽信息、小区频点信息、小区归属的公共陆地移动网络(Public Land Mobile Network ID,简称为PLMN))、小区负荷、小区能力。
可选地,所述UE通过所述宽带小区从基站获取所述窄带小区的小区信息的方法包括以下至少之一:接收所述基站在所述宽带小区的广播消息中携带的所述小区信息;接收所述基站通过无线资源控制RRC信令发送的所述小区信息。
可选地,所述UE通过所述窄带小区从基站获取所述宽带小区的小区信息包括:接收所述基站在所述窄带小区的广播消息中携带的所述小区信息。
可选地,在所述UE通过所述宽带小区从基站获取所述窄带小区的小区信息之前,所述方法还包括:通过RRC信令向所述基站发送用于请求所述小区信息的请求消息,其中,所述请求消息中携带用于表征所述UE具备窄带空口传输和/或宽带空口传输的能力的指示信息。
可选地,所述请求消息携带所述UE的终端能力信息,其中,所述终端能力信息用于表征所述UE具备窄带空口传输的能力。
可选地,所述RRC信令包括以下至少之一:RRC连接重配置完成信令、RRC连接重建完成信令、RRC连接重建请求信令、RRC连接请求信令、RRC连接设置完成信令、上行信息转移信令、UE信息应答信令、其他新增的下行空口信令。
可选地,在UE确定位于基站的宽带小区和/或窄带小区的覆盖区域内之后,所述方法还包括:按照预设周期侦听所述宽带小区的寻呼消息或所 述窄带小区的寻呼消息;根据所述寻呼消息确定待传输的所述数据。
可选地,所述UE使用窄带空口传输数据包括:判断所述数据的业务类型是否为指定类型,和/或,判断所述数据的速率门限是否符合预设条件,和/或,判决所述UE当前所处的无线覆盖条件是否有窄带小区覆盖;在判断结果为是时,确定所述UE使用窄带空口传输数据。
可选地,所述UE使用窄带空口传输数据包括:接收所述基站发送的用于指示所述UE使用窄带空口传输数据的RRC消息;接收核心网设备发送的用于指示所述UE使用窄带空口传输数据的附着响应消息。
可选地,所述UE使用窄带空口传输数据包括:所述UE使用窄带空口与基站传输上行数据;和/或,所述UE使用窄带空口与基站传输下行数据。
可选地,所述UE使用窄带空口与基站传输上行数据包括:在所述UE与所述基站保持RRC状态时,将所述数据封装成非接入层NAS分组数据单元PDU信元IE;所述UE使用窄带空口向所述基站发送第一空口消息,其中,所述第一空口消息携带封装后的所述数据。
可选地,所述空口消息为以下之一:上行信息转移消息、新创建的上行空口消息。
可选地,所述UE使用窄带空口与基站传输下行数据包括:
使用窄带空口接收所述基站发送的第二空口消息,其中,所述数据封装在所述第二空口消息的NAS PDU IE(information element,简称为IE)中。
可选地,在接收所述基站发送的第二空口消息之后,所述方法还包括:使用进化型的统一陆地接入网络的密钥集标识和序号eKSI and Sequence Number"IEs对所述第二空口消息进行解密和完整性检查;在所述第二空口消息是IP业务数据时,对第二空口消息基于健壮型包头压缩ROHC进行IP头解压缩得到所述数据。
可选地,所述数据包括:机器类型通信MTC数据。
根据本发明的另一个实施例,提供了一种传输数据的装置,包括:确定模块,设置为确定位于基站的宽带小区和/或窄带小区的覆盖区域内;获取模块,设置为获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;传输模块,设置为选择使用窄带空口和/或宽带空口传输数据。
可选地,所述获取模块包括:第一获取单元,设置为在所述UE当前接入宽带小区时,从基站获取窄带小区的小区信息和/或宽带小区的小区信息;第二获取单元,设置为在所述UE当前接入窄带小区时,从基站获取宽带小区的小区信息和/或窄带小区的小区信息。
可选地,所述传输模块还设置为根据以下至少之一选择使用窄带空口和/或宽带空口传输数据:当前覆盖范围、业务类型、待传输的数据量大小。
可选地,所述小区信息包括以下至少之一:小区标识ID、小区类型、小区带宽信息、小区频点信息、小区归属的公共陆地移动网络PLMN、小区负荷、小区能力。
根据本发明的又一个实施例,提供了一种终端,包括:通信接口,设置为在终端位于基站的宽带小区和/或窄带小区的覆盖区域内时,获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;射频电路,设置为选择使用窄带空口和/或宽带空口传输数据。
根据本发明的又一个实施例,提供了一种传输数据的系统,包括:终端、基站,所述终端包括:通信接口,设置为在终端位于基站的宽带小区和/或窄带小区的覆盖区域内时,获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;射频电路,设置为选择使用窄带空口和/或宽带空口传输数据;所述基站包括:发送模块,设置为向所述终端发送所述窄带小区的小区信息和所述宽带小区的小区信息。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
确定位于基站的宽带小区和/或窄带小区的覆盖区域内;
获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;
选择使用窄带空口和/或宽带空口传输数据。
通过本发明实施例,用户设备UE确定位于基站的宽带小区和/或窄带小区的覆盖区域内;所述UE获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;所述UE选择使用窄带空口和/或宽带空口传输数据,通过获取窄带小区和宽带小区的小区信息,UE可以选择使用窄带空口和宽带空口来与基站传输数据,扩大了UE的通信区域,UE不仅可以使用宽带空口,还可以使用窄带空口,提高了资源利用率,可以解决相关技术中UE不能灵活选择使用宽带资源或者窄带资源来传输数据的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例的一种传输数据的方法的移动终端的硬件结构框图;
