WO2018036177A1 - 一种数据中心 - Google Patents

一种数据中心 Download PDF

Info

Publication number
WO2018036177A1
WO2018036177A1 PCT/CN2017/080899 CN2017080899W WO2018036177A1 WO 2018036177 A1 WO2018036177 A1 WO 2018036177A1 CN 2017080899 W CN2017080899 W CN 2017080899W WO 2018036177 A1 WO2018036177 A1 WO 2018036177A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
optical
wavelength
optical device
modulated
Prior art date
Application number
PCT/CN2017/080899
Other languages
English (en)
French (fr)
Inventor
肖新华
沈晓安
王岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17842602.9A priority Critical patent/EP3468071B1/en
Publication of WO2018036177A1 publication Critical patent/WO2018036177A1/zh
Priority to US16/241,380 priority patent/US10509260B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0353Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure involving an electro-optic TE-TM mode conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5165Carrier suppressed; Single sideband; Double sideband or vestigial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0003Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/13355Polarising beam splitters [PBS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0022Construction using fibre gratings

Definitions

  • the present invention relates to the field of communications, and in particular, to a data center.
  • a data center is a device that centralizes, shares, and analyzes business systems and data resources of an enterprise.
  • a server also called a server, is a device that provides computing services in a data center. It responds to service requests and processes it, and has the ability to take on services and secure services.
  • the servers and switches of the data center include lasers and supporting devices, such as cooling devices, which cause heat dissipation in the data center to be difficult, and the energy consumption is high.
  • cooling devices such as cooling devices
  • the embodiment of the invention provides a data center, which can solve the problems of high energy consumption, difficult fiber cloth and high cost in the prior art.
  • the present application provides a data center including a wavelength source, a first optical device, a first communication device, and a second communication device, the first optical device including a first port and a second port And a third port, the first communication device including at least one of a server and a switch, the second communication device including at least one of a server and a switch, wherein the wavelength source is used to generate laser light of N wavelengths, N is an integer greater than or equal to 1; a first port of the first optical device is configured to receive laser light of M wavelengths from the wavelength source, and M is an integer greater than or equal to 1 and less than or equal to N; the first optical device a second port for transmitting the M wavelength lasers to the first communication device, the M wavelength lasers comprising at least a first wavelength of laser light; the second optical port of the first optical device is further Receiving a modulated first optical signal from the first communications device, the modulated first optical signal being a modulated optical signal obtained by the first communications device modulating the traffic signal to the laser
  • the optical carrier of the first communication device of the first aspect of the present application is provided by an independently concentrated wavelength source, which can encapsulate the laser in a centralized manner and reduce the packaging cost of the laser.
  • the first communication device itself does not need to carry the laser and its supporting device, such as a laser.
  • the cooling device uses a separate wavelength source to concentrate heat dissipation, thereby solving the heat dissipation problem of the first communication device, and centrally providing the optical carrier can reduce system energy consumption.
  • the first communications device includes a first port, and the first port of the first communications device is configured to receive the M wavelengths from the first optical device The first port of the first communication device is further configured to send the modulated first optical signal to the first optical device.
  • the first port of the first communication device can receive the signal, can also send the signal, and the second end of the first optical device Only one fiber connection is required between the ports, which simplifies equipment wiring and saves costs.
  • the first communications device includes a second optical device and a first server
  • the second optical device includes a first port and a second port, the second light a first port of the device for receiving laser light of the M wavelengths from the first optical device; a second port of the second optical device for transmitting laser light of the first wavelength to the first a server;
  • the first server is configured to modulate the service signal to the laser of the first wavelength to obtain a modulated first optical signal, and send the modulated first optical signal to the second optical device
  • the second port of the second optical device is further configured to receive the modulated first optical signal from the first server;
  • the first port of the second optical device is further configured to send the modulated The first optical signal is to the first optical device.
  • the second port of the second optical device of the first communication device can transmit a signal, and can also receive a signal, and only needs one fiber connection between the first server, thereby simplifying device wiring and saving cost.
  • the first server includes a first port, and the first port of the first server is configured to receive the first wavelength from the second optical device a laser; the first port of the first server is further configured to send the modulated first optical signal to the second optical device.
  • the first server includes a third optical device and a first modulator, where the third optical device includes a first port, a second port, and a third port, where a first port of the third optical device for receiving laser light of the first wavelength from the second optical device; a second port of the third optical device for transmitting laser light of the first wavelength to a first modulator; the first modulator is configured to modulate a traffic signal to the laser of the first wavelength to obtain a modulated first optical signal, and send the modulated first optical signal to the third An optical device; the third port of the third optical device is configured to receive the modulated first optical signal from the first modulator; the first port of the third optical device is further configured to send the The modulated first optical signal is applied to the second optical device.
  • the third optical device includes a first port, a second port, and a third port, where a first port of the third optical device for receiving laser light of the first wavelength from the second optical device; a second port of the third optical device for transmitting laser light of the first wavelength to a first modul
  • the first communications device includes a fourth optical device and a first switch, where the fourth optical device includes a first port and a second port, the fourth light a first port of the device for receiving laser light of the M wavelengths from the first optical device; a second port of the fourth optical device for transmitting laser light of the first wavelength to the first a switch; the first switch is configured to modulate a service signal to the laser of the first wavelength to obtain a modulated first optical signal, and send the modulated first optical signal to the fourth optical device; The second port of the fourth optical device is further configured to receive the modulated first optical signal from the first server; the first port of the fourth optical device is further configured to send the modulated An optical signal to the first optical device.
  • the first switch includes a first port, and the first port of the first switch is configured to receive the first wavelength from the fourth optical device. a laser; the first port of the first switch is further configured to send the modulated first optical signal to the fourth optical device.
  • the first switch includes a fifth optical device and a second modulator, where the fifth optical device includes a first port, a second port, and a third port, where a first port of the fifth optical device for receiving the laser light of the first wavelength from the fourth optical device; a second port of the fifth optical device for transmitting the laser of the first wavelength to the a second modulator; the second modulator is configured to modulate a traffic signal to the laser of the first wavelength to obtain a modulated first optical signal, and send the modulated first optical signal to the fifth An optical device; a third port of the fifth optical device for receiving from the The modulated first optical signal of the second modulator; the first port of the fifth optical device is further configured to send the modulated first optical signal to the fourth optical device.
  • the data center further includes a sixth optical device, where the sixth optical device includes a first port, a second port, and a third port; a first port for receiving laser light of O wavelengths from the wavelength source, O being an integer greater than or equal to 1 and less than or equal to N; a second port of the sixth optical device for using the laser of the O wavelengths Sending to the second communication device, the laser light of the O wavelengths includes at least laser light of a first wavelength; the second communication device is configured to receive the laser light of the O wavelengths, and modulate the service signal to the first The wavelength of the laser light obtains the modulated first optical signal, and the modulated first optical signal is sent to the second port of the sixth optical device; the third port of the sixth optical device is used to The modulated first optical signal is transmitted to the first communication device.
  • the sixth optical device includes a first port, a second port, and a third port; a first port for receiving laser light of O wavelengths from the wavelength source, O being an integer greater than or equal to 1 and less than or equal to
  • the data center further includes a seventh optical device and a third communications device, where the seventh optical device includes a first port, a second port, and a third port, where The third communication device includes at least one of a server and a switch; the first port of the seventh optical device is configured to receive laser light of P wavelengths from the wavelength source, and P is an integer greater than or equal to 1 and less than or equal to N;
  • a second port of the seventh optical device is configured to send the P wavelength laser to the third communication device, where the P wavelength lasers comprise at least a laser of a first wavelength; the third communication device And receiving the laser light of the P wavelengths, modulating a service signal to the laser of the first wavelength to obtain a modulated first optical signal, and transmitting the modulated first optical signal to the seventh optical device
  • the second port of the seventh optical device is configured to send the modulated first optical signal to the second communications device.
  • the data center further includes an eighth optical device and a third communications device, where the eighth optical device includes a first port, a second port, and a third port, where
  • the third communication device includes at least one of a server and a switch;
  • the first port of the eighth optical device is configured to receive laser light of Q wavelengths from the wavelength source, and Q is an integer greater than or equal to 1 and less than or equal to N;
  • a second port of the eighth optical device is configured to send the Q wavelength laser to the second communication device, where the Q wavelength lasers comprise at least a laser of a first wavelength;
  • the second communication device And receiving the laser light of the Q wavelengths, modulating the service signal to the laser of the first wavelength to obtain a modulated first optical signal, and transmitting the modulated first optical signal to the eighth optical device
  • the second port of the eighth optical device is configured to send the modulated first optical signal to the third communications device.
  • the first optical device is a circulator.
  • the second optical device is an arrayed waveguide grating.
  • Figure 1 shows a schematic structural view of a data center
  • Figure 2a shows a schematic structural view of a wavelength source
  • Figure 2b shows a schematic structural view of another wavelength source
  • Figure 3a shows a schematic structural view of a first optical device
  • Figure 3b shows a schematic structural view of another first optical device
