WO2018036009A1 - 智能天线装置和智能天线通信系统 - Google Patents

智能天线装置和智能天线通信系统 Download PDF

Info

Publication number
WO2018036009A1
WO2018036009A1 PCT/CN2016/107371 CN2016107371W WO2018036009A1 WO 2018036009 A1 WO2018036009 A1 WO 2018036009A1 CN 2016107371 W CN2016107371 W CN 2016107371W WO 2018036009 A1 WO2018036009 A1 WO 2018036009A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
array antenna
ring array
smart
smart antenna
Prior art date
Application number
PCT/CN2016/107371
Other languages
English (en)
French (fr)
Inventor
傅强
卢苇
侯轶
刘晓钰
Original Assignee
深圳前海科蓝通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海科蓝通信有限公司 filed Critical 深圳前海科蓝通信有限公司
Publication of WO2018036009A1 publication Critical patent/WO2018036009A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to an antenna system, and more particularly to a smart antenna device and a smart antenna communication system.
  • WIFI technology has become a favorite communication technology because of its many advantages. WIFI applications have also gradually become mainstream technologies in the commercial market from early home applications. However, due to the characteristics of the commercial market that distinguish the home market, there are many defects in the commercial process of WIFI technology, which has become a pain point for users.
  • Conventional WIFI access point (AP) antenna arrays generally use omnidirectional antennas, and can not achieve directional narrow wave selection. Moreover, the conventional antenna array mostly uses a tiled antenna array, which results in a great requirement for the antenna plane size.
  • a smart antenna device comprises a top, a middle and a bottom three coaxially arranged top ring array antenna, a middle ring array antenna and a bottom ring array antenna; each of the ring array antennas comprises n directional radiation antenna elements, The n is a positive integer and not less than 2; each directional radiation antenna element covers a 360°/n sector; the bottom ring array antenna is a horizontally polarized antenna, and n orientations in the bottom ring array antenna The radiating antenna array element is n slot-coupled dipoles placed horizontally; the middle layer loop array antenna is a vertically polarized antenna, and the n directional radiating antenna elements of the middle layer loop array antenna are vertically placed n-eight woods An antenna; the top ring array antenna is identical in structure and corresponding to the bottom ring array antenna; wherein one end of each of the Yagi antennas is positioned between two adjacent array elements in the bottom loop array antenna, and The other end is positioned between two adjacent array elements corresponding to the bottom ring array
  • a smart antenna communication system includes an antenna control system and a smart antenna device as described above; the antenna control system is for controlling the operation of the smart antenna device.
  • the above-mentioned smart antenna device adopts an orthogonal polarization loop antenna array laminated structure, which can reduce the antenna size, and each loop antenna array includes n directional radiation antenna array elements, and each directional radiation antenna array element covers 360°/n.
  • the sectored area enables directional narrow wave selection of omnidirectional spatial scanning.
  • FIG. 1 is a perspective view of a smart antenna device in an embodiment
  • Figure 2 is a perspective view of the smart antenna device of Figure 1 as viewed from another perspective;
  • Figure 3 is a rear elevational view of the top ring array antenna of Figure 1;
  • Figure 4 is a front elevational view of the top ring array antenna of Figure 1;
  • FIG. 5 is a schematic structural view of a Yagi antenna of the middle layer annular array antenna of FIG. 1;
  • Figure 6 is a rear elevational view of the bottom ring array antenna of Figure 1;
  • Figure 7 is a front elevational view of the bottom ring array antenna of Figure 1.
  • the smart antenna device in this embodiment can implement directional narrow wave selection, so it can also be called a directional narrow wave selection smart antenna device.
  • the directional narrow wave selection smart antenna device comprises three annular array antennas which are stacked on top, middle and bottom and are coaxially arranged.
  • the three ring array antennas are top-level ring array antenna 1 (shown in Figures 3 and 4), middle ring array antenna 2 (shown in Figure 5), and bottom ring array antenna 3 from top to bottom ( Figure 6 and Figure 7)).
  • Each of the ring array antennas includes n directional radiating antenna elements, where n is a positive integer and not less than 2.
  • Each directional radiation antenna element covers a 360°/n sector area.
  • the n directional radiation antenna elements are led out through the coaxial line and soldered to the interface of the single-pole n-throw switch of an antenna control board.
  • each annular array antenna includes eight directional radiating antenna elements, each directional radiating antenna element covering a 45° sector.
  • the eight array elements achieve omnidirectional coverage, and the eight array elements are led out through the coaxial line 90 and soldered to the interface of the single-pole eight-throw switch of the antenna control system.
  • the number of directional radiation antenna elements in each of the annular array antennas may be set according to the set coverage sector, and is not limited to the above embodiment.
  • the antenna control system is a switch selection system that can include a radio frequency switching circuit and an FPGA control circuit. Each annular array is controlled by a single-pole, eight-throw RF switch, and each switch is responsible for the switching of one antenna element.
