WO2018034126A1 - Antireflective film, antireflective article, polarizing plate, image display device, module, touch panel liquid crystal display device, and method for manufacturing antireflective film - Google Patents

Antireflective film, antireflective article, polarizing plate, image display device, module, touch panel liquid crystal display device, and method for manufacturing antireflective film Download PDF

Info

Publication number
WO2018034126A1
WO2018034126A1 PCT/JP2017/027315 JP2017027315W WO2018034126A1 WO 2018034126 A1 WO2018034126 A1 WO 2018034126A1 JP 2017027315 W JP2017027315 W JP 2017027315W WO 2018034126 A1 WO2018034126 A1 WO 2018034126A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
antireflection
group
antireflection film
plastic substrate
Prior art date
Application number
PCT/JP2017/027315
Other languages
French (fr)
Japanese (ja)
Inventor
千裕 増田
美帆 朝日
悠太 福島
竜二 実藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017072565A external-priority patent/JP6778646B2/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780050120.4A priority Critical patent/CN109642963A/en
Priority to KR1020197004406A priority patent/KR102253371B1/en
Publication of WO2018034126A1 publication Critical patent/WO2018034126A1/en
Priority to US16/276,164 priority patent/US10871596B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to an antireflection film, an antireflection article, a polarizing plate, an image display device, a module, a liquid crystal display device with a touch panel, and a method for producing an antireflection film.
  • Image display such as a display device using a cathode ray tube (CRT), a plasma display panel (PDP), an electroluminescence display (ELD), a fluorescent display (VFD), a field emission display (FED), and a liquid crystal display (LCD)
  • CTR cathode ray tube
  • PDP plasma display panel
  • ELD electroluminescence display
  • VFD fluorescent display
  • FED field emission display
  • LCD liquid crystal display
  • an antireflection film may be provided in order to prevent a decrease in contrast and reflection of an image due to reflection of external light on the display surface.
  • a liquid crystal display device with a touch panel may have a structure in which a touch panel and a liquid crystal panel including a liquid crystal cell are arranged via an air gap, but the interface between the touch panel and the air gap, and the air gap and the liquid crystal panel
  • an antireflection film is placed at the interface between the touch panel and the air gap, and at the interface between the air gap and the liquid crystal panel. How to do is known. Further, there are cases where an antireflection function is imparted by an antireflection film other than an image display device such as a glass surface of a showroom.
  • an antireflection film As an antireflection film, an antireflection film having a fine unevenness with a period of not more than the wavelength of visible light on the surface of the substrate, that is, an antireflection film having a so-called moth eye structure is known. With the moth-eye structure, it is possible to create a refractive index gradient layer in which the refractive index continuously changes from air to the bulk material inside the substrate, thereby preventing light reflection.
  • Patent Document 1 discloses that a coating liquid containing a transparent resin monomer and fine particles is applied on a transparent substrate and cured to form a transparent resin in which the fine particles are dispersed.
  • An anti-reflection film having a moth-eye structure manufactured by etching a resin is described.
  • the antireflection film of Patent Document 1 has a low light transmittance in the short wavelength region of visible light. Specifically, this is expressed by the fact that the transmittance of light having a wavelength of 480 nm is smaller than the transmittance of light having a wavelength of 580 nm. The cause of this is thought to be that light interferes with the concavo-convex period of the moth-eye structure, and more specifically, because diffracted light having a wavelength twice that of the concavo-convex period interferes. If the transmittance of light in the short wavelength region of visible light is low, a change in color tends to occur, and this problem becomes particularly noticeable when two or more antireflection films are used. As a case where two or more antireflection films are used, for example, a liquid crystal display device with a touch panel may be mentioned.
  • An object of the present invention is to provide an antireflection film having good antireflection performance, high total light transmittance, and high light transmittance in the short wavelength region of visible light, a method for producing the antireflection film, and The object is to provide an antireflection article, a polarizing plate, an image display device, a module, and a liquid crystal display device with a touch panel, each having the antireflection film.
  • An antireflection film having a plastic substrate and an antireflection layer The antireflection layer includes metal oxide particles and a binder resin, The antireflection layer has a moth-eye structure having an uneven shape formed by the metal oxide particles,
  • the total light transmittance of the antireflection film when incident from the side opposite to the plastic substrate of the antireflection layer is 88% or more, and
  • T 480 and T 580 the transmittance of light having a wavelength of 480nm and 580nm of the antireflection film at the time of entering from the side opposite to the plastic substrate of the anti-reflection layer, T 580 -T 480 ⁇ 3.
  • the concavo-convex shape of the antireflection layer is the antireflection film according to ⁇ 1>, where X is an average value of distances A between vertices of adjacent convex portions, and X ⁇ 190 nm.
  • the uneven shape of the antireflection layer is the antireflection film according to ⁇ 2>, which satisfies X + ⁇ ⁇ 190 nm, where ⁇ is a standard deviation representing the distribution of A.
  • ⁇ 4> The antireflection film according to any one of ⁇ 1> to ⁇ 3>, wherein the average primary particle size of the metal oxide particles is from 100 nm to 190 nm.
  • the binder resin includes a compound having 2 or less polymerizable functional groups in one molecule having a viscosity of 1 to 20 mPas at 25 ° C. or a compound having no polymerizable functional group.
  • the hard coat layer contains a quaternary ammonium salt-containing polymer,
  • the surface resistivity of the antireflection layer is SR in the unit ⁇ / sq
  • the common logarithm value of SR is 11 or less
  • the uneven shape of the antireflection layer is between vertices of adjacent protrusions.
  • ⁇ 6> satisfying X + ⁇ ⁇ 190 nm, where X is the average value of the distance A and ⁇ is the standard deviation representing the distribution of A.
  • ⁇ 8> ⁇ 1>- ⁇ 7>
  • Antireflection article which has the antireflection film of any one of ⁇ 1> on the surface.
  • ⁇ 9> An antireflection according to any one of ⁇ 1> to ⁇ 7>, wherein the polarizing plate has a polarizer and at least one protective film for protecting the polarizer, wherein at least one of the protective films is ⁇ 1> to ⁇ 7>.
  • ⁇ 10> ⁇ 1>- ⁇ 7> The image display apparatus which has an antireflection film of any one of ⁇ 1>, or the polarizing plate as described in ⁇ 9>.
  • ⁇ 11> A module comprising two antireflection films according to any one of ⁇ 1> to ⁇ 7>, wherein the two antireflection films are disposed to face each other through an air gap.
  • ⁇ 12> The module according to ⁇ 11>, wherein the two antireflection films have the antireflection layer disposed closer to the air gap than the plastic substrate.
  • One of the two antireflection films has a touch panel on the side opposite to the antireflection layer side of the plastic substrate of the antireflection film, A display device with a touch panel, having a liquid crystal cell on the side opposite to the antireflection layer side of the plastic substrate of the other antireflection film.
  • Step (1) A step of bonding the layer (b) of the pressure-sensitive adhesive film having the support and the layer (b) containing a pressure-sensitive adhesive having a gel fraction of 95.0% or more on the support (2).
  • the metal oxide particles are embedded in a layer combining the layer (a) and the layer (b), and protrude from the interface on the side opposite to the interface on the plastic substrate side of the layer (a).
  • Step (3) of moving the position of the interface between the layer (a) and the layer (b) to the plastic substrate side A step (4) of curing the layer (a) in a state where the metal oxide particles are buried in a layer formed by combining the layer (a) and the layer (b); Step (5) of peeling the layer (b) from the layer (a); In this order, and the temperature at which the above steps (1) to (4) are performed is 60 ° C. or less.
  • an antireflection film having good antireflection performance, a high total light transmittance, and a high light transmittance in the short wavelength region of visible light a method for producing the antireflection film, and An antireflection article, a polarizing plate, an image display device, a module, and a liquid crystal display device with a touch panel having the antireflection film can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate represents at least one of acrylate and methacrylate
  • (meth) acryl represents at least one of acrylic and methacryl
  • (meth) acryloyl represents at least one of acryloyl and methacryloyl.
  • the weight average molecular weight and number average molecular weight in the present invention are values measured by gel permeation chromatography (GPC) under the following conditions.
  • Cold] TOSOH TSKgel Super HZM-H Three (4.6 mm x 15 cm) are connected and used.
  • Sample concentration 0.1% by mass
  • Flow rate 0.35 ml / min
  • the antireflection film of the present invention is An antireflection film having a plastic substrate and an antireflection layer,
  • the antireflection layer includes metal oxide particles and a binder resin, and the antireflection layer has a moth-eye structure having an uneven shape formed by the metal oxide particles,
  • the total light transmittance of the antireflection film when incident from the side opposite to the plastic substrate of the antireflection layer is 88% or more, and
  • T 480 and T 580 the transmittance of light having a wavelength of 480nm and 580nm of the antireflection film at the time of entering from the side opposite to the plastic substrate of the anti-reflection layer, T 580 -T 480 ⁇ 3. It is an antireflection film satisfying 5%.
  • the antireflection film of the present invention has a plastic substrate and an antireflection layer, and the plastic substrate and the antireflection layer are laminated.
  • the plastic substrate and the antireflection layer may be directly laminated, or may be laminated via another layer (preferably a hard coat layer).
  • the total light transmittance of the antireflection film when entering from the side opposite to the plastic substrate of the antireflection layer of the antireflection film of the present invention is 88% or more, preferably 90% or more, more preferably 92. % Or more, more preferably 94% or more.
  • the antireflection film has a total light transmittance of 88% or more when entering from the side opposite to the plastic substrate of the antireflection layer of the antireflection film, which increases the transparency of the antireflection film. Even if two or more prevention films are used, the visibility is hardly lowered.
  • the measurement of the total light transmittance is performed according to Japanese Industrial Standard (JIS) K7361-1 (1997).
  • the means for increasing the total light transmittance of the antireflection film to 88% or more when it enters from the side opposite to the plastic substrate of the antireflection layer of the antireflection film there are no particular restrictions on the means for increasing the total light transmittance of the antireflection film to 88% or more when it enters from the side opposite to the plastic substrate of the antireflection layer of the antireflection film.
  • the total light transmittance is high.
  • a plastic substrate may be used.
  • it is also preferable to set the average value X of the distance A between the vertices of adjacent convex portions of the concavo-convex shape of the antireflection layer to 190 nm or less from the viewpoint of preventing a decrease in transmittance in the visible light region.
  • T 480 and T 580 satisfy T 580 ⁇ T 480 ⁇ 3.5%, preferably 0% ⁇ T 580 ⁇ T 480 ⁇ 3.0%, and 0% ⁇ T 580 ⁇ T 480 ⁇ 2.5% % Is more preferable, and 0% ⁇ T 580 ⁇ T 480 ⁇ 2.0% is more preferable.
  • T 580 ⁇ T 480 ⁇ 3.5% is satisfied, that is, T 580 ⁇ T 480 is 3.5% or less, for example, the color change of the display image when an antireflection film is applied to the image display device Can be suppressed. In particular, even when two or more antireflection films are used, the color change hardly occurs.
  • Measurements of T 480 and T 580 shall be carried out according to Japanese Industrial Standards (JIS) K0115 (2004 years).
  • Means for reducing T 580 -T 480 to 3.5% or less is not particularly limited, but the average value X of the distance A between the vertices of adjacent convex portions of the concavo-convex shape of the antireflection layer should be 190 nm or less.
  • X + ⁇ is more preferably 190 nm or less.
  • the antireflection film of the present invention preferably has an integrated reflectance of 3% or less over the entire wavelength range of 380 to 780 nm, more preferably 2% or less.
  • FIG. 1 An example of a preferred embodiment of the antireflection film of the present invention is shown in FIG.
  • An antireflection film 10 in FIG. 1 includes a plastic substrate 1 and an antireflection layer 2.
  • the antireflection layer 2 includes metal oxide particles 3 and a binder resin 4.
  • the metal oxide particles 3 protrude from the binder resin 4 to form an uneven shape, and this uneven shape has a moth-eye structure.
  • the antireflection layer of the antireflection film of the present invention has a moth-eye structure having a concavo-convex shape formed by metal oxide particles.
  • the uneven shape is preferably formed on the surface of the antireflection layer on the side opposite to the interface on the plastic substrate side.
  • the concavo-convex shape formed by the metal oxide particles preferably means that each metal oxide particle protruding from the binder resin film becomes a convex portion, and a portion where no metal oxide particles exist becomes a concave portion. is there.
  • the moth-eye structure composed of a concavo-convex shape means that the concavo-convex shape is a moth-eye structure.
  • the moth-eye structure refers to a processed surface of a substance (material) for suppressing light reflection, and a structure having a periodic fine structure pattern.
  • a structure having a fine structure pattern with a period of less than 780 nm.
  • the period of the fine structure pattern is less than 190 nm, the color of the reflected light is preferably reduced.
  • the period of the concavo-convex shape of the moth-eye structure is 100 nm or more because light having a wavelength of 380 nm can recognize a fine structure pattern and has excellent antireflection properties.
  • the presence or absence of the moth-eye structure can be confirmed by observing the surface shape with a scanning electron microscope (SEM), an atomic force microscope (AFM), or the like, and examining whether the fine structure pattern is formed.
  • the concavo-convex shape of the antireflection layer of the antireflection film of the present invention is B / A, which is a ratio of the distance A between the apexes of adjacent convex portions and the distance B between the center and the concave portion between the apexes of adjacent convex portions. Is preferably 0.4 or more.
  • B / A is 0.4 or more, the depth of the concave portion increases with respect to the distance between the convex portions, and a refractive index gradient layer in which the refractive index changes more gradually from the air to the inside of the antireflection layer is formed. Therefore, the reflectance can be further reduced.
  • B / A is more preferably 0.5 or more.
  • B / A can be controlled by the volume ratio of the binder resin and the metal oxide particles in the antireflection layer. Therefore, it is important to appropriately design the blending ratio between the binder resin and the metal oxide particles.
  • the concavo-convex shape of the antireflection layer of the antireflection film of the present invention preferably satisfies X ⁇ 190 nm, and preferably satisfies X ⁇ 180 nm, where X is the average value of the distances A between the vertices of adjacent convex portions. It is more preferable that X ⁇ 170 nm is satisfied.
  • X ⁇ 190 nm that is, when X is 190 nm or less, it is possible to prevent a decrease in transmittance in the short wavelength region of visible light as described above.
  • X + ⁇ ⁇ 190 nm when ⁇ is the standard deviation representing the distribution of A X ⁇ 180 nm is more preferable, and X ⁇ 170 nm is more preferable.
  • the means for creating the irregular shape satisfying X ⁇ 190 nm is not particularly limited, but (i) using metal oxide particles having an average primary particle size of 190 nm or less, or (ii) aggregation of metal oxide particles. For example, it is possible to suppress the formation of voids between the metal oxide particles.
  • (ii-2) a method of forming a bond between the metal oxide particles and the substrate.
  • the means for creating the irregular shape satisfying X + ⁇ ⁇ 190 nm is not particularly limited, but (i) using metal oxide particles having an average primary particle size of 190 nm or less, or (ii) aggregation of metal oxide particles Prevention.
  • a method for preventing aggregation of the metal oxide particles of (ii) above (ii-1) a method of setting the temperature at the production of the antireflection film to 60 ° C. or lower, or (ii-2) metal oxide particles and Examples thereof include a method of forming a bond with the substrate.
  • the distance B can be measured by cross-sectional SEM observation of the antireflection film.
  • the antireflection film sample is cut with a microtome to obtain a cross section, and SEM observation is performed at an appropriate magnification (about 5000 times). For easy observation, the sample may be subjected to appropriate processing such as carbon deposition and etching.
  • the distance B is defined as a straight line connecting the vertices of the adjacent protrusions and a perpendicular bisector at the interface between the air and the sample and including the vertices of the adjacent protrusions.
  • the distance from the concave portion that is the point reaching the binder resin is shown.
  • the average value when the distance A between the vertices of adjacent convex portions is measured at 100 points is calculated as X.
  • the standard deviation indicating the variation in the measured distance A is calculated as ⁇ . In the SEM photograph, there are cases where the distance A between the vertices of the adjacent convex portions and the distance B between the vertices of the adjacent convex portions and the concave portion B cannot be measured accurately with respect to all the projected and recessed portions.
  • the length may be measured by paying attention to the convex portion and the concave portion shown on the near side in the SEM image.
  • the concave portion needs to be measured at the same depth as the particles forming the two adjacent convex portions to be measured in the SEM image. This is because if the distance to a particle or the like reflected on the near side is measured as B, B may be estimated small.
  • the metal oxide particles forming the convex portions are uniformly spread with an appropriate filling rate.
  • the content of the metal oxide particles forming the convex portion is adjusted so as to be uniform throughout the antireflection layer.
  • the filling rate can be measured as the area occupancy (particle occupancy) of the metal oxide particles located on the most surface side when observing the metal oxide particles forming the convex portion from the surface by SEM or the like. % To 64% is preferable, 25 to 50% is more preferable, and 30 to 45% is still more preferable.
  • the uniformity of the surface of the antireflection film can be evaluated by haze.
  • the measurement can be carried out on a film sample of 40 mm ⁇ 80 mm at 25 ° C. and a relative humidity of 60% with a haze meter NDH4000 manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS-K7136 (2000).
  • a haze meter NDH4000 manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS-K7136 (2000).
  • the haze value is preferably 0.0 to 3.0%, more preferably 0.0 to 2.5%, and further preferably 0.0 to 2.0%.
  • the plastic substrate of the antireflection film of the present invention will be described.
  • the plastic substrate is not particularly limited as long as it is a light-transmitting substrate generally used as a substrate for an antireflection film.
  • Various plastic substrates can be used, such as cellulose resin; cellulose acylate (triacetate cellulose, diacetyl cellulose, acetate butyrate cellulose), polyester resin; polyethylene terephthalate, (meth) acrylic resin, polyurethane, etc.
  • Base materials containing polycarbonate resins, polycarbonates, polystyrenes, olefin resins, etc. preferably cellulose acylates, polyethylene terephthalates, or substrates containing (meth) acrylic resins, and substrates containing cellulose acylates Is more preferable, and a cellulose acylate film is particularly preferable.
  • the cellulose acylate the base material described in JP 2012-093723 A can be preferably used.
  • the thickness of the plastic substrate is usually about 10 ⁇ m to 1000 ⁇ m, but is preferably 15 ⁇ m to 200 ⁇ m, and preferably 20 ⁇ m to 200 ⁇ m from the viewpoints of good handleability, high translucency, and sufficient strength.
  • the thickness of the plastic substrate is preferably 20 ⁇ m to 40 ⁇ m, and more preferably 25 ⁇ m to 40 ⁇ m.
  • a material having a total light transmittance of 90% or more is preferable.
  • the antireflection layer of the antireflection film of the present invention will be described.
  • the antireflection layer includes metal oxide particles and a binder resin.
  • the binder resin preferably has a function of binding metal oxide particles to a plastic substrate or a laminate of a plastic substrate and another layer.
  • the binder resin is preferably a film as shown in FIG.
  • the binder resin preferably contains a cured product of a curable compound.
  • the binder resin can be obtained by curing a curable compound.
  • the curable compound used for forming the binder resin is also referred to as a curable compound (a1).
  • a compound having a polymerizable functional group (preferably an ionizing radiation curable compound) is preferable.
  • the compound having a polymerizable functional group various monomers, oligomers, or polymers can be used, and the polymerizable functional group (polymerizable group) is preferably a light, electron beam, or radiation-polymerizable one, and particularly, photopolymerization.
  • a functional group is preferred.
  • the photopolymerizable functional group include polymerizable unsaturated groups (carbon-carbon unsaturated double bond groups) such as (meth) acryloyl group, vinyl group, styryl group, and allyl group. ) An acryloyl group is preferred.
  • the compound having a polymerizable unsaturated group include (meth) acrylic acid diesters of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate; (Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate; (Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate; (Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis ⁇ 4- (acryloxy-diethoxy) phenyl ⁇ propane and 2-2bis ⁇ 4- (acryloxy-polypropoxy)
  • epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the compound having a photopolymerizable functional group.
  • esters of polyhydric alcohol and (meth) acrylic acid are preferable. More preferably, at least one polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferably contained.
  • polyfunctional acrylate compounds having a (meth) acryloyl group include KAYARAD DPHA, DPHA-2C, PET-30, TMPTA, TPA-320, and TPA- manufactured by Nippon Kayaku Co., Ltd. 330, RP-1040, T-1420, D-310, DPCA-20, DPCA-30, DPCA-60, GPO-303, V # 3PA, V from Osaka Organic Chemical Industry Co., Ltd.
  • esterified products of polyols such as # 400, V # 36095D, V # 1000, V # 1080, and (meth) acrylic acid.
  • UV-1400B Purple light UV-1400B, UV-1700B, UV-6300B, UV-7550B, UV-7600B, UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-7630B, UV-7640B UV-6630B, UV-7000B, UV-7510B, UV-7461TE, UV-3000B, UV-3200B, UV-3210EA, UV-3310EA, UV-3310EA, UV-3310B, UV-3500BA UV-3520TL, UV-3700B, UV-6100B, UV-6640B, UV-2000B, UV-2010B, UV-2250EA, UV-2250EA (manufactured by Nippon Synthetic Chemical Co., Ltd.), UA-306H, UA-306I, UA-306T, UL-503L (Kyoeisha Chemical Co., Ltd.), Unidic 17-806, 17-813, V-4030, V-4000BA (Dainippon Ink Chemical Co., Ltd.), EB-1290
  • resins having three or more polymerizable functional groups such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, Also included are oligomers or prepolymers such as polyfunctional compounds such as polyhydric alcohols.
  • JP-A-2005-76005 and JP-A-2005-36105 dendrimers such as SIRIUS-501 and SUBARU-501 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), JP-A-2005-60425 A norbornene ring-containing monomer as described in 1) can also be used.
  • a silane coupling agent having a polymerizable functional group may be used as the curable compound (a1) in order to bond the metal oxide particles and the curable compound (a1) to form a strong film.
  • Specific examples of the silane coupling agent having a polymerizable functional group include, for example, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, and 3- (meth) acryloxypropyl.
  • Two or more kinds of compounds having a polymerizable functional group may be used in combination.
  • the polymerization of the compound having a polymerizable functional group can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
  • the antireflection layer can further contain a compound other than the curable compound (a1) as a binder-forming compound.
  • a compound having 2 or less polymerizable functional groups in one molecule may be used as the curable compound (a1).
  • a compound having 3 or more polymerizable functional groups and a compound having 2 or less polymerizable functional groups in one molecule or a compound other than the curable compound (a1) does not have a polymerizable functional group It is preferable to use a compound in combination.
  • the weight average molecular weight (Mwa) is 40 ⁇ Mwa ⁇ 500
  • the SP value (SPa by the Hoy method) ) Is preferably 19 ⁇ SPa ⁇ 24.5 because it easily penetrates into the pressure-sensitive adhesive layer.
  • the compound which has 2 or less polymerizable functional groups in 1 molecule is a compound which has 1 polymerizable functional group in 1 molecule.
  • the SP value (solubility parameter) in the present invention is a value calculated by the Hoy method, and the Hoy method is described in POLYMERHANDBOOKFOURTEDITION.
  • the compound having 2 or less polymerizable functional groups in one molecule or the compound having no polymerizable functional group preferably has a viscosity at 25 ° C. of 100 mPas or less, more preferably 1 to 50 mPas, 1 to 20 mPas is more preferable.
  • a compound having such a viscosity range is preferable because it easily penetrates into the pressure-sensitive adhesive layer, functions to suppress aggregation of the particles (a2), and can suppress haze and cloudiness. In particular, it is possible to suppress aggregation of the particles (a2) by curing a part of the curable compound (a1) before laminating the pressure-sensitive adhesive layer, as will be described later.
  • the adhesive layer can be sufficiently infiltrated with a compound having 2 or less polymerizable functional groups in one molecule or a compound not having a polymerizable functional group even in a state where curing has progressed.
  • a viscosity in the range of 1 to 20 mPas is preferable because it has a large effect of preventing an increase in reflectance and a decrease in total light transmittance caused by the clogging of the binder between the particles.
  • a compound having 2 or less polymerizable functional groups in one molecule preferably has a (meth) acryloyl group, an epoxy group, an alkoxy group, a vinyl group, a styryl group, an allyl group, or the like as the polymerizable functional group.
  • a compound having no polymerizable functional group an ester compound, an amine compound, an ether compound, an aliphatic alcohol compound, a hydrocarbon compound, or the like can be preferably used, and an ester compound is particularly preferable.
  • dimethyl succinate (SP value 20.2, viscosity 2.6 mPas), diethyl succinate (SP value 19.7, viscosity 2.6 mPas), dimethyl adipate (SP value 19.7, viscosity 2) .8 mPas), dibutyl succinate (SP value 19.1, viscosity 3.9 mPas), bis (2-butoxyethyl) adipate (SP value 19.0, viscosity 10.8 mPas), dimethyl suberate (SP value 19.
  • the content of the binder resin contained in the antireflection layer is preferably 100mg / m 2 ⁇ 800mg / m 2, more preferably 100mg / m 2 ⁇ 600mg / m 2, 100mg / m 2 ⁇ 400mg / m 2 and most preferably .
  • the metal oxide particles are also referred to as “particles (a2)”.
  • the metal oxide particles include silica particles, titania particles, zirconia particles, and antimony pentoxide particles.
  • silica particles since the refractive index is close to that of many binder resins, it is difficult to generate haze and a moth-eye structure is easily formed.
  • silica particles are preferred.
  • the average primary particle diameter of the metal oxide particles is preferably from 100 nm to 190 nm, more preferably from 100 nm to 180 nm, and still more preferably from 100 nm to 170 nm.
  • the average value X of the distances A between the adjacent convex portions of the concavo-convex shape can be easily reduced to 190 nm or less.
  • a metal oxide particle only 1 type may be used and 2 or more types of particle
  • the average primary particle size of the metal oxide particles refers to a cumulative 50% particle size of the volume average particle size.
  • a scanning electron microscope (SEM) can be used to measure the particle size.
  • the powder particles in the case of a dispersion liquid, the solvent is volatilized and dried) are observed by SEM observation at an appropriate magnification (about 5000 times), and the diameter of each of the 100 primary particles is measured to determine the volume.
  • the cumulative 50% particle size can be used as the average primary particle size.
  • the average value of the major and minor diameters is regarded as the diameter of the primary particles.
  • the antireflection film is calculated by observing the antireflection film from the surface side with the SEM as described above. At this time, for easy observation, the sample may be appropriately subjected to carbon deposition, etching, or the like.
  • the metal oxide particles are preferably solid particles from the viewpoint of strength.
  • the shape of the metal oxide particles is most preferably spherical, but there is no problem even if the shape is not spherical such as indefinite.
  • irregular shaped particles in which some of the spherical metal oxide particles have become flat portions and by setting the flat portions on the lower layer side, the movement of the particles is suppressed, and after curing from application to drying Particle aggregation in each of these steps can be prevented, the distance between the convex portions by the particles can be made uniform, and the transmittance in the short wavelength region can be improved.
  • particles having a shape in which small particles are further bonded to a part of metal oxide particles can be used.
  • the number of small particles bonded to the metal oxide particles may be plural, but one is more preferable.
  • the particle size of the small particles bonded to a part of the metal oxide particles is preferably smaller than that of the metal oxide particles, more preferably 0.5 times or less than the particle size of the metal oxide particles. More preferably, it is 25 times or less.
  • the density of the small particles bonded to a part of the metal oxide particles is preferably larger than that of the metal oxide particles, more preferably 2 times or more, and further preferably 3 times or more.
  • the small particles are preferably metal oxides, such as zirconia, alumina, and titania. For example, any particles that satisfy the above density relationship can be used. For example, particles in which zirconia particles having a particle diameter of 40 nm are attached to silica particles having a particle diameter of 160 nm are preferable.
  • the silica particles may be either crystalline or amorphous.
  • the metal oxide particles it is preferable to use inorganic fine particles which have been surface-treated in order to improve dispersibility in a coating solution, improve film strength, and prevent aggregation.
  • Specific examples of the surface treatment method and preferred examples thereof are the same as those described in [0119] to [0147] of JP-A-2007-298974.
  • the particle surface is made of a polymerizable unsaturated group (preferably an unsaturated double group).
  • the silane coupling agent having a polymerizable functional group described above as the curable compound (a1) can be suitably used.
  • the silane coupling agent having a polymerizable functional group described above as the curable compound (a1) can be suitably used.
  • KBM-503, KBM-5103 all manufactured by Shin-Etsu Chemical Co., Ltd., X-12-1048, X-12-1049, X-12-1050 described in JP-A-2014-123091
  • Seahoster KE-P10 (average primary particle size 150 nm, amorphous silica manufactured by Nippon Shokubai Co., Ltd.) can be preferably used.
  • fired silica particles are particularly preferable because of the reasonably high amount of hydroxyl groups on the surface and hard particles.
  • the calcined silica particles are manufactured by a known technique in which silica particles are obtained by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water and a catalyst, and then the silica particles are calcined.
  • Japanese Patent Application Laid-Open Nos. 2003-176121 and 2008-137854 can be referred to.
  • Chlorosilanes such as tetrachlorosilane, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, methylvinyldichlorosilane, trimethylchlorosilane, methyldiphenylchlorosilane Compound: Tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, trimethoxyvinylsilane, triethoxyvinylsilane, 3-glycidoxypropyltrimethoxysilane, 3-chloro Propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane
  • the alkoxysilane compound is particularly preferred because it is more easily available and the resulting fired silica particles do not contain halogen atoms as impurities.
  • the content of halogen atoms is substantially 0% and no halogen atoms are detected.
  • the firing temperature is not particularly limited, but is preferably 800 to 1300 ° C, and more preferably 1000 to 1200 ° C.
  • adjacent particles are sintered at the time of high-temperature firing, and then the sintered particles are pulverized in a pulverization step to obtain irregular shaped particles in which a part of the sphere is flat. You can also.
  • the content of the metal oxide particles of the antireflection layer is preferably 50mg / m 2 ⁇ 200mg / m 2, more preferably 100mg / m 2 ⁇ 180mg / m 2, 130mg / m 2 ⁇ 170mg / m 2 and most preferable. Above the lower limit, many convex portions of the moth-eye structure can be formed, so that the antireflection property is more likely to be improved, and when below the upper limit, aggregation is unlikely to occur and a good moth-eye structure is likely to be formed.
  • Consistency of the moth-eye structure is uniform because it contains only one type of monodispersed silica fine particles having an average primary particle size of 100 to 190 nm and a CV (coefficient of variation) value of less than 5%. It is preferable because the reflectance is further lowered.
  • the CV value is usually measured using a laser diffraction particle size measuring device, but other particle size measurement methods may be used, and the particle size distribution may be obtained and calculated by image analysis from the surface SEM image of the antireflection layer. it can. More preferably, the CV value is less than 4%.
  • the metal oxide fine particles preferably include both metal oxide fine particles having an average primary particle size of 100 nm to 190 nm and metal oxide particles having an average primary particle size of 1 nm to less than 70 nm.
  • particles having a larger particle size mainly contribute to the moth-eye structure, and particles having a smaller particle size are mixed between large particles to suppress aggregation between the large particles. The haze may be improved.
  • the convex portion as the antireflection layer is formed by metal oxide fine particles having a primary particle size of 100 nm or more and 190 nm or less. Point to.
  • the frequency of the number of metal oxide particles having an average primary particle size of 1 nm or more and less than 70 nm with respect to metal oxide fine particles having an average primary particle size of 100 nm or more and 190 nm or less is preferably 1 to 3 times. By setting this range, the aggregation suppressing effect is high and the reflectance can be lowered.
  • the metal oxide particles having an average primary particle size of 1 nm or more and 70 nm or less are preferably an average primary particle size of 30 nm or more and 50 nm or less because the reflectance can be particularly lowered.
  • metal oxide particles having different average primary particle sizes are used in combination, it is preferable to make the hydroxyl group amounts on the surfaces of both particles close to each other because aggregation is less likely.
  • metal oxide particles having an average primary particle size of 1 nm or more and less than 100 nm are mainly used for inhibiting the aggregation of metal oxide particles having an average primary particle size of 100 nm or more and 190 nm or less and separating them, they are available.
  • Metal oxide particles having a hydroxyl group amount that is easily greater than 1.00 ⁇ 10 ⁇ 1 or an indentation hardness of less than 400 MPa may be used.
  • the antireflection layer may contain components other than the binder resin and the metal oxide particles, and may contain, for example, a dispersant for the metal oxide particles, a leveling agent, an antifouling agent, and the like.
  • the metal oxide particle dispersant can facilitate uniform arrangement of the metal oxide particles by reducing the cohesive force between the particles.
  • the dispersant is not particularly limited, but is preferably an anionic compound such as a sulfate or phosphate, a cationic compound such as an aliphatic amine salt or a quaternary ammonium salt, a nonionic compound or a polymer compound. And a steric repulsion group are more preferred because they have a high degree of freedom in selection.
  • a commercial item can also be used as a dispersing agent.
  • BYK Japan made of (stock) DISPERBYK160, DISPERBYK161, DISPERBYK162, DISPERBYK163, DISPERBYK164, DISPERBYK166, DISPERBYK167, DISPERBYK171, DISPERBYK180, DISPERBYK182, DISPERBYK2000, DISPERBYK2001, DISPERBYK2164, Bykumen, BYK-2009, BYK-P104, BYK-P104S, BYK-220S, Anti-Terra 203, Anti-Terra 204, Anti-Terra 205 (trade name) and the like.
  • the leveling agent can stabilize the liquid after coating and facilitate the uniform disposition of the curable compound (a1) and the metal oxide particles.
  • the composition for forming an antireflection layer used in the present invention can contain at least one leveling agent. As a result, it is possible to suppress unevenness in film thickness due to variation in drying due to local distribution of drying air, to improve the repellency of the coated material, and to uniformly dispose the curable compound (a1) and the metal oxide particles. Can be made easier.
  • leveling agent specifically, at least one leveling agent selected from a silicone leveling agent and a fluorine leveling agent can be used.
  • a leveling agent is an oligomer or a polymer rather than a low molecular weight compound.
  • the leveling agent When a leveling agent is added, the leveling agent quickly moves to the surface of the applied coating and becomes unevenly distributed, and the leveling agent is unevenly distributed on the surface even after the coating is dried.
  • the surface energy is reduced by the leveling agent. From the viewpoint of preventing film thickness non-uniformity, repellency, and unevenness, the surface energy of the film is preferably low.
  • the silicone leveling agent include polymers or oligomers containing a plurality of dimethylsilyloxy units as repeating units and having a substituent at the terminal and / or side chain.
  • the polymer or oligomer containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy.
  • the substituents may be the same or different, and a plurality of substituents are preferable.
  • substituents include groups containing a polyether group, an alkyl group, an aryl group, an aryloxy group, an aryl group, a cinnamoyl group, an oxetanyl group, a fluoroalkyl group, a polyoxyalkylene group, and the like.
  • the number average molecular weight of the silicone leveling agent is not particularly limited, but is preferably 100,000 or less, more preferably 50,000 or less, particularly preferably 1000 to 30000, and 1000 to 20000. Is most preferred.
  • silicone leveling agents examples include X22-3710, X22-162C, X22-3701E, X22160AS, X22170DX, and X224015 manufactured by Shin-Etsu Chemical Co., Ltd. as commercially available silicone leveling agents having no ionizing radiation curing group.
  • UVHC1105 and UVHC8550 examples thereof include, but are not limited to, UVHC1105 and UVHC8550.
  • the leveling agent is preferably contained in the antireflection layer in an amount of 0.01 to 5.0% by mass, more preferably 0.01 to 2.0% by mass, and 0.01 to 1.0% by mass. % Content is most preferable.
  • the fluorine-based leveling agent includes a fluoroaliphatic group and a philic group that contributes to affinity for various compositions such as coatings and molding materials when the leveling agent is used as an additive.
  • Such compounds are generally obtained by copolymerizing a monomer having a fluoroaliphatic group and a monomer having a philic group.
  • Typical examples of the monomer having an amphiphilic group copolymerized with a monomer having a fluoroaliphatic group include poly (oxyalkylene) acrylate and poly (oxyalkylene) methacrylate.
  • Preferable commercially available fluorine-based leveling agents include those having no ionizing radiation curable groups, Megafac series (MCF350-5, F472, F476, F445, F444, F443, F178, F470, F475, F479, manufactured by DIC Corporation.
  • Neos, Inc. Futient series (FTX218, 250, 245M, 209F, 222F, 245F, 208G, 218G, 240G, 206D, 240D, etc.), and having an ionizing radiation curing group, OPTOOL DAC manufactured by Daikin Industries, Ltd .; Defenser series manufactured by DIC Corporation (TF3001, TF3000, TF3004, TF3028, TF3027, T 3026, TF3025, etc.), RS series (RS71, RS101, RS102, RS103, RS104, RS105, etc.) are exemplified but not limited thereto.
  • ⁇ Anti-fouling agent> For the purpose of imparting antifouling properties, water resistance, chemical resistance, slipping properties and the like, a known silicone-based or fluorine-based antifouling agent, slipping agent, and the like can be appropriately added to the antireflection layer. .
  • silicone-based or fluorine-based antifouling agent those having the ionizing radiation-curing group among the above-mentioned silicone-based or fluorine-based leveling agents can be preferably used, but are not limited thereto. is not.
  • the antifouling agent is preferably contained in the antireflection layer in an amount of 0.01 to 5.0% by mass, more preferably 0.01 to 2.0% by mass, and 0.01 to 1.0% by mass. % Content is most preferable.
  • the antireflection film of the present invention may have other layers between the plastic substrate and the antireflection layer.
  • the other layer is preferably a hard coat layer.
  • the antireflection film of the present invention includes a quaternary ammonium salt-containing polymer in the hard coat layer, and a common logarithmic value (log SR) of the surface resistivity SR ( ⁇ / sq) of the antireflection layer is 11 or less.
  • the hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of a curable compound (preferably an ionizing radiation curable compound) which is a compound having a polymerizable group. That is, the hard coat layer preferably contains a cured product of a curable compound.
  • the hard coat layer is formed by applying a composition for forming a hard coat layer containing an ionizing radiation curable polyfunctional monomer or a polyfunctional oligomer on a plastic substrate, and crosslinking reaction of the polyfunctional monomer or polyfunctional oligomer, or It can be formed by a polymerization reaction.
  • the functional group (polymerizable group) of the ionizing radiation-curable polyfunctional monomer and polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
  • the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.
  • the same compound as the above-described curable compound (a1) can be used as the curable compound for forming the hard coat layer.
  • an epoxy group is formed in the molecule as a curable compound for forming a hard coat layer from the viewpoint that curling and wrinkle generation can be suppressed.
  • numerator, A monomer, an oligomer, or a polymer can be used suitably.
  • the compound having an epoxy group preferably further contains a polymerizable unsaturated group in the molecule. Examples of the compound having a polymerizable unsaturated group and an epoxy group in the molecule include Daicel Cyclomer M100, but are not limited thereto.
  • the compound having an epoxy group in the molecule is preferably contained in the hard coat layer in an amount of 12 to 45% by mass, and more preferably 15 to 35% by mass.
  • the thickness of the hard coat layer is usually about 0.6 ⁇ m to 50 ⁇ m, preferably 4 ⁇ m to 20 ⁇ m.
  • the strength of the hard coat layer is preferably H or higher, more preferably 2H or higher, in a pencil hardness test. Furthermore, in the Taber test according to JIS K5400, the smaller the wear amount of the test piece before and after the test, the better.
  • the hard coat layer is measured as a part where a cured product of ionizing radiation curable compound is detected when the antireflection film is cut with a microtome and the cross section is analyzed with a time-of-flight secondary ion mass spectrometer (TOF-SIMS). Similarly, the film thickness of this region can also be measured from the cross-sectional information of TOF-SIMS.
  • the hard coat layer detects another layer between the plastic substrate and the antireflection layer, for example, by cross-sectional observation using a reflection spectral film thickness meter or TEM (transmission electron microscope) using light interference. Can also be measured.
  • FE-3000 manufactured by Otsuka Electronics Co., Ltd.
  • a process (1) with respect to the hard-coat layer of a half-cure state.
  • the coating film is UV curable, it can be half cured by appropriately adjusting the oxygen concentration at the time of curing and the amount of UV irradiation. It is preferable to cure by irradiating an ultraviolet ray with an irradiation amount of 1 mJ / cm 2 to 300 mJ / cm 2 with an ultraviolet lamp. More preferably 5mJ / cm 2 ⁇ 100mJ / cm 2, further preferably 10mJ / cm 2 ⁇ 70mJ / cm 2. At the time of irradiation, the above-mentioned energy may be applied at once, or irradiation may be performed in divided portions.
  • the ultraviolet lamp type a metal halide lamp or a high-pressure mercury lamp is preferably used.
  • the oxygen concentration during curing is preferably 0.05 to 5.0% by volume, more preferably 0.1 to 2% by volume, and most preferably 0.1 to 1% by volume.
  • the composition for forming a hard coat layer preferably contains a solvent.
  • a solvent it is preferable from a viewpoint of the adhesiveness of a plastic base material and a hard-coat layer that the solvent which has the permeability
  • the solvent having permeability to the plastic substrate is a solvent having a dissolving ability to the plastic substrate.
  • the solvent having the ability to dissolve the plastic substrate means that a plastic substrate having a size of 24 mm ⁇ 36 mm (thickness 80 ⁇ m) is put in a 15 ml bottle containing the above solvent and is 24 at room temperature (25 ° C.).
  • a solvent in which the plastic base material completely dissolves and loses its shape by, for example, aging for a while and shaking the bottle as appropriate.
  • a permeable solvent when a cellulose acylate film is used as a plastic substrate methyl ethyl ketone (MEK), dimethyl carbonate, methyl acetate, acetone, methylene chloride, and the like are preferable, and methyl ethyl ketone (MEK), dimethyl carbonate, and methyl acetate are more preferable.
  • MEK methyl ethyl ketone
  • the hard coat layer forming composition may contain a solvent other than the osmotic solvent (for example, ethanol, methanol, 1-butanol, isopropanol (IPA), methyl isobutyl ketone (MIBK), toluene, etc.).
  • a solvent other than the osmotic solvent for example, ethanol, methanol, 1-butanol, isopropanol (IPA), methyl isobutyl ketone (MIBK), toluene, etc.
  • the content of the osmotic solvent is preferably 50% by mass or more and 100% by mass or less based on the mass of the total solvent contained in the composition for forming the hard coat layer. More preferably, it is at least 100% by mass.
  • the composition for forming a hard coat layer contains a quaternary ammonium salt-containing polymer
  • a hydrophilic solvent as a solvent from the viewpoint of compatibility with the quaternary ammonium salt-containing polymer.
  • the hydrophilic solvent lower alcohols such as methanol, ethanol, isopropanol (IPA) and butanol are preferable.
  • the solid content concentration of the composition for forming a hard coat layer is preferably 20% by mass or more and 70% by mass or less, and more preferably 30% by mass or more and 60% by mass or less.
  • a polymerization initiator in addition to the above components, a polymerization initiator, an antistatic agent, an antiglare agent, and the like can be appropriately added to the hard coat layer forming composition. Furthermore, various additives, such as a reactive or non-reactive leveling agent and various sensitizers, may be mixed.
  • radicals and cationic polymerization initiators may be appropriately selected and used. These polymerization initiators are decomposed by light irradiation and / or heating to generate radicals or cations to advance radical polymerization and cationic polymerization.
  • a polymerization initiator the thing similar to the polymerization initiator which the composition (A) for forming the layer (a) of the antireflection layer mentioned later may contain is mentioned.
  • the composition for forming a hard coat layer contains a quaternary ammonium salt-containing polymer, it is preferable to use a phosphine oxide polymerization initiator as the polymerization initiator.
  • the phosphine oxide polymerization initiator has a photobleaching effect, even if the surface of the hard coat layer is in a half-cured state, the internal curing rate is higher than when other initiators are used, leading to the antireflection layer.
