WO2018035587A1 - Regenerador ativo para motores térmicos e processo de controle para ciclo termodinâmico do regenerador ativo - Google Patents

Regenerador ativo para motores térmicos e processo de controle para ciclo termodinâmico do regenerador ativo Download PDF

Info

Publication number
WO2018035587A1
WO2018035587A1 PCT/BR2017/000096 BR2017000096W WO2018035587A1 WO 2018035587 A1 WO2018035587 A1 WO 2018035587A1 BR 2017000096 W BR2017000096 W BR 2017000096W WO 2018035587 A1 WO2018035587 A1 WO 2018035587A1
Authority
WO
WIPO (PCT)
Prior art keywords
regenerator
active
thermal
energy
engine
Prior art date
Application number
PCT/BR2017/000096
Other languages
English (en)
French (fr)
Inventor
Marno Iockheck
LUIS Mauro MOURA
Saulo Finco
Original Assignee
Associacao Paranaense De Cultura - Apc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Associacao Paranaense De Cultura - Apc filed Critical Associacao Paranaense De Cultura - Apc
Publication of WO2018035587A1 publication Critical patent/WO2018035587A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/08Reciprocating-piston machines or engines not otherwise provided for
    • F01B29/10Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/057Regenerators

Definitions

  • the present invention relates to a thermal motor active regenerator and its thermodynamic cycle, more specifically a synchronized heat motor controlled by a thermal motor in which it is active in the active regenerator to It performs the process of heat regeneration, the removal of heat from the thermal engine's working gas at one stage of its cycle and regenerating it at another stage of the cycle.
  • Energy in the process of transferring to the regenerator elements occurs by conducting heat from the gas to the regenerator elements, part of the energy is still in the gas and is lost in the engine cooling system and part of the energy is returned, ie regenerated from the regenerator elements to the engine gas and used in the continuity of the engine thermodynamic process.
  • regenerators In order for all gas energy to be regenerated, this energy must be fully transferred to the regenerator elements, this process requires infinite dimensions to the regenerator and its elements, conductors and thermal insulators must have ideal properties. Thus, in practice, regenerators have very limited regeneration efficiencies and directly impact the efficiency limits of the thermal motor to which they are connected.
  • regenerator is currently built with thermally conductive elements and static thermal insulating elements, ie energy is retained only by conducting heat from the thermal engine working gas to the generally solid regenerator thermal storage element, usually a goal. !, and is regenerated by the same process by conducting the heat contained in the regenerator elements to the gas again.
  • This concept a considerable part of the energy is not transferred to the regenerator elements, it goes with the gas and is dissipated, lost to the environment or cold source, the same occurs in regeneration. This characteristic of the passive regenerator imposes limits on the efficiency of thermal motors.
  • the object of the invention proposes to accelerate and increase the regeneration heat transfer rate through the active heat exchange concept, that is, the motor to which the regenerator is connected acts directly on a mechanical element of the regenerator which performs compression and expansion processes of a gas and it absorbs part of the energy from the thermal engine temperature lowering processes through regenerator expansion processes and regenerates them, returns the energy (heat) in the thermal engine temperature increase processes through compression processes.
  • the regenerator compression and expansion processes offer a difference! greater thermal stress that occurs in passive regenerators and therefore the heat transfer rate (energy) will be higher and consequently there will be more energy conserved compared to passive regenerators and this effect will impact on higher efficiency of the thermal motors.
  • the active regenerator Another important feature of the active regenerator is the controllability that it offers as to the moment of the cycle in which the energy capture and its regeneration occur, non-existent controllability in the passive regenerators, these only depend on the gas flow direction and its temperature.
  • the expansion and compression elements of the active regenerator are driven by the motor via a mechanical or electronic controlled transmission system whose details are not part of this description.
  • the present invention brings important evolutions for energy (heat) regeneration, especially for use in thermal motors, conserving part of the energy that would be dissipated, keeping it in the system and thus reducing the loss of efficiency.
  • the property of being active that is, being controlled and driven externally, the active regenerator generates temperature differentials causing the heat flow from the thermal motor to the regenerator to be accelerated and vice versa, increasing the speed (transfer rate). heat) and the amount of heat conserved when compared to passive regenerators.
  • the active regenerator has as its operating principle the expansion and compression of a gas by means of a movable mechanical element controlled or synchronized by the engine to which it is connected or by a system attached to it.
