WO2018034164A1 - Vertical-type continuous casting method - Google Patents

Vertical-type continuous casting method Download PDF

Info

Publication number
WO2018034164A1
WO2018034164A1 PCT/JP2017/028263 JP2017028263W WO2018034164A1 WO 2018034164 A1 WO2018034164 A1 WO 2018034164A1 JP 2017028263 W JP2017028263 W JP 2017028263W WO 2018034164 A1 WO2018034164 A1 WO 2018034164A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
casting
continuous casting
amount
mold
Prior art date
Application number
PCT/JP2017/028263
Other languages
French (fr)
Japanese (ja)
Inventor
佳文 木村
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2018034164A1 publication Critical patent/WO2018034164A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/106Shielding the molten jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/56Means for supporting, manipulating or changing a pouring-nozzle

Definitions

  • the present invention relates to a vertical continuous casting method such as a gas pressure hot top continuous casting method for various metals such as an aluminum alloy, and in particular, to obtain a continuous cast material with good surface quality while supplying lubricating oil.
  • a vertical continuous casting method such as a gas pressure hot top continuous casting method for various metals such as an aluminum alloy
  • various metals such as an aluminum alloy
  • This application claims priority based on Japanese Patent Application No. 2016-160564 for which it applied to Japan on August 18, 2016, and uses the content here.
  • a continuous casting method is often used as a casting method for various metals such as aluminum and aluminum alloys.
  • lubricating oil is generally supplied to the upper part (above the oil level) in the mold.
  • a gas is blown on the molten metal surface in addition to lubricating oil,
  • a gas pressure hot top continuous casting method has been developed, in which continuous casting is performed while being pressurized with gas, and has been put into practical use.
  • FIG. 1 shows an outline of a general example of a vertical continuous casting apparatus 1 for continuously casting a bar having a circular cross section by applying a gas-pressing hot top continuous casting method.
  • a vertical continuous casting apparatus 1 is generally for pouring a mold 3 having a hollow casting space 3 ⁇ / b> A having a vertical columnar shape and a molten metal 5 such as a molten aluminum alloy into the mold 3.
  • the pouring member 7 is used.
  • the pouring member 7 is made of a refractory material for pouring the molten metal 5 introduced from a melting furnace or a molten metal holding furnace (not shown) into the mold 3, and is made of metal from the melting furnace or the molten metal holding furnace.
  • a molten metal passage 7 ⁇ / b> B that guides the molten metal 5 to the mold 3 is provided, and a tip (lower end) thereof is a pouring port 7 ⁇ / b> A that opens vertically downward toward the upper end opening of the mold 3.
  • the mold 3 is formed with a pressurizing gas passage 9, a lubricating oil passage 11, and a cooling water passage 13 in order from the top so as to surround the vertical cylindrical hollow casting space 3 ⁇ / b> A.
  • a gas outlet 9A of the pressurizing gas passage 9 is opened at the upper end of the inner wall 3B of the mold 3 (vertical cylindrical inner wall defining the casting space 3A), and lubrication is provided below the gas outlet 9A.
  • a lubricant discharge port 11A of the oil passage 11 is open.
  • a cooling water outlet 13A is formed in the lower part of the inner wall 3B of the mold 3 to discharge the cooling water guided from the cooling water passage 13 toward the ingot 15 in the casting space 3A.
  • the pouring port 7A of the pouring member 7 is arranged so that the horizontal cross section is circular and the vertical center axis O1 coincides with the vertical center axis O2 of the casting space 3A of the mold 3. Is normal.
  • the inner diameter D 1 of the pouring port 7A is smaller than the inner diameter D2 (diameter of the casting space 3A) D 2 of the mold 3. Therefore, the lower surface (lower end surface of the pouring member 7) of the peripheral portion of the pouring port 7A in the pouring member 7 protrudes inward (close to the central axis) from the inner peripheral position of the space at the upper end of the casting space 3A. become.
  • the lower surface of the peripheral edge of the pouring port 7A overhangs in a bowl shape on the inner side in the horizontal direction at the upper end of the casting space 3A. Therefore, the portion of the peripheral edge of the pouring port 7A that protrudes to the inside of the casting space is hereinafter referred to as a flange portion 7B.
  • the overhang distance (horizontal direction distance from the inner edge of the casting mold 3 to the inner edge of the pouring gate 7A: overhang amount) L is the total length of the casting space 3A in the general operation of the vertical hot top continuous casting. Usually, it is almost uniform in the circumference.
  • the molten metal 5 is poured from above into the casting space 3 ⁇ / b> A of the mold 3 from the pouring gate 7 ⁇ / b> A of the pouring member 7.
  • the mold 3 is cooled as a whole by the cooling water flowing through the cooling water passage 13, and the molten metal 5 starts to solidify from a position in contact with the inner surface of the mold, and is further cooled and solidified by the cooling water sprayed from the cooling water outlet 13A. Then, for example, a round bar-shaped ingot 15 is continuously drawn below the mold 3 to perform continuous casting.
  • lubricating oil is supplied from the lubricating oil discharge port 11A to the upper end portion of the casting space 3A, and pressurized gas such as air is supplied from the gas outlet 9A.
  • the molten oil and the pressurized gas are surrounded by the molten metal surface 5A of the unsolidified molten metal 5 in the mold, the upper inner wall surface 3B of the mold 3, and the flange 7B around the pouring port of the pouring member 7.
  • a triangular corner space 17 is formed.
  • the corner space 17 is sometimes referred to as a gas reservoir because it is pressurized.
  • FIG. 2 schematically shows the appearance of the round bar-shaped ingot 15 in which the ripple 19 is generated, and a longitudinal section in the vicinity of the ingot surface in which the ripple 19 is generated is schematically shown in an enlarged manner in FIG.
  • the ripple 19 is generated in such a manner that a concave portion and a convex portion extend along the circumferential direction of the round bar-shaped ingot 15 and the concave and convex shape is periodically repeated in a wave shape in the casting direction.
  • peeling is generally performed to remove ripples on the surface of the cast ingot.
  • the skin peeling depth from the surface is determined in advance, and the surface layer is removed over the entire circumference of the bar-shaped ingot at the skin peeling depth.
  • the depth of the concave portion of the ripple usually varies greatly in the circumferential direction and the length direction of the bar-shaped ingot. Therefore, the peeling depth at the peak is set based on the deepest portion of the concave portion of the ripple so that the ripple is completely removed over the entire circumference and the entire length of the bar-shaped ingot.
  • the depth of each recess 19 ⁇ / b> A due to the ripple 19 is large on the right side of FIG. 3 and small on the opposite side of 180 ° (left side of FIG. 3).
  • the peeling is based on the position where the depth of the concave portion on the right side of FIG. 3 is the largest (the portion where the concave portion depth is Pmax1), and the ripple and the resulting reverse segregation layer are completely removed at that location as well.
  • the peeling depth P 0, then set slightly larger than Pmax1, in the peeling depth P 0, the entire circumference of the ingot 15, performs peeling over the entire length.
  • the ingot surface layer is wasted at a depth P 0 that is much larger than the maximum recess depth Pmax2 on that side. It will be removed. That is, an extra portion corresponding to the difference P q in the maximum recess depth is removed. Such a tendency becomes more prominent as the variation in the ripple depth in the circumferential direction increases. This means that, in total, the amount of material removed by peeling is unnecessarily large, and the actual situation is that the product yield is adversely affected.
  • continuous casting with a mold is repeated many times, and when the variation in the recess depth of the ripple becomes remarkably large and the maximum value of the recess depth becomes remarkably large, the useful life of the mold is exhausted.
  • the casting mold of the continuous casting apparatus is generally replaced (updated) with a new one without being used thereafter. Therefore, the degree of variation in the recess depth of the ripple is one guideline for the mold renewal time in continuous casting. If the variation in the ripple depth becomes large at an early stage, the mold replacement frequency must be increased. Therefore, the actual situation is that the cost of continuous casting must be increased.
  • the present invention has been made against the background of the above circumstances, and it is possible to minimize the peeling depth by peeling to the ingot, thereby improving the yield, and moreover, the mold replacement frequency can be made higher than before. It is an object of the present invention to provide a vertical continuous casting method that can reduce the cost of continuous casting by reducing the cost.
  • the direction in which the amount of lubricating oil is maximum and the direction in which the amount of lubricating oil is maximum in the horizontal plane is almost opposite to the direction of the center axis of the casting space (180 ° direction).
  • the recess depth is maximum in a certain direction in the horizontal plane with respect to the central axis position of the bar-shaped ingot, Tend to be minimal on the opposite side.
  • the larger the amount of lubricating oil supplied the greater the effect of preventing seizure, but the more likely the ripple is generated (the unevenness of the ripple is increased).
  • the present inventors investigated the relationship between the variation in the circumferential direction of the mold circumferential direction of the lubrication oil supply amount and the variation in the circumferential direction of the recess depth of the ingot ripple. It has been found that the ripple recess depth is large on the side with a large amount of ripple, and the ripple recess depth is small on the side with a small amount of lubricating oil supply, or almost no ripple occurs.
  • the amount of lubricating oil supplied is adjusted by adjusting the position of the pouring port with respect to the casting space of the mold according to the variation in the circumferential direction of the amount of lubricating oil supplied into the casting space. It has been found that even if there is a variation in the circumferential direction, the variation in the circumferential direction of the ripple recess depth can be reduced.
  • the circumferential variation in the amount of lubricating oil supplied is measured, and the horizontal direction relative to the pouring port and the mold is determined according to the variation.
  • the position specifically, by adjusting the horizontal relative position so that the pouring port is brought closer to the side where the lubricating oil supply amount is large, there is a variation in the lubricating oil supply amount.
  • the variation in the recess depth of the ripple can be reduced, and the present invention has been completed.
  • the present invention provides each aspect described in the following (1) to (7).
  • a vertical continuous casting mold having a vertical cylindrical casting space, and a pouring port for pouring molten metal from above into the casting space, the diameter of which is smaller than the diameter of the casting space
  • a vertical continuous casting method in which continuous casting is performed while supplying lubricating oil from the upper inner peripheral surface of the mold into the casting space, using a vertical continuous casting apparatus having a pouring member provided with a pouring spout, Before the start of continuous casting by pouring molten metal into the casting space, lubricating oil is supplied into the casting space from the inner surface of the mold, and variation in the amount of lubricating oil supplied in the circumferential direction within the casting space is reduced.
  • the pouring member is placed on the casting space so that the center axis position of the pouring port is closer to the side where the lubricating oil supply amount is larger than the center axis position of the casting space. And relatively offset in the horizontal direction, And then casting the molten metal into the casting space and performing continuous casting.
  • vertical continuous casting means continuous casting in which a continuous casting ingot is continuously drawn vertically downward from a mold. Further, offset means that the position is shifted.
  • the casting space In measuring the variation in the amount of lubricating oil supplied in the circumferential direction in the casting space, the casting space is divided into a plurality of regions at equal intervals in the circumferential direction, and the amount of lubricating oil flowing into each region within a predetermined time is determined.
  • a vertical continuous casting method that measures the variation in the amount of lubricant supplied in the circumferential direction in the casting space by weighing and comparing the amount of lubricant flowing into each region.
  • the lubricating oil In measuring the variation in the amount of lubricating oil supplied in the casting space in the casting space, the lubricating oil has a bottomed vertical cylindrical shape with an open top and is divided into a plurality of regions in the circumferential direction by partition walls.
  • a vertical continuous casting method in which a quantity variation measuring container is fitted into a mold and the amount of lubricating oil flowing into each region of the quantity variation lubricating container is measured within a predetermined time.
  • a vertical continuous casting method in which the molten metal is a molten aluminum or aluminum alloy.
  • the vertical continuous casting method of the present invention it is possible to reduce the variation in the recess depth of the ripple in the ingot in the circumferential direction of the mold, so that the peeling depth at the peeling against the ingot is reduced and the yield is reduced. Improvement can be achieved, and the frequency of continuous casting can be reduced by reducing the frequency of mold replacement as compared with the prior art.
  • FIG. 1 It is a longitudinal cross-sectional view of the continuous casting apparatus according to FIG. 1 which shows an example of the state which adjusted the position of the pouring gate by applying the continuous casting method of this invention.
  • FIG. 1 It is a schematic diagram which shows the ratio of the lubricating oil amount of each area
  • the variation in the lubricant supply amount in the mold circumferential direction Measure the variation. That is, it is measured to which part (region) in the circumferential direction with respect to the central axis of the mold a large amount of lubricating oil is supplied and how much variation in the amount of lubricating oil is supplied.
  • a lubricating oil amount variation measuring container 21 as shown in FIG. 4 is fitted in the casting space 3A of the mold 3 as shown in FIG. And measure.
  • the lubricating oil amount variation measuring container 21 has a bottomed vertical cylindrical shape with an open upper surface that fits into the casting space 3A of the mold 3 as a whole (according to the shape of the casting space 3A in this embodiment).
  • a plurality of (for example, eight) partition walls 23 along the vertical direction and along the radial direction are equally spaced in the circumferential direction (examples of FIGS. 4 and 5). Is formed at intervals of 45 °.
  • the spaces between the adjacent partition walls 23 are opened upward, and are divided areas Z1 to Z8 for receiving the lubricating oil flowing out from the lubricating oil blowing hole 11A into the casting space 3A.
  • Such a lubricating oil amount variation measuring container 21 is fitted into the mold 3 so that its upper end is located below the lubricating oil blowing hole 11A, and in this state, the lubricating oil supplied to the lubricating oil passage 11 in a steady operation state is supplied.
  • Lubricating oil is supplied at an oil flow rate, and the lubricating oil is discharged into the mold 3 from the lubricating oil discharge hole 11A. Then, after the discharge of the lubricating oil is continued for a certain time (for example, 1 minute), the measuring container 21 is detached from the mold 3 and the amount of lubricating oil flowing into each of the regions Z1 to Z8 is measured.
  • the portion where the lubricating oil amount is the largest and the smallest portion, and the opposite side with respect to the center position of the casting space Therefore, in each of the regions Z1 to Z8 in which the lubricating oil amount is measured as described above, the region where the lubricating oil amount is maximum (for example, the region Z6) and the minimum region (for example, the region Z2) are cast.
  • the space is symmetrical with respect to the central axis O 2 of the space 7A.
  • the relative position adjustment of the pouring member 7 with respect to the mold 3 in the horizontal plane is performed according to the direction and degree of the variation. That is, in the normal continuous casting operation, as described with reference to FIG. 1, the vertical central axis O 1 of the pouring port 7A of the pouring member 7 is the vertical central axis O 2 of the casting space 3A of the mold 3. While setting the teeming member 7 so as to coincide with, in the present embodiment, for example, FIG. 6, as shown in FIG.
  • a pouring port center axis O 1 of 7A is a vertical central axis of the casting space 3A
  • the pouring member 7 is adjusted in position with respect to the mold 3 so as to be shifted (offset) by a predetermined distance L OFF in the horizontal direction with respect to O 2 .
  • the distance L OFF is referred to as an offset amount.
  • the offset direction is the side where the amount of lubricating oil is large according to the direction of variation in the amount of lubricating oil supplied. That is, in the example of FIG.
  • the center axis O 1 of the pouring port 7A is positioned on the left side with respect to the vertical center axis O 2 of the casting space 3A. , Offset.
  • the offset amount L OFF may be set according to the degree of variation in the lubricating oil supply amount.
  • the specific offset amount L OFF may be determined experimentally in accordance with the measured variation in the lubricant supply amount so that the variation in the lubricant supply amount is minimized.
  • the lubricating oil supply amount is in the maximum direction, the projection distances of the eaves portion 7B of the teeming member 7 (overhang) and L p, in the lubricating oil supply amount is smallest direction, eaves teeming member 7
  • the overhang distance (overhang amount) of the portion 7B is L q
  • the ratio (L p : L q ) of the overhang distance (overhang amount) of the flange 7B of the pouring member 7 between the direction in which the lubricating oil supply amount is maximum and the minimum direction is approximately the amount of lubricating oil supply in the above direction. It has been found that by setting the offset amount L OFF so as to be inversely proportional to the ratio, the variation in the lubricating oil supply amount can be suppressed to substantially zero.
  • the region with the largest lubricating oil supply amount is Zmax
  • the lubricating oil supply amount to the region Zmax is Qmax
  • the region with the smallest lubricating oil supply amount is Zmin
  • Qmin be the amount of lubricating oil supplied to the zone Zmin.
  • a specific method for adjusting the position of the pouring member 7 relative to the mold 3 is not particularly limited.
  • the pouring member 7 is attached to the mold 3 held at a fixed position. It is assumed that the support member is supported by a support member that can be adjusted in the X and Y directions in the horizontal plane, and the support member is moved in the X and / or Y direction according to the direction to be adjusted. That's fine.
  • a connecting member such as a bolt for connecting the pouring member 7 and the mold 3 and its receiving part are provided with play so as to be movable in the X and Y directions in the horizontal plane in the non-fixed state.
  • a structure may be used, and the pouring member 7 may be moved and adjusted in that state, and then connected and fixed.
  • the variation in the amount of lubricating oil supplied in the circumferential direction is measured, and the positional relationship between the pouring port 7A and the casting space 3A is adjusted according to the direction and magnitude of the variation (the central axis O 1 of the pouring port is set). after offset) to the central axis O 2 of the casting space, and pouring the molten metal into the casting space 3A from actually sprue 7A in this state, to start the continuous casting.
  • the bar-shaped ingot 15 obtained in this way has little variation in the recess depth of the ripple in the circumferential direction. That is, on the side where the amount of lubricant supplied is large, the depth of the concave portion of the ripple is smaller than when the offset is not performed.
  • the recess depth of the ripple tends to be larger than when not offset, but it is normal that the concave portion depth on the side where the lubricating oil supply amount is large is not exceeded. .
  • the reason why the depth of the concave portion of the ripple can be reduced by moving the position of the pouring port 7A of the pouring member 7 to the side where the lubricating oil supply amount is large (offset) is not necessarily clear.
  • pouring port 7A the position of the center axis O 1 of the center of the injection flow of molten metal from the pouring port 7A in other words, if it is offset relative to the position of the central axis O 2 of the casting space 3A, in a mold
  • the supply amount distribution of the supplied molten metal is not uniform in the horizontal plane, and a relatively large amount of the molten metal is supplied to the offset side.
  • the casting space 3A is divided into eight regions at 45 ° intervals in the circumferential direction.
  • the number of regions is not limited to eight, and the main points are divided into two or more regions. do it.
  • the means for measuring the amount of lubricating oil in a plurality of divided areas in the casting space is not limited to the lubricating oil amount variation measuring container 21 as described above, and various means can be used.
  • a round bar-shaped ingot having a circular face is continuously cast using a mold 3 having a cylindrical casting space 3A.
  • the vertical continuous casting method of the present invention is used.
  • the metal to which the vertical continuous casting method of the present invention can be applied is not particularly limited, and can be applied to all metals that can be continuously cast.
  • the present invention can be applied to Si-based (4000-based) eutectic alloys or hypereutectic alloys, 1000-7000 aluminum alloys, copper, copper alloys, and the like.
  • the gas pressurized vertical hot top continuous casting method has been described.
  • the present invention is not limited to this, and can be applied to all vertical continuous casting methods in which casting is performed while supplying lubricating oil.
  • FIG. 1 shows a hypereutectic Al—Si based alloy (mass%, Si: 14% Si, Cu: 4.5%, Mg: 0.55%, P: 0.01%, the balance being substantially Al).
  • the center axis O 1 of the pouring port 7A is aligned with the center axis O 2 of the casting space (ie, not offset).
  • the length (overhang amount) L of the flange portion 7B of the pouring member in the state) is 11 mm.
  • the lubricating oil variation measuring container 21 is a bottomed vertical cylindrical shape made of acrylic resin having an outer diameter of 64 mm and a height of 100 mm, and the thickness of the partition wall and the outer peripheral wall is 0.5 mm.
  • the lubricating oil is supplied for 1 minute so that the total supply amount becomes 3.0 cc / min, and the lubricating oil accumulated in each region Z1 to Z8 of the measuring container 21 is sucked out by the dropper, and each region Z1 to Z8 is discharged.
  • the amount of lubricating oil flowing into the tank was examined.
  • the alloy was actually continuously cast at a casting speed of 280 mm / min.
  • the lubricating oil is supplied so that the total supply amount is 3.0 cc / min as in the above measurement, and at the same time, air is used as a pressurized gas and air is introduced at a pressure of 0.1 MPa. While adjusting the valve appropriately, gas was pressurized.
  • the depth of the concave portion of the ripple on the surface of the obtained bar-shaped ingot was measured, and the variation in the circumferential direction of the depth of the ripple concave portion was examined. That is, the depth of the ripple concave portion is examined for each portion in the ingot circumferential direction corresponding to each of the regions Z1 to Z8, and the ratio (ripple concave portion depth ratio) Rd to the concave portion depth of the portion having the largest concave portion depth is determined. Asked.
  • the lubrication in each of the regions Z1 to Z8 Table 2 shows the amount of oil and the ratio (ripple recess depth ratio) Rd of the ripple recess depth of each part of the ingot corresponding to each region to the recess depth of the part having the largest recess depth.
  • the variation in the ripple recess depth ratio Rd is small.
  • the variation in the ripple recess depth ratio Rd is large, and the lubrication oil amount and the ripple recess depth ratio That the Rd magnitude is correlated, that is, the recess depth ratio Rd is the largest in the region Z6 where the amount of lubricating oil is the largest, and the ripple recess depth ratio Rd is the smallest in the region Z2 where the amount of lubricating oil is the smallest. It was confirmed. From these results, it is apparent that the variation in the circumferential direction of the lubricant supply amount affects the variation in the recess depth of the ripple.
  • Example 2 Further, for the example shown in Table 2 of Experimental Example 1 (an example in which the variation in the ripple recess depth ratio Rd was large), the pouring port of the pouring member was based on the measurement results in Table 2 before restarting continuous casting.
  • the position adjustment (offset) of was performed as follows.
  • the amount of lubricating oil in the region Z6 is the largest, from where the lubricating oil of the region Z2 opposite the least, the center position O 1 of the pouring port 7A toward the side of the region Z6, internal angle region Z6 It was decided to adjust so as to be moved (offset) along the center line S.
  • the lubricating oil amount Qmax in the maximum lubricating oil region Z6 is 0.48 cc / min.
  • the lubricating oil amount Qmin in the minimum lubricating oil region Z2 is 0.27 cc / min.
  • ripple recess depth ratio Rd of each part in the case of continuous casting without being offset is indicated by a broken line in FIG. 8 as “ripple recess depth ratio Rd-2 before offset”. Further, the amount of lubricating oil in each of the regions Z1 to Z8 is indicated by a solid line in FIG.
  • 3 ... mold, 3A ... casting space, 7 ... teeming member, 7A ... sprue, 11A ... lubricant discharging port, 15 ... ingot, 21 ... lubricating oil amount variation measuring container, O 1 ... sprue central axis, O 2 ... Center axis of casting space, L OFF ... Offset amount.