  • 4a is a schematic structural diagram of a wavelength division multiplexing demultiplexer
  • FIG. 4b is a schematic structural diagram of another wavelength division multiplexing demultiplexer
  • FIG. 5a is a schematic structural diagram of a colorless light transmitting module
  • FIG. 5b is a schematic structural diagram of another colorless light transmitting module
  • FIG. 5c is a schematic structural diagram of still another colorless light transmitting module
  • Figure 6a shows a schematic structural diagram of another data center
  • Figure 6b shows a schematic structural view of still another data center
  • Figure 6c shows a schematic structural view of still another data center
  • Figure 6d shows a schematic structural view of still another data center
  • Figure 6e is a schematic structural view of still another data center
  • Figure 6f shows a schematic structural diagram of still another data center
  • Figure 6g shows a schematic diagram of the structure of yet another data center.
  • a data center includes a wavelength source 11, a first optical device 12, a first communication device 13, and a second communication device 14.
  • the first optical device 12 includes a port 121, a second port 122, and a third port 123, the first communication device comprising at least one of a server and a switch, the second communication device comprising at least one of a server and a switch, wherein
  • the wavelength source 11 is used to generate laser light of N wavelengths, and N is an integer greater than or equal to 1;
  • the first port 121 of the first optical device is configured to receive laser light of M wavelengths from the wavelength source, where M is an integer greater than or equal to 1 and less than or equal to N;
  • the second port 122 of the first optical device is configured to send the M wavelength lasers to the first communication device 13, and the M wavelength lasers comprise at least a laser of a first wavelength;
  • the second port 122 of the first optical device is further configured to receive a modulated first optical signal from the first communications device, where the modulated first optical signal is a first communications device modulating the traffic signal to the a modulated optical signal obtained by a laser of a first wavelength;
  • the third port 123 of the first optical device is configured to send the modulated first optical signal to the second communication device 14.
  • the wavelength source in the data center is separated from the server and the switch, that is, the optical carrier of the first communication device is provided by an independently concentrated wavelength source, so that the laser can be packaged in a centralized manner, and the packaging cost of the laser is reduced, and the first communication is performed.
  • the device itself does not need to carry the laser and its supporting devices, such as the cooling device of the laser, and the independent wavelength source can be used for heat dissipation, so that the heat dissipation problem of the first communication device can be solved, and the optical carrier is concentrated to reduce the system energy consumption.
  • Optical carrier transmitted by the first optical device to the first communication device can be sent to the first communication device by using one optical fiber, which can reduce the number of optical fibers between the first communication device and the second communication device, and reduce the complexity of the fiber.
  • the wavelength source 11 is used to generate N wavelength lasers, and the wavelength source 11 may be composed of a multi-wavelength laser, may be composed of a plurality of single-wavelength lasers, or may be composed of other forms of lasers. As shown in FIG. 2a, the wavelength source 11 is composed of N single-wavelength lasers and a wavelength division multiplexer that multiplexes lasers of different wavelengths output by N single-wavelength lasers into one path. As shown in FIG. 2b, the wavelength source 11 is composed of a multi-wavelength laser. For example, a Quantum Dot Laser (QDL) can be used. The laser emitted by the quantum dot laser has multiple wavelengths and does not require additional wavelength division. Use the device for multiplexing.
  • QDL Quantum Dot Laser
  • the wavelength source can also be composed of a plurality of multi-wavelength lasers, which are different in wavelength from each other, and then multiplexed into one by a wavelength division multiplexer; the wavelength source can also be combined by a multi-wavelength laser and a single-wavelength laser, etc. , will not repeat them here.
  • the first optical device 12 is a multi-port device, such as a circulator. As shown in FIG. 3a, it is a schematic structural diagram of a first optical device 12.
  • the circulator has three ports, a first port 121, a second port 122, and a third port 123.
  • the circulator has a one-way circulation characteristic, and any The input light of one port is only transmitted to the next port in the direction in a certain direction. For example, the signal input from the first port 121 is output from the port 122, so that the laser of M wavelengths can be received through the first port 121.
  • the two ports 122 transmit the M wavelength lasers to the first communication device; the signals input from the port 122 are output from the port 123, so that the modulated first optical signal can be received through the second port 122 and modulated by the third port 123.
  • the subsequent first optical signal is sent to the second communication device.
  • Figure 3a shows a three-port circulator, or a four-port circulator, etc., as long as it has three ports that meet the needs.
  • FIG. 3b it is a schematic structural diagram of another first optical device 12, which is an optical coupler, receives M wavelength lasers through the first port 121, and transmits M wavelength lasers through the second port 122.
  • the first communication device is received; the modulated first optical signal is received through the second port 122, and the modulated first optical signal is transmitted to the second communication device through the third port 123.
  • a portion of the modulated first optical signal received through the second port 122 may leak out of the first port 121, and this portion of the signal may not be received by the second communication device.
  • Optocouplers can cause dissipation of light energy, but are less expensive than circulators.
  • the first optical device 12 can also be other devices as long as three of the ports can meet the requirements.
  • the first communication device 13 may include a first port, the first port of the first communication device 13 is for receiving laser light of the M wavelengths from the first optical device; the first port of the first communication device 13 is also used Transmitting the modulated first optical signal to the first optical device. If the number of M is greater than 1, a wave decomposition multiplexer is needed to separate the lasers of different wavelengths for modulation, and a wavelength division multiplexer is needed to combine the modulated optical signals of different wavelengths to pass the first The port is sent to the first optical device.
  • FIG. 4a it is a structural diagram of a wavelength division multiplexing demultiplexer having a first port 401 and a second port 402, and may further include a third port 403, a fourth port 404, .
  • the first port 401 receives the laser light of the M wavelengths from the first optical device, demultiplexes the laser of the M wavelengths, and outputs the laser of the first wavelength through the second port 402, and passes through the third port.
  • 403 outputs a laser of a second wavelength, and outputs a laser of a third wavelength through the fourth port 404.
  • the first port 401 is sent to the first optical device, and the wavelength division multiplexing demultiplexer of Figure 4a can be an arrayed waveguide grating.
  • the first communication device further includes a server
  • the laser outputting the first wavelength through the second port 402 is sent to the server, and the server modulates the service signal to the laser of the first wavelength to obtain the modulated first optical signal.
  • the modulated first optical signal is transmitted to the second port 402.
  • the first communication device further includes a switch
  • the laser outputting the first wavelength through the second port 402 can also be sent to the switch, and the switch modulates the service signal to the laser of the first wavelength to obtain the modulated first optical signal. Transmitting the modulated first optical signal to the second port 402.
  • FIG. 4b it is a structural diagram of a wavelength division multiplexing demultiplexer, including a circulator 411, a demultiplexer 412, and a multiplexer 413.
  • the circulator 411 includes ports 4111, 4112, and 4113, and is detached.
  • the consumer 412 includes ports 4121 and 4122, and the multiplexer 413 includes ports 4131 and 4132.
  • Port 4111 of circulator 411 receives the M wavelengths of laser light from the first optical device, transmits the M wavelengths of laser light through port 4112 to port 4121 of demultiplexer 412, and demultiplexer 412 will M
  • the laser of one wavelength is demultiplexed, and the laser of the first wavelength is output through the port 4122; the port 4132 of the multiplexer 413 inputs the modulated laser of the first wavelength, and the multiplexer 413 receives the modulated laser.
  • the multiplexing process is performed, sent to the port 4113 of the circulator 411 through the port 4131, and then transmitted to the first optical device through the port 4111.
  • the wavelength division multiplexing demultiplexer of Fig. 4b has a relatively complicated structure and an increased cost.
  • the laser of the first wavelength output by the port 4122 of the demultiplexer 412 can be transmitted to the server or switch of the first communication device through an optical fiber using a circulator or the like, the circulator passing from the first communication through the same optical fiber.
  • the server or switch of the device receives the modulated first optical signal and transmits the modulated first optical signal to port 4132 of multiplexer 413.
  • the server or switch of the first communication device only needs one port and is connected to the wavelength division multiplexing demultiplexer, and the port can receive the laser of the first wavelength from the wavelength division multiplexing demultiplexer.
  • the modulated first optical signal can also be transmitted to the wavelength division multiplexing demultiplexer, thereby saving cost.
  • the server or switch of the first communication device may also include two ports, one for receiving the laser of the first wavelength from the wavelength division multiplexing demultiplexer and the other for demultiplexing the wavelength division multiplexing.
  • the transmitter transmits the modulated first optical signal.
  • the laser light of the M wavelengths received by the first communication device 13 does not carry data information, and is generally called an optical carrier.
  • the process of loading the pre-transmitted service signal into the optical carrier is called laser modulation, and the laser that carries the service signal after being modulated is generally called To modulate light.
  • the first communication device 13 modulates the traffic signal to the laser light of the first wavelength to obtain the modulated first optical signal, which can be implemented by the colorless light transmitting module.
  • colorless here has two meanings. One is that the optical transmitting module does not include a laser, and is only used to carry the service signal to be transmitted to the laser; on the other hand, the wavelength of the light to be modulated due to the modulation of the service signal Insensitive, the module itself has no optical wavelength characteristics, and the wavelength of the transmitted modulated optical signal is completely dependent on the input laser wavelength to be modulated, so that blindness between the optical module and the wavelength-related device, such as the wavelength division multiplexing demultiplexer, can be realized.
  • the colorless light transmitting module can be implemented in the manner shown in Figures 5a, 5b and 5c, the server or switch of the first communication device comprising a port receiving optical carrier to transmit the modulated optical signal, in some embodiments, such as the first communication device
  • the server or switch includes two ports for receiving the optical carrier and transmitting the modulated optical signal, respectively, and then the colorless optical transmitting module may include only one modulator.
  • FIG. 5a it is a schematic structural diagram of a colorless light transmitting module, including a circulator 501 and a modulator 502.
  • the circulator 501 has a first port 5011, a second port 5012, and a third port 5013.