  • the regenerator has a face for thermal contact with the heat engine gas.
  • the regenerator may be constructed of materials and techniques similar to those used in the construction of conventional engines and Stirling cycle engines and differential cycle engines. To operate with gas, it must be sealed to keep this gas permanently confined in the compression and expansion chambers.
  • the regenerator basically has a compression and expansion chamber which is isolated from the external environment, but with a face with thermal contact with the thermal engine gas chamber or duct for which it operates as a regenerator.
  • the regenerator also has a compression and expansion element.
  • To operate with piston it uses a connecting rod connected to a crankshaft which connects to the engine to which it regenerates the energy.
  • the regenerator operates on its own gas which captures the working gas energy of the engine to which it is coupled and regenerates it.
  • the working gas depends on the project, its application and the parameters used, the gas may be of various types, each one will provide specific characteristics, as an example may be suggested gases: helium, hydrogen, nitrogen, dry air, neon, among others. others.
  • Figure 1 represents the conceptual design of the aive regenerator and the main elements forming it
  • Figure 2 shows the graph and mechanical conditions of the process that represents the thermodynamic process of the regenerator in the first cycle, or in the first cycles of the system when it is brought to its initial condition to operate in continuous cycle in the capture and regeneration of the heat of the system. engine where it is connected;
  • Figure 3a shows separately the main modules that form an active regenerator application system, a thermal motor, a transmission system and the active regenerator;
  • Figure 3b shows the main modules that form an integrated active regenerator application system, a thermal motor, a transmission system, the active regenerator and the power source;
  • Figure 4a shows the assembled assembly, thermal motor, transmission and the active regenerator performing the energy capture process, transfer of energy (heat) from the engine working gas to the regenerator and respective thermodynamic process graph;
  • Figure 4b shows the assembled assembly, thermal motor, transmission system and active regenerator performing the energy regeneration process, regenerator energy (heat) transfer, returning to the engine working gas and respective thermodynamic process graph;
  • Figure 5 shows an active regenerator application design with an alpha type Stirling cycle thermal motor.
  • the active regenerator is an active heat storage and transfer machine, that is, it removes heat (energy) from a body, solid, liquid or gaseous and regenerates it, returns the energy obtained through a control. external.
  • FIG. 1 shows the main components that make up the active regenerator, the regenerator shown by 11, consists of a gas tight, compressed and expansion chamber, 12, composed of a cylinder, 12, this cylinder has a heat transfer face 14 through which the energy (heat
  • a mechanical element for moving, expanding and compressing the internal gas indicated by 15
  • this is usually a piston, diaphragm or turbine, a connecting axis of the gas movement element indicated by 16, a connecting rod or rod, indicated by 17 if the gas is moved by piston or diaphragm, an axis, indicated by 18, with handwheels, 19, forming a transmission system the crankshaft type, a connecting rod connecting rod with the crankshaft indicated at 1 10 and the working gas of the active regenerator inside the chamber 11 1.
  • FIG. 2 shows at 21, the regenerator active in his condition compressed, the gas indicated by 23 is contained in the chamber, compressed, the regenerator cycle graph showing the processes showing in detail 27 the condition where the regenerator is in the process of thermal equalization with the hot source temperature ( Tq) to generate the initial working conditions of the system to operate in conjunction with the thermal motor.
  • the regenerator Prior to the start of the operating process with the thermal motor, the regenerator has its thermodynamic curve according to graph 25. Considering only the working gas of the regenerator, its cycle operates between volumes (Va) and (Vb) and between temperatures (Tq ) and (77). In its expanded condition, at volume (Vb) shown at 22, the working gas will be at cold temperature (Tf), in the detail shown at 28 of graph 25.
  • Figures 3a and 3b show how an active regenerator can be used to form a system with a regenerative thermal motor.
  • Figure 3a shows at 31 an ideal thermal engine model formed by a cylinder, a piston, a set consisting of shafts, crankshaft and connecting rod, the same figure at 32 shows a transmission system and at 11 shows the active regenerator.
  • Figure 3b shows the assembled system forming a regenerative motor, the thermal motor at 31, the active regenerator at 1 1, the transmission system interconnecting the thermal motor with the regenerator at 32, a thermal coupling between the active regenerator and the motor. 35, the power source, sometimes hot, sometimes cold, 33 and the direction of power flow between the sources and the thermal motor at 34.