Abstract

The present invention provides a vertical-type continuous casting method whereby the peel depth due to peeling of an ingot is minimized and yield is enhanced, and it is possible to decrease the frequency of mold replacement and reduce cost. A vertical-type continuous casting method for performing continuous casting while supplying lubrication oil into a casting space from a top internal peripheral surface of a mold, using a vertical-type continuous casting device having a vertical-type continuous casting mold having a vertical cylindrical casting space and a pouring member provided with a pouring hole having an inside diameter smaller than the diameter of the casting space as a pouring hole for pouring molten metal into the casting space from above, wherein, in a stage prior to the start of continuous casting, the lubrication oil is supplied into the casting space from a mold internal surface, a variation in the supply rate of lubrication oil in a circumferential direction inside the casting space is measured, and the canter axis position of the pouring hole is offset relative to the center axis position of the casting space in accordance with the variation so as to be closer to a side where the supply rate of lubrication oil is greater, and continuous casting is subsequently performed.

Description

竪型連続鋳造法Vertical casting method
 本発明は、アルミニウム合金などの各種金属について、気体加圧式ホットトップ連続鋳造法などの竪型連続鋳造法に関するものであり、とりわけ潤滑油を供給しながら表面品質が良好な連続鋳造材を得るための技術に関するものである。
に関するものである。
 本願は、2016年8月18日に日本に出願された特願2016-160564号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a vertical continuous casting method such as a gas pressure hot top continuous casting method for various metals such as an aluminum alloy, and in particular, to obtain a continuous cast material with good surface quality while supplying lubricating oil. Is related to the technology.
It is about.
This application claims priority based on Japanese Patent Application No. 2016-160564 for which it applied to Japan on August 18, 2016, and uses the content here.
 従来からアルミニウムやアルミニウム合金などの各種金属の鋳造法としては連続鋳造法が多用されている。連続鋳造法では、鋳型と鋳塊表面との間の焼き付きを防止するため、潤滑油を鋳型内の上部(油面上方)に供給するのが一般的である。そして各種連続鋳造法のうちでも、主として非鉄金属の竪型連続鋳造法としては、例えば特許文献1に示されているように、潤滑油に加えて気体を湯面上に吹き込み、油面上を気体により加圧しながら連続鋳造する気体加圧式ホットトップ連続鋳造法が開発され、実用化に至っている。 Conventionally, a continuous casting method is often used as a casting method for various metals such as aluminum and aluminum alloys. In the continuous casting method, in order to prevent seizure between the mold and the ingot surface, lubricating oil is generally supplied to the upper part (above the oil level) in the mold. Among various continuous casting methods, as a vertical continuous casting method mainly for non-ferrous metals, for example, as shown in Patent Document 1, a gas is blown on the molten metal surface in addition to lubricating oil, A gas pressure hot top continuous casting method has been developed, in which continuous casting is performed while being pressurized with gas, and has been put into practical use.
 図1に、気体加圧式ホットトップ連続鋳造法を適用して、断面円形の棒材を連続鋳造するための竪型連続鋳造装置1の一般的な例の概要を示す。
 図1において、竪型連続鋳造装置1は、概略的には、垂直円柱状の中空な鋳造空間3Aを有する鋳型3と、その鋳型3内にアルミニウム合金溶湯等の金属溶湯5を注湯するための注湯部材7とからなる構成とされている。
FIG. 1 shows an outline of a general example of a vertical continuous casting apparatus 1 for continuously casting a bar having a circular cross section by applying a gas-pressing hot top continuous casting method.
In FIG. 1, a vertical continuous casting apparatus 1 is generally for pouring a mold 3 having a hollow casting space 3 </ b> A having a vertical columnar shape and a molten metal 5 such as a molten aluminum alloy into the mold 3. The pouring member 7 is used.
 注湯部材7は、図示しない溶解炉あるいは溶湯保持炉などから導かれた金属溶湯5を、鋳型3に注湯するための耐火物製のものであって、溶解炉あるいは溶湯保持炉などから金属溶湯5を鋳型3に導く溶湯通路7Bを有していて、その先端(下端)が、鋳型3の上端開口部に向けて鉛直下方に開口する注湯口7Aとされている。鋳型3は、垂直円筒状の中空な鋳造空間3Aを取り囲むように、上方から順に、加圧用気体通路9、潤滑油通路11、及び冷却水通路13が形成されている。そして鋳型3の内壁3B(鋳造空間3Aを区画形成する垂直円筒状の内壁)の上端に、加圧用気体通路9の気体吹出口9Aが開口しており、その気体吹出口9Aの下側に潤滑油通路11の潤滑油吐出口11Aが開口している。さらに、鋳型3の内壁3Bの下部には、冷却水通路13から導かれた冷却水を鋳造空間3A内で鋳塊15に向けて噴き出す冷却水吹出し口13Aが形成されている。 The pouring member 7 is made of a refractory material for pouring the molten metal 5 introduced from a melting furnace or a molten metal holding furnace (not shown) into the mold 3, and is made of metal from the melting furnace or the molten metal holding furnace. A molten metal passage 7 </ b> B that guides the molten metal 5 to the mold 3 is provided, and a tip (lower end) thereof is a pouring port 7 </ b> A that opens vertically downward toward the upper end opening of the mold 3. The mold 3 is formed with a pressurizing gas passage 9, a lubricating oil passage 11, and a cooling water passage 13 in order from the top so as to surround the vertical cylindrical hollow casting space 3 </ b> A. A gas outlet 9A of the pressurizing gas passage 9 is opened at the upper end of the inner wall 3B of the mold 3 (vertical cylindrical inner wall defining the casting space 3A), and lubrication is provided below the gas outlet 9A. A lubricant discharge port 11A of the oil passage 11 is open. Further, a cooling water outlet 13A is formed in the lower part of the inner wall 3B of the mold 3 to discharge the cooling water guided from the cooling water passage 13 toward the ingot 15 in the casting space 3A.
ここで、注湯部材7の注湯口7Aは、水平断面が円形であって、垂直な中心軸線O1が、鋳型3の鋳造空間3Aの垂直な中心軸線O2と一致するように配設されるのが通常である。そして注湯口7Aの内径Dは、鋳型3の内径D2(鋳造空間3Aの径)Dよりも小さく設定されている。したがって注湯部材7における注湯口7Aの周縁部の下面(注湯部材7の下端面)は、鋳造空間3Aの上端においてその空間の内周縁位置よりも内側(中心軸線寄り)に張り出していることになる。言い換えれば、鋳造空間3Aの側から見て、注湯口7Aの周縁部の下面は、鋳造空間3Aの上端の水平方向内側に庇状にオーバーハングしている。そこで注湯口7Aの周縁部における、鋳造空間内側に張り出している部分を、以下庇部7Bと称する。この庇部7Bの張り出し距離(鋳型3の内縁から注湯口7Aの内縁からまでの水平方向距離:オーバーハング量)Lは、縦型ホットトップ連続鋳造の一般的な操業では、鋳造空間3Aの全周においてほぼ均一とされているのが通常である。 Here, the pouring port 7A of the pouring member 7 is arranged so that the horizontal cross section is circular and the vertical center axis O1 coincides with the vertical center axis O2 of the casting space 3A of the mold 3. Is normal. The inner diameter D 1 of the pouring port 7A is smaller than the inner diameter D2 (diameter of the casting space 3A) D 2 of the mold 3. Therefore, the lower surface (lower end surface of the pouring member 7) of the peripheral portion of the pouring port 7A in the pouring member 7 protrudes inward (close to the central axis) from the inner peripheral position of the space at the upper end of the casting space 3A. become. In other words, when viewed from the casting space 3A side, the lower surface of the peripheral edge of the pouring port 7A overhangs in a bowl shape on the inner side in the horizontal direction at the upper end of the casting space 3A. Therefore, the portion of the peripheral edge of the pouring port 7A that protrudes to the inside of the casting space is hereinafter referred to as a flange portion 7B. The overhang distance (horizontal direction distance from the inner edge of the casting mold 3 to the inner edge of the pouring gate 7A: overhang amount) L is the total length of the casting space 3A in the general operation of the vertical hot top continuous casting. Usually, it is almost uniform in the circumference.
このような縦型連続鋳造装置1によってアルミニウム合金などを連続鋳造するにあたっては、注湯部材7の湯口7Aから鋳型3の鋳造空間3Aに金属溶湯5を上方から注入する。鋳型3は冷却水通路13を流れる冷却水によって全体的に冷却されて、金属溶湯5は鋳型内面に接する箇所から凝固を開始し、さらに冷却水吹出し口13Aから吹きかけられる冷却水によって冷却されて凝固が進行し、例えば丸棒状の鋳塊15として鋳型3の下方に連続的に引き出され、連続鋳造がなされる。 When continuously casting an aluminum alloy or the like by such a vertical continuous casting apparatus 1, the molten metal 5 is poured from above into the casting space 3 </ b> A of the mold 3 from the pouring gate 7 </ b> A of the pouring member 7. The mold 3 is cooled as a whole by the cooling water flowing through the cooling water passage 13, and the molten metal 5 starts to solidify from a position in contact with the inner surface of the mold, and is further cooled and solidified by the cooling water sprayed from the cooling water outlet 13A. Then, for example, a round bar-shaped ingot 15 is continuously drawn below the mold 3 to perform continuous casting.
 連続鋳造時においては、鋳造空間3Aの上端部に、潤滑油吐出口11Aから潤滑油が供給されるとともに、気体吹出口9Aから空気などの加圧気体が供給される。そして潤滑油と加圧気体によって、鋳型内の未凝固の金属溶湯5の湯面5Aと、鋳型3の上部内壁面3Bと、注湯部材7の注湯口周辺の庇部7Bとによって囲まれる略三角形状の隅部空間17が形成される。この隅部空間17は、気体加圧されているところから、気体溜まりと称されることもある。上記のように潤滑油を供給することによって、鋳型内面に対する鋳塊表面の焼き付きが防止される。さらに潤滑油供給と併せて気体加圧を行うことによって、鋳型内の金属溶湯の初期凝固開始部位と鋳型内面との接触面積、接触摩擦が小さくなり、これによってスムーズな連続鋳造(棒状鋳塊15の円滑な下降)が可能となり、表面性状(鋳肌)の良好な鋳塊が得られる。 During continuous casting, lubricating oil is supplied from the lubricating oil discharge port 11A to the upper end portion of the casting space 3A, and pressurized gas such as air is supplied from the gas outlet 9A. The molten oil and the pressurized gas are surrounded by the molten metal surface 5A of the unsolidified molten metal 5 in the mold, the upper inner wall surface 3B of the mold 3, and the flange 7B around the pouring port of the pouring member 7. A triangular corner space 17 is formed. The corner space 17 is sometimes referred to as a gas reservoir because it is pressurized. By supplying the lubricating oil as described above, seizure of the ingot surface against the inner surface of the mold is prevented. Furthermore, by performing gas pressurization together with the supply of lubricating oil, the contact area and contact friction between the initial solidification start site of the molten metal in the mold and the inner surface of the mold are reduced, and thereby smooth continuous casting (bar-shaped ingot 15 Smooth descent) and an ingot having a good surface property (cast surface) can be obtained.
 ところで、連続鋳造によって得られた鋳塊の表面(鋳肌)には、リップルと称される凹凸が生じることが多い。図2に、リップル19が生じた丸棒状の鋳塊15の外観を概略的に示し、そのリップル19が生じた鋳塊表面付近の縦断面を、図3に拡大して模式的に示す。リップル19は、丸棒状鋳塊15の周方向に沿って凹部および凸部が延び、その凹凸形状が鋳造方向に波状に周期的に繰り返される態様で発生するのが一般的である。 Incidentally, irregularities called ripples often occur on the surface (cast surface) of the ingot obtained by continuous casting. FIG. 2 schematically shows the appearance of the round bar-shaped ingot 15 in which the ripple 19 is generated, and a longitudinal section in the vicinity of the ingot surface in which the ripple 19 is generated is schematically shown in an enlarged manner in FIG. Generally, the ripple 19 is generated in such a manner that a concave portion and a convex portion extend along the circumferential direction of the round bar-shaped ingot 15 and the concave and convex shape is periodically repeated in a wave shape in the casting direction.
  このようなリップルの内側には逆偏析層が存在するから、リップルが残ったままの鋳塊を押出や鍛造等の後工程に付せば、表面性状が悪くなるばかりでなく、表面欠陥が生じやすくなる。前述のような気体加圧方式のホットトップ鋳造では、気体加圧を行わずに潤滑油の供給のみを行う通常の連続鋳造と比較すれば、リップルの程度は小さいものの、完全にはリップルの発生を抑えることは困難であり、ある程度のリップルが生じることは避け得ない。そこで連続鋳造後の鋳塊については、ピーリング(皮剥き)によってリップルのある鋳塊表面層を除去してから、後工程に付すのが一般的である。 Since a reverse segregation layer exists inside such a ripple, if the ingot with the ripple remaining is subjected to a subsequent process such as extrusion or forging, not only the surface properties deteriorate, but also surface defects occur. It becomes easy. The above-mentioned hot press casting using the gas pressurization method, although the degree of ripple is small compared to the normal continuous casting that does not perform gas pressurization and only supplies lubricating oil, it completely generates ripples. It is difficult to suppress this, and it is inevitable that a certain amount of ripple occurs. Therefore, the ingot after continuous casting is generally subjected to a post-process after removing a rippled ingot surface layer by peeling (peeling).
特許第2707283号公報Japanese Patent No. 2707283
 前述のように、気体加圧式の竪型ホットトップ連続鋳造、そのほか潤滑油を用いた竪型連続鋳造では、鋳造した鋳塊の表面のリップルを除去するため、ピーリングを行うのが一般的である。ピーリングでは、表面からの皮剥き深さを予め定めておき、その皮剥き深さで棒状鋳塊の全周にわたって表面層を除去する。 As described above, in gas-pressed vertical hot top continuous casting and other vertical continuous casting using lubricating oil, peeling is generally performed to remove ripples on the surface of the cast ingot. . In peeling, the skin peeling depth from the surface is determined in advance, and the surface layer is removed over the entire circumference of the bar-shaped ingot at the skin peeling depth.
 ところで、実際の連続鋳造操業では、棒状鋳塊の周方向や長さ方向にリップルの凹部深さが大きくばらつくのが通常である。そこで、ピーロングでの皮剥き深さは、棒状鋳塊の全周、全長にわたってリップルが完全に除去されるように、リップルの凹部の最も深い箇所を基準として設定する。例えば図3の例では、リップル19による各凹部19Aの深さは、図3の右側で大きく、その180°反対側(図3の左側)で小さくなっている。ここで、図3の右側での最も凹部深さが大きい箇所の凹部深さをPmax1とし、図3の左側での最も凹部深さが大きい箇所の凹部深さをPmax2とし、Pmax1とPmax2との差をPとする。