  • the first port 5011 of the circulator is for receiving laser light of a first wavelength; the second port 5012 of the circulator is for transmitting the laser of the first wavelength to the modulator 502; the modulator 502 is configured to modulate the traffic signal to the The laser of the first wavelength obtains the modulated first optical signal, and transmits the modulated first optical signal to the third port 5013 of the circulator; the third port 5013 of the circulator is configured to receive the modulation from the modulator 502 The first first optical signal; the first port 5011 of the circulator is also used to transmit the modulated first optical signal, for example, to the port 402 in FIG. 4a.
  • FIG. 5b it is a structural diagram of another colorless light transmitting module, including a polarization beam splitter 503, a polarization rotator 504, a TE modulator 505, and three mirrors 1, a mirror 2 and a mirror 3.
  • the polarization beam splitter includes a first port 5031, a second port 5032, and a third port 5033.
  • the first port 5031 receives the laser of the first wavelength.
  • the input laser of the first wavelength has an arbitrary polarization state
  • the polarization beam splitter 503 includes two output ports, that is, the second port 5032 and the third port 5033.
  • the light output by the second port 5032 has a TE polarization direction and is transmitted in a counterclockwise direction
  • the light output from the third port 5033 has a TM polarization direction and is transmitted in a clockwise direction.
  • the light of the TE polarization direction transmitted in the counterclockwise direction that is, a part of the laser light of the first wavelength is input to the TE modulator 505 through the reflection of the mirror 1, and the modulated light, that is, a part of the modulated first light signal passes through the mirror.
  • the rotation is the TM polarization direction
  • the polarizing beam splitter 503 is input through the third port 5033; the light in the TM polarization direction in the clockwise direction, that is, the laser of the first wavelength.
  • the other part is rotated by 90 degrees by the polarization rotator 504, and is rotated into the TE polarization direction.
  • the reflection of the mirrors 2 and 3 is input to the TE modulator 505, and the modulated light, that is, the other part of the modulated first optical signal passes through.
  • the reflection of the mirror 1 is input to the polarization beam splitter 503 by the second port 5032.
  • the polarization beam splitter 503 combines the modulated light input from the second port 5032 and the third port 5033, and the modulated first optical signal is output from the first port 5031.
  • a schematic structural diagram of a colorless light transmitting module includes a polarization splitting rotator 506 and a TE modulator 507.
  • the polarization beam splitting rotator includes a first port 5061, a second port 5062, and a third port. 5063.
  • the first port 5061 receives the laser of the first wavelength.
  • the input laser of the first wavelength has an arbitrary polarization state
  • the polarization splitting rotator 506 includes two output ports, that is, the second port 5062 and the third port 5063.
  • the polarization splitting rotator 506 splits the signal input by the first port 5061 into light of two polarization directions and rotates the light of the TM polarization direction into the TE polarization direction, the light output by the second port 5062 and the third port 5063 Has a TE polarization direction.
  • the TE optical carrier output by the second port 5062 is modulated by the TE modulator 507 and input from the third port 5063; the TE optical carrier output by the third port 5063 is modulated by the TE modulator 507 and input from the second port 5062; the polarization beam splitting is performed.
  • the 506 combines the modulated light input from the second port 5062 and the third port 5063 and outputs it from the first port 5061.
  • another data center includes a wavelength source 601, a circulator 602, a first communication device 603, and a second communication device 604.
  • the first communication device includes a wave.
  • the sub-multiplex demultiplexer 6031 and a server rack, the wavelength division multiplexing demultiplexer 6031 can use the wavelength division multiplexing demultiplexer in FIG. 4a, and the server rack includes a plurality of servers 6032, for example, There are 20, each server includes a colorless light transmitting module for modulating the optical carrier from the wavelength source and transmitting it to the second communication device.
  • the second communication device includes a wave decomposition multiplexer 6041 and a switch 6042.
  • Figure 6a includes a thick dashed line, indicating that the optical carrier generated from the wavelength source 601 passes through the circulator and is sent to the wavelength division multiplexing demultiplexer 6031. After demultiplexing, the laser of the first wavelength is sent to the second in the server rack. Server 6032. The second server 6032 modulates the data to be transmitted onto the optical carrier of the first wavelength to obtain a modulated first optical signal. Also shown in FIG. 6a is a thick solid line indicating that the modulated first optical signal is transmitted to the wavelength division multiplexing demultiplexer 6031, and the modulated optical light from other servers is multiplexed and transmitted to the second communication device via the circulator 602 for reception. Specifically, it may be demultiplexed by the wave decomposition multiplexer 6041 and sent to a receiving port of the switch 6042, thereby completing data transmission from the server to the switch.
  • the optical carrier transmitted by the circulator to the first communication device may include 20 wavelengths of laser light.
  • the first communication device 603 does not need to generate an optical carrier, only the optical carrier needs to be received, and the service signal is modulated to the laser of the first wavelength to obtain the modulated first optical signal, and thus can be implemented by the colorless optical transmitting module due to modulation.
  • the modulation of the device is not sensitive to the wavelength of the optical carrier, and the colorless optical transmitting module can be inserted into any server, and when the colorless optical transmitting module is connected to the wavelength division multiplexing demultiplexed port, the wavelength matching problem is not considered, and Blind insertion.
  • the server when the server carries the light source, the connection between the server and the wavelength division multiplexer needs to consider the wavelength matching problem, otherwise it will cause serious errors.
  • the data center of the embodiment of the present invention the requirements for the construction personnel are reduced when the system is deployed, and the fault tolerance of the system can be greatly improved.
  • the colorless optical transmitting module since the laser is not required, the colorless optical transmitting module has lower cost, lower volume and power consumption, thereby increasing the port density of the device and improving the bandwidth utilization of the device.
  • the wavelength source 601 provides an optical carrier to the first communication device 603 to implement the first communication device 603, in comparison with the embodiment of FIG. 6a.
  • the second communication device 604 transmits data
  • the wavelength source 601 also provides an optical carrier to the second communication device 604 to enable the second communication device 604 to transmit data to the first communication device 603.
  • the optical carrier output by the wavelength source is split into two by the splitter 605, one is sent to the circulator 602, and the other is sent to the circulator 606.
  • the two optical carriers contain the same wavelength, that is, the first communication.
  • the wavelength at which the device 603 transmits data to the second communication device 604 and the wavelength at which the second communication device 604 transmits data to the first communication device 603 may be the same, for example, lasers each including the first wavelength.
  • the optical carrier sent to the circulator 606 is sent to the second communication device by a port connected to the second communication device by the circulator, for example, a laser of a first wavelength, and the second communication device modulates the data to be transmitted to the optical carrier to obtain modulated light. For example, the modulated first optical signal is then sent to the first communication device through the circulator 606.
  • the overall process is similar to the process in which the first communication device 603 sends data to the second communication device 604 in the embodiment of FIG. 6a. .
  • the first communication device 603 sends data to the second communication device 604, and the second communication device 604 sends data to the first communication device 603 using the same wavelength source 601, which can reduce the number of lasers, reduce the cost, and can Further solve the problem of heat dissipation and energy consumption in the data center.
  • FIG. 6c another data center provided by the embodiment of the present invention is different from the embodiment of FIG. 6b.
  • the wavelength source used by the server to send data to the switch and the wavelength source used by the switch to send data to the server are different.
  • Sending data to the switch uses the optical carrier provided by the wavelength source 1, and the switch transmits data to the server using the optical carrier provided by the wavelength source 2.
  • the optical carrier provided by the wavelength source 1 is divided into three by the optical splitter, and optical carriers are provided for three different server racks through three different circulators respectively.
  • the optical carrier provided by the wavelength source 2 is also divided into three parts by the optical splitter, and is respectively provided to the switch through three different circulators, so that the switch is directed to the 3 A different server rack sends business data.
  • the wavelength source configuration in the embodiment of the present invention can be flexibly changed with respect to other embodiments, because the colorless light transmitting module is insensitive to wavelength.
  • the first communication device includes multiple server racks, and the optical carrier from the circulator 602 is subjected to wavelength division.
  • the demultiplexer With the demultiplexer, different wavelengths are sent to different servers, which can be located in different server racks. It can also be understood that the servers on the server rack in the previous embodiment are logical and can be a combination of servers from multiple physical racks.
  • the server and the wavelength division multiplexing demultiplexer further include a top-of-rack switch and a colorless optical transmission module. It is placed on the top switch for the modulation of the signal to be sent.
  • the connection between the server and the top switch can use ordinary transceiver modules and cables.
  • a backup device is added as compared with the embodiment of FIG. 6b, and when the communication between the server and the active switch is faulty, the standby wavelength source can be activated. Establish communication between the server and the standby switch.
  • FIG. 6g another data center provided by the embodiment of the present invention is compared with the embodiment of FIG. 6b.
  • the switch is an optical switch or an optical network, and the modulated light from the server 2 is forwarded to the optical switch or the optical network.
  • Server 102 As shown in Figure 6g, in order to ensure that the optical signal can be successfully received by the server 102, an amplifier can be added to the optical path. As shown by the dotted arrow in Fig. 6g, the optical carrier from the wavelength source passes through the optical splitter, the optical amplifier, the circulator, and the wavelength division multiplexing demultiplexer, and is sent to the colorless optical transmitting module of the server 2 for modulation and modulation.
  • the light is transmitted through the same port as the input optical carrier, the wavelength division multiplexing demultiplexer and the optical fiber, and transmitted to an input port of the optical switch through the circulator, and the optical signal from any input port can be transmitted through the optical switch. Transmission to any output port, the optical signal does not need to be converted into an electrical signal, and the modulated light after optical switching is output by the output port of the optical switch, and is demultiplexed by the wave decomposition multiplexer on the destination server side and then transmitted to Destination server 102.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种数据中心,该数据中心包括波长源、第一光器件、第一通信设备和第二通信设备,第一光器件包括第一端口、第二端口和第三端口,第一通信设备包括服务器和交换机中的至少一个,第二通信设备包括服务器和交换机中的至少一个,其中,波长源用于产生N个波长的激光,N为大于等于1的整数;第一光器件的第一端口用于接收来自波长源的M个波长的激光,M为大于等于1小于等于N的整数;第一光器件的第二端口用于将M个波长的激光发送给第一通信设备,M个波长的激光至少包括第一波长的激光;第一光器件的第二端口还用于接收来自第一通信设备的调制后的第一光信号,调制后的第一光信号为第一通信设备将业务信号调制到第一波长的激光得到的调制光信号;第一光器件的第三端口用于将调制后的第一光信号发送给第二通信设备。