  • Figures 4a and 4b show in detail how the system formed by the active regenerator and a thermal motor works.
  • the dashed curve indicated by 26 in figures 4a and 4b shows the first cycle of the system where the regenerator is brought to its initial conditions so that it can operate as an active regenerator, explained together with figure 2.
  • the initial conditions are generated when the heat engine with the working gas at hot temperature (7g) coupled to the source, indicated in 41.
  • Tq hot temperature
  • Va volume
  • the active regenerator's working condition takes it to its initial conditions to operate as an active regenerator, under compression, volume (Va) and hot temperature (Tq).
  • Va volume
  • Tq hot temperature
  • the thermodynamic process indicated by curve 26 which raises the regenerator to its initial state. operation is shown by equation (a) below:
  • equation (a) it represents the work that heat produces at
  • regenerator is the number of moles of the regenerator's working gas
  • (R) is the universal constant of ideal gases
  • (Tq) is the system hot source temperature
  • (Tf) is the system cold source temperature
  • (y) is the adiabatic coefficient of expansion.
  • the regenerator in the regenerative process next to the thermal motor operates according to its ideal cycle indicated by curve 43 shown in figures 4a and 4b, the thermodynamic process of the regenerator when cycling coupled to the thermal motor is shown by curve 43.0 energy transfer process from the thermal engine working gas to the regenerator is shown in figure 4a whose direction is indicated in the graph by 44, the regenerator gas expands and absorbs the energy from the thermal engine working gas leading both to temperature (Tf).
  • the process of regenerating the heat engine working gas energy is shown in Figure 4b whose direction is indicated in the graph by 46, the regenerator gas compresses and returns the energy to the heat engine working gas bringing both to the temperature. (Tq).
  • the thermodynamic process of the cycle regenerator with the thermal motor indicated by curve 43 is shown by equation (b) below:
  • the second term of the equation represents the energy absorbed and the energy regenerated to the thermal motor.
  • the / 7 m parameter is the number of moles of the thermal engine working gas
  • R is the universal ideal gas constant
  • Tq is the system hot source temperature
  • Tf is the system cold source temperature
  • is the adiabatic expansion coefficient.
  • Figure 4a shows the heat flux being transferred to the active regenerator and figure 4b shows the regeneration.
  • thermodynamic process of transferring energy transfer from working gas from engine to regenerator and regeneration is adiabatic considering the system formed by the thermal motor with the regenerator, as there is no exchange of energy from this system with its surroundings in these processes. .
  • the active regenerator is also a thermal machine, but it was not designed to generate useful work, mechanical force on an axis, and it was developed to carry energy (heat) from an external medium to it, this external medium would be a another thermal motor or gas duct of this engine for its mechanical elements, transforming thermal energy into kinetic and later on regeneration, reversibly transforming the kinetic energy into thermal, returning to the working gas of the engine in which it will be coupled.
  • Figure 5 shows a system consisting of a thermal motor and an active regenerator.
  • the thermal motor of the example could be a Stiriing cycle motor, the regenerator, indicated at 51, is connected to the duct, indicated at 54, of working gas between the hot, 52 and cold, 53 cylinders. , of the thermal motor.
  • the energy flow absorbed and regenerated by the active regenerator is indicated by 55.
  • the cold cylinder of the thermal motor indicated by 53, has a geometry of proper to dissipate heat to the external environment, this is the channel for the disposal of unused energy in conversion.
  • the thermal engine hot cylinder, indicated by 52, is insulated in part of its area to contain heat dissipation to the external environment, keeping it directed to the engine working gas, this cylinder receives heat from an external heat source.
  • energy, this energy can be from many different sources, depending on the design of the thermal motor, including renewable sources such as thermosolar and geothermal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Refere-se a presente invencao a um regenerador ativo para motor termico e seu ciclo termodinamico, mais especificamente trata-se de uma maquina termica regeneradora de calor sincronizada e controlada por um motor termico no qual estara agregado que atua no regenerador ativo para que este execute o processo de regeneracao do calor. O regenerador ativo tern a funcao de retirar o calor do gas de trabalho de um motor termico em uma de suas fases do ciclo termodinamico, baixando a temperatura do gas, converter e reter esta energia em forma de energia cinetica e em fase subsequente do ciclo do motor, reversivelmente regenerar, devo!ver a energia cinetica transformando-a em calor novamente elevando a temperatura do gas de trabalho do motor térmico.