  • the quaternary ammonium salt-containing polymer can be suppressed.
  • phosphine oxide polymerization initiator As the phosphine oxide-based polymerization initiator, those having an n- ⁇ * transition upon light absorption and having a photobleaching effect are preferable. Specifically, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2 , 4,6-Trimethylbenzoyl) -phenylphosphine oxide is preferred.
  • phosphine oxide polymerization initiators include Irgacure 819 and DAROCUR TPO manufactured by BASF.
  • the phosphine oxide polymerization initiator used in the present invention may be one type or two or more types.
  • Antistatic agent As a specific example of the antistatic agent, a conventionally known antistatic agent such as a quaternary ammonium salt, a conductive polymer, or conductive fine particles can be used. Although not particularly limited, it is inexpensive and easy to handle. Therefore, an antistatic agent having a quaternary ammonium salt is preferable, and a quaternary ammonium salt-containing polymer is more preferable.
  • the hard coat layer contains a quaternary ammonium salt-containing polymer, when the quaternary ammonium salt-containing polymer is mixed with the antireflection layer, the metal oxide particles and the quaternary ammonium salt-containing polymer interact to aggregate the metal oxide particles.
  • the quaternary ammonium salt-containing polymer is unevenly distributed on the substrate side of the hard coat layer.
  • a method of unevenly distributing a quaternary ammonium salt-containing polymer is not limited, but a method of forming a hard coat layer by laminating a hard coat layer containing a quaternary ammonium salt-containing polymer and a hard coat layer not containing a quaternary ammonium salt-containing polymer Or a method using phase separation.
  • the method using phase separation is a hydrophilic and high-boiling solvent (preferably a solvent having a boiling point at 101325 Pa of 80 ° C. or higher, more preferably 90 ° C. or higher and 140 ° C.
  • the quaternary ammonium salt-containing polymer is unevenly distributed inside the hard coat layer while avoiding the hydrophobic air interface.
  • the base material is cellulose acylate, the base material is hydrophilic, and therefore, it tends to be unevenly distributed inside the hard coat layer. Further, the uneven distribution also proceeds in the hard coat layer when used in combination with a hydrophobic material.
  • the hydrophobic material preferably has an SP value (SPb) of 19 ⁇ SPb ⁇ 21, and is preferably a curable compound having a polymerizable unsaturated group from the viewpoint of hardness.
  • the metal oxide particles used are metal oxide particles provided with a polymerizable unsaturated group on the particle surface, A hard coat layer formed by curing a composition for forming a hard coat layer containing a curable compound having a polymerizable unsaturated group; It is preferable that a bond is formed between the metal oxide particles and the hard coat layer.
  • the quaternary ammonium salt-containing polymer can be appropriately selected from known compounds and used, but from the viewpoint of solubility in the coating solution, the following general formulas (I), (II) to (III) Polymers having at least one unit of the structural unit represented are preferred.
  • R 1 represents a hydrogen atom, an alkyl group, a halogen atom, or —CH 2 COO ⁇ M + .
  • Y represents a hydrogen atom or —COO ⁇ M + .
  • M + represents a proton or a cation.
  • L represents —CONH—, —COO—, —CO— or —O—.
  • J represents an alkylene group or an arylene group.
  • Q represents a group selected from the following group A.
  • R 2 , R 2 ′ and R 2 ′′ each independently represents an alkyl group.
  • J represents an alkylene group or an arylene group.
  • X ⁇ represents an anion.
  • p and q each independently represents 0 or 1.
  • R 3 , R 4 , R 5 and R 6 each independently represent an alkyl group, and R 3 and R 4 and R 5 and R 6 are bonded to each other.
  • a nitrogen-containing heterocycle may be formed.
  • A, B and D are each independently an alkylene group, an arylene group, an alkenylene group, an arylene alkylene group, —R 7 COR 8 —, —R 9 COOR 10 OCOR 11 —, —R 12 OCR 13 COOR 14 —, — R 15 — (OR 16 ) m —, —R 17 CONHR 18 NHCOR 19 —, —R 20 OCONHR 21 NHCOR 22 — or —R 23 NHCONHR 24 NHCONHR 25 — is represented.
  • E represents a single bond, an alkylene group, an arylene group, an alkenylene group, an arylene alkylene group, —R 7 COR 8 —, —R 9 COOR 10 OCOR 11 —, —R 12 OCR 13 COOR 14 —, —R 15 — (OR 16 ) m -, - R 17 CONHR 18 NHCOR 19 -, - R 20 OCONHR 21 NHCOR 22 - or -R 23 NHCONHR 24 NHCONHR 25 - or an -NHCOR 26 CONH-.
  • R 7 , R 8 , R 9 , R 11 , R 12 , R 14 , R 15 , R 16 , R 17 , R 19 , R 20 , R 22 , R 23 , R 25 and R 26 represent an alkylene group.
  • R 10 , R 13 , R 18 , R 21 and R 24 each independently represent a linking group selected from an alkylene group, an alkenylene group, an arylene group, an arylene alkylene group and an alkylene arylene group.
  • m represents a positive integer of 1 to 4.
  • X ⁇ represents an anion.
  • Z 1 and Z 2 represent a non-metallic atomic group necessary for forming a 5-membered or 6-membered ring together with —N ⁇ C— group, and are represented by E in the form of a quaternary salt of ⁇ N + [X ⁇ ] —. You may connect.
  • n represents an integer of 5 to 300.
  • the groups of the general formulas (I) to (III) will be described.
  • the halogen atom include a chlorine atom and a bromine atom, and a chlorine atom is preferable.
  • the alkyl group is preferably a branched or straight chain alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group.
  • the alkylene group is preferably an alkylene group having 1 to 12 carbon atoms, more preferably a methylene group, an ethylene group or a propylene group, and particularly preferably an ethylene group.
  • the arylene group is preferably an arylene group having 6 to 15 carbon atoms, more preferably phenylene, diphenylene, phenylmethylene group, phenyldimethylene group, or naphthylene group, and particularly preferably phenylmethylene group. These groups have a substituent. It may be.
  • the alkenylene group is preferably an alkylene group having 2 to 10 carbon atoms, and the arylene alkylene group is preferably an arylene alkylene group having 6 to 12 carbon atoms. These groups may have a substituent. Examples of the substituent that may be substituted for each group include a methyl group, an ethyl group, and a propyl group.
  • R 1 is preferably a hydrogen atom.
  • Y is preferably a hydrogen atom.
  • J is preferably a phenylmethylene group.
  • Q is preferably the following general formula (VI) selected from group A, and R 2 , R 2 ′ and R 2 ′′ are each a methyl group.
  • X ⁇ includes a halogen ion, a sulfonate anion, a carboxylate anion and the like, preferably a halogen ion, and more preferably a chlorine ion.
  • R 3 , R 4 , R 5 and R 6 are preferably a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group.
  • a methyl group is particularly preferred.
  • A, B and D are preferably each independently a substituted or unsubstituted alkylene group, arylene group, alkenylene group or arylene alkylene group having 2 to 10 carbon atoms, preferably a phenyldimethylene group.
  • X ⁇ includes a halogen ion, a sulfonate anion, a carboxylate anion and the like, preferably a halogen ion, and more preferably a chlorine ion.
  • E is preferably E represents a single bond, an alkylene group, an arylene group, an alkenylene group or an arylene alkylene group. Examples of the 5-membered or 6-membered ring formed by Z 1 and Z 2 together with the —N ⁇ C— group include a diazoniabicyclooctane ring.
  • the compounds exemplified above may be used alone, or two or more compounds may be used in combination.
  • a high refractive index monomer or inorganic particles can be added as a refractive index adjusting agent.
  • the inorganic particles also have the effect of suppressing cure shrinkage due to the crosslinking reaction.
  • a polymer formed by polymerizing the polyfunctional monomer and / or the high refractive index monomer and the like and inorganic particles dispersed therein are referred to as a binder.
  • Leveling agent As a specific example of the leveling agent, a conventionally known leveling agent such as fluorine-based or silicone-based can be used.
  • the composition for forming a hard coat layer to which a leveling agent is added can impart coating stability to the coating film surface during coating or drying.
  • the antireflection film of the present invention can be used for various applications, and for example, can be suitably used as a polarizing plate protective film.
  • a polarizing plate protective film using the antireflection film of the present invention can be bonded to a polarizer to form a polarizing plate, and can be suitably used for a liquid crystal display device or the like.
  • the polarizing plate is a polarizing plate having a polarizer and at least one protective film for protecting the polarizer, and at least one of the protective films is preferably the antireflection film of the present invention.
  • the polarizer examples include an iodine-based polarizer, a dye-based polarizer using a dichroic dye, and a polyene-based polarizer.
  • iodine-based polarizers and dye-based polarizers can be produced using polyvinyl alcohol-based films.
  • the antireflection article of the present invention is an article having the antireflection film of the present invention on the surface.
  • the antireflection film of the present invention can be applied to a cover glass to provide a cover glass having an antireflection function (an example of an antireflection article).
  • the antireflection film of the present invention can also be applied to an image display device.
  • a display device using a cathode ray tube (CRT), a plasma display panel (PDP), an electroluminescence display (ELD), a fluorescent display (VFD), a field emission display (FED), and a liquid crystal display (LCD)
  • CTR cathode ray tube
  • PDP plasma display panel
  • ELD electroluminescence display
  • VFD fluorescent display
  • FED field emission display
  • LCD liquid crystal display
  • a liquid crystal display device is particularly preferable.
  • a liquid crystal display device has a liquid crystal cell and two polarizing plates arranged on both sides thereof, and the liquid crystal cell carries a liquid crystal between two electrode substrates.
  • one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or two optically anisotropic layers may be disposed between the liquid crystal cell and both polarizing plates.
  • liquid crystal cell liquid crystal cells of various driving methods such as a TN (Twisted Nematic) mode, a VA (Vertically Aligned) mode, an OCB (Optically Compensatory Bend) mode, and an IPS (In-Plane Switching) mode can be applied.
  • TN Transmission Nematic
  • VA Very Aligned
  • OCB Optically Compensatory Bend
  • IPS In-Plane Switching
  • the module of the present invention is a module in which two antireflection films of the present invention are provided, and the two antireflection films are installed facing each other through an air gap (air layer).
  • the two antireflection films are preferably modules in which the antireflection layer is disposed on the air gap side with respect to the plastic substrate.
  • FIG. 2 shows a schematic cross-sectional view of an example of the module of the present invention.
  • the module 20 shown in FIG. 2 includes the antireflection films 10 a and 10 b of the present invention, and two antireflection films are installed to face each other through the air gap 11.
  • each of the two antireflection films 10a and 10b is disposed closer to the air gap 11 than the plastic substrate.
  • the module of the present invention can be used for various applications, for example, a liquid crystal display device with a touch panel.
  • the liquid crystal display device with a touch panel of the present invention includes the module of the present invention, One of the two antireflection films has a touch panel on the side opposite to the antireflection layer side of the plastic substrate of the antireflection film, It is a liquid crystal display device with a touch panel which has a liquid crystal cell on the opposite side to the antireflection layer side of the plastic substrate of the other antireflection film.
  • FIG. 2 the cross-sectional schematic diagram of an example of the liquid crystal display device with a touchscreen of this invention is shown.
  • the 2 includes the module 20 of the present invention, and the touch panel 12 on the side opposite to the antireflection layer side of the plastic substrate of one of the two antireflection films 10a.
  • the liquid crystal cell 13 is provided on the side opposite to the antireflection layer side of the plastic substrate of the other antireflection film 10b.
  • the antireflection film 10b also serves as a protective film for the polarizer 15.
  • Another protective film 14 is provided on the opposite side of the polarizer 15 from the antireflection film 10b.
  • the laminate of the antireflection film 10b, the polarizer 15, and the protective film 14 is also the polarizing plate of the present invention.
  • the liquid crystal display device 30 with a touch panel of the present invention can reduce reflection of external light incident from the side opposite to the interface on the antireflection film 10a side of the touch panel 12 by the antireflection film 10a and the antireflection film 10b. Further, the antireflection film 10a and the antireflection film 10b of the reflection of the present invention have a total light transmittance of 88% or more when incident from the side opposite to the plastic substrate of the antireflection layer, and the antireflection layer When the transmittance of light having a wavelength of 480 nm and 580 nm when incident from the side opposite to the plastic substrate is T 480 and T 580 , respectively, T 580 ⁇ T 480 ⁇ 3.5% is satisfied, so that the backlight (not shown) Can be easily transmitted through the entire visible light region, and the color change of the display image can be suppressed.
  • touch panel which can be used, a liquid crystal cell, a protective film, and a polarizer
  • touch panel a liquid crystal cell
  • a protective film a protective film
  • a polarizer a polarizer
  • touch panel various types of touch panels such as a resistive film type, a capacitance type, an optical type, and an ultrasonic type can be used as the touch panel.
  • the production method of the antireflection film of the present invention is as follows: On the plastic substrate, a curable compound and metal oxide particles having an average primary particle size of 100 nm or more and 190 nm or less are provided at a thickness at which the metal oxide particles are embedded in the layer (a) containing the curable compound. Step (1), A step of bonding the layer (b) of the pressure-sensitive adhesive film having the support and the layer (b) containing a pressure-sensitive adhesive having a gel fraction of 95.0% or more on the support (2).
  • Step (3) of moving the position of the interface between the layer (a) and the layer (b) to the plastic substrate side A step (4) of curing the layer (a) in a state where the metal oxide particles are buried in a layer formed by combining the layer (a) and the layer (b); Step (5) of peeling the layer (b) from the layer (a); In this order.
  • the above-described antireflection film of the present invention can be produced.
  • the above-mentioned curable compound (a1) is preferably used as the curable compound, and the above-mentioned metal oxide particles are preferably used.
  • the layer (a) cured in the step (4) corresponds to the above-described binder resin film, and the layer including the layer (a) and the metal oxide particles protruding from the layer (a) is an antireflection layer. It is.
  • FIG. (1) in FIG. 3 shows that in step (1), the average primary particle size is 100 nm or more in the layer (a) (reference numeral 4 in FIG. 3) containing the curable compound (a1) on the plastic substrate 1.
  • a state in which a metal oxide particle of 190 nm or less (also referred to as “particle (a2)”) (reference numeral 3 in FIG. 3) is provided so as to be buried is schematically shown.
  • FIG. 3 is a layer (b) containing a pressure-sensitive adhesive having a gel fraction of 95.0% or more on the support 5 and the support 5 in the step (2) (reference numeral 6 in FIG. 3).
  • FIG. 3 shows that in the step (3), the particles (a2) are buried in the layer including the layer (a) and the layer (b), and the interface on the substrate side of the layer (a)
  • the state which moved the position of the interface of a layer (a) and a layer (b) to the plastic base material side so that it may protrude from the interface on the opposite side is shown typically.
  • infiltrate is mentioned.
  • To move the position of the interface between the layer (a) and the layer (b) toward the plastic substrate means to bring the position of the interface closer to the plastic substrate.
  • FIG. 3 schematically shows that the layer (a) is cured in the state where the particles (a2) are embedded in the layer (a) and the layer (b) combined in the step (4). It expresses.
  • FIG. 3 represents the state (antireflection film 10) after peeling the adhesive film 7 in the process (5) which peels the adhesive film 7 containing the layer (b) from the layer (a). .
  • the temperature when performing steps (1) to (4) is preferably 60 ° C. or lower, more preferably 40 ° C. or lower.
  • step (1) a curable compound and metal oxide particles having an average primary particle size of 100 nm to 190 nm are embedded on a plastic substrate, and the metal oxide particles are embedded in a layer (a) containing the curable compound. It is the process of providing with the thickness to do.
  • the “thickness in which the metal oxide particles are buried in the layer (a)” represents a thickness of 0.8 times or more the average primary particle diameter of the metal oxide particles.
  • the method for providing the layer (a) on the plastic substrate is not particularly limited, but it is preferable to provide the layer (a) by applying it on the plastic substrate.
  • the layer (a) is a layer formed by applying a composition (A) containing a curable compound (a1) and particles (a2).
  • a coating method is not particularly limited, and a known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.
  • a plurality of particles (a2) do not exist in a direction perpendicular to the surface of the plastic substrate.
  • the fact that a plurality of particles (a2) do not exist in the direction perpendicular to the surface of the plastic substrate means that 10 ⁇ m ⁇ 10 ⁇ m in the plane of the plastic substrate is observed with three fields of view with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the ratio of the number of particles (a2) that do not overlap in the direction perpendicular to the surface is 80% or more, preferably 95% or more.
  • another layer may be provided on the plastic substrate before the step (1).
  • the layer (a) is provided on this other layer, and the subsequent steps are performed.
  • the other layer is preferably a hard coat layer.
  • the layer (a) contains a curable compound (a1) and particles (a2).
  • the layer (a) is a layer for forming an antireflection layer.
  • the curable compound (a1) contained in the layer (a) can be a binder resin for the antireflection layer by being cured.
  • the particles (a2) contained in the layer (a) are particles that protrude from the surface of the film made of the binder resin and form an uneven shape (moth eye structure) in the antireflection film.
  • the layer (a) since the layer (a) is cured in the step (4), the components contained before and after curing are different, but in the present invention, it may be referred to as the layer (a) at any stage for convenience. .
  • the film thickness of the layer (a) in the step (1) is preferably 0.8 times or more and 2.0 times or less, and 0.8 times or more and 1.5 times or less the average primary particle diameter of the particles (a2). It is more preferable that it is 0.9 times or more and 1.2 times or less.
  • the plastic substrate, the curable compound (a1), and the particles (a2) are the same as those described above.
  • the composition (A) for forming the layer (a) or the layer (a) may contain a solvent.
  • a solvent having a polarity close to that of the particles (a2) is preferably used from the viewpoint of improving dispersibility.
  • an alcohol solvent is preferable, and examples thereof include methanol, ethanol, 2-propanol, 1-propanol, butanol and the like.
  • solvents such as ketones, esters, carbonates, alkanes and aromatics are preferred, such as methyl ethyl ketone (MEK) and dimethyl carbonate.
  • MEK methyl ethyl ketone
  • the layer (a) or the composition (A) for forming the layer (a) may contain a polymerization initiator.
  • the polymerization initiator may be a radical polymerization initiator or a cationic polymerization initiator.
  • An appropriate polymerization initiator may be selected according to the type of polymerizable compound used in combination.
  • the polymerization initiator either a thermal polymerization initiator or a photopolymerization initiator may be selected according to the type of polymerization treatment (heating, light irradiation) performed in the production process. Moreover, you may use together a thermal-polymerization initiator and a photoinitiator.
  • the structure of the thermal polymerization initiator is not particularly limited.
  • Specific examples of the thermal polymerization initiator include azo compounds, hydroxylamine ester compounds, organic peroxides, hydrogen peroxide, and the like.
  • Specific examples of the organic peroxide include those described in Japanese Patent No. 5341155, paragraph 0031.
  • the azo compound may contain at least one azo bond, and may contain various substituents together with the azo bond.
  • 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylisobutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 1- Azonitrile compounds such as [(1-cyano-1-methylethyl) azo] formamide, dimethyl 2,2′-azobis (2-methylpropionate), dimethyl 1,1′-azobis (1-cyclohexanecarboxylate), etc.
  • hydroxylamine ester compound examples include a hydroxylamine ester compound represented by the formula I described in JP-A-2012-521573. Specific compounds are shown below. However, it is not limited to these.
  • the curable compound (a1) When the curable compound (a1) is a photopolymerizable compound, it preferably contains a photopolymerization initiator.
  • the structure of the photopolymerization initiator is not particularly limited. Specific examples include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, fluoro Examples include amine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
  • the content of the polymerization initiator in the layer (a) is an amount sufficient to polymerize the polymerizable compound contained in the layer (a), and is set so as not to increase the starting point too much.
  • the solid content in the layer (a) is preferably 0.1 to 8% by mass, and more preferably 0.5 to 5% by mass.
  • the layer (a) includes a compound that generates an acid or a base by light or heat in order to react with the silane coupling agent having a polymerizable functional group described above (hereinafter, photoacid generator, photobase generator, thermal acid. May be referred to as a generator or a thermal base generator).
  • Photoacid generator examples include diazonium salts, ammonium salts, phosphonium salts, iodonium salts, sulfonium salts, selenonium salts, onium salts such as arsonium salts, organic halogen compounds, organic metal / organic halides, and o-nitrobenzyl type.
  • photoacid generators having a protecting group compounds such as iminosulfonate, which generate photosulfonic acid by photolysis, disulfone compounds, diazoketosulfone, and diazodisulfone compounds.
  • triazines for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4
  • thermo acid generator examples include salts composed of an acid and an organic base.
  • examples of the acid include organic acids such as sulfonic acid, phosphonic acid, and carboxylic acid, and inorganic acids such as sulfuric acid and phosphoric acid. From the viewpoint of compatibility with the curable compound (a1), organic acids are more preferable, sulfonic acids and phosphonic acids are more preferable, and sulfonic acids are most preferable.
  • Preferred sulfonic acids include p-toluenesulfonic acid (PTS), benzenesulfonic acid (BS), p-dodecylbenzenesulfonic acid (DBS), p-chlorobenzenesulfonic acid (CBS), 1,4-naphthalenedisulfonic acid (NDS). ), Methanesulfonic acid (MsOH), nonafluorobutane-1-sulfonic acid (NFBS), and the like.
  • PTS p-toluenesulfonic acid
  • BS benzenesulfonic acid
  • DBS p-dodecylbenzenesulfonic acid
  • CBS p-chlorobenzenesulfonic acid
  • NDS 1,4-naphthalenedisulfonic acid
  • Methanesulfonic acid MsOH
  • NFBS nonafluorobutane-1-sulfonic acid
  • Photobase generator examples include substances that generate a base by the action of active energy rays. More specifically, (1) a salt of an organic acid and a base that is decomposed by decarboxylation upon irradiation with ultraviolet light, visible light, or infrared light, and (2) an amine that is decomposed by an intramolecular nucleophilic substitution reaction or rearrangement reaction. A compound that releases a base, or (3) a compound that causes a chemical reaction upon irradiation with ultraviolet rays, visible light, or infrared rays to release a base can be used.
  • the photobase generator used in the present invention is not particularly limited as long as it is a substance that generates a base by the action of active energy rays such as ultraviolet rays, electron beams, X-rays, infrared rays and visible rays. Specifically, those described in JP 2010-243773 can be suitably used.
  • the content of the compound that generates acid or base by light or heat in the layer (a) is sufficient to polymerize the polymerizable compound contained in the layer (a), and the starting point increases. For the reason that it is set so that it is not too much, it is preferably 0.1 to 8% by mass, more preferably 0.1 to 5% by mass, based on the total solid content in the layer (a).
  • the layer (a) or the composition (A) for forming the layer (a) may further contain a dispersing agent, a leveling agent, an antifouling agent, etc. of the particles (a2), which are described above. It is the same.
  • Step (2) is a step of bonding a layer (b) of an adhesive film having a support and a layer (b) containing a pressure-sensitive adhesive having a gel fraction of 95.0% or more on the support and the layer (a). It is.
  • the method for laminating the layer (a) and the layer (b) of the adhesive film is not particularly limited, and a known method can be used, for example, a laminating method.
  • the adhesive film is preferably bonded so that the layer (a) and the layer (b) are in contact with each other. You may have the process of drying a layer (a) before a process (2).
  • the drying temperature of the layer (a) is preferably 20 to 60 ° C, more preferably 20 to 40 ° C.
  • the drying time is preferably from 0.1 to 120 seconds, more preferably from 1 to 30 seconds.
  • the inventors bonded the layer (b) and the layer (a) of the pressure-sensitive adhesive film in the step (2), and in the step (3) described later, the particles (a2) were changed into the layer (a) and the layer (b).
  • the particles (a2) are buried in the layers (a) and ( b) curing the layer (a) in a state where it is embedded in the combined layer, so that the particles (a2) are not exposed to the air interface before the layer (a) is cured, thereby suppressing aggregation. It has been found that a good uneven shape formed by (a2) can be produced.
  • the pressure-sensitive adhesive film has a support and a layer (b) made of a pressure-sensitive adhesive having a gel fraction of 95.0% or more.
  • the layer (b) is made of an adhesive having a gel fraction of 95.0% or more.
  • the gel fraction of the pressure-sensitive adhesive is 95.0% or more, the pressure-sensitive adhesive component hardly remains on the surface of the anti-reflective film when peeling off the pressure-sensitive adhesive film to produce an anti-reflective film.
  • An antireflection film having a sufficiently low reflectance can be obtained.
  • the gel fraction of the pressure-sensitive adhesive is preferably 95.0% or more and 99.9% or less, more preferably 97.0% or more and 99.9% or less, and 98.0% or more and 99.9%. More preferably, it is as follows.
  • the gel fraction of the pressure-sensitive adhesive is a ratio of insoluble matter after the pressure-sensitive adhesive is immersed in tetrahydrofuran (THF) at 25 ° C. for 12 hours, and is obtained from the following formula.
  • Gel fraction (mass of insoluble matter in adhesive in THF) / (total mass of adhesive) ⁇ 100 (%)
  • the weight average molecular weight of the sol component in the pressure-sensitive adhesive is preferably 10,000 or less, more preferably 7000 or less, and most preferably 5000 or less. By making the weight average molecular weight of the sol component within the above range, the pressure-sensitive adhesive component can be made difficult to remain on the surface of the antireflection film when the pressure-sensitive adhesive film is peeled off to produce the antireflection film.
  • the sol component of the pressure-sensitive adhesive represents the amount dissolved in THF after the pressure-sensitive adhesive is immersed in tetrahydrofuran (THF) at 25 ° C. for 12 hours.
  • THF tetrahydrofuran
  • the weight average molecular weight can be analyzed by gel permeation chromatography (GPC).
  • the film thickness of the layer (b) is preferably from 0.1 ⁇ m to 50 ⁇ m, more preferably from 1 ⁇ m to 30 ⁇ m, and still more preferably from 1 ⁇ m to 20 ⁇ m.
  • the layer (b) is a pressure-sensitive adhesive layer having a slight adhesive strength with a peel strength (adhesive strength) of about 0.03 to 0.3 N / 25 mm with respect to the surface of the adherend at a peel rate of 0.3 m / min. It is preferable that it is excellent in operability when the adhesive film is peeled off from the layer (a) as the adherend.
  • the pressure-sensitive adhesive preferably contains a polymer, and more preferably contains a (meth) acrylic polymer.
  • a polymer of at least one monomer of a (meth) acrylic acid alkyl ester monomer having 1 to 18 carbon atoms in the alkyl group (a copolymer in the case of two or more monomers) is preferable.
  • the weight average molecular weight of the (meth) acrylic polymer is preferably 200,000 to 2,000,000.
  • Examples of (meth) acrylic acid alkyl ester monomers having 1 to 18 carbon atoms in the alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • the (meth) acrylate monomer having an aliphatic ring include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, isobornyl (meth) acrylate and the like. Of these, cyclohexyl (meth) acrylate is particularly preferable.
  • the (meth) acrylic polymer is a copolymer composed of at least one (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 18 carbon atoms and at least one other copolymerizable monomer. May be.
  • the other copolymerizable monomers include a copolymerizable vinyl monomer containing at least one group selected from a hydroxyl group, a carboxyl group, and an amino group, a copolymerizable vinyl monomer having a vinyl group, and an aromatic group. And monomers.
  • Examples of the copolymerizable vinyl monomer containing a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6- Hydroxyl-containing (meth) acrylic esters such as hydroxyhexyl (meth) acrylate and 8-hydroxyoctyl (meth) acrylate, and N-hydroxy (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl Examples include hydroxyl group-containing (meth) acrylamides such as (meth) acrylamide, and preferably at least one selected from these compound groups.
  • Examples of the copolymerizable vinyl monomer containing a carboxyl group include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, and the like. Preferably, at least one selected from these compound groups is used.
  • copolymerizable vinyl monomers containing amino groups include monoalkylaminoethyl (meth) acrylate, monoethylaminoethyl (meth) acrylate, monomethylaminopropyl (meth) acrylate, monoalkylaminopropyl (meth) acrylate, and other monoalkyl An aminoalkyl (meth) acrylate etc. are mentioned.
  • aromatic monomers examples include styrene in addition to aromatic group-containing (meth) acrylic esters such as benzyl (meth) acrylate and phenoxyethyl (meth) acrylate.
  • copolymerizable vinyl monomers other than the above include various vinyl monomers such as acrylamide, acrylonitrile, methyl vinyl ether, ethyl vinyl ether, vinyl acetate, and vinyl chloride.
  • the pressure-sensitive adhesive may include a cured product of a composition for forming the pressure-sensitive adhesive (also referred to as a pressure-sensitive adhesive composition).
  • the pressure-sensitive adhesive composition preferably contains the polymer and a cross-linking agent, and may be cross-linked using heat, ultraviolet light (UV) or the like.
  • the crosslinking agent one or more kinds of crosslinking agents selected from the group consisting of a bifunctional or higher functional isocyanate crosslinking agent, a bifunctional or higher epoxy crosslinking agent, and an aluminum chelate crosslinking agent are preferable.
  • a crosslinking agent when peeling an adhesive film and manufacturing an antireflection film, from a viewpoint of making an adhesive component hard to remain on the surface of an antireflection film, it is 0.
  • the content is preferably 1 to 15 parts by mass, more preferably 3.5 to 15 parts by mass, and still more preferably 5.1 to 10 parts by mass.
  • the bifunctional or higher isocyanate compound may be a polyisocyanate compound having at least two isocyanate (NCO) groups in one molecule, such as hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diene.
  • NCO isocyanate
  • Burette modified products of diisocyanates such as isocyanate (compounds having two NCO groups in one molecule) and trivalent or higher polyols such as isocyanurate modified products, trimethylolpropane or glycerin (at least 3 in one molecule)
  • adduct bodies polyol-modified bodies with the above-mentioned compounds having an OH group.
  • the trifunctional or higher functional isocyanate compound is a polyisocyanate compound having at least three isocyanate (NCO) groups in one molecule, in particular, an isocyanurate body of a hexamethylene diisocyanate compound, an isocyanurate body of an isophorone diisocyanate compound, At least one selected from the group consisting of adducts of hexamethylene diisocyanate compounds, adducts of isophorone diisocyanate compounds, burettes of hexamethylene diisocyanate compounds, and burettes of isophorone diisocyanate compounds is preferred.
  • the bifunctional or higher functional isocyanate-based crosslinking agent is preferably contained in an amount of 0.01 to 5.0 parts by mass, more preferably 0.02 to 3.0 parts by mass with respect to 100 parts by mass of the polymer.
  • the pressure-sensitive adhesive composition may contain an antistatic agent in order to impart antistatic performance.
  • the antistatic agent is preferably an ionic compound, more preferably a quaternary onium salt.
  • antistatic agent that is a quaternary onium salt
  • examples of the antistatic agent that is a quaternary onium salt include alkyldimethylbenzylammonium salts having an alkyl group having 8 to 18 carbon atoms, dialkylmethylbenzylammonium salts having an alkyl group having 8 to 18 carbon atoms, and 8 to 8 carbon atoms.
  • alkyl group having 8 to 18 carbon atoms examples include octyl group, nonyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and the like. It may be a mixed alkyl group derived from natural fats and oils.
  • alkenyl group having 8 to 18 carbon atoms examples include octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, oleyl group, and linoleyl group. .
  • alkyl group having 14 to 20 carbon atoms examples include a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, and an icosyl group. It may be a mixed alkyl group derived from natural fats and oils.
  • alkenyl group having 14 to 20 carbon atoms examples include a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, an oleyl group, a linoleyl group, a nonadecenyl group, and an icosenyl group.
  • Counter anions of quaternary onium salts include chloride (Cl ⁇ ), bromide (Br ⁇ ), methyl sulfate (CH 3 OSO 3 ⁇ ), ethyl sulfate (C 2 H 5 OSO 3 ⁇ ), paratoluenesulfonate (p— CH 3 C 6 H 4 SO 3 ⁇ ) and the like.
  • the quaternary onium salt include dodecyldimethylbenzylammonium chloride, dodecyldimethylbenzylammonium bromide, tetradecyldimethylbenzylammonium chloride, tetradecyldimethylbenzylammonium bromide, hexadecyldimethylbenzylammonium chloride, hexadecyldimethylbenzylammonium bromide, Octadecyldimethylbenzylammonium chloride, octadecyldimethylbenzylammonium bromide, trioctylbenzylammonium chloride, trioctylbenzylammonium bromide, trioctylbenzylphosphonium chloride, trioctylbenzylphosphonium bromide, tris (decyl) benzylammonium chloride, tris (decyl) benzyla
  • Tris (decyl) and “tetrakis (decyl)” mean having 3 or 4 decyl groups, which are alkyl groups having 10 carbon atoms, and a tridecyl group, which is an alkyl group having 13 carbon atoms, And a tetradecyl group which is an alkyl group having 14 carbon atoms.
  • antistatic agents include nonionic, cationic, anionic and amphoteric surfactants, ionic liquids, alkali metal salts, metal oxides, fine metal particles, conductive polymers, carbon, carbon nanotubes, etc. be able to.
  • Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene fatty acid esters, glycerin fatty acid esters, propylene glycol Examples include fatty acid esters and polyoxyalkylene-modified silicones.
  • anionic surfactant examples include monoalkyl sulfates, alkyl polyoxyethylene sulfates, alkylbenzene sulfonates, and monoalkyl phosphates.
  • amphoteric surfactant examples include alkyl dimethylamine oxide and alkyl carboxybetaine.
  • the ionic liquid is a non-polymeric substance that is composed of anions and cations and is liquid at room temperature (for example, 25 ° C.).
  • the cation moiety include cyclic amidine ions such as imidazolium ions, pyridinium ions, ammonium ions, sulfonium ions, phosphonium ions, and the like.
  • alkali metal salts examples include metal salts composed of lithium, sodium, and potassium, and a compound containing a polyoxyalkylene structure may be added to stabilize the ionic substance.
  • the antistatic agent is preferably contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer.
  • the pressure-sensitive adhesive composition may further contain a polyether-modified siloxane compound having an HLB of 7 to 15 as an antistatic aid.
  • HLB is a hydrophilic / lipophilic balance (hydrophilic / lipophilic ratio) defined by, for example, JIS K3211 (surfactant term).
  • the pressure-sensitive adhesive composition can further contain a crosslinking accelerator.
  • the crosslinking accelerator may be any substance that functions as a catalyst for the reaction between the copolymer and the crosslinking agent (crosslinking reaction) when a polyisocyanate compound is used as the crosslinking agent.
  • organic metal compounds such as compounds, metal chelate compounds, organic tin compounds, organic lead compounds, and organic zinc compounds.
  • a metal chelate compound or an organic tin compound is preferable as the crosslinking accelerator.
  • the metal chelate compound is a compound in which one or more multidentate ligands L are bonded to the central metal atom M.
  • the metal chelate compound may or may not have one or more monodentate ligands X bonded to the metal atom M.
  • M (L) m (X) n m ⁇ 1 and n ⁇ 0.
  • the m Ls may be the same ligand or different ligands.
  • n Xs may be the same ligand or different ligands.
  • Examples of the metal atom M include Fe, Ni, Mn, Cr, V, Ti, Ru, Zn, Al, Zr, and Sn.
  • Examples of the multidentate ligand L include methyl acetoacetate, ethyl acetoacetate, octyl acetoacetate, oleyl acetoacetate, lauryl acetoacetate, stearyl acetoacetate, acetylacetone (also known as 2,4-pentanedione), 2 ⁇ -diketones such as 1,4-hexanedione and benzoylacetone. These are ketoenol tautomeric compounds, and the polydentate ligand L may be an enolate (for example, acetylacetonate) in which enol is deprotonated.
  • the monodentate ligand X includes halogen atoms such as chlorine atom and bromine atom, acyloxy such as pentanoyl group, hexanoyl group, 2-ethylhexanoyl group, octanoyl group, nonanoyl group, decanoyl group, dodecanoyl group and octadecanoyl group.
  • halogen atoms such as chlorine atom and bromine atom
  • acyloxy such as pentanoyl group, hexanoyl group, 2-ethylhexanoyl group, octanoyl group, nonanoyl group, decanoyl group, dodecanoyl group and octadecanoyl group.
  • the metal chelate compound include tris (2,4-pentandionato) iron (III), iron trisacetylacetonate, titanium trisacetylacetonate, ruthenium trisacetylacetonate, zinc bisacetylacetonate, aluminum tris Acetylacetonate, zirconium tetrakisacetylacetonate, tris (2,4-hexanedionato) iron (III), bis (2,4-hexanedionato) zinc, tris (2,4-hexanedionato) titanium, tris (2,4-hexanedionato) aluminum, tetrakis (2,4-hexanedionato) zirconium and the like.
  • organic tin compound examples include dialkyl tin oxide, fatty acid salt of dialkyl tin, fatty acid salt of stannous and the like. Long chain alkyl tin compounds such as dioctyl tin compounds are preferred. Specific examples of the organic tin compound include dioctyl tin oxide and dioctyl tin dilaurate.
  • the crosslinking accelerator is preferably contained in an amount of 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the copolymer.
  • the support in an adhesive film is demonstrated.
  • a plastic film made of a resin having transparency and flexibility is preferably used.
  • the plastic film for the support is preferably a polyester film such as polyethylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, (meth) acrylic resin, polycarbonate resin, polystyrene resin, polyolefin resin.
  • the (meth) acrylic resin includes a polymer having a lactone ring structure, a polymer having a glutaric anhydride ring structure, and a polymer having a glutarimide ring structure.
  • other plastic films can be used as long as they have necessary strength and optical suitability.
  • the support may be an unstretched film, may be uniaxially or biaxially stretched, and may be a plastic film in which the stretching ratio or the angle of the axial method formed with crystallization of stretching is controlled.
  • the support those having ultraviolet transparency are preferable.
  • the maximum transmittance of the support at a wavelength of 250 nm to 300 nm is preferably 20% or more, more preferably 40% or more, and most preferably 60% or more. It is preferable that the maximum transmittance at a wavelength of 250 nm to 300 nm is 20% or more because the layer (a) is easily cured by irradiating ultraviolet rays from the coating layer side.
  • the maximum transmittance at a wavelength of 250 nm to 300 nm of the pressure-sensitive adhesive film having the layer (b) formed on the support is preferably 20% or more, more preferably 40% or more, and 60% or more. Is most preferred.
  • the film thickness of the support is not particularly limited, but is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less, and further preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • a commercially available protective film can be suitably used as the adhesive film having the layer (b) formed on the support.
  • step (4) the layer (a) is cured while maintaining the state in which the particles (a2) are buried in the combined layer (a) and layer (b). It is preferable to have a concavo-convex shape formed by the particles (a2) protruding from the interface of the layer (a) in the previous stage. In this way, after the layer (a) is cured in the step (4) and then the layer (b) is peeled off in the step (5), the antireflection in a state where the particles (a2) protrude from the surface of the layer (a) A film can be obtained.
  • a part of the curable compound (a1) in the layer (a) is cured between the steps (1) and (2) to obtain a cured compound (a1c) (1-2) May be included.
  • Curing a part of the curable compound (a1) means that only a part of the curable compound (a1) is cured, not the whole.
  • the particle (a2) is the interface on the side opposite to the interface on the plastic substrate side of the layer (a).
  • the optimal curing conditions in the step (1-2) vary depending on the formulation of the layer (a), the optimal curing conditions may be selected as appropriate.
  • the particles (a2) are embedded in the layer including the layer (a) and the layer (b), and the interface on the side opposite to the interface on the plastic substrate side of the layer (a) is used.
  • the position of the interface between the layer (a) and the layer (b) is moved toward the plastic substrate so as to protrude.
  • “the particle (a2) is buried in the layer including the layer (a) and the layer (b)” means that the thickness of the layer including the layer (a) and the layer (b) is the particle.
  • the average primary particle size of (a2) is 0.8 times or more.
  • the step (3) is preferably performed by allowing a part of the curable compound (a1) to penetrate into the pressure-sensitive adhesive layer.
  • the laminate having the plastic substrate, the layer (a), and the layer (b) can be kept at 60 ° C. or lower. It is preferable to keep the temperature at 40 ° C. or lower. By keeping the temperature at 60 ° C. or lower, the viscosity of the curable compound (a1) and the pressure-sensitive adhesive can be kept high and the thermal motion of the particles can be suppressed, so that the antireflection ability is reduced due to aggregation of the particles. The effect of preventing haze and an increase in cloudiness is great.
  • the lower limit of the temperature at which the laminate having the plastic substrate, the layer (a), and the layer (b) is maintained is not particularly limited, and may be room temperature (25 ° C.) or lower than room temperature. Good.
  • Step (4) is a step of curing the layer (a) in a state where the particles (a2) are buried in the layer including the layer (a) and the layer (b).
  • the state in which the particle (a2) is embedded in the layer including the layer (a) and the layer (b) means that the thickness of the layer including the layer (a) and the layer (b) is the particle ( It shall represent that it is 0.8 times or more of the average primary particle diameter of a2).
  • Curing the layer (a) represents polymerizing the curable compound (a1) contained in the layer (a), whereby the binder resin in the antireflection layer of the antireflection film can be formed.
  • the aggregation of the particles (a2) is suppressed and a favorable uneven shape is formed. can do.
  • the particle (a2) is cured before the layer (a) is cured.
  • a large attractive force derived from surface tension called lateral capillary force works, and the particles (a2) are buried in the layer combining the layers (a) and (b). It is presumed that the attractive force can be reduced by letting it be kept.
  • Curing can be performed by irradiating with ionizing radiation.
  • ionizing radiation There is no restriction
  • the coating film is ultraviolet curable, it is preferable to cure the curable compound (a1) of the layer (a) by irradiating with an ultraviolet lamp with an irradiation amount of 10 mJ / cm 2 to 1000 mJ / cm 2 .
  • the above-mentioned energy may be applied at once, or irradiation may be performed in divided portions.
  • the ultraviolet lamp type a metal halide lamp or a high-pressure mercury lamp is preferably used.
  • the oxygen concentration during curing is preferably 0 to 1.0% by volume, more preferably 0 to 0.1% by volume, and most preferably 0 to 0.05% by volume.
  • a plurality of particles (a2) do not exist in a direction perpendicular to the surface of the plastic substrate.
  • the total thickness of the layer (a) and the layer (b) is preferably larger than the average primary particle size of the particles (a2).
  • the particles (a2) will change the layers (a) and (b). This is preferable because it can be buried in the combined layers.
  • the thickness of the layer (a) is preferably smaller than the average primary particle size of the particles (a2), more preferably half or less of the average primary particle size of the particles (a2).
  • the film thickness of the layer (a) in the step (4) is such that the height of the interface on the side opposite to the interface on the plastic substrate side of the layer (ca) obtained by curing this is the average of the particles (a2) It is preferable to adjust it to be less than half of the primary particle size, and more preferably, the film cross section of the layer (ca) is observed with a scanning electron microscope (SEM), and the film thickness at 100 locations is arbitrarily measured. When the average value is obtained, it is preferably adjusted to be 10 nm to 100 nm (more preferably 20 nm to 90 nm, still more preferably 30 nm to 70 nm).
  • Step (5) is a step of peeling layer (b) from layer (a). If the pressure-sensitive adhesive remains on the layer (a) side when the layer (b) is peeled off, the plastic substrate and the cured layer (a) are not dissolved, and are washed with a solvent that dissolves the pressure-sensitive adhesive. May be.
  • an antireflection film having a moth-eye structure having a concavo-convex shape formed by particles (a2) on the surface of the layer (a) is obtained.
  • Example 1> preparation of composition for forming hard coat layer
  • Each component was mixed with the composition described below, and the resulting composition was put into a mixing tank, stirred, and filtered through a polypropylene filter having a pore size of 0.4 ⁇ m to obtain a hard coat layer coating solution HC-1.
  • A-TMMT Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • AD-TMP Ditrimethylolpropane tetraacrylate (NK ester manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • Irgacure 127 Photopolymerization initiator (manufactured by BASF Japan Ltd.)