この場合のピーリングは、図3の右側の最も凹部深さが大きい箇所(凹部深さがPmax1の箇所)を基準とし、その箇所でもリップル及びそれによる逆偏析層が完全に除去されるように、皮剥き深さPを、Pmax1よりも若干大きい値に設定し、その皮剥き深さPで、鋳塊15の全周、全長にわたってピーリングを行う。
By the way, in an actual continuous casting operation, the depth of the concave portion of the ripple usually varies greatly in the circumferential direction and the length direction of the bar-shaped ingot. Therefore, the peeling depth at the peak is set based on the deepest portion of the concave portion of the ripple so that the ripple is completely removed over the entire circumference and the entire length of the bar-shaped ingot. For example, in the example of FIG. 3, the depth of each recess 19 </ b> A due to the ripple 19 is large on the right side of FIG. 3 and small on the opposite side of 180 ° (left side of FIG. 3). Here, the recess depth of the portion with the largest recess depth on the right side of FIG. 3 is Pmax1, the recess depth of the portion with the greatest recess depth on the left side of FIG. 3 is Pmax2, and Pmax1 and Pmax2 Let the difference be P q .
In this case, the peeling is based on the position where the depth of the concave portion on the right side of FIG. 3 is the largest (the portion where the concave portion depth is Pmax1), and the ripple and the resulting reverse segregation layer are completely removed at that location as well. the peeling depth P 0, then set slightly larger than Pmax1, in the peeling depth P 0, the entire circumference of the ingot 15, performs peeling over the entire length.
 この場合、逆に、鋳塊15における凹部深さが小さい側(図3の左側)では、その側での最大凹部深さPmax2よりも格段に大きい深さPで鋳塊表面層が無駄に除去されてしまうことになる。すなわち上記の最大凹部深さの差Pの分だけ、余計に除去されてしまうことになる。そしてこのような傾向は、周方向のリップル深さのばらつきが大きいほど顕著になる。
これは、トータル的にみて、ピーリングによって除去される材料の量が無駄に大きくなってしまうことを意味し、製品歩留まりに悪影響を及ぼしていたのが実情である。
In this case, conversely, on the side where the recess depth in the ingot 15 is small (left side in FIG. 3), the ingot surface layer is wasted at a depth P 0 that is much larger than the maximum recess depth Pmax2 on that side. It will be removed. That is, an extra portion corresponding to the difference P q in the maximum recess depth is removed. Such a tendency becomes more prominent as the variation in the ripple depth in the circumferential direction increases.
This means that, in total, the amount of material removed by peeling is unnecessarily large, and the actual situation is that the product yield is adversely affected.
 また、ある鋳型を用いての連続鋳造を多数回繰り返し、リップルの凹部深さのばらつきが著しく大きくなって、凹部深さの最大値も著しく大きくなった段階では、その鋳型については耐用寿命が尽きたとして、その後は使用せずに、連続鋳造装置の鋳型を新しいものと交換する(更新する)のが一般的である。したがってリップルの凹部深さのばらつきの程度は、連続鋳造における鋳型更新時期の一つの目安となっており、早期にリップル深さのばらつきが大きくなる場合は、鋳型の交換頻度が高くならざるを得ず、そのため連続鋳造のコスト上昇を招かざるを得ないのが実情である。 In addition, continuous casting with a mold is repeated many times, and when the variation in the recess depth of the ripple becomes remarkably large and the maximum value of the recess depth becomes remarkably large, the useful life of the mold is exhausted. For example, the casting mold of the continuous casting apparatus is generally replaced (updated) with a new one without being used thereafter. Therefore, the degree of variation in the recess depth of the ripple is one guideline for the mold renewal time in continuous casting. If the variation in the ripple depth becomes large at an early stage, the mold replacement frequency must be increased. Therefore, the actual situation is that the cost of continuous casting must be increased.
本発明は以上の事情を背景としてなされたもので、鋳塊に対するピーリングによる皮剥き深さを必要最小限に抑え、これによって歩留まりを向上させることが可能であり、しかも鋳型交換頻度を従来よりも少なくして、連続鋳造のコストを低減し得る縦型連続鋳造方法を提供することを課題としている。 The present invention has been made against the background of the above circumstances, and it is possible to minimize the peeling depth by peeling to the ingot, thereby improving the yield, and moreover, the mold replacement frequency can be made higher than before. It is an object of the present invention to provide a vertical continuous casting method that can reduce the cost of continuous casting by reducing the cost.
 鋳塊に対するピーリングによる皮剥き深さを最小限に抑えて歩留まりを向上させためには、リップルの凹部深さの周方向のばらつきを小さくすることが有効であると考えた。
 そして、リップルの凹部深さがばらつく原因について検討したところ、竪型連続鋳造用鋳型の鋳造空間上部に供給される潤滑油について、その供給量の周方向のばらつきが、リップル凹部深さの周方向ばらつきに相関していることが判明した。
In order to improve the yield by minimizing the peeling depth by peeling against the ingot, it was considered effective to reduce the variation in the circumferential direction of the recess depth of the ripple.
Then, when the cause of the variation in the depth of the concave portion of the ripple was examined, the variation in the circumferential direction of the supply amount of the lubricating oil supplied to the upper part of the casting space of the vertical continuous casting mold was the circumferential direction of the ripple concave portion. It was found to correlate with variation.
すなわち、周方向の潤滑油供給量のばらつきの傾向としては、水平面内での、潤滑油量が最大の方向と最小の方向とが、鋳造空間の中心軸線位置を基準として、ほぼ反対方向(180°方向)となることが知見された。一方、竪型連続鋳造による棒状鋳塊のリップルの出現の傾向としても、その棒状鋳塊の中心軸線位置を基準として、水平面内でのある方向で凹部深さが最大となり、その最大方向に対してほぼ反対側で最小となる傾向を示す。そしてまた、一般に潤滑油供給量が多いほど、焼き付き防止効果は大きくなる反面、リップルが生じやすくなる(リップルの凹凸が大きくなる)。 That is, as a tendency of variation in the amount of lubricating oil supplied in the circumferential direction, the direction in which the amount of lubricating oil is maximum and the direction in which the amount of lubricating oil is maximum in the horizontal plane is almost opposite to the direction of the center axis of the casting space (180 ° direction). On the other hand, as a tendency of the appearance of ripples in the bar-shaped ingot by vertical continuous casting, the recess depth is maximum in a certain direction in the horizontal plane with respect to the central axis position of the bar-shaped ingot, Tend to be minimal on the opposite side. In general, the larger the amount of lubricating oil supplied, the greater the effect of preventing seizure, but the more likely the ripple is generated (the unevenness of the ripple is increased).
そこで本発明者等が、潤滑油供給量の鋳型周方向のばらつきと、鋳塊のリップルの凹部深さの周方向ばらつきとの関係について調べたところ、両者は相関しており、潤滑油供給量が多い側ではリップルの凹部深さが大きく、潤滑油供給量が少ない側ではリップルの凹部深さが小さいか又はリップルがほとんど生じないことが知見された。 Accordingly, the present inventors investigated the relationship between the variation in the circumferential direction of the mold circumferential direction of the lubrication oil supply amount and the variation in the circumferential direction of the recess depth of the ingot ripple. It has been found that the ripple recess depth is large on the side with a large amount of ripple, and the ripple recess depth is small on the side with a small amount of lubricating oil supply, or almost no ripple occurs.
このような結果から、リップルの凹部の深さの周方向ばらつきが、主として連続鋳造時において鋳型上部に供給される潤滑油の周方向のばらつきに起因することが明らかとなった。
 ここで、潤滑油供給量の周方向のばらつきは、製造された鋳型の各部の寸法の誤差や、鋳型の経時的な熱変形等に起因して生じるが、これらのばらつきの発生原因そのものを一挙に解消することは、実際上は極めて困難である。
From these results, it became clear that the circumferential variation in the depth of the concave portion of the ripple is mainly caused by the circumferential variation in the lubricating oil supplied to the upper part of the mold during continuous casting.
Here, variations in the circumferential direction of the lubricant supply amount are caused by errors in the dimensions of each part of the manufactured mold, thermal deformation of the mold over time, and the like. In practice, it is extremely difficult to eliminate the problem.
 そこで、潤滑油供給量が周方向にばらついてしまうこと自体は許容しながらも、潤滑油供給量の周方向のばらつきがリップルの凹部の深さのばらつきを招いてしまうことを回避する方策を考えた。言い換えれば、潤滑油供給量の周方向のばらつき自体を無くすのではなく、ばらつきの存在は許容しながらも、潤滑油量の周方向のばらつきがリップルの凹部の深さのばらつきに影響を与えないようにすることを考えた。 Therefore, a measure to avoid the variation in the circumferential direction of the lubricant supply amount from causing the variation in the depth of the concave portion of the ripple while allowing the lubricant supply amount to vary in the circumferential direction itself is considered. It was. In other words, instead of eliminating the circumferential variation of the lubricant supply amount itself, the variation in the circumferential direction of the lubricant amount does not affect the variation in the depth of the concave portion of the ripple while allowing the variation to exist. I thought about doing so.
そしてさらに本発明者等が実験検討を重ねた結果、鋳造空間内への潤滑油供給量の周方向ばらつきに応じて、鋳型の鋳造空間に対する注湯口の位置を調整することにより、潤滑油供給量に周方向のばらつきがあっても、リップル凹部深さの周方向ばらつきを低減し得ることを見い出した。 Further, as a result of repeated examination by the inventors, the amount of lubricating oil supplied is adjusted by adjusting the position of the pouring port with respect to the casting space of the mold according to the variation in the circumferential direction of the amount of lubricating oil supplied into the casting space. It has been found that even if there is a variation in the circumferential direction, the variation in the circumferential direction of the ripple recess depth can be reduced.
 すなわち、鋳造空間に金属溶湯を注湯して鋳造を開始する以前の段階で、潤滑油供給量の周方向のばらつきを測定して、そのばらつきに応じて注湯口と鋳型との水平方向の相対位置を調整しておくこと、具体的には、潤滑油供給量の多い側に注湯口を寄せるように上記の水平方向相対位置の調整を行っておくことにより、潤滑油供給量のばらつきがあっても、リップルの凹部深さのばらつきを低減し得ることを見い出し、本発明の完成に至った。 That is, before the start of casting after pouring a molten metal into the casting space, the circumferential variation in the amount of lubricating oil supplied is measured, and the horizontal direction relative to the pouring port and the mold is determined according to the variation. By adjusting the position, specifically, by adjusting the horizontal relative position so that the pouring port is brought closer to the side where the lubricating oil supply amount is large, there is a variation in the lubricating oil supply amount. However, it has been found that the variation in the recess depth of the ripple can be reduced, and the present invention has been completed.
 したがって本発明では、以下の(1)~(7)に記載した各態様を提供する。 Therefore, the present invention provides each aspect described in the following (1) to (7).
(1) 垂直筒状をなす鋳造空間を有する竪型連続鋳造用鋳型と、金属溶湯を前記鋳造空間内に上方から注湯するための注湯口であって前記鋳造空間の径よりも小さい径の注湯口を備えた注湯部材とを有する竪型連続鋳造装置を用い、前記鋳型の上部内周面から鋳造空間内に潤滑油を供給しながら連続鋳造する竪型連続鋳造法において、
前記鋳造空間内に金属溶湯を注湯して連続鋳造を開始する以前の段階で、鋳型内面から鋳造空間内に潤滑油を供給して、鋳造空間内における周方向の潤滑油供給量のばらつきを測定する段階と、
前記潤滑油供給量の周方向ばらつきに応じて、注湯部材を、注湯口の中心軸線位置が、鋳造空間の中心軸線位置に対し潤滑油供給量の多い側に寄るように、鋳造空間に対して水平方向に相対的にオフセットさせる段階と、
その後、鋳造空間内に金属溶湯を注湯して連続鋳造を行う段階と
を有してなる竪型連続鋳造法。
(1) A vertical continuous casting mold having a vertical cylindrical casting space, and a pouring port for pouring molten metal from above into the casting space, the diameter of which is smaller than the diameter of the casting space In a vertical continuous casting method in which continuous casting is performed while supplying lubricating oil from the upper inner peripheral surface of the mold into the casting space, using a vertical continuous casting apparatus having a pouring member provided with a pouring spout,
Before the start of continuous casting by pouring molten metal into the casting space, lubricating oil is supplied into the casting space from the inner surface of the mold, and variation in the amount of lubricating oil supplied in the circumferential direction within the casting space is reduced. Measuring, and
Depending on the circumferential variation in the amount of lubricating oil supplied, the pouring member is placed on the casting space so that the center axis position of the pouring port is closer to the side where the lubricating oil supply amount is larger than the center axis position of the casting space. And relatively offset in the horizontal direction,
And then casting the molten metal into the casting space and performing continuous casting.
 上記(1)において、竪型連続鋳造とは、連続鋳造鋳塊を、鋳型から鉛直下方に連続的に引き出す連続鋳造を意味する。またオフセットさせるとは、位置をずらすことを意味する。 In the above (1), vertical continuous casting means continuous casting in which a continuous casting ingot is continuously drawn vertically downward from a mold. Further, offset means that the position is shifted.
(2) 前記(1)の竪型連続鋳造法において:
 前記鋳造空間の中心軸線位置に対する注湯口の中心軸線位置のオフセット量を、鋳造開始前に測定した潤滑油供給量の周方向ばらつきの大きさに応じて決定する、竪型連続鋳造法。
(2) In the vertical continuous casting method of (1) above:
A vertical continuous casting method in which an offset amount of the center axis position of the pouring spout with respect to the center axis position of the casting space is determined in accordance with the circumferential variation of the lubricating oil supply amount measured before the start of casting.