Description

"REGENERADOR ATIVO PARA MOTORES TÉRMICOS E PROCESSO DE CONTROLE PARA CICLO TERMODINÂMICO DO REGENERADOR ATIVO" CAMPO TÉCNICO DA INVENÇÃO
[001] Refere-se a presente invenção a um regenerador ativo para motor térmico e seu ciclo termodinâmico, mais especificamente trata-se de uma máquina regeneradora de calor sincronizada e controlada por um motor térmico no qual está agregado que atua no regenerador ativo para que este execute o processo de regeneração do calor, a retirada do calor do gás de trabalho do motor térmico em determinada fase de seu ciclo e regenerá-lo em outra fase do cicio.
ESTADO ATUAL DA TÉCNICA
[002] Os regeneradores atuais utilizados em motores térmicos são basicamente construídos com materiais e eíementos passivos, são elementos sólidos compostos por condutores e isoladores térmicos em determinada formação geométrica os quais absorvem parte do calor na passagem do gás em um sentido e o devolvem quando o gás retorna em sentido contrário.
[003] A energia, no processo de transferência para os elementos do regenerador, ocorre por condução do calor do gás para os elementos do regenerador, parte da energia continua no gás e é perdida no sistema de arrefecimento do motor e outra parte da energia é devolvida, isto é, regenerada a partir dos elementos do regenerador para o gás do motor e utilizada na continuidade do processo termodinâmico do motor.
[004] Para que toda a energia do gás possa ser regenerada, esta energia deve ser totalmente transferida aos elementos do regenerador, este processo requer dimensões infinitas ao regenerador e seus elementos, condutores e isoladores térmicos, devem ter propriedades ideais. Desta forma, na prática, os regeneradores possuem eficiências na regeneração bem limitadas e impactam diretamente nos limites de eficiência do motor térmico no qual estiver conectado.
[005] O estado atual da técnica apresenta limitações na conservação e regeneração da energia em motores térmicos. Atualmente os regeneradores são construídos com elementos condutores térmicos e elementos isoladores térmicos estáticos, isto é, a energia é retida apenas através da condução de calor do gás de trabalho do motor térmico para o elemento de armazenamento térmico do regenerador, geralmente sólido, geralmente um meta!, e é regenerado pelo mesmo processo, pela condução do calor contido nos elementos do regenerador para o gás novamente. Com este conceito, uma parte considerável da energia não é transferida aos elementos do regenerador, ela segue com o gás e é dissipada, perdida para o ambiente ou fonte fria, o mesmo ocorre na regeneração. Esta característica do regenerador passivo impõe limites na eficiência dos motores térmicos.
OBJETIVOS DA INVENÇÃO
[006] Os grandes problemas do estado da técnica estão relacionados à velocidade e à quantidade de energia que os elementos dos regeneradores passivos podem reter para regenerá-los posteriormente, os regeneradores passivos tendem a reduzir a taxa de transferência de energia conforme a temperatura do gás se aproxima da temperatura dos elementos do regenerador, como as dimensões dos elementos são limitadas às condições de projeto e como os parâmetros dos materiais não são ideais, tais condições ímpactam e limitam a eficiência dos regeneradores.
[007] O objetivo da invenção propõe acelerar e aumentar a taxa de transferência de calor de regeneração através do conceito ativo de troca de calor, isto é, o motor no qual o regenerador está conectado, atua diretamente sobre um elemento mecânico do regenerador o qual executa processos de compressão e expansão de um gás e este absorve parte da energia dos processos de abaixamento da temperatura dos motores térmicos através de processos de expansão do regenerador e os regenera, devolve a energia (calor) nos processos de incremento da temperatura do motor térmico através de processos de compressão. Os processos de compressão e de expansão do regenerador oferecem um diferencia! térmico maior que ocorre nos regeneradores passivos e, portanto, a taxa de transferência de calor (energia) será maior e por consequência haverá maior quantidade de energia conservada em se comparando com os regeneradores passivos e este efeito impacíará em maior eficiência dos motores térmicos. Outra importante característica do regenerador ativo é a controlabilidade que o mesmo oferece quanto ao momento do ciclo em que ocorrem a captura da energia e sua regeneração, controlabilidade inexistente nos regeneradores passivos, estes dependem apenas do sentido da passagem do gás e de sua temperatura. Os elementos de expansão e compressão do regenerador ativo são acionados peio motor através de um sistema de transmissão que pode ser controlado por meio mecânico ou eletrônico cujos detalhes não fazem parte desta descrição.
[008] A presente invenção traz evoluções importantes para a regeneração de energia (calor), especialmente para utilização em motores térmicos, conservando parte da energia que seria dissipada, mantendo-a no sistema e assim reduzir a perda da eficiência. A propriedade de ser ativo, isto é, ser controlado e acionado externamente, o regenerador ativo gera diferenciais de temperatura fazendo com que o fluxo de calor do motor térmico para o regenerador seja acelerado e vice-versa, aumentando a velocidade (taxa de transferência de calor) e a quantidade de calor conservada quando comparado aos regeneradores passivos.
DESCRIÇÃO DA INVENÇÃO