  • AS-1 Compound AS-1 corresponding to (A-6) in the above-mentioned patent document was similarly obtained except that the reaction temperature and time in Synthesis Example 6 of Japanese Patent No. 4678451 were 70 ° C. and 6 hours. Produced.
  • the completed compound AS-1 was a quaternary ammonium salt-containing polymer having an ethylene oxide chain, and the weight average molecular weight measured by GPC was about 60,000.
  • FP-1 Methyl ethyl ketone solution of a fluorine-containing compound represented by the following formula, solid content concentration is 40% by mass
  • Silica particles were obtained by air-drying this dispersion under the conditions of a heating tube temperature of 175 ° C. and a reduced pressure of 200 torr (27 kPa) using an instantaneous vacuum evaporator (Crox System CVX-8B type manufactured by Hosokawa Micron Corporation). P1 was obtained. Silica particles P1 had an average primary particle size of 170 nm, a particle size dispersity (CV value) of 7.0%, and an indentation hardness of 340 MPa.
  • CV value particle size dispersity
  • Preparation of calcined silica particles P2 5 kg of silica particles P1 were put in a crucible, fired at 900 ° C. for 2 hours using an electric furnace, cooled, and then ground using a grinder to obtain pre-classified fired silica particles. Further, pulverized silica particles P2 were obtained by pulverization and classification using a jet pulverization classifier (IDS-2 type, manufactured by Nippon Puma Co., Ltd.).
  • IDS-2 type manufactured by Nippon Puma Co., Ltd.
  • silane coupling agent-treated silica particles P3 The average primary particle diameter of the silane coupling agent-treated silica particles P3 was 171 nm, the dispersion degree (CV value) of the particle diameter was 7.0%, and the indentation hardness was 470 MPa.
  • silica Particle Dispersion PA-1 silane coupling agent-treated silica particles P3 (50 g), MEK (200 g), 0.05 mm diameter zirconia beads (600 g) are placed in a 1 L bottle container with a diameter of 12 cm, set in a ball mill V-2M (Irie Shokai), and dispersed for 10 hours at 250 rpm. did. In this way, a silica particle dispersion PA-1 (solid content concentration 20% by mass) was prepared.
  • composition for forming layer (a) Each component was put into a mixing tank so as to have the following composition, stirred for 60 minutes, and dispersed with an ultrasonic disperser for 30 minutes to obtain a coating solution.
  • composition (A-1) U-15HA 1.4 parts by weight Compound C3 1.5 parts by weight Acetyltriethyl citrate 5.8 parts by weight Irgacure 127 0.2 parts by weight Compound P 0.1 parts by weight Silica particle dispersion PA-1 32.3 parts by weight Compound A 0.1 parts by mass Ethanol 12.7 parts by mass Methyl ethyl ketone 33.3 parts by mass Acetone 12.7 parts by mass
  • U-15HA, compound C3 and acetyltriethyl citrate are binder compounds, but U-15HA and compound C3 are curable compounds (a1), and acetyltriethyl citrate is a compound having no polymerizable functional group. .
  • the compounds used are shown below.
  • U-15HA (manufactured by Shin-Nakamura Chemical Co., Ltd.): Urethane acrylate Irgacure 127: Photopolymerization initiator (manufactured by BASF Japan Ltd.)
  • Compound P 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine (photoacid generator, manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Compound A F-784-F (manufactured by DIC Corporation) Acetyltriethyl citrate: manufactured by Tokyo Chemical Industry Co., Ltd.
  • ⁇ Creation of antireflection film 1> (Formation of hard coat layer)
  • the hard coat layer coating solution HC-1 was coated on a plastic substrate (TJ25, manufactured by Fuji Film Co., Ltd.) using a die coater. After drying at 30 ° C. for 90 seconds and then at 45 ° C. for 1 minute, a 160 W / cm air-cooled metal halide lamp (I Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of approximately 0.3% by volume.
  • the coating layer was cured by irradiating with ultraviolet rays having an illuminance of 200 mW / cm 2 and an irradiation amount of 10 mJ / cm 2 to form a hard coat layer having a thickness of 5 ⁇ m.
  • the base material with a hard coat layer is HC-1.
  • Step (1-2) Step of curing a part of the curable compound (a1) in the layer (a) to obtain a cured compound (a1c))
  • a high pressure mercury lamp Model: 33351N, manufactured by Dr. Honle AG, part number: LAMP-HOZ 200 D24 U 450 E
  • a ) Was irradiated with light at an irradiation amount of 5.0 mJ to cure a part of the curable compound (a1).
  • the irradiation amount was measured by attaching a HEAD SENSER PD-365 to an eye ultraviolet integrated illuminometer UV METER UVPF-A1 manufactured by Eye Graphic Co., Ltd. and measuring range 0.00.
  • AS3-304 refers to a laminate (protective film) composed of a support / adhesive layer / release film, and a laminate composed of a support / adhesive layer obtained by peeling the release film from the laminate.
  • the body is an adhesive film.
  • Step (3) Penetration of curable compound (a1) into pressure-sensitive adhesive layer
  • the mixture was allowed to stand at 25 ° C. for 5 minutes to allow a part of the curable compound (a1) to penetrate into the pressure-sensitive adhesive layer.
  • Step (4) Curing of layer (a) Following the above-described standing, a plastic base material is used using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W / cm while purging with nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less.
  • the layer (a) was cured by irradiating ultraviolet rays having an illuminance of 200 mW / cm 2 and an irradiation amount of 300 mJ / cm 2 through the adhesive film from the surface on which the layer (a) was applied.
  • the film thicknesses of the layer (a) and the pressure-sensitive adhesive layer (layer (b)) after the step (4) and before the step (5) were 50 nm and 20 ⁇ m, respectively.
  • the pressure-sensitive adhesive film containing the layer (b) (those obtained by peeling off the release film from AS3-304) was peeled from the produced laminate.
  • the layer (a) after peeling off the layer (b) was cured to such an extent that it was not broken by peeling of the pressure-sensitive adhesive layer.
  • the layer of the plastic substrate is used using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W / cm while purging with nitrogen so that the oxygen concentration becomes 0.01 vol% or less.
  • the layer (a) was cured by irradiating ultraviolet rays having an illuminance of 200 mW / cm 2 and an irradiation amount of 300 mJ / cm 2 from the surface coated with (a). Thereafter, methyl isobutyl ketone was poured over the surface to which the adhesive film had been bonded to wash away the residue of the adhesive layer, followed by drying at 25 ° C. for 10 minutes to obtain an antireflection film 1.
  • the back side of the film (plastic substrate side) is roughened with sandpaper, and then oil-based black ink (filling magic ink: Teranishi Kagaku) is applied to eliminate the backside reflection.
  • the adapter ARV-474 is attached to a photometer V-550 (manufactured by JASCO Corporation), the integrated reflectance at an incident angle of 5 ° is measured in the wavelength region of 380 to 780 nm, and the average reflectance is calculated. Antireflection properties were evaluated.
  • Transmittance The total light transmittance of the antireflection film when incident from the side opposite to the plastic substrate of the antireflection layer, and the wavelength of 480 nm of the antireflection film when incident from the side opposite to the plastic substrate of the antireflection layer.
  • the measurement of the total light transmittance was performed using a Nippon Denshoku Industries Co., Ltd. haze meter NDH4000.
  • the transmittance of light with a wavelength of 480 nm (T 480 ) and the transmittance of light with a wavelength of 580 nm (T 580 ) were measured using an ultraviolet-visible near-infrared spectrophotometer UV3150 manufactured by Shimadzu Corporation.
  • logSR The surface resistivity of the antireflection layer was measured using an Agilent 4339B High-Resistance meter (manufactured by Agilent Technologies) after placing the antireflection film sample at 25 ° C. and 60% relative humidity for 2 hours. Logarithm (log SR).
  • Examples 2 to 6 In the same manner as in Example 1, except that the hard coat layer coating solution HC-1 was replaced with the hard coat layer coating solutions HC-2 to HC-6 having the compositions shown in Table 1 below, antireflection films 2 to 6 was created.
  • Example 7 On the hard coat layer of Example 2, a hard coat layer having a thickness of 0.8 ⁇ m was further laminated using the hard coat layer coating solution HC-7 having the composition shown in Table 1 below. The drying and curing conditions of the hard coat layer coating solution HC-7 were the same as those of the hard coat layer coating solution HC-1 of Example 1.
  • DPCA60 Nippon Kayaku Co., Ltd.
  • DPCA-60 irg127: Irgacure 127, photopolymerization initiator (manufactured by BASF Japan Ltd.)
  • irg819 Irgacure 819, phosphine oxide photopolymerization initiator (manufactured by BASF Japan Ltd.)
  • Fired silica particles P6 were obtained in the same manner as the fired silica particles P2, except that the silica particles P4 were used instead of the silica particles P1.
  • Fired silica particles P7 were obtained in the same manner as the fired silica particles P2, except that the silica particles P5 were used instead of the silica particles P1.
  • silane coupling agent-treated silica particles P8 The silane coupling agent-treated silica particles P3 except that the fired silica particles P6 were used instead of the fired silica particles P2 and the amount of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to 65 g. In the same manner as above, silane coupling agent-treated silica particles P8 were obtained. Silane coupling agent-treated silica particles P8 had an average primary particle size of 151 nm, a particle size dispersity (CV value) of 11.0%, and an indentation hardness of 470 MPa.
  • CV value particle size dispersity
  • silane coupling agent-treated silica particles P9 The silane coupling agent-treated silica particles P3 except that the calcined silica particles P7 were used instead of the calcined silica particles P2, and the amount of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to 25 g. In the same manner as above, silane coupling agent-treated silica particles P9 were obtained.
  • the average primary particle diameter of the silane coupling agent-treated silica particles P9 was 206 nm, the degree of dispersion (CV value) of the particle diameter was 3.0%, and the indentation hardness was 470 MPa.
  • silica particle dispersion PA-2 (solid content concentration of 20) was prepared in the same manner as the silica particle dispersion PA-1, except that the silane coupling agent treated silica particles P8 were used instead of the silane coupling agent treated silica particles P3. Mass%).
  • silica particle dispersion PA-3 (solid content concentration of 20) was prepared in the same manner as the silica particle dispersion PA-1, except that the silane coupling agent treated silica particles P9 were used instead of the silane coupling agent treated silica particles P3. Mass%).
  • Example 8 The silica particle dispersion PA-1 of the layer (a) forming composition (A-1) was changed to a silica particle dispersion PA-2 (this layer (a) forming composition is referred to as the composition (A-2)).
  • the antireflection film 8 was prepared in the same manner as in Example 1 except that.
  • Example 9 The acetyltriethyl citrate of the layer (a) forming composition (A-2) was changed to dimethyl suberate (manufactured by Tokyo Chemical Industry Co., Ltd.) (this layer (a) forming composition was changed to the composition (A-3). Then, an antireflection film 9 was prepared in the same manner as in Example 8 except that the irradiation amount in step (1-2) was 7.5 mJ.
  • Example 10 The acetyl triethyl citrate of the layer (a) forming composition (A-2) was changed to dibutyl succinate (manufactured by Tokyo Chemical Industry Co., Ltd.) (this layer (a) forming composition was changed to the composition (A-4) Then, an antireflection film 10 was produced in the same manner as in Example 8 except that the irradiation amount in the step (1-2) was 10 mJ.
  • Example 11 Example 9 except that the composition for forming the layer (a) is changed to (A-5) having the following composition, and heating is performed at 140 ° C. for 15 minutes between the steps (4) and (5). Similarly, an antireflection film 11 was prepared.
  • composition (A-5) U-15HA 1.4 parts by weight Compound C3 1.5 parts by weight Dimethyl suberate 4.1 parts by weight A-TMPT 1.7 parts by weight Irgacure 127 0.2 parts by weight V-601 0.2 parts by weight Compound P-2 0.1 part by mass Silica particle dispersion PA-2 32.3 parts by mass Compound B 0.1 part by mass Ethanol 12.7 parts by mass Methyl ethyl ketone 33.3 parts by mass Acetone 12.7 parts by mass
  • A-TMPT Multifunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • V-601 thermal polymerization initiator, dimethyl 2,2′-azobis (2-methylpropionate) (manufactured by Wako Pure Chemical Industries, Ltd.)
  • Compound P-2 Compound having the following structure (manufactured by Wako Pure Chemical Industries, Ltd.)
  • Compound B has a weight average molecular weight of 17,000.
  • Example 12 The silica particle dispersion PA-1 of the layer (a) forming composition (A-1) was changed to a silica particle dispersion PA-3 (this layer (a) forming composition is referred to as the composition (A-6)).
  • the antireflection film 12 was prepared in the same manner as in Example 1 except that.
  • Example 1 The particle occupancy rate of Example 1 was 47.6%.
  • the antireflection films of Examples 1 to 12 have good antireflection performance, high total light transmittance, and small T 580 -T 480 , that is, high transmittance of light in the short wavelength region of visible light. It was a film.
  • the antireflection film of Comparative Example 1 had a larger T 580 -T 480 than the antireflection film of Example 1, and was a film having a low light transmittance in the short wavelength region of visible light. Since the antireflection films of Examples 1 to 12 have a high transmittance of light in the short wavelength region of visible light, a color change or the like hardly occurs. In particular, it is considered that the occurrence of color change can be suppressed even when two antireflection films are used in a liquid crystal display device with a touch panel.
  • an antireflection film having good antireflection performance, a high total light transmittance, and a high light transmittance in the short wavelength region of visible light a method for producing the antireflection film, and An antireflection article, a polarizing plate, an image display device, a module, and a liquid crystal display device with a touch panel having the antireflection film can be provided.

Abstract

The present invention is: an antireflective film having a plastic substrate and an antireflective layer, wherein the antireflective layer includes metal oxide particles and a binder resin, the antireflective layer has a moth-eye structure comprising an uneven shape formed by the metal oxide particles, the total light transmittance of the antireflective film when light is incident from the reverse side of the antireflective layer from the plastic substrate is 88% or greater, and the antireflective film satisfies the expression T580 – T480 ≤ 3.5%, where T480 and T580} are the transmittance of light at a wavelength of 480 nm and 580 nm, respectively, through the antireflective film when the light is incident from the reverse side of the antireflective layer from the plastic substrate; a method for manufacturing the antireflective film; and an antireflective article, a polarizing plate, an image display device, a module, and a touch panel liquid crystal display device having the antireflective film.

Description

反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法Antireflection film, antireflection article, polarizing plate, image display device, module, liquid crystal display device with touch panel, and production method of antireflection film
 本発明は、反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法の製造方法に関する。 The present invention relates to an antireflection film, an antireflection article, a polarizing plate, an image display device, a module, a liquid crystal display device with a touch panel, and a method for producing an antireflection film.
 陰極線管(CRT)を利用した表示装置、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、蛍光表示ディスプレイ(VFD)、フィールドエミッションディスプレイ(FED)、及び液晶ディスプレイ(LCD)のような画像表示装置では、表示面での外光の反射によるコントラスト低下及び像の映り込みを防止するために反射防止フィルムを設けることがある。また、タッチパネル付き液晶表示装置は、タッチパネルと液晶セルを含む液晶パネルとがエアギャップを介して配置された構造である場合があるが、タッチパネルとエアギャップとの界面、及びエアギャップと液晶パネルとの界面で光が反射してコントラストが低下したり、ニュートンリングが発生したりすることを防ぐために、タッチパネルとエアギャップとの界面、及びエアギャップと液晶パネルとの界面にそれぞれ反射防止フィルムを配置する方法が知られている。また、ショールームのガラス表面など、画像表示装置以外でも反射防止フィルムにより反射防止機能を付与する場合がある。 Image display such as a display device using a cathode ray tube (CRT), a plasma display panel (PDP), an electroluminescence display (ELD), a fluorescent display (VFD), a field emission display (FED), and a liquid crystal display (LCD) In an apparatus, an antireflection film may be provided in order to prevent a decrease in contrast and reflection of an image due to reflection of external light on the display surface. Further, a liquid crystal display device with a touch panel may have a structure in which a touch panel and a liquid crystal panel including a liquid crystal cell are arranged via an air gap, but the interface between the touch panel and the air gap, and the air gap and the liquid crystal panel In order to prevent light from being reflected at the interface and lowering the contrast or causing Newton's rings, an antireflection film is placed at the interface between the touch panel and the air gap, and at the interface between the air gap and the liquid crystal panel. How to do is known. Further, there are cases where an antireflection function is imparted by an antireflection film other than an image display device such as a glass surface of a showroom.
 反射防止フィルムとして、基材表面に周期が可視光の波長以下の微細な凹凸形状を有する反射防止フィルム、いわゆるモスアイ(moth eye)構造を有する反射防止フィルムが知られている。モスアイ構造により、擬似的に空気から基材の内部のバルク材料に向かって屈折率が連続的に変化する屈折率傾斜層を作り出し、光の反射を防止することができる。 As an antireflection film, an antireflection film having a fine unevenness with a period of not more than the wavelength of visible light on the surface of the substrate, that is, an antireflection film having a so-called moth eye structure is known. With the moth-eye structure, it is possible to create a refractive index gradient layer in which the refractive index continuously changes from air to the bulk material inside the substrate, thereby preventing light reflection.
 モスアイ構造を有する反射防止フィルムとして、特許文献1には、透明樹脂モノマーと微粒子を含有する塗布液を透明基材上に塗布し、硬化して微粒子が分散した透明樹脂を形成し、その後、透明樹脂をエッチングすることにより製造されたモスアイ構造を有する反射防止フィルムが記載されている。 As an antireflection film having a moth-eye structure, Patent Document 1 discloses that a coating liquid containing a transparent resin monomer and fine particles is applied on a transparent substrate and cured to form a transparent resin in which the fine particles are dispersed. An anti-reflection film having a moth-eye structure manufactured by etching a resin is described.
日本国特開2009-139796号公報Japanese Unexamined Patent Publication No. 2009-139796
 しかしながら、特許文献1の反射防止フィルムは、可視光の短波長領域の光の透過率が低いことが分かった。これは、具体的には波長580nmの光の透過率に比べて波長480nmの光の透過率が小さいことで表される。そして、その原因としては、モスアイ構造の凹凸周期によって光が干渉することが考えられ、より詳細には、凹凸周期の倍波長の回折光が干渉するためであると考えられる。可視光の短波長領域の光の透過率が低いと、色味変化などが生じやすくなり、特に反射防止フィルムを2枚以上使用する場合にはこの問題が顕著になる。反射防止フィルムを2枚以上使用する場合としては、例えばタッチパネル付き液晶表示装置が挙げられる。 However, it has been found that the antireflection film of Patent Document 1 has a low light transmittance in the short wavelength region of visible light. Specifically, this is expressed by the fact that the transmittance of light having a wavelength of 480 nm is smaller than the transmittance of light having a wavelength of 580 nm. The cause of this is thought to be that light interferes with the concavo-convex period of the moth-eye structure, and more specifically, because diffracted light having a wavelength twice that of the concavo-convex period interferes. If the transmittance of light in the short wavelength region of visible light is low, a change in color tends to occur, and this problem becomes particularly noticeable when two or more antireflection films are used. As a case where two or more antireflection films are used, for example, a liquid crystal display device with a touch panel may be mentioned.
 本発明の課題は、良好な反射防止性能を有し、全光線透過率が高く、かつ可視光の短波長領域の光の透過率が高い反射防止フィルム、及び上記反射防止フィルムの製造方法、並びに上記反射防止フィルムを有する反射防止物品、偏光板、画像表示装置、モジュール、及びタッチパネル付き液晶表示装置を提供することにある。 An object of the present invention is to provide an antireflection film having good antireflection performance, high total light transmittance, and high light transmittance in the short wavelength region of visible light, a method for producing the antireflection film, and The object is to provide an antireflection article, a polarizing plate, an image display device, a module, and a liquid crystal display device with a touch panel, each having the antireflection film.
<1>
 プラスチック基材と、反射防止層とを有する反射防止フィルムであって、
 上記反射防止層は、金属酸化物粒子及びバインダー樹脂を含み、
 上記反射防止層は、上記金属酸化物粒子によって形成された凹凸形状からなるモスアイ構造を有し、
 上記反射防止層の上記プラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率が88%以上であり、かつ、
 上記反射防止層の上記プラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T580-T480≦3.5%を満たす反射防止フィルム。
<2>
 上記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとしたとき、X≦190nmを満たす<1>に記載の反射防止フィルム。
<3>
 上記反射防止層の凹凸形状は、上記Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす<2>に記載の反射防止フィルム。
<4>
 上記金属酸化物粒子の平均一次粒径が100nm以上190nm以下である<1>~<3>のいずれか1項に記載の反射防止フィルム。
<5>
 上記バインダー樹脂に、25℃における粘度が1~20mPasである1分子中に2個以下の重合性官能基を有する化合物又は重合性官能基を有さない化合物を含む<1>~<4>のいずれか1項に記載の反射防止フィルム。
<6>
 上記プラスチック基材と上記反射防止層との間に、ハードコート層を有する<1>~<5>のいずれか1項に記載の反射防止フィルム。
<7>
 上記ハードコート層に4級アンモニウム塩含有ポリマーを含み、
 上記反射防止層の表面抵抗率を単位Ω/sqにてSRとした際の上記SRの常用対数値が11以下であり、かつ、上記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとし、上記Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす<6>に記載の反射防止フィルム。
<8>
 <1>~<7>のいずれか1項に記載の反射防止フィルムを表面に有する反射防止物品。
<9>
 偏光子と、上記偏光子を保護する少なくとも1枚の保護フィルムとを有する偏光板であって、上記保護フィルムの少なくとも1枚が<1>~<7>のいずれか1項に記載の反射防止フィルムである偏光板。
<10>
 <1>~<7>のいずれか1項に記載の反射防止フィルム、又は<9>に記載の偏光板を有する画像表示装置。
<11>
 <1>~<7>のいずれか1項に記載の反射防止フィルムを2枚有し、上記2枚の反射防止フィルムがエアギャップを介して対向して設置されたモジュール。
<12>
 上記2枚の反射防止フィルムは、上記反射防止層が上記プラスチック基材よりも上記エアギャップ側に配置された<11>に記載のモジュール。
<13>
 <12>に記載のモジュールを含み、
 上記2枚の反射防止フィルムのうちの一方の反射防止フィルムの上記プラスチック基材の上記反射防止層側とは反対側にタッチパネルを有し、
 他方の反射防止フィルムの上記プラスチック基材の上記反射防止層側とは反対側に液晶セルを有する、タッチパネル付き表示装置。
<14>
 プラスチック基材上に、硬化性化合物と平均一次粒径が100nm以上190nm以下の金属酸化物粒子とを、上記硬化性化合物を含む層(a)中に上記金属酸化物粒子が埋没する厚みで設ける工程(1)、
 支持体及び上記支持体上にゲル分率が95.0%以上の粘着剤を含む層(b)を有する粘着フィルムの上記層(b)を、上記層(a)と貼り合わせる工程(2)、
 上記金属酸化物粒子が、上記層(a)及び上記層(b)を合わせた層中に埋没し、かつ、上記層(a)の上記プラスチック基材側の界面とは反対側の界面から突出するように、上記層(a)と上記層(b)の界面の位置を上記プラスチック基材側に移動させる工程(3)、
 上記金属酸化物粒子が、上記層(a)及び上記層(b)を合わせた層中に埋没した状態で上記層(a)を硬化する工程(4)、
 上記層(b)を上記層(a)から剥離する工程(5)、
をこの順に有し、上記工程(1)~(4)を行う際の温度が60℃以下である反射防止フィルムの製造方法。
<1>
An antireflection film having a plastic substrate and an antireflection layer,
The antireflection layer includes metal oxide particles and a binder resin,
The antireflection layer has a moth-eye structure having an uneven shape formed by the metal oxide particles,
The total light transmittance of the antireflection film when incident from the side opposite to the plastic substrate of the antireflection layer is 88% or more, and
When the above respective T 480 and T 580 the transmittance of light having a wavelength of 480nm and 580nm of the antireflection film at the time of entering from the side opposite to the plastic substrate of the anti-reflection layer, T 580 -T 480 ≦ 3. Antireflection film satisfying 5%.
<2>
The concavo-convex shape of the antireflection layer is the antireflection film according to <1>, where X is an average value of distances A between vertices of adjacent convex portions, and X ≦ 190 nm.
<3>
The uneven shape of the antireflection layer is the antireflection film according to <2>, which satisfies X + σ ≦ 190 nm, where σ is a standard deviation representing the distribution of A.
<4>
The antireflection film according to any one of <1> to <3>, wherein the average primary particle size of the metal oxide particles is from 100 nm to 190 nm.
<5>
<1> to <4>, wherein the binder resin includes a compound having 2 or less polymerizable functional groups in one molecule having a viscosity of 1 to 20 mPas at 25 ° C. or a compound having no polymerizable functional group. The antireflection film according to any one of the above.
<6>
The antireflection film according to any one of <1> to <5>, wherein a hard coat layer is provided between the plastic substrate and the antireflection layer.
<7>
The hard coat layer contains a quaternary ammonium salt-containing polymer,
When the surface resistivity of the antireflection layer is SR in the unit Ω / sq, the common logarithm value of SR is 11 or less, and the uneven shape of the antireflection layer is between vertices of adjacent protrusions. <6> satisfying X + σ ≦ 190 nm, where X is the average value of the distance A and σ is the standard deviation representing the distribution of A.
<8>
<1>-<7> Antireflection article which has the antireflection film of any one of <1> on the surface.
<9>
An antireflection according to any one of <1> to <7>, wherein the polarizing plate has a polarizer and at least one protective film for protecting the polarizer, wherein at least one of the protective films is <1> to <7>. A polarizing plate that is a film.
<10>
<1>-<7> The image display apparatus which has an antireflection film of any one of <1>, or the polarizing plate as described in <9>.
<11>
A module comprising two antireflection films according to any one of <1> to <7>, wherein the two antireflection films are disposed to face each other through an air gap.
<12>
The module according to <11>, wherein the two antireflection films have the antireflection layer disposed closer to the air gap than the plastic substrate.
<13>
Including the module according to <12>,
One of the two antireflection films has a touch panel on the side opposite to the antireflection layer side of the plastic substrate of the antireflection film,
A display device with a touch panel, having a liquid crystal cell on the side opposite to the antireflection layer side of the plastic substrate of the other antireflection film.
<14>
On the plastic substrate, a curable compound and metal oxide particles having an average primary particle size of 100 nm or more and 190 nm or less are provided at a thickness at which the metal oxide particles are embedded in the layer (a) containing the curable compound. Step (1),
A step of bonding the layer (b) of the pressure-sensitive adhesive film having the support and the layer (b) containing a pressure-sensitive adhesive having a gel fraction of 95.0% or more on the support (2). ,
The metal oxide particles are embedded in a layer combining the layer (a) and the layer (b), and protrude from the interface on the side opposite to the interface on the plastic substrate side of the layer (a). Step (3) of moving the position of the interface between the layer (a) and the layer (b) to the plastic substrate side,
A step (4) of curing the layer (a) in a state where the metal oxide particles are buried in a layer formed by combining the layer (a) and the layer (b);
Step (5) of peeling the layer (b) from the layer (a);
In this order, and the temperature at which the above steps (1) to (4) are performed is 60 ° C. or less.
 本発明によれば、良好な反射防止性能を有し、全光線透過率が高く、かつ可視光の短波長領域の光の透過率が高い反射防止フィルム、及び上記反射防止フィルムの製造方法、並びに上記反射防止フィルムを有する反射防止物品、偏光板、画像表示装置、モジュール、及びタッチパネル付き液晶表示装置を提供することができる。 According to the present invention, an antireflection film having good antireflection performance, a high total light transmittance, and a high light transmittance in the short wavelength region of visible light, a method for producing the antireflection film, and An antireflection article, a polarizing plate, an image display device, a module, and a liquid crystal display device with a touch panel having the antireflection film can be provided.
本発明の反射防止フィルムの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the antireflection film of this invention. 本発明のモジュール及びタッチパネル付き液晶表示装置の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the module of this invention, and a liquid crystal display device with a touchscreen. 本発明の反射防止フィルムの製造方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the manufacturing method of the antireflection film of this invention.
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一種を表し、「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一種を表し、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの少なくとも一種を表す。
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
Further, “(meth) acrylate” represents at least one of acrylate and methacrylate, “(meth) acryl” represents at least one of acrylic and methacryl, and “(meth) acryloyl” represents at least one of acryloyl and methacryloyl. .
 本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により下記の条件で測定された値である。
 [溶媒] テトラヒドロフラン
 [装置名] TOSOH HLC-8220GPC
 [カラム] TOSOH TSKgel Super HZM-H
    (4.6mm×15cm)を3本接続して使用。
 [カラム温度] 25℃
 [試料濃度] 0.1質量%
 [流速] 0.35ml/min
 [校正曲線] TOSOH製TSK標準ポリスチレン Mw=2800000~1050までの7サンプルによる校正曲線を使用。
The weight average molecular weight and number average molecular weight in the present invention are values measured by gel permeation chromatography (GPC) under the following conditions.
[Solvent] Tetrahydrofuran [Device name] TOSOH HLC-8220GPC
[Column] TOSOH TSKgel Super HZM-H
Three (4.6 mm x 15 cm) are connected and used.
[Column temperature] 25 ° C
[Sample concentration] 0.1% by mass
[Flow rate] 0.35 ml / min
[Calibration curve] TSK standard polystyrene manufactured by TOSOH Mw = 2800000-1050 calibration curves with 7 samples are used.
[反射防止フィルム]
 本発明の反射防止フィルムは、
 プラスチック基材と、反射防止層とを有する反射防止フィルムであって、
 上記反射防止層は、金属酸化物粒子及びバインダー樹脂を含み、上記反射防止層は、上記金属酸化物粒子によって形成された凹凸形状からなるモスアイ構造を有し、
 上記反射防止層の上記プラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率が88%以上であり、かつ、
 上記反射防止層の上記プラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T580-T480≦3.5%を満たす反射防止フィルムである。
[Antireflection film]
The antireflection film of the present invention is
An antireflection film having a plastic substrate and an antireflection layer,
The antireflection layer includes metal oxide particles and a binder resin, and the antireflection layer has a moth-eye structure having an uneven shape formed by the metal oxide particles,
The total light transmittance of the antireflection film when incident from the side opposite to the plastic substrate of the antireflection layer is 88% or more, and
When the above respective T 480 and T 580 the transmittance of light having a wavelength of 480nm and 580nm of the antireflection film at the time of entering from the side opposite to the plastic substrate of the anti-reflection layer, T 580 -T 480 ≦ 3. It is an antireflection film satisfying 5%.
 本発明の反射防止フィルムは、プラスチック基材と、反射防止層とを有するものであり、プラスチック基材と反射防止層とが積層されている。プラスチック基材と反射防止層とは直接積層されていてもよく、他の層(好ましくはハードコート層)を介して積層されていてもよい。 The antireflection film of the present invention has a plastic substrate and an antireflection layer, and the plastic substrate and the antireflection layer are laminated. The plastic substrate and the antireflection layer may be directly laminated, or may be laminated via another layer (preferably a hard coat layer).
 本発明の反射防止フィルムの反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率は88%以上であり、好ましくは90%以上であり、より好ましくは92%以上であり、更に好ましくは94%以上である。
 反射防止フィルムの反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率は88%以上であることで、反射防止フィルムの透明性が高くなり、特に、反射防止フィルムを2枚以上用いても視認性が低下しにくい。
 全光線透過率の測定は、日本工業規格(JIS) K7361-1(1997年)に準じて行うものとする。
 反射防止フィルムの反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率を88%以上にするための手段は特に限定されないが、例えば全光線透過率が高いプラスチック基材を用いることが挙げられる。また、後述するように、反射防止層の凹凸形状の隣り合う凸部の頂点間の距離Aの平均値Xを190nm以下にすることも、可視光領域の透過率の低下を防ぐ点で好ましい。
The total light transmittance of the antireflection film when entering from the side opposite to the plastic substrate of the antireflection layer of the antireflection film of the present invention is 88% or more, preferably 90% or more, more preferably 92. % Or more, more preferably 94% or more.
The antireflection film has a total light transmittance of 88% or more when entering from the side opposite to the plastic substrate of the antireflection layer of the antireflection film, which increases the transparency of the antireflection film. Even if two or more prevention films are used, the visibility is hardly lowered.
The measurement of the total light transmittance is performed according to Japanese Industrial Standard (JIS) K7361-1 (1997).
There are no particular restrictions on the means for increasing the total light transmittance of the antireflection film to 88% or more when it enters from the side opposite to the plastic substrate of the antireflection layer of the antireflection film. For example, the total light transmittance is high. For example, a plastic substrate may be used. In addition, as will be described later, it is also preferable to set the average value X of the distance A between the vertices of adjacent convex portions of the concavo-convex shape of the antireflection layer to 190 nm or less from the viewpoint of preventing a decrease in transmittance in the visible light region.
 更に、本発明の反射防止フィルムの反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T480及びT580は、T580-T480≦3.5%を満たし、0%≦T580-T480≦3.0%を満たすことが好ましく、0%≦T580-T480≦2.5%を満たすことがより好ましく、0%≦T580-T480≦2.0%を満たすことが更に好ましい。
 T580-T480≦3.5%を満たす、すなわち、T580-T480が3.5%以下であることで、例えば反射防止フィルムを画像表示装置に適用した際の表示画像の色味変化を抑制できる。特に、反射防止フィルムを2枚以上用いた場合でも色味変化が生じにくい。
 T480及びT580の測定は、日本工業規格(JIS) K0115(2004年)に準じて行うものとする。
 T580-T480を3.5%以下にするための手段は特に限定されないが、反射防止層の凹凸形状の隣り合う凸部の頂点間の距離Aの平均値Xを190nm以下にすることが好ましく、上記Aの分布を表す標準偏差をσとしたとき、X+σを190nm以下にすることがより好ましい。このように凹凸形状を調整することで、凹凸周期の倍波長の回折光が干渉したとしても、波長380nm以上の可視光の範囲に入らない光であるため、可視光の短波長領域の透過率の低下を防ぐことができ、全光線透過率が88%以上で、かつT580-T480を3.5%以下にすることができる。
Furthermore, when the transmittance of light having a wavelength of 480nm and 580nm of the antireflection film when the plastic substrate of the antireflection layer that is incident from the opposite side of the antireflection film of the present invention was T 480 and T 580, respectively, T 480 and T 580 satisfy T 580 −T 480 ≦ 3.5%, preferably 0% ≦ T 580 −T 480 ≦ 3.0%, and 0% ≦ T 580 −T 480 ≦ 2.5% % Is more preferable, and 0% ≦ T 580 −T 480 ≦ 2.0% is more preferable.
When T 580 −T 480 ≦ 3.5% is satisfied, that is, T 580 −T 480 is 3.5% or less, for example, the color change of the display image when an antireflection film is applied to the image display device Can be suppressed. In particular, even when two or more antireflection films are used, the color change hardly occurs.
Measurements of T 480 and T 580 shall be carried out according to Japanese Industrial Standards (JIS) K0115 (2004 years).
Means for reducing T 580 -T 480 to 3.5% or less is not particularly limited, but the average value X of the distance A between the vertices of adjacent convex portions of the concavo-convex shape of the antireflection layer should be 190 nm or less. Preferably, when σ is the standard deviation representing the distribution of A, X + σ is more preferably 190 nm or less. By adjusting the concavo-convex shape in this way, even if diffracted light having a wavelength twice the concavo-convex period interferes, it is light that does not fall within the visible light range with a wavelength of 380 nm or more. Can be prevented, the total light transmittance is 88% or more, and T 580 -T 480 can be 3.5% or less.
 本発明の反射防止フィルムは、波長380~780nmの全域にわたって積分反射率が3%以下であることが好ましく、2%以下であることがより好ましい。 The antireflection film of the present invention preferably has an integrated reflectance of 3% or less over the entire wavelength range of 380 to 780 nm, more preferably 2% or less.
 本発明の反射防止フィルムの好ましい実施形態の一例を図1に示す。
 図1の反射防止フィルム10は、プラスチック基材1と反射防止層2とを有する。反射防止層2は、金属酸化物粒子3とバインダー樹脂4を含む。金属酸化物粒子3はバインダー樹脂4から突出し、凹凸形状を形成しており、この凹凸形状はモスアイ構造である。
An example of a preferred embodiment of the antireflection film of the present invention is shown in FIG.
An antireflection film 10 in FIG. 1 includes a plastic substrate 1 and an antireflection layer 2. The antireflection layer 2 includes metal oxide particles 3 and a binder resin 4. The metal oxide particles 3 protrude from the binder resin 4 to form an uneven shape, and this uneven shape has a moth-eye structure.
(モスアイ構造)
 本発明の反射防止フィルムの反射防止層は、金属酸化物粒子によって形成された凹凸形状からなるモスアイ構造を有する。
 凹凸形状は、反射防止層のプラスチック基材側の界面とは反対側の表面に形成されることが好ましい。
 金属酸化物粒子によって形成された凹凸形状とは、好ましくはバインダー樹脂の膜から突出した1つ1つの金属酸化物粒子が凸部となり、金属酸化物粒子が存在しない部分が凹部となったものである。
 凹凸形状からなるモスアイ構造とは、凹凸形状がモスアイ構造となっていることを表す。
 なお、モスアイ構造を形成できる限り、凸部を形成する金属酸化物粒子の表面にバインダー樹脂などの他の成分が存在していてもよい。
 モスアイ構造とは、光の反射を抑制するための物質(材料)の加工された表面であって、周期的な微細構造パターンをもった構造のことを指す。特に、可視光の反射を抑制する目的の場合には、780nm未満の周期の微細構造パターンをもった構造のことを指す。微細構造パターンの周期が190nm未満であると、反射光の色味が小さくなり好ましい。また、モスアイ構造の凹凸形状の周期が100nm以上であると波長380nmの光が微細構造パターンを認識でき、反射防止性に優れるため好ましい。モスアイ構造の有無は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)等により表面形状を観察し、上記微細構造パターンが出来ているかどうか調べることによって確認することができる。
(Moth eye structure)
The antireflection layer of the antireflection film of the present invention has a moth-eye structure having a concavo-convex shape formed by metal oxide particles.
The uneven shape is preferably formed on the surface of the antireflection layer on the side opposite to the interface on the plastic substrate side.
The concavo-convex shape formed by the metal oxide particles preferably means that each metal oxide particle protruding from the binder resin film becomes a convex portion, and a portion where no metal oxide particles exist becomes a concave portion. is there.
The moth-eye structure composed of a concavo-convex shape means that the concavo-convex shape is a moth-eye structure.
In addition, as long as the moth-eye structure can be formed, other components such as a binder resin may be present on the surface of the metal oxide particles forming the convex portions.
The moth-eye structure refers to a processed surface of a substance (material) for suppressing light reflection, and a structure having a periodic fine structure pattern. In particular, for the purpose of suppressing the reflection of visible light, it refers to a structure having a fine structure pattern with a period of less than 780 nm. When the period of the fine structure pattern is less than 190 nm, the color of the reflected light is preferably reduced. Moreover, it is preferable that the period of the concavo-convex shape of the moth-eye structure is 100 nm or more because light having a wavelength of 380 nm can recognize a fine structure pattern and has excellent antireflection properties. The presence or absence of the moth-eye structure can be confirmed by observing the surface shape with a scanning electron microscope (SEM), an atomic force microscope (AFM), or the like, and examining whether the fine structure pattern is formed.
 本発明の反射防止フィルムの反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとの比であるB/Aが0.4以上であることが好ましい。B/Aが0.4以上であると、凸部同士の距離に対して凹部の深さが大きくなり、空気から反射防止層内部にかけてより緩やかに屈折率が変化する屈折率傾斜層を作ることができるため、反射率をより低減できる。
 B/Aは0.5以上であることが更に好ましい。B/Aが0.5以上であれば、隣り合う凸部(粒子により形成される凸部)の頂点間の距離Aが粒子径以上になり、粒子間に凹部が形成されることになる。その結果、凸部上側の曲率に依存する屈折率変化の急峻な部位による界面反射と、粒子間凹部の曲率に依存する屈折率変化の急峻な部位による界面反射の両者が存在することで、モスアイ構造による屈折率傾斜層効果に加えて、より効果的に反射率が低減されるものと推測される。
The concavo-convex shape of the antireflection layer of the antireflection film of the present invention is B / A, which is a ratio of the distance A between the apexes of adjacent convex portions and the distance B between the center and the concave portion between the apexes of adjacent convex portions. Is preferably 0.4 or more. When B / A is 0.4 or more, the depth of the concave portion increases with respect to the distance between the convex portions, and a refractive index gradient layer in which the refractive index changes more gradually from the air to the inside of the antireflection layer is formed. Therefore, the reflectance can be further reduced.
B / A is more preferably 0.5 or more. If B / A is 0.5 or more, the distance A between the vertices of adjacent convex portions (convex portions formed of particles) becomes equal to or larger than the particle diameter, and concave portions are formed between the particles. As a result, both the interface reflection due to the sharp part of the refractive index change depending on the curvature above the convex part and the interface reflection due to the sharp part of the refractive index change dependent on the curvature of the interparticle concave part exist. In addition to the refractive index gradient layer effect due to the structure, it is presumed that the reflectance is more effectively reduced.
 B/Aは、反射防止層におけるバインダー樹脂と金属酸化物粒子の体積比により制御することができる。そのため、バインダー樹脂と金属酸化物粒子の配合比を適切に設計することが重要である。 B / A can be controlled by the volume ratio of the binder resin and the metal oxide particles in the antireflection layer. Therefore, it is important to appropriately design the blending ratio between the binder resin and the metal oxide particles.
 本発明の反射防止フィルムの反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとしたとき、X≦190nmを満たすことが好ましく、X≦180nmを満たすことがより好ましく、X≦170nmを満たすことが更に好ましい。
 X≦190nmを満たす、すなわちXが190nm以下であることで、前述のように、可視光の短波長領域の透過率の低下を防ぐことができる。
 また、後述するように上記Aの分布を表す標準偏差をσとしたときにX+σ≦190nmを満たす観点から、X≦180nmを満たすことがより好ましく、X≦170nmを満たすことが更に好ましい。
The concavo-convex shape of the antireflection layer of the antireflection film of the present invention preferably satisfies X ≦ 190 nm, and preferably satisfies X ≦ 180 nm, where X is the average value of the distances A between the vertices of adjacent convex portions. It is more preferable that X ≦ 170 nm is satisfied.
By satisfying X ≦ 190 nm, that is, when X is 190 nm or less, it is possible to prevent a decrease in transmittance in the short wavelength region of visible light as described above.
Further, as will be described later, from the viewpoint of satisfying X + σ ≦ 190 nm when σ is the standard deviation representing the distribution of A, X ≦ 180 nm is more preferable, and X ≦ 170 nm is more preferable.
 X≦190nmを満たす凹凸形状を作成するための手段としては、特に限定されないが、(i)平均一次粒径が190nm以下の金属酸化物粒子を用いること、又は(ii)金属酸化物粒子の凝集を防ぐことで金属酸化物粒子間の空隙の形成を抑制することなどが挙げられる。上記(ii)の金属酸化物粒子の凝集を防ぐための手法としては、(ii-1)反射防止フィルム作製時の温度を60℃以下にすることでバインダー樹脂の粘度低下又は対流に伴う金属酸化物粒子の移動を抑制する方法、又は(ii-2)金属酸化物粒子と基材との間に結合を形成する方法などが挙げられる。 The means for creating the irregular shape satisfying X ≦ 190 nm is not particularly limited, but (i) using metal oxide particles having an average primary particle size of 190 nm or less, or (ii) aggregation of metal oxide particles. For example, it is possible to suppress the formation of voids between the metal oxide particles. As a method for preventing the aggregation of the metal oxide particles of (ii) above, (ii-1) the metal oxidation accompanying the decrease in the viscosity of the binder resin or convection by setting the temperature at the preparation of the antireflection film to 60 ° C. or lower. And (ii-2) a method of forming a bond between the metal oxide particles and the substrate.