Description

一种数据中心 技术领域
本发明涉及通信领域,尤其涉及一种数据中心。
背景技术
数据中心是企业的业务系统与数据资源进行集中、共享、分析的设备。服务器,也称伺服器,是数据中心提供计算服务的设备,响应服务请求并进行处理,具备承担服务并且保障服务的能力。
随着全球数据中心流量快速增长,对数据中心存储、计算等能力提出了挑战,导致数据中心规模越来越大。以一个10万台服务器规模的数据中心为例,按照每机架20台服务器计算,需要5000个服务器机架,如此大规模的数据中心,服务器及交换设备的布局组网、布纤管理、节能减排都给网络设计者带来了新的挑战。
现有技术中数据中心的服务器和交换机包括激光器及配套装置,如冷却装置,从而导致数据中心的散热困难,能耗居高不下,同时存在着光纤数量大,布纤困难、成本高的问题。
发明内容
本发明实施例提供一种数据中心,该数据中心能够解决现有技术中能耗大、布纤难、成本高的问题。
第一方面,本申请提供了一种数据中心,所述数据中心包括波长源、第一光器件、第一通信设备和第二通信设备,所述第一光器件包括第一端口、第二端口和第三端口,所述第一通信设备包括服务器和交换机中的至少一个,所述第二通信设备包括服务器和交换机中的至少一个,其中,所述波长源用于产生N个波长的激光,N为大于等于1的整数;所述第一光器件的第一端口用于接收来自所述波长源的M个波长的激光,M为大于等于1小于等于N的整数;所述第一光器件的第二端口用于将所述M个波长的激光发送给所述第一通信设备,所述M个波长的激光至少包括第一波长的激光;所述第一光器件的第二端口还用于接收来自第一通信设备的调制后的第一光信号,所述调制后的第一光信号为第一通信设备将业务信号调制到所述第一波长的激光得到的调制光信号;所述第一光器件的第三端口用于将所述调制后的第一光信号发送给第二通信设备。
本申请的第一方面的第一通信设备的光载波由独立集中的波长源提供,可以将激光器集中封装,降低激光器的封装成本,第一通信设备本身不需要携带激光器及其配套装置,例如激光器的冷却装置,使用独立的波长源可以集中散热,从而可以解决第一通信设备的散热问题,并且集中提供光载波可以降低系统能耗。
在第一方面的一种可能的实现方式中,所述第一通信设备包括第一端口,所述第一通信设备的第一端口用于接收来自所述第一光器件的所述M个波长的激光;所述第一通信设备的第一端口还用于发送所述调制后的第一光信号到所述第一光器件。第一通信设备的第一端口即可以接收信号,还可以发送信号,和第一光器件的第二端 口之间只需要一根光纤连接,因此可以简化设备布线,节约成本。
在第一方面的另一种可能的实现方式中,所述第一通信设备包括第二光器件和第一服务器,所述第二光器件包括第一端口和第二端口,所述第二光器件的第一端口用于接收来自所述第一光器件的所述M个波长的激光;所述第二光器件的第二端口用于将所述第一波长的激光发送到所述第一服务器;所述第一服务器用于将所述业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第二光器件;所述第二光器件的第二端口还用于接收来自所述第一服务器的所述调制后的第一光信号;所述第二光器件的第一端口还用于发送所述调制后的第一光信号到所述第一光器件。第一通信设备的第二光器件的第二端口即可以发送信号,还可以接收信号,和第一服务器之间只需要一根光纤连接,因此可以简化设备布线,节约成本。
在第一方面的另一种可能的实现方式中,所述第一服务器包括第一端口,所述第一服务器的第一端口用于接收来自所述第二光器件的所述第一波长的激光;所述第一服务器的第一端口还用于发送所述调制后的第一光信号到所述第二光器件。
在第一方面的另一种可能的实现方式中,所述第一服务器包括第三光器件和第一调制器,所述第三光器件包括第一端口、第二端口和第三端口,所述第三光器件的第一端口用于接收来自所述第二光器件的所述第一波长的激光;所述第三光器件的第二端口用于发送所述第一波长的激光到所述第一调制器;所述第一调制器用于将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第三光器件;所述第三光器件的第三端口用于接收来自所述第一调制器的所述调制后的第一光信号;所述第三光器件的第一端口还用于发送所述调制后的第一光信号到所述第二光器件。
在第一方面的另一种可能的实现方式中,所述第一通信设备包括第四光器件和第一交换机,所述第四光器件包括第一端口和第二端口,所述第四光器件的第一端口用于接收来自所述第一光器件的所述M个波长的激光;所述第四光器件的第二端口用于将所述第一波长的激光发送到所述第一交换机;所述第一交换机用于将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第四光器件;所述第四光器件的第二端口还用于接收来自所述第一服务器的所述调制后的第一光信号;所述第四光器件的第一端口还用于发送所述调制后的第一光信号到所述第一光器件。
在第一方面的另一种可能的实现方式中,所述第一交换机包括第一端口,所述第一交换机的第一端口用于接收来自所述第四光器件的所述第一波长的激光;所述第一交换机的第一端口还用于发送所述调制后的第一光信号到所述第四光器件。
在第一方面的另一种可能的实现方式中,所述第一交换机包括第五光器件和第二调制器,所述第五光器件包括第一端口、第二端口和第三端口,所述第五光器件的第一端口用于接收来自所述第四光器件的所述第一波长的激光;所述第五光器件的第二端口用于发送所述第一波长的激光到所述第二调制器;所述第二调制器用于将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第五光器件;所述第五光器件的第三端口用于接收来自所述 第二调制器的所述调制后的第一光信号;所述第五光器件的第一端口还用于发送所述调制后的第一光信号到所述第四光器件。
在第一方面的另一种可能的实现方式中,所述数据中心还包括第六光器件,所述第六光器件包括第一端口、第二端口和第三端口;所述第六光器件的第一端口用于接收来自所述波长源的O个波长的激光,O为大于等于1小于等于N的整数;所述第六光器件的第二端口用于将所述O个波长的激光发送给所述第二通信设备,所述O个波长的激光至少包括第一波长的激光;所述第二通信设备用于接收所述O个波长的激光,将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第六光器件的第二端口;所述第六光器件的第三端口用于将所述调制后的第一光信号发送给第一通信设备。
在第一方面的另一种可能的实现方式中,所述数据中心还包括第七光器件和第三通信设备,所述第七光器件包括第一端口、第二端口和第三端口,所述第三通信设备包括服务器和交换机中的至少一个;所述第七光器件的第一端口用于接收来自所述波长源的P个波长的激光,P为大于等于1小于等于N的整数;
所述第七光器件的第二端口用于将所述P个波长的激光发送给所述第三通信设备,所述P个波长的激光至少包括第一波长的激光;所述第三通信设备用于接收所述P个波长的激光,将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第七光器件的第二端口;所述第七光器件的第三端口用于将所述调制后的第一光信号发送给第二通信设备。
在第一方面的另一种可能的实现方式中,所述数据中心还包括第八光器件和第三通信设备,所述第八光器件包括第一端口、第二端口和第三端口,所述第三通信设备包括服务器和交换机中的至少一个;所述第八光器件的第一端口用于接收来自所述波长源的Q个波长的激光,Q为大于等于1小于等于N的整数;所述第八光器件的第二端口用于将所述Q个波长的激光发送给所述第二通信设备,所述Q个波长的激光至少包括第一波长的激光;所述第二通信设备用于接收所述Q个波长的激光,将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第八光器件的第二端口;所述第八光器件的第三端口用于将所述调制后的第一光信号发送给第三通信设备。
在第一方面的另一种可能的实现方式中,所述第一光器件为环行器。
在第一方面的另一种可能的实现方式中,所述第二光器件为阵列波导光栅。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出一种数据中心的结构示意图;
图2a示出一种波长源的结构示意图;
图2b示出另一种波长源的结构示意图;