图2是根据本发明实施例的传输数据的方法的流程图;
图3是根据本发明实施例的传输数据的装置的结构框图;
图4是根据本发明实施例的终端的结构框图;
图5是根据本发明实施例的传输数据的系统的结构框图;
图6是根据本发明实施例的智能终端业务是否使用NB-IOT传输决策方法示意图;
图7是根据本发明实施例的典型共站部署场景示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语 “第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本发明实施例的一种传输数据的方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本发明实施例中的传输数据的方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的传输数据的方法,图2是根据本发明实施例的传输数据的方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,用户设备UE确定位于基站的宽带小区和/或窄带小区的覆盖区域内;
步骤S204,UE获取基站的窄带小区的小区信息和/或宽带小区的小区信息;
步骤S206,UE选择使用窄带空口和/或宽带空口传输数据。可选的,通信对象可以是基站等,小区信息包括空口资源。
通过上述步骤,用用户设备UE确定位于基站的宽带小区和/或窄带小区的覆盖区域内;UE获取基站的窄带小区的小区信息和/或宽带小区的小区信息;UE选择使用窄带空口和/或宽带空口传输数据,通过获取窄带小区和宽带小区的小区信息,UE可以选择使用窄带空口和宽带空口来与基站传输数据,扩大了UE的通信区域,UE不仅可以使用宽带空口,还可以使用窄带空口,提高了资源利用率,可以解决相关技术中UE不能灵活选择使用宽带资源或者窄带资源来传输数据的问题。
可选地,上述步骤的执行主体UE可以为具备通信功能的手机等,但不限于此。
UE获取基站的窄带小区的小区信息和/或宽带小区的小区信息包括以下情况:
所述UE当前接入宽带小区时,从基站获取窄带小区的小区信息和/或宽带小区的小区信息;
所述UE当前接入窄带小区时,从基站获取宽带小区的小区信息和/或窄带小区的小区信息。
包括了:UE通过宽带小区从基站获取窄带小区的小区信息;UE通过窄带小区从基站获取宽带小区的小区信息;UE通过宽带小区从基站获取宽带小区的小区信息;UE通过窄带小区从基站获取窄带小区的小区信息。
可选的,本实施例包括:在UE位于窄带小区的覆盖区域内时,UE通过窄带小区从基站获取宽带小区的小区信息;UE使用宽带空口传输数据。
可选的,所述UE可以根据以下至少之一选择使用窄带空口和/或宽带空口传输数据:当前覆盖范围、业务类型、待传输的数据量大小。
可选的,小区信息包括以下至少之一:小区标识ID、小区类型、小区带宽信息、小区频点信息、小区归属的公共陆地移动网络PLMN、小区负荷、小区能力。
可选的,UE通过宽带小区从基站获取窄带小区的小区信息的方法包括以下至少之一:
接收基站在宽带小区的广播消息中携带的小区信息;
接收基站通过无线资源控制RRC信令发送的小区信息。
可选的,UE通过窄带小区从基站获取宽带小区的小区信息包括:接收基站在窄带小区的广播消息中携带的小区信息。
可选的,在UE通过宽带小区从基站获取窄带小区的小区信息之前,方法还包括:通过RRC信令向基站发送用于请求小区信息的请求消息,其中,请求消息中携带用于表征UE具备窄带空口传输和/或宽带空口传输的能力的指示信息。
可选的,请求消息携带UE的终端能力信息,其中,终端能力信息用于表征UE具备窄带空口传输的能力。
可选的,RRC信令包括以下至少之一:RRC连接重配置完成信令、RRC连接重建完成信令、RRC连接重建请求信令、RRC连接请求信令、RRC连接设置完成信令、上行信息转移信令、UE信息应答信令、其他新增的下行空口信令。
可选的,在UE确定位于基站的宽带小区和/或窄带小区的覆盖区域内之后,方法还包括:
S11,按照预设周期侦听宽带小区的寻呼消息或窄带小区的寻呼消息;
S12,根据寻呼消息确定待传输的数据。
可选的,UE使用窄带空口传输数据包括:
S21,判断所述数据的业务类型是否为指定类型,和/或,判断所述数据的速率门限是否符合预设条件,和/或,判决所述UE当前所处的无线覆盖条件是否有窄带小区覆盖;
S22,在判断结果为是时,确定UE使用窄带空口传输数据,判断结果可以是S21三个判断过程同时通过,或者至少一个通过。
可选的,UE使用窄带空口传输数据包括:接收基站发送的用于指示UE使用窄带空口传输数据的RRC消息;接收核心网设备发送的用于指示UE使用窄带空口传输数据的附着响应消息。
可选的,UE使用窄带空口传输数据包括:UE使用窄带空口与基站传输上行数据;和/或,UE使用窄带空口与基站传输下行数据。
可选的,UE使用窄带空口与基站传输上行数据包括:在UE与基站保持RRC状态时,将数据封装成非接入层NAS分组数据单元PDU信元IE;UE使用窄带空口向基站发送第一空口消息,其中,第一空口消息携带封装后的数据。
可选的,空口消息为以下之一:上行信息转移消息、新创建的上行空口消息。
可选的,UE使用窄带空口与基站传输下行数据包括:
使用窄带空口接收基站发送的第二空口消息,其中,数据封装在第二空口消息的NAS PDU IE中。
可选的,在接收基站发送的第二空口消息之后,方法还包括:
S31,使用进化型的统一陆地接入网络的密钥集标识和序号eKSI and Sequence Number"IEs对第二空口消息进行解密和完整性检查,其中,eKSI Key Set Identifier for E-UTRAN,即E-UTRAN的秘钥集ID,Sequence  Number:序号;
S32,在第二空口消息是IP业务数据时,对第二空口消息基于健壮型包头压缩ROHC进行IP头解压缩得到数据。
本实施例中的数据可以为机器类型通信MTC数据。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
实施例2
在本实施例中还提供了一种传输数据的装置、终端、系统,用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的传输数据的装置的结构框图,如图3所示,该装置包括:
确定模块30,设置为确定位于基站的宽带小区和/或窄带小区的覆盖区域内;
获取模块32,设置为获取基站的窄带小区的小区信息和/或宽带小区的小区信息;
传输模块34,设置为选择使用窄带空口和/或宽带空口传输数据。
可选的,获取模块32包括:第一获取单元,设置为在所述UE当前 接入宽带小区时,从基站获取窄带小区的小区信息和/或宽带小区的小区信息;第二获取单元,设置为在所述UE当前接入窄带小区时,从基站获取宽带小区的小区信息和/或窄带小区的小区信息。
小区信息包括以下至少之一:小区标识ID、小区类型、小区带宽信息、小区频点信息、小区归属的公共陆地移动网络PLMN、小区负荷、小区能力。
图4是根据本发明实施例的终端的结构框图,如图4所示,该终端,包括:
通信接口40,设置为在终端位于基站的宽带小区和/或窄带小区的覆盖区域内时,获取基站的窄带小区的小区信息和/或宽带小区的小区信息;
射频电路42,设置为选择使用窄带空口和/或宽带空口传输数据。
图5是根据本发明实施例的传输数据的系统的结构框图,如图5所示,包括:终端50、基站52,终端50包括:通信接口502,设置为在终端位于基站的宽带小区和/或窄带小区的覆盖区域内时,获取基站的窄带小区的小区信息和/或宽带小区的小区信息;射频电路504,设置为选择使用窄带空口和/或宽带空口传输数据;
基站52包括:发送模块522,设置为向终端发送窄带小区的小区信息和/或宽带小区的小区信息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施是根据本发明的可选实施例,用于结合具体的场景对本申请进行详细说明:
本实施例考虑到智能终端(如手机)并不总是处于大数据业务中,在相当多的时间内,也具有小数据(如MTC数据)、海量连接的MTC业务 特性,或者当前仅有窄带小区覆盖的情况,本文充分探讨了利用NB-IOT/eMTC这样的窄带技术来实现智能终端小数据传输方法,以期为智能终端增强覆盖、提升系统资源的利用率,从而实现改善用户体验,以及提升无线系统容量。
为了支持智能终端的小数据业务在窄带频点传输,本实施例提出了一种数据传输方法、装置及系统,实现了使用窄带频点传输智能终端小数据。
当智能终端同时存在宽带小区覆盖和窄带小区覆盖时,智能终端灵活使用窄带空口传输小数据的具体方案如下:
智能终端从基站获取共站点的窄带小区信息。获取方式有多种,包括:
第一种方式:基站在小区广播中新增窄带小区信息。例如在宽带的广播消息中新增其共站点的窄带小区信息,包括用于终端接入到窄带小区所必须的信息,例如频点等信息。
第二种方式:基站通过RRC信令将窄带小区信息发送给智能终端。智能终端接入到宽带小区之后,如果具备窄带空口技术传输小数据的能力,则可以通过RRC信令向基站请求发送窄带小区信息,基站根据终端能力和请求内容进行选择性的发送。
进一步的,智能终端通过上行信元向基站表示其具备窄带空口传输数据能力,指示方式有多种,包括:
方式1:3GPP通过终端类型来约定该类型或者更高类型的智能终端支持窄带空口传输能力。
方式2:智能终端接入宽带小区时,通过上行RRC消息新增信元来指示该终端是否支持窄带空口传输数据能力。
上行RRC消息包括但不限于以下消息:RRC Connection Reconfiguration Complete、RRC Connection Reestablishment Complete、RRC Connection Reestablishment Request、RRC Connection Request、RRC Connection Setup Complete、UL Information Transfer、UE Information Response,或者新增上行空口消息等。
当智能终端处于有宽带小区的覆盖范围时,保持侦听宽带小区的寻呼。
窄带小区的下行寻呼间隔周期一般比较长,不能及时响应实时业务的下行业务需求。因为窄带小区主要是为MTC业务设计的,而MTC业务一般是不频繁的,两次小数据传输的时间间隔可能会很长,3GPP R13中考虑正常的数据上报模型中,时间间隔最小为30分钟。为了给其省电,窄带小区的寻呼间隔时间一般配置比较长。这个时间间隔无法满足实时业务的需求。
考虑到智能终端首先要保证高优先级业务的Qos保障,尤其是实时业务的时延要求,其寻呼依然保持宽带的寻呼机制,使得终端可以及时响应下行业务传输需求。
决策智能终端的哪些业务适合使用窄带空口传输的决策机制。
对于智能终端中哪些业务适合使用窄带空口传输的决策可以综合考虑这些因素:终端能力、同站点是否存在窄带小区配置、当前有没有其他业务、当前业务的时延要求、当前业务数据量大小、当前业务是否实时业务等业务Qos特性,以及小区负荷情况综合决策。
此外,基站中宽带频点、窄带频点的负荷均衡策略也需要考虑。当宽带频点负荷比较大而窄带频点资源比较空闲时,可以考虑将智能终端小数据传输均衡到窄带小区,实现为宽带降低负荷、充分利用窄带资源的效果;反之,即当窄带频点负荷比较大而宽带频点负荷并不高时,则不适合将在窄带小区传输智能终端业务,因为会导致窄带资源拥塞影响MTC业务传输。