(3) 前記(1)、(2)のうちのいずれかの竪型連続鋳造法において、
前記鋳造空間内における周方向の潤滑油供給量のばらつきを測定するにあたり、鋳造空間を、周方向に等間隔で複数の領域に区分し、所定時間内に各領域内に流入する潤滑油量を計量して、各領域への潤滑油流入量の比較によって鋳造空間内における周方向の潤滑油供給量のばらつきを測定する、竪型連続鋳造法。
(3) In the vertical continuous casting method of any one of (1) and (2),
In measuring the variation in the amount of lubricating oil supplied in the circumferential direction in the casting space, the casting space is divided into a plurality of regions at equal intervals in the circumferential direction, and the amount of lubricating oil flowing into each region within a predetermined time is determined. A vertical continuous casting method that measures the variation in the amount of lubricant supplied in the circumferential direction in the casting space by weighing and comparing the amount of lubricant flowing into each region.
(4) 前記(3)の竪型連続鋳造法において、
前記鋳造空間内における鋳造空間内における周方向の潤滑油供給量のばらつきを測定するにあたり、上面が開放された有底垂直筒状をなしかつ隔壁によって周方向に複数の領域に区分された潤滑油量ばらつき計量容器を鋳型内に嵌め込み、所定時間内に潤滑油量ばらつき計量容器の各領域内に流入した潤滑油量を計量する、竪型連続鋳造法。
(4) In the vertical continuous casting method of (3),
In measuring the variation in the amount of lubricating oil supplied in the casting space in the casting space, the lubricating oil has a bottomed vertical cylindrical shape with an open top and is divided into a plurality of regions in the circumferential direction by partition walls. A vertical continuous casting method in which a quantity variation measuring container is fitted into a mold and the amount of lubricating oil flowing into each region of the quantity variation lubricating container is measured within a predetermined time.
(5) 前記(1)~(4)ののうちのいずれかの竪型連続鋳造法において、
前記鋳型内に金属溶湯を注湯して連続鋳造するにあたり、鋳型の上部内周面から鋳造空間内に潤滑油とともに加圧気体を供給して、気体加圧式のホットトップ連続鋳造を行う、竪型連続鋳造法。
(5) In the vertical continuous casting method of any one of (1) to (4),
In continuous casting by pouring a molten metal into the mold, a pressurized gas is supplied together with lubricating oil from the upper inner peripheral surface of the mold into the casting space to perform gas pressurized hot top continuous casting. Mold continuous casting method.
(6)前記(1)~(5)ののうちのいずれかの竪型連続鋳造法において、
前記金属溶湯がアルミニウムもしくはアルミニウム合金の溶湯である竪型連続鋳造法。
(6) In the vertical continuous casting method of any one of (1) to (5),
A vertical continuous casting method in which the molten metal is a molten aluminum or aluminum alloy.
(7)前記(1)~(6)のいずれかの竪型連続鋳造法において、
前記前記鋳型として垂直円筒状のものを用い、軸線方向に直交する断面が円形の丸棒状鋳塊を連続鋳造する、竪型連続鋳造法。
(7) In the vertical continuous casting method of any one of (1) to (6),
A vertical continuous casting method in which a vertical cylindrical mold is used as the mold and a round bar-shaped ingot having a circular cross section perpendicular to the axial direction is continuously cast.
 本発明の竪型連続鋳造方法よれば、鋳塊におけるリップルの凹部深さの鋳型周方向でのばらつきを小さくすることができ、そのため鋳塊に対するピーリングでの皮剥き深さを小さくして、歩留まり向上を図ることができ、また鋳型交換頻度を従来よりも少なくして、連続鋳造のコストを低減することができる。 According to the vertical continuous casting method of the present invention, it is possible to reduce the variation in the recess depth of the ripple in the ingot in the circumferential direction of the mold, so that the peeling depth at the peeling against the ingot is reduced and the yield is reduced. Improvement can be achieved, and the frequency of continuous casting can be reduced by reducing the frequency of mold replacement as compared with the prior art.
竪型鋳造装置の一例として気体加圧式竪型ホットトップ連続鋳造装置の概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the gas pressurization type vertical hot top continuous casting apparatus as an example of a vertical casting apparatus. 従来の連続鋳造鋳塊におけるリップルの発生状況の一例を説明するための図で、連続鋳造鋳塊断面の模式的な拡大図である。It is a figure for demonstrating an example of the generation | occurrence | production state of the ripple in the conventional continuous casting ingot, and is a typical enlarged view of the cross section of a continuous casting ingot. 図2の鋳塊における部分IIIを拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the part III in the ingot of FIG. 本発明の実施形態で使用する潤滑油量ばらつき計量容器の一例を示す略解的な平面図である。It is a rough plan view showing an example of the lubricating oil amount variation measuring container used in the embodiment of the present invention. 図4に示される潤滑油量ばらつき計量容器を図1に示す連続鋳造装置に組み入れた状態を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the state which incorporated the lubricating oil amount dispersion | variation measuring container shown by FIG. 4 in the continuous casting apparatus shown in FIG. 本発明の連続鋳造法を適用して注湯口の位置調整を行った状態の一例を示す、図1に準じた連続鋳造装置の縦断面図である。It is a longitudinal cross-sectional view of the continuous casting apparatus according to FIG. 1 which shows an example of the state which adjusted the position of the pouring gate by applying the continuous casting method of this invention. 実施例における鋳型周方向の各領域の潤滑油量の比と、それに基づいた注湯部材のオフセットの状況を示す模式図である。It is a schematic diagram which shows the ratio of the lubricating oil amount of each area | region of the mold peripheral direction in an Example, and the condition of the offset of the pouring member based on it. 実施例における鋳型周方向の各領域の潤滑油量と各領域に対応する鋳塊各部位でのリップルの凹部深さ比との関係を示すグラフである。It is a graph which shows the relationship between the amount of lubricating oil of each area | region of the casting_mold | template circumferential direction in an Example, and the recessed part depth ratio of the ripple in each ingot part corresponding to each area | region.
 以下、本発明の竪型連続鋳造方法の実施形態について、詳細に説明する。なお、以下に示す実施形態は例示に過ぎず、本発明がこれらの実施形態に限定されないことはもちろんである。また以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴的な部分を拡大して示している場合や、特徴的でない細部を省略している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, embodiments of the vertical continuous casting method of the present invention will be described in detail. Note that the embodiments described below are merely examples, and the present invention is of course not limited to these embodiments. In addition, in the drawings used in the following description, in order to make the features easy to understand, the characteristic portions may be enlarged for convenience, or non-specific details may be omitted, and the dimensions of each component may be omitted. The ratio is not always the same as the actual one. In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately changed and implemented without changing the gist thereof.
 なおここでは、鋳型内の油面上に潤滑油とともに加圧気体を供給する気体加圧式ホットトップ連続鋳造法に適用して、断面が円形をなす丸棒状の鋳塊を鋳造する例を説明する。そして連続鋳造装置としても、既に説明した図1の鋳造装置を使用したものとし、図1に関して説明した要素は図1と同一の符号を用いて説明し、その詳細は省略する。 Here, an example will be described in which a round bar-shaped ingot having a circular cross section is cast by applying to a gas pressure hot top continuous casting method in which a pressurized gas is supplied together with lubricating oil onto the oil surface in the mold. . As the continuous casting apparatus, it is assumed that the casting apparatus already described with reference to FIG. 1 is used, and the elements described with reference to FIG. 1 will be described using the same reference numerals as those in FIG.
 本実施形態の連続鋳造方法を実施するにあたっては、鋳型に鋳造開始以前の段階、すなわち鋳型に金属溶湯を注入する以前の段階で、鋳型周方向での潤滑油供給量のばらつき(水平面内でのばらつき)を測定しておく。すなわち、鋳型の中心軸線に対する周方向のいずれの部位(領域)に潤滑油が多く供給されるか、またその潤滑油供給量のばらつきがどの程度であるかを測定しておく。 In carrying out the continuous casting method of the present embodiment, in the stage before the casting is started into the mold, that is, before the molten metal is injected into the mold, the variation in the lubricant supply amount in the mold circumferential direction (in the horizontal plane) Measure the variation. That is, it is measured to which part (region) in the circumferential direction with respect to the central axis of the mold a large amount of lubricating oil is supplied and how much variation in the amount of lubricating oil is supplied.
 潤滑油供給量の周方向のばらつきを測定するための具体的手法としては、例えば図4に示すような潤滑油量ばらつき計量容器21を、図5に示すように鋳型3の鋳造空間3Aに嵌め込んで測定すればよい。 As a specific method for measuring the circumferential variation in the amount of lubricating oil supplied, for example, a lubricating oil amount variation measuring container 21 as shown in FIG. 4 is fitted in the casting space 3A of the mold 3 as shown in FIG. And measure.
潤滑油量ばらつき計量容器21は、全体として、鋳型3の鋳造空間3Aに嵌め込まれるような、上面を開放した有底の垂直筒状をなすもの(本実施形態では鋳造空間3Aの形状に合わせて垂直円筒状のもの)であり、その計量容器21内には、垂直方向に沿いかつ半径方向に沿う複数(例えば8枚)の隔壁23が、周方向に等間隔(図4、図5の例では45°間隔)で形成されている。隣り合う各隔壁23相互間の空間は、それぞれ上方が開放されていて、潤滑油吹出孔11Aから鋳造空間3A内に流出する潤滑油を受け入れるための区分された領域Z1~Z8とされている。 The lubricating oil amount variation measuring container 21 has a bottomed vertical cylindrical shape with an open upper surface that fits into the casting space 3A of the mold 3 as a whole (according to the shape of the casting space 3A in this embodiment). In the weighing container 21, a plurality of (for example, eight) partition walls 23 along the vertical direction and along the radial direction are equally spaced in the circumferential direction (examples of FIGS. 4 and 5). Is formed at intervals of 45 °. The spaces between the adjacent partition walls 23 are opened upward, and are divided areas Z1 to Z8 for receiving the lubricating oil flowing out from the lubricating oil blowing hole 11A into the casting space 3A.
このような潤滑油量ばらつき計量容器21を、その上端が潤滑油吹出孔11Aの下側に位置するように鋳型3内に嵌め込み、その状態で潤滑油通路11に、定常操業状態で供給する潤滑油流量で潤滑油を供給し、潤滑油吐出孔11Aから鋳型3内に潤滑油を吐出させる。そして一定時間(例えば1分間)だけ潤滑油の吐出を継続させた後、計量容器21を鋳型3から取り外して、各領域Z1~Z8に流入した潤滑油量を計量すれば、鋳型3の周方向における潤滑油供給量のばらつきを測定することができる。すなわち、潤滑油供給量のばらつきの方向(潤滑油供給量の最大/最小の方向)およびその程度(各区分領域の潤滑油量のうちの最大の潤滑油量と最小の潤滑油量との差)を知得することができる。 Such a lubricating oil amount variation measuring container 21 is fitted into the mold 3 so that its upper end is located below the lubricating oil blowing hole 11A, and in this state, the lubricating oil supplied to the lubricating oil passage 11 in a steady operation state is supplied. Lubricating oil is supplied at an oil flow rate, and the lubricating oil is discharged into the mold 3 from the lubricating oil discharge hole 11A. Then, after the discharge of the lubricating oil is continued for a certain time (for example, 1 minute), the measuring container 21 is detached from the mold 3 and the amount of lubricating oil flowing into each of the regions Z1 to Z8 is measured. It is possible to measure the variation in the amount of lubricant supplied in That is, the direction of variation in the lubricant supply amount (maximum / minimum direction of the lubricant supply amount) and its degree (the difference between the maximum lubricant amount and the minimum lubricant amount among the lubricant amounts in each segment area) ).
なおここで、鋳型の周方向における潤滑油量のばらつきの傾向としては、既に述べたように、潤滑油量が最大の部位と最小の部位とで、鋳造空間の中心位置を基準として反対側となるのが通常であり、したがって上記のように潤滑油量を測定した各領域Z1~Z8のうち潤滑油量が最大の領域(例えば領域Z6)と最小の領域(例えば領域Z2)とでは、鋳造空間7Aの中心軸線Oに対して軸対称となるのが通常である。 Here, as described above, as the tendency of variation in the amount of lubricating oil in the circumferential direction of the mold, as described above, the portion where the lubricating oil amount is the largest and the smallest portion, and the opposite side with respect to the center position of the casting space Therefore, in each of the regions Z1 to Z8 in which the lubricating oil amount is measured as described above, the region where the lubricating oil amount is maximum (for example, the region Z6) and the minimum region (for example, the region Z2) are cast. Usually, the space is symmetrical with respect to the central axis O 2 of the space 7A.
 上述のようにして潤滑油供給量の周方向ばらつきを測定した後、そのばらつきの方向及び程度に応じて、鋳型3に対する注湯部材7の水平面内での相対的な位置調整を行う。すなわち、通常の連続鋳造操業では、図1を参照して説明したように、注湯部材7の注湯口7Aの垂直な中心軸線Oが、鋳型3の鋳造空間3Aの垂直な中心軸線Oと一致するように注湯部材7をセットしているが、本実施形態では、例えば図6、図7に示すように、注湯口7Aの中心軸線Oが、鋳造空間3Aの垂直な中心軸線Oに対して水平方向に所定距離LOFFだけずれる(オフセットされる)ように注湯部材7を鋳型3に対して位置調整する。ここで、上記の距離LOFFを、オフセット量と称することとする。ここで、上記のオフセットさせる方向は、潤滑油供給量のばらつきの方向に応じて、潤滑油量が多い側とする。すなわち、図6の例では、図の左側の潤滑油量が多い場合を想定し、注湯口7Aの中心軸線Oが鋳造空間3Aの垂直な中心軸線Oに対して左側に位置するように、オフセットさせている。 After measuring the variation in the circumferential direction of the lubricant supply amount as described above, the relative position adjustment of the pouring member 7 with respect to the mold 3 in the horizontal plane is performed according to the direction and degree of the variation. That is, in the normal continuous casting operation, as described with reference to FIG. 1, the vertical central axis O 1 of the pouring port 7A of the pouring member 7 is the vertical central axis O 2 of the casting space 3A of the mold 3. While setting the teeming member 7 so as to coincide with, in the present embodiment, for example, FIG. 6, as shown in FIG. 7, a pouring port center axis O 1 of 7A is a vertical central axis of the casting space 3A The pouring member 7 is adjusted in position with respect to the mold 3 so as to be shifted (offset) by a predetermined distance L OFF in the horizontal direction with respect to O 2 . Here, the distance L OFF is referred to as an offset amount. Here, the offset direction is the side where the amount of lubricating oil is large according to the direction of variation in the amount of lubricating oil supplied. That is, in the example of FIG. 6, assuming that the amount of lubricating oil on the left side of the drawing is large, the center axis O 1 of the pouring port 7A is positioned on the left side with respect to the vertical center axis O 2 of the casting space 3A. , Offset.