图3a示出一种第一光器件的结构示意图;
图3b示出另一种第一光器件的结构示意图;
图4a示出一种波分复用解复用器的结构示意图;
图4b示出另一种波分复用解复用器的结构示意图;
图5a示出一种无色光发送模块的结构示意图;
图5b示出另一种无色光发送模块的结构示意图;
图5c示出再一种无色光发送模块的结构示意图;
图6a示出另一种数据中心的结构示意图;
图6b示出再一种数据中心的结构示意图;
图6c示出再一种数据中心的结构示意图;
图6d示出再一种数据中心的结构示意图;
图6e示出再一种数据中心的结构示意图;
图6f示出再一种数据中心的结构示意图;
图6g示出再一种数据中心的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,为本发明实施例提供的一种数据中心,包括波长源11、第一光器件12、第一通信设备13和第二通信设备14,所述第一光器件12包括第一端口121、第二端口122和第三端口123,所述第一通信设备包括服务器和交换机中的至少一个,所述第二通信设备包括服务器和交换机中的至少一个,其中,
所述波长源11用于产生N个波长的激光,N为大于等于1的整数;
所述第一光器件的第一端口121用于接收来自所述波长源的M个波长的激光,M为大于等于1小于等于N的整数;
所述第一光器件的第二端口122用于将所述M个波长的激光发送给所述第一通信设备13,所述M个波长的激光至少包括第一波长的激光;
所述第一光器件的第二端口122还用于接收来自第一通信设备的调制后的第一光信号,所述调制后的第一光信号为第一通信设备将业务信号调制到所述第一波长的激光得到的调制光信号;
所述第一光器件的第三端口123用于将所述调制后的第一光信号发送给第二通信设备14。
本发明实施例中,数据中心中的波长源和服务器以及交换机分离,即第一通信设备的光载波由独立集中的波长源提供,从而可以将激光器集中封装,降低激光器的封装成本,第一通信设备本身不需要携带激光器及其配套装置,例如激光器的冷却装置,使用独立的波长源可以集中散热,从而可以解决第一通信设备的散热问题,并且集中提供光载波可以降低系统能耗。第一光器件发送给第一通信设备的光载波 包括M个波长的激光,即使用了WDM技术,可以使用一条光纤发送到第一通信设备,可以降低第一通信设备和第二通信设备之间的光纤数量,降低布纤复杂度。
其中,波长源11用于产生N个波长的激光,波长源11可以由多波长激光器组成,可以由多个单波长激光器组成,也可以由其它形式的激光器组成。如图2a所示,波长源11由N个单波长激光器和一个波分复用器组成,波分复用器将N个单波长激光器输出的不同波长的激光复用为一路。如图2b所示,波长源11由一个多波长激光器组成,例如可以使用量子点激光器(Quantum Dot Laser,简称为QDL),量子点激光器发出的激光具有多个波长,不需要额外的波分复用器件进行复用。除此之外,波长源还可以由多个多波长激光器组成,彼此波长不同,然后利用波分复用器复用为一路;波长源还可以由多波长激光器与单波长激光器组合而成等等,在此不再赘述。
第一光器件12为一种多端口器件,例如可以为一个环行器。如图3a所示,为一种第一光器件12的结构示意图,环行器具有三个端口,第一端口121,第二端口122以及第三端口123,环行器具有单向循环流通的特点,任何一个端口的输入光仅按照一定方向传递至该方向上的下一端口,比如,从第一端口121输入的信号从122端口输出,因此可以通过第一端口121接收M个波长的激光,通过第二端口122将M个波长的激光发送给第一通信设备;从端口122输入的信号从端口123输出,因此可以通过第二端口122接收调制后的第一光信号,通过第三端口123将调制后的第一光信号发送给第二通信设备。图3a给出了3个端口的环行器,也可以使用4个端口的环行器等,只要其具有三个能满足需求的端口即可。
如图3b示,为另一种第一光器件12的结构示意图,其是一种光耦合器,通过第一端口121接收M个波长的激光,通过第二端口122将M个波长的激光发送给第一通信设备;通过第二端口122接收调制后的第一光信号,通过第三端口123将调制后的第一光信号发送给第二通信设备。需要注意的是,通过第二端口122接收的调制后的第一光信号的一部分会从第一端口121泄露出来,这部分信号无法被第二通信设备接收。光耦合器会造成光能量的耗散,但是相比于环行器成本更低。当然,第一光器件12还可以为其它器件,只要其中的三个端口能够满足需求即可。
第一通信设备13可以包括第一端口,第一通信设备13的第一端口用于接收来自所述第一光器件的所述M个波长的激光;第一通信设备13的第一端口还用于发送所述调制后的第一光信号到所述第一光器件。如果M的个数大于1,则需要一个波分解复用器将不同波长的激光分开以进行调制,还需要一个波分复用器将不同波长的调制后的光信号进行合路以通过第一端口发送到第一光器件。
如图4a所示,为一种波分复用解复用器的结构图,具有第一端口401和第二端口402,还可以包括第三端口403,第四端口404……。第一端口401接收来自所述第一光器件的所述M个波长的激光,将M个波长的激光进行解复用处理,并通过第二端口402输出第一波长的激光,通过第三端口403输出第二波长的激光,通过第四端口404输出第三波长的激光……。还可以通过第二端口402输入调制后的第一波长的激光,通过第三端口403输入调制后的第二波长的激光,通过第四端口404输入调制后的第三波长的激光……,然后将这些调制后的激光进行复用处理,通过 第一端口401发送到第一光器件,图4a的波分复用解复用器可以为一个阵列波导光栅。
如果第一通信设备还包括一个服务器,那么通过第二端口402输出第一波长的激光发送到该服务器,该服务器将业务信号调制到第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到第二端口402。如果第一通信设备还包括一个交换机,那么也可以通过第二端口402输出第一波长的激光发送到该交换机,该交换机将业务信号调制到第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到第二端口402。
如图4b所示,为一种波分复用解复用器的结构图,包括环行器411、解复用器412以及复用器413,环行器411包括端口4111,4112和4113,解复用器412包括端口4121和4122,复用器413包括端口4131和4132。环行器411的端口4111接收来自第一光器件的所述M个波长的激光,通过端口4112将所述M个波长的激光发送到解复用器412的端口4121,解复用器412将M个波长的激光进行解复用处理,并通过端口4122输出第一波长的激光;复用器413的端口4132输入调制后的第一波长的激光,复用器413将接收到的调制后的激光进行复用处理,通过端口4131发送到环行器411的端口4113,然后通过端口4111发送到第一光器件。
和图4a的波分复用解复用器相比,图4b的波分复用解复用器结构相对复杂,成本也会提高。可以使用一个环行器或者类似器件将解复用器412的端口4122输出的第一波长的激光通过一根光纤发送到第一通信设备的服务器或交换机,该环行器通过同一根光纤从第一通信设备的服务器或交换机接收调制后的第一光信号并将该调制后的第一光信号发送到复用器413的端口4132。使用此种方案,第一通信设备的服务器或交换机只需要一个端口和波分复用解复用器相连即可,该端口既可以从波分复用解复用器接收第一波长的激光,还可以向波分复用解复用器发送调制后的第一光信号,从而可以节省成本。当然,第一通信设备的服务器或交换机也可以包括两个端口,一个端口用于从波分复用解复用器接收第一波长的激光,另一个端口用于向波分复用解复用器发送调制后的第一光信号。
第一通信设备13接收的M个波长的激光没有携带数据信息,一般称为光载波,将预传输的业务信号加载于光载波的过程称为激光调制,被调制后携带业务信号的激光一般称为调制光。
第一通信设备13将业务信号调制到第一波长的激光得到调制后的第一光信号,可以由无色光发送模块来实现。此处的“无色”包含两方面含义,一是光发送模块中不包含激光器,仅用于将待发送的业务信号承载到激光上;另一方面是由于业务信号的调制对待调制的光波长不敏感,模块本身并无光波长特征,发送的调制光信号波长完全取决于输入的待调制激光波长,所以可以实现光模块与波长相关器件,如波分复用解复用器之间的盲插,这种特性大大降低了系统的部署和维护对人力专业性的要求及时间成本。无色光发送模块可以如图5a、5b和5c所示的方式实现,第一通信设备的服务器或交换机包括一个端口接收光载波发送调制后的光信号,在一些实施例中,如第一通信设备的服务器或交换机包括两个端口分别用于接收光载波和发送调制后的光信号,那么无色光发送模块可以仅包括一个调制器。