这个决策可以网络侧判决,也可以是终端自行判决,有多种方式,图6是根据本发明实施例的智能终端业务是否使用NB-IOT传输决策方法示意图,见图6所示,包括:
方式1:基站决策。
在智能终端对业务发起附着(Attach)流程中,核心网将业务的Qos(服务质量)信息传递给基站,基站决策该业务是否可以在窄带上传输, 并将决策结果在空口下行RRC消息中指示给UE。
该方式的优点是核心网协议变更小。eNodeb(基站)决定业务的空口使用模式,核心网无感知。
方式2:核心网决策。
在智能终端对业务发起附着(Attach)流程中,核心网根据终端能力、业务的Qos信息决策该业务是否可以在窄带上传输,并将决策结果在Attach Rsp消息中指示给UE。
该方式的优点是基站协议变更小。核心网决定业务的空口使用模式。
方式3:智能终端自行决策。
由智能终端自行决策当前业务是否使用窄带传输。
进一步的,OMCR(无线操作维护中心)可以配置适合窄带空口传输的速率门限、业务类型等信息;基站从OMCR获取后通过RRC信令或者广播信令配置给智能终端。智能终端有上述业务需要传输时,将当前业务的业务类型、速率门限等与之比较,如果符合窄带传输的条件则使用窄带传输。
智能终端使用无连接方式在窄带空口上传输小数据。
智能UE使用窄带空口传输数据时,不改变终端当前的RRC状态,使用无连接方式发送数据。
智能终端上行小数据传输。
当智能终端上行使用窄带发送小数据时,UE将小数据封装成NAS PDU IE。UE在空口发送无连接消息其中带入信元:待发送的小数据,发送给eNodeb。上述过程中,UE保持RRC状态不变。
进一步的,上述空口消息包括但不限于:UL information transfer,新增上行空口消息等。
基站的窄带小区实例收到该消息后,根据该终端的UE ID标记找到对应的宽带小区内建立的UE实例进行处理;UE实例收到后发送给核心网。 S1口承载对应也采用无连接方式或者公共S1承载方式,以此减少S1口信令开销。
核心网收到该消息后,对上行数据的解析同已有的CP模式处理。移动性管理实体(Mobile Management Entity,简称MME)对NAS data PDU进行完整性检测和解密,获取数据。使用eKSI and Sequence Number"IEs对数据解密和完整性检查。如果是IP业务数据,则需要进行基于ROHC的IP头解压缩。
智能终端下行小数据传输。
下行小数据发送也有多种方式可以考虑。
方式1:当终端同时存在宽带小区覆盖和窄带小区覆盖时,当核心网检测到有下行小数据需要传输给智能终端时,通过宽带空口发送给终端。
因为考虑对智能终端实时下行业务的良好支持,智能终端保持对宽带小区的寻呼侦听,而不侦听窄带小区寻呼。
所以,有下行数据需要传输时,仍然使用宽带空口进行传输。对于处于IDLE态的智能终端,可以考虑使用寻呼消息随路携带小数据的方式进行传输,减少RRC新建的信令开销;对于连接态的UE,则使用公共承载或者专用承载传输小数据。
方式1的优势是智能终端下行接收处理简单;不过下行空口无法利用窄带空口技术的优势。
方式2:智能终端同时侦听宽带小区寻呼和窄带寻呼:
核心网检测到有下行数据需要传输时,首先决策该业务是否适合使用窄带空口传输,如果合适的话,则使用S1口无连接消息随路携带小数据的方式传输给eNodeb。核心网将小数据封装成NAS PDU IE,下行无连接S1消息中带入信元:NAS data PDU IE,如果加密的话,带入eKSI and Sequence Number"IEs,并且发送S1口给eNodeb的窄带小区信息。
eNodeb的窄带小区收到该信息后,发送下行空口寻呼消息给UE, 其中带入NAS data PDU IE,如果加密的话,带入eKSI and Sequence Number"IEs。
UE侦听窄带小区的寻呼,从中解析小数据。UE对NAS data PDU进行完整性检测和解密,获取数据。使用eKSI and Sequence Number"IEs对数据解密和完整性检查。如果是IP业务数据,则需要进行基于ROHC(Robust Header Compression)的IP头解压缩。方式2的优势是下行也使用窄带空口技术进行传输,充分提高资源利用率;不过终端需要同时监听宽带寻呼和窄带寻呼,实现复杂度高,成本有所增加,而且耗电也会增加。
当智能终端当前仅有窄带小区覆盖时,智能终端退化为常规MTC终端接入到窄带小区,进行小数据传输,其和网络的通讯处理同常规MTC终端。
本文上述宽带技术,除了上述提到的宽带技术之外,也适用于其他使用宽带频点的空口技术,包括但不限于2G\3G、5G新宽带空口技术等;
本文上述窄带技术,除了上述提到的窄带技术之外,也适用于其他使用窄带频点的空口技术,包括但不限于5G新窄带空口技术等。
第一部分:智能终端获取窄带小区信息实施方法
图7是根据本发明实施例的典型共站部署场景示意图,参见图7:宽带小区和窄带小区共站点部署图示。HSS为归属用户服务器(Home Subscriber Server)。
考虑到一般情况下,无线网络中宽带小区和窄带小区一般都是共站点部署,典型场景如图:划出一小部分窄带低频带宽提供窄带小区覆盖,支持MTC业务;其余部分带宽用于宽带小区,支持大速率业务或者实时业务。
在同样的频段下,窄带小区的覆盖范围比宽带小区广。例如,NB-IOT窄带覆盖范围非常广。理论上,在同样的频段下,NB-IOT比LTE提升20dB。当智能终端接入到宽带小区时,一般同时有同覆盖的窄带小区。基于窄带 小区的广域覆盖特性,智能终端可以同时处于宽带小区和窄带小区的无线覆盖,从而可以灵活使用两种空口来传输数据,尤其是可以使用窄带小区来传输小数据。
智能终端获取窄带小区信息的方式的实施方法如下:
实施例1:宽带小区广播消息通知方式:
宽带小区广播信息中新增了共站点部署的窄带小区信息,包括但不限于频点、小区ID等。可选的,广播消息中也可以新增小数据使用窄带频点发送的一些门限参数(例如1K),例如数据量门限参数等。
智能终端宽带小区广播中解析出窄带小区信息并且保存。
实施例2:RRC信令配置方式。基站通过RRC信令将窄带小区信息发送给智能终端。
智能终端接入到宽带小区时,如果该终端具备通过窄带空口技术传输数据的能力,则在RRC Request消息中带入该能力指示IE给基站;
基站收到后在RRC Setup消息中带入窄带小区信息给终端。
可选的,带入终端是否支持窄带空口能力的IE也可以携带在其他上行RRC消息中,例如:
智能终端使用窄带小区传输小数据实施方法如下:
优选实施例1:手机自带的记步仪上报其用户的跑步步数到运动监控中心。
当用户进行跑步锻炼时,通过手机自带的记步仪上报其用户的跑步步数到运动监控中心。
前提:终端已经从基站获取到了窄带小区信息以及使用窄带传输的速率门限为1K。
第一步:终端决策当前业务为适合使用窄带传输的小数据。
智能终端当前处于IDLE态。应用层有跑步记录仪产生的小数据(20BYTE)需要发送。终端判决该数据量小于窄带频点发送的数据量门 限,决定使用窄带空口发送。
第二步:终端使用窄带小区通过无连接方式发送小数据。
UE对窄带小区发起随机接入过程。
UE将小数据封装成NAS PDU IE。UE在空口发送无连接消息UL information transfer,其中带入信元:NAS data PDU IE,如果加密,则带入相应的加密信息:eKSI and Sequence Number"IEs。
UE发送该消息给基。
上述过程中,UE保持当前RRC状态不变。
第三步:基站收到后,解析出小数据,通过无连接消息发送给MME。
eNodeb从Uu口无连接消息中解析出NAS PDU。
发送S1口S1-AP INITIAL UE MESSAGE消息,其中带入信元:
NAS data PDU IE,eKSI and Sequence Number"IEs
上述过程中,eNodeb保持UE的RRC状态不变。
步骤4:MME解析上行数据:
MME对NAS data PDU进行完整性检测和解密,获取数据。
使用eKSI and Sequence Number"IEs对数据解密和完整性检查。
如果是IP业务数据,则需要进行基于ROHC的IP头解压缩。
优选实施例2:手机有一个天气预报APP,天气监控中心定时(间隔30分钟)给手机推送天气信息。
步骤1:基站部署了共站点的LTE小区和NB-IOT小区。LTE小区广播信息中新增了共站点部署的NB-IOT小区信息,包括频点、小区ID等。
广播消息中也新增小数据使用窄带频点发送的数据量门限:1K。
步骤2智能手机从LTE小区广播中解析出窄带小区信息并且保存。
步骤3:天气监控中心发送最新天气信息,500BYTE,给核心网;核心网发送给基站。
eNodeb收到后,判决当前业务为适合使用窄带传输的小数据,因为数据量为500BYTE,小于下行数据使用窄带传输的门限,决定使用窄带发送。
步骤4:eNodeb使用窄带小区下行寻呼消息传输下行数据。
eNodeb在窄带小区发送寻呼消息,其中带入下行小数据。eNodeb将小数据封装成NAS PDU IE。寻呼消息带入信元:
NAS data PDU IE,eKSI and Sequence Number"IEs
上述过程中,eNodeb保持UE的RRC状态不变。
步骤5:UE从窄带小区接收小数据。
UE侦听窄带小区的寻呼,从中解析小数据。
UE对NAS data PDU进行完整性检测和解密,获取数据。
使用eKSI and Sequence Number"IEs对数据解密和完整性检查。
如果是IP业务数据,则需要进行基于ROHC的IP头解压缩。
智能终端移动时窄带小区信息更新实施例。
智能终端移动时,如果接入的LTE小区发生改变,则终端从新接入的LTE小区获取最新的窄带小区信息。
方法1:广播消息通知方式:
终端读取最新接入的LTE小区广播信息,从中获取最新的共站点部署的NB-IOT小区信息。
方法2:RRC信令配置方式。基站通过RRC信令将窄带小区信息发送给智能终端。
智能终端移动到新的LTE小区之后,如果该终端具备窄带空口技术传输小数据的能力,则在RB reconfig消息或者RRC request消息中带入该能力指示IE;
基站收到后在RB reconfiguration complete或者RRC setup消息中带 入窄带小区信息给终端。
为了支持海量物联网终端设备,针对其海量、小数据、低成本的特性,3GPP R13引入了窄带技术NB-IOT进行支持,在5G研究中,对海量物联网设备支持的研究进一步深入加强。窄带技术在3GPP中应用将进一步增强,充分发挥其资源利用高、覆盖光的特性。
通过使用本发明所提出的小数据传输方法,可以实现智能终端的小数据业务在窄带频点传输,达到如下受益:
1,可以为智能终端增强覆盖。利用窄带小区覆盖范围广的特性,为智能终端扩大通讯区域,在那些没有宽带小区覆盖但是存在窄带小区覆盖的区域,智能终端依然可以和网络进行通讯。
可以提升系统的资源利用率,把窄带小区空闲资源充分利用。。考虑到MTC业务的不频繁传输特性,NB-IOT小区资源可能有空闲和空余,可以用于智能手机的数据传输,提升资源利用率。和调整频点的方法相比,本方法直接使用窄带资源,无需通过小区重配流程来调整频点的方法,对窄带资源的利用及时而且不影响在线业务,更有效的提升窄带资源利用率。
节省智能终端的信令开销。对智能手机的小数据传输,利用NB-IOT优化信令来节省网络侧信令开销。
为智能手机进一步省电。终端侧信令开销减少,藉此为终端省电。
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,确定位于基站的宽带小区和/或窄带小区的覆盖区域内;