また、オフセット量LOFFは、潤滑油供給量のばらつきの程度に応じて設定すればよい。具体的なオフセット量LOFFは、潤滑油供給量のばらつきが最も小さくなるように、実測した潤滑油供給量のばらつきの大きさに応じて、実験的に定めればよい。ここで、潤滑油供給量が最大の方向における、注湯部材7の庇部7Bの張り出し距離(オーバーハング量)をLとし、潤滑油供給量が最小の方向における、注湯部材7の庇部7Bの張り出し距離(オーバーハング量)をLとすれば、本発明者等の実験によれば、領域の区分数が8である場合(すなわち領域の間隔が45°である場合)には、潤滑油供給量が最大の方向と最小の方向とにおける注湯部材7の庇部7Bの張り出し距離(オーバーハング量)の比(L:L)が、ほぼ上記方向における潤滑油供給量の比に反比例するように、オフセット量LOFFを設定することによって、潤滑油供給量のばらつきをほぼゼロに抑えることが可能となることを見い出している。 Further, the offset amount L OFF may be set according to the degree of variation in the lubricating oil supply amount. The specific offset amount L OFF may be determined experimentally in accordance with the measured variation in the lubricant supply amount so that the variation in the lubricant supply amount is minimized. Here, the lubricating oil supply amount is in the maximum direction, the projection distances of the eaves portion 7B of the teeming member 7 (overhang) and L p, in the lubricating oil supply amount is smallest direction, eaves teeming member 7 Assuming that the overhang distance (overhang amount) of the portion 7B is L q , according to the experiments by the present inventors, when the number of area divisions is 8 (that is, when the area interval is 45 °), The ratio (L p : L q ) of the overhang distance (overhang amount) of the flange 7B of the pouring member 7 between the direction in which the lubricating oil supply amount is maximum and the minimum direction is approximately the amount of lubricating oil supply in the above direction. It has been found that by setting the offset amount L OFF so as to be inversely proportional to the ratio, the variation in the lubricating oil supply amount can be suppressed to substantially zero.
例えば8領域に区分された各領域Z1~Z8のうち、最も潤滑油供給量が多い領域をZmax、その領域Zmaxへの潤滑油供給量をQmaxとし、最も潤滑油供給量が少ない領域をZmin、その領域Zminへの潤滑油供給量をQminとする。そして庇部7Bの張り出し距離(オーバーハング量)Lについて、注湯口7Aを領域Zmaxの側へオフセットさせた場合の、領域Zmaxの側のオーバーハング量をLp、領域Zminの側のオーバーハング量をLqとすれば、オフセット量LOFFは、次の(1)式、
OFF=(L-L)/2・・・・・・(1)
で表わされる。そこで、オーバーハング量L、Lを、次の(2)式、
:L=Qmax:Qmin・・・・・・(2)
が満たされるように、オフセット量LOFFを設定することによって、潤滑油供給量のばらつきを、ほぼゼロに抑えることができることが判明している。
For example, among the regions Z1 to Z8 divided into eight regions, the region with the largest lubricating oil supply amount is Zmax, the lubricating oil supply amount to the region Zmax is Qmax, the region with the smallest lubricating oil supply amount is Zmin, Let Qmin be the amount of lubricating oil supplied to the zone Zmin. For the overhang distance (overhang amount) L of the flange 7B, when the pouring port 7A is offset to the region Zmax side, the overhang amount on the region Zmax side is Lp, and the overhang amount on the region Zmin side is If Lq, the offset amount L OFF is expressed by the following equation (1):
L OFF = (L q −L p ) / 2 (1)
It is represented by Therefore, the overhang amounts L p and L q are expressed by the following equation (2):
L q : L p = Qmax: Qmin (2)
By setting the offset amount L OFF so that is satisfied, it has been found that the variation in the lubricant supply amount can be suppressed to substantially zero.
 注湯部材7の位置を鋳型3に対して相対的に調整するための具体的方法は特に限定されるものではなく、例えば固定位置に保持される鋳型3に対して、注湯部材7を、水平面内のX方向、Y方向に移動調整可能な支持部材によって支持しておきとしておき、移動調整すべき方向に応じて、上記の支持部材をX方向及び/又はY方向に移動させる構成とすればよい。あるいは、注湯部材7と鋳型3とを連結するためのボルトなどの連結部材やその受け部を、非固定状態では水平面内のX方向、Y方向に移動可能となるように遊びを持たせた構造としておき、その状態で注湯部材7を移動調整した後、連結・固定するようにしてもよい。 A specific method for adjusting the position of the pouring member 7 relative to the mold 3 is not particularly limited. For example, the pouring member 7 is attached to the mold 3 held at a fixed position. It is assumed that the support member is supported by a support member that can be adjusted in the X and Y directions in the horizontal plane, and the support member is moved in the X and / or Y direction according to the direction to be adjusted. That's fine. Alternatively, a connecting member such as a bolt for connecting the pouring member 7 and the mold 3 and its receiving part are provided with play so as to be movable in the X and Y directions in the horizontal plane in the non-fixed state. A structure may be used, and the pouring member 7 may be moved and adjusted in that state, and then connected and fixed.
 上述のように周方向の潤滑油供給量のばらつきを測定して、そのばらつきの方向と大きさに応じて注湯口7Aと鋳造空間3Aとの位置関係を調整(注湯口の中心軸線Oを鋳造空間の中心軸線Oに対してオフセット)した後、その状態で実際に注湯口7Aから鋳造空間3A内に金属溶湯を注湯して、連続鋳造を開始する。これによって得られる棒状鋳塊15は、その周方向におけるリップルの凹部深さのばらつきが少ないものとなる。すなわち、潤滑油供給量が多い側では、オフセットさせない場合よりもリップルの凹部深さが小さくなる。一方、潤滑油供給量が少ない側では、オフセットさせない場合よりもリップルの凹部深さが大きくなる傾向を示すが、潤滑油供給量が多い側の凹部深さを超えることはないのが通常である。 As described above, the variation in the amount of lubricating oil supplied in the circumferential direction is measured, and the positional relationship between the pouring port 7A and the casting space 3A is adjusted according to the direction and magnitude of the variation (the central axis O 1 of the pouring port is set). after offset) to the central axis O 2 of the casting space, and pouring the molten metal into the casting space 3A from actually sprue 7A in this state, to start the continuous casting. The bar-shaped ingot 15 obtained in this way has little variation in the recess depth of the ripple in the circumferential direction. That is, on the side where the amount of lubricant supplied is large, the depth of the concave portion of the ripple is smaller than when the offset is not performed. On the other hand, on the side where the lubricating oil supply amount is small, the recess depth of the ripple tends to be larger than when not offset, but it is normal that the concave portion depth on the side where the lubricating oil supply amount is large is not exceeded. .
 したがって、オフセットさせることによりリップルの凹部深さの周方向ばらつきを小さくし、最大の凹部深さを小さく抑えることができるのである。そのため、鋳塊に対するピーリングにおいても、その皮剥き深さを小さくして、無駄に除去されてしまう金属量を最小限に抑え、製品歩留まりを向上させることが可能となるのである。 Therefore, by offsetting, the variation in the circumferential direction of the recess depth of the ripple can be reduced, and the maximum recess depth can be kept small. Therefore, also in peeling against an ingot, it is possible to reduce the skin peeling depth, minimize the amount of metal that is removed unnecessarily, and improve the product yield.
また、オフセットさせない状態で連続鋳造に使用して、鋳塊のリップルの最大凹部深さが著しく大きなってしまって、従来は耐用寿命が尽きたと判断されるような鋳型であっても、上記のようにオフセットさせて連続鋳造に使用すれば、リップルの最大凹部深さを小さくすることができるため、その後も使用可能となる。すなわち、鋳型更新時期を延長させることが可能となる。 In addition, even if the mold is used for continuous casting without being offset, and the maximum recess depth of the ingot ripple is remarkably large, and it is conventionally determined that the useful life has been exhausted, If the offset is used in this way for continuous casting, the maximum recess depth of the ripple can be reduced, so that it can be used thereafter. That is, it is possible to extend the mold update time.
 ここで、注湯部材7の注湯口7Aの位置を、潤滑油供給量の多い側に寄せる(オフセットする)ことによって、その側でのリップルの凹部深さを小さくし得る理由は必ずしも明確ではないが、注湯口7Aの中心軸線Oの位置、言い換えれば注湯口7Aからの金属溶湯の注入流の中心が、鋳造空間3Aの中心軸線Oの位置に対してオフセットされれば、鋳型内に供給される金属溶湯の供給量分布が水平面内で均一ではなくなり、上記のオフセットされた側に金属溶湯が相対的に多量に供給されることになる。その結果、鋳型内壁に金属溶湯が接触して初期凝固が開始される際の接触面での金属の流速(下降速度)が、上記のオフセットされた側で大きくなる。そのため、オフセットされた側の潤滑油量が多くても、リップルが生じにくくなる、あるいはリップルの凹部深さが抑えられると考えられる。 Here, the reason why the depth of the concave portion of the ripple can be reduced by moving the position of the pouring port 7A of the pouring member 7 to the side where the lubricating oil supply amount is large (offset) is not necessarily clear. but pouring port 7A the position of the center axis O 1 of the center of the injection flow of molten metal from the pouring port 7A in other words, if it is offset relative to the position of the central axis O 2 of the casting space 3A, in a mold The supply amount distribution of the supplied molten metal is not uniform in the horizontal plane, and a relatively large amount of the molten metal is supplied to the offset side. As a result, the metal flow velocity (lowering speed) at the contact surface when the molten metal comes into contact with the inner wall of the mold and initial solidification is started increases on the offset side. For this reason, even if the amount of the lubricating oil on the offset side is large, it is considered that ripples are less likely to occur or the depth of the concave portion of the ripples can be suppressed.
 なお前述の実施形態では、鋳造空間3Aを周方向に45°間隔で8領域に区分しているが、領域の区分数は8に限られるものではなく、要は2以上の複数の領域に区分すればよい。但し、一般には軸対象となるように、好ましくは4以上の偶数領域に区分することが望ましい。 In the above-described embodiment, the casting space 3A is divided into eight regions at 45 ° intervals in the circumferential direction. However, the number of regions is not limited to eight, and the main points are divided into two or more regions. do it. However, in general, it is preferable to divide into even-numbered areas of 4 or more so as to be an axis target.
 さらに鋳造空間内の区分された複数の領域への潤滑油量を測定するための手段としては、前述のような潤滑油量ばらつき計量容器21に限らず、種々の手段を使用することができる。 Further, the means for measuring the amount of lubricating oil in a plurality of divided areas in the casting space is not limited to the lubricating oil amount variation measuring container 21 as described above, and various means can be used.
 また前述の実施形態では、鋳型3として円筒状の鋳造空間3Aを有するものを用いて、顔面が円形をなす丸棒状の鋳塊を連続鋳造することとしたが、本発明の竪型連続鋳造法は、角筒状の鋳造空間を有する鋳型を用いて、断面が角形の棒状鋳塊を連続鋳造する場合にも適用することができる。 Further, in the above-described embodiment, a round bar-shaped ingot having a circular face is continuously cast using a mold 3 having a cylindrical casting space 3A. However, the vertical continuous casting method of the present invention is used. Can also be applied to a case where a bar-shaped ingot having a square cross section is continuously cast using a mold having a rectangular cylindrical casting space.
 また本発明の竪型連続鋳造法を適用し得る金属は特に限定されるものではなく、連続鋳造可能な金属にはすべて適用することができ、例えば純アルミニウムや、各種のアルミニウム合金、とりわけAl-Si系(4000系)の共晶系合金もしくは過共晶系合金、そのほか1000系~7000系のアルミニウム合金、あるいは銅、銅合金等に適用することができる。 The metal to which the vertical continuous casting method of the present invention can be applied is not particularly limited, and can be applied to all metals that can be continuously cast. For example, pure aluminum, various aluminum alloys, especially Al-- The present invention can be applied to Si-based (4000-based) eutectic alloys or hypereutectic alloys, 1000-7000 aluminum alloys, copper, copper alloys, and the like.
 さらに、前述の実施形態では、気体加圧式の竪型ホットトップ連続鋳造法として説明したが、それに限らず、潤滑油を供給しながら鋳造する竪型連続鋳造法にはすべて適用可能である。 Furthermore, in the above-described embodiment, the gas pressurized vertical hot top continuous casting method has been described. However, the present invention is not limited to this, and can be applied to all vertical continuous casting methods in which casting is performed while supplying lubricating oil.
 以下に本発明の実施例を記す。なお以下の実施例は、本発明の作用、効果を明確化するためのものであって、実施例に記載された条件が本発明の技術的範囲を限定するものでないことはもちろんである。 Examples of the present invention will be described below. The following examples are for clarifying the operation and effects of the present invention, and it is needless to say that the conditions described in the examples do not limit the technical scope of the present invention.
〔実験例1〕
過共晶Al-Si系合金(質量%で、Si:14%Si、Cu:4.5%、Mg:0.55%、P:0.01%、残部実質的にAl)について、図1に示したような気体加圧式竪型ホットトップ連続鋳造装置により、直径64mmの丸棒状鋳塊に連続鋳造するにあたって、鋳造開始前に、隔壁によって45°ごとに8領域Z1~Z8に区分された潤滑油ばらつき計量容器21を、図5に示すように鋳型3内にセットした。注湯口7Aの内径は42mm、鋳型3の内径(鋳造空間3Aの径)は64mm、したがって注湯口7Aの中心軸線Oを鋳造空間の中心軸線Oに一致させた状態(すなわちオフセットさせていない状態)での注湯部材の庇部7Bの長さ(オーバーハング量)Lは11mmである。また潤滑油ばらつき計量容器21は、アクリル樹脂からなる外径64mm、高さ100mmの有底垂直円筒状のもので、隔壁及び外周壁の厚みは0.5mmである。この状態で潤滑油を全体の供給量が3.0cc/minとなるように1分間供給して、計量容器21の各領域Z1~Z8に溜まった潤滑油をスポイトによって吸出し、各領域Z1~Z8に流入した潤滑油量を調べた。