  • the antenna switch is controlled by the FPGA control circuit.
  • the FPGA control circuit is connected to the CPU of the motherboard through the GPIO.
  • the control commands issued by the CPU are transmitted to the FPGA through the GPIO, and the control of the antenna switch is implemented by the FPGA control circuit.
  • the control software module is mainly responsible for the direction of the incoming wave (DOA, Direction) Of signal Arrival) determines and forms a beam selection control command.
  • the control software controls the omnidirectional beam scanning of the antenna array to obtain RSSI (Received Signal) in different directions of different receiving ends.
  • RSSI Receiveived Signal
  • Strength Indication received signal strength indication
  • the control software forms a beam selection command according to the user orientation information acquired in the broadcast mode, and selects a suitable directional beam to point to the user.
  • one side of the bottom layer annular array antenna 3 facing the middle layer annular array antenna 2 is front side, that is, as shown in FIG. 7; the other side of the bottom layer annular array antenna 3 is the back side, that is, as shown in FIG. 6 is shown.
  • the bottom ring array antenna 3 is a horizontally polarized antenna, and the corresponding eight directional radiation antenna elements are eight slot coupled dipoles 31 placed horizontally.
  • the bottom ring array antenna 3 further includes a second carrier substrate 33 carrying respective eight slot coupling dipoles. The area surrounded by the eight slot coupling dipoles 31 on the second carrier substrate 33 is provided as the connection of the bottom ring array antenna 3.
  • Area (GND) 32 is an area surrounded by the eight slot coupling dipoles 31 on the second carrier substrate 33.
  • the side of the second carrier substrate 33 facing the middle layer annular array antenna 2 is a front side (as shown in FIG. 7), and the other side is a back side (as shown in FIG. 6).
  • Eight slot coupling dipoles 31 are disposed on the back surface of the second carrier substrate 33.
  • the bottom ring array antenna 3 also includes a feed point 34 and a microstrip line 35.
  • the feed point 34 is connected to the microstrip line 35.
  • the feed point 34 is drawn through the coaxial line 90.
  • the feed point 34 and the microstrip line 35 of the bottom ring array antenna 3 are disposed on the front surface of the second carrier substrate 33.
  • the side of the top ring array antenna 1 facing the middle layer loop array antenna 2 is the back side, that is, as shown in FIG. 3; the other side of the top layer loop array antenna 1 is the front side, that is, as shown in the figure. 4 is shown.
  • the top ring array antenna 1 is disposed in parallel with the bottom ring array antenna 3 and the directional radiation antenna elements on the two are arranged one-to-one.
  • the top ring array antenna 1 is identical in structure to the bottom ring array antenna 3 and is disposed correspondingly. It will not be described here one by one.
  • the middle ring array antenna 2 is a vertically polarized antenna, and the corresponding eight directional radiation antenna elements are eight Yagi antennas (also referred to as lead antennas) placed vertically.
  • One end of the same Yagi antenna is positioned between two adjacent array elements in the bottom ring array antenna 3, and the other end is positioned in the top ring array antenna 1 and two adjacent array elements on the bottom ring array antenna 3.
  • the three loop array antennas are orthogonally polarized loop antenna array stacks. structure.
  • each Yagi antenna includes a first carrier substrate 23 and a director 26, a vibrator 25, and a reflector 24 which are disposed on the first carrier substrate 23 and are linearly arranged in the direction toward the center of the middle annular array antenna 2.
  • the side of the first carrier substrate 23 of each Yagi antenna that is in contact with the top ring array antenna 1 has a straight line 21 at one end, extending from the central region of the top ring array antenna 1 toward the edge of the top ring array antenna 1;
  • the edge of the top ring array antenna 1 is turned toward the side close to the bottom ring array antenna 1 to form a fold line segment 22.
  • the vibrator 25 has a figure eight shape.
  • each Yagi antenna is located at both ends of the figure-eight head (i.e., the vibrator 25) and is led out through the coaxial line 90.
  • Both the director 26 and the reflector 24 are in the shape of a " ⁇ ", and the pointed ends of the figure-eight head of the vibrator 25, the director 26 and the reflector 24 are all on the same straight line and both face the center of the middle-layer annular array antenna 2.
  • the director 26 is located in a region corresponding to the folding line segment 22, and the reflector 24 is located in a region corresponding to the straight line segment 21.
  • One end of the vibrator 25 is located in a corresponding region of the folding line segment 22, and the other end is located in a region corresponding to the straight line segment 21. .
  • the three ring array antennas in the same period select three array elements with the same radiation direction.
  • the three ring array antennas are reduced in diameter according to the order of upper, middle and lower, which facilitates the laying of the laminated antenna and facilitates the connection of the coaxial line 90; and it is very easy to form a beam in which the three antennas are directed at the same time, thereby making It has better directional narrow wave selectivity.