S2,获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;
S3,选择使用窄带空口和/或宽带空口传输数据。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random  Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行确定位于基站的宽带小区和/或窄带小区的覆盖区域内;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行选择使用窄带空口和/或宽带空口传输数据。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本实施例提供的一种传输数据的方法、装置及系统、终端,具有以下有益效果:通过获取窄带小区和宽带小区的小区信息,UE可以选择使用窄带空口和宽带空口来与基站传输数据,扩大了UE的通信区域, UE不仅可以使用宽带空口,还可以使用窄带空口,提高了资源利用率,可以解决相关技术中UE不能灵活选择使用宽带资源或者窄带资源来传输数据的问题。

Claims (22)

  1. 一种传输数据的方法,包括:
    用户设备UE确定位于基站的宽带小区和/或窄带小区的覆盖区域内;
    所述UE获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;
    所述UE选择使用窄带空口和/或宽带空口传输数据。
  2. 根据权利要求1所述的方法,其中,所述UE获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息包括:
    所述UE当前接入宽带小区时,从基站获取窄带小区的小区信息和/或宽带小区的小区信息;
    所述UE当前接入窄带小区时,从基站获取宽带小区的小区信息和/或窄带小区的小区信息。
  3. 根据权利要求1或2所述的方法,其中,所述UE选择使用窄带空口和/或宽带空口传输数据包括:所述UE根据以下至少之一选择使用窄带空口和/或宽带空口传输数据:当前覆盖范围、业务类型、待传输的数据量大小。
  4. 根据权利要求2所述的方法,其中,所述UE通过所述宽带小区从基站获取所述窄带小区的小区信息的方法包括以下至少之一:
    接收所述基站在所述宽带小区的广播消息中携带的所述小区信息;
    接收所述基站通过无线资源控制RRC信令发送的所述小区信息。
  5. 根据权利要求2所述的方法,其中,所述UE通过所述窄带小区从基站获取所述宽带小区的小区信息包括:
    接收所述基站在所述窄带小区的广播消息中携带的所述小区信 息。
  6. 根据权利要求2所述的方法,其中,在所述UE通过所述宽带小区从基站获取所述窄带小区的小区信息之前,所述方法还包括:
    通过RRC信令向所述基站发送设置为请求所述小区信息的请求消息,其中,所述请求消息中携带设置为表征所述UE具备窄带空口传输和/或宽带空口传输的能力的指示信息。
  7. 根据权利要求6所述的方法,其中,所述请求消息携带所述UE的终端能力信息,其中,所述终端能力信息设置为表征所述UE具备窄带空口传输的能力。
  8. 根据权利要求6所述的方法,其中,所述RRC信令包括以下至少之一:RRC连接重配置完成信令、RRC连接重建完成信令、RRC连接重建请求信令、RRC连接请求信令、RRC连接设置完成信令、上行信息转移信令、UE信息应答信令、其他新增的下行空口信令。
  9. 根据权利要求1所述的方法,其中,在UE确定位于基站的宽带小区和/或窄带小区的覆盖区域内之后,所述方法还包括:
    按照预设周期侦听所述宽带小区的寻呼消息或所述窄带小区的寻呼消息;
    根据所述寻呼消息确定待传输的所述数据。
  10. 根据权利要求2所述的方法,其中,所述UE使用窄带空口传输数据包括:
    判断所述数据的业务类型是否为指定类型,和/或,判断所述数据的速率门限是否符合预设条件,和/或,判决所述UE当前所处的无线覆盖条件是否有窄带小区覆盖;
    在判断结果为是时,确定所述UE使用窄带空口传输数据。
  11. 根据权利要求1所述的方法,其中,所述UE使用窄带空口 传输数据包括:
    接收所述基站发送的设置为指示所述UE使用窄带空口传输数据的RRC消息;
    接收核心网设备发送的设置为指示所述UE使用窄带空口传输数据的附着响应消息。
  12. 根据权利要求1所述的方法,其中,所述UE使用窄带空口传输数据包括:
    所述UE使用窄带空口与基站传输上行数据;和/或,
    所述UE使用窄带空口与基站传输下行数据。
  13. 根据权利要求10所述的方法,其中,所述UE使用窄带空口与基站传输上行数据包括:
    在所述UE与所述基站保持RRC状态时,将所述数据封装成非接入层NAS分组数据单元PDU信元IE;
    所述UE使用窄带空口向所述基站发送第一空口消息,其中,所述第一空口消息携带封装后的所述数据。
  14. 根据权利要求13所述的方法,其中,所述空口消息为以下之一:上行信息转移消息、新创建的上行空口消息。
  15. 根据权利要求12所述的方法,其中,所述UE使用窄带空口与基站传输下行数据包括:
    使用窄带空口接收所述基站发送的第二空口消息,其中,所述数据封装在所述第二空口消息的NAS PDU IE中。
  16. 根据权利要求15所述的方法,其中,在接收所述基站发送的第二空口消息之后,所述方法还包括:
    使用进化型的统一陆地接入网络的密钥集标识和序号eKSI and Sequence Number"IEs对所述第二空口消息进行解密和完整性检查;