[009] O regenerador ativo tem como princípio de funcionamento a expansão e compressão de um gás por meio de um elemento mecânico móvel, controlado ou sincronizado pelo próprio motor em que está conectado ou por um sistema agregado a ele. O regenerador possui uma face para contato térmico com o gás do motor térmico. O regenerador poderá ser construído com materiais e técnicas semelhantes aos utilizados na construção motores convencionais e motores de ciclo Stirling e motores de ciclo diferencial. Por operar com gás, o mesmo deve ser vedado para manter este gás permanentemente confinado nas câmaras de compressão e expansão. O regenerador basicamente possui uma câmara de compressão e expansão a qual é isolada do meio externo, porém com uma face com contato térmico com a câmara ou duto de passagem de gás do motor térmico para o qual opera como regenerador, O regenerador possui ainda um elemento de compressão e expansão, podendo este ser um pistão, diafragma ou turbina, para operar com pistão ele utiliza uma biela ligada a um virabrequim o qual se conecta ao motor para o quaí o mesmo regenera a energia. O regenerador opera com gás próprio que captura a energia do gás de trabalho do motor no qual está acoplado e o regenera. O gás de trabalho depende do projeto, de sua aplicação e dos parâmetros utilizados, o gás poderá ser de vários tipos, cada um proporcionará particularidades específicas, como exemplo pode ser sugerido os gases: hélio, hidrogénio, nitrogénio, ar seco, neon, entre outros.
DESCRIÇÃO DOS DESENHOS
[010] As figuras anexas demonstram as principais características e propriedades do regenerador ativo e as inovações propostas, as quais representam:
A figura 1 representa o desenho conceituai do regenerador aíivo e os principais elementos que o formam;
A figura 2 mostra o gráfico e as condições mecânicas do processo que representa o processo termodinâmico do regenerador no primeiro ciclo, ou nos primeiros ciclos do sistema quando o mesmo é levado à sua condição iniciai para operar em ciclo contínuo na captura e regeneração do calor do motor onde estiver conectado;
A figura 3a mostra separadamente os principais módulos que formam um sistema de aplicação do regenerador ativo, um motor térmico, um sistema de transmissão e o regenerador ativo;
A figura 3b mostra os principais módulos que formam um sistema de aplicação do regenerador ativo, integrados, um motor térmico, um sistema de transmissão, o regenerador ativo e a fonte de energia;
A figura 4a mostra o conjunto montado, motor térmico, sistema de transmissão e o regenerador ativo executando o processo de captura de energia, transferência da energia (calor) do gás de trabalho do motor para o regenerador e respectivo gráfico do processo termodinâmico;
A figura 4b mostra o conjunto montado, motor térmico, sistema de transmissão e o regenerador ativo executando o processo de regeneração de energia, transferência da energia (calor) do regenerador, retornando para o gás de trabalho do motor e respectivo gráfico do processo termodinâmico;
A figura 5 mostra um projeto de aplicação do regenerador ativo com um motor térmico de ciclo Stirling tipo alfa.
DESCRIÇÃO DETALHADA DO INVENTO
[01 1] O regenerador ativo é uma máquina de armazenamento e transferência de calor ativa, isto é, ele retira o calor (energia) de um corpo, sólido, líquido ou gasoso e o regenera, devolve a energia obtida por meio de um controle externo.
[012] A figura 1 mostra os principais componentes que formam o regenerador ativo, o regenerador mostrado por 11 , é composto por uma câmara de gás, estanque, de compressão e expansão, 1 12, composta por um cilindro, 12, este cilindro possui uma face de transferência de calor, 14, pela qual ocorre o fluxo da energia (calor|) entre o gás de trabalho do regenerador e o gás de trabalho do motor térmico externo no qual será conectado, possui uma camada de material isolante térmico, 13, contornando o cilindro para isolar termicamente o gás do meio externo, no interior do cilindro 12, há um elemento mecânico de movimentação, expansão e compressão,do gás interno, indicado por 15, este geralmente é um pistão, um diafragma ou turbina, um eixo de ligação do elemento de movimentação do gás indicado por 16, uma biela ou haste, indicada por 17 caso o gás for movimentado por pistão ou diafragma, um eixo, indicado por 18, com volantes, 19, formando um sistema de transmissão tipo virabrequim, um eixo de ligação da biela com o vírabrequim indicado em 1 10 e o gás de trabalho do regenerador ativo no interior da câmara, 11 1.
[013] A figura 2 mostra em 21 , o regenerador ativo na sua condição comprimida, o gás indicado por 23 está contido na câmara, comprimido, o gráfico com o ciclo do regenerador, mostrando os processos, mostra no detalhe 27, a condição onde o regenerador se encontra no processo de equalização térmica com a temperatura da fonte quente (Tq) para gerar as condições iniciais de trabalho do sistema para operar em conjunto com o motor térmico. Antes do início do processo operacional com o motor térmico, o regenerador possui sua curva termodinâmica conforme o gráfico 25. Considerando apenas o gás de trabalho do regenerador, seu ciclo opera entre os volumes (Va) e (Vb) e entre as temperaturas (Tq) e (77). Na sua condição expandida, no volume (Vb) mostrado em 22, o gás de trabalho estará na temperatura fria (Tf), no detalhe mostrado em 28 do gráfico 25. Na sua condição comprimida, no volume (Va) mostrado em 21 , o gás de trabalho estará na temperatura quente (Tq), no detalhe mostrado em 27 do gráfico 25 e nestas condições, comprimido no volume (Va) conectado ao motor térmico, este com seu gás de trabalho na temperatura (Tq) é gerada a condição inicial para a operação em ciclo contínuo.