  • the antenna design of the above smart antenna device adopts a unique orthogonal polarization loop antenna array laminated structure. That is, as described above, the top and bottom two antennas adopt a horizontally polarized directional slot dipole to form a ring array, and the middle layer antenna adopts a vertically polarized Yagi antenna to form a ring array. To ensure MIMO (Multiple-Input Multiple-Output, multi-input and multi-output) has the best performance. At the same time, the three antennas must maintain the same direction, that is, when the switch is switched, the three corresponding array elements with the same electromagnetic wave radiation direction on the three ring array antennas are controlled.
  • the above smart antenna device has the following advantages compared with the tile antenna array layout generally adopted in the market today:
  • the stacked antenna array structure can reduce the size of the antenna, and the tile antenna array structure requires a large size of the antenna plane;
  • the stacked antenna array structure is very easy to form a beam with three antennas pointing at the same time at the same time, and has better directional narrow wave selectivity.
  • the tile antenna array structure is mainly difficult to form when the antenna arrays are mutually blocked in the case where the distance between the three antenna arrays is insufficient.
  • each of the ring array antennas is an eight-element antenna array, and the eight-element antenna array can form a narrow beam with a beam width of 45 degrees, which can effectively reduce the AP coverage area and reduce the channel in a certain period of time.
  • the competition window reduces the intensity of channel competition.
  • the number n of directional radiating antenna elements of each annular array antenna may be selected from 2 to 32.
  • the directional narrow wave selection smart antenna device of this embodiment has the following advantageous effects.
  • the three antennas Due to the directional beam switching antenna, the three antennas cover a certain range within a certain 45 degree range in a certain period of time. Therefore, users in the area are more competitive under the channel competition mechanism during the period, and channel resource allocation is easily obtained.
  • the three antenna beams will point to the next 45-degree range to satisfy the user of the next area to acquire channel resources, thus switching 8 areas one by one to achieve antenna omnidirectional coverage.
  • the antenna beam returns to the first 45 degree region to continue communication.
  • the partition time-sharing beam switching can effectively increase the system capacity.