 上記Aが分布を持つ場合においても可視光の短波長領域の透過率の低下を防ぐ観点から、上記Aの分布を表す標準偏差をσとしたとき、X+σ≦240nmを満たすことが好ましく、X+σ≦230nmを満たすことがより好ましく、X+σ≦210nmを満たすことが更に好ましく、X+σ≦200nmを満たすことが特に好ましく、X+σ≦190nmを満たすことが最も好ましい。
 X+σ≦190nmを満たす、すなわちX+σが190nm以下であることで、前述のように、可視光の短波長領域の透過率の低下を防ぐことができる。
Even when A has a distribution, from the viewpoint of preventing a decrease in transmittance in the short wavelength region of visible light, when σ is a standard deviation representing the distribution of A, X + σ ≦ 240 nm is preferably satisfied, and X + σ ≦ More preferably, 230 nm is satisfied, X + σ ≦ 210 nm is further satisfied, X + σ ≦ 200 nm is particularly preferable, and X + σ ≦ 190 nm is most preferable.
By satisfying X + σ ≦ 190 nm, that is, when X + σ is 190 nm or less, it is possible to prevent a decrease in transmittance in the short wavelength region of visible light as described above.
 X+σ≦190nmを満たす凹凸形状を作成するための手段としては、特に限定されないが、(i)平均一次粒径が190nm以下の金属酸化物粒子を用いること、又は(ii)金属酸化物粒子の凝集を防ぐことなどが挙げられる。上記(ii)の金属酸化物粒子の凝集を防ぐための手法としては、(ii-1)反射防止フィルム作製時の温度を60℃以下にする方法、又は(ii-2)金属酸化物粒子と基材との間に結合を形成する方法などが挙げられる。 The means for creating the irregular shape satisfying X + σ ≦ 190 nm is not particularly limited, but (i) using metal oxide particles having an average primary particle size of 190 nm or less, or (ii) aggregation of metal oxide particles Prevention. As a method for preventing aggregation of the metal oxide particles of (ii) above, (ii-1) a method of setting the temperature at the production of the antireflection film to 60 ° C. or lower, or (ii-2) metal oxide particles and Examples thereof include a method of forming a bond with the substrate.
 隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離B(凹部の深さ)の測定方法について、以下に、より具体的に説明する。
 距離Bは、反射防止フィルムの断面SEM観察により測定することができる。反射防止フィルム試料をミクロトームで切削して断面を出し、適切な倍率(5000倍程度)でSEM観察する。観察し易いように、試料にはカーボン蒸着、エッチング等適切な処理を施してもよい。距離Bは、空気と試料が作る界面において、隣り合う凸部の頂点を含み基材面と垂直な面内にて、隣り合う凸部の頂点を結ぶ直線とその垂直二等分線が粒子またはバインダー樹脂に到達する点である凹部との距離を示す。隣り合う凸部の頂点間の距離Aを100点測長したときの平均値をXとして算出する。
 また、測長した距離Aのばらつきを示す標準偏差をσとして算出する。
 SEM写真においては、写っているすべての凹凸について、隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとを正確に測長できない場合もあるが、その場合はSEM画像で手前側に写っている凸部と凹部に着目して測長すればよい。
 なお、凹部は、SEM画像で測長する2つの隣り合う凸部を形成する粒子と同じ深度において測長することが必要である。より手前側に写っている粒子などまでの距離をBとして測長してしまうと、Bを小さく見積もってしまう場合があるからである。
The method for measuring the distance A between the vertices of adjacent convex portions and the distance B (depth of the concave portion) between the center and the concave portion between the vertices of adjacent convex portions will be described more specifically below.
The distance B can be measured by cross-sectional SEM observation of the antireflection film. The antireflection film sample is cut with a microtome to obtain a cross section, and SEM observation is performed at an appropriate magnification (about 5000 times). For easy observation, the sample may be subjected to appropriate processing such as carbon deposition and etching. The distance B is defined as a straight line connecting the vertices of the adjacent protrusions and a perpendicular bisector at the interface between the air and the sample and including the vertices of the adjacent protrusions. The distance from the concave portion that is the point reaching the binder resin is shown. The average value when the distance A between the vertices of adjacent convex portions is measured at 100 points is calculated as X.
Further, the standard deviation indicating the variation in the measured distance A is calculated as σ.
In the SEM photograph, there are cases where the distance A between the vertices of the adjacent convex portions and the distance B between the vertices of the adjacent convex portions and the concave portion B cannot be measured accurately with respect to all the projected and recessed portions. However, in that case, the length may be measured by paying attention to the convex portion and the concave portion shown on the near side in the SEM image.
Note that the concave portion needs to be measured at the same depth as the particles forming the two adjacent convex portions to be measured in the SEM image. This is because if the distance to a particle or the like reflected on the near side is measured as B, B may be estimated small.
 更に、低反射率を実現し、ヘイズの発生を抑制するには凸部を形成する金属酸化物粒子は均一に、適度な充填率で敷き詰められていることが好ましい。上記観点から、凸部を形成する金属酸化物粒子の含有量は、反射防止層全体で均一になるように調整されるのが好ましい。充填率は、SEMなどにより表面から凸部を形成する金属酸化物粒子を観察したときの最も表面側に位置した金属酸化物粒子の面積占有率(粒子占有率)として測定することができ、25%~64%であることが好ましく、25~50%がより好ましく、30~45%が更に好ましい。 Furthermore, in order to realize a low reflectance and suppress the occurrence of haze, it is preferable that the metal oxide particles forming the convex portions are uniformly spread with an appropriate filling rate. From the above viewpoint, it is preferable that the content of the metal oxide particles forming the convex portion is adjusted so as to be uniform throughout the antireflection layer. The filling rate can be measured as the area occupancy (particle occupancy) of the metal oxide particles located on the most surface side when observing the metal oxide particles forming the convex portion from the surface by SEM or the like. % To 64% is preferable, 25 to 50% is more preferable, and 30 to 45% is still more preferable.
 反射防止フィルムの面の均一性をヘイズで評価することができる。測定は、フィルム試料40mm×80mmを、25℃、相対湿度60%で、日本電色工業(株)製ヘーズメーターNDH4000で、JIS-K7136(2000年)に従って測定することができる。粒子同士が凝集し不均一であるものは、ヘイズが高くなる。ヘイズが低い方が好ましい。ヘイズの値は0.0~3.0%が好ましく、0.0~2.5%がより好ましく、0.0~2.0%がさらに好ましい。 The uniformity of the surface of the antireflection film can be evaluated by haze. The measurement can be carried out on a film sample of 40 mm × 80 mm at 25 ° C. and a relative humidity of 60% with a haze meter NDH4000 manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS-K7136 (2000). When the particles are aggregated and non-uniform, the haze increases. A lower haze is preferred. The haze value is preferably 0.0 to 3.0%, more preferably 0.0 to 2.5%, and further preferably 0.0 to 2.0%.
(プラスチック基材)
 本発明の反射防止フィルムのプラスチック基材について説明する。
 プラスチック基材は、反射防止フィルムの基材として一般的に使用される透光性を有する基材であれは特に制限はない。プラスチック基材としては、種々用いることができ、例えば、セルロース系樹脂;セルロースアシレート(トリアセテートセルロース、ジアセチルセルロース、アセテートブチレートセルロース)等、ポリエステル樹脂;ポリエチレンテレフタレート等、(メタ)アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート、ポリスチレン、オレフィン系樹脂等を含有する基材が挙げられ、セルロースアシレート、ポリエチレンテレフタレート、又は(メタ)アクリル系樹脂を含有する基材が好ましく、セルロースアシレートを含有する基材がより好ましく、セルロースアシレートフィルムであることが特に好ましい。セルロースアシレートとしては、特開2012-093723号公報に記載の基材等を好ましく用いることが出来る。
 プラスチック基材の厚さは、通常、10μm~1000μm程度であるが、取り扱い性が良好で、透光性が高く、かつ十分な強度が得られるという観点から15μm~200μmが好ましく、20μm~200μmがより好ましく、20μm~100μmが更に好ましく、25μm~100μmが特に好ましい。
 また、特に反射防止フィルムを2枚以上用いる場合には、薄型のプラスチック基材を好ましく用いることができる。この場合のプラスチック基材の厚みは20μm~40μmが好ましく、25μm~40μmがより好ましい。
 プラスチック基材の透光性としては、全光線透過率が90%以上のものが好ましい。
(Plastic substrate)
The plastic substrate of the antireflection film of the present invention will be described.
The plastic substrate is not particularly limited as long as it is a light-transmitting substrate generally used as a substrate for an antireflection film. Various plastic substrates can be used, such as cellulose resin; cellulose acylate (triacetate cellulose, diacetyl cellulose, acetate butyrate cellulose), polyester resin; polyethylene terephthalate, (meth) acrylic resin, polyurethane, etc. Base materials containing polycarbonate resins, polycarbonates, polystyrenes, olefin resins, etc., preferably cellulose acylates, polyethylene terephthalates, or substrates containing (meth) acrylic resins, and substrates containing cellulose acylates Is more preferable, and a cellulose acylate film is particularly preferable. As the cellulose acylate, the base material described in JP 2012-093723 A can be preferably used.
The thickness of the plastic substrate is usually about 10 μm to 1000 μm, but is preferably 15 μm to 200 μm, and preferably 20 μm to 200 μm from the viewpoints of good handleability, high translucency, and sufficient strength. More preferably, 20 μm to 100 μm is more preferable, and 25 μm to 100 μm is particularly preferable.
In particular, when two or more antireflection films are used, a thin plastic substrate can be preferably used. In this case, the thickness of the plastic substrate is preferably 20 μm to 40 μm, and more preferably 25 μm to 40 μm.
As the translucency of the plastic substrate, a material having a total light transmittance of 90% or more is preferable.
(反射防止層)
 本発明の反射防止フィルムの反射防止層について説明する。
 反射防止層は、金属酸化物粒子及びバインダー樹脂を含む。
(Antireflection layer)
The antireflection layer of the antireflection film of the present invention will be described.
The antireflection layer includes metal oxide particles and a binder resin.
(バインダー樹脂)
 バインダー樹脂は、プラスチック基材又はプラスチック基材と他の層との積層体に金属酸化物粒子を結着させる機能を有することが好ましい。
 バインダー樹脂は、図1に示すように膜になっていることが好ましい。
 バインダー樹脂は硬化性化合物の硬化物を含むことが好ましい。
 バインダー樹脂は硬化性化合物を硬化させて得ることができる。
 バインダー樹脂の形成に用いられる硬化性化合物を硬化性化合物(a1)とも呼ぶ。
(Binder resin)
The binder resin preferably has a function of binding metal oxide particles to a plastic substrate or a laminate of a plastic substrate and another layer.
The binder resin is preferably a film as shown in FIG.
The binder resin preferably contains a cured product of a curable compound.
The binder resin can be obtained by curing a curable compound.
The curable compound used for forming the binder resin is also referred to as a curable compound (a1).
<硬化性化合物(a1)>
 硬化性化合物(a1)としては、重合性官能基を有する化合物(好ましくは電離放射線硬化性化合物)が好ましい。重合性官能基を有する化合物としては、各種モノマー、オリゴマー又はポリマーを用いる事ができ、重合性官能基(重合性基)としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
 光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性不飽和基(炭素-炭素不飽和二重結合性基)等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
<Curable compound (a1)>
As the curable compound (a1), a compound having a polymerizable functional group (preferably an ionizing radiation curable compound) is preferable. As the compound having a polymerizable functional group, various monomers, oligomers, or polymers can be used, and the polymerizable functional group (polymerizable group) is preferably a light, electron beam, or radiation-polymerizable one, and particularly, photopolymerization. A functional group is preferred.
Examples of the photopolymerizable functional group include polymerizable unsaturated groups (carbon-carbon unsaturated double bond groups) such as (meth) acryloyl group, vinyl group, styryl group, and allyl group. ) An acryloyl group is preferred.
 重合性不飽和基を有する化合物の具体例としては、ネオペンチルグリコールアクリレート、1,6-ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
 トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
 ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
 2,2-ビス{4-(アクリロキシ・ジエトキシ)フェニル}プロパン、2-2-ビス{4-(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;等を挙げることができる。
Specific examples of the compound having a polymerizable unsaturated group include (meth) acrylic acid diesters of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate;
(Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis {4- (acryloxy-diethoxy) phenyl} propane and 2-2bis {4- (acryloxy-polypropoxy) phenyl} propane And the like.
 さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性官能基を有する化合物として、好ましく用いられる。 Furthermore, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the compound having a photopolymerizable functional group.
 中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーを少なくとも1種含有することが好ましい。
 例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO(エチレンオキサイド)変性トリメチロールプロパントリ(メタ)アクリレート、PO(プロピレンオキサイド)変性トリメチロールプロパントリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールトヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
Among these, esters of polyhydric alcohol and (meth) acrylic acid are preferable. More preferably, at least one polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferably contained.
For example, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO (ethylene oxide) modified trimethylolpropane tri (meth) acrylate, PO (propylene oxide) modified trimethylol Propane tri (meth) acrylate, EO-modified phosphate tri (meth) acrylate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, caprolactone-modified dipe Data erythritol Doo hexa (meth) acrylate, 1,2,3-cyclohexane tetramethacrylate, polyurethane polyacrylate, polyester polyacrylate and caprolactone-modified tris (acryloyloxyethyl) isocyanurate.
 (メタ)アクリロイル基を有する多官能アクリレート系化合物類の具体化合物としては、日本化薬(株)製KAYARAD DPHA、同DPHA-2C、同PET-30、同TMPTA、同TPA-320、同TPA-330、同RP-1040、同T-1420、同D-310、同DPCA-20、同DPCA-30、同DPCA-60、同GPO-303、大阪有機化学工業(株)製V#3PA、V#400、V#36095D、V#1000、V#1080等のポリオールと(メタ)アクリル酸のエステル化物を挙げることができる。また紫光UV-1400B、同UV-1700B、同UV-6300B、同UV-7550B、同UV-7600B、同UV-7605B、同UV-7610B、同UV-7620EA、同UV-7630B、同UV-7640B、同UV-6630B、同UV-7000B、同UV-7510B、同UV-7461TE、同UV-3000B、同UV-3200B、同UV-3210EA、同UV-3310EA、同UV-3310B、同UV-3500BA、同UV-3520TL、同UV-3700B、同UV-6100B、同UV-6640B、同UV-2000B、同UV-2010B、同UV-2250EA、同UV-2750B(日本合成化学(株)製)、UA-306H、UA-306I、UA-306T、UL-503LN(共栄社化学(株)製)、ユニディック17-806、同17-813、同V-4030、同V-4000BA(大日本インキ化学工業(株)製)、EB-1290K、EB-220、EB-5129、EB-1830,EB-4858(ダイセルUCB(株)製)、A-TMMT、A-TMPT、U-4HA、U-6HA、U-10HA、U-15HA(新中村化学工業(株)製)、ハイコープAU-2010、同AU-2020((株)トクシキ製)、アロニックスM-1960(東亜合成(株)製)、アートレジンUN-3320HA,UN-3320HC,UN-3320HS、UN-904,HDP-4Tなどの3官能以上のウレタンアクリレート化合物、アロニックスM-8100,M-8030,M-9050(東亞合成(株)製、KRM-8307(ダイセルサイテック(株)製)などの3官能以上のポリエステル化合物なども好適に使用することができる。 Specific examples of the polyfunctional acrylate compounds having a (meth) acryloyl group include KAYARAD DPHA, DPHA-2C, PET-30, TMPTA, TPA-320, and TPA- manufactured by Nippon Kayaku Co., Ltd. 330, RP-1040, T-1420, D-310, DPCA-20, DPCA-30, DPCA-60, GPO-303, V # 3PA, V from Osaka Organic Chemical Industry Co., Ltd. Examples include esterified products of polyols such as # 400, V # 36095D, V # 1000, V # 1080, and (meth) acrylic acid. Purple light UV-1400B, UV-1700B, UV-6300B, UV-7550B, UV-7600B, UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-7630B, UV-7640B UV-6630B, UV-7000B, UV-7510B, UV-7461TE, UV-3000B, UV-3200B, UV-3210EA, UV-3310EA, UV-3310EA, UV-3310B, UV-3500BA UV-3520TL, UV-3700B, UV-6100B, UV-6640B, UV-2000B, UV-2010B, UV-2250EA, UV-2250EA (manufactured by Nippon Synthetic Chemical Co., Ltd.), UA-306H, UA-306I, UA-306T, UL-503L (Kyoeisha Chemical Co., Ltd.), Unidic 17-806, 17-813, V-4030, V-4000BA (Dainippon Ink Chemical Co., Ltd.), EB-1290K, EB-220, EB -5129, EB-1830, EB-4858 (manufactured by Daicel UCB), A-TMMT, A-TMPT, U-4HA, U-6HA, U-10HA, U-15HA (Shin Nakamura Chemical Co., Ltd.) ), High Corp AU-2010, AU-2020 (manufactured by Tokushi Co., Ltd.), Aronix M-1960 (manufactured by Toagosei Co., Ltd.), Art Resin UN-3320HA, UN-3320HC, UN-3320HS, UN-904 Trifunctional or higher urethane acrylate compounds such as HDP-4T, Aronix M-8100, M-8030, M-9050 (Toagosei ( ) Made, like KRM-8307 (manufactured by Daicel-Cytec Co.) three or more functional groups of the polyester compound, such as may also be suitably used.
 さらに、3個以上の重合性官能基を有する樹脂、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物などのオリゴマー又はプレポリマー等も挙げられる。 Furthermore, resins having three or more polymerizable functional groups, such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, Also included are oligomers or prepolymers such as polyfunctional compounds such as polyhydric alcohols.
 また、特開2005-76005号、同2005-36105号公報に記載された化合物、SIRIUS-501、SUBARU-501(大阪有機化学工業(株)製)のようなデンドリマー、特開2005-60425号公報に記載のようなノルボルネン環含有モノマーを用いることもできる。 Further, compounds described in JP-A-2005-76005 and JP-A-2005-36105, dendrimers such as SIRIUS-501 and SUBARU-501 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), JP-A-2005-60425 A norbornene ring-containing monomer as described in 1) can also be used.
 さらに、金属酸化物粒子と硬化性化合物(a1)を結合させて強固な膜にするために、硬化性化合物(a1)として、重合性官能基を有するシランカップリング剤を用いてもよい。
 重合性官能基を有するシランカップリング剤の具体例としては、例えば、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルジメチルメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、4-(メタ)アクリロキシブチルトリメトキシシラン、4-(メタ)アクリロキシブチルトリエトキシシラン等が挙げられる。具体的には、KBM-503、KBM-5103(信越化学工業(株)製)、特開2014-123091号記載のシランカップリング剤X-12-1048、X-12-1049、X-12-1050(信越化学工業(株)製)、及び下記構造式で表される化合物C3等が挙げられる。
Further, a silane coupling agent having a polymerizable functional group may be used as the curable compound (a1) in order to bond the metal oxide particles and the curable compound (a1) to form a strong film.
Specific examples of the silane coupling agent having a polymerizable functional group include, for example, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, and 3- (meth) acryloxypropyl. Dimethylmethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 2- (meth) acryloxyethyltrimethoxysilane, 2- (meth) acryloxyethyltri Examples include ethoxysilane, 4- (meth) acryloxybutyltrimethoxysilane, 4- (meth) acryloxybutyltriethoxysilane, and the like. Specifically, silane coupling agents X-12-1048, X-12-1049, X-12- described in KBM-503, KBM-5103 (manufactured by Shin-Etsu Chemical Co., Ltd.), and JP-A-2014-123091. 1050 (manufactured by Shin-Etsu Chemical Co., Ltd.), and compound C3 represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 重合性官能基を有する化合物は、二種類以上を併用してもよい。これら重合性官能基を有する化合物の重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。 Two or more kinds of compounds having a polymerizable functional group may be used in combination. The polymerization of the compound having a polymerizable functional group can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
 反射防止層はバインダー形成用化合物として、硬化性化合物(a1)以外の化合物を更に含むことができる。
 後述する粘着剤層への浸透のしやすさの観点から、上記硬化性化合物(a1)として1分子中に2個以下の重合性官能基を有する化合物を用いてもよいが、特に、1分子中に3個以上の重合性官能基を有する化合物と、1分子中に2個以下の重合性官能基を有する化合物、または硬化性化合物(a1)以外の化合物として重合性官能基を有さない化合物を併用することが好ましい。
 1分子中に2個以下の重合性官能基を有する化合物、または重合性官能基を有さない化合物としては、重量平均分子量(Mwa)が40<Mwa<500で、Hoy法によるSP値(SPa)が19<SPa<24.5である化合物が粘着剤層へ浸透しやすく好ましい。また、1分子中に2個以下の重合性官能基を有する化合物は、1分子中に1個の重合性官能基を有する化合物であることが好ましい。
 なお、本発明におけるSP値(溶解性パラメーター)は、Hoy法によって算出した値であり、Hoy法は、POLYMERHANDBOOKFOURTHEDITIONに記載がある。
The antireflection layer can further contain a compound other than the curable compound (a1) as a binder-forming compound.
From the viewpoint of ease of penetration into the pressure-sensitive adhesive layer described later, a compound having 2 or less polymerizable functional groups in one molecule may be used as the curable compound (a1). A compound having 3 or more polymerizable functional groups and a compound having 2 or less polymerizable functional groups in one molecule or a compound other than the curable compound (a1) does not have a polymerizable functional group It is preferable to use a compound in combination.
As a compound having 2 or less polymerizable functional groups in one molecule or a compound having no polymerizable functional group, the weight average molecular weight (Mwa) is 40 <Mwa <500, and the SP value (SPa by the Hoy method) ) Is preferably 19 <SPa <24.5 because it easily penetrates into the pressure-sensitive adhesive layer. Moreover, it is preferable that the compound which has 2 or less polymerizable functional groups in 1 molecule is a compound which has 1 polymerizable functional group in 1 molecule.
The SP value (solubility parameter) in the present invention is a value calculated by the Hoy method, and the Hoy method is described in POLYMERHANDBOOKFOURTEDITION.
 さらに、1分子中に2個以下の重合性官能基を有する化合物、または重合性官能基を有さない化合物は、25℃における粘度が100mPas以下であることが好ましく、1~50mPasがより好ましく、1~20mPasが更に好ましい。このような粘度範囲にある化合物は、粘着剤層へ浸透しやすい上に、粒子(a2)の凝集を抑制するように働き、ヘイズ、白濁感を抑制できるため好ましい。特に、後述するように粘着剤層を積層する前に硬化性化合物(a1)の一部を硬化させることで粒子(a2)の凝集を抑制することもできるが、このような粘度範囲にある化合物を用いることで、硬化が進んだ状態であっても1分子中に2個以下の重合性官能基を有する化合物、または重合性官能基を有さない化合物を十分に粘着剤層に浸透させることができるため好ましい。特に、1~20mPasの粘度範囲にあると、粒子の隙間にバインダーが詰まることで生じる、反射率の上昇や全光線透過率低下を防ぐ効果が大きいため好ましい。 Further, the compound having 2 or less polymerizable functional groups in one molecule or the compound having no polymerizable functional group preferably has a viscosity at 25 ° C. of 100 mPas or less, more preferably 1 to 50 mPas, 1 to 20 mPas is more preferable. A compound having such a viscosity range is preferable because it easily penetrates into the pressure-sensitive adhesive layer, functions to suppress aggregation of the particles (a2), and can suppress haze and cloudiness. In particular, it is possible to suppress aggregation of the particles (a2) by curing a part of the curable compound (a1) before laminating the pressure-sensitive adhesive layer, as will be described later. By using this, the adhesive layer can be sufficiently infiltrated with a compound having 2 or less polymerizable functional groups in one molecule or a compound not having a polymerizable functional group even in a state where curing has progressed. Is preferable. In particular, a viscosity in the range of 1 to 20 mPas is preferable because it has a large effect of preventing an increase in reflectance and a decrease in total light transmittance caused by the clogging of the binder between the particles.
 1分子中に2個以下の重合性官能基を有する化合物は、重合性官能基として、(メタ)アクリロイル基、エポキシ基、アルコキシ基、ビニル基、スチリル基、アリル基等を持つものが好ましい。
 重合性官能基を有さない化合物としては、エステル系化合物、アミン系化合物、エーテル系化合物、脂肪族アルコール系化合物、炭化水素系化合物などを好ましく用いることができ、エステル系化合物が特に好ましい。より具体的には、コハク酸ジメチル(SP値20.2、粘度2.6mPas)、コハク酸ジエチル(SP値19.7、粘度2.6mPas)、アジピン酸ジメチル(SP値19.7、粘度2.8mPas)、コハク酸ジブチル(SP値19.1、粘度3.9mPas)、アジピン酸ビス(2-ブトキシエチル)(SP値19.0、粘度10.8mPas)、スベリン酸ジメチル(SP値19.4、粘度3.7mPas)、フタル酸ジエチル(SP値22.3、粘度9.8mPas)、フタル酸ジブチル(SP値21.4、粘度13.7mPas)、クエン酸トリエチル(SP値22.5、粘度22.6mPas)、クエン酸アセチルトリエチル(SP値21.1、粘度29.7mPas)、ジフェニルエーテル(SP値21.4、粘度3.8mPas)などが挙げられる。
A compound having 2 or less polymerizable functional groups in one molecule preferably has a (meth) acryloyl group, an epoxy group, an alkoxy group, a vinyl group, a styryl group, an allyl group, or the like as the polymerizable functional group.
As the compound having no polymerizable functional group, an ester compound, an amine compound, an ether compound, an aliphatic alcohol compound, a hydrocarbon compound, or the like can be preferably used, and an ester compound is particularly preferable. More specifically, dimethyl succinate (SP value 20.2, viscosity 2.6 mPas), diethyl succinate (SP value 19.7, viscosity 2.6 mPas), dimethyl adipate (SP value 19.7, viscosity 2) .8 mPas), dibutyl succinate (SP value 19.1, viscosity 3.9 mPas), bis (2-butoxyethyl) adipate (SP value 19.0, viscosity 10.8 mPas), dimethyl suberate (SP value 19. 4, viscosity 3.7 mPas), diethyl phthalate (SP value 22.3, viscosity 9.8 mPas), dibutyl phthalate (SP value 21.4, viscosity 13.7 mPas), triethyl citrate (SP value 22.5, Viscosity 22.6 mPas), acetyltriethyl citrate (SP value 21.1, viscosity 29.7 mPas), diphenyl ether (SP value 21.4, viscosity 3.8) Pas) and the like.
 反射防止層に含まれるバインダー樹脂の含有量は、100mg/m~800mg/mが好ましく、100mg/m~600mg/mがさらに好ましく、100mg/m~400mg/mが最も好ましい。 The content of the binder resin contained in the antireflection layer is preferably 100mg / m 2 ~ 800mg / m 2, more preferably 100mg / m 2 ~ 600mg / m 2, 100mg / m 2 ~ 400mg / m 2 and most preferably .
<金属酸化物粒子>
 金属酸化物粒子を、「粒子(a2)」とも呼ぶ。
 金属酸化物粒子としては、シリカ粒子、チタニア粒子、ジルコニア粒子、五酸化アンチモン粒子などが挙げられるが、多くのバインダー樹脂と屈折率が近いためヘイズを発生しにくく、かつモスアイ構造が形成し易い観点からシリカ粒子が好ましい。 
<Metal oxide particles>
The metal oxide particles are also referred to as “particles (a2)”.
Examples of the metal oxide particles include silica particles, titania particles, zirconia particles, and antimony pentoxide particles. However, since the refractive index is close to that of many binder resins, it is difficult to generate haze and a moth-eye structure is easily formed. To silica particles are preferred.
 金属酸化物粒子の平均一次粒子径は、100nm以上190nm以下であることが好ましく、100nm以上180nm以下であることがより好ましく、100nm以上170nm以下であることが更に好ましい。下限値以上であることにより可視光の反射の抑制効果を高めることができ、更に上限値以下であることで凹凸形状の隣り合う凸部の頂点間の距離Aの平均値Xを190nm以下にしやすくなる。
 金属酸化物粒子として、1種のみ使用してもよいし、平均一次粒子径の異なる2種以上の粒子を用いてもよい。
The average primary particle diameter of the metal oxide particles is preferably from 100 nm to 190 nm, more preferably from 100 nm to 180 nm, and still more preferably from 100 nm to 170 nm. By being above the lower limit value, the effect of suppressing the reflection of visible light can be enhanced, and by being below the upper limit value, the average value X of the distances A between the adjacent convex portions of the concavo-convex shape can be easily reduced to 190 nm or less. Become.
As a metal oxide particle, only 1 type may be used and 2 or more types of particle | grains from which an average primary particle diameter differs may be used.
 金属酸化物粒子の平均一次粒径は、体積平均粒径の累積の50%粒径を指す。粒径の測定には走査型電子顕微鏡(SEM)を用いる事ができる。粉体粒子(分散液の場合は乾燥させて溶剤を揮発させたもの)をSEM観察により適切な倍率(5000倍程度)で観察し、一次粒子100個のそれぞれの直径を測長してその体積を算出し、累積の50%粒径を平均一次粒径とすることができる。粒子が球形でない場合には、長径と短径の平均値をその一次粒子の直径とみなす。反射防止フィルム中に含まれる粒子を測定する場合は、反射防止フィルムを表面側から上記同様SEMで観察して算出する。この際、観察し易いように、試料にはカーボン蒸着、エッチング処理などを適宜施してよい。 The average primary particle size of the metal oxide particles refers to a cumulative 50% particle size of the volume average particle size. A scanning electron microscope (SEM) can be used to measure the particle size. The powder particles (in the case of a dispersion liquid, the solvent is volatilized and dried) are observed by SEM observation at an appropriate magnification (about 5000 times), and the diameter of each of the 100 primary particles is measured to determine the volume. The cumulative 50% particle size can be used as the average primary particle size. When the particles are not spherical, the average value of the major and minor diameters is regarded as the diameter of the primary particles. When measuring the particles contained in the antireflection film, the antireflection film is calculated by observing the antireflection film from the surface side with the SEM as described above. At this time, for easy observation, the sample may be appropriately subjected to carbon deposition, etching, or the like.
 金属酸化物粒子は、強度の観点から中実粒子であることが好ましい。金属酸化物粒子の形状は、球形が最も好ましいが、不定形等の球形以外であっても問題無い。
 例えば、球形の金属酸化物粒子の一部が平面部となった不定形粒子を使用し、かつ平面部を下層側に設置させることで粒子の運動を抑制し、塗布から乾燥を経て硬化するまでの各工程での粒子凝集を防ぐことができ、粒子による凸部間の距離を均一にし、短波長領域の透過率を向上することができ好ましい。
 また不定形形状の別の例としては、金属酸化物粒子の一部に更に小粒子が結合した形状の粒子を用いることができる。金属酸化物粒子に結合した小粒子の個数は複数でも良いが一つがより好ましい。金属酸化物粒子の一部に結合する小粒子の粒径は、金属酸化物粒子よりも小さいことが好ましく、金属酸化物粒子の粒径の0.5倍以下であることがより好ましく、0.25倍以下であることが更に好ましい。金属酸化物粒子の一部に結合する小粒子の密度は、金属酸化物粒子よりも大きいことが好ましく、2倍以上であることがより好ましく、3倍以上であることが更に好ましい。小粒子は金属酸化物であることが好ましく、例えばジルコニア、アルミナ、チタニアなどが好ましいが、上記密度の関係を満たすものであれば適宜用いることができる。例えば粒径160nmのシリカ粒子に粒径40nmのジルコニア粒子が付着した粒子が好ましい。
 また、シリカ粒子については、結晶質でも、アモルファスのいずれでもよい。
The metal oxide particles are preferably solid particles from the viewpoint of strength. The shape of the metal oxide particles is most preferably spherical, but there is no problem even if the shape is not spherical such as indefinite.
For example, by using irregular shaped particles in which some of the spherical metal oxide particles have become flat portions, and by setting the flat portions on the lower layer side, the movement of the particles is suppressed, and after curing from application to drying Particle aggregation in each of these steps can be prevented, the distance between the convex portions by the particles can be made uniform, and the transmittance in the short wavelength region can be improved.
As another example of the irregular shape, particles having a shape in which small particles are further bonded to a part of metal oxide particles can be used. The number of small particles bonded to the metal oxide particles may be plural, but one is more preferable. The particle size of the small particles bonded to a part of the metal oxide particles is preferably smaller than that of the metal oxide particles, more preferably 0.5 times or less than the particle size of the metal oxide particles. More preferably, it is 25 times or less. The density of the small particles bonded to a part of the metal oxide particles is preferably larger than that of the metal oxide particles, more preferably 2 times or more, and further preferably 3 times or more. The small particles are preferably metal oxides, such as zirconia, alumina, and titania. For example, any particles that satisfy the above density relationship can be used. For example, particles in which zirconia particles having a particle diameter of 40 nm are attached to silica particles having a particle diameter of 160 nm are preferable.
The silica particles may be either crystalline or amorphous.
 金属酸化物粒子は塗布液中での分散性向上、膜強度向上、凝集防止のために表面処理された無機微粒子を使用することが好ましい。表面処理方法の具体例及びその好ましい例は、特開2007-298974号公報の[0119]~[0147]に記載のものと同様である。
 特に、バインダー樹脂を形成するための硬化性化合物(a1)との結着性を付与し、反射防止層の強度を向上させる観点から、粒子表面を重合性不飽和基(好ましくは不飽和二重結合)および粒子表面と反応性を有する官能基を有する化合物で表面修飾し、粒子表面に重合性不飽和基(好ましくは不飽和二重結合)を付与することが好ましい。表面修飾に用いる化合物としては、硬化性化合物(a1)として上述した、重合性官能基を有するシランカップリング剤を好適に用いることができる。
 具体的には、市販のKBM-503、KBM-5103(いずれも信越化学工業(株)製、特開2014-123091号記載のX-12-1048、X-12-1049、X-12-1050といった(メタ)アクリロイル基を含有するシランカップリング剤を金属酸化物粒子表面に修飾することが好ましい。
As the metal oxide particles, it is preferable to use inorganic fine particles which have been surface-treated in order to improve dispersibility in a coating solution, improve film strength, and prevent aggregation. Specific examples of the surface treatment method and preferred examples thereof are the same as those described in [0119] to [0147] of JP-A-2007-298974.
In particular, from the viewpoint of imparting binding properties with the curable compound (a1) for forming the binder resin and improving the strength of the antireflection layer, the particle surface is made of a polymerizable unsaturated group (preferably an unsaturated double group). It is preferable to modify the surface with a compound having a bond and a functional group reactive with the particle surface to give a polymerizable unsaturated group (preferably an unsaturated double bond) to the particle surface. As the compound used for the surface modification, the silane coupling agent having a polymerizable functional group described above as the curable compound (a1) can be suitably used.
Specifically, commercially available KBM-503, KBM-5103 (all manufactured by Shin-Etsu Chemical Co., Ltd., X-12-1048, X-12-1049, X-12-1050 described in JP-A-2014-123091) It is preferable to modify the surface of the metal oxide particles with a silane coupling agent containing a (meth) acryloyl group.
 平均一次粒子径が100nm以上190nm以下の粒子の具体的な例としては、シーホスターKE-P10(平均一次粒子径150nm、日本触媒(株)製アモルファスシリカ)などを好ましく用いることができる。 As a specific example of particles having an average primary particle size of 100 nm or more and 190 nm or less, Seahoster KE-P10 (average primary particle size 150 nm, amorphous silica manufactured by Nippon Shokubai Co., Ltd.) can be preferably used.
 金属酸化物粒子としては、表面のヒドロキシル基量が適度に多く、かつ硬い粒子であるという理由から、焼成シリカ粒子であることが特に好ましい。
 焼成シリカ粒子は、加水分解が可能なシリコン化合物を水と触媒とを含む有機溶媒中で加水分解、縮合させることによってシリカ粒子を得た後、シリカ粒子を焼成するという公知の技術により製造することができ、たとえば特開2003-176121号公報、特開2008-137854号公報などを参照することができる。
 焼成シリカ粒子を製造する原料のシリコン化合物としては特に限定されないが、テトラクロロシラン、メチルトリクロロシラン、フェニルトリクロロシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、メチルビニルジクロロシラン、トリメチルクロロシラン、メチルジフェニルクロロシラン等のクロロシラン化合物;テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、3-グリシドキシプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-クロロプロピルメチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジメトキシジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のアルコキシシラン化合物;テトラアセトキシシラン、メチルトリアセトキシシラン、フェニルトリアセトキシシラン、ジメチルジアセトキシシラン、ジフェニルジアセトキシシラン、トリメチルアセトキシシラン等のアシロキシシラン化合物;ジメチルシランジオール、ジフェニルシランジオール、トリメチルシラノール等のシラノール化合物;等が挙げられる。上記例示のシラン化合物のうち、アルコキシシラン化合物が、より入手し易く、かつ、得られる焼成シリカ粒子に不純物としてハロゲン原子が含まれることが無いので特に好ましい。焼成シリカ粒子の好ましい形態としては、ハロゲン原子の含有量が実質的に0%であり、ハロゲン原子が検出されないことが好ましい。
 焼成温度は特に限定されないが、800~1300℃が好ましく、1000℃~1200℃がより好ましい。
 また上記不定形粒子の作製方法の一例として、高温焼成時に隣接する粒子同士を焼結させ、その後焼結した粒子を粉砕工程で粉砕し、球形の一部が平面となった不定形粒子を得ることもできる。
As the metal oxide particles, fired silica particles are particularly preferable because of the reasonably high amount of hydroxyl groups on the surface and hard particles.
The calcined silica particles are manufactured by a known technique in which silica particles are obtained by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water and a catalyst, and then the silica particles are calcined. For example, Japanese Patent Application Laid-Open Nos. 2003-176121 and 2008-137854 can be referred to.
Although it does not specifically limit as a raw material silicon compound which manufactures a burning silica particle, Chlorosilanes, such as tetrachlorosilane, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, methylvinyldichlorosilane, trimethylchlorosilane, methyldiphenylchlorosilane Compound: Tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, trimethoxyvinylsilane, triethoxyvinylsilane, 3-glycidoxypropyltrimethoxysilane, 3-chloro Propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxy Silane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-chloropropylmethyldimethoxysilane, Alkoxysilane compounds such as diphenyldimethoxysilane, diphenyldiethoxysilane, dimethoxydiethoxysilane, trimethylmethoxysilane, trimethylethoxysilane; tetraacetoxysilane, methyltriacetoxysilane, phenyltriacetoxysilane, dimethyldiacetoxysilane, diphenyldiacetoxysilane Acyloxysilane compounds such as trimethylacetoxysilane; dimethylsilanediol, diphenylsilanediol, tri Silanol compounds such as chill silanol; and the like. Of the above-exemplified silane compounds, the alkoxysilane compound is particularly preferred because it is more easily available and the resulting fired silica particles do not contain halogen atoms as impurities. As a preferred form of the calcined silica particles, it is preferable that the content of halogen atoms is substantially 0% and no halogen atoms are detected.
The firing temperature is not particularly limited, but is preferably 800 to 1300 ° C, and more preferably 1000 to 1200 ° C.
Further, as an example of the method for producing the above-mentioned irregular shaped particles, adjacent particles are sintered at the time of high-temperature firing, and then the sintered particles are pulverized in a pulverization step to obtain irregular shaped particles in which a part of the sphere is flat. You can also.
 反射防止層中の金属酸化物粒子の含有量は、50mg/m~200mg/mが好ましく、100mg/m~180mg/mがさらに好ましく、130mg/m~170mg/mが最も好ましい。下限以上では、モスアイ構造の凸部が数多く形成できるため反射防止性がより向上しやすく、上限以下であると、凝集が生じにくく、良好なモスアイ構造を形成しやすい。 The content of the metal oxide particles of the antireflection layer is preferably 50mg / m 2 ~ 200mg / m 2, more preferably 100mg / m 2 ~ 180mg / m 2, 130mg / m 2 ~ 170mg / m 2 and most preferable. Above the lower limit, many convex portions of the moth-eye structure can be formed, so that the antireflection property is more likely to be improved, and when below the upper limit, aggregation is unlikely to occur and a good moth-eye structure is likely to be formed.
 金属酸化物粒子の平均一次粒径が100nm以上190nm以下で、かつCV(coefficient of variation)値が5%未満の単分散シリカ微粒子を一種類のみ含有することがモスアイ構造の凹凸の高さが均一になり、反射率がより低下するため好ましい。CV値は通常レーザー回折型粒径測定装置を用いて測定されるが、他の粒径測定方式でも良いし、反射防止層の表面SEM像から、画像解析によって粒径分布を求め算出することもできる。CV値は4%未満であることがより好ましい。 Consistency of the moth-eye structure is uniform because it contains only one type of monodispersed silica fine particles having an average primary particle size of 100 to 190 nm and a CV (coefficient of variation) value of less than 5%. It is preferable because the reflectance is further lowered. The CV value is usually measured using a laser diffraction particle size measuring device, but other particle size measurement methods may be used, and the particle size distribution may be obtained and calculated by image analysis from the surface SEM image of the antireflection layer. it can. More preferably, the CV value is less than 4%.
 また別の態様として、金属酸化物微粒子は、平均一次粒径が100nm以上190nm以下の金属酸化物微粒子と平均一次粒径が1nm以上70nm未満の金属酸化物粒子とを両方含むことも好ましい。この場合は、より大きい粒径の粒子が主としてモスアイ構造に寄与し、より小さい粒径の粒子は大きい粒子同士の間に混在することで大きい粒子同士の凝集を抑制し、その結果、反射率、ヘイズが良化する場合がある。なお、一次粒径が1nm以上70nm未満の金属酸化物粒子はバインダー内により多く没入するため、反射防止層としての凸部は一次粒径が100nm以上190nm以下の金属酸化物微粒子によって形成されるものを指す。平均一次粒径が100nm以上190nm以下の金属酸化物微粒子に対する平均一次粒径が1nm以上70nm未満の金属酸化物粒子の個数の頻度は、1~3倍の頻度で含むことが好ましい。この範囲にすることで、凝集抑制効果が高く、反射率を低くすることが出来る。平均一次粒径が1nm以上70nm以下の金属酸化物粒子は、平均一次粒径が30nm以上50nm以下であることが反射率を特に低くすることが出来て好ましい。平均一次粒径が異なる金属酸化物粒子同士を併用する場合は、両方の粒子の表面のヒドロキシル基量を近くすることが、より凝集しにくいため好ましい。ただし、平均一次粒径が1nm以上100nm未満の金属酸化物粒子は、主に平均一次粒径が100nm以上190nm以下の金属酸化物粒子の凝集を抑止させて離間させるために用いられるため、入手が容易であるヒドロキシル基量が1.00×10-1より多いか、または押し込み硬度400MPa未満である金属酸化物粒子を用いても良い。 In another aspect, the metal oxide fine particles preferably include both metal oxide fine particles having an average primary particle size of 100 nm to 190 nm and metal oxide particles having an average primary particle size of 1 nm to less than 70 nm. In this case, particles having a larger particle size mainly contribute to the moth-eye structure, and particles having a smaller particle size are mixed between large particles to suppress aggregation between the large particles. The haze may be improved. In addition, since metal oxide particles having a primary particle size of 1 nm or more and less than 70 nm are more immersed in the binder, the convex portion as the antireflection layer is formed by metal oxide fine particles having a primary particle size of 100 nm or more and 190 nm or less. Point to. The frequency of the number of metal oxide particles having an average primary particle size of 1 nm or more and less than 70 nm with respect to metal oxide fine particles having an average primary particle size of 100 nm or more and 190 nm or less is preferably 1 to 3 times. By setting this range, the aggregation suppressing effect is high and the reflectance can be lowered. The metal oxide particles having an average primary particle size of 1 nm or more and 70 nm or less are preferably an average primary particle size of 30 nm or more and 50 nm or less because the reflectance can be particularly lowered. When metal oxide particles having different average primary particle sizes are used in combination, it is preferable to make the hydroxyl group amounts on the surfaces of both particles close to each other because aggregation is less likely. However, since the metal oxide particles having an average primary particle size of 1 nm or more and less than 100 nm are mainly used for inhibiting the aggregation of metal oxide particles having an average primary particle size of 100 nm or more and 190 nm or less and separating them, they are available. Metal oxide particles having a hydroxyl group amount that is easily greater than 1.00 × 10 −1 or an indentation hardness of less than 400 MPa may be used.