[014] As figuras 3a e 3b mostram como um regenerador ativo pode ser utilizado para formar um sistema com um motor térmico regenerativo. A figura 3a mostra em 31 um modelo de motor térmico ideal formado por um cilindro, um pistão, um conjunto formado por eixos, virabrequim e biela, a mesma figura em 32 mostra um sistema de transmissão e em 1 1 , mostra o regenerador ativo. Na figura 3b é mostrado o sistema montado formando um motor regenerativo, o motor térmico em 31 , o regenerador ativo em 1 1 , o sistema de transmissão interligando o motor térmico com o regenerador em 32, um acoplamento térmico entre o regenerador ativo e o motor térmico em 35, a fonte de energia, ora quente, ora fria em 33 e o sentido do fluxo de energia entre as fontes e o motor térmico em 34.
[015] As figura 4a e 4b mostram em detalhes como o sistema formado pelo regenerador ativo e um motor térmico funciona. A curva tracejada indicada por 26 nas figuras 4a e 4b mostra o primeiro cicio do sistema, onde o regenerador é levado às suas condições iniciais para que possa operar como regenerador ativo, explicado juntamente com a figura 2. As condições iniciais são geradas quando o motor térmico com o gás de trabalho na temperatura quente (7g) acoplado à fonte, indicada em 41 .também na temperatura quente (Tq) leva o regenerador ao estado de compressão para o volume (Va), nestas condições o fluxo de energia da fonte quente, equalizada termicamente ao gás de trabalho do motor na temperatura (Tq), equaliza-se também ao gás de trabalho do regenerador ativo levando este às suas condições iniciais para operar como regenerador ativo, sob compressão, no volume (Va) e na temperatura quente (Tq).0 processo termodinâmico indicado pela curva 26 o qual ieva o regenerador para seu estado inicial de operação é demonstrado pela equação (a) abaixo:
Figure imgf000009_0001
[016] Na equação (a), representa o trabalho que o calor produz ao
Figure imgf000009_0002
regenerador, é o número de moles do gás de trabalho do regenerador
Figure imgf000009_0003
ativo, (R) é a constante universal dos gases ideais, (Tq) é a temperatura da fonte quente do sistema, (Tf) é a temperatura da fonte fria do sistema e (y) é o coeficiente de expansão adiabática.
[017] O regenerador no processo regenerativo junto ao motor térmico opera conforme seu ciclo ideal indicado pela curva 43 mostrada na figura 4a e 4b, o processo termodinâmico do regenerador quando em ciclo acoplado ao motor térmico é mostrado pela curva 43.0 processo de transferência da energia do gás de trabalho do motor térmico para o regenerador é mostrado na figura 4a cujo sentido é indicado no gráfico por 44, o gás do regenerador se expande e absorve a energia do gás de trabalho do motor térmico levando ambos para a temperatura (Tf). O processo de regeneração da energia do gás de trabalho do motor térmico é mostrado na figura 4b cujo sentido é indicado no gráfico por 46, o gás do regenerador se comprime e devolve a energia para o gás de trabalho do motor térmico levando ambos para a temperatura (Tq). O processo termodinâmico do regenerador em ciclo com o motor térmico indicado pela curva 43 é demonstrado pela equação (b) abaixo:
Figure imgf000010_0001
[018] Na equação representa o trabalho total no regenerador, o
Figure imgf000010_0002
segundo termo da equação representa a energia absorvida e a energia regenerada ao motor térmico. O parâmetro/7m é o número de moles do gás de trabalho do motor térmico, R é a constante universal dos gases ideais, Tq é a temperatura da fonte quente do sistema, Tf é a temperatura da fonte fria do sistema e γ é o coeficiente de expansão adiabática. A figura 4a mostra o fluxo de calor sendo transferido para o regenerador ativo e a figura 4b mostra a regeneração.
[019] O processo termodinâmico de transferência de transferência de energia do gás de trabalho do motor para o regenerador e a regeneração são adiabáticos considerando o sistema formado pelo motor térmico com o regenerador, pois não há troca de energia deste sistema com sua vizinhança nestes processos.
EXEMPLOS DE APLICAÇÕES
[020] O regenerador ativo é também uma máquina térmica, porém não foi desenvolvida para gerar trabalho útil, força mecânica em um eixo, eia foi desenvolvida para transportar energia (calor) de um meio externo a ela, este meio externo seria uma câmara de outro motor térmico ou duto de passagem de gás deste motor para seus elementos mecânicos, transformando energia térmica em cinética e posteriormente, na regeneração, transformando reversivelmente a energia cinética em térmica, devolvendo para o gás de trabalho do motor no qual estará acoplada. Na figura 5 é mostrado um sistema formado por um motor térmico e um regenerador ativo. O motor térmico do exemplo poderá ser um motor de cicio Stiriing, o regenerador, indicado em 51 , está conectado no duto, indicado em 54, de passagem do gás de trabalho entre os cilindros quente, indicado por 52, e frio, indicado por 53, do motor térmico. O fluxo de energia absorvido e regenerado pelo regenerador ativo é indicado por 55. O cilindro frio do motor térmico, indicado por 53, possui uma geometria própria para dissipar o calor para o meio externo, este é o canal de descarte da energia não aproveitada na conversão. O cilindro quente do motor térmico, indicado por 52, possui um isolamento em parte de sua área para conter a dissipação do calor para o meio externo, mantendo-o dirigido ao gás de trabalho do motor, este cilindro recebe calor de uma fonte externa de energia, esta energia pode ser de diversas fontes distintas, dependendo do projeto do motor térmico, incluindo as fontes renováveis como a termossolar e geotermal.