  • the beam of the beam-switched antenna in this embodiment stays in a certain area for only one-eighth of the switching period. If two beam-switched antennas are arranged in the same limited space. Compared with the layout of two omnidirectional antennas AP, the APs have superimposed beams on each other, resulting in extremely low probability of APs interfering with each other. Moreover, in many cases, the next beam-switching AP can meet the requirements of large system capacity, effectively avoiding the AC+ multi-AP wiring architecture, reducing the difficulty of network construction, reducing the number of APs, and reducing the cost of the network.
  • the system can easily realize omnidirectional spatial scanning, and the user can calculate the RSSI and MAC address by scanning, and the CPU can calculate the power spectrum. Therefore, when using WIFI for positioning, not only the distance of the user from the AP but also the specific orientation of the user can be determined. Furthermore, due to the popularity of wireless local area networks, a wide range of positioning, monitoring and tracking can be achieved.
  • the switched antenna uses a directional antenna instead of the omnidirectional antenna, the directional antenna is relatively easy to be made into a high-gain antenna, and the antenna gain can be increased to increase the coverage distance of the whole machine.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种智能天线装置,包括上、中、下三层叠置且同轴设置的顶层环形阵列天线(1)、中层环形阵列天线(2)和底层环形阵列天线(3);每个环形阵列天线均包括n个定向辐射天线阵元,所述n为正整数且不小于2;每个定向辐射天线阵元覆盖360°/n的扇形区域;底层环形阵列天线(3)为水平极化天线,所述中层环形阵列天线(2)为垂直极化天线,所述顶层环形阵列天线(1)与所述底层环形阵列天线(3)结构相同并且相对应设置,使三个环形阵列天线为正交极化环形天线阵列叠层结构。

Description

智能天线装置和智能天线通信系统
【技术领域】
本发明涉及一种天线系统,尤其涉及一种智能天线装置和智能天线通信系统。
【背景技术】
WIFI技术因其诸多优点已经成为极受人们喜爱的通信技术。WIFI应用也由早期的家庭应用逐步成为商用市场的主流技术。然而,由于商用市场区别家用市场的一些特点,致使WIFI技术在商用过程中存在众多缺陷,成为用户的痛点问题。传统的WIFI的访问接入点(AP)的天线阵列普遍采用全向天线,不能实现定向窄波选择。并且传统的天线阵列多采用平铺式天线阵列,从而导致对天线平面尺寸要求极大。
【发明内容】
有鉴于此,有必要提出一种能缩小天线尺寸且能全向空间扫描的定向窄波选择智能天线装置及采用所述智能天线装置的智能天线通信系统。
一种智能天线装置,包括上、中、下三层叠置且同轴设置的顶层环形阵列天线、中层环形阵列天线和底层环形阵列天线;每个环形阵列天线均包括n个定向辐射天线阵元,所述n为正整数且不小于2;每个定向辐射天线阵元覆盖360°/n的扇形区域;所述底层环形阵列天线为水平极化天线,所述底层环形阵列天线中的n个定向辐射天线阵元为水平放置的n个缝隙耦合偶极子;所述中层环形阵列天线为垂直极化天线,所述中层环形阵列天线的n个定向辐射天线阵元为竖直放置的n个八木天线;所述顶层环形阵列天线与所述底层环形阵列天线结构相同并且相对应设置;其中,每个八木天线的一端定位在所述底层环形阵列天线中两个相邻的阵元之间,且另一端定位在所述顶层环形阵列天线中与所述底层环形阵列天线对应的两个相邻阵元之间,使三个环形阵列天线为正交极化环形天线阵列叠层结构。
一种智能天线通信系统,包括天线控制系统和如上所述的智能天线装置;所述天线控制系统用于对所述智能天线装置的工作进行控制。
上述智能天线装置中采用正交极化环形天线阵列叠层结构,可以缩小天线尺寸,并且每个环形天线阵列均包括n个定向辐射天线阵元,每个定向辐射天线阵元覆盖360°/n的扇形区域,从而能够实现全向空间扫描的定向窄波选择。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是一实施例中的智能天线装置的立体示意图;
图2是图1中的智能天线装置从另一视角观察的立体示意图;
图3是图1中的顶层环形阵列天线的后视图;
图4是图1中的顶层环形阵列天线的主视图;
图5是图1中的中层环形阵列天线的八木天线的结构示意图;
图6是图1中的底层环形阵列天线的后视图;
图7是图1中的底层环形阵列天线的主视图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1及图2,本实施例中的智能天线装置可以实现定向窄波选择,故也可以称之为定向窄波选择智能天线装置。定向窄波选择智能天线装置包括上、中、下三层叠置且同轴设置的三个环形阵列天线。三个环形阵列天线由上至下依次为顶层环形阵列天线1(如图3及图4所示)、中层环形阵列天线2(如图5所示)、底层环形阵列天线3(如图6及图7所示)。