 反射防止層は、バインダー樹脂及び金属酸化物粒子以外の成分を含有していてもよく、たとえば、金属酸化物粒子の分散剤、レベリング剤、防汚剤等を含有していてもよい。 The antireflection layer may contain components other than the binder resin and the metal oxide particles, and may contain, for example, a dispersant for the metal oxide particles, a leveling agent, an antifouling agent, and the like.
<金属酸化物粒子の分散剤>
 金属酸化物粒子の分散剤は、粒子同士の凝集力を低下させることにより、金属酸化物粒子を均一に配置させ易くすることができる。分散剤としては、特に限定されないが、硫酸塩、リン酸塩などのアニオン性化合物、脂肪族アミン塩、四級アンモニウム塩などのカチオン性化合物、非イオン性化合物、高分子化合物が好ましく、吸着基と立体反発基それぞれの選択の自由度が高いため高分子化合物がより好ましい。分散剤としては市販品を用いることもできる。例えば、ビックケミー・ジャパン(株)製のDISPERBYK160、DISPERBYK161、DISPERBYK162、DISPERBYK163、DISPERBYK164、DISPERBYK166、DISPERBYK167、DISPERBYK171、DISPERBYK180、DISPERBYK182、DISPERBYK2000、DISPERBYK2001、DISPERBYK2164、Bykumen、BYK-2009、BYK-P104、BYK-P104S、BYK-220S、Anti-Terra203、Anti-Terra204、Anti-Terra205(以上商品名)などが挙げられる。
<Dispersant for metal oxide particles>
The metal oxide particle dispersant can facilitate uniform arrangement of the metal oxide particles by reducing the cohesive force between the particles. The dispersant is not particularly limited, but is preferably an anionic compound such as a sulfate or phosphate, a cationic compound such as an aliphatic amine salt or a quaternary ammonium salt, a nonionic compound or a polymer compound. And a steric repulsion group are more preferred because they have a high degree of freedom in selection. A commercial item can also be used as a dispersing agent. For example, BYK Japan made of (stock) DISPERBYK160, DISPERBYK161, DISPERBYK162, DISPERBYK163, DISPERBYK164, DISPERBYK166, DISPERBYK167, DISPERBYK171, DISPERBYK180, DISPERBYK182, DISPERBYK2000, DISPERBYK2001, DISPERBYK2164, Bykumen, BYK-2009, BYK-P104, BYK-P104S, BYK-220S, Anti-Terra 203, Anti-Terra 204, Anti-Terra 205 (trade name) and the like.
<レベリング剤>
 レベリング剤は、反射防止層の表面張力を低下させることにより、塗布後の液を安定化させ硬化性化合物(a1)及び金属酸化物粒子を均一に配置させ易くすることができる。
 本発明において用いられる反射防止層形成用組成物は、少なくとも1種のレベリング剤を含有することができる。
 これにより、乾燥風の局所的な分布による乾燥バラツキに起因する膜厚ムラ等を抑制したり、塗布物のハジキを改良したり、硬化性化合物(a1)及び金属酸化物粒子を均一に配置させ易くすることができる。
<Leveling agent>
By reducing the surface tension of the antireflection layer, the leveling agent can stabilize the liquid after coating and facilitate the uniform disposition of the curable compound (a1) and the metal oxide particles.
The composition for forming an antireflection layer used in the present invention can contain at least one leveling agent.
As a result, it is possible to suppress unevenness in film thickness due to variation in drying due to local distribution of drying air, to improve the repellency of the coated material, and to uniformly dispose the curable compound (a1) and the metal oxide particles. Can be made easier.
 レベリング剤として、具体的には、シリコーン系レベリング剤及びフッ素系レベリング剤から選択される少なくとも1種のレベリング剤を用いることができる。なお、レベリング剤は、低分子化合物よりもオリゴマー又はポリマーであることが好ましい。 As the leveling agent, specifically, at least one leveling agent selected from a silicone leveling agent and a fluorine leveling agent can be used. In addition, it is preferable that a leveling agent is an oligomer or a polymer rather than a low molecular weight compound.
 レベリング剤を添加すると、塗布された塗膜の表面にレベリング剤が速やかに移動して偏在化し、塗膜の乾燥後もレベリング剤がそのまま表面に偏在することになるため、レベリング剤を添加した膜の表面エネルギーは、レベリング剤によって低下する。膜厚不均一性、ハジキ、及びムラを防止するという観点からは、膜の表面エネルギーが低いことが好ましい。 When a leveling agent is added, the leveling agent quickly moves to the surface of the applied coating and becomes unevenly distributed, and the leveling agent is unevenly distributed on the surface even after the coating is dried. The surface energy is reduced by the leveling agent. From the viewpoint of preventing film thickness non-uniformity, repellency, and unevenness, the surface energy of the film is preferably low.
 シリコーン系レベリング剤の好ましい例としては、ジメチルシリルオキシ単位を繰り返し単位として複数個含み、末端及び/又は側鎖に置換基を有するポリマーあるいはオリゴマーが挙げられる。ジメチルシリルオキシを繰り返し単位として含むポリマーあるいはオリゴマー中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていてもよく、複数個あることが好ましい。好ましい置換基の例としてはポリエーテル基、アルキル基、アリール基、アリールオキシ基、アリール基、シンナモイル基、オキセタニル基、フルオロアルキル基、ポリオキシアルキレン基、などを含む基が挙げられる。 Preferred examples of the silicone leveling agent include polymers or oligomers containing a plurality of dimethylsilyloxy units as repeating units and having a substituent at the terminal and / or side chain. The polymer or oligomer containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include groups containing a polyether group, an alkyl group, an aryl group, an aryloxy group, an aryl group, a cinnamoyl group, an oxetanyl group, a fluoroalkyl group, a polyoxyalkylene group, and the like.
 シリコーン系レベリング剤の数平均分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることがより好ましく、1000~30000であることが特に好ましく、1000~20000であることが最も好ましい。 The number average molecular weight of the silicone leveling agent is not particularly limited, but is preferably 100,000 or less, more preferably 50,000 or less, particularly preferably 1000 to 30000, and 1000 to 20000. Is most preferred.
 好ましいシリコーン系レベリング剤の例としては、電離放射線硬化基を有しない市販のシリコーン系レベリング剤として、信越化学工業(株)製のX22-3710、X22-162C、X22-3701E、X22160AS、X22170DX、X224015、X22176DX、X22-176F、X224272、KF8001、X22-2000等;チッソ(株)製のFM4421、FM0425、FMDA26、FS1265等;東レ・ダウコーニング(株)製のBY16-750、BY16880、BY16848、SF8427、SF8421、SH3746、SH8400、SF3771、SH3749、SH3748、SH8410等;モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のTSFシリーズ(TSF4460、TSF4440、TSF4445、TSF4450、TSF4446、TSF4453、TSF4452、TSF4730、TSF4770等)、FGF502、SILWETシリーズ(SILWETL77、SILWETL2780、SILWETL7608、SILWETL7001、SILWETL7002、SILWETL7087、SILWETL7200、SILWETL7210、SILWETL7220、SILWETL7230、SILWETL7500、SILWETL7510、SILWETL7600、SILWETL7602、SILWETL7604、SILWETL7604、SILWETL7605、SILWETL7607、SILWETL7622、SILWETL7644、SILWETL7650、SILWETL7657、SILWETL8500、SILWETL8600、SILWETL8610、SILWETL8620、SILWETL720)等を挙げることができるがこれに限定されるものではない。 Examples of preferable silicone leveling agents include X22-3710, X22-162C, X22-3701E, X22160AS, X22170DX, and X224015 manufactured by Shin-Etsu Chemical Co., Ltd. as commercially available silicone leveling agents having no ionizing radiation curing group. X22176DX, X22-176F, X224272, KF8001, X22-2000, etc .; Chisso Corporation FM4421, FM0425, FMDA26, FS1265, etc .; Toray Dow Corning Corporation BY16-750, BY16880, BY16848, SF8427, SF8421, SH3746, SH8400, SF3771, SH3749, SH3748, SH8410, etc .; TSF series manufactured by Momentive Performance Materials Japan (TSF4460, TSF4440, TSF4445, TSF4450, TSF4446, TSF4453, TSF4452, TSF4730, TSF4770, etc.), FGF502, SILWET series (SILWETL77, SILWETL2780, SILWETL7608, SILWETL7001, SILWETL7002, SILWETL7087, SILWETL7200, SILWETL7210, SILWETL7220, SILWETL7230, SILWETL7500, SILWETL7510, SILWETL7600, SILWETL7602, SILWETL7604, SILWETL7604, SILWETL7605, SILWETL7607, SILWETL7622, SILWETL7644, S LWETL7650, SILWETL7657, SILWETL8500, SILWETL8600, SILWETL8610, SILWETL8620, SILWETL720) is not limited thereto but can be exemplified.
 電離放射線硬化基を有するものとして、信越化学工業(株)製のX22-163A、X22-173DX、X22-163C、KF101、X22164A、X24-8201、X22174DX、X22164C、X222426、X222445、X222457、X222459、X22245、X221602、X221603、X22164E、X22164B、X22164C、X22164D、TM0701等;チッソ(株)製のサイラプレーンシリーズ(FM0725、FM0721、FM7725、FM7721、FM7726、FM7727等);東レ・ダウコーニング(株)製のSF8411、SF8413、BY16-152D、BY16-152、BY16-152C、8388A等;エボニックデグサジャパン(株)製のTEGORad2010、2011、2100、2200N、2300、2500、2600,2700等;ビックケミー・ジャパン(株)製のBYK3500;信越シリコーン社製のKNS5300;モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のUVHC1105、UVHC8550等を挙げることができるがこれに限定されるものではない。 X22-163A, X22-173DX, X22-163C, KF101, X22164A, X24-8201, X22174DX, X22164C, X222426, X222245, X222457, X222245, manufactured by Shin-Etsu Chemical Co., Ltd., as those having ionizing radiation curing groups , X221602, X221603, X22164E, X22164B, X22164C, X22164D, TM0701, etc .; Chisso Corporation Silaplane series (FM0725, FM0721, FM7725, FM7721, FM7726, FM7727, etc.); Toray Dow Corning S 84 SF8413, BY16-152D, BY16-152, BY16-152C, 8388A, etc .; Evonik Degussaja TEGORad 2010, 2011, 2100, 2200N, 2300, 2500, 2600, 2700, etc. manufactured by Co., Ltd .; BYK3500, manufactured by Big Chemie Japan Co., Ltd .; KNS5300, manufactured by Shin-Etsu Silicone Co., Ltd .; Examples thereof include, but are not limited to, UVHC1105 and UVHC8550.
 レベリング剤は、反射防止層中に0.01~5.0質量%含有されることが好ましく、0.01~2.0質量%含有されることがより好ましく、0.01~1.0質量%含有されることが最も好ましい。 The leveling agent is preferably contained in the antireflection layer in an amount of 0.01 to 5.0% by mass, more preferably 0.01 to 2.0% by mass, and 0.01 to 1.0% by mass. % Content is most preferable.
 フッ素系レベリング剤は、フルオロ脂肪族基と、例えばこのレべリング剤を添加剤として使用したときに、コーティング用、成形材料用等の各種組成物に対する親和性に寄与する親媒性基とを同一分子内に有する化合物であり、このような化合物は、一般に、フルオロ脂肪族基を有するモノマーと親媒性基を有するモノマーとを共重合させて得ることができる。
 フルオロ脂肪族基を有するモノマーと共重合される、親媒性基を有するモノマーの代表的な例としては、ポリ(オキシアルキレン)アクリレート、ポリ(オキシアルキレン)メタクリレート等が挙げられる。
The fluorine-based leveling agent includes a fluoroaliphatic group and a philic group that contributes to affinity for various compositions such as coatings and molding materials when the leveling agent is used as an additive. Such compounds are generally obtained by copolymerizing a monomer having a fluoroaliphatic group and a monomer having a philic group.
Typical examples of the monomer having an amphiphilic group copolymerized with a monomer having a fluoroaliphatic group include poly (oxyalkylene) acrylate and poly (oxyalkylene) methacrylate.
 好ましい市販のフッ素系レベリング剤としては、電離放射線硬化基を有しないものとしてDIC(株)製のメガファックシリーズ(MCF350-5、F472、F476、F445、F444、F443、F178、F470、F475、F479、F477、F482、F486、TF1025、F478、F178K、F-784-F等);ネオス(株)製のフタ―ジェントシリーズ(FTX218、250、245M、209F、222F、245F、208G、218G、240G、206D、240D等)が挙げられ、電離放射線硬化基を有するものとして、ダイキン工業(株)製のオプツールDAC;DIC(株)製のデイフェンサシリーズ(TF3001、TF3000、TF3004、TF3028、TF3027、TF3026、TF3025等)、RSシリーズ(RS71、RS101、RS102、RS103、RS104、RS105等)が挙げられるがこれらに限定されるものではない。 Preferable commercially available fluorine-based leveling agents include those having no ionizing radiation curable groups, Megafac series (MCF350-5, F472, F476, F445, F444, F443, F178, F470, F475, F479, manufactured by DIC Corporation. , F477, F482, F486, TF1025, F478, F178K, F-784-F, etc.) Neos, Inc., Futient series (FTX218, 250, 245M, 209F, 222F, 245F, 208G, 218G, 240G, 206D, 240D, etc.), and having an ionizing radiation curing group, OPTOOL DAC manufactured by Daikin Industries, Ltd .; Defenser series manufactured by DIC Corporation (TF3001, TF3000, TF3004, TF3028, TF3027, T 3026, TF3025, etc.), RS series (RS71, RS101, RS102, RS103, RS104, RS105, etc.) are exemplified but not limited thereto.
 また、特開2004-331812号公報、特開2004-163610号公報に記載の化合物等を用いることもできる。 In addition, compounds described in JP-A-2004-331812 and JP-A-2004-163610 can also be used.
<防汚剤>
 反射防止層には、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することができる。
<Anti-fouling agent>
For the purpose of imparting antifouling properties, water resistance, chemical resistance, slipping properties and the like, a known silicone-based or fluorine-based antifouling agent, slipping agent, and the like can be appropriately added to the antireflection layer. .
 シリコーン系あるいはフッ素系の防汚剤の具体例としては、前述のシリコーン系あるいはフッ素系のレベリング剤の中で電離放射線硬化基を有するものを好適に使用することができるがこれらに限定されるものではない。 As specific examples of the silicone-based or fluorine-based antifouling agent, those having the ionizing radiation-curing group among the above-mentioned silicone-based or fluorine-based leveling agents can be preferably used, but are not limited thereto. is not.
 防汚剤は反射防止層中に0.01~5.0質量%含有されることが好ましく、0.01~2.0質量%含有されることがより好ましく、0.01~1.0質量%含有されることが最も好ましい。 The antifouling agent is preferably contained in the antireflection layer in an amount of 0.01 to 5.0% by mass, more preferably 0.01 to 2.0% by mass, and 0.01 to 1.0% by mass. % Content is most preferable.
[ハードコート層]
 本発明の反射防止フィルムは、プラスチック基材と反射防止層の間に、その他の層を有していてもよい。その他の層としては、ハードコート層が好ましい。
 後述するように、本発明の反射防止フィルムは、ハードコート層に4級アンモニウム塩含有ポリマーを含み、反射防止層の表面抵抗率SR(Ω/sq)の常用対数値(logSR)が11以下であり、かつ、反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとし、Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす反射防止フィルムであることが好ましい。
 ハードコート層は、重合性基を有する化合物である硬化性化合物(好ましくは電離放射線硬化性化合物)の架橋反応、又は、重合反応により形成されることが好ましい。すなわち、ハードコート層は硬化性化合物の硬化物を含むことが好ましい。例えば、ハードコート層は、電離放射線硬化性の多官能モノマー、又は多官能オリゴマーを含むハードコート層形成用組成物をプラスチック基材上に塗布し、多官能モノマー若しくは多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
 電離放射線硬化性の多官能モノマー、及び多官能オリゴマーの官能基(重合性基)としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
 光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
[Hard coat layer]
The antireflection film of the present invention may have other layers between the plastic substrate and the antireflection layer. The other layer is preferably a hard coat layer.
As will be described later, the antireflection film of the present invention includes a quaternary ammonium salt-containing polymer in the hard coat layer, and a common logarithmic value (log SR) of the surface resistivity SR (Ω / sq) of the antireflection layer is 11 or less. In addition, the anti-reflection film satisfying X + σ ≦ 190 nm when the average value of the distance A between the vertices of adjacent convex portions is X and the standard deviation representing the distribution of A is σ. It is preferable that
The hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of a curable compound (preferably an ionizing radiation curable compound) which is a compound having a polymerizable group. That is, the hard coat layer preferably contains a cured product of a curable compound. For example, the hard coat layer is formed by applying a composition for forming a hard coat layer containing an ionizing radiation curable polyfunctional monomer or a polyfunctional oligomer on a plastic substrate, and crosslinking reaction of the polyfunctional monomer or polyfunctional oligomer, or It can be formed by a polymerization reaction.
The functional group (polymerizable group) of the ionizing radiation-curable polyfunctional monomer and polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.
 ハードコート層を形成するための硬化性化合物として具体的には上述した硬化性化合物(a1)と同様の化合物を用いることができる。 Specifically, the same compound as the above-described curable compound (a1) can be used as the curable compound for forming the hard coat layer.
 特に、厚みが20~40μmの薄型のプラスチック基材を用いる場合は、カール及びシワの発生を抑えることができるという観点から、ハードコート層を形成するための硬化性化合物として、分子内にエポキシ基を有する化合物を更に用いても良い。分子内にエポキシ基を有する化合物の分子量に制限は無く、モノマー、オリゴマー又はポリマーを好適に用いることが出来る。また、反射防止フィルムの表面硬度を維持する観点から、エポキシ基を有する化合物は更に分子内に重合性不飽和基を含むことが好ましい。分子内に重合性不飽和基とエポキシ基とを有する化合物としては(株)ダイセル製サイクロマーM100が挙げられるが、これに限定されるものではない。 In particular, when a thin plastic substrate having a thickness of 20 to 40 μm is used, an epoxy group is formed in the molecule as a curable compound for forming a hard coat layer from the viewpoint that curling and wrinkle generation can be suppressed. You may further use the compound which has this. There is no restriction | limiting in the molecular weight of the compound which has an epoxy group in a molecule | numerator, A monomer, an oligomer, or a polymer can be used suitably. Moreover, from the viewpoint of maintaining the surface hardness of the antireflection film, the compound having an epoxy group preferably further contains a polymerizable unsaturated group in the molecule. Examples of the compound having a polymerizable unsaturated group and an epoxy group in the molecule include Daicel Cyclomer M100, but are not limited thereto.
 分子内にエポキシ基を有する化合物は、ハードコート層中に12~45質量%含有されることが好ましく、15~35質量%含有されることがより好ましい。 The compound having an epoxy group in the molecule is preferably contained in the hard coat layer in an amount of 12 to 45% by mass, and more preferably 15 to 35% by mass.
 フィルムに充分な耐久性、耐衝撃性を付与する観点から、ハードコート層の厚さは通常0.6μm~50μm程度であり、好ましくは4μm~20μmである。
 また、ハードコート層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましい。さらに、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
From the viewpoint of imparting sufficient durability and impact resistance to the film, the thickness of the hard coat layer is usually about 0.6 μm to 50 μm, preferably 4 μm to 20 μm.
Further, the strength of the hard coat layer is preferably H or higher, more preferably 2H or higher, in a pencil hardness test. Furthermore, in the Taber test according to JIS K5400, the smaller the wear amount of the test piece before and after the test, the better.
 ハードコート層は、反射防止フィルムをミクロトームで切削し、断面を飛行時間型二次イオン質量分析装置(TOF-SIMS)で分析した時に、電離放射線硬化性化合物の硬化物が検出される部分として測定することができ、この領域の膜厚も同様にTOF-SIMSの断面情報から測定することができる。
 また、ハードコート層は、例えば光の干渉を利用した反射分光膜厚計又はTEM(透過型電子顕微鏡)による断面観察により、プラスチック基材と反射防止層の中間に別の1層を検出することによっても測定することが出来る。反射分光膜厚計としては、FE-3000(大塚電子(株)製)等を用いることが出来る。
 本発明においては、工程(1)はハーフキュア状態のハードコート層に対して行うのが好ましい。ハードコート層をハーフキュア状態にすることで、ハードコート層と反射防止層との密着性の向上、及びハードコート層と不飽和二重結合を表面に付与した金属酸化物粒子との結合形成による金属酸化物粒子の凝集抑制の効果が得られる。
 例えば塗膜が紫外線硬化性であれば、硬化時の酸素濃度、および紫外線照射量を適宜調整することによりハーフキュアにすることができる。紫外線ランプにより1mJ/cm~300mJ/cmの照射量の紫外線を照射して硬化するのが好ましい。5mJ/cm~100mJ/cmであることがより好ましく、10mJ/cm~70mJ/cmであることがさらに好ましい。照射の際には、上記エネルギーを一度に当ててもよいし、分割して照射することもできる。紫外線ランプ種としては、メタルハライドランプ又は高圧水銀ランプ等が好適に用いられる。
The hard coat layer is measured as a part where a cured product of ionizing radiation curable compound is detected when the antireflection film is cut with a microtome and the cross section is analyzed with a time-of-flight secondary ion mass spectrometer (TOF-SIMS). Similarly, the film thickness of this region can also be measured from the cross-sectional information of TOF-SIMS.
In addition, the hard coat layer detects another layer between the plastic substrate and the antireflection layer, for example, by cross-sectional observation using a reflection spectral film thickness meter or TEM (transmission electron microscope) using light interference. Can also be measured. As the reflection spectral film thickness meter, FE-3000 (manufactured by Otsuka Electronics Co., Ltd.) or the like can be used.
In this invention, it is preferable to perform a process (1) with respect to the hard-coat layer of a half-cure state. By making the hard coat layer in a half-cured state, it is possible to improve the adhesion between the hard coat layer and the antireflection layer and to form a bond between the hard coat layer and the metal oxide particles provided with unsaturated double bonds on the surface. An effect of suppressing aggregation of the metal oxide particles can be obtained.
For example, if the coating film is UV curable, it can be half cured by appropriately adjusting the oxygen concentration at the time of curing and the amount of UV irradiation. It is preferable to cure by irradiating an ultraviolet ray with an irradiation amount of 1 mJ / cm 2 to 300 mJ / cm 2 with an ultraviolet lamp. More preferably 5mJ / cm 2 ~ 100mJ / cm 2, further preferably 10mJ / cm 2 ~ 70mJ / cm 2. At the time of irradiation, the above-mentioned energy may be applied at once, or irradiation may be performed in divided portions. As the ultraviolet lamp type, a metal halide lamp or a high-pressure mercury lamp is preferably used.
 硬化時の酸素濃度は0.05~5.0体積%であることが好ましく、0.1~2体積%であることがさらに好ましく、0.1~1体積%であることが最も好ましい。 The oxygen concentration during curing is preferably 0.05 to 5.0% by volume, more preferably 0.1 to 2% by volume, and most preferably 0.1 to 1% by volume.
(溶媒)
 ハードコート層形成用組成物は、溶媒を含むことが好ましい。
 溶媒としては、プラスチック基材に対する浸透性を有する溶媒を含むことがプラスチック基材とハードコート層の密着性の観点から好ましい。プラスチック基材に対する浸透性を有する溶媒とは、プラスチック基材に対する溶解能を有する溶剤である。ここで、プラスチック基材に対して溶解能を有する溶剤とは、24mm×36mm(厚み80μm)の大きさのプラスチック基材を上記溶剤の入った15mlの瓶に入れて室温(25℃)で24時間経時させ、適宜瓶を揺らすなどして、プラスチック基材が完全に溶解して形をなくす溶剤を意味する。
 プラスチック基材としてセルロースアシレートフィルムを用いた場合の浸透性溶媒としては、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチル、アセトン、メチレンクロライド等が好ましく、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチルがより好ましく用いることが出来るがこれらに限定されない。
 ハードコート層形成用組成物は、浸透性溶媒以外の溶媒(たとえば、エタノール、メタノール、1-ブタノール、イソプロパノール(IPA)、メチルイソブチルケトン(MIBK)、トルエン等)を含んでいてもよい。
 ハードコート層形成用組成物において、浸透性溶媒の含有量は、ハードコート層形成用組成物に含まれる全溶媒の質量に対して、50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましい。
 ハードコート層形成用組成物が4級アンモニウム塩含有ポリマーを含む場合、4級アンモニウム塩含有ポリマーとの相溶性の観点から、溶媒として、親水性の溶媒を含むことが好ましい。親水性の溶媒としては、メタノール、エタノール、イソプロパノール(IPA)、ブタノールなどの低級アルコールが好ましい。
 ハードコート層形成用組成物の固形分濃度は、20質量%以上70質量%以下であることが好ましく、30質量%以上60質量%以下であることがより好ましい。
(solvent)
The composition for forming a hard coat layer preferably contains a solvent.
As a solvent, it is preferable from a viewpoint of the adhesiveness of a plastic base material and a hard-coat layer that the solvent which has the permeability | transmittance with respect to a plastic base material is included. The solvent having permeability to the plastic substrate is a solvent having a dissolving ability to the plastic substrate. Here, the solvent having the ability to dissolve the plastic substrate means that a plastic substrate having a size of 24 mm × 36 mm (thickness 80 μm) is put in a 15 ml bottle containing the above solvent and is 24 at room temperature (25 ° C.). It means a solvent in which the plastic base material completely dissolves and loses its shape by, for example, aging for a while and shaking the bottle as appropriate.
As a permeable solvent when a cellulose acylate film is used as a plastic substrate, methyl ethyl ketone (MEK), dimethyl carbonate, methyl acetate, acetone, methylene chloride, and the like are preferable, and methyl ethyl ketone (MEK), dimethyl carbonate, and methyl acetate are more preferable. Although it can use preferably, it is not limited to these.
The hard coat layer forming composition may contain a solvent other than the osmotic solvent (for example, ethanol, methanol, 1-butanol, isopropanol (IPA), methyl isobutyl ketone (MIBK), toluene, etc.).
In the composition for forming a hard coat layer, the content of the osmotic solvent is preferably 50% by mass or more and 100% by mass or less based on the mass of the total solvent contained in the composition for forming the hard coat layer. More preferably, it is at least 100% by mass.
When the composition for forming a hard coat layer contains a quaternary ammonium salt-containing polymer, it is preferable to contain a hydrophilic solvent as a solvent from the viewpoint of compatibility with the quaternary ammonium salt-containing polymer. As the hydrophilic solvent, lower alcohols such as methanol, ethanol, isopropanol (IPA) and butanol are preferable.
The solid content concentration of the composition for forming a hard coat layer is preferably 20% by mass or more and 70% by mass or less, and more preferably 30% by mass or more and 60% by mass or less.
(その他の成分) 
 ハードコート層形成用組成物には、上記成分のほかに、更に重合開始剤、帯電防止剤、防眩剤等を適宜添加することもできる。更に、反応性又は非反応性レベリング剤、各種増感剤等の各種添加剤が混合されていても良い。 
(Other ingredients)
In addition to the above components, a polymerization initiator, an antistatic agent, an antiglare agent, and the like can be appropriately added to the hard coat layer forming composition. Furthermore, various additives, such as a reactive or non-reactive leveling agent and various sensitizers, may be mixed.
(重合開始剤) 
 必要に応じてラジカル及びカチオン重合開始剤等を適宜選択して用いても良い。これらの重合開始剤は、光照射及び/又は加熱により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。 
 重合開始剤としては、後述する反射防止層の層(a)を形成するための組成物(A)が含んでもよい重合開始剤と同様のものが挙げられる。
 特に、ハードコート層形成用組成物が4級アンモニウム塩含有ポリマーを含む場合、重合開始剤として、ホスフィンオキサイド系重合開始剤を用いることが好ましい。ホスフィンオキサイド系重合開始剤は、フォトブリーチング効果を有するため、ハードコート層の表面をハーフキュア状態としても、内部の硬化率は他の開始剤を使用した場合に比べ高くなり、反射防止層への4級アンモニウム塩含有ポリマーの混入を抑制することができる。
(Polymerization initiator)
If necessary, radicals and cationic polymerization initiators may be appropriately selected and used. These polymerization initiators are decomposed by light irradiation and / or heating to generate radicals or cations to advance radical polymerization and cationic polymerization.
As a polymerization initiator, the thing similar to the polymerization initiator which the composition (A) for forming the layer (a) of the antireflection layer mentioned later may contain is mentioned.
In particular, when the composition for forming a hard coat layer contains a quaternary ammonium salt-containing polymer, it is preferable to use a phosphine oxide polymerization initiator as the polymerization initiator. Since the phosphine oxide polymerization initiator has a photobleaching effect, even if the surface of the hard coat layer is in a half-cured state, the internal curing rate is higher than when other initiators are used, leading to the antireflection layer. Of the quaternary ammonium salt-containing polymer can be suppressed.
(ホスフィンオキサイド系重合開始剤)
 ホスフィンオキサイド系重合開始剤としては、光吸収時にn-π*遷移を起こし、フォトブリーチング効果を有するものが好ましく、具体的には、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドが好ましく挙げられる。
 市販されているホスフィンオキサイド系重合開始剤としては、BASF製のイルガキュア819、DAROCUR TPOなどが好ましく挙げられる。
 本発明において用いられるホスフィンオキサイド系重合開始剤は1種でも2種以上でもよい。
(Phosphine oxide polymerization initiator)
As the phosphine oxide-based polymerization initiator, those having an n-π * transition upon light absorption and having a photobleaching effect are preferable. Specifically, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2 , 4,6-Trimethylbenzoyl) -phenylphosphine oxide is preferred.
Preferable examples of commercially available phosphine oxide polymerization initiators include Irgacure 819 and DAROCUR TPO manufactured by BASF.
The phosphine oxide polymerization initiator used in the present invention may be one type or two or more types.
(帯電防止剤)
 帯電防止剤の具体例としては、4級アンモニウム塩、導電性ポリマー、導電性微粒子等の従来公知の帯電防止剤を用いることができ、特に限定されるものではないが、安価、かつ取り扱い容易性から、4級アンモニウム塩を有する帯電防止剤であることが好ましく、4級アンモニウム塩含有ポリマーであることがより好ましい。
 ハードコート層に4級アンモニウム塩含有ポリマーを含む場合、4級アンモニウム塩含有ポリマーが反射防止層に混合すると金属酸化物粒子と4級アンモニウム塩含有ポリマーが相互作用して金属酸化物粒子の凝集を促進してしまうことがあるため、4級アンモニウム塩含有ポリマーはハードコート層の基材側に偏在していることが好ましい。4級アンモニウム塩含有ポリマーを偏在させる方法は限定されないが、4級アンモニウム塩含有ポリマーを含むハードコート層と4級アンモニウム塩含有ポリマーを含まないハードコート層との積層によりハードコート層を形成する方法、又は、相分離を用いる方法などが挙げられる。
 相分離を用いる方法としては、親水性でかつ高沸点の溶媒(好ましくは101325Paにおける沸点が80℃以上、より好ましくは90℃以上140℃以下の溶媒であり、たとえば、イソプロパノール、ブタノールなどが挙げられる。)の使用又は低温乾燥などにより乾燥を遅くすると、4級アンモニウム塩含有ポリマーが疎水的な空気界面を避けてハードコート層の内部に偏在する。基材がセルロースアシレートであると、基材が親水的であるため、特にハードコート層の内部に偏在しやすい。また、ハードコート層中において疎水性素材との併用によっても偏在が進む。疎水性素材はSP値(SPb)が19≦SPb≦21であることが好ましく、硬度の観点から重合性不飽和基を有する硬化性化合物であることが好ましい。具体例としては日本化薬(株)製DPCA-20(SPb=20.6)、同DPCA-30(SPb=20.6)、同DPCA-60(SPb=20.5)、新中村化学工業(株)製A-TMMT(SPb=20.0)、同A-TMPT(SPb=20.0)などが挙げられる。
(Antistatic agent)
As a specific example of the antistatic agent, a conventionally known antistatic agent such as a quaternary ammonium salt, a conductive polymer, or conductive fine particles can be used. Although not particularly limited, it is inexpensive and easy to handle. Therefore, an antistatic agent having a quaternary ammonium salt is preferable, and a quaternary ammonium salt-containing polymer is more preferable.
When the hard coat layer contains a quaternary ammonium salt-containing polymer, when the quaternary ammonium salt-containing polymer is mixed with the antireflection layer, the metal oxide particles and the quaternary ammonium salt-containing polymer interact to aggregate the metal oxide particles. Since it may accelerate, it is preferable that the quaternary ammonium salt-containing polymer is unevenly distributed on the substrate side of the hard coat layer. A method of unevenly distributing a quaternary ammonium salt-containing polymer is not limited, but a method of forming a hard coat layer by laminating a hard coat layer containing a quaternary ammonium salt-containing polymer and a hard coat layer not containing a quaternary ammonium salt-containing polymer Or a method using phase separation.
The method using phase separation is a hydrophilic and high-boiling solvent (preferably a solvent having a boiling point at 101325 Pa of 80 ° C. or higher, more preferably 90 ° C. or higher and 140 ° C. or lower, and examples thereof include isopropanol and butanol. )) Or by drying at low temperature, the quaternary ammonium salt-containing polymer is unevenly distributed inside the hard coat layer while avoiding the hydrophobic air interface. When the base material is cellulose acylate, the base material is hydrophilic, and therefore, it tends to be unevenly distributed inside the hard coat layer. Further, the uneven distribution also proceeds in the hard coat layer when used in combination with a hydrophobic material. The hydrophobic material preferably has an SP value (SPb) of 19 ≦ SPb ≦ 21, and is preferably a curable compound having a polymerizable unsaturated group from the viewpoint of hardness. Specific examples include DPCA-20 (SPb = 20.6), DPCA-30 (SPb = 20.6), DPCA-60 (SPb = 20.5) manufactured by Nippon Kayaku Co., Ltd., Shin-Nakamura Chemical Co., Ltd. A-TMMT (SPb = 20.0), A-TMPT (SPb = 20.0), etc. manufactured by the same company may be mentioned.
 本発明の反射防止フィルムとしては、
 用いる金属酸化物粒子が、粒子表面に重合性不飽和基を付与された金属酸化物粒子であり、
 重合性不飽和基を有する硬化性化合物を含むハードコート層形成用組成物を硬化してなるハードコート層を有し、
 上記金属酸化物粒子と上記ハードコート層との間に結合が形成されていることが好ましい。
As the antireflection film of the present invention,
The metal oxide particles used are metal oxide particles provided with a polymerizable unsaturated group on the particle surface,
A hard coat layer formed by curing a composition for forming a hard coat layer containing a curable compound having a polymerizable unsaturated group;
It is preferable that a bond is formed between the metal oxide particles and the hard coat layer.
(4級アンモニウム塩含有ポリマー)
 4級アンモニウム塩含有ポリマーとしては、公知化合物の中から適宜選択して用いることができるが、塗付液への溶解性の観点から、下記一般式(I)、(II)~(III)で表される構造単位の少なくとも1つの単位を有するポリマーが好ましい。
(Quaternary ammonium salt-containing polymer)
The quaternary ammonium salt-containing polymer can be appropriately selected from known compounds and used, but from the viewpoint of solubility in the coating solution, the following general formulas (I), (II) to (III) Polymers having at least one unit of the structural unit represented are preferred.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(I)中、Rは水素原子、アルキル基、ハロゲン原子又は-CHCOOを表す。Yは水素原子又は-COOを表す。Mはプロトン又はカチオンを表す。Lは-CONH-、-COO-、-CO-又は-O-を表す。Jはアルキレン基又はアリーレン基を表す。Qは下記群Aから選ばれる基を表す。 In general formula (I), R 1 represents a hydrogen atom, an alkyl group, a halogen atom, or —CH 2 COO M + . Y represents a hydrogen atom or —COO M + . M + represents a proton or a cation. L represents —CONH—, —COO—, —CO— or —O—. J represents an alkylene group or an arylene group. Q represents a group selected from the following group A.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、R、R’及びR’’は、それぞれ独立に、アルキル基を表す。Jはアルキレン基又はアリーレン基を表す。Xはアニオンを表す。p及びqは、それぞれ独立に、0又は1を表す。 In the formula, R 2 , R 2 ′ and R 2 ″ each independently represents an alkyl group. J represents an alkylene group or an arylene group. X represents an anion. p and q each independently represents 0 or 1.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(II)、(III)中、R、R、R及びRは、それぞれ独立に、アルキル基を表し、RとR及びRとRはそれぞれ互いに結合して含窒素複素環を形成してもよい。
 A、B及びDは、それぞれ独立に、アルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基、-RCOR-、-RCOOR10OCOR11-、-R12OCR13COOR14-、-R15-(OR16-、-R17CONHR18NHCOR19-、-R20OCONHR21NHCOR22-又は―R23NHCONHR24NHCONHR25-を表す。Eは単結合、アルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基、-RCOR-、-RCOOR10OCOR11-、-R12OCR13COOR14-、-R15-(OR16-、-R17CONHR18NHCOR19-、-R20OCONHR21NHCOR22-又は―R23NHCONHR24NHCONHR25-又は-NHCOR26CONH-を表す。R、R、R、R11、R12、R14、R15、R16、R17、R19、R20、R22、R23、R25及びR26はアルキレン基を表す。R10、R13、R18、R21及びR24は、それぞれ独立に、アルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基及びアルキレンアリーレン基から選ばれる連結基を表す。mは1~4の正の整数を表す。Xはアニオンを表す。
 Z、Zは-N=C-基とともに5員又は6員環を形成するのに必要な非金属原子群を表し、≡N[X]-なる4級塩の形でEに連結してもよい。
 nは5~300の整数を表す。
In the general formulas (II) and (III), R 3 , R 4 , R 5 and R 6 each independently represent an alkyl group, and R 3 and R 4 and R 5 and R 6 are bonded to each other. A nitrogen-containing heterocycle may be formed.
A, B and D are each independently an alkylene group, an arylene group, an alkenylene group, an arylene alkylene group, —R 7 COR 8 —, —R 9 COOR 10 OCOR 11 —, —R 12 OCR 13 COOR 14 —, — R 15 — (OR 16 ) m —, —R 17 CONHR 18 NHCOR 19 —, —R 20 OCONHR 21 NHCOR 22 — or —R 23 NHCONHR 24 NHCONHR 25 — is represented. E represents a single bond, an alkylene group, an arylene group, an alkenylene group, an arylene alkylene group, —R 7 COR 8 —, —R 9 COOR 10 OCOR 11 —, —R 12 OCR 13 COOR 14 —, —R 15 — (OR 16 ) m -, - R 17 CONHR 18 NHCOR 19 -, - R 20 OCONHR 21 NHCOR 22 - or -R 23 NHCONHR 24 NHCONHR 25 - or an -NHCOR 26 CONH-. R 7 , R 8 , R 9 , R 11 , R 12 , R 14 , R 15 , R 16 , R 17 , R 19 , R 20 , R 22 , R 23 , R 25 and R 26 represent an alkylene group. R 10 , R 13 , R 18 , R 21 and R 24 each independently represent a linking group selected from an alkylene group, an alkenylene group, an arylene group, an arylene alkylene group and an alkylene arylene group. m represents a positive integer of 1 to 4. X represents an anion.
Z 1 and Z 2 represent a non-metallic atomic group necessary for forming a 5-membered or 6-membered ring together with —N═C— group, and are represented by E in the form of a quaternary salt of ≡N + [X ] —. You may connect.
n represents an integer of 5 to 300.
 一般式(I)~(III)の基について説明する。
 ハロゲン原子は、塩素原子、臭素原子が挙げられ、塩素原子が好ましい。
 アルキル基は、炭素数1~4の分岐又は直鎖のアルキル基が好ましく、メチル基、エチル基、プロピル基がより好ましい。
 アルキレン基は、炭素数1~12のアルキレン基が好ましく、メチレン基、エチレン基、プロピレン基がより好ましく、エチレン基が特に好ましい。
 アリーレン基は、炭素数6~15のアリーレン基が好ましく、フェニレン、ジフェニレン、フェニルメチレン基、フェニルジメチレン基、ナフチレン基がより好ましく、フェニルメチレン基が特に好ましい、これらの基は置換基を有していてもよい。
 アルケニレン基は、炭素数2~10のアルキレン基が好ましく、アリーレンアルキレン基は、炭素数6~12のアリーレンアルキレン基が好ましい、これらの基は置換基を有していてもよい。
 各基に置換してもよい置換基としては、メチル基、エチル基、プロピル基等が挙げられる。
The groups of the general formulas (I) to (III) will be described.
Examples of the halogen atom include a chlorine atom and a bromine atom, and a chlorine atom is preferable.
The alkyl group is preferably a branched or straight chain alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group.
The alkylene group is preferably an alkylene group having 1 to 12 carbon atoms, more preferably a methylene group, an ethylene group or a propylene group, and particularly preferably an ethylene group.
The arylene group is preferably an arylene group having 6 to 15 carbon atoms, more preferably phenylene, diphenylene, phenylmethylene group, phenyldimethylene group, or naphthylene group, and particularly preferably phenylmethylene group. These groups have a substituent. It may be.
The alkenylene group is preferably an alkylene group having 2 to 10 carbon atoms, and the arylene alkylene group is preferably an arylene alkylene group having 6 to 12 carbon atoms. These groups may have a substituent.
Examples of the substituent that may be substituted for each group include a methyl group, an ethyl group, and a propyl group.
 一般式(I)において、Rは水素原子が好ましい。
 Yは、好ましくは水素原子である。
 Jは、好ましくはフェニルメチレン基である。
 Qは、好ましくは群Aから選ばれる下記一般式(VI)であり、R、R’及びR’’は各々メチル基である。
 Xは、ハロゲンイオン、スルホン酸アニオン、カルボン酸アニオンなどが挙げられ、好ましくはハロゲンイオンであり、より好ましくは塩素イオンである。
 p及びqは、好ましくは0又は1であり、より好ましくはp=0、q=1である。
In general formula (I), R 1 is preferably a hydrogen atom.
Y is preferably a hydrogen atom.
J is preferably a phenylmethylene group.
Q is preferably the following general formula (VI) selected from group A, and R 2 , R 2 ′ and R 2 ″ are each a methyl group.
X includes a halogen ion, a sulfonate anion, a carboxylate anion and the like, preferably a halogen ion, and more preferably a chlorine ion.
p and q are preferably 0 or 1, more preferably p = 0 and q = 1.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(II)及び(III)において、R、R、R及びRは、好ましくは炭素数1~4の置換又は無置換のアルキル基が好ましく、メチル基、エチル基がより好ましく、メチル基が特に好ましい。
 A、B及びDは、好ましくはそれぞれ独立に、炭素数2~10の置換又は無置換のアルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基を表し、好ましくはフェニルジメチレン基である。
 Xは、ハロゲンイオン、スルホン酸アニオン、カルボン酸アニオンなどが挙げられ、好ましくはハロゲンイオンであり、より好ましくは塩素イオンである。
 Eは、好ましくはEは単結合、アルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基を表す。
 Z、Zが、-N=C-基とともに形成する5員又は6員環としては、ジアゾニアビシクロオクタン環等を例示することができる。
In general formulas (II) and (III), R 3 , R 4 , R 5 and R 6 are preferably a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group. A methyl group is particularly preferred.