Claims

REIVINDICAÇÕES
1) "REGENERADOR ATIVO PARA MOTORES TÉRMICOS", caracterizado por uma câmara de gás, estanque, de compressão e expansão, (112), composta por um cilindro, (12), este cilindro possui uma face de transferência de calor, (14), contornado por uma camada de material isolante térmico, (13), um elemento mecânico de movimentação, expansão e compressão, do gás interno, indicado por (15), este geralmente é um pistão, um diafragma ou turbina, um eixo de ligação do elemento de movimentação do gás, (16), uma biela ou haste, (17), um eixo, (18), com volantes, (19), formando um sistema de transmissão tipo virabrequim, um eixo de ligação da biela com o virabrequim, (1 10), e o gás de trabalho do regenerador ativo no interior da câmara, (11 1 ), configurando um sistema fechado reversível, um processo de expansão, (44), e compressão, (46), caracterizando um processo adiabático, (43) para conversão de energia em forma de calor para energia cinética e de regeneração, conversão oposta, energia cinética em calor.
2) "REGENERADOR ATIVO PARA MOTORES TÉRMICOS", de acordo com a reivindicação 1 , caracterizado por ser composto por uma câmara de gás, (1 12), com gás a volume variável, (11 1), estanque, de compressão e expansão, de conversão de energia formada por um cilindro, (12), este com uma camada isolante térmica externa, (13), uma face condutora térmica, (14), um elemento de movimentação e pressurização de gás, (15).
3) "REGENERADOR ATIVO PARA MOTORES TÉRMICOS", de acordo com as reivindicações 1 e 2, caracterizado por possuir uma camada de isolante térmico externo ao cilindro, (13), que forma a câmara de gás, isolando-o do meio externo.
4) "REGENERADOR ATIVO PARA MOTORES TÉRMICOS", de acordo com as reivindicações 1 e 2, caracterizado por possuir uma face condutora térmica no cilindro, (14), que forma a câmara de gás, utilizada para fazer a troca de caior com o motor térmico externo.
5) "REGENERADOR ATiVO PARA MOTORES TÉRMICOS", de acordo com a reivindicação 1 , caracterizado por possuir um eixo, (18), e volantes, (19), formando um virabrequim para sincronização e controle do processo de regeneração.
6) "REGENERADOR ATiVO PARA MOTORES TÉRMICOS", de acordo com as reivindicações 1 e 5, caracterizado por possuir uma haste ou biela, (17), unindo o elemento de movimentação de compressão e expansão do gás, (15), ao eixo ou virabrequim, (18).
7) "PROCESSO DE CONTROLE PARA CICLO TERMODINÂMICO DO REGENERADOR ATIVO", para o controle do regenerador ativo das reivindicações 1 a 6, caracterizado por um processo executado pelo regenerador ativo, (1 1 ), formando um ciclo termodinâmico adiabático,(43), reversível, o qual executa um processo de expansão, (44), de armazenamento de energia e um processo de compressão, (46), de regeneração da energia, devolvendo a energia ao motor térmico ao qual está acoplado.
8) "PROCESSO DE CONTROLE PARA CICLO TERMODINÂMICO DO REGENERADOR ATIVO", de acordo com a reivindicação 7, caracterizado por um processo de expansão adiabatica, (44), de retirada de calor do motor, abaixando a temperatura convertendo a energia térmica em cinética nos seus elementos mecânicos móveis, eixo, virabrequim.
9) "PROCESSO DE CONTROLE PARA CICLO TERMODINÂMICO DO REGENERADOR ATIVO", de acordo com as reivindicações 7 e 8, caracterizado por um processo reversível de compressão adiabática, (46), de regeneração, devolução do calor do regenerador para o motor, elevando a temperatura convertendo a energia cinética dos eixos e virabrequim para energia térmica.
PCT/BR2017/000096 2016-08-26 2017-08-24 Regenerador ativo para motores térmicos e processo de controle para ciclo termodinâmico do regenerador ativo WO2018035587A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102016019880-1A BR102016019880B1 (pt) 2016-08-26 2016-08-26 Regenerador ativo para motores térmicos e processo de controle para ciclo termodinâmico do regenerador ativo
BRBR1020160019880-1 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018035587A1 true WO2018035587A1 (pt) 2018-03-01