如图5a所示,为一种无色光发送模块的结构示意图,包括环行器501和调制器502,环行器501具有第一端口5011、第二端口5012和第三端口5013。环行器的第一端口5011用于接收第一波长的激光;环行器的第二端口5012用于发送所述第一波长的激光到调制器502;调制器502用于将业务信号调制到所述第一波长的激光,得到调制后的第一光信号,并将调制后的第一光信号发送到环行器的第三端口5013;环行器的第三端口5013用于接收来自调制器502的调制后的第一光信号;环行器的第一端口5011还用于发送所述调制后的第一光信号,例如可以发送到图4a中的端口402。
如图5b所示,为另一种无色光发送模块的结构示意图,包括偏振分束器503,偏振旋转器504,TE调制器505,以及反射镜1、反射镜2和反射镜3共3个反射镜。偏振分束器包括第一端口5031、第二端口5032和第三端口5033。第一端口5031接收第一波长的激光,一般情况下,输入的第一波长的激光具有任意的偏振状态,偏振分束器503包括两个输出端口,即第二端口5032和第三端口5033,第二端口5032输出的光具有TE偏振方向,沿逆时针方向传输,第三端口5033输出的光具有TM偏振方向,沿顺时针方向传输。沿逆时针方向传输的TE偏振方向的光,即第一波长的激光的一部分经过反射镜1的反射输入TE调制器505,调制后的光,即调制后的第一光信号的一部分经过反射镜3和2以及偏振旋转器504旋转90度后,旋转为TM偏振方向,并通过由第三端口5033输入偏振分束器503;沿顺时针方向的TM偏振方向的光,即第一波长的激光的另一部分经过偏振旋转器504旋转90度后,旋转为TE偏振方向,经过反射镜2和3的反射输入TE调制器505,调制后的光,即调制后的第一光信号的另一部分经过反射镜1的反射由第二端口5032输入偏振分束器503。偏振分束器503将第二端口5032和第三端口5033输入的调制后的光进行合路后得到调制后的第一光信号从第一端口5031输出。
如图5c所示,为再一种无色光发送模块的结构示意图,包括偏振分束旋转器506和TE调制器507,偏振分束旋转器包括第一端口5061、第二端口5062和第三端口5063。第一端口5061接收第一波长的激光,一般情况下,输入的第一波长的激光具有任意的偏振状态,偏振分束旋转器506包括两个输出端口,即第二端口5062和第三端口5063,由于偏振分束旋转器506将第一端口5061输入的信号分成两个偏振方向的光,并将TM偏振方向的光旋转为TE偏振方向,因此第二端口5062和第三端口5063输出的光具有TE偏振方向。第二端口5062输出的TE光载波经过TE调制器507调制后从第三端口5063输入;第三端口5063输出的TE光载波经过TE调制器507调制后从第二端口5062输入;偏振分束旋转器506将第二端口5062和第三端口5063输入的调制后的光进行合路后从第一端口5061输出。
如图6a所示,为本发明实施例提供的另一种数据中心,包括波长源601,环行器602,第一通信设备603和第二通信设备604,具体地,第一通信设备包括一个波分复用解复用器6031和一个服务器机架,波分复用解复用器6031可以使用图4a中的波分复用解复用器,服务器机架上包括多个服务器6032,例如可以为20个,每个服务器上包括一个无色光发送模块,用于对来自波长源的光载波进行调制并发送到第二通信设备。第二通信设备包括一个波分解复用器6041和一个交换机6042。图 6a中包括粗虚线,表示从波长源601产生的光载波经过环行器后发送到波分复用解复用器6031,解复用后将第一波长的激光送到服务器机架中的第二个服务器6032。第二个服务器6032将待发送的数据调制到第一波长的光载波上得到调制后的第一光信号。图6a中还包括粗实线,表示调制后的第一光信号发送到波分复用解复用器6031,和来自其他服务器的调制光复用后通过环行器602发送到第二通信设备进行接收,具体地,可以经过波分解复用器6041解复用后送到交换机6042的一个接收端口,从而完成了服务器向交换机方向的数据传输。
如果一个服务器机架包括20台服务器,则环行器发送到第一通信设备的光载波中可以包括20种波长的激光。以满足20台服务器向交换机发送数据的需求。由于第一通信设备603不需要产生光载波,仅需要接收光载波,并将业务信号调制到第一波长的激光得到调制后的第一光信号,因此可以由无色光发送模块来实现,由于调制器的调制对光载波的波长不敏感,可以将无色光发送模块插入任意服务器,并且将无色光发送模块和波分复用解复用的端口相连时,也不要考虑波长的匹配问题,可以实现盲插。现有技术中服务器携带光源的情况下,服务器和波分复用器之间的连接需要考虑波长匹配问题,否则将会导致严重错误。使用本发明实施例的数据中心,在系统部署时,对施工人员的要求降低,能够极大地提高系统的容错性。此外相对于普通光发送模块,由于不需要激光器,无色光发送模块的成本更低,体积和功耗更低,从而可以增加设备的端口密度,提高设备的带宽利用率。
如图6b所示,为本发明实施例提供的再一种数据中心,与图6a的实施例相比,波长源601除了向第一通信设备603提供光载波以实现第一通信设备603向第二通信设备604发送数据,波长源601还向第二通信设备604提供光载波以实现第二通信设备604向第一通信设备603发送数据。波长源输出的光载波经过分光器605后分成两份,一份送往环行器602,另一份送往环行器606,通常情况下,这两份光载波包含的波长相同,即第一通信设备603向第二通信设备604发送数据使用的波长和第二通信设备604向第一通信设备603发送数据使用的波长可以相同,例如均包括第一波长的激光。送往环行器606的光载波被环行器与第二通信设备连接的端口发送到第二通信设备,例如第一波长的激光,第二通信设备将待发送数据调制到光载波后得到调制光,例如调制后的第一光信号,然后通过环行器606送到第一通信设备,整体过程与图6a的实施例中第一通信设备603向第二通信设备604发送数据的过程类似,不再赘述。
本发明实施例中第一通信设备603向第二通信设备604发送数据和第二通信设备604向第一通信设备603发送数据使用同一个波长源601,可以减少激光器的数量,降低成本,并可以进一步解决数据中心的散热和能耗问题。
如图6c所示,为本发明实施例提供的再一种数据中心,与图6b的实施例相比,服务器向交换机发送数据使用的波长源和交换机向服务器发送数据使用的波长源不同,服务器向交换机发送数据使用波长源1提供的光载波,交换机向服务器发送数据使用波长源2提供的光载波。波长源1提供的光载波被分光器分为3份,分别通过三个不同的环行器为三个不同的服务器机架提供光载波。波长源2提供的光载波也被分光器分为3份,分别通过三个不同的环行器提供给交换机,以使得交换机向3 个不同的服务器机架发送业务数据。
因为无色光发送模块对波长不敏感,本发明实施例中的波长源配置相对于其他实施例可以灵活变化。
如图6d所示,为本发明实施例提供的再一种数据中心,与图6b的实施例相比,第一通信设备包括多个服务器机架,来自环行器602的光载波经过波分复用解复用器后,不同的波长被送到不同的服务器,这些服务器可以位于不同的服务器机架。也可以理解为,前面实施例中服务器机架上的服务器是逻辑上的,可以是来自多台物理机架上的服务器组合。
如图6e所示,为本发明实施例提供的再一种数据中心,与图6b的实施例相比,服务器与波分复用解复用器之间还包括架顶交换机,无色光发送模块置于架顶交换机上用于待发送信号的调制,服务器与架顶交换机之间的连接可以采用普通的收发模块及线缆。
如图6f所示,为本发明实施例提供的再一种数据中心,与图6b的实施例相比,增加了备用装置,当服务器与主用交换机之间通信故障时,可以启动备用波长源,建立服务器与备用交换机之间的通信。