A, B and D are preferably each independently a substituted or unsubstituted alkylene group, arylene group, alkenylene group or arylene alkylene group having 2 to 10 carbon atoms, preferably a phenyldimethylene group.
X includes a halogen ion, a sulfonate anion, a carboxylate anion and the like, preferably a halogen ion, and more preferably a chlorine ion.
E is preferably E represents a single bond, an alkylene group, an arylene group, an alkenylene group or an arylene alkylene group.
Examples of the 5-membered or 6-membered ring formed by Z 1 and Z 2 together with the —N═C— group include a diazoniabicyclooctane ring.
 以下に、一般式(I)~(III)で表される構造のユニットを有する化合物の具体例を挙げるが、本発明はこれらに限定されるわけではない。なお、下記の具体例における添え字(m、x、y、r及び実際の数値)の内、mは各ユニットの繰り返し単位数を表し、x、y、rは各々のユニットのモル比を表す。 Specific examples of compounds having units having structures represented by the general formulas (I) to (III) are shown below, but the present invention is not limited thereto. Of the subscripts (m, x, y, r and actual numerical values) in the following specific examples, m represents the number of repeating units of each unit, and x, y, r represents the molar ratio of each unit. .
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記で例示した化合物は、単独で用いてもよいし、2種以上の化合物を併用して用いることもできる。 The compounds exemplified above may be used alone, or two or more compounds may be used in combination.
(屈折率調整剤)
 ハードコート層の屈折率を制御する目的で、屈折率調整剤として高屈折率モノマーまたは無機粒子を添加することができる。無機粒子には屈折率を制御する効果に加えて、架橋反応による硬化収縮を抑える効果もある。本発明では、ハードコート層形成後において、上記多官能モノマーおよび/又は高屈折率モノマー等が重合して生成した重合体、その中に分散された無機粒子を含んでバインダーと称する。
(Refractive index modifier)
For the purpose of controlling the refractive index of the hard coat layer, a high refractive index monomer or inorganic particles can be added as a refractive index adjusting agent. In addition to the effect of controlling the refractive index, the inorganic particles also have the effect of suppressing cure shrinkage due to the crosslinking reaction. In the present invention, after the hard coat layer is formed, a polymer formed by polymerizing the polyfunctional monomer and / or the high refractive index monomer and the like and inorganic particles dispersed therein are referred to as a binder.
(レベリング剤) 
 レベリング剤の具体例としては、フッ素系又はシリコーン系等の従来公知のレベリング剤を用いることが出来る。レベリング剤を添加したハードコート層形成用組成物は、塗布又は乾燥時に塗膜表面に対して塗工安定性を付与することができる。
(Leveling agent)
As a specific example of the leveling agent, a conventionally known leveling agent such as fluorine-based or silicone-based can be used. The composition for forming a hard coat layer to which a leveling agent is added can impart coating stability to the coating film surface during coating or drying.
 本発明の反射防止フィルムは、種々の用途に用いることができ、例えば、偏光板保護フィルムとして好適に用いることができる。
 本発明の反射防止フィルムを用いた偏光板保護フィルムは、偏光子と貼り合せて偏光板とすることができ、液晶表示装置などに好適に用いることができる。
The antireflection film of the present invention can be used for various applications, and for example, can be suitably used as a polarizing plate protective film.
A polarizing plate protective film using the antireflection film of the present invention can be bonded to a polarizer to form a polarizing plate, and can be suitably used for a liquid crystal display device or the like.
[偏光板]
 偏光板は、偏光子と、偏光子を保護する少なくとも1枚の保護フィルムとを有する偏光板であって、保護フィルムの少なくとも1枚が本発明の反射防止フィルムであることが好ましい。
[Polarizer]
The polarizing plate is a polarizing plate having a polarizer and at least one protective film for protecting the polarizer, and at least one of the protective films is preferably the antireflection film of the present invention.
 偏光子には、ヨウ素系偏光子、二色性染料を用いる染料系偏光子又はポリエン系偏光子がある。ヨウ素系偏光子及び染料系偏光子は、一般にポリビニルアルコール系フィルムを用いて製造することができる。 Examples of the polarizer include an iodine-based polarizer, a dye-based polarizer using a dichroic dye, and a polyene-based polarizer. In general, iodine-based polarizers and dye-based polarizers can be produced using polyvinyl alcohol-based films.
[反射防止物品]
 本発明の反射防止物品は本発明の反射防止フィルムを表面に有する物品である。例えば、カバーガラスに本発明の反射防止フィルムを適用し、反射防止機能を付与したカバーガラス(反射防止物品の一例)とすることができる。
[Anti-reflective article]
The antireflection article of the present invention is an article having the antireflection film of the present invention on the surface. For example, the antireflection film of the present invention can be applied to a cover glass to provide a cover glass having an antireflection function (an example of an antireflection article).
[画像表示装置]
 本発明の反射防止フィルムを画像表示装置に適用することもできる。
 画像表示装置としては、陰極線管(CRT)を利用した表示装置、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、蛍光表示ディスプレイ(VFD)、フィールドエミッションディスプレイ(FED)、及び液晶ディスプレイ(LCD)を挙げることができ、特に液晶表示装置が好ましい。
 一般的に、液晶表示装置は、液晶セル及びその両側に配置された2枚の偏光板を有し、液晶セルは、2枚の電極基板の間に液晶を担持している。更に、光学異方性層が、液晶セルと一方の偏光板との間に一枚配置されるか、又は液晶セルと双方の偏光板との間に2枚配置されることもある。液晶セルは、TN(Twisted Nematic)モード、VA(Vertically Aligned)モード、OCB(Optically Compensatory Bend)モード、IPS(In-Plane Switching)モードなど様々な駆動方式の液晶セルが適用できる。
[Image display device]
The antireflection film of the present invention can also be applied to an image display device.
As the image display device, a display device using a cathode ray tube (CRT), a plasma display panel (PDP), an electroluminescence display (ELD), a fluorescent display (VFD), a field emission display (FED), and a liquid crystal display (LCD) A liquid crystal display device is particularly preferable.
In general, a liquid crystal display device has a liquid crystal cell and two polarizing plates arranged on both sides thereof, and the liquid crystal cell carries a liquid crystal between two electrode substrates. Furthermore, one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or two optically anisotropic layers may be disposed between the liquid crystal cell and both polarizing plates. As the liquid crystal cell, liquid crystal cells of various driving methods such as a TN (Twisted Nematic) mode, a VA (Vertically Aligned) mode, an OCB (Optically Compensatory Bend) mode, and an IPS (In-Plane Switching) mode can be applied.
[モジュール]
 本発明のモジュールは、本発明の反射防止フィルムを2枚有し、2枚の反射防止フィルムがエアギャップ(空気層)を介して対向して設置されたモジュールである。
 本発明のモジュールにおいて、2枚の反射防止フィルムは、反射防止層がプラスチック基材よりもエアギャップ側に配置されたモジュールであることが好ましい。
 図2に本発明のモジュールの一例の断面模式図を示す。図2のモジュール20は、本発明の反射防止フィルム10a及び10bを有し、2枚の反射防止フィルムがエアギャップ11を介して対向して設置されている。また、2枚の反射防止フィルム10a及び10bは、それぞれ、反射防止層がプラスチック基材よりもエアギャップ11側に配置されている。
 本発明のモジュールは種々の用途に用いることができ、例えば、タッチパネル付き液晶表示装置に用いることができる。
[module]
The module of the present invention is a module in which two antireflection films of the present invention are provided, and the two antireflection films are installed facing each other through an air gap (air layer).
In the module of the present invention, the two antireflection films are preferably modules in which the antireflection layer is disposed on the air gap side with respect to the plastic substrate.
FIG. 2 shows a schematic cross-sectional view of an example of the module of the present invention. The module 20 shown in FIG. 2 includes the antireflection films 10 a and 10 b of the present invention, and two antireflection films are installed to face each other through the air gap 11. Further, the antireflection layer of each of the two antireflection films 10a and 10b is disposed closer to the air gap 11 than the plastic substrate.
The module of the present invention can be used for various applications, for example, a liquid crystal display device with a touch panel.
[タッチパネル付き液晶表示装置]
 本発明のタッチパネル付き液晶表示装置は、本発明のモジュールを含み、
 2枚の反射防止フィルムのうちの一方の反射防止フィルムのプラスチック基材の反射防止層側とは反対側にタッチパネルを有し、
 他方の反射防止フィルムのプラスチック基材の反射防止層側とは反対側に液晶セルを有する、タッチパネル付き液晶表示装置である。
 図2に、本発明のタッチパネル付き液晶表示装置の一例の断面模式図を示す。図2のタッチパネル付き液晶表示装置30は、本発明のモジュール20を含み、2枚の反射防止フィルムのうちの一方の反射防止フィルム10aのプラスチック基材の反射防止層側とは反対側にタッチパネル12を有し、他方の反射防止フィルム10bのプラスチック基材の反射防止層側とは反対側に液晶セル13を有する。また、反射防止フィルム10bは偏光子15の保護フィルムも兼ねている。偏光子15の反射防止フィルム10bとは反対側には別の保護フィルム14が設けられている。反射防止フィルム10bと偏光子15と保護フィルム14との積層体は本発明の偏光板でもある。
 本発明のタッチパネル付き液晶表示装置30は、タッチパネル12の反射防止フィルム10a側の界面とは反対側から入射する外光の反射を反射防止フィルム10a及び反射防止フィルム10bにより低減できる。また、本発明の反射を反射防止フィルム10a及び反射防止フィルム10bは反射防止層のプラスチック基材とは反対側から入射した際の全光線透過率が88%以上であり、かつ、反射防止層のプラスチック基材とは反対側から入射した際の波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T580-T480≦3.5%を満たすので、図示しないバックライトからの光を可視光の全領域に渡って透過しやすく、表示画像の色味変化を抑制することができる。
 なお、使用できるタッチパネル、液晶セル、保護フィルム、偏光子については特に制限はなく、公知のいずれのものを用いてもよい。
 例えば、タッチパネルは抵抗膜方式、静電容量方式、光学方式、超音波方式など様々な方式のタッチパネルを用いることができる。
[LCD device with touch panel]
The liquid crystal display device with a touch panel of the present invention includes the module of the present invention,
One of the two antireflection films has a touch panel on the side opposite to the antireflection layer side of the plastic substrate of the antireflection film,
It is a liquid crystal display device with a touch panel which has a liquid crystal cell on the opposite side to the antireflection layer side of the plastic substrate of the other antireflection film.
In FIG. 2, the cross-sectional schematic diagram of an example of the liquid crystal display device with a touchscreen of this invention is shown. The liquid crystal display device 30 with a touch panel in FIG. 2 includes the module 20 of the present invention, and the touch panel 12 on the side opposite to the antireflection layer side of the plastic substrate of one of the two antireflection films 10a. And the liquid crystal cell 13 is provided on the side opposite to the antireflection layer side of the plastic substrate of the other antireflection film 10b. The antireflection film 10b also serves as a protective film for the polarizer 15. Another protective film 14 is provided on the opposite side of the polarizer 15 from the antireflection film 10b. The laminate of the antireflection film 10b, the polarizer 15, and the protective film 14 is also the polarizing plate of the present invention.
The liquid crystal display device 30 with a touch panel of the present invention can reduce reflection of external light incident from the side opposite to the interface on the antireflection film 10a side of the touch panel 12 by the antireflection film 10a and the antireflection film 10b. Further, the antireflection film 10a and the antireflection film 10b of the reflection of the present invention have a total light transmittance of 88% or more when incident from the side opposite to the plastic substrate of the antireflection layer, and the antireflection layer When the transmittance of light having a wavelength of 480 nm and 580 nm when incident from the side opposite to the plastic substrate is T 480 and T 580 , respectively, T 580 −T 480 ≦ 3.5% is satisfied, so that the backlight (not shown) Can be easily transmitted through the entire visible light region, and the color change of the display image can be suppressed.
In addition, there is no restriction | limiting in particular about the touch panel which can be used, a liquid crystal cell, a protective film, and a polarizer, You may use any well-known thing.
For example, various types of touch panels such as a resistive film type, a capacitance type, an optical type, and an ultrasonic type can be used as the touch panel.
[反射防止フィルムの製造方法]
 本発明の反射防止フィルムの製造方法は、
 プラスチック基材上に、硬化性化合物と平均一次粒径が100nm以上190nm以下の金属酸化物粒子とを、上記硬化性化合物を含む層(a)中に上記金属酸化物粒子が埋没する厚みで設ける工程(1)、
 支持体及び上記支持体上にゲル分率が95.0%以上の粘着剤を含む層(b)を有する粘着フィルムの上記層(b)を、上記層(a)と貼り合わせる工程(2)、
 上記金属酸化物粒子が、上記層(a)及び上記層(b)を合わせた層中に埋没し、かつ、上記層(a)の上記プラスチック基材側の界面とは反対側の界面から突出するように、上記層(a)と上記層(b)の界面の位置を上記プラスチック基材側に移動させる工程(3)、
 上記金属酸化物粒子が、上記層(a)及び上記層(b)を合わせた層中に埋没した状態で上記層(a)を硬化する工程(4)、
 上記層(b)を上記層(a)から剥離する工程(5)、
をこの順に有する、反射防止フィルムの製造方法である。
[Method for producing antireflection film]
The production method of the antireflection film of the present invention is as follows:
On the plastic substrate, a curable compound and metal oxide particles having an average primary particle size of 100 nm or more and 190 nm or less are provided at a thickness at which the metal oxide particles are embedded in the layer (a) containing the curable compound. Step (1),
A step of bonding the layer (b) of the pressure-sensitive adhesive film having the support and the layer (b) containing a pressure-sensitive adhesive having a gel fraction of 95.0% or more on the support (2). ,
The metal oxide particles are embedded in a layer combining the layer (a) and the layer (b), and protrude from the interface on the side opposite to the interface on the plastic substrate side of the layer (a). Step (3) of moving the position of the interface between the layer (a) and the layer (b) to the plastic substrate side,
A step (4) of curing the layer (a) in a state where the metal oxide particles are buried in a layer formed by combining the layer (a) and the layer (b);
Step (5) of peeling the layer (b) from the layer (a);
In this order.
 上記製造方法により、前述の本発明の反射防止フィルムを製造することができる。
 上記製造方法において、硬化性化合物としては前述の硬化性化合物(a1)が好ましく用いられ、金属酸化物粒子も前述のものが好ましく用いられる。
 また、工程(4)で硬化された層(a)は前述のバインダー樹脂の膜に相当し、層(a)と層(a)から突出した金属酸化物粒子とを含めたものが反射防止層である。
By the above production method, the above-described antireflection film of the present invention can be produced.
In the above production method, the above-mentioned curable compound (a1) is preferably used as the curable compound, and the above-mentioned metal oxide particles are preferably used.
The layer (a) cured in the step (4) corresponds to the above-described binder resin film, and the layer including the layer (a) and the metal oxide particles protruding from the layer (a) is an antireflection layer. It is.
 本発明の反射防止フィルムの製造方法の好ましい実施形態の一例を図3に示す。
 図3の(1)は、工程(1)において、プラスチック基材1上に、硬化性化合物(a1)を含む層(a)(図3中の符号4)中に平均一次粒径が100nm以上190nm以下の金属酸化物粒子(「粒子(a2)」とも呼ぶ)(図3中の符号3)が埋没する厚みで設けた状態を模式的に表している。
An example of a preferred embodiment of the method for producing an antireflection film of the present invention is shown in FIG.
(1) in FIG. 3 shows that in step (1), the average primary particle size is 100 nm or more in the layer (a) (reference numeral 4 in FIG. 3) containing the curable compound (a1) on the plastic substrate 1. A state in which a metal oxide particle of 190 nm or less (also referred to as “particle (a2)”) (reference numeral 3 in FIG. 3) is provided so as to be buried is schematically shown.
 図3の(2)は、工程(2)において、支持体5及び上記支持体5上にゲル分率が95.0%以上の粘着剤を含む層(b)(図3中の符号6)を有する粘着フィルム7の層(b)を、層(a)(図3中の符号4)と貼り合わせた状態を模式的に表している。 (2) of FIG. 3 is a layer (b) containing a pressure-sensitive adhesive having a gel fraction of 95.0% or more on the support 5 and the support 5 in the step (2) (reference numeral 6 in FIG. 3). A state in which the layer (b) of the pressure-sensitive adhesive film 7 having the above is bonded to the layer (a) (reference numeral 4 in FIG. 3) is schematically shown.
 図3の(3)は、工程(3)において、粒子(a2)が、層(a)及び層(b)を合わせた層中に埋没し、かつ、層(a)の基材側の界面とは反対側の界面から突出するように、層(a)と層(b)の界面の位置をプラスチック基材側に移動させた状態を模式的に表している。なお、後述するように、層(a)と層(b)の界面の位置をプラスチック基材側に移動させる方法としては、硬化性化合物(a1)の一部を粘着剤を含む層(b)に浸透させる方法が挙げられる。
 層(a)と層(b)の界面の位置をプラスチック基材側に移動させるということは、上記界面の位置をプラスチック基材に近づけることでもある。
(3) in FIG. 3 shows that in the step (3), the particles (a2) are buried in the layer including the layer (a) and the layer (b), and the interface on the substrate side of the layer (a) The state which moved the position of the interface of a layer (a) and a layer (b) to the plastic base material side so that it may protrude from the interface on the opposite side is shown typically. As will be described later, as a method of moving the position of the interface between the layer (a) and the layer (b) to the plastic substrate side, the layer (b) containing a part of the curable compound (a1) containing an adhesive. The method of making it penetrate | infiltrate is mentioned.
To move the position of the interface between the layer (a) and the layer (b) toward the plastic substrate means to bring the position of the interface closer to the plastic substrate.
 図3の(4)は、工程(4)において、粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態で層(a)を硬化しているところを模式的に表している。 (4) in FIG. 3 schematically shows that the layer (a) is cured in the state where the particles (a2) are embedded in the layer (a) and the layer (b) combined in the step (4). It expresses.
 図3の(5)は、層(a)から層(b)を含む粘着フィルム7を剥離する工程(5)において、粘着フィルム7を剥離した後の状態(反射防止フィルム10)を表している。 (5) of FIG. 3 represents the state (antireflection film 10) after peeling the adhesive film 7 in the process (5) which peels the adhesive film 7 containing the layer (b) from the layer (a). .
 本発明の反射防止フィルムの製造方法では、工程(1)~(4)を行う際の温度が60℃以下であることが好ましく、40℃以下であることがより好ましい。工程(1)~(4)を行う際の温度が60℃以下に保つことで、金属酸化物粒子の凝集を抑制することができ、良好な凹凸形状を形成することができる。 In the method for producing an antireflection film of the present invention, the temperature when performing steps (1) to (4) is preferably 60 ° C. or lower, more preferably 40 ° C. or lower. By keeping the temperature at the time of performing the steps (1) to (4) at 60 ° C. or lower, aggregation of the metal oxide particles can be suppressed, and a favorable uneven shape can be formed.
[工程(1)]
 工程(1)は、プラスチック基材上に、硬化性化合物と平均一次粒径が100nm以上190nm以下の金属酸化物粒子とを、硬化性化合物を含む層(a)中に金属酸化物粒子が埋没する厚みで設ける工程である。
 本発明において、「層(a)中に金属酸化物粒子が埋没する厚み」とは、金属酸化物粒子の平均一次粒子径の0.8倍以上の厚みを表すものとする。
[Step (1)]
In step (1), a curable compound and metal oxide particles having an average primary particle size of 100 nm to 190 nm are embedded on a plastic substrate, and the metal oxide particles are embedded in a layer (a) containing the curable compound. It is the process of providing with the thickness to do.
In the present invention, the “thickness in which the metal oxide particles are buried in the layer (a)” represents a thickness of 0.8 times or more the average primary particle diameter of the metal oxide particles.
 工程(1)において、プラスチック基材上に層(a)を設ける方法は特に限定されないが、プラスチック基材上に層(a)を塗布することにより設けることが好ましい。この場合、層(a)は、硬化性化合物(a1)と、粒子(a2)とを含む組成物(A)を塗布してなる層である。塗布方法としては、特に限定されず公知の方法を用いることができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられる。 In step (1), the method for providing the layer (a) on the plastic substrate is not particularly limited, but it is preferable to provide the layer (a) by applying it on the plastic substrate. In this case, the layer (a) is a layer formed by applying a composition (A) containing a curable compound (a1) and particles (a2). A coating method is not particularly limited, and a known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.
 工程(1)において、プラスチック基材の表面に直交する方向には粒子(a2)が複数存在しないことが好ましい。ここで、プラスチック基材の表面に直交する方向には粒子(a2)が複数存在しないとは、プラスチック基材の面内の10μm×10μmを走査型電子顕微鏡(SEM)で3視野観察した際に、表面に直交する方向に複数重なって存在していない状態の粒子(a2)の個数の割合が、80%以上であることを表し、好ましくは95%以上である。 In step (1), it is preferable that a plurality of particles (a2) do not exist in a direction perpendicular to the surface of the plastic substrate. Here, the fact that a plurality of particles (a2) do not exist in the direction perpendicular to the surface of the plastic substrate means that 10 μm × 10 μm in the plane of the plastic substrate is observed with three fields of view with a scanning electron microscope (SEM). The ratio of the number of particles (a2) that do not overlap in the direction perpendicular to the surface is 80% or more, preferably 95% or more.
 なお、本発明においては、工程(1)の前に、プラスチック基材上に他の層を設けてもよい。プラスチック基材上に他の層を設けた場合には、工程(1)においては、この他の層上に層(a)を設け、以降の工程を行うものとする。他の層としてはハードコート層が好ましい。 In the present invention, another layer may be provided on the plastic substrate before the step (1). When another layer is provided on the plastic substrate, in step (1), the layer (a) is provided on this other layer, and the subsequent steps are performed. The other layer is preferably a hard coat layer.
(層(a))
 層(a)は、硬化性化合物(a1)と、粒子(a2)とを含む。
 層(a)は反射防止層を形成するための層である。
 層(a)に含まれる硬化性化合物(a1)は、硬化されることで、反射防止層のバインダー樹脂となり得るものである。
 層(a)に含まれる粒子(a2)は、反射防止フィルムにおいて、バインダー樹脂からなる膜の表面から突出し、凹凸形状(モスアイ構造)を形成する粒子である。
 なお、層(a)は工程(4)で硬化されるため、硬化前と硬化後で含有する成分が異なるが、本発明では便宜的にいずれの段階においても層(a)と呼ぶことがある。
 工程(1)における層(a)の膜厚は、粒子(a2)の平均一次粒径の0.8倍以上2.0倍以下であることが好ましく、0.8倍以上1.5倍以下であることがより好ましく、0.9倍以上1.2倍以下であることが更に好ましい。
(Layer (a))
The layer (a) contains a curable compound (a1) and particles (a2).
The layer (a) is a layer for forming an antireflection layer.
The curable compound (a1) contained in the layer (a) can be a binder resin for the antireflection layer by being cured.
The particles (a2) contained in the layer (a) are particles that protrude from the surface of the film made of the binder resin and form an uneven shape (moth eye structure) in the antireflection film.
In addition, since the layer (a) is cured in the step (4), the components contained before and after curing are different, but in the present invention, it may be referred to as the layer (a) at any stage for convenience. .
The film thickness of the layer (a) in the step (1) is preferably 0.8 times or more and 2.0 times or less, and 0.8 times or more and 1.5 times or less the average primary particle diameter of the particles (a2). It is more preferable that it is 0.9 times or more and 1.2 times or less.
 プラスチック基材、硬化性化合物(a1)、粒子(a2)については前述したものと同様である。 The plastic substrate, the curable compound (a1), and the particles (a2) are the same as those described above.
<溶剤>
 層(a)又は層(a)を形成するための組成物(A)は、溶剤を含んでいてもよい。
 溶剤としては、粒子(a2)と極性が近いものを選ぶのが分散性を向上させる観点で好ましい。具体的には、例えばアルコール系の溶剤が好ましく、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノールなどが挙げられる。また、例えば粒子(a2)が疎水化表面修飾がされた金属樹脂粒子の場合には、ケトン系、エステル系、カーボネート系、アルカン、芳香族系等の溶剤が好ましく、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチル、アセトン、メチレンクロライド、シクロヘキサノンなどが挙げられる。これらの溶剤は、分散性を著しく悪化させない範囲で複数種混ぜて用いてもかまわない。
<Solvent>
The composition (A) for forming the layer (a) or the layer (a) may contain a solvent.
A solvent having a polarity close to that of the particles (a2) is preferably used from the viewpoint of improving dispersibility. Specifically, for example, an alcohol solvent is preferable, and examples thereof include methanol, ethanol, 2-propanol, 1-propanol, butanol and the like. For example, when the particles (a2) are metal resin particles having a hydrophobic surface modified, solvents such as ketones, esters, carbonates, alkanes and aromatics are preferred, such as methyl ethyl ketone (MEK) and dimethyl carbonate. , Methyl acetate, acetone, methylene chloride, cyclohexanone and the like. These solvents may be used in a mixture of a plurality of types as long as the dispersibility is not significantly deteriorated.
<重合開始剤>
 層(a)又は層(a)を形成するための組成物(A)は、重合開始剤を含んでいてもよい。
 重合開始剤は、ラジカル重合開始剤であってもカチオン重合開始剤であってもよい。併用される重合性化合物の種類に応じて適切な重合開始剤を選択すればよい。重合開始剤としては、製造工程において施す重合処理の種類(加熱、光照射)に応じて、熱重合開始剤または光重合開始剤のいずれかを選択すればよい。また、熱重合開始剤と光重合開始剤と併用してもよい。
<Polymerization initiator>
The layer (a) or the composition (A) for forming the layer (a) may contain a polymerization initiator.
The polymerization initiator may be a radical polymerization initiator or a cationic polymerization initiator. An appropriate polymerization initiator may be selected according to the type of polymerizable compound used in combination. As the polymerization initiator, either a thermal polymerization initiator or a photopolymerization initiator may be selected according to the type of polymerization treatment (heating, light irradiation) performed in the production process. Moreover, you may use together a thermal-polymerization initiator and a photoinitiator.
 熱重合開始剤の構造については、特に限定されるものではない。熱重合開始剤の具体的態様としては、アゾ化合物、ヒドロキシルアミンエステル化合物、有機過酸化物、過酸化水素等を挙げることができる。有機過酸化物の具体例については、特許第5341155号公報段落0031に記載のものを挙げることができる。 The structure of the thermal polymerization initiator is not particularly limited. Specific examples of the thermal polymerization initiator include azo compounds, hydroxylamine ester compounds, organic peroxides, hydrogen peroxide, and the like. Specific examples of the organic peroxide include those described in Japanese Patent No. 5341155, paragraph 0031.
 アゾ化合物は、少なくとも1つのアゾ結合を含めばよく、アゾ結合とともに各種置換基を含むことができる。具体的には、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルイソブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド等のアゾニトリル化合物、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)等のアゾエステル化合物、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)等のアゾアミド化合物、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロキシクロライド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]等のアゾイミダゾリン化合物、2,2’-アゾビス(2,4,4-トリメチルペンタン等のアゾアルキル化合物、更にはアゾアミジン化合物、アゾ結合を有する繰り返し単位を含むポリマーの使用も可能である。アゾ化合物は、レドックス分解や誘発分解が生じにくい点等で好ましい熱重合開始剤である。 The azo compound may contain at least one azo bond, and may contain various substituents together with the azo bond. Specifically, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylisobutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 1- Azonitrile compounds such as [(1-cyano-1-methylethyl) azo] formamide, dimethyl 2,2′-azobis (2-methylpropionate), dimethyl 1,1′-azobis (1-cyclohexanecarboxylate), etc. 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis Azoamide compounds such as (N-cyclohexyl-2-methylpropionamide), 2,2′-azobis [2- [1- (2-hydroxyethyl)- -Imidazolin-2-yl] propane] dihydroxychloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and the like, 2,2′-azobis (2,4,4 -It is also possible to use an azoalkyl compound such as trimethylpentane, an azoamidine compound, or a polymer containing a repeating unit having an azo bond, which is a preferred thermal polymerization initiator because redox decomposition and induced decomposition are unlikely to occur. is there.
 また、ヒドロキシルアミンエステル化合物としては、特表2012-521573号公報に記載の式Iで表されるヒドロキシルアミンエステル化合物を挙げることができる。具体的な化合物を以下に示す。ただしこれらに限定されるものではない。 Further, examples of the hydroxylamine ester compound include a hydroxylamine ester compound represented by the formula I described in JP-A-2012-521573. Specific compounds are shown below. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 硬化性化合物(a1)が光重合性化合物である場合は、光重合開始剤を含むことが好ましい。
 光重合開始剤の構造については、特に限定されるものではない。具体的態様としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009-098658号公報の段落[0133]~[0151]に記載されており、本発明においても同様に好適に用いることができる。
When the curable compound (a1) is a photopolymerizable compound, it preferably contains a photopolymerization initiator.
The structure of the photopolymerization initiator is not particularly limited. Specific examples include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, fluoro Examples include amine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins. Specific examples, preferred embodiments, commercially available products, and the like of the photopolymerization initiator are described in paragraphs [0133] to [0151] of JP-A-2009-098658, and can be suitably used in the present invention as well. it can.
 「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65~148にも種々の例が記載されており本発明に有用である。 “Latest UV Curing Technology” {Technical Information Association, Inc.} (1991), p. 159, and “UV Curing System” written by Kiyomi Kato (published by the General Technology Center in 1989), p. Various examples are also described in 65 to 148 and are useful in the present invention.
 層(a)中の重合開始剤の含有量は、層(a)に含まれる重合可能な化合物を重合させるのに十分な量であり、かつ開始点が増えすぎないように設定するという理由から、層(a)中の全固形分に対して、0.1~8質量%が好ましく、0.5~5質量%がより好ましい。 The content of the polymerization initiator in the layer (a) is an amount sufficient to polymerize the polymerizable compound contained in the layer (a), and is set so as not to increase the starting point too much. The solid content in the layer (a) is preferably 0.1 to 8% by mass, and more preferably 0.5 to 5% by mass.
 層(a)には、上述した重合性官能基を有するシランカップリング剤を反応させるために光あるいは熱により酸又は塩基を発生する化合物(以下、光酸発生剤、光塩基発生剤、熱酸発生剤、熱塩基発生剤と称する場合がある。)を含んでいてもよい。 The layer (a) includes a compound that generates an acid or a base by light or heat in order to react with the silane coupling agent having a polymerizable functional group described above (hereinafter, photoacid generator, photobase generator, thermal acid. May be referred to as a generator or a thermal base generator).
<光酸発生剤>
 光酸発生剤としては、例えば、ジアゾニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、セレノニウム塩、アルソニウム塩等のオニウム塩、有機ハロゲン化合物、有機金属/有機ハロゲン化物、o-ニトロベンジル型保護基を有する光酸発生剤、イミノスルフォネ-ト等に代表される光分解してスルホン酸を発生する化合物、ジスルホン化合物、ジアゾケトスルホン、ジアゾジスルホン化合物等を挙げることができる。また、トリアジン類(例えば、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジンなど)、第四級アンモニウム塩類、ジアゾメタン化合物、イミドスルホネート化合物、オキシムスルホネート化合物を挙げることもできる。
 また、光により酸を発生する基、または化合物をポリマーの主鎖もしくは側鎖に導入した化合物を用いることができる。
 さらに、V.N.R.Pillai,Synthesis,(1),1(1980)、A.Abad et al.,Tetrahedron Lett.,(47)4555(1971)、D.H.R.Barton et al.,J.Chem.Soc.,(C),329(1970)、米国特許第3,779,778号、欧州特許第126,712号等に記載の光により酸を発生する化合物も使用することができる。
<Photo acid generator>
Examples of the photoacid generator include diazonium salts, ammonium salts, phosphonium salts, iodonium salts, sulfonium salts, selenonium salts, onium salts such as arsonium salts, organic halogen compounds, organic metal / organic halides, and o-nitrobenzyl type. Examples thereof include photoacid generators having a protecting group, compounds such as iminosulfonate, which generate photosulfonic acid by photolysis, disulfone compounds, diazoketosulfone, and diazodisulfone compounds. Further, triazines (for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine), quaternary ammonium salts, diazomethane compounds, imidosulfonate compounds, oximes Mention may also be made of sulfonate compounds.
Further, a group that generates an acid by light, or a compound in which a compound is introduced into the main chain or side chain of a polymer can be used.
Furthermore, V. N. R. Pillai, Synthesis, (1), 1 (1980), A.M. Abad et al. Tetrahedron Lett. , (47) 4555 (1971), D.M. H. R. Barton et al. , J .; Chem. Soc. , (C), 329 (1970), U.S. Pat. No. 3,779,778, European Patent No. 126,712, and the like, compounds that generate an acid by light can also be used.
<熱酸発生剤>
 熱酸発生剤としては、酸と有機塩基からなる塩を挙げることができる。
 上記の酸としては、スルホン酸、ホスホン酸、カルボン酸など有機酸や硫酸、リン酸のような無機酸が挙げられる。硬化性化合物(a1)に対する相溶性の観点からは、有機酸がより好ましく、スルホン酸、ホスホン酸が更に好ましく、スルホン酸が最も好ましい。好ましいスルホン酸としては、p-トルエンスルホン酸(PTS)、ベンゼンスルホン酸(BS)、p-ドデシルベンゼンスルホン酸(DBS)、p-クロロベンゼンスルホン酸(CBS)、1,4-ナフタレンジスルホン酸(NDS)、メタンスルホン酸(MsOH)、ノナフルオロブタン-1-スルホン酸(NFBS)などが挙げられる。
<Heat acid generator>
Examples of the thermal acid generator include salts composed of an acid and an organic base.
Examples of the acid include organic acids such as sulfonic acid, phosphonic acid, and carboxylic acid, and inorganic acids such as sulfuric acid and phosphoric acid. From the viewpoint of compatibility with the curable compound (a1), organic acids are more preferable, sulfonic acids and phosphonic acids are more preferable, and sulfonic acids are most preferable. Preferred sulfonic acids include p-toluenesulfonic acid (PTS), benzenesulfonic acid (BS), p-dodecylbenzenesulfonic acid (DBS), p-chlorobenzenesulfonic acid (CBS), 1,4-naphthalenedisulfonic acid (NDS). ), Methanesulfonic acid (MsOH), nonafluorobutane-1-sulfonic acid (NFBS), and the like.
 酸発生剤の具体例としては特開2016-803号に記載のものを好適に用いることができる。 As specific examples of the acid generator, those described in JP-A-2016-803 can be preferably used.
<光塩基発生剤>
 光塩基発生剤としては、活性エネルギー線の作用により塩基を発生する物質を挙げることができる。より具体的には、(1)紫外線、可視光、又は赤外線の照射により脱炭酸して分解する有機酸と塩基の塩、(2)分子内求核置換反応や転位反応などにより分解してアミン類を放出する化合物、あるいは(3)紫外線、可視光、又は赤外線の照射により何らかの化学反応を起こして塩基を放出するものを使用できる。
 本発明に用いられる光塩基発生剤は、紫外線、電子線、X線、赤外線および可視光線などの活性エネルギー線の作用により塩基を発生する物質であれば特に限定されない。
 具体的には特開2010-243773に記載のものを好適に用いる事ができる。
<Photobase generator>
Examples of the photobase generator include substances that generate a base by the action of active energy rays. More specifically, (1) a salt of an organic acid and a base that is decomposed by decarboxylation upon irradiation with ultraviolet light, visible light, or infrared light, and (2) an amine that is decomposed by an intramolecular nucleophilic substitution reaction or rearrangement reaction. A compound that releases a base, or (3) a compound that causes a chemical reaction upon irradiation with ultraviolet rays, visible light, or infrared rays to release a base can be used.
The photobase generator used in the present invention is not particularly limited as long as it is a substance that generates a base by the action of active energy rays such as ultraviolet rays, electron beams, X-rays, infrared rays and visible rays.
Specifically, those described in JP 2010-243773 can be suitably used.
 層(a)中の、光あるいは熱により酸や塩基を発生する化合物の含有量は、層(a)に含まれる重合可能な化合物を重合させるのに十分な量であり、かつ開始点が増えすぎないように設定するという理由から、層(a)中の全固形分に対して、0.1~8質量%が好ましく、0.1~5質量%がより好ましい。 The content of the compound that generates acid or base by light or heat in the layer (a) is sufficient to polymerize the polymerizable compound contained in the layer (a), and the starting point increases. For the reason that it is set so that it is not too much, it is preferably 0.1 to 8% by mass, more preferably 0.1 to 5% by mass, based on the total solid content in the layer (a).
 層(a)又は層(a)を形成するための組成物(A)は、更に、粒子(a2)の分散剤、レベリング剤、防汚剤などを含んでいてもよく、これらは前述したものと同様である。 The layer (a) or the composition (A) for forming the layer (a) may further contain a dispersing agent, a leveling agent, an antifouling agent, etc. of the particles (a2), which are described above. It is the same.
[工程(2)]
 工程(2)は、支持体及び支持体上にゲル分率が95.0%以上の粘着剤を含む層(b)を有する粘着フィルムの層(b)を、層(a)と貼り合わせる工程である。層(a)と粘着フィルムの層(b)とを貼り合わせる方法としては特に限定されず公知の方法を用いることができ、たとえばラミネート法が挙げられる。
 層(a)と層(b)とが接するように粘着フィルムを貼り合わせることが好ましい。
 工程(2)の前に、層(a)を乾燥する工程を有していてもよい。層(a)の乾燥温度は20~60℃が好ましく、20~40℃がより好ましい。乾燥時間は0.1~120秒が好ましく、1~30秒がより好ましい。
 本発明者らは、工程(2)において粘着フィルムの層(b)と層(a)とを貼り合わせ、後述する工程(3)において粒子(a2)を層(a)及び層(b)を合わせた層中に埋没し、かつ、層(a)のプラスチック基材側の界面とは反対側の界面から突出させ、後述する工程(4)において粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態で層(a)を硬化することで、粒子(a2)が層(a)の硬化前に空気界面に露出しないようにして、凝集を抑制し、粒子(a2)によって形成された良好な凹凸形状を作製できることを見出した。
[Step (2)]
Step (2) is a step of bonding a layer (b) of an adhesive film having a support and a layer (b) containing a pressure-sensitive adhesive having a gel fraction of 95.0% or more on the support and the layer (a). It is. The method for laminating the layer (a) and the layer (b) of the adhesive film is not particularly limited, and a known method can be used, for example, a laminating method.
The adhesive film is preferably bonded so that the layer (a) and the layer (b) are in contact with each other.
You may have the process of drying a layer (a) before a process (2). The drying temperature of the layer (a) is preferably 20 to 60 ° C, more preferably 20 to 40 ° C. The drying time is preferably from 0.1 to 120 seconds, more preferably from 1 to 30 seconds.
The inventors bonded the layer (b) and the layer (a) of the pressure-sensitive adhesive film in the step (2), and in the step (3) described later, the particles (a2) were changed into the layer (a) and the layer (b). In the step (4) to be described later, the particles (a2) are buried in the layers (a) and ( b) curing the layer (a) in a state where it is embedded in the combined layer, so that the particles (a2) are not exposed to the air interface before the layer (a) is cured, thereby suppressing aggregation. It has been found that a good uneven shape formed by (a2) can be produced.
(粘着フィルム)
 粘着フィルムは、支持体とゲル分率が95.0%以上の粘着剤からなる層(b)とを有する。
(Adhesive film)
The pressure-sensitive adhesive film has a support and a layer (b) made of a pressure-sensitive adhesive having a gel fraction of 95.0% or more.
<層(b)>
 層(b)は、ゲル分率が95.0%以上の粘着剤からなる。
 粘着剤のゲル分率が95.0%以上であることで、粘着フィルムを剥離して反射防止フィルムを製造する際に、粘着剤成分が反射防止フィルム表面に残りにくく、洗浄を行わなくても、十分に反射率が低い反射防止フィルムを得ることができる。
 粘着剤のゲル分率は、95.0%以上99.9%以下であることが好ましく、97.0%以上99.9%以下であることがより好ましく、98.0%以上99.9%以下であることが更に好ましい。
 粘着剤のゲル分率は、粘着剤を、25℃で、テトラヒドロフラン(THF)に12時間浸漬した後の不溶解分の比率であり、下記式から求められる。
 ゲル分率=(粘着剤のTHFへの不溶解分の質量)/(粘着剤の総質量)×100(%)
<Layer (b)>
The layer (b) is made of an adhesive having a gel fraction of 95.0% or more.
When the gel fraction of the pressure-sensitive adhesive is 95.0% or more, the pressure-sensitive adhesive component hardly remains on the surface of the anti-reflective film when peeling off the pressure-sensitive adhesive film to produce an anti-reflective film. An antireflection film having a sufficiently low reflectance can be obtained.
The gel fraction of the pressure-sensitive adhesive is preferably 95.0% or more and 99.9% or less, more preferably 97.0% or more and 99.9% or less, and 98.0% or more and 99.9%. More preferably, it is as follows.
The gel fraction of the pressure-sensitive adhesive is a ratio of insoluble matter after the pressure-sensitive adhesive is immersed in tetrahydrofuran (THF) at 25 ° C. for 12 hours, and is obtained from the following formula.
Gel fraction = (mass of insoluble matter in adhesive in THF) / (total mass of adhesive) × 100 (%)
 粘着剤におけるゾル成分の重量平均分子量が10000以下であることが好ましく、7000以下であることがより好ましく、5000以下であることが最も好ましい。ゾル成分の重量平均分子量を上記範囲にすることによって粘着フィルムを剥離して反射防止フィルムを製造する際に、粘着剤成分が反射防止フィルム表面に残りにくくすることができる。
 粘着剤のゾル成分は、粘着剤を、25℃で、テトラヒドロフラン(THF)に12時間浸漬した後のTHFへの溶解分を表す。重量平均分子量はゲル浸透クロマトグラフィー(GPC)で分析することができる。
The weight average molecular weight of the sol component in the pressure-sensitive adhesive is preferably 10,000 or less, more preferably 7000 or less, and most preferably 5000 or less. By making the weight average molecular weight of the sol component within the above range, the pressure-sensitive adhesive component can be made difficult to remain on the surface of the antireflection film when the pressure-sensitive adhesive film is peeled off to produce the antireflection film.
The sol component of the pressure-sensitive adhesive represents the amount dissolved in THF after the pressure-sensitive adhesive is immersed in tetrahydrofuran (THF) at 25 ° C. for 12 hours. The weight average molecular weight can be analyzed by gel permeation chromatography (GPC).
 層(b)の膜厚は0.1μm以上50μm以下であることが好ましく、1μm以上30μm以下であることがより好ましく、1μm以上20μm以下であることが更に好ましい。 The film thickness of the layer (b) is preferably from 0.1 μm to 50 μm, more preferably from 1 μm to 30 μm, and still more preferably from 1 μm to 20 μm.
 層(b)は、剥離速度0.3m/minでの被着体の表面に対する剥離強度(粘着力)が、0.03~0.3N/25mm程度の、微粘着力を有する粘着剤層であることが、被着体である層(a)から粘着フィルムを剥がす時の操作性に優れることから好ましい。 The layer (b) is a pressure-sensitive adhesive layer having a slight adhesive strength with a peel strength (adhesive strength) of about 0.03 to 0.3 N / 25 mm with respect to the surface of the adherend at a peel rate of 0.3 m / min. It is preferable that it is excellent in operability when the adhesive film is peeled off from the layer (a) as the adherend.
 粘着剤としては、重合体を含むことが好ましく、(メタ)アクリル系重合体を含むことがより好ましい。特に、アルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルモノマーの少なくとも1種のモノマーの重合体(2種以上のモノマーの場合は共重合体)が好ましい。(メタ)アクリル系重合体の重量平均分子量は、20万~200万であることが好ましい。 The pressure-sensitive adhesive preferably contains a polymer, and more preferably contains a (meth) acrylic polymer. In particular, a polymer of at least one monomer of a (meth) acrylic acid alkyl ester monomer having 1 to 18 carbon atoms in the alkyl group (a copolymer in the case of two or more monomers) is preferable. The weight average molecular weight of the (meth) acrylic polymer is preferably 200,000 to 2,000,000.
 アルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソセチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート等のアルキル(メタ)アクリレートモノマーが挙げられる。アルキル(メタ)アクリレートモノマーのアルキル基は、直鎖、分枝状、環状のいずれでもよい。上記モノマーは2種以上併用されてもよい。 Examples of (meth) acrylic acid alkyl ester monomers having 1 to 18 carbon atoms in the alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth) acrylate. , Pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate , Decyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, isomyristyl (meth) acrylate, isocetyl (meth) acrylate, isostearyl (Meth) acrylate, myristyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) Examples include alkyl (meth) acrylate monomers such as acrylate. The alkyl group of the alkyl (meth) acrylate monomer may be linear, branched or cyclic. Two or more of the above monomers may be used in combination.
 脂肪族環を有する(メタ)アクリレートモノマーの好適な例としては、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。中でもシクロヘキシル(メタ)アクリレートであることが特に好ましい。 Preferable examples of the (meth) acrylate monomer having an aliphatic ring include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, isobornyl (meth) acrylate and the like. Of these, cyclohexyl (meth) acrylate is particularly preferable.
 (メタ)アクリル系重合体は、アルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルモノマーの少なくとも1種と、他の共重合性モノマーの少なくとも1種とからなる共重体であってもよい。この場合、他の共重合性モノマーとしては、水酸基、カルボキシル基、及びアミノ基から選ばれる少なくとも1種の基を含有する共重合性ビニルモノマー、ビニル基を有する共重合性ビニルモノマー、芳香族系モノマー等が挙げられる。 The (meth) acrylic polymer is a copolymer composed of at least one (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 18 carbon atoms and at least one other copolymerizable monomer. May be. In this case, the other copolymerizable monomers include a copolymerizable vinyl monomer containing at least one group selected from a hydroxyl group, a carboxyl group, and an amino group, a copolymerizable vinyl monomer having a vinyl group, and an aromatic group. And monomers.
 水酸基を含有する共重合性ビニルモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル類、及び、N-ヒドロキシ(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド等の水酸基含有(メタ)アクリルアミド類などが挙げられ、これらの化合物群の中から選択された、少なくとも1種であることが好ましい。 Examples of the copolymerizable vinyl monomer containing a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6- Hydroxyl-containing (meth) acrylic esters such as hydroxyhexyl (meth) acrylate and 8-hydroxyoctyl (meth) acrylate, and N-hydroxy (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl Examples include hydroxyl group-containing (meth) acrylamides such as (meth) acrylamide, and preferably at least one selected from these compound groups.
 (メタ)アクリル系重合体の100質量部に対して、水酸基を含有する共重合性ビニルモノマーを0.1~15質量部含有することが好ましい。 It is preferable to contain 0.1 to 15 parts by mass of a copolymerizable vinyl monomer containing a hydroxyl group with respect to 100 parts by mass of the (meth) acrylic polymer.
 カルボキシル基を含有する共重合性ビニルモノマーとしては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレートからなどが挙げられ、これらの化合物群の中から選択された、少なくとも1種であることが好ましい。 Examples of the copolymerizable vinyl monomer containing a carboxyl group include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, and the like. Preferably, at least one selected from these compound groups is used.
 (メタ)アクリル共重合体の100質量部に対して、カルボキシル基を含有する共重合性ビニルモノマーを0.1~2質量部含有することが好ましい。 It is preferable to contain 0.1 to 2 parts by mass of a copolymerizable vinyl monomer containing a carboxyl group with respect to 100 parts by mass of the (meth) acrylic copolymer.
 アミノ基を含有する共重合性ビニルモノマーとしては、モノメチルアミノエチル(メタ)アクリレート、モノエチルアミノエチル(メタ)アクリレート、モノメチルアミノプロピル(メタ)アクリレート、モノエチルアミノプロピル(メタ)アクリレート等のモノアルキルアミノアルキル(メタ)アクリレート等が挙げられる。 Examples of copolymerizable vinyl monomers containing amino groups include monoalkylaminoethyl (meth) acrylate, monoethylaminoethyl (meth) acrylate, monomethylaminopropyl (meth) acrylate, monoalkylaminopropyl (meth) acrylate, and other monoalkyl An aminoalkyl (meth) acrylate etc. are mentioned.
 芳香族系モノマーとしては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香族基含有(メタ)アクリル酸エステル類のほか、スチレン等が挙げられる。 Examples of aromatic monomers include styrene in addition to aromatic group-containing (meth) acrylic esters such as benzyl (meth) acrylate and phenoxyethyl (meth) acrylate.
 上記以外の共重合性ビニルモノマーとしては、アクリルアミド、アクリロニトリル、メチルビニルエーテル、エチルビニルエーテル、酢酸ビニル、塩化ビニルなどの各種ビニルモノマーが挙げられる。 Examples of copolymerizable vinyl monomers other than the above include various vinyl monomers such as acrylamide, acrylonitrile, methyl vinyl ether, ethyl vinyl ether, vinyl acetate, and vinyl chloride.
 粘着剤は、粘着剤を形成するための組成物(粘着剤組成物ともいう)の硬化物を含むものであってもよい。
 粘着剤組成物は、上記重合体と架橋剤とを含むことが好ましく、熱又は紫外線(UV)などを用いて架橋しても良い。架橋剤としては、2官能以上のイソシアネート系架橋剤、2官能以上のエポキシ系架橋剤、アルミニウムキレート系架橋剤からなる化合物群のうちから選択される1種以上の架橋剤が好ましい。架橋剤を用いる場合は、粘着フィルムを剥離して反射防止フィルムを製造する際に、粘着剤成分を反射防止フィルム表面に残りにくくする観点から、上記重合体の100質量部に対して、0.1~15質量部含有することが好ましく、3.5~15質量部含有することがより好ましく、5.1~10質量部含有することが更に好ましい。
The pressure-sensitive adhesive may include a cured product of a composition for forming the pressure-sensitive adhesive (also referred to as a pressure-sensitive adhesive composition).
The pressure-sensitive adhesive composition preferably contains the polymer and a cross-linking agent, and may be cross-linked using heat, ultraviolet light (UV) or the like. As the crosslinking agent, one or more kinds of crosslinking agents selected from the group consisting of a bifunctional or higher functional isocyanate crosslinking agent, a bifunctional or higher epoxy crosslinking agent, and an aluminum chelate crosslinking agent are preferable. When using a crosslinking agent, when peeling an adhesive film and manufacturing an antireflection film, from a viewpoint of making an adhesive component hard to remain on the surface of an antireflection film, it is 0. The content is preferably 1 to 15 parts by mass, more preferably 3.5 to 15 parts by mass, and still more preferably 5.1 to 10 parts by mass.
 2官能以上のイソシアネート系化合物としては、1分子中に少なくとも2個以上のイソシアネート(NCO)基を有するポリイソシアネート化合物であればよく、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート等のジイソシアネート類(1分子中に2個のNCO基を有する化合物)のビュレット変性体、及びイソシアヌレート変性体、トリメチロールプロパン又はグリセリン等の3価以上のポリオール(1分子中に少なくとも3個以上のOH基を有する化合物)とのアダクト体(ポリオール変性体)などが挙げられる。
 また、3官能以上のイソシアネート化合物が、1分子中に少なくとも3個以上のイソシアネート(NCO)基を有するポリイソシアネート化合物であり、特にヘキサメチレンジイソシアネート化合物のイソシアヌレート体、イソホロンジイソシアネート化合物のイソシアヌレート体、ヘキサメチレンジイソシアネート化合物のアダクト体、イソホロンジイソシアネート化合物のアダクト体、ヘキサメチレンジイソシアネート化合物のビュレット体、イソホロンジイソシアネート化合物のビュレット体からなる化合物群の中から選択された、少なくとも一種以上であることが好ましい。
 2官能以上のイソシアネート系架橋剤は、重合体100質量部に対して、0.01~5.0質量部含まれることが好ましく、0.02~3.0質量部含まれることがより好ましい。
The bifunctional or higher isocyanate compound may be a polyisocyanate compound having at least two isocyanate (NCO) groups in one molecule, such as hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diene. Burette modified products of diisocyanates such as isocyanate (compounds having two NCO groups in one molecule) and trivalent or higher polyols such as isocyanurate modified products, trimethylolpropane or glycerin (at least 3 in one molecule) And adduct bodies (polyol-modified bodies) with the above-mentioned compounds having an OH group.
Further, the trifunctional or higher functional isocyanate compound is a polyisocyanate compound having at least three isocyanate (NCO) groups in one molecule, in particular, an isocyanurate body of a hexamethylene diisocyanate compound, an isocyanurate body of an isophorone diisocyanate compound, At least one selected from the group consisting of adducts of hexamethylene diisocyanate compounds, adducts of isophorone diisocyanate compounds, burettes of hexamethylene diisocyanate compounds, and burettes of isophorone diisocyanate compounds is preferred.
The bifunctional or higher functional isocyanate-based crosslinking agent is preferably contained in an amount of 0.01 to 5.0 parts by mass, more preferably 0.02 to 3.0 parts by mass with respect to 100 parts by mass of the polymer.
 粘着剤組成物は、帯電防止性能を付与するため、帯電防止剤を含有してもよい。帯電防止剤はイオン化合物であることが好ましく4級オニウム塩であることがさらに好ましい。 The pressure-sensitive adhesive composition may contain an antistatic agent in order to impart antistatic performance. The antistatic agent is preferably an ionic compound, more preferably a quaternary onium salt.
 4級オニウム塩である帯電防止剤としては、例えば、炭素数8~18のアルキル基を有するアルキルジメチルベンジルアンモニウム塩、炭素数8~18のアルキル基を有するジアルキルメチルベンジルアンモニウム塩、炭素数8~18のアルキル基を有するトリアルキルベンジルアンモニウム塩、炭素数8~18のアルキル基を有するテトラアルキルアンモニウム塩、炭素数8~18のアルキル基を有するアルキルジメチルベンジルホスホニウム塩、炭素数8~18のアルキル基を有するジアルキルメチルベンジルホスホニウム塩、炭素数8~18のアルキル基を有するトリアルキルベンジルホスホニウム塩、炭素数8~18のアルキル基を有するテトラアルキルホスホニウム塩、炭素数14~20のアルキル基を有するアルキルトリメチルアンモニウム塩、炭素数14~20のアルキル基を有するアルキルジメチルエチルアンモニウム塩などを用いることができる。これらのアルキル基は、不飽和結合を有するアルケニル基であってもよい。 Examples of the antistatic agent that is a quaternary onium salt include alkyldimethylbenzylammonium salts having an alkyl group having 8 to 18 carbon atoms, dialkylmethylbenzylammonium salts having an alkyl group having 8 to 18 carbon atoms, and 8 to 8 carbon atoms. Trialkylbenzylammonium salt having 18 alkyl groups, tetraalkylammonium salt having an alkyl group having 8 to 18 carbon atoms, alkyldimethylbenzylphosphonium salt having an alkyl group having 8 to 18 carbon atoms, alkyl having 8 to 18 carbon atoms Having a dialkylmethylbenzylphosphonium salt having a group, a trialkylbenzylphosphonium salt having an alkyl group having 8 to 18 carbon atoms, a tetraalkylphosphonium salt having an alkyl group having 8 to 18 carbon atoms, and an alkyl group having 14 to 20 carbon atoms Alkyl trimethyl Ammonium salts, alkyl dimethyl ethyl ammonium salt having an alkyl group having 14 to 20 carbon atoms can be used. These alkyl groups may be alkenyl groups having an unsaturated bond.
 炭素数8~18のアルキル基としては、オクチル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基などが挙げられる。天然油脂に由来する混合アルキル基であってもよい。炭素数8~18のアルケニル基としては、オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、オレイル基、リノレイル基などが挙げられる。
 炭素数14~20のアルキル基としては、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基などが挙げられる。天然油脂に由来する混合アルキル基であってもよい。炭素数14~20のアルケニル基としては、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、オレイル基、リノレイル基、ノナデセニル基、イコセニル基などが挙げられる。
Examples of the alkyl group having 8 to 18 carbon atoms include octyl group, nonyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and the like. It may be a mixed alkyl group derived from natural fats and oils. Examples of the alkenyl group having 8 to 18 carbon atoms include octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, oleyl group, and linoleyl group. .
Examples of the alkyl group having 14 to 20 carbon atoms include a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, and an icosyl group. It may be a mixed alkyl group derived from natural fats and oils. Examples of the alkenyl group having 14 to 20 carbon atoms include a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, an oleyl group, a linoleyl group, a nonadecenyl group, and an icosenyl group.
 4級オニウム塩のカウンターアニオンとしては、クロリド(Cl)、ブロミド(Br)、メチルサルフェート(CHOSO )、エチルサルフェート(COSO )、パラトルエンスルホネート(p-CHSO )等が挙げられる。 Counter anions of quaternary onium salts include chloride (Cl ), bromide (Br ), methyl sulfate (CH 3 OSO 3 ), ethyl sulfate (C 2 H 5 OSO 3 ), paratoluenesulfonate (p— CH 3 C 6 H 4 SO 3 ) and the like.
 4級オニウム塩の具体例としては、ドデシルジメチルベンジルアンモニウムクロリド、ドデシルジメチルベンジルアンモニウムブロミド、テトラデシルジメチルベンジルアンモニウムクロリド、テトラデシルジメチルベンジルアンモニウムブロミド、ヘキサデシルジメチルベンジルアンモニウムクロリド、ヘキサデシルジメチルベンジルアンモニウムブロミド、オクタデシルジメチルベンジルアンモニウムクロリド、オクタデシルジメチルベンジルアンモニウムブロミド、トリオクチルベンジルアンモニウムクロリド、トリオクチルベンジルアンモニウムブロミド、トリオクチルベンジルホスホニウムクロリド、トリオクチルベンジルホスホニウムブロミド、トリス(デシル)ベンジルアンモニウムクロリド、トリス(デシル)ベンジルアンモニウムブロミド、トリス(デシル)ベンジルホスホニウムクロリド、トリス(デシル)ベンジルホスホニウムブロミド、テトラオクチルアンモニウムクロリド、テトラオクチルアンモニウムブロミド、テトラオクチルホスホニウムクロリド、テトラオクチルホスホニウムブロミド、テトラノニルアンモニウムクロリド、テトラノニルアンモニウムブロミド、テトラノニルホスホニウムクロリド、テトラノニルホスホニウムブロミド、テトラキス(デシル)アンモニウムクロリド、テトラキス(デシル)アンモニウムブロミド、テトラキス(デシル)ホスホニウムクロリド、テトラキス(デシル)ホスホニウムブロミド、等が挙げられる。 Specific examples of the quaternary onium salt include dodecyldimethylbenzylammonium chloride, dodecyldimethylbenzylammonium bromide, tetradecyldimethylbenzylammonium chloride, tetradecyldimethylbenzylammonium bromide, hexadecyldimethylbenzylammonium chloride, hexadecyldimethylbenzylammonium bromide, Octadecyldimethylbenzylammonium chloride, octadecyldimethylbenzylammonium bromide, trioctylbenzylammonium chloride, trioctylbenzylammonium bromide, trioctylbenzylphosphonium chloride, trioctylbenzylphosphonium bromide, tris (decyl) benzylammonium chloride, tris (decyl) benzyla Monium bromide, tris (decyl) benzylphosphonium chloride, tris (decyl) benzylphosphonium bromide, tetraoctylammonium chloride, tetraoctylammonium bromide, tetraoctylphosphonium chloride, tetraoctylphosphonium bromide, tetranonylammonium chloride, tetranonylammonium bromide, tetra Nonylphosphonium chloride, tetranonylphosphonium bromide, tetrakis (decyl) ammonium chloride, tetrakis (decyl) ammonium bromide, tetrakis (decyl) phosphonium chloride, tetrakis (decyl) phosphonium bromide, and the like.
 なお、「トリス(デシル)」、「テトラキス(デシル)」は、炭素数10のアルキル基であるデシル基を3個又は4個有することを意味し、炭素数13のアルキル基であるトリデシル基、及び炭素数14のアルキル基であるテトラデシル基とは区別される。 "Tris (decyl)" and "tetrakis (decyl)" mean having 3 or 4 decyl groups, which are alkyl groups having 10 carbon atoms, and a tridecyl group, which is an alkyl group having 13 carbon atoms, And a tetradecyl group which is an alkyl group having 14 carbon atoms.
 帯電防止剤としては、他にノニオン系、カチオン系、アニオン系、両性系の界面活性剤、イオン性液体、アルカリ金属塩、金属酸化物、金属微粒子、導電性ポリマー、カーボン、カーボンナノチューブなども用いることができる。 Other antistatic agents include nonionic, cationic, anionic and amphoteric surfactants, ionic liquids, alkali metal salts, metal oxides, fine metal particles, conductive polymers, carbon, carbon nanotubes, etc. be able to.
 ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、ポリオキシエチレン脂肪酸エステル類、グリセリン脂肪酸エステル類、プロピレングリコール脂肪酸エステル類、ポリオキシアルキレン変性シリコーン類などが挙げられる。 Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene fatty acid esters, glycerin fatty acid esters, propylene glycol Examples include fatty acid esters and polyoxyalkylene-modified silicones.
 アニオン界面活性剤としては、モノアルキル硫酸塩類、アルキルポリオキシエチレン硫酸塩類、アルキルベンゼンスルホン酸塩類、モノアルキルリン酸塩類などが挙げられる。 Examples of the anionic surfactant include monoalkyl sulfates, alkyl polyoxyethylene sulfates, alkylbenzene sulfonates, and monoalkyl phosphates.
 また、両性界面活性剤としては、アルキルジメチルアミンオキシド、アルキルカルボキシベタインなどが挙げられる。
 イオン性液体としては、陰イオンと陽イオンとから成り、常温(例えば25℃)で液体である非高分子物質である。陽イオン部分としては、イミダゾリウムイオンなどの環状アミジンイオン、ピリジニウムイオン、アンモニウムイオン、スルホニウムイオン、ホスホニウムイオン等が挙げられる。また、陰イオン部分としては、C2n+1COO、C2n+1COO、NO 、C2n+1SO 、(C2n+1SO、(C2n+1SO、PO 2-、AlCl 、AlCl 、ClO 、BF 、PF 、AsF 、SbF 等が挙げられる。
Examples of the amphoteric surfactant include alkyl dimethylamine oxide and alkyl carboxybetaine.
The ionic liquid is a non-polymeric substance that is composed of anions and cations and is liquid at room temperature (for example, 25 ° C.). Examples of the cation moiety include cyclic amidine ions such as imidazolium ions, pyridinium ions, ammonium ions, sulfonium ions, phosphonium ions, and the like. In addition, as the anion portion, C n H 2n + 1 COO , C n F 2n + 1 COO , NO 3 , C n F 2n + 1 SO 3 , (C n F 2n + 1 SO 2 ) 2 N , (C n F 2n + 1 SO 2 ) 3 C , PO 4 2− , AlCl 4 , Al 2 Cl 7 , ClO 4 , BF 4 , PF 6 , AsF 6 , SbF 6 − and the like.
 アルカリ金属塩としては、リチウム、ナトリウム、カリウムからなる金属塩などが挙げられ、イオン性物質の安定化のため、ポリオキシアルキレン構造を含有する化合物を添加しても良い。 Examples of the alkali metal salt include metal salts composed of lithium, sodium, and potassium, and a compound containing a polyoxyalkylene structure may be added to stabilize the ionic substance.
 帯電防止剤は、重合体100質量部に対して、0.1~10質量部含有することが好ましい。 The antistatic agent is preferably contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer.
 粘着剤組成物は、さらに帯電防止補助剤としてHLBが7~15のポリエーテル変性シロキサン化合物を含有することもできる。
 HLBとは、例えばJIS K3211(界面活性剤用語)等で規定する親水親油バランス(親水性親油性比)である。
The pressure-sensitive adhesive composition may further contain a polyether-modified siloxane compound having an HLB of 7 to 15 as an antistatic aid.
HLB is a hydrophilic / lipophilic balance (hydrophilic / lipophilic ratio) defined by, for example, JIS K3211 (surfactant term).
 粘着剤組成物は、さらに架橋促進剤を含有することもできる。架橋促進剤は、ポリイソシアネート化合物を架橋剤とする場合に、共重合体と架橋剤との反応(架橋反応)に対して触媒として機能する物質であればよく、第三級アミン等のアミン系化合物、金属キレート化合物、有機錫化合物、有機鉛化合物、有機亜鉛化合物等の有機金属化合物等が挙げられる。本発明では、架橋促進剤として、金属キレート化合物又は有機錫化合物が好ましい。 The pressure-sensitive adhesive composition can further contain a crosslinking accelerator. The crosslinking accelerator may be any substance that functions as a catalyst for the reaction between the copolymer and the crosslinking agent (crosslinking reaction) when a polyisocyanate compound is used as the crosslinking agent. And organic metal compounds such as compounds, metal chelate compounds, organic tin compounds, organic lead compounds, and organic zinc compounds. In the present invention, a metal chelate compound or an organic tin compound is preferable as the crosslinking accelerator.
 金属キレート化合物としては、中心金属原子Mに、1以上の多座配位子Lが結合した化合物である。金属キレート化合物は、金属原子Mに結合する1以上の単座配位子Xを有してもよく、有しなくてもよい。例えば、金属原子Mが1つである金属キレート化合物の一般式を、M(L)(X)で表すとき、m≧1、n≧0である。mが2以上の場合、m個のLは同一の配位子でもよく、異なる配位子でもよい。nが2以上の場合、n個のXは同一の配位子でもよく、異なる配位子でもよい。 The metal chelate compound is a compound in which one or more multidentate ligands L are bonded to the central metal atom M. The metal chelate compound may or may not have one or more monodentate ligands X bonded to the metal atom M. For example, when the general formula of a metal chelate compound having one metal atom M is represented by M (L) m (X) n , m ≧ 1 and n ≧ 0. When m is 2 or more, the m Ls may be the same ligand or different ligands. When n is 2 or more, the n Xs may be the same ligand or different ligands.
 金属原子Mとしては、Fe,Ni,Mn,Cr,V,Ti,Ru,Zn,Al,Zr,Sn等が挙げられる。多座配位子Lとしては、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸オクチル、アセト酢酸オレイル、アセト酢酸ラウリル、アセト酢酸ステアリル等のβ-ケトエステル、アセチルアセトン(別名2,4-ペンタンジオン)、2,4-ヘキサンジオン、ベンゾイルアセトン等のβ-ジケトンが挙げられる。これらは、ケトエノール互変異性体化合物であり、多座配位子Lにおいてはエノールが脱プロトンしたエノラート(例えばアセチルアセトネート)であってもよい。 Examples of the metal atom M include Fe, Ni, Mn, Cr, V, Ti, Ru, Zn, Al, Zr, and Sn. Examples of the multidentate ligand L include methyl acetoacetate, ethyl acetoacetate, octyl acetoacetate, oleyl acetoacetate, lauryl acetoacetate, stearyl acetoacetate, acetylacetone (also known as 2,4-pentanedione), 2 Β-diketones such as 1,4-hexanedione and benzoylacetone. These are ketoenol tautomeric compounds, and the polydentate ligand L may be an enolate (for example, acetylacetonate) in which enol is deprotonated.
 単座配位子Xとしては、塩素原子、臭素原子等のハロゲン原子、ペンタノイル基、ヘキサノイル基、2-エチルヘキサノイル基、オクタノイル基、ノナノイル基、デカノイル基、ドデカノイル基、オクタデカノイル基等のアシルオキシ基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、ブトキシ基等のアルコキシ基などが挙げられる。 The monodentate ligand X includes halogen atoms such as chlorine atom and bromine atom, acyloxy such as pentanoyl group, hexanoyl group, 2-ethylhexanoyl group, octanoyl group, nonanoyl group, decanoyl group, dodecanoyl group and octadecanoyl group. Group, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, butoxy group and other alkoxy groups.
 金属キレート化合物の具体例としては、トリス(2,4-ペンタンジオナト)鉄(III)、鉄トリスアセチルアセトネート、チタニウムトリスアセチルアセトネート、ルテニウムトリスアセチルアセトネート、亜鉛ビスアセチルアセトネート、アルミニウムトリスアセチルアセトネート、ジルコニウムテトラキスアセチルアセトネート、トリス(2,4-ヘキサンジオナト)鉄(III)、ビス(2,4-ヘキサンジオナト)亜鉛、トリス(2,4-ヘキサンジオナト)チタン、トリス(2,4-ヘキサンジオナト)アルミニウム、テトラキス(2,4-ヘキサンジオナト)ジルコニウム等が挙げられる。 Specific examples of the metal chelate compound include tris (2,4-pentandionato) iron (III), iron trisacetylacetonate, titanium trisacetylacetonate, ruthenium trisacetylacetonate, zinc bisacetylacetonate, aluminum tris Acetylacetonate, zirconium tetrakisacetylacetonate, tris (2,4-hexanedionato) iron (III), bis (2,4-hexanedionato) zinc, tris (2,4-hexanedionato) titanium, tris (2,4-hexanedionato) aluminum, tetrakis (2,4-hexanedionato) zirconium and the like.
 有機錫化合物としては、ジアルキル錫オキシド、ジアルキル錫の脂肪酸塩、第1錫の脂肪酸塩等が挙げられる。ジオクチル錫化合物等の長鎖アルキル錫化合物が好ましい。具体的な有機錫化合物としては、ジオクチル錫オキシド、ジオクチル錫ジラウレート等が挙げられる。 Examples of the organic tin compound include dialkyl tin oxide, fatty acid salt of dialkyl tin, fatty acid salt of stannous and the like. Long chain alkyl tin compounds such as dioctyl tin compounds are preferred. Specific examples of the organic tin compound include dioctyl tin oxide and dioctyl tin dilaurate.
 架橋促進剤は、共重合体の100質量部に対して、0.001~0.5質量部含まれることが好ましい。 The crosslinking accelerator is preferably contained in an amount of 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the copolymer.
<支持体>
 粘着フィルムにおける支持体について説明する。
 支持体としては、透明性及び可撓性を有する樹脂からなるプラスチックフィルムが好ましく用いられる。支持体用のプラスチックフィルムとしては、好適には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレートのようなポリエステルフィルム、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、環状ポリオレフィン系樹脂、セルロースアシレート等のセルロース系樹脂等からなるフィルムが挙げられる。ただし、上記(メタ)アクリル系樹脂は、ラクトン環構造を有する重合体、無水グルタル酸環構造を有する重合体、グルタルイミド環構造を有する重合体を含む。
 このほか、必要な強度を有しかつ光学適性を有するものであれば、他のプラスチックフィルムも使用可能である。支持体は、無延伸フィルムであっても、一軸または二軸延伸されていてもよく、また、延伸倍率又は延伸の結晶化に伴い形成される軸方法の角度を制御したプラスチックフィルムでもよい。
<Support>
The support in an adhesive film is demonstrated.
As the support, a plastic film made of a resin having transparency and flexibility is preferably used. The plastic film for the support is preferably a polyester film such as polyethylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, (meth) acrylic resin, polycarbonate resin, polystyrene resin, polyolefin resin. Examples thereof include films made of a resin, a cyclic polyolefin resin, a cellulose resin such as cellulose acylate, and the like. However, the (meth) acrylic resin includes a polymer having a lactone ring structure, a polymer having a glutaric anhydride ring structure, and a polymer having a glutarimide ring structure.
In addition, other plastic films can be used as long as they have necessary strength and optical suitability. The support may be an unstretched film, may be uniaxially or biaxially stretched, and may be a plastic film in which the stretching ratio or the angle of the axial method formed with crystallization of stretching is controlled.
 支持体としては、紫外線透過性を有するものが好ましい。紫外線透過性を有することで、工程(4)において層(a)を硬化する際、塗工層側から紫外線照射が可能になるため、製造適性上好ましい。
 具体的には、支持体の波長250nm~300nmにおける最大透過率が20%以上であることが好ましく、40%以上であることがさらに好ましく、60%以上であることが最も好ましい。波長250nm~300nmにおける最大透過率が20%以上であると塗工層側から紫外線を照射して層(a)を硬化させやすく好ましい。
 また、支持体上に層(b)を形成した粘着フィルムの波長250nm~300nmにおける最大透過率が20%以上であることが好ましく、40%以上であることがさらに好ましく、60%以上であることが最も好ましい。
As the support, those having ultraviolet transparency are preferable. By having ultraviolet transparency, when layer (a) is cured in step (4), it becomes possible to irradiate ultraviolet rays from the coating layer side, which is preferable in terms of production suitability.
Specifically, the maximum transmittance of the support at a wavelength of 250 nm to 300 nm is preferably 20% or more, more preferably 40% or more, and most preferably 60% or more. It is preferable that the maximum transmittance at a wavelength of 250 nm to 300 nm is 20% or more because the layer (a) is easily cured by irradiating ultraviolet rays from the coating layer side.
Further, the maximum transmittance at a wavelength of 250 nm to 300 nm of the pressure-sensitive adhesive film having the layer (b) formed on the support is preferably 20% or more, more preferably 40% or more, and 60% or more. Is most preferred.
 支持体の膜厚は特に限定されないが、10μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましく、10μm以上40μm以下であることが更に好ましい。 The film thickness of the support is not particularly limited, but is preferably 10 μm or more and 100 μm or less, more preferably 10 μm or more and 50 μm or less, and further preferably 10 μm or more and 40 μm or less.
 支持体上に層(b)を形成した粘着フィルムとしては、市販の保護フィルムを好適に用いることができる。具体的には、藤森工業(株)製のAS3-304、AS3-305、AS3-306、AS3-307、AS3-310、AS3-0421、AS3-0520、AS3-0620、LBO-307、NBO-0424、ZBO-0421、S-362、TFB-4T3-367AS等が挙げられる。 A commercially available protective film can be suitably used as the adhesive film having the layer (b) formed on the support. Specifically, AS3-304, AS3-305, AS3-306, AS3-307, AS3-310, AS3-0421, AS3-0520, AS3-0620, LBO-307, NBO- manufactured by Fujimori Industry Co., Ltd. 0424, ZBO-0421, S-362, TFB-4T3-367AS and the like.
 本発明においては、工程(4)で、粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態を維持しながら層(a)を硬化するが、工程(4)の前の段階で、層(a)の界面から突出した粒子(a2)によって形成された凹凸形状を有していることが好ましい。こうすることで、工程(4)で層(a)を硬化した後、工程(5)で層(b)を剥離すると、層(a)の表面から粒子(a2)が突出した状態の反射防止フィルムを得ることができる。 In the present invention, in step (4), the layer (a) is cured while maintaining the state in which the particles (a2) are buried in the combined layer (a) and layer (b). It is preferable to have a concavo-convex shape formed by the particles (a2) protruding from the interface of the layer (a) in the previous stage. In this way, after the layer (a) is cured in the step (4) and then the layer (b) is peeled off in the step (5), the antireflection in a state where the particles (a2) protrude from the surface of the layer (a) A film can be obtained.
 本発明では、工程(1)と工程(2)の間に層(a)中の硬化性化合物(a1)の一部を硬化させ、硬化された化合物(a1c)を得る工程(1-2)を含んでもよい。
 硬化性化合物(a1)の一部を硬化させるとは、硬化性化合物(a1)のすべてではなく、一部のみを硬化させることを表す。工程(1-2)で硬化性化合物(a1)の一部のみを硬化させることで、工程(3)で粒子(a2)が層(a)のプラスチック基材側の界面とは反対側の界面から突出するように層(a)と層(b)の界面の位置をプラスチック基材側に下げた際の粒子の凝集を抑制することができ、反射率や全光線透過率が良好な反射防止フィルムが得られるため実施することが好ましい。工程(1-2)における最適な硬化条件は層(a)の処方により異なるため、適宜最適な硬化条件を選択すればよい。
In the present invention, a part of the curable compound (a1) in the layer (a) is cured between the steps (1) and (2) to obtain a cured compound (a1c) (1-2) May be included.
Curing a part of the curable compound (a1) means that only a part of the curable compound (a1) is cured, not the whole. By curing only a part of the curable compound (a1) in the step (1-2), in the step (3), the particle (a2) is the interface on the side opposite to the interface on the plastic substrate side of the layer (a). Can prevent particle aggregation when the position of the interface between the layer (a) and the layer (b) is lowered to the plastic substrate side so as to protrude from the surface, and antireflection with good reflectance and total light transmittance It is preferable to carry out since a film is obtained. Since the optimal curing conditions in the step (1-2) vary depending on the formulation of the layer (a), the optimal curing conditions may be selected as appropriate.
[工程(3)]
 工程(3)は、粒子(a2)が、層(a)及び層(b)を合わせた層中に埋没し、かつ、層(a)のプラスチック基材側の界面とは反対側の界面から突出するように、層(a)と層(b)の界面の位置をプラスチック基材側に移動させる工程である。
 本発明では、「粒子(a2)が、層(a)及び層(b)を合わせた層中に埋没」するということは、層(a)及び層(b)を合わせた層の厚みが粒子(a2)の平均一次粒径の0.8倍以上であることを表すものとする。
 工程(3)は、硬化性化合物(a1)の一部を粘着剤層に浸透させることにより行われることが好ましい。
 工程(3)において、硬化性化合物(a1)の一部を粘着剤層に浸透させる場合、プラスチック基材、層(a)、及び層(b)を有する積層体を60℃以下に保つことが好ましく、40℃以下に保つことがより好ましい。温度を60℃以下に保つことで、硬化性化合物(a1)及び粘着剤の粘度を高く保つことができるとともに、粒子の熱運動を抑制することができるため、粒子の凝集による反射防止能の低下、ヘイズ及び白濁感の上昇を防ぐ効果が大きい。プラスチック基材、層(a)、及び層(b)を有する積層体を保つ温度の下限は特に限定されるものではなく、室温(25℃)であっても、室温より低い温度であってもよい。
[Step (3)]
In the step (3), the particles (a2) are embedded in the layer including the layer (a) and the layer (b), and the interface on the side opposite to the interface on the plastic substrate side of the layer (a) is used. In this step, the position of the interface between the layer (a) and the layer (b) is moved toward the plastic substrate so as to protrude.
In the present invention, “the particle (a2) is buried in the layer including the layer (a) and the layer (b)” means that the thickness of the layer including the layer (a) and the layer (b) is the particle. The average primary particle size of (a2) is 0.8 times or more.
The step (3) is preferably performed by allowing a part of the curable compound (a1) to penetrate into the pressure-sensitive adhesive layer.
In the step (3), when a part of the curable compound (a1) is allowed to permeate the pressure-sensitive adhesive layer, the laminate having the plastic substrate, the layer (a), and the layer (b) can be kept at 60 ° C. or lower. It is preferable to keep the temperature at 40 ° C. or lower. By keeping the temperature at 60 ° C. or lower, the viscosity of the curable compound (a1) and the pressure-sensitive adhesive can be kept high and the thermal motion of the particles can be suppressed, so that the antireflection ability is reduced due to aggregation of the particles. The effect of preventing haze and an increase in cloudiness is great. The lower limit of the temperature at which the laminate having the plastic substrate, the layer (a), and the layer (b) is maintained is not particularly limited, and may be room temperature (25 ° C.) or lower than room temperature. Good.
[工程(4)]
 工程(4)は、粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態で層(a)を硬化する工程である。
 本発明では、「粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態」とは、層(a)及び層(b)を合わせた層の厚みが粒子(a2)の平均一次粒径の0.8倍以上であることを表すものとする。
 層(a)を硬化するとは、層(a)に含まれる硬化性化合物(a1)を重合させることを表し、これにより、反射防止フィルムの反射防止層におけるバインダー樹脂を形成することができる。工程(4)で粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態を維持することで、粒子(a2)の凝集を抑制し、良好な凹凸形状を形成することができる。
 粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態を維持することで粒子凝集が抑制されるメカニズムとしては、層(a)が硬化するまでに粒子(a2)が空気界面に露出すると、横毛管力と言われる表面張力由来の大きな引力が働く事が知られており、層(a)及び層(b)を合わせた層中に粒子(a2)を埋没させておくことで上記引力を小さくできるためと推定している。
[Step (4)]
Step (4) is a step of curing the layer (a) in a state where the particles (a2) are buried in the layer including the layer (a) and the layer (b).
In the present invention, “the state in which the particle (a2) is embedded in the layer including the layer (a) and the layer (b)” means that the thickness of the layer including the layer (a) and the layer (b) is the particle ( It shall represent that it is 0.8 times or more of the average primary particle diameter of a2).
Curing the layer (a) represents polymerizing the curable compound (a1) contained in the layer (a), whereby the binder resin in the antireflection layer of the antireflection film can be formed. By maintaining the state in which the particles (a2) are embedded in the layer (a) and the layer (b) combined in the step (4), the aggregation of the particles (a2) is suppressed and a favorable uneven shape is formed. can do.
As a mechanism in which particle aggregation is suppressed by maintaining the state in which the particle (a2) is embedded in the layer (a) and the layer (b), the particle (a2) is cured before the layer (a) is cured. ) Is exposed to the air interface, it is known that a large attractive force derived from surface tension called lateral capillary force works, and the particles (a2) are buried in the layer combining the layers (a) and (b). It is presumed that the attractive force can be reduced by letting it be kept.
 硬化は電離放射線を照射することで行うことができる。電離放射線の種類については、特に制限はなく、X線、電子線、紫外線、可視光、赤外線などが挙げられるが、紫外線が広く用いられる。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm~1000mJ/cmの照射量の紫外線を照射して層(a)の硬化性化合物(a1)を硬化するのが好ましい。50mJ/cm~1000mJ/cmであることがより好ましく、100mJ/cm~500mJ/cmであることがさらに好ましい。照射の際には、上記エネルギーを一度に当ててもよいし、分割して照射することもできる。紫外線ランプ種としては、メタルハライドランプ又は高圧水銀ランプ等が好適に用いられる。 Curing can be performed by irradiating with ionizing radiation. There is no restriction | limiting in particular about the kind of ionizing radiation, Although an X-ray, an electron beam, an ultraviolet-ray, visible light, infrared rays etc. are mentioned, an ultraviolet-ray is used widely. For example, if the coating film is ultraviolet curable, it is preferable to cure the curable compound (a1) of the layer (a) by irradiating with an ultraviolet lamp with an irradiation amount of 10 mJ / cm 2 to 1000 mJ / cm 2 . More preferably, it is 50 mJ / cm 2 to 1000 mJ / cm 2 , and even more preferably 100 mJ / cm 2 to 500 mJ / cm 2 . At the time of irradiation, the above-mentioned energy may be applied at once, or irradiation may be performed in divided portions. As the ultraviolet lamp type, a metal halide lamp or a high-pressure mercury lamp is preferably used.
 硬化時の酸素濃度は0~1.0体積%であることが好ましく、0~0.1体積%であることがさらに好ましく、0~0.05体積%であることが最も好ましい。硬化時の酸素濃度を1.0体積%よりも小さくすることで、酸素による硬化阻害の影響を受けにくくなり、強固な膜となる。 The oxygen concentration during curing is preferably 0 to 1.0% by volume, more preferably 0 to 0.1% by volume, and most preferably 0 to 0.05% by volume. By making the oxygen concentration at the time of curing smaller than 1.0% by volume, it becomes difficult to be affected by the inhibition of curing by oxygen and becomes a strong film.
 工程(2)~(4)において、プラスチック基材の表面に直交する方向には粒子(a2)が複数存在しないことが好ましい。 In the steps (2) to (4), it is preferable that a plurality of particles (a2) do not exist in a direction perpendicular to the surface of the plastic substrate.
 工程(2)~(4)において、層(a)の膜厚と層(b)の膜厚の合計の膜厚が、粒子(a2)の平均一次粒径よりも大きいことが好ましい。
 層(a)の膜厚と層(b)の膜厚の合計の膜厚が、粒子(a2)の平均一次粒径よりも大きいと粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態にすることができ、好ましい。
 ただし、後述する工程(5)で層(b)を含む粘着フィルムを剥離した場合に層(a)の表面から粒子(a2)が突出した形状(モスアイ構造)を得るという理由から、工程(4)において、層(a)の膜厚は粒子(a2)の平均一次粒径よりも小さいことが好ましく、粒子(a2)の平均一次粒径の半分以下であることがより好ましい。
 工程(4)における層(a)の膜厚は、これを硬化して得られた層(ca)のプラスチック基材側の界面とは反対側の界面の高さが、粒子(a2)の平均一次粒径の半分以下となるように調整するのが好ましく、より好ましくは層(ca)の膜断面を、走査型電子顕微鏡(SEM)で観察し、任意に100箇所の膜厚を計測してその平均値を求めた場合に、10nm~100nm(より好ましくは20nm~90nm、さらに好ましくは30nm~70nm)となるように調整するのが好ましい。
In the steps (2) to (4), the total thickness of the layer (a) and the layer (b) is preferably larger than the average primary particle size of the particles (a2).
When the total film thickness of the layer (a) and the layer (b) is larger than the average primary particle size of the particles (a2), the particles (a2) will change the layers (a) and (b). This is preferable because it can be buried in the combined layers.
However, since the shape (moth eye structure) in which the particles (a2) protrude from the surface of the layer (a) is obtained when the pressure-sensitive adhesive film containing the layer (b) is peeled off in the step (5) described later, the step (4 ), The thickness of the layer (a) is preferably smaller than the average primary particle size of the particles (a2), more preferably half or less of the average primary particle size of the particles (a2).
The film thickness of the layer (a) in the step (4) is such that the height of the interface on the side opposite to the interface on the plastic substrate side of the layer (ca) obtained by curing this is the average of the particles (a2) It is preferable to adjust it to be less than half of the primary particle size, and more preferably, the film cross section of the layer (ca) is observed with a scanning electron microscope (SEM), and the film thickness at 100 locations is arbitrarily measured. When the average value is obtained, it is preferably adjusted to be 10 nm to 100 nm (more preferably 20 nm to 90 nm, still more preferably 30 nm to 70 nm).
[工程(5)]
 工程(5)は、層(b)を層(a)から剥離する工程である。
 層(b)を剥離した際に層(a)側に粘着剤が残る場合は、プラスチック基材及び硬化後の層(a)は溶解せずに、粘着剤を溶解する溶剤を用いて洗浄してもよい。
[Step (5)]
Step (5) is a step of peeling layer (b) from layer (a).
If the pressure-sensitive adhesive remains on the layer (a) side when the layer (b) is peeled off, the plastic substrate and the cured layer (a) are not dissolved, and are washed with a solvent that dissolves the pressure-sensitive adhesive. May be.
 工程(5)により層(b)を含む粘着フィルムを剥離した後には、層(a)の表面に粒子(a2)によって形成された凹凸形状からなるモスアイ構造を有する反射防止フィルムが得られる。 After peeling off the pressure-sensitive adhesive film containing the layer (b) in the step (5), an antireflection film having a moth-eye structure having a concavo-convex shape formed by particles (a2) on the surface of the layer (a) is obtained.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質の量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。 The present invention will be described more specifically with reference to the following examples. The amounts, ratios and operations of materials, reagents, and substances shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the following specific examples.
<実施例1>
 (ハードコート層形成用組成物の調製)
 下記に記載の組成で各成分を混合し、得られた組成物をミキシングタンクに投入し、攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液HC-1とした。
<Example 1>
(Preparation of composition for forming hard coat layer)
Each component was mixed with the composition described below, and the resulting composition was put into a mixing tank, stirred, and filtered through a polypropylene filter having a pore size of 0.4 μm to obtain a hard coat layer coating solution HC-1.