    在所述第二空口消息是IP业务数据时,对第二空口消息基于健 壮型包头压缩ROHC进行IP头解压缩得到所述数据。
  17. 根据权利要求1至16任一项所述的方法,其中,所述数据包括:机器类型通信MTC数据。
  18. 一种传输数据的装置,应用在终端中,包括:
    确定模块,设置为确定位于基站的宽带小区和/或窄带小区的覆盖区域内;
    获取模块,设置为获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;
    传输模块,设置为选择使用窄带空口和/或宽带空口传输数据。
  19. 根据权利要求18所述的装置,其中,所述获取模块包括:
    第一获取单元,设置为在UE当前接入宽带小区时,从基站获取窄带小区的小区信息和/或宽带小区的小区信息;
    第二获取单元,设置为在所述UE当前接入窄带小区时,从基站获取宽带小区的小区信息和/或窄带小区的小区信息。
  20. 根据权利要求18所述的装置,其中,所述传输模块还设置为根据以下至少之一选择使用窄带空口和/或宽带空口传输数据:当前覆盖范围、业务类型、待传输的数据量大小。
  21. 一种终端,包括:
    通信接口,设置为在终端位于基站的宽带小区和/或窄带小区的覆盖区域内时,获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;
    射频电路,设置为选择使用窄带空口和/或宽带空口传输数据。
  22. 一种传输数据的系统,包括:终端、基站,
    所述终端包括:
    通信接口,设置为在终端位于基站的宽带小区和/或窄带小区的覆盖区域内时,获取所述基站的窄带小区的小区信息和/或宽带小区的小区信息;
    射频电路,设置为选择使用窄带空口和/或宽带空口传输数据;
    所述基站包括:
    发送模块,设置为向所述终端发送所述窄带小区的小区信息和所述宽带小区的小区信息。
PCT/CN2017/095834 2016-08-22 2017-08-03 传输数据的方法、装置及系统、终端 WO2018036363A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610702551.1A CN107770755B (zh) 2016-08-22 2016-08-22 传输数据的方法、装置及系统、终端
CN201610702551.1 2016-08-22

Publications (1)

Publication Number Publication Date
WO2018036363A1 true WO2018036363A1 (zh) 2018-03-01

Family

ID=61246336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095834 WO2018036363A1 (zh) 2016-08-22 2017-08-03 传输数据的方法、装置及系统、终端

Country Status (2)

Country Link
CN (1) CN107770755B (zh)
WO (1) WO2018036363A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731574A (zh) * 2019-11-19 2022-07-08 上海诺基亚贝尔股份有限公司 用于节电的窄带信令

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519856B (zh) * 2018-05-21 2021-08-17 中国移动通信集团有限公司 一种NB-IoT的数据传输方法及终端和基站
CN108990121A (zh) * 2018-08-03 2018-12-11 中国联合网络通信集团有限公司 数据传输控制方法、装置、电子设备与存储介质
CN109495586B (zh) * 2018-12-21 2022-01-28 云南电网有限责任公司电力科学研究院 一种物联网异构无线网络的通信方法、终端及系统
CN111491376B (zh) * 2019-01-28 2023-06-13 海能达通信股份有限公司 一种空口资源调度方法及设备
CN113543257A (zh) * 2019-05-28 2021-10-22 维沃移动通信有限公司 注册切换方法、请求处理方法、信息发送方法和相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801091A (zh) * 2010-01-28 2010-08-11 北京邮电大学 一种ofdm/mimo系统中资源分配的方法和装置
US20140141792A1 (en) * 2011-06-16 2014-05-22 Telefonaktiebolaget L M Ericsson (Publ) Base Station and Method for Positioning Support
CN105722167A (zh) * 2016-05-05 2016-06-29 海能达通信股份有限公司 一种小区切换方法,终端以及核心网设备
CN105872999A (zh) * 2016-05-27 2016-08-17 海能达通信股份有限公司 一种小区切换方法,终端以及核心网设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674649B (zh) * 2008-09-11 2012-10-03 电信科学技术研究院 寻呼状态下数据传输的方法、系统及装置
CN101945409B (zh) * 2010-09-03 2014-11-19 新邮通信设备有限公司 一种无线通信系统的相邻小区间的动态干扰协调方法及其装置