如图6g所示,为本发明实施例提供的再一种数据中心,与图6b的实施例相比,交换机为光交换机或光网络,来自服务器2的调制光被光交换机或光网络转发到服务器102。如图6g所示,为了保证光信号能够被服务器102顺利接收,可以在光路中增加放大器。如图6g中的虚线箭头所示,来自波长源的光载波经过分光器、光放大器、环行器、波分复用解复用器后,被送到服务器2的无色光发送模块进行调制,调制光经过与输入光载波相同的端口、波分复用解复用器和光纤反向传输,并经过环行器发送到光交换机的一个输入口,通过光交换机,能够将来自任意输入端口的光信号传输至任意输出端口,过程中不需要将光信号转换为电信号,经过光交换后的调制光由光交换机的输出口输出,并经过目的服务器侧的波分解复用器解复用后传输至目的服务器102。
应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法, 可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种数据中心,所述数据中心包括波长源、第一光器件、第一通信设备和第二通信设备,所述第一光器件包括第一端口、第二端口和第三端口,所述第一通信设备包括服务器和交换机中的至少一个,所述第二通信设备包括服务器和交换机中的至少一个,其中,
    所述波长源用于产生N个波长的激光,N为大于等于1的整数;
    所述第一光器件的第一端口用于接收来自所述波长源的M个波长的激光,M为大于等于1小于等于N的整数;
    所述第一光器件的第二端口用于将所述M个波长的激光发送给所述第一通信设备,所述M个波长的激光至少包括第一波长的激光;
    所述第一光器件的第二端口还用于接收来自第一通信设备的调制后的第一光信号,所述调制后的第一光信号为第一通信设备将业务信号调制到所述第一波长的激光得到的调制光信号;
    所述第一光器件的第三端口用于将所述调制后的第一光信号发送给第二通信设备。
  2. 根据权利要求1所述的数据中心,所述第一通信设备包括第一端口,所述第一通信设备的第一端口用于接收来自所述第一光器件的所述M个波长的激光;所述第一通信设备的第一端口还用于发送所述调制后的第一光信号到所述第一光器件。
  3. 根据权利要求1所述的数据中心,所述第一通信设备包括第二光器件和第一服务器,所述第二光器件包括第一端口和第二端口,
    所述第二光器件的第一端口用于接收来自所述第一光器件的所述M个波长的激光;
    所述第二光器件的第二端口用于将所述第一波长的激光发送到所述第一服务器;
    所述第一服务器用于将所述业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第二光器件;
    所述第二光器件的第二端口还用于接收来自所述第一服务器的所述调制后的第一光信号;
    所述第二光器件的第一端口还用于发送所述调制后的第一光信号到所述第一光器件。
  4. 根据权利要求3所述的数据中心,所述第一服务器包括第一端口,所述第一服务器的第一端口用于接收来自所述第二光器件的所述第一波长的激光;所述第一服务器的第一端口还用于发送所述调制后的第一光信号到所述第二光器件。
  5. 根据权利要求3所述的数据中心,所述第一服务器包括第三光器件和第一调制器,所述第三光器件包括第一端口、第二端口和第三端口,
    所述第三光器件的第一端口用于接收来自所述第二光器件的所述第一波长的激光;
    所述第三光器件的第二端口用于发送所述第一波长的激光到所述第一调制器;
    所述第一调制器用于将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第三光器件;
    所述第三光器件的第三端口用于接收来自所述第一调制器的所述调制后的第一光信号;
    所述第三光器件的第一端口还用于发送所述调制后的第一光信号到所述第二光器件。
  6. 根据权利要求1所述的数据中心,所述第一通信设备包括第四光器件和第一交换机,所述第四光器件包括第一端口和第二端口,
    所述第四光器件的第一端口用于接收来自所述第一光器件的所述M个波长的激光;
    所述第四光器件的第二端口用于将所述第一波长的激光发送到所述第一交换机;
    所述第一交换机用于将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第四光器件;
    所述第四光器件的第二端口还用于接收来自所述第一服务器的所述调制后的第一光信号;
    所述第四光器件的第一端口还用于发送所述调制后的第一光信号到所述第一光器件。
  7. 根据权利要求6所述的数据中心,所述第一交换机包括第一端口,所述第一交换机的第一端口用于接收来自所述第四光器件的所述第一波长的激光;所述第一交换机的第一端口还用于发送所述调制后的第一光信号到所述第四光器件。
  8. 根据权利要求6所述的数据中心,所述第一交换机包括第五光器件和第二调制器,所述第五光器件包括第一端口、第二端口和第三端口,
    所述第五光器件的第一端口用于接收来自所述第四光器件的所述第一波长的激光;
    所述第五光器件的第二端口用于发送所述第一波长的激光到所述第二调制器;
    所述第二调制器用于将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第五光器件;
    所述第五光器件的第三端口用于接收来自所述第二调制器的所述调制后的第一光信号;
    所述第五光器件的第一端口还用于发送所述调制后的第一光信号到所述第四光器件。
  9. 根据权利要求1所述的数据中心,所述数据中心还包括第六光器件,所述第六光器件包括第一端口、第二端口和第三端口;
    所述第六光器件的第一端口用于接收来自所述波长源的O个波长的激光,O为大于等于1小于等于N的整数;
    所述第六光器件的第二端口用于将所述O个波长的激光发送给所述第二通信设备,所述O个波长的激光至少包括第一波长的激光;
    所述第二通信设备用于接收所述O个波长的激光,将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第六光器件的第二端口;
    所述第六光器件的第三端口用于将所述调制后的第一光信号发送给第一通信设 备。
  10. 根据权利要求1所述的数据中心,所述数据中心还包括第七光器件和第三通信设备,所述第七光器件包括第一端口、第二端口和第三端口,所述第三通信设备包括服务器和交换机中的至少一个;
    所述第七光器件的第一端口用于接收来自所述波长源的P个波长的激光,P为大于等于1小于等于N的整数;
    所述第七光器件的第二端口用于将所述P个波长的激光发送给所述第三通信设备,所述P个波长的激光至少包括第一波长的激光;
    所述第三通信设备用于接收所述P个波长的激光,将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第七光器件的第二端口;
    所述第七光器件的第三端口用于将所述调制后的第一光信号发送给第二通信设备。
  11. 根据权利要求1所述的数据中心,所述数据中心还包括第八光器件和第三通信设备,所述第八光器件包括第一端口、第二端口和第三端口,所述第三通信设备包括服务器和交换机中的至少一个;
    所述第八光器件的第一端口用于接收来自所述波长源的Q个波长的激光,Q为大于等于1小于等于N的整数;
    所述第八光器件的第二端口用于将所述Q个波长的激光发送给所述第二通信设备,所述Q个波长的激光至少包括第一波长的激光;
    所述第二通信设备用于接收所述Q个波长的激光,将业务信号调制到所述第一波长的激光得到调制后的第一光信号,将所述调制后的第一光信号发送到所述第八光器件的第二端口;
    所述第八光器件的第三端口用于将所述调制后的第一光信号发送给第三通信设备。
  12. 根据权利要求1所述的数据中心,所述第一光器件为环行器。
  13. 根据权利要求3所述的数据中心,所述第二光器件为阵列波导光栅。
PCT/CN2017/080899 2016-08-22 2017-04-18 一种数据中心 WO2018036177A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17842602.9A EP3468071B1 (en) 2016-08-22 2017-04-18 Data center
US16/241,380 US10509260B2 (en) 2016-08-22 2019-01-07 Data center