Family

ID=61246628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2017/000096 WO2018035587A1 (pt) 2016-08-26 2017-08-24 Regenerador ativo para motores térmicos e processo de controle para ciclo termodinâmico do regenerador ativo

Country Status (2)

Country Link
BR (1) BR102016019880B1 (pt)
WO (1) WO2018035587A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026215A1 (pt) * 2018-08-03 2020-02-06 Saulo Finco Motor de combustão interna integrado formado por uma unidade principal de ciclo otto e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982003252A1 (en) * 1981-03-23 1982-09-30 Mechanical Tech Inc Stirling engine with parallel flow heat exchangers
US4700545A (en) * 1985-05-06 1987-10-20 Aisin Seiki Kabushiki Kaisha Refrigerating system
US5088289A (en) * 1990-03-31 1992-02-18 Aisin Seiki Kabushiki Kaisha Refrigeration system
JP2001153578A (ja) * 1999-11-22 2001-06-08 Etsuo Kobayashi アクティブ型再生熱交換器
US6332323B1 (en) * 2000-02-25 2001-12-25 586925 B.C. Inc. Heat transfer apparatus and method employing active regenerative cycle
DE10051115A1 (de) * 2000-10-14 2002-04-25 Inst Luft Kaeltetech Gem Gmbh Pulse-Tube-Kühler
US20080016907A1 (en) * 2006-07-18 2008-01-24 John Arthur Barclay Active gas regenerative liquefier system and method
WO2014162129A1 (en) * 2013-04-05 2014-10-09 Isentropic Ltd Apparatus and method for storing energy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982003252A1 (en) * 1981-03-23 1982-09-30 Mechanical Tech Inc Stirling engine with parallel flow heat exchangers
US4700545A (en) * 1985-05-06 1987-10-20 Aisin Seiki Kabushiki Kaisha Refrigerating system
US5088289A (en) * 1990-03-31 1992-02-18 Aisin Seiki Kabushiki Kaisha Refrigeration system
JP2001153578A (ja) * 1999-11-22 2001-06-08 Etsuo Kobayashi アクティブ型再生熱交換器
US6332323B1 (en) * 2000-02-25 2001-12-25 586925 B.C. Inc. Heat transfer apparatus and method employing active regenerative cycle
DE10051115A1 (de) * 2000-10-14 2002-04-25 Inst Luft Kaeltetech Gem Gmbh Pulse-Tube-Kühler
US20080016907A1 (en) * 2006-07-18 2008-01-24 John Arthur Barclay Active gas regenerative liquefier system and method
WO2014162129A1 (en) * 2013-04-05 2014-10-09 Isentropic Ltd Apparatus and method for storing energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026215A1 (pt) * 2018-08-03 2020-02-06 Saulo Finco Motor de combustão interna integrado formado por uma unidade principal de ciclo otto e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor

Also Published As

Publication number Publication date
BR102016019880B1 (pt) 2023-12-26
BR102016019880A2 (pt) 2018-03-13
BR102016019880A8 (pt) 2022-12-13

Similar Documents

Publication Publication Date Title
CA2765439C (en) Heat exchanger and associated method employing a stirling engine
BR112020010737B1 (pt) Metodo para transferir calor entre dois ou mais meios e sistemas para realizar referido metodo
US3971230A (en) Stirling cycle engine and refrigeration systems
Li et al. Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device
WO2018035587A1 (pt) Regenerador ativo para motores térmicos e processo de controle para ciclo termodinâmico do regenerador ativo
JP2013533456A (ja) 磁気熱量材料を有する熱発生器
CN201723330U (zh) 一种外燃热机
US7810330B1 (en) Power generation using thermal gradients maintained by phase transitions
CN108168134B (zh) 一种惯性管脉管装置
He et al. Ecological optimisation of an irreversible Stirling heat engine
WO2018195619A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
CN206770055U (zh) 一种斯特林电机及除霜单元
BR102016019875B1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos isocóricos com regenerador ativo e processo de controle para o ciclo termodinâmico do motor térmico
CN107014100A (zh) 一种串联式脉管热机
WO2014000072A1 (pt) Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle
WO2018195620A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
US11655802B1 (en) Atmospheric energy recovery
JP2005531708A (ja) 熱エネルギーを運動エネルギーに変換する方法及び装置
WO2024056007A1 (zh) 回热器及具有该回热器的热机
WO2018035585A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos adiabáticos e processo de controle para o cliclo termodinâmico do motor térmico
WO2018035586A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isocóricos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195618A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico
CN101769212A (zh) 零泄露式斯特林机
US6000463A (en) Metal hydride heat pump
WO2018195622A1 (pt) Motor turbina de ciclo binário composto por três processos isotérmicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842470

Country of ref document: EP

Kind code of ref document: A1