[Experimental Example 1]
FIG. 1 shows a hypereutectic Al—Si based alloy (mass%, Si: 14% Si, Cu: 4.5%, Mg: 0.55%, P: 0.01%, the balance being substantially Al). When continuous casting into a round bar-shaped ingot having a diameter of 64 mm was performed by the gas-pressurized vertical hot top continuous casting apparatus as shown in Fig. 1, the area was divided into 8 regions Z1 to Z8 by 45 ° before the start of casting. The lubricating oil variation measuring container 21 was set in the mold 3 as shown in FIG. The pouring port 7A has an inner diameter of 42 mm, and the casting mold 3 has an inner diameter (diameter of the casting space 3A) of 64 mm. Therefore, the center axis O 1 of the pouring port 7A is aligned with the center axis O 2 of the casting space (ie, not offset). The length (overhang amount) L of the flange portion 7B of the pouring member in the state) is 11 mm. Further, the lubricating oil variation measuring container 21 is a bottomed vertical cylindrical shape made of acrylic resin having an outer diameter of 64 mm and a height of 100 mm, and the thickness of the partition wall and the outer peripheral wall is 0.5 mm. In this state, the lubricating oil is supplied for 1 minute so that the total supply amount becomes 3.0 cc / min, and the lubricating oil accumulated in each region Z1 to Z8 of the measuring container 21 is sucked out by the dropper, and each region Z1 to Z8 is discharged. The amount of lubricating oil flowing into the tank was examined.
 上記の測定後、実際に前記合金を鋳造速度280mm/minで連続鋳造した。連続鋳造時は、上述の測定時と同様に潤滑油を全体の供給量が3.0cc/minとなるように供給し、同時に加圧気体として空気を用い、圧力0.1MPaで空気を導入しながら適宜バルブを調整して、気体加圧を行った。 After the above measurement, the alloy was actually continuously cast at a casting speed of 280 mm / min. At the time of continuous casting, the lubricating oil is supplied so that the total supply amount is 3.0 cc / min as in the above measurement, and at the same time, air is used as a pressurized gas and air is introduced at a pressure of 0.1 MPa. While adjusting the valve appropriately, gas was pressurized.
得られた棒状鋳塊の表面のリップルの凹部の深さを測定し、そのリップル凹部深さの周方向のばらつきを調べた。すなわち、前記各領域Z1~Z8に対応する鋳塊周方向の各部位ごとにリップル凹部の深さを調べ、最も凹部深さが大きい部位の凹部深さに対する比(リップル凹部深さ比)Rdを求めた。 The depth of the concave portion of the ripple on the surface of the obtained bar-shaped ingot was measured, and the variation in the circumferential direction of the depth of the ripple concave portion was examined. That is, the depth of the ripple concave portion is examined for each portion in the ingot circumferential direction corresponding to each of the regions Z1 to Z8, and the ratio (ripple concave portion depth ratio) Rd to the concave portion depth of the portion having the largest concave portion depth is determined. Asked.
このような実験を、種々の異なる使用履歴(主として異なる使用回数)を有する多数の鋳型を用いて行ない、最もリップルの凹部の深さのばらつきが小さかった鋳型の例について、各領域Z1~Z8の潤滑油量と、各領域に対応する鋳塊各部位のリップル凹部深さの、最も凹部深さが大きい部位の凹部深さに対する比(リップル凹部深さ比)Rdとを、表1に示す。
また、逆に最もリップルの凹部の深さのばらつきが少なかった鋳型の例について、潤滑油量と最も凹部深さが大きい箇所の凹部深さに対する比との関係について、各領域Z1~Z8の潤滑油量と、各領域に対応する鋳塊各部位のリップル凹部深さの、最も凹部深さが大きい部位の凹部深さに対する比(リップル凹部深さ比)Rdとを、表2に示す。
Such an experiment is performed using a large number of molds having various different usage histories (mainly different number of times of use), and an example of a mold having the smallest variation in the depth of the concave portion of the ripple is shown in each of the regions Z1 to Z8. Table 1 shows the amount of lubricating oil and the ratio (ripple recess depth ratio) Rd of the ripple recess depth of each part of the ingot corresponding to each region to the recess depth of the part having the largest recess depth.
On the other hand, with respect to the example of the mold in which the variation in the depth of the concave portion of the ripple is the smallest, regarding the relationship between the lubricating oil amount and the ratio to the concave portion depth of the portion having the largest concave portion, the lubrication in each of the regions Z1 to Z8 Table 2 shows the amount of oil and the ratio (ripple recess depth ratio) Rd of the ripple recess depth of each part of the ingot corresponding to each region to the recess depth of the part having the largest recess depth.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示しているように、各領域Z1~Z8の潤滑油量のばらつきが少ない鋳型では、リップル凹部深さ比Rdのばらつきも小さい。これに対して、表2に示しているように各領域Z1~Z8の潤滑油量のばらつきが大きい鋳型では、リップル凹部深さ比Rdのばらつきも大きく、しかも潤滑油量とリップル凹部深さ比Rdの大きさとが相関していること、すなわち潤滑油量が最も多い領域Z6では凹部深さ比Rdが最も大きく、逆に潤滑油量が最も少ない領域Z2ではリップル凹部深さ比Rdが最も小さいことが確認された。このような結果から、リップルの凹部深さのばらつきには、潤滑油供給量の周方向のばらつきが影響していることが明らかである。 As shown in Table 1, in the mold having a small variation in the lubricating oil amount in each of the regions Z1 to Z8, the variation in the ripple recess depth ratio Rd is small. On the other hand, as shown in Table 2, in the mold in which the variation in the lubricating oil amount in each of the regions Z1 to Z8 is large, the variation in the ripple recess depth ratio Rd is large, and the lubrication oil amount and the ripple recess depth ratio That the Rd magnitude is correlated, that is, the recess depth ratio Rd is the largest in the region Z6 where the amount of lubricating oil is the largest, and the ripple recess depth ratio Rd is the smallest in the region Z2 where the amount of lubricating oil is the smallest. It was confirmed. From these results, it is apparent that the variation in the circumferential direction of the lubricant supply amount affects the variation in the recess depth of the ripple.
〔実施例2〕
 さらに、実験例1の表2に示した例(リップル凹部深さ比Rdのばらつきが大きかった例)について、連続鋳造を再開する前に、表2の測定結果に基づいて注湯部材の注湯口の位置調整(オフセット)を、次のように行った。
[Example 2]
Further, for the example shown in Table 2 of Experimental Example 1 (an example in which the variation in the ripple recess depth ratio Rd was large), the pouring port of the pouring member was based on the measurement results in Table 2 before restarting continuous casting. The position adjustment (offset) of was performed as follows.
 表2に示す各領域Z1~Z8の潤滑油量を、全体の潤滑油供給量(3.0cc/min)に対する比(潤滑油量比)Rで表わせば、図7に示すようにあらわせる。本例では、領域Z6の潤滑油量が最も大きく、反対側の領域Z2の潤滑油量が最も少ないところから、注湯口7Aの中心位置Oを領域Z6の側に向けて、領域Z6の内角の中心線Sに沿って移動させる(オフセットさせる)ように調整することとした。 The amount of lubricating oil in each region Z1 ~ Z8 shown in Table 2, if indicated by the overall ratio lubricating oil supply amount to the (3.0cc / min) (the lubricating oil flow ratio) R q, expressed as shown in FIG. 7 . In this example, the amount of lubricating oil in the region Z6 is the largest, from where the lubricating oil of the region Z2 opposite the least, the center position O 1 of the pouring port 7A toward the side of the region Z6, internal angle region Z6 It was decided to adjust so as to be moved (offset) along the center line S.
オフセットさせていない状態(注湯口7Aの中心軸線Oが鋳造空間3Aの中心軸線Oに一致している状態)での各方向の庇部の長さ(オーバーハング量)Lは、本例では11mmであるから、オフセット量LOFFでオフセットさせたときの、潤滑油量最大側のオーバーバーハング量L(単位:mm)、潤滑油量最小側のオーバーバーハング量L(単位:mm)は、それぞれ
=11-LOFF ・・・・・・(3)
=11+LOFF ・・・・・・(4)
で表わされる。また図7に示したように、潤滑油最大の領域Z6の潤滑油量比Rは0.16、潤滑油最小の領域Z2の潤滑油量比Rは0.09であって、これらの潤滑油量比の値を、全体の潤滑油供給量(3.0cc/min)によって各領域の潤滑油量に換算すれば、潤滑油最大の領域Z6の潤滑油量Qmaxは0.48cc/min、潤滑油最小の領域Z2の潤滑油量Qminは0.27cc/minとなる。そこでこれらの潤滑油量Qmax、Qminの数値を代入すれば、
(11+LOFF):(11-LOFF)=0.48:0.27 ・・・・・・(5)
となる。この(5)式から、
OFF=3.08mm ・・・・・・(6)
の値が得られる。
 そこで、注湯口7Aの中心軸線Oが鋳造空間3Aの中心軸線Oに対して領域Z6の側に、領域Z6の内角の中心線Sに沿ってLOFF=3.08mmだけオフセットされるように、注湯部材7の位置を移動調整した。移動調整後の注湯口7Aの中心軸線の位置を、符号O´で示す。
State that has not been offset length of each direction of the eaves portion in (pouring port 7A center axis O 1 state that coincides with the center axis O 2 of the casting space 3A of) (overhang) L, the present embodiment Is 11 mm, and therefore, when offset is performed with the offset amount L OFF , the overbar hang amount L p (unit: mm) on the maximum lubricant amount side and the overbar hang amount L q on the minimum lubricant amount side (unit: mm) mm) is L p = 11−L OFF (3)
L q = 11 + L OFF (4)
It is represented by Also as shown in FIG. 7, the lubricating oil amount ratio R q of the lubricating oil up to the region Z6 0.16, the amount of lubricating oil ratio R q of the lubricating oil smallest area Z2 a 0.09, these When the value of the lubricating oil amount ratio is converted into the lubricating oil amount in each region by the total lubricating oil supply amount (3.0 cc / min), the lubricating oil amount Qmax in the maximum lubricating oil region Z6 is 0.48 cc / min. The lubricating oil amount Qmin in the minimum lubricating oil region Z2 is 0.27 cc / min. Therefore, if the numerical values of these lubricating oil amounts Qmax and Qmin are substituted,
(11 + L OFF ) :( 11−L OFF ) = 0.48: 0.27 (5)
It becomes. From this equation (5)
L OFF = 3.08mm (6)
The value of is obtained.
Therefore, the center axis O 1 of the pouring port 7A is offset by L OFF = 3.08 mm along the center line S of the inner angle of the region Z6 on the side of the region Z6 with respect to the center axis O 2 of the casting space 3A. In addition, the position of the pouring member 7 was moved and adjusted. The position of the central axis of the pouring port 7A after movement adjustment is denoted by reference symbol O 1 '.
 このようにオフセットさせた後、再度、前記実験例1と同じ条件での連続鋳造を行った。
得られた棒状鋳塊の表面のリップルの凹部の深さを測定し、そのリップル凹部深さの周方向のばらつきを調べた。すなわち、各領域Z1~Z8に対応する鋳塊周方向の各部位ごとにリップル凹部の深さを調べ、各部位の凹部深さの、最も凹部深さが大きい部位における凹部深さに対する比(リップル凹部深さ比Rd)を算出した。その値を、“オフセット後のリップル凹部深さ比Rd-1”として、図8の一点鎖線で示す。
After offsetting in this way, continuous casting was performed again under the same conditions as in Experimental Example 1.
The depth of the concave portion of the ripple on the surface of the obtained bar-shaped ingot was measured, and the variation in the circumferential direction of the depth of the ripple concave portion was examined. That is, the depth of the ripple concave portion is examined for each portion in the ingot circumferential direction corresponding to each of the regions Z1 to Z8, and the ratio of the concave portion depth of each portion to the concave portion depth in the portion having the largest concave portion depth (ripple The recess depth ratio Rd) was calculated. The value is indicated by a one-dot chain line in FIG. 8 as “ripple concave depth ratio Rd−1 after offset”.
なおオフセットさせていない状態で連続鋳造した場合の各部位のリップル凹部深さ比Rdを、“オフセット前のリップル凹部深さ比Rd-2”として、図8の破線で示す。
さらに、各領域Z1~Z8の潤滑油量を図8の実線で示す。
Note that the ripple recess depth ratio Rd of each part in the case of continuous casting without being offset is indicated by a broken line in FIG. 8 as “ripple recess depth ratio Rd-2 before offset”.
Further, the amount of lubricating oil in each of the regions Z1 to Z8 is indicated by a solid line in FIG.
 図8から明らかなように、オフセットさせていない状態の連続鋳造では、潤滑油量の大きなばらつきに相関して、リップル凹部深さのばらつきが大きかったが、注湯口を上記のLOFF=3.08mmだけ領域Z6の側にオフセットさせた状態で連続鋳造することによって、リップル凹部深さのばらつきを著しく小さくすることができた。 As apparent from FIG. 8, in the continuous casting of a state that has not been offset, in correlation with the large variation in the amount of lubricating oil, but the variation of the ripple recess depth was large, the pouring port of the L OFF = 3. By continuously casting in a state offset by 08 mm toward the region Z6, variation in the ripple recess depth could be remarkably reduced.
 したがって、上記のように注湯口をオフセットさせることにより、鋳塊に対するピーリングにおいて、ピーリング深さを小さくすることが可能となり、その結果、ピーリングによって除去される材料の量を少なくし、製品歩留まりを高めることが可能になる。 Therefore, by offsetting the pouring spout as described above, it becomes possible to reduce the peeling depth in peeling against the ingot, and as a result, the amount of material removed by peeling is reduced and the product yield is increased. It becomes possible.
 またリップルの凹部深さの周方向ばらつきが小さくなるに伴って、リップルの凹部深さの最大値が、鋳型更新を要すると判断されるに至る時期も遅くなり、その結果、鋳型の交換頻度も小さくなり、そのため連続鋳造のコスト上昇を抑えることもできる。 Also, as the variation in the circumferential direction of the concave portion of the ripple becomes smaller, the time until the maximum value of the concave portion of the ripple is judged to require mold renewal is delayed, and as a result, the frequency of mold replacement is also reduced. Therefore, the cost increase of continuous casting can be suppressed.
  3…鋳型、 3A…鋳造空間、 7…注湯部材、 7A…注湯口、11A…潤滑油吐出口、 15…鋳塊、 21…潤滑油量ばらつき計量容器、 O…注湯口の中心軸線、 O…鋳造空間の中心軸線、 LOFF…オフセット量。 3 ... mold, 3A ... casting space, 7 ... teeming member, 7A ... sprue, 11A ... lubricant discharging port, 15 ... ingot, 21 ... lubricating oil amount variation measuring container, O 1 ... sprue central axis, O 2 ... Center axis of casting space, L OFF ... Offset amount.