CN102300331B (zh) * 2011-08-19 2013-11-27 电信科学技术研究院 数据传输方法和设备
CN102340754B (zh) * 2011-09-23 2014-07-23 电信科学技术研究院 数据发送和接收方法及设备
CN103067140B (zh) * 2011-10-20 2015-07-22 中兴通讯股份有限公司 控制信令发送方法及系统
CN103220796B (zh) * 2012-01-21 2016-09-21 电信科学技术研究院 一种下行数据传输方法及其设备
CN103228015B (zh) * 2012-01-31 2016-06-15 鼎桥通信技术有限公司 监听终端的小区切换方法、设备及系统
CN107071705B (zh) * 2012-05-23 2021-02-23 华为技术有限公司 寻呼窄带终端的方法、网络设备、基站及系统
WO2014086018A1 (zh) * 2012-12-06 2014-06-12 华为技术有限公司 寻呼方法和设备
CN105472532B (zh) * 2014-09-09 2020-11-17 中兴通讯股份有限公司 一种传输数据的方法和装置
CN105530706B (zh) * 2014-10-23 2019-07-26 电信科学技术研究院 一种传输下行数据的方法和设备
WO2016119442A1 (zh) * 2015-01-27 2016-08-04 中兴通讯股份有限公司 寻呼方法、装置、mme、基站及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801091A (zh) * 2010-01-28 2010-08-11 北京邮电大学 一种ofdm/mimo系统中资源分配的方法和装置
US20140141792A1 (en) * 2011-06-16 2014-05-22 Telefonaktiebolaget L M Ericsson (Publ) Base Station and Method for Positioning Support
CN105722167A (zh) * 2016-05-05 2016-06-29 海能达通信股份有限公司 一种小区切换方法,终端以及核心网设备
CN105872999A (zh) * 2016-05-27 2016-08-17 海能达通信股份有限公司 一种小区切换方法,终端以及核心网设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731574A (zh) * 2019-11-19 2022-07-08 上海诺基亚贝尔股份有限公司 用于节电的窄带信令
CN114731574B (zh) * 2019-11-19 2024-05-07 上海诺基亚贝尔股份有限公司 用于节电的窄带信令

Also Published As

Publication number Publication date
CN107770755A (zh) 2018-03-06
CN107770755B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US10531333B1 (en) Structure of MAC sub-header for supporting next generation mobile communication system and method and apparatus using the same
WO2018036363A1 (zh) 传输数据的方法、装置及系统、终端
EP3603220B1 (en) Qos flows inactivity counters
US10455386B2 (en) Controlling data transmissions for machine type communications in a mobile communication system
CN107040398B (zh) 一种数据传输方法、装置及系统
EP2749071B1 (en) Mobile communications system, infrastructure equipment, base station and method
US20160095108A1 (en) Method and apparatus for supporting multi-radio access technology
US20140133298A1 (en) Data Offload Method and User Equipment
JP6952095B2 (ja) ユーザ装置、基地局、方法、及びプロセッサ
CN110691040A (zh) 机器类型通信聚合器装置及方法
KR20190131411A (ko) 차세대 이동통신 시스템에서 셀 측정 정보를 수집 및 보고하는 방법 및 장치
US20220201794A1 (en) Communication control method
CN106961653B (zh) 一种实现数据传输的方法、装置和系统
WO2018036570A1 (zh) 设备移动方法、装置及系统,终端及中继设备、存储介质
JP7280895B2 (ja) 無線ネットワークノード、ユーザプレーン機能(upf)、およびページングポリシーの差別化のために実行される方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842786

Country of ref document: EP

Kind code of ref document: A1