每个环形阵列天线均包括n个定向辐射天线阵元,其中n为正整数且不小于2。每个定向辐射天线阵元覆盖360°/n的扇形区域。n个定向辐射天线阵元通过同轴线引出,焊接于一个天线控制板的单刀n掷开关的接口。在本实施例中,每个环形阵列天线均包括八个定向辐射天线阵元,每个定向辐射天线阵元覆盖45°的扇形区域。八个阵元实现全向覆盖,八个阵元通过同轴线90引出,焊接于天线控制系统的单刀八掷开关的接口。在其他的实施例中,每个环形阵列天线中的定向辐射天线阵元的数量可以根据其设定的覆盖扇形区域进行设定,而并不限于上述实施例。
天线控制系统是一个开关选择系统,可包括射频开关电路和FPGA控制电路。每一个环形阵列均由一个单刀八掷的射频开关控制,每一路开关负责一个天线阵元的通断。天线开关受控于FPGA控制电路。FPGA控制电路通过GPIO与主板的CPU相连。CPU发出的控制指令通过GPIO传给FPGA,由FPGA控制电路实施对天线开关的控制。控制软件模块主要负责接收端来波方向(DOA,Direction of signal arrival)判断以及形成波束选择控制指令。广播模式下控制软件控制天线阵列全向波束扫描,获取不同接收端在各方向的RSSI(Received Signal Strength Indication,接收的信号强度指示),形成功率密度谱,以判断接收端用户的具体方位。工作模式下控制软件根据广播模式获取的用户方位信息,形成波束选择指令,选择合适的指向型波束指向用户。
请再次参阅图6及图7。在本实施例中,以底层环形阵列天线3面对中层环形阵列天线2的一侧为正面,也即如图7所示;以底层环形阵列天线3的另一侧为背面,也即如图6所示。底层环形阵列天线3为水平极化天线,相应的八个定向辐射天线阵元为水平放置的八个缝隙耦合偶极子31。底层环形阵列天线3还包括承载相应八个缝隙耦合偶极子的第二载体基板33,在第二载体基板33上八个缝隙耦合偶极子31环绕的区域设置为底层环形阵列天线3的接地区(GND)32。第二载体基板33面向中层环形阵列天线2的一侧为正面(如图7所示),相对的另一侧为背面(如图6所示)。八个缝隙耦合偶极子31设置在第二载体基板33的背面。底层环形阵列天线3还包括馈点34和微带线35。馈点34与微带线35连接。并且,馈点34通过同轴线90引出。底层环形阵列天线3的馈点34和微带线35设置在第二载体基板33的正面。
请再次参阅图3及图4。在本实施例中,以顶层环形阵列天线1面对中层环形阵列天线2的一侧为背面,也即如图3所示;以顶层环形阵列天线1的另一侧为正面,也即如图4所示。顶层环形阵列天线1与底层环形阵列天线3平行设置且二者上的定向辐射天线阵元一一对应设置。在本实施例中,顶层环形阵列天线1与底层环形阵列天线3结构相同并且相对应设置。在此不再一一叙述。
中层环形阵列天线2为垂直极化天线,相应的八个定向辐射天线阵元为竖直放置的八个八木天线(也称引向天线)。同一个八木天线的一端定位在底层环形阵列天线3中两个相邻的阵元之间,另一端定位在顶层环形阵列天线1中与底层环形阵列天线3上的两个相邻的阵元相对应的两个相邻阵元之间(也即每个八木天线分别垂直于顶层环形阵列天线1和底层环形阵列天线2设置),使三个环形阵列天线为正交极化环形天线阵列叠层结构。
每个八木天线的结构如图5所示。每个八木天线包括第一载体基板23以及设置在第一载体基板23上且朝中层环形阵列天线2中心的方向依次直线排列的引向器26、振子25和反射器24。每个八木天线的第一载体基板23与顶层环形阵列天线1接触的一侧,其一端为直线段21,从顶层环形阵列天线1的中心区域向顶层环形阵列天线1的边缘延伸;另一端在顶层环形阵列天线1的边缘朝靠近底层环形阵列天线1的一侧转折形成折线段22。振子25呈八字形。每个八木天线的馈点27位于八字形头部(也即振子25)的两端,并通过同轴线90引出。引向器26、反射器24均呈“<”状,振子25的八字形头部、引向器26和反射器24的尖角均位于同一直线上且均朝向中层环形阵列天线2的中心。在每个八木天线中,引向器26位于折线段22对应的区域,反射器24位于直线段21对应的区域,振子25一端位于折线段22对应的区域,另一端位于直线段21对应的区域。
三个环形阵列天线的各个对应阵元的电磁波辐射方向保持一致且做天线开关切换时,同一时段内三个环形阵列天线选择辐射方向相同的三个阵元。三个环形阵列天线依上、中、下的次序,直径逐层减小,方便叠层天线铺设且便于同轴线90的连接;并且非常容易形成同一时刻三路天线指向一致的波束,从而使得其具有较好的定向窄波选择性。
上述智能天线装置的天线设计采用独特的正交极化环形天线阵列叠层结构。即如上所述,顶层和底层两路天线采用水平极化定向缝隙偶极子组成环形阵列,中间层的天线采用垂直极化八木天线组成环形阵列。为保证MIMO(Multiple-Input Multiple-Output,多输入多输出)性能最优,同一时刻三路天线必须保持同一指向,也即在进行开关切换时,控制三个环形阵列天线上电磁波辐射方向相同的三个对应的阵元。上述智能天线装置相比于目前市场普遍采用的平铺式天线阵列布局方式有如下优点:
A,叠层式天线阵列结构可缩小天线尺寸,而平铺式天线阵列结构对天线平面尺寸要求极大;
B,叠层式天线阵列结构非常容易形成同一时刻三路天线指向一致的波束,具有较好的定向窄波选择性。平铺式天线阵列结构在三个天线阵列距离不足的情况下主要受天线阵列间相互阻挡而难以形成。
上述智能天线装置中,每个环形阵列天线均为八阵元天线阵列,八阵元天线阵列能形成波束宽度45度的窄波束,能有效减小某一时段内的AP覆盖区域,减小信道竞争窗口,减小信道竞争的激烈程度。当然,在其他的实施例中,每个环形阵列天线的定向辐射天线阵元的数量n的选择范围可为2~32。
本实施例的定向窄波选择智能天线装置具备以下有益效果。
1.有效的提高AP的系统容量
由于采用定向波束切换天线,在某时段内三路天线同时覆盖特定45度范围内的区域,因此该时段该区域内的用户在信道竞争机制下更具有竞争力,容易获得信道资源分配。在下一时段内,三路天线波束将指向下一个45度范围的区域,以满足下一个区域的用户获取信道资源,如此逐一切换8个区域,实现天线全向覆盖。通过合理的设定波束切换周期,可以保证天线波束切换到其他区域的时间段内本区域的用户与AP仍保持连线。在一个切换周期完成后,天线波束重新回到第一个45度区域继续进行通信。如此通过分区分时波束切换可有效的提高系统容量。
2.商用环境下降低整机之间的干扰,减小布网施工难度,同时减少AP数量,降低AP成本。