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610702520.6 2016-08-22
CN201610702520.6A CN107769853B (zh) 2016-08-22 2016-08-22 一种数据中心

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/241,380 Continuation US10509260B2 (en) 2016-08-22 2019-01-07 Data center

Publications (1)

Publication Number Publication Date
WO2018036177A1 true WO2018036177A1 (zh) 2018-03-01

Family

ID=61246379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080899 WO2018036177A1 (zh) 2016-08-22 2017-04-18 一种数据中心

Country Status (4)

Country Link
US (1) US10509260B2 (zh)
EP (1) EP3468071B1 (zh)
CN (1) CN107769853B (zh)
WO (1) WO2018036177A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215773B1 (en) * 2020-06-14 2022-01-04 Mellanox Technologies Denmark Aps Pluggable laser module with improved safety
CN115460483A (zh) * 2021-06-09 2022-12-09 华为技术有限公司 一种交换机以及通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097083A1 (en) * 2009-10-07 2011-04-28 Trex Enterprises Corp. Data center optical network
CN103441942A (zh) * 2013-08-26 2013-12-11 重庆大学 基于软件定义的数据中心网络系统及数据通信方法
CN104052618A (zh) * 2013-03-15 2014-09-17 国际商业机器公司 用于集成交换机波分复用的控制平面

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2351775A1 (en) * 2000-06-30 2001-12-30 Furukawa Electric Co., Ltd. Optical amplifier, light source module and optical system
EP1418653A4 (en) * 2001-07-02 2005-05-04 Furukawa Electric Co Ltd SEMICONDUCTOR LASER DEVICE, SEMICONDUCTOR LASER MODULE, AND OPTICAL FIBER AMPLIFIER USING THE SAME
US6845117B2 (en) * 2001-11-02 2005-01-18 The Furukawa Electric Co., Ltd. Semiconductor laser device, semiconductor laser module, and optical fiber amplifier using the device or module
JP2009101400A (ja) * 2007-10-24 2009-05-14 Sumitomo Electric Ind Ltd レーザ加工装置及びレーザ加工方法
US7983314B2 (en) * 2008-02-13 2011-07-19 General Photonics Corporation Polarization stable lasers
US8508747B2 (en) * 2010-02-17 2013-08-13 Baker Hughes Incorporated Systems and methods for optically generated trigger multiplication
TWI493899B (zh) * 2013-12-27 2015-07-21 Ind Tech Res Inst 動態波長分配光路由及應用此光路由的終端裝置
CN105099556B (zh) 2014-04-24 2017-11-24 华为技术有限公司 一种数据中心网络以及部署所述数据中心网络的方法
JP6824605B2 (ja) * 2015-11-12 2021-02-03 キヤノン株式会社 増幅素子、光源装置及び撮像装置
JP2017176811A (ja) * 2016-03-28 2017-10-05 ソニー株式会社 撮像装置、撮像方法及び医療用観察機器
US10170888B2 (en) * 2016-07-27 2019-01-01 Oracle International Corporation Dual-use laser source comprising a cascaded array of hybrid distributed feedback lasers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097083A1 (en) * 2009-10-07 2011-04-28 Trex Enterprises Corp. Data center optical network
CN104052618A (zh) * 2013-03-15 2014-09-17 国际商业机器公司 用于集成交换机波分复用的控制平面
CN103441942A (zh) * 2013-08-26 2013-12-11 重庆大学 基于软件定义的数据中心网络系统及数据通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3468071A4 *

Also Published As

Publication number Publication date
CN107769853A (zh) 2018-03-06
EP3468071B1 (en) 2022-05-11
EP3468071A4 (en) 2019-07-10
CN107769853B (zh) 2020-06-09
EP3468071A1 (en) 2019-04-10
US20190137816A1 (en) 2019-05-09
US10509260B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
CN107615139B (zh) 偏振无关反射式调制器
US20220149582A1 (en) Multi-Wavelength Laser System for Optical Data Communication Links and Associated Methods
US20220019038A1 (en) Optical interconnect for switch applications
EP3266127B1 (en) Optical transceiver using duplex media, self-homodyne detection (shd), coherent detection, and uncooled laser
CN110494796B (zh) 偏振不敏感集成光学调制器
US20170346445A1 (en) Dense Wavelength-Division Multiplexing (DWDM) Network and Method
CN111181653B (zh) 波分复用偏振无关反射调制器
US9743160B2 (en) Memory access system, apparatus, and method
WO2018214851A1 (en) Polarization insensitive micro ring modulator
CN104285395A (zh) 光学数据传输系统
CN102143407A (zh) 一种波分复用的无源光网络的传输方法、系统及装置
US11621795B2 (en) Polarization-diversity optical power supply
US20140314368A1 (en) Directly-modulated multi-polarization optical transmitters
KR20230074066A (ko) 편파 다이버시티 광학 전력 공급기
WO2018036177A1 (zh) 一种数据中心
US10230486B2 (en) Optical transceiver with common end module
WO2008113273A1 (fr) Équipement de multiplexage en longueur d'ondes et procédé de mise en œuvre de la fonction de multiplexage en longueur d'ondes
US10261276B2 (en) Datacenter interconnection system
WO2023105729A1 (ja) 光経路切り替えシステム
WO2021238688A1 (zh) 集群光源和产生集群光源的方法
US20230083467A1 (en) Polarization-diversity optical power supply
CN115460483A (zh) 一种交换机以及通信系统
JP2024518250A (ja) 全光メモリバッファ付き光スイッチ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017842602

Country of ref document: EP

Effective date: 20190104

NENP Non-entry into the national phase

Ref country code: DE