Claims (7)

  1. 垂直筒状をなす鋳造空間を有する竪型連続鋳造用鋳型と、金属溶湯を前記鋳造空間内に上方から注湯するための注湯口であって前記鋳造空間の径よりも小さい径の注湯口を備えた注湯部材とを有する竪型連続鋳造装置を用い、前記鋳型の上部内周面から鋳造空間内に潤滑油を供給しながら連続鋳造する竪型連続鋳造法において、
    前記鋳造空間内に金属溶湯を注湯して連続鋳造を開始する以前の段階で、鋳型内面から鋳造空間内に潤滑油を供給して、鋳造空間内における周方向の潤滑油供給量のばらつきを測定する段階と、
    前記潤滑油供給量の周方向ばらつきに応じて、注湯口の中心軸線位置を、鋳造空間の中心軸線位置に対し、潤滑油供給量の多い側に寄るように鋳造空間に対して水平方向に相対的にオフセットさせる段階と、
    その後、鋳造空間内に金属溶湯を注湯して連続鋳造を行う段階と
    を有してなる竪型連続鋳造法。
    A vertical continuous casting mold having a vertical cylindrical casting space, and a pouring port for pouring molten metal from above into the casting space, the pouring port having a diameter smaller than the diameter of the casting space In a vertical continuous casting method in which continuous casting is performed while supplying lubricating oil into the casting space from the upper inner peripheral surface of the mold using a vertical continuous casting apparatus having a pouring member provided,
    Before the start of continuous casting by pouring molten metal into the casting space, lubricating oil is supplied into the casting space from the inner surface of the mold, and variation in the amount of lubricating oil supplied in the circumferential direction within the casting space is reduced. Measuring, and
    Relative to the circumferential direction variation of the lubricating oil supply amount, the center axis position of the pouring port is relative to the casting space so as to be closer to the side where the lubricating oil supply amount is larger than the central axis position of the casting space. The step of automatically offsetting,
    And then casting the molten metal into the casting space and performing continuous casting.
  2. 鋳造空間の中心軸線位置に対する注湯口の中心軸線位置のオフセット量を、鋳造開始前に測定した潤滑油供給量の周方向ばらつきの大きさに応じて決定する、請求項1に記載の竪型連続鋳造法。 2. The vertical continuous type according to claim 1, wherein an offset amount of the center axis position of the pouring port with respect to the center axis position of the casting space is determined according to a size of a circumferential variation in a lubricant supply amount measured before the start of casting. Casting method.
  3.  鋳造空間内における周方向の潤滑油供給量のばらつきを測定するにあたり、鋳造空間を、周方向に等間隔で複数の領域に区分し、所定時間内に各領域内に流入する潤滑油量を計量して、各領域への潤滑油流入量の比較によって鋳造空間内における周方向の潤滑油供給量のばらつきを測定する、請求項1、請求項2のいずれかの請求項に記載の竪型連続鋳造法。 To measure the variation in the amount of lubricating oil supplied in the circumferential direction in the casting space, the casting space is divided into multiple regions at equal intervals in the circumferential direction, and the amount of lubricating oil flowing into each region within a predetermined time is measured. Then, the variation of the lubricating oil supply amount in the circumferential direction in the casting space is measured by comparing the lubricating oil inflow amount into each region, and the vertical continuation according to any one of claims 1 and 2 Casting method.
  4.  鋳造空間内における鋳造空間内における周方向の潤滑油供給量のばらつきを測定するにあたり、上面が開放された有底垂直筒状をなしかつ隔壁によって周方向に複数の領域に区分された潤滑油量ばらつき計量容器を鋳型内に嵌め込み、所定時間内に潤滑油量ばらつき計量容器の各領域内に流入した潤滑油量を計量する、請求項3に記載の竪型連続鋳造法。 In measuring the variation in the amount of lubricating oil supplied in the casting space in the casting space, the amount of lubricating oil having a bottomed vertical cylinder with an open top and divided into a plurality of regions in the circumferential direction by partition walls 4. The vertical continuous casting method according to claim 3, wherein the variation measuring container is fitted into a mold and the amount of lubricating oil flowing into each region of the lubricating oil amount variation measuring container within a predetermined time is measured.
  5.  前記鋳型内に金属溶湯を注湯して連続鋳造するにあたり、鋳型の上部内周面から鋳造空間内に潤滑油とともに加圧気体を供給して、気体加圧式のホットトップ連続鋳造を行う、請求項1~請求項4のいずれかの請求項に記載の竪型連続鋳造法。 In continuous casting by pouring a molten metal into the mold, a pressurized gas is supplied from the upper inner peripheral surface of the mold into the casting space together with lubricating oil to perform gas pressurized hot top continuous casting. The vertical continuous casting method according to any one of claims 1 to 4.
  6.  前記金属溶湯がアルミニウムもしくはアルミニウム合金の溶湯である、請求項1~請求項5のいずれかの請求項に記載の竪型連続鋳造法。 The vertical continuous casting method according to any one of claims 1 to 5, wherein the molten metal is a molten aluminum or aluminum alloy.
  7. 前記鋳型として垂直円筒状のものを用い、軸線方向に直交する断面が円形の丸棒状鋳塊を連続鋳造する、請求項1~請求項6のいずれかの請求項に記載の竪型連続鋳造法。 The vertical continuous casting method according to any one of claims 1 to 6, wherein a vertical cylindrical shape is used as the mold, and a round bar-shaped ingot having a circular cross section perpendicular to the axial direction is continuously cast. .
PCT/JP2017/028263 2016-08-18 2017-08-03 Vertical-type continuous casting method WO2018034164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016160564A JP6785091B2 (en) 2016-08-18 2016-08-18 Vertical continuous casting method
JP2016-160564 2016-08-18