与传统的全向天线AP相比,本实施例中的波束切换式天线的波束在某区域内停留的时间仅仅是切换周期的八分之一,若同一有限空间内布局两台波束切换式天线的AP,与布局两台全向天线AP相比,其整机间波束相互叠加导致AP相互干扰的概率极小。而且,在很多情况下一台波束切换式AP可以满足大系统容量的需求,有效的避开了AC+多AP的布线架构,减小布网施工的难度,减少AP个数,降低布网成本。
3.可实现高精度的WIFI室内定位功能
由于采用波束切换式天线,系统可很方便地实现全向空间扫描,通过扫描采集用户的RSSI及MAC地址,由CPU计算形成功率谱。因此用WIFI进行定位时不但可以确定用户离AP的距离,同时可以确定用户具体的方位。更进一步的,由于无线局域网的普及,可实现大范围的定位、监测和追踪。
4.有利于提高天线增益,增加整机覆盖距离
由于切换式天线采用定向天线替代全向天线,定向天线比较容易做成高增益天线,天线增益提高可增加整机的覆盖距离。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种智能天线装置,包括上、中、下三层叠置且同轴设置的顶层环形阵列天线、中层环形阵列天线和底层环形阵列天线;每个环形阵列天线均包括n个定向辐射天线阵元,所述n为正整数且不小于2;每个定向辐射天线阵元覆盖360°/n的扇形区域;
    所述底层环形阵列天线为水平极化天线,所述底层环形阵列天线中的n个定向辐射天线阵元为水平放置的n个缝隙耦合偶极子;
    所述中层环形阵列天线为垂直极化天线,所述中层环形阵列天线的n个定向辐射天线阵元为竖直放置的n个八木天线;
    所述顶层环形阵列天线与所述底层环形阵列天线结构相同并且相对应设置;
    其中,每个八木天线的一端定位在所述底层环形阵列天线中两个相邻的阵元之间,且另一端定位在所述顶层环形阵列天线中与所述底层环形阵列天线对应的两个相邻阵元之间,使三个环形阵列天线为正交极化环形天线阵列叠层结构。
  2. 如权利要求1所述的智能天线装置,其特征在于:三个环形阵列天线上的各个对应阵元的电磁波辐射方向保持一致。
  3. 如权利要求1所述的智能天线装置,其特征在于:所述三个环形阵列天线的直径依上、中、下的次序逐层减小。
  4. 如权利要求1所述的智能天线装置,其特征在于:每个八木天线包括第一载体基板以及设置在所述第一载体基板上且朝所述中层环形阵列天线中心的方向依次直线排列的引向器、振子、反射器。
  5. 如权利要求4所述的智能天线装置,其特征在于:所述振子呈八字形,每个八木天线的馈点位于相应八字形头部的两端;所述引向器、所述反射器均呈“<”状,所述振子的八字形头部、所述引向器和所述反射器的尖角均位于同一直线上且均朝向中层环形阵列天线的中心。
  6. 如权利要求4所述的智能天线装置,其特征在于,所述第一载体基板与所述顶层环形阵列天线接触的一侧的一端为直线段,且从顶层环形阵列天线的中心区域向顶层环形阵列天线的边缘延伸;所述第一载体基板与所述顶层环形阵列天线接触的一侧的另一端在顶层环形阵列天线的边缘朝靠近底层环形阵列天线的一侧转折形成折线段。
  7. 如权利要求6所述的智能天线装置,其特征在于:在每个八木天线中,所述引向器位于所述折线段对应的区域;所述反射器位于所述直线段对应的区域;所述振子一端位于所述折线段对应的区域,所述振子另一端位于所述直线段对应的区域。
  8. 如权利要求1所述的智能天线装置,其特征在于:所述底层环形阵列天线还包括承载相应n个缝隙耦合偶极子的第二载体基板,和在所述第二载体基板上n个缝隙耦合偶极子环绕的区域的接地区;所述接地区作为所述底层环形阵列天线的接地区。
  9. 如权利要求8所述的智能天线装置,其特征在于:所述第二载体基板面向所述中层环形阵列天线的一侧为正面,所述第二载体基板的另一侧为背面;所述n个缝隙耦合偶极子设置在所述第二载体基板的背面。
  10. 如权利要求9所述的智能天线装置,其特征在于,所述底层环形阵列天线还包括馈点和微带线;所述馈点与所述微带线连接;所述底层环形阵列天线的馈点和微带线设置在第二载体基板的正面。
  11. 如权利要求1所述的智能天线装置,其特征在于:每个环形阵列天线均包括八个定向辐射天线阵元,每个定向辐射天线阵元覆盖45°的扇形区域。
  12. 如权利要求1所述的智能天线装置,其特征在于,所述n为2~32。
  13. 一种智能天线通信系统,其特征在于,包括天线控制系统和如权利要求1所述的智能天线装置;所述天线控制系统用于对所述智能天线装置的工作进行控制。
  14. 如权利要求13所述的智能天线通信系统,其特征在于,所述天线控制系统包括射频开关电路和控制电路;所述射频开关电路包括三个单刀n掷开关;每个单刀n掷开关与一个环形阵列天线连接;每个单刀n掷开关中的每一路开关负责一个定向辐射天线阵元的通断;所述控制电路用于对所述单刀n掷开关进行控制。
  15. 如权利要求14所述的智能天线通信系统,其特征在于,每个环形阵列天线上的n个定向辐射天线阵元通过同轴线引出,焊接于对应的单刀n掷开关上。
  16. 如权利要求14所述的智能天线通信系统,其特征在于,所述控制电路为FPGA控制电路。
  17. 如权利要求14所述的智能天线通信系统,其特征在于,所述天线控制系统还包括CPU;所述CPU与所述控制电路连接;所述CPU用于发出控制指令给所述控制电路;所述控制电路用于在所述控制指令的控制下对所述智能天线装置进行控制。
  18. 如权利要求17所述的智能天线通信系统,其特征在于,所述CPU还用于对接收端来波方向进行判断并形成波束选择控制指令。
  19. 如权利要求18所述的智能天线通信系统,其特征在于,所述CPU用于在广播模式下控制所述智能天线装置进行全向波束扫描,获取不同接收端在各个方向上的接收的信号强度指示,以判断接收端用户的具体方位。
  20. 如权利要求19所述的智能天线通信系统,其特征在于,所述CPU用于在工作模式下根据广播模式获取的用户方位信息,形成波束选择指令,以选择指向型波束指向用户。
PCT/CN2016/107371 2016-08-26 2016-11-26 智能天线装置和智能天线通信系统 WO2018036009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610735892.9A CN106159464A (zh) 2016-08-26 2016-08-26 一种定向窄波选择智能天线系统
CN201610735892.9 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018036009A1 true WO2018036009A1 (zh) 2018-03-01

Family

ID=57343164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107371 WO2018036009A1 (zh) 2016-08-26 2016-11-26 智能天线装置和智能天线通信系统

Country Status (2)

Country Link
CN (1) CN106159464A (zh)
WO (1) WO2018036009A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411904A (zh) * 2018-12-11 2019-03-01 天津七六四通信导航技术有限公司 一种十六阵元天线
CN114512798A (zh) * 2020-11-16 2022-05-17 华为技术有限公司 可重构天线及通信设备
CN116111365A (zh) * 2023-04-10 2023-05-12 福建省泉州华鸿通讯有限公司 一种便携式高增益天线
FR3136601A1 (fr) * 2022-06-14 2023-12-15 Thales Antenne active dont les éléments rayonnants sont montés sur une surface conique

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159464A (zh) * 2016-08-26 2016-11-23 深圳前海科蓝通信有限公司 一种定向窄波选择智能天线系统
CN106953166A (zh) * 2017-04-28 2017-07-14 深圳前海科蓝通信有限公司 一种窄波束扫描智能mimo天线
CA3063197C (en) 2017-05-04 2022-02-15 Huawei Technologies Co., Ltd. Dual-polarized radiating element and antenna
US10863366B2 (en) * 2017-06-23 2020-12-08 Qualcomm Incorporated Receiver beamforming for serving and neighbor cell measurements
CN109428177A (zh) * 2017-08-23 2019-03-05 中兴通讯股份有限公司 一种分集天线装置和终端
EP3669421A1 (en) 2017-09-12 2020-06-24 Huawei Technologies Co., Ltd. Dual-polarized radiating element and antenna
WO2019090527A1 (zh) * 2017-11-08 2019-05-16 上海诺基亚贝尔股份有限公司 一种采用可重构天线进行室内定位的方法和装置
CN109888513B (zh) * 2017-12-06 2021-07-09 华为技术有限公司 天线阵列及无线通信设备
TWI666824B (zh) * 2018-01-31 2019-07-21 酷米科技股份有限公司 用以控制智能天線模組之電子裝置及智能天線操舵方法
US10862211B2 (en) 2018-08-21 2020-12-08 Htc Corporation Integrated antenna structure
TWI682585B (zh) * 2018-10-04 2020-01-11 和碩聯合科技股份有限公司 天線裝置
CN109638411B (zh) * 2018-12-27 2020-11-13 电子科技大学 一种双频双极化可重构智能wifi天线
CN209748545U (zh) * 2019-03-28 2019-12-06 深圳市威富通讯技术有限公司 无线信号收发设备
CN110444902B (zh) * 2019-08-08 2021-03-23 普联技术有限公司 一种智能天线装置和系统
CN110519684A (zh) * 2019-08-20 2019-11-29 深圳市微能信息科技有限公司 用于测量蓝牙载波相位和相位差的天线阵列及定位系统
CN114122684B (zh) * 2020-08-30 2023-04-18 华为技术有限公司 天线装置和无线设备
CN113541745B (zh) * 2021-07-01 2023-03-31 军事科学院系统工程研究院网络信息研究所 一种多模式动态多波束天线系统
CN115296712B (zh) * 2022-10-08 2022-12-20 天津讯联科技有限公司 具有环形定向天线阵切换功能的数据链装置的切换方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709673A (zh) * 2012-04-05 2012-10-03 京信通信系统(中国)有限公司 宽频带双极化全向吸顶天线
CN103606757A (zh) * 2013-11-16 2014-02-26 华中科技大学 一种双频双极化天线阵
CN103887613A (zh) * 2014-03-06 2014-06-25 广州海格通信集团股份有限公司 相位干涉仪的无源测向天线阵及相位干涉仪
US20150070243A1 (en) * 2004-12-09 2015-03-12 Ruckus Wireless, Inc. Coverage antenna apparatus with selectable horizontal and vertical polarization elements
CN104600422A (zh) * 2014-12-19 2015-05-06 康凯科技(杭州)有限公司 一种双极化共轴八木天线系统
CN105449345A (zh) * 2014-09-19 2016-03-30 三星电子株式会社 天线设备及其操作方法
CN106159464A (zh) * 2016-08-26 2016-11-23 深圳前海科蓝通信有限公司 一种定向窄波选择智能天线系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703083B (zh) * 2016-04-26 2018-09-28 深圳前海智讯中联科技有限公司 一种多波束选择智能天线阵列及具有该天线阵列的系统