Publications (1)

Publication Number Publication Date
WO2018034164A1 true WO2018034164A1 (en) 2018-02-22

Family

ID=61196493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028263 WO2018034164A1 (en) 2016-08-18 2017-08-03 Vertical-type continuous casting method

Country Status (2)

Country Link
JP (1) JP6785091B2 (en)
WO (1) WO2018034164A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268950A (en) * 1989-04-07 1990-11-02 Kawasaki Steel Corp Method for controlling channeling flow of molten steel in continuous casting mold
JP2707283B2 (en) * 1988-08-31 1998-01-28 昭和電工株式会社 Metal continuous casting method
WO2010001459A1 (en) * 2008-06-30 2010-01-07 日本軽金属株式会社 Gas pressure controlling casting mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707283B2 (en) * 1988-08-31 1998-01-28 昭和電工株式会社 Metal continuous casting method
JPH02268950A (en) * 1989-04-07 1990-11-02 Kawasaki Steel Corp Method for controlling channeling flow of molten steel in continuous casting mold
WO2010001459A1 (en) * 2008-06-30 2010-01-07 日本軽金属株式会社 Gas pressure controlling casting mold

Also Published As

Publication number Publication date
JP2018027559A (en) 2018-02-22
JP6785091B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
EP2292351B1 (en) Gas pressure controlling casting mold
JP5673149B2 (en) Mold for continuous casting of steel and method for continuous casting of steel
NO337972B1 (en) Molding and horizontal casting method
JP6947737B2 (en) Continuous steel casting method
JP5500401B2 (en) Continuous casting method of impact guarantee beam blank
JP6365604B2 (en) Steel continuous casting method
WO2018034164A1 (en) Vertical-type continuous casting method
JP6787359B2 (en) Continuous steel casting method
JP5018441B2 (en) Method of drawing slab after completion of casting in continuous casting
JP5712685B2 (en) Continuous casting method
RU2733525C1 (en) Crystallizer for continuous casting and continuous casting method
JP3619377B2 (en) Billet continuous casting method and apparatus
KR101400047B1 (en) Control method for casting of ultra low carbon steel
RU2741876C1 (en) Method for continuous casting of slab bills
JP5769645B2 (en) Continuous casting method
US20220362838A1 (en) Starting head for a continuous casting mold and associated method
JP2024047887A (en) Continuous casting mold, manufacturing method for continuous casting mold, and continuous casting method for steel
JP5148472B2 (en) Continuous casting mold
JP2024047886A (en) Continuous casting mold and method of manufacturing the same
JP2003290878A (en) Horizontally continuous casting method
RU2364466C1 (en) Ingot casting mould
JP2024035081A (en) Continuous casting mold
WO2022240953A1 (en) Starting head for a continuous casting mold and associated continuous casting mold
RU116383U1 (en) SLEEVE GLASS SOCKET NEST FOR CONTINUOUS METAL CASTING
JP2019188444A (en) Vertical continuous casting device, and continuous casting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841391

Country of ref document: EP

Kind code of ref document: A1