CN205944449U (zh) * 2016-08-26 2017-02-08 深圳前海科蓝通信有限公司 一种定向窄波选择智能天线系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150070243A1 (en) * 2004-12-09 2015-03-12 Ruckus Wireless, Inc. Coverage antenna apparatus with selectable horizontal and vertical polarization elements
CN102709673A (zh) * 2012-04-05 2012-10-03 京信通信系统(中国)有限公司 宽频带双极化全向吸顶天线
CN103606757A (zh) * 2013-11-16 2014-02-26 华中科技大学 一种双频双极化天线阵
CN103887613A (zh) * 2014-03-06 2014-06-25 广州海格通信集团股份有限公司 相位干涉仪的无源测向天线阵及相位干涉仪
CN105449345A (zh) * 2014-09-19 2016-03-30 三星电子株式会社 天线设备及其操作方法
CN104600422A (zh) * 2014-12-19 2015-05-06 康凯科技(杭州)有限公司 一种双极化共轴八木天线系统
CN106159464A (zh) * 2016-08-26 2016-11-23 深圳前海科蓝通信有限公司 一种定向窄波选择智能天线系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411904A (zh) * 2018-12-11 2019-03-01 天津七六四通信导航技术有限公司 一种十六阵元天线
CN109411904B (zh) * 2018-12-11 2023-09-19 天津七六四通信导航技术有限公司 一种十六阵元天线
CN114512798A (zh) * 2020-11-16 2022-05-17 华为技术有限公司 可重构天线及通信设备
FR3136601A1 (fr) * 2022-06-14 2023-12-15 Thales Antenne active dont les éléments rayonnants sont montés sur une surface conique
EP4293823A1 (fr) * 2022-06-14 2023-12-20 Thales Antenne active dont les éléments rayonnants sont montés sur une surface conique
CN116111365A (zh) * 2023-04-10 2023-05-12 福建省泉州华鸿通讯有限公司 一种便携式高增益天线

Also Published As

Publication number Publication date
CN106159464A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2018036009A1 (zh) 智能天线装置和智能天线通信系统
TWI452763B (zh) 智慧型天線系統
US9209526B2 (en) Broadband dual-polarized omni-directional antenna and feeding method using the same
CN103268980B (zh) 天线系统
US9478873B2 (en) Method and apparatus for the alignment of a 60 GHz endfire antenna
US7643794B2 (en) Multi-sector antenna apparatus
EP2929635B1 (en) Smart antenna platform for indoor wireless local area networks
US8224253B2 (en) Directional antenna sectoring system and methodology
WO2006133609A1 (fr) Réseau d’antennes horizontales intelligent à séparation élevée
JP2005539458A (ja) マルチパターンアンテナ
CN202585725U (zh) 双极化全向吸顶天线
US10629993B2 (en) Method and apparatus for a 60 GHz endfire antenna
CN106299724A (zh) 智能双频天线系统
WO2006062059A1 (ja) 携帯無線機
US20160218426A1 (en) Power management in wireless communications devices
CN205944449U (zh) 一种定向窄波选择智能天线系统
CN114976665A (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
WO2022012672A1 (zh) 自适应智能天线、分布式rru及无线通信系统
CN107394346B (zh) 通信装置
KR101271356B1 (ko) 원형편파 안테나 시스템
CN203326118U (zh) 天线
CN114639958A (zh) 一种三频小型化美化楼宇天线
US11923620B1 (en) Compact ceramic chip antenna array based on ultra-wide band three-dimensional direction finding
US11978963B2 (en) Beam diversity by smart antenna with passive elements
TW201935771A (zh) 天線系統及天線模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16914029

Country of ref document: EP

Kind code of ref document: A1