(ハードコート層塗布液HC-1)
 A-TMMT         24.4質量部
 AD-TMP         12.0質量部
 イルガキュア127       1.6質量部
 AS-1            2.0質量部
 エタノール           3.5質量部
 メタノール           8.8質量部
 1-ブタノール         6.0質量部
 メチルエチルケトン(MEK) 20.3質量部
 酢酸メチル          21.4質量部
 FP-1           0.05質量部
(Hard coat layer coating solution HC-1)
A-TMMT 24.4 parts by weight AD-TMP 12.0 parts by weight Irgacure 127 1.6 parts by weight AS-1 2.0 parts by weight Ethanol 3.5 parts by weight Methanol 8.8 parts by weight 1-butanol 6.0 parts by weight Methyl ethyl ketone (MEK) 20.3 parts by mass Methyl acetate 21.4 parts by mass FP-1 0.05 parts by mass
 A-TMMT:ペンタエリスリトールテトラアクリレート(新中村化学工業製)
 AD-TMP:ジトリメチロールプロパンテトラアクリレート(新中村化学工業(株)製 NKエステル)
 イルガキュア127:光重合開始剤(BASFジャパン(株)製)
A-TMMT: Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
AD-TMP: Ditrimethylolpropane tetraacrylate (NK ester manufactured by Shin-Nakamura Chemical Co., Ltd.)
Irgacure 127: Photopolymerization initiator (manufactured by BASF Japan Ltd.)
 AS-1:特許第4678451号公報の合成例6の反応温度と時間を70℃及び6時間としたこと以外は同様にして、上記特許文献の(A-6)に対応する化合物AS-1を作製した。出来上がった化合物AS-1は、エチレンオキサイド鎖を有する4級アンモニウム塩含有ポリマーであり、GPCで測定した重量平均分子量は約6万であった。
 FP-1:下記式で表される含フッ素化合物のメチルエチルケトン溶液、固形分濃度は40質量%である
AS-1: Compound AS-1 corresponding to (A-6) in the above-mentioned patent document was similarly obtained except that the reaction temperature and time in Synthesis Example 6 of Japanese Patent No. 4678451 were 70 ° C. and 6 hours. Produced. The completed compound AS-1 was a quaternary ammonium salt-containing polymer having an ethylene oxide chain, and the weight average molecular weight measured by GPC was about 60,000.
FP-1: Methyl ethyl ketone solution of a fluorine-containing compound represented by the following formula, solid content concentration is 40% by mass
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[シリカ粒子P1の合成]
 撹拌機、滴下装置および温度計を備えた容量200Lの反応器に、メチルアルコール67.54kgと、28質量%アンモニア水(水および触媒)26.33kgとを仕込み、撹拌しながら液温を33℃に調節した。一方、滴下装置に、テトラメトキシシラン12.70kgをメチルアルコール5.59kgに溶解させた溶液を仕込んだ。反応器中の液温を33℃に保持しながら、滴下装置から上記溶液を37分間かけて滴下し、滴下終了後、さらに37分間、液温を上記温度に保持しながら撹拌することにより、テトラメトキシシランの加水分解および縮合を行い、シリカ粒子前駆体を含有する分散液を得た。この分散液を、瞬間真空蒸発装置(ホソカワミクロン(株)社製クラックス・システムCVX-8B型)を用いて加熱管温度175℃、減圧度200torr(27kPa)の条件で気流乾燥させることにより、シリカ粒子P1を得た。
 シリカ粒子P1の平均一次粒径は170nm、粒径の分散度(CV値)は7.0%、押し込み硬度は340MPaであった。
[Synthesis of Silica Particle P1]
A 200 L reactor equipped with a stirrer, a dropping device and a thermometer was charged with 67.54 kg of methyl alcohol and 26.33 kg of 28% by mass aqueous ammonia (water and catalyst), and the liquid temperature was kept at 33 ° C. while stirring. Adjusted. Meanwhile, a dropping device was charged with a solution prepared by dissolving 12.70 kg of tetramethoxysilane in 5.59 kg of methyl alcohol. While maintaining the liquid temperature in the reactor at 33 ° C., the above solution was dropped from the dropping device over 37 minutes, and after completion of the dropping, stirring was continued for 37 minutes while maintaining the liquid temperature at the above temperature. Hydrolysis and condensation of methoxysilane was performed to obtain a dispersion containing a silica particle precursor. Silica particles were obtained by air-drying this dispersion under the conditions of a heating tube temperature of 175 ° C. and a reduced pressure of 200 torr (27 kPa) using an instantaneous vacuum evaporator (Crox System CVX-8B type manufactured by Hosokawa Micron Corporation). P1 was obtained.
Silica particles P1 had an average primary particle size of 170 nm, a particle size dispersity (CV value) of 7.0%, and an indentation hardness of 340 MPa.
[焼成シリカ粒子P2の作製]
 5kgのシリカ粒子P1をルツボに入れ、電気炉を用いて900℃で2時間焼成した後、冷却して、次いで粉砕機を用いて粉砕し、分級前焼成シリカ粒子を得た。さらにジェット粉砕分級機(日本ニューマ社製IDS-2型)を用いて解砕および分級を行うことにより焼成シリカ粒子P2を得た。
[Preparation of calcined silica particles P2]
5 kg of silica particles P1 were put in a crucible, fired at 900 ° C. for 2 hours using an electric furnace, cooled, and then ground using a grinder to obtain pre-classified fired silica particles. Further, pulverized silica particles P2 were obtained by pulverization and classification using a jet pulverization classifier (IDS-2 type, manufactured by Nippon Puma Co., Ltd.).
[シランカップリング剤処理シリカ粒子P3の作製]
 5kgの焼成シリカ粒子P2を、加熱ジャケットを備えた容量20Lのヘンシェルミキサ(三井鉱山株式会社製FM20J型)に仕込んだ。焼成シリカ粒子P2を撹拌しているところに、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)50gを、メチルアルコール90gに溶解させた溶液を滴下して混合した。その後、混合撹拌しながら150℃まで約1時間かけて昇温し、150℃で12時間保持して加熱処理を行った。加熱処理では、掻き落とし装置を撹拌羽根とは逆方向に常時回転させながら、壁面付着物の掻き落としを行った。また、適宜、へらを用いて壁面付着物を掻き落とすことも行った。加熱後、冷却し、ジェット粉砕分級機を用いて解砕および分級を行い、シランカップリング剤処理シリカ粒子P3を得た。
 シランカップリング剤処理シリカ粒子P3の平均一次粒径は171nm、粒径の分散度(CV値)は7.0%、押し込み硬度は470MPaであった。
[Production of Silane Coupling Agent-treated Silica Particles P3]
5 kg of the fired silica particles P2 were charged into a 20 L Henschel mixer (FM20J type, manufactured by Mitsui Mining Co., Ltd.) equipped with a heating jacket. While the calcined silica particles P2 were being stirred, a solution prepared by dissolving 50 g of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) in 90 g of methyl alcohol was added dropwise and mixed. Then, it heated up to 150 degreeC over about 1 hour, mixing and stirring, and hold | maintained at 150 degreeC for 12 hours, and heat-processed. In the heat treatment, scrapes on the wall surface were scraped while the scraping device was always rotated in the direction opposite to the stirring blade. Moreover, the wall deposits were also scraped off using a spatula as appropriate. After heating, the mixture was cooled, and pulverization and classification were performed using a jet pulverization classifier to obtain silane coupling agent-treated silica particles P3.
The average primary particle diameter of the silane coupling agent-treated silica particles P3 was 171 nm, the dispersion degree (CV value) of the particle diameter was 7.0%, and the indentation hardness was 470 MPa.
[シリカ粒子分散液PA-1の作製]
 シランカップリング剤処理シリカ粒子P3を50g、MEK200g、直径0.05mmジルコニアビーズ600gを直径12cmの1L瓶容器に入れ、ボールミルV-2M(入江商会)にセットし、250回転/分で10時間分散した。このようにして、シリカ粒子分散液PA-1(固形分濃度20質量%)を作製した。
[Preparation of Silica Particle Dispersion PA-1]
Silane coupling agent-treated silica particles P3 (50 g), MEK (200 g), 0.05 mm diameter zirconia beads (600 g) are placed in a 1 L bottle container with a diameter of 12 cm, set in a ball mill V-2M (Irie Shokai), and dispersed for 10 hours at 250 rpm. did. In this way, a silica particle dispersion PA-1 (solid content concentration 20% by mass) was prepared.
[化合物C3の合成]
 還流冷却器、温度計を付けたフラスコに3-イソシアネートプロピルトリメトキシシラン19.3gとグリセリン1,3-ビスアクリラート3.9g、2-ヒドロキシエチルアクリレート6.8g、ジラウリン酸ジブチル錫0.1g、トルエン70.0gを添加し、室温で12時間撹拌した。撹拌後、メチルハイドロキノン500ppmを加え、減圧留去を行い化合物C3を得た。
[Synthesis of Compound C3]
In a flask equipped with a reflux condenser and a thermometer, 19.3 g of 3-isocyanatopropyltrimethoxysilane, 3.9 g of glycerol 1,3-bisacrylate, 6.8 g of 2-hydroxyethyl acrylate, 0.1 g of dibutyltin dilaurate 70.0 g of toluene was added and stirred at room temperature for 12 hours. After stirring, 500 ppm of methylhydroquinone was added and distilled off under reduced pressure to obtain Compound C3.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[層(a)形成用組成物の調製]
 下記の組成となるように各成分をミキシングタンクに投入し、60分間攪拌し、30分間超音波分散機により分散し、塗布液とした。
[Preparation of composition for forming layer (a)]
Each component was put into a mixing tank so as to have the following composition, stirred for 60 minutes, and dispersed with an ultrasonic disperser for 30 minutes to obtain a coating solution.
組成物(A-1)
 U-15HA                1.4質量部
 化合物C3                 1.5質量部
 クエン酸アセチルトリエチル         5.8質量部
 イルガキュア127             0.2質量部
 化合物P                  0.1質量部
 シリカ粒子分散液PA-1         32.3質量部
 化合物A                  0.1質量部
 エタノール                12.7質量部
 メチルエチルケトン            33.3質量部
 アセトン                 12.7質量部
Composition (A-1)
U-15HA 1.4 parts by weight Compound C3 1.5 parts by weight Acetyltriethyl citrate 5.8 parts by weight Irgacure 127 0.2 parts by weight Compound P 0.1 parts by weight Silica particle dispersion PA-1 32.3 parts by weight Compound A 0.1 parts by mass Ethanol 12.7 parts by mass Methyl ethyl ketone 33.3 parts by mass Acetone 12.7 parts by mass
 U-15HA、化合物C3、クエン酸アセチルトリエチルはバインダー用化合物であるが、U-15HA及び化合物C3は硬化性化合物(a1)であり、クエン酸アセチルトリエチルは重合性官能基を持たない化合物である。
 それぞれ使用した化合物を以下に示す。
 U-15HA(新中村化学工業(株)製):ウレタンアクリレート
 イルガキュア127:光重合開始剤(BASFジャパン(株)製)
 化合物P:2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン(光酸発生剤、東京化成工業(株)製)
 化合物A:F-784-F(DIC(株)製)
 クエン酸アセチルトリエチル:東京化成工業(株)製
U-15HA, compound C3 and acetyltriethyl citrate are binder compounds, but U-15HA and compound C3 are curable compounds (a1), and acetyltriethyl citrate is a compound having no polymerizable functional group. .
The compounds used are shown below.
U-15HA (manufactured by Shin-Nakamura Chemical Co., Ltd.): Urethane acrylate Irgacure 127: Photopolymerization initiator (manufactured by BASF Japan Ltd.)
Compound P: 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine (photoacid generator, manufactured by Tokyo Chemical Industry Co., Ltd.)
Compound A: F-784-F (manufactured by DIC Corporation)
Acetyltriethyl citrate: manufactured by Tokyo Chemical Industry Co., Ltd.
<反射防止フィルム1の作成>
(ハードコート層の形成)
 プラスチック基材(TJ25、富士フイルム(株)製)上にハードコート層塗布液HC-1をダイコーターを用いて塗布した。30℃で90秒、続いて45℃で1分間乾燥した後、酸素濃度がおよそ0.3体積%の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度200mW/cm、照射量10mJ/cmの紫外線を照射して塗布層を硬化させ、厚さ5μmのハードコート層を形成した。上記ハードコート層付き基材をHC-1とする。
<Creation of antireflection film 1>
(Formation of hard coat layer)
The hard coat layer coating solution HC-1 was coated on a plastic substrate (TJ25, manufactured by Fuji Film Co., Ltd.) using a die coater. After drying at 30 ° C. for 90 seconds and then at 45 ° C. for 1 minute, a 160 W / cm air-cooled metal halide lamp (I Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of approximately 0.3% by volume. The coating layer was cured by irradiating with ultraviolet rays having an illuminance of 200 mW / cm 2 and an irradiation amount of 10 mJ / cm 2 to form a hard coat layer having a thickness of 5 μm. The base material with a hard coat layer is HC-1.
(工程(1) 層(a)の塗工)
 上記ハードコート層付き基材HC-1のハードコート層上に、組成物(A-1)をダイコーターを用いて2.8ml/m塗布し、30℃で90秒乾燥させた。工程(1)における層(a)の膜厚は190nmである。
(Process (1) Coating of layer (a))
On the hard coat layer of the substrate HC-1 with the hard coat layer, 2.8 ml / m 2 of the composition (A-1) was applied using a die coater and dried at 30 ° C. for 90 seconds. The film thickness of the layer (a) in the step (1) is 190 nm.
(工程(1-2) 層(a)中の硬化性化合物(a1)の一部を硬化させ、硬化された化合物(a1c)を得る工程)
 酸素濃度が1.5体積%の雰囲気になるように窒素パージしながら、高圧水銀ランプ(Dr.honle AG社製 型式:33351N 部品番号:LAMP-HOZ 200 D24 U 450 E)を用いて層(a)側から照射量5.0mJで光照射し、硬化性化合物(a1)の一部を硬化させた。なお、照射量の測定は、アイグラフィック社製 アイ紫外線積算照度計 UV METER UVPF-A1にHEAD SENSER PD-365を取り付け、測定レンジ0.00にて測定した。
(Step (1-2) Step of curing a part of the curable compound (a1) in the layer (a) to obtain a cured compound (a1c))
Using a high pressure mercury lamp (Model: 33351N, manufactured by Dr. Honle AG, part number: LAMP-HOZ 200 D24 U 450 E) while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.5% by volume (a ) Was irradiated with light at an irradiation amount of 5.0 mJ to cure a part of the curable compound (a1). The irradiation amount was measured by attaching a HEAD SENSER PD-365 to an eye ultraviolet integrated illuminometer UV METER UVPF-A1 manufactured by Eye Graphic Co., Ltd. and measuring range 0.00.
(工程(2) 粘着フィルムの貼り合わせ)
 次いで、乾燥後の層(a)上に、AS3-304から剥離フィルムを剥離して得られる粘着フィルムを、粘着剤層(層(b))が層(a)側になるように貼り合わせた。貼り合わせには、業務用ラミネーターBio330(DAE-EL Co.製)を使用し、速度1で実施した。
 なお、AS3-304は、支持体/粘着剤層/剥離フィルムから構成される積層体(保護フィルム)を指し、この積層体から剥離フィルムを剥がした、支持体/粘着剤層から構成される積層体が粘着フィルムである。
(Process (2) Adhesion of adhesive film)
Subsequently, the pressure-sensitive adhesive film obtained by peeling the release film from AS3-304 was bonded onto the dried layer (a) so that the pressure-sensitive adhesive layer (layer (b)) was on the layer (a) side. . Lamination was performed using a commercial laminator Bio330 (manufactured by DAE-EL Co.) at a speed of 1.
AS3-304 refers to a laminate (protective film) composed of a support / adhesive layer / release film, and a laminate composed of a support / adhesive layer obtained by peeling the release film from the laminate. The body is an adhesive film.
 使用した積層体(保護フィルム)の詳細を以下に示す。
 ・AS3-304 藤森工業(株)製
 支持体:ポリエステルフィルム(厚み38μm)
 粘着剤層厚み:20μm
 剥離フィルムを剥がした状態での波長250nm~300nmにおける最大透過率:0.1%未満
 透過率の測定は、島津製作所(株)製の紫外可視近赤外分光光度計UV3150を用いて行った。
The detail of the used laminated body (protective film) is shown below.
AS3-304 Fujimori Industry Co., Ltd. Support: Polyester film (thickness 38 μm)
Adhesive layer thickness: 20 μm
Maximum transmittance at a wavelength of 250 nm to 300 nm with the release film peeled off: less than 0.1% The transmittance was measured using an UV-visible near-infrared spectrophotometer UV3150 manufactured by Shimadzu Corporation.
(工程(3) 硬化性化合物(a1)の粘着剤層への浸透)
 粘着フィルムを貼り合わせたまま、25℃で5分間静置し、硬化性化合物(a1)の一部を粘着剤層へ浸透させた。
(Step (3) Penetration of curable compound (a1) into pressure-sensitive adhesive layer)
With the pressure-sensitive adhesive film being bonded, the mixture was allowed to stand at 25 ° C. for 5 minutes to allow a part of the curable compound (a1) to penetrate into the pressure-sensitive adhesive layer.
(工程(4) 層(a)の硬化)
 上記の静置に続いて、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、プラスチック基材の層(a)が塗布された面から粘着フィルム越しに照度200mW/cm、照射量300mJ/cmの紫外線を照射して層(a)を硬化させた。工程(4)の後であって、工程(5)を行う前の層(a)と粘着剤層(層(b))の膜厚はそれぞれ50nm、20μmであった。
(Step (4) Curing of layer (a))
Following the above-described standing, a plastic base material is used using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W / cm while purging with nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less. The layer (a) was cured by irradiating ultraviolet rays having an illuminance of 200 mW / cm 2 and an irradiation amount of 300 mJ / cm 2 through the adhesive film from the surface on which the layer (a) was applied. The film thicknesses of the layer (a) and the pressure-sensitive adhesive layer (layer (b)) after the step (4) and before the step (5) were 50 nm and 20 μm, respectively.
(工程(5) 粘着フィルムの剥離)
 上記作製した積層体から層(b)を含む粘着フィルム(AS3-304から剥離フィルムを剥がしたもの)を剥離した。層(b)を剥離した後の層(a)は、粘着剤層の剥離によって壊れない程度に硬化していた。粘着剤の剥離後、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、プラスチック基材の層(a)が塗布された面から照度200mW/cm、照射量300mJ/cmの紫外線を照射して層(a)を硬化させた。その後、粘着フィルムが貼り合わせてあった面にメチルイソブチルケトンを掛け流して粘着剤層の残渣を洗い流し、25℃で10分乾燥して反射防止フィルム1を得た。
(Process (5) Peeling of adhesive film)
The pressure-sensitive adhesive film containing the layer (b) (those obtained by peeling off the release film from AS3-304) was peeled from the produced laminate. The layer (a) after peeling off the layer (b) was cured to such an extent that it was not broken by peeling of the pressure-sensitive adhesive layer. After peeling off the pressure-sensitive adhesive, the layer of the plastic substrate is used using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W / cm while purging with nitrogen so that the oxygen concentration becomes 0.01 vol% or less. The layer (a) was cured by irradiating ultraviolet rays having an illuminance of 200 mW / cm 2 and an irradiation amount of 300 mJ / cm 2 from the surface coated with (a). Thereafter, methyl isobutyl ketone was poured over the surface to which the adhesive film had been bonded to wash away the residue of the adhesive layer, followed by drying at 25 ° C. for 10 minutes to obtain an antireflection film 1.
<比較例1>
 工程(3)での静置を120℃で15分間とした以外は、実施例1と同様にして反射防止フィルムR1を得た。
<Comparative Example 1>
An antireflection film R1 was obtained in the same manner as in Example 1 except that the standing in the step (3) was 15 minutes at 120 ° C.
(積分反射率)
 得られた反射防止フィルムにおいて、フィルムの裏面(プラスチック基材側)をサンドペーパーで粗面化した後に油性黒インキ(補填用マジックインキ:寺西化学)を塗り、裏面反射をなくした状態で、分光光度計V-550(日本分光(株)製)にアダプターARV-474を装着して、380~780nmの波長領域において、入射角5°における積分反射率を測定し、平均反射率を算出して反射防止性を評価した。
(Integral reflectance)
In the obtained antireflection film, the back side of the film (plastic substrate side) is roughened with sandpaper, and then oil-based black ink (filling magic ink: Teranishi Kagaku) is applied to eliminate the backside reflection. The adapter ARV-474 is attached to a photometer V-550 (manufactured by JASCO Corporation), the integrated reflectance at an incident angle of 5 ° is measured in the wavelength region of 380 to 780 nm, and the average reflectance is calculated. Antireflection properties were evaluated.
(透過率)
 反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率、並びに、反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nmの光の透過率(T480)及び580nmの光の透過率(T580)を測定した。
 全光線透過率の測定は、日本電色工業(株)製ヘーズメーターNDH4000を用いて行った。
 波長480nmの光の透過率(T480)及び580nmの光の透過率(T580)の測定は、島津製作所(株)製の紫外可視近赤外分光光度計UV3150を用いて行った。
(Transmittance)
The total light transmittance of the antireflection film when incident from the side opposite to the plastic substrate of the antireflection layer, and the wavelength of 480 nm of the antireflection film when incident from the side opposite to the plastic substrate of the antireflection layer The light transmittance (T 480 ) and the light transmittance at 580 nm (T 580 ) were measured.
The measurement of the total light transmittance was performed using a Nippon Denshoku Industries Co., Ltd. haze meter NDH4000.
The transmittance of light with a wavelength of 480 nm (T 480 ) and the transmittance of light with a wavelength of 580 nm (T 580 ) were measured using an ultraviolet-visible near-infrared spectrophotometer UV3150 manufactured by Shimadzu Corporation.
(logSR)
 反射防止層の表面抵抗率は、25℃、相対湿度60%条件下に反射防止フィルム試料を2時間置いた後にAgilent 4339B High-Resistance meter (アジレント・テクノロジー株式会社製)を用いて測定し、常用対数(logSR)で示した。
(LogSR)
The surface resistivity of the antireflection layer was measured using an Agilent 4339B High-Resistance meter (manufactured by Agilent Technologies) after placing the antireflection film sample at 25 ° C. and 60% relative humidity for 2 hours. Logarithm (log SR).
(X、X+σ、粒子占有率)
 反射防止フィルムの表面をSEM((株)日立ハイテクノロジーズ製S-4300)で観察し、粒子が占める面積/測定面積として粒子占有率を求めた。倍率は10000倍とした。また、ミクロトームで切削して断面を出し、10000倍でSEM観察を行い、隣り合う凸部の頂点間の距離Aを100点測長し、平均値X、標準偏差σを求めた。
(X, X + σ, particle occupancy)
The surface of the antireflection film was observed with an SEM (S-4300, manufactured by Hitachi High-Technologies Corporation), and the particle occupation ratio was determined as the area occupied by the particles / measured area. The magnification was 10,000 times. Further, a cross section was taken by cutting with a microtome, SEM observation was performed at a magnification of 10000, and the distance A between the vertices of adjacent convex portions was measured at 100 points, and an average value X and a standard deviation σ were obtained.
<実施例2~6>
 実施例1において、ハードコート層塗布液HC-1を、それぞれ下記表1に記載の組成のハードコート層塗布液HC-2~HC-6に代えた以外は同様にして、反射防止フィルム2~6を作成した。
<Examples 2 to 6>
In the same manner as in Example 1, except that the hard coat layer coating solution HC-1 was replaced with the hard coat layer coating solutions HC-2 to HC-6 having the compositions shown in Table 1 below, antireflection films 2 to 6 was created.
<実施例7>
 実施例2のハードコート層上に、下記表1に記載の組成のハードコート層塗布液HC-7を用いて更に膜厚0.8μmのハードコート層を積層した。ハードコート層塗布液HC-7の乾燥及び硬化条件は実施例1のハードコート層塗布液HC-1と同様とした。
<Example 7>
On the hard coat layer of Example 2, a hard coat layer having a thickness of 0.8 μm was further laminated using the hard coat layer coating solution HC-7 having the composition shown in Table 1 below. The drying and curing conditions of the hard coat layer coating solution HC-7 were the same as those of the hard coat layer coating solution HC-1 of Example 1.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 DPCA60:日本化薬(株)製DPCA-60
 irg127:イルガキュア127、光重合開始剤(BASFジャパン(株)製)
 irg819:イルガキュア819、ホスフィンオキサイド系光重合開始剤(BASFジャパン(株)製)
DPCA60: Nippon Kayaku Co., Ltd. DPCA-60
irg127: Irgacure 127, photopolymerization initiator (manufactured by BASF Japan Ltd.)
irg819: Irgacure 819, phosphine oxide photopolymerization initiator (manufactured by BASF Japan Ltd.)
[シリカ粒子P4の合成]
 反応器中の液温を33℃に保持しながら、滴下装置からの溶液の滴下時間を25分に変更し、滴下終了後、液温を同じ温度に保持しながら撹拌した時間を25分に変更した以外は、シリカ粒子P1と同様の方法で、シリカ粒子P4を得た。
 シリカ粒子P4の平均一次粒径は150nm、粒径の分散度(CV値)は11.0%、押し込み硬度は340MPaであった。
[Synthesis of Silica Particle P4]
While maintaining the liquid temperature in the reactor at 33 ° C., the dropping time of the solution from the dropping device is changed to 25 minutes, and after the dropping is completed, the stirring time is changed to 25 minutes while maintaining the liquid temperature at the same temperature. Except that, silica particles P4 were obtained in the same manner as silica particles P1.
Silica particles P4 had an average primary particle size of 150 nm, a particle size dispersity (CV value) of 11.0%, and an indentation hardness of 340 MPa.
[シリカ粒子P5の合成]
 反応器中の液温を33℃に保持しながら、滴下装置からの溶液の滴下時間を60分に変更し、滴下終了後、液温を同じ温度に保持しながら撹拌した時間を60分に変更した以外は、シリカ粒子P1と同様の方法で、シリカ粒子P5を得た。
 シリカ粒子P5の平均一次粒径は205nm、粒径の分散度(CV値)は3.0%、押し込み硬度は340MPaであった。
[Synthesis of Silica Particle P5]
While maintaining the liquid temperature in the reactor at 33 ° C., the dropping time of the solution from the dropping device was changed to 60 minutes, and after the dropping was completed, the stirring time was changed to 60 minutes while maintaining the liquid temperature at the same temperature. Except that, silica particles P5 were obtained in the same manner as silica particles P1.
Silica particles P5 had an average primary particle size of 205 nm, a particle size dispersity (CV value) of 3.0%, and an indentation hardness of 340 MPa.
[焼成シリカ粒子P6の作製]
 シリカ粒子P1の代わりにシリカ粒子P4を用いた以外は、焼成シリカ粒子P2と同様の方法で、焼成シリカ粒子P6を得た。
[Preparation of calcined silica particles P6]
Fired silica particles P6 were obtained in the same manner as the fired silica particles P2, except that the silica particles P4 were used instead of the silica particles P1.
[焼成シリカ粒子P7の作製]
 シリカ粒子P1の代わりにシリカ粒子P5を用いた以外は、焼成シリカ粒子P2と同様の方法で、焼成シリカ粒子P7を得た。
[Preparation of calcined silica particles P7]
Fired silica particles P7 were obtained in the same manner as the fired silica particles P2, except that the silica particles P5 were used instead of the silica particles P1.
[シランカップリング剤処理シリカ粒子P8の作製]
 焼成シリカ粒子P2の代わりに焼成シリカ粒子P6を用い、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)の滴下量を65gに変更した以外は、シランカップリング剤処理シリカ粒子P3と同様の方法で、シランカップリング剤処理シリカ粒子P8を得た。
 シランカップリング剤処理シリカ粒子P8の平均一次粒径は151nm、粒径の分散度(CV値)は11.0%、押し込み硬度は470MPaであった。
[Production of Silane Coupling Agent-treated Silica Particles P8]
The silane coupling agent-treated silica particles P3 except that the fired silica particles P6 were used instead of the fired silica particles P2 and the amount of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to 65 g. In the same manner as above, silane coupling agent-treated silica particles P8 were obtained.
Silane coupling agent-treated silica particles P8 had an average primary particle size of 151 nm, a particle size dispersity (CV value) of 11.0%, and an indentation hardness of 470 MPa.
[シランカップリング剤処理シリカ粒子P9の作製]
 焼成シリカ粒子P2の代わりに焼成シリカ粒子P7を用い、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)の滴下量を25gに変更した以外は、シランカップリング剤処理シリカ粒子P3と同様の方法で、シランカップリング剤処理シリカ粒子P9を得た。
 シランカップリング剤処理シリカ粒子P9の平均一次粒径は206nm、粒径の分散度(CV値)は3.0%、押し込み硬度は470MPaであった。
[Production of Silane Coupling Agent-treated Silica Particles P9]
The silane coupling agent-treated silica particles P3 except that the calcined silica particles P7 were used instead of the calcined silica particles P2, and the amount of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to 25 g. In the same manner as above, silane coupling agent-treated silica particles P9 were obtained.
The average primary particle diameter of the silane coupling agent-treated silica particles P9 was 206 nm, the degree of dispersion (CV value) of the particle diameter was 3.0%, and the indentation hardness was 470 MPa.
[シリカ粒子分散液PA-2の作製]
 シランカップリング剤処理シリカ粒子P3の代わりにシランカップリング剤処理シリカ粒子P8を用いた以外は、シリカ粒子分散液PA-1と同様の方法で、シリカ粒子分散液PA-2(固形分濃度20質量%)を作製した。
[Preparation of Silica Particle Dispersion PA-2]
A silica particle dispersion PA-2 (solid content concentration of 20) was prepared in the same manner as the silica particle dispersion PA-1, except that the silane coupling agent treated silica particles P8 were used instead of the silane coupling agent treated silica particles P3. Mass%).
[シリカ粒子分散液PA-3の作製]
 シランカップリング剤処理シリカ粒子P3の代わりにシランカップリング剤処理シリカ粒子P9を用いた以外は、シリカ粒子分散液PA-1と同様の方法で、シリカ粒子分散液PA-3(固形分濃度20質量%)を作製した。
[Preparation of Silica Particle Dispersion PA-3]
A silica particle dispersion PA-3 (solid content concentration of 20) was prepared in the same manner as the silica particle dispersion PA-1, except that the silane coupling agent treated silica particles P9 were used instead of the silane coupling agent treated silica particles P3. Mass%).
<実施例8>
 層(a)形成用組成物(A-1)のシリカ粒子分散液PA-1をシリカ粒子分散液PA-2に変更(この層(a)形成用組成物を組成物(A-2)という。)した以外は実施例1と同様にして反射防止フィルム8を作成した。
<Example 8>
The silica particle dispersion PA-1 of the layer (a) forming composition (A-1) was changed to a silica particle dispersion PA-2 (this layer (a) forming composition is referred to as the composition (A-2)). The antireflection film 8 was prepared in the same manner as in Example 1 except that.
<実施例9>
 層(a)形成用組成物(A-2)のクエン酸アセチルトリエチルをスベリン酸ジメチル(東京化成工業(株)製)に変更(この層(a)形成用組成物を組成物(A-3)という。)し、工程(1-2)における照射量を7.5mJとした以外は実施例8と同様にして反射防止フィルム9を作成した。
<Example 9>
The acetyltriethyl citrate of the layer (a) forming composition (A-2) was changed to dimethyl suberate (manufactured by Tokyo Chemical Industry Co., Ltd.) (this layer (a) forming composition was changed to the composition (A-3). Then, an antireflection film 9 was prepared in the same manner as in Example 8 except that the irradiation amount in step (1-2) was 7.5 mJ.
<実施例10>
 層(a)形成用組成物(A-2)のクエン酸アセチルトリエチルをコハク酸ジブチル(東京化成工業(株)製)に変更(この層(a)形成用組成物を組成物(A-4)という。)し、工程(1-2)における照射量を10mJとした以外は実施例8と同様にして反射防止フィルム10を作成した。
<Example 10>
The acetyl triethyl citrate of the layer (a) forming composition (A-2) was changed to dibutyl succinate (manufactured by Tokyo Chemical Industry Co., Ltd.) (this layer (a) forming composition was changed to the composition (A-4) Then, an antireflection film 10 was produced in the same manner as in Example 8 except that the irradiation amount in the step (1-2) was 10 mJ.
<実施例11>
 層(a)形成用組成物を以下の組成の(A-5)に変更し、工程(4)と工程(5)の間に140℃、15分の加熱を行うこと以外は実施例9と同様にして反射防止フィルム11を作成した。
<Example 11>
Example 9 except that the composition for forming the layer (a) is changed to (A-5) having the following composition, and heating is performed at 140 ° C. for 15 minutes between the steps (4) and (5). Similarly, an antireflection film 11 was prepared.
組成物(A-5)
 U-15HA                1.4質量部
 化合物C3                 1.5質量部
 スベリン酸ジメチル             4.1質量部
 A-TMPT                1.7質量部
 イルガキュア127             0.2質量部
 V-601                 0.2質量部
 化合物P-2                0.1質量部
 シリカ粒子分散液PA-2         32.3質量部
 化合物B                  0.1質量部
 エタノール                12.7質量部
 メチルエチルケトン            33.3質量部
 アセトン                 12.7質量部
Composition (A-5)
U-15HA 1.4 parts by weight Compound C3 1.5 parts by weight Dimethyl suberate 4.1 parts by weight A-TMPT 1.7 parts by weight Irgacure 127 0.2 parts by weight V-601 0.2 parts by weight Compound P-2 0.1 part by mass Silica particle dispersion PA-2 32.3 parts by mass Compound B 0.1 part by mass Ethanol 12.7 parts by mass Methyl ethyl ketone 33.3 parts by mass Acetone 12.7 parts by mass
 使用した化合物を以下に記載する。
 A-TMPT:多官能アクリレート (新中村化学工業(株)製)
 V-601:熱重合開始剤、ジメチル2,2’-アゾビス(2-メチルプロピオネート) (和光純薬(株)製)
 化合物P-2:下記構造の化合物(和光純薬(株)製)
The compounds used are described below.
A-TMPT: Multifunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
V-601: thermal polymerization initiator, dimethyl 2,2′-azobis (2-methylpropionate) (manufactured by Wako Pure Chemical Industries, Ltd.)
Compound P-2: Compound having the following structure (manufactured by Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 化合物Bの重量平均分子量は17000である。 Compound B has a weight average molecular weight of 17,000.
<実施例12>
 層(a)形成用組成物(A-1)のシリカ粒子分散液PA-1をシリカ粒子分散液PA-3に変更(この層(a)形成用組成物を組成物(A-6)という。)した以外は実施例1と同様にして反射防止フィルム12を作成した。
<Example 12>
The silica particle dispersion PA-1 of the layer (a) forming composition (A-1) was changed to a silica particle dispersion PA-3 (this layer (a) forming composition is referred to as the composition (A-6)). The antireflection film 12 was prepared in the same manner as in Example 1 except that.
 評価結果を下記表2に示す。 Evaluation results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例1の粒子占有率は47.6%であった。 The particle occupancy rate of Example 1 was 47.6%.
 実施例1~12の反射防止フィルムは、良好な反射防止性能を有し、全光線透過率が高く、かつT580-T480が小さい、すなわち可視光の短波長領域の光の透過率が高いフィルムであった。一方、比較例1の反射防止フィルムは、実施例1の反射防止フィルムに比べてT580-T480が大きく、可視光の短波長領域の光の透過率が低いフィルムであった。
 実施例1~12の反射防止フィルムは、可視光の短波長領域の光の透過率が高いため、色味変化などが生じにくい。特に、タッチパネル付き液晶表示装置などにおいて反射防止フィルムを2枚用いた場合でも色味変化の発生を抑制できると考えられる。
The antireflection films of Examples 1 to 12 have good antireflection performance, high total light transmittance, and small T 580 -T 480 , that is, high transmittance of light in the short wavelength region of visible light. It was a film. On the other hand, the antireflection film of Comparative Example 1 had a larger T 580 -T 480 than the antireflection film of Example 1, and was a film having a low light transmittance in the short wavelength region of visible light.
Since the antireflection films of Examples 1 to 12 have a high transmittance of light in the short wavelength region of visible light, a color change or the like hardly occurs. In particular, it is considered that the occurrence of color change can be suppressed even when two antireflection films are used in a liquid crystal display device with a touch panel.
 本発明によれば、良好な反射防止性能を有し、全光線透過率が高く、かつ可視光の短波長領域の光の透過率が高い反射防止フィルム、及び上記反射防止フィルムの製造方法、並びに上記反射防止フィルムを有する反射防止物品、偏光板、画像表示装置、モジュール、及びタッチパネル付き液晶表示装置を提供することができる。 According to the present invention, an antireflection film having good antireflection performance, a high total light transmittance, and a high light transmittance in the short wavelength region of visible light, a method for producing the antireflection film, and An antireflection article, a polarizing plate, an image display device, a module, and a liquid crystal display device with a touch panel having the antireflection film can be provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年8月15日出願の日本特許出願(特願2016-159295)、2017年2月16日出願の日本特許出願(特願2017-27380)、及び2017年3月31日出願の日本特許出願(特願2017-72565)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application consists of a Japanese patent application filed on August 15, 2016 (Japanese Patent Application No. 2016-159295), a Japanese patent application filed on February 16, 2017 (Japanese Patent Application 2017-27380), and an application filed on March 31, 2017. The Japanese patent application (Japanese Patent Application No. 2017-72565) is incorporated herein by reference.
 1 プラスチック基材
 2 反射防止層
 3 金属酸化物粒子(粒子(a2))
 4 バインダー樹脂(層(a))
 5 支持体
 6 層(b)
 7 粘着フィルム
 10、10a、10b 反射防止フィルム
 11 エアギャップ
 12 タッチパネル
 13 液晶セル
 14 保護フィルム
 15 偏光子
 20 モジュール
 30タッチパネル付き液晶表示装置
 A 隣り合う凸部の頂点間の距離
 B 隣り合う凸部の頂点間の中心と凹部との距離
 UV 紫外線
DESCRIPTION OF SYMBOLS 1 Plastic base material 2 Antireflection layer 3 Metal oxide particle (particle (a2))
4 Binder resin (layer (a))
5 support 6 layers (b)
DESCRIPTION OF SYMBOLS 7 Adhesive film 10, 10a, 10b Antireflection film 11 Air gap 12 Touch panel 13 Liquid crystal cell 14 Protective film 15 Polarizer 20 Module 30 Liquid crystal display device with a touch panel A Distance between vertices of adjacent convex parts B The distance between the center and the recess between the UV and UV

Claims (14)

  1.  プラスチック基材と、反射防止層とを有する反射防止フィルムであって、
     前記反射防止層は、金属酸化物粒子及びバインダー樹脂を含み、
     前記反射防止層は、前記金属酸化物粒子によって形成された凹凸形状からなるモスアイ構造を有し、
     前記反射防止層の前記プラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率が88%以上であり、かつ、
     前記反射防止層の前記プラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T580-T480≦3.5%を満たす反射防止フィルム。
    An antireflection film having a plastic substrate and an antireflection layer,
    The antireflection layer includes metal oxide particles and a binder resin,
    The antireflection layer has a moth-eye structure having an uneven shape formed by the metal oxide particles,
    The total light transmittance of the antireflection film when entering from the side opposite to the plastic substrate of the antireflection layer is 88% or more, and
    T 580 −T 480 ≦ 3.3, where T 480 and T 580 represent the transmittance of light of wavelengths 480 nm and 580 nm, respectively, when the antireflection layer is incident from the side opposite to the plastic substrate. Antireflection film satisfying 5%.
  2.  前記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとしたとき、X≦190nmを満たす請求項1に記載の反射防止フィルム。 2. The antireflection film according to claim 1, wherein the uneven shape of the antireflection layer satisfies X ≦ 190 nm, where X is an average value of distances A between apexes of adjacent convex portions.
  3.  前記反射防止層の凹凸形状は、前記Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす請求項2に記載の反射防止フィルム。 The concavo-convex shape of the antireflection layer is an antireflection film according to claim 2, wherein X + σ ≦ 190 nm is satisfied, where σ is a standard deviation representing the distribution of A.
  4.  前記金属酸化物粒子の平均一次粒径が100nm以上190nm以下である請求項1~3のいずれか1項に記載の反射防止フィルム。 The antireflection film according to any one of claims 1 to 3, wherein an average primary particle size of the metal oxide particles is 100 nm or more and 190 nm or less.
  5.  前記バインダー樹脂に、25℃における粘度が1~20mPasである1分子中に2個以下の重合性官能基を有する化合物又は重合性官能基を有さない化合物を含む請求項1~4のいずれか1項に記載の反射防止フィルム。 5. The binder resin according to claim 1, wherein the binder resin includes a compound having 2 or less polymerizable functional groups or a compound having no polymerizable functional group in one molecule having a viscosity of 1 to 20 mPas at 25 ° C. 2. The antireflection film according to item 1.
  6.  前記プラスチック基材と前記反射防止層との間に、ハードコート層を有する請求項1~5のいずれか1項に記載の反射防止フィルム。 The antireflection film according to any one of claims 1 to 5, further comprising a hard coat layer between the plastic substrate and the antireflection layer.
  7.  前記ハードコート層に4級アンモニウム塩含有ポリマーを含み、
     前記反射防止層の表面抵抗率を単位Ω/sqにてSRとした際の前記SRの常用対数値が11以下であり、かつ、前記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとし、前記Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす請求項6に記載の反射防止フィルム。
    The hard coat layer contains a quaternary ammonium salt-containing polymer,
    When the surface resistivity of the antireflection layer is SR in the unit Ω / sq, the common logarithm value of SR is 11 or less, and the uneven shape of the antireflection layer is between the vertices of adjacent protrusions. The antireflection film according to claim 6, wherein X is an average value of the distance A and σ is a standard deviation representing the distribution of A, and satisfies X + σ ≦ 190 nm.
  8.  請求項1~7のいずれか1項に記載の反射防止フィルムを表面に有する反射防止物品。 An antireflection article having the antireflection film according to any one of claims 1 to 7 on its surface.
  9.  偏光子と、前記偏光子を保護する少なくとも1枚の保護フィルムとを有する偏光板であって、前記保護フィルムの少なくとも1枚が請求項1~7のいずれか1項に記載の反射防止フィルムである偏光板。 A polarizing plate comprising a polarizer and at least one protective film protecting the polarizer, wherein at least one of the protective films is the antireflection film according to any one of claims 1 to 7. A polarizing plate.
  10.  請求項1~7のいずれか1項に記載の反射防止フィルム、又は請求項9に記載の偏光板を有する画像表示装置。 An image display device comprising the antireflection film according to any one of claims 1 to 7 or the polarizing plate according to claim 9.
  11.  請求項1~7のいずれか1項に記載の反射防止フィルムを2枚有し、前記2枚の反射防止フィルムがエアギャップを介して対向して設置されたモジュール。 A module having two antireflection films according to any one of claims 1 to 7, wherein the two antireflection films are disposed to face each other through an air gap.
  12.  前記2枚の反射防止フィルムは、前記反射防止層が前記プラスチック基材よりも前記エアギャップ側に配置された請求項11に記載のモジュール。 The module according to claim 11, wherein the two antireflection films have the antireflection layer disposed on the air gap side with respect to the plastic base material.
  13.  請求項12に記載のモジュールを含み、
     前記2枚の反射防止フィルムのうちの一方の反射防止フィルムの前記プラスチック基材の前記反射防止層側とは反対側にタッチパネルを有し、
     他方の反射防止フィルムの前記プラスチック基材の前記反射防止層側とは反対側に液晶セルを有する、タッチパネル付き表示装置。
    A module according to claim 12,
    One of the two antireflection films has a touch panel on the side opposite to the antireflection layer side of the plastic substrate of the antireflection film,
    A display device with a touch panel, having a liquid crystal cell on the side opposite to the antireflection layer side of the plastic substrate of the other antireflection film.
  14.  プラスチック基材上に、硬化性化合物と平均一次粒径が100nm以上190nm以下の金属酸化物粒子とを、前記硬化性化合物を含む層(a)中に前記金属酸化物粒子が埋没する厚みで設ける工程(1)、
     支持体及び前記支持体上にゲル分率が95.0%以上の粘着剤を含む層(b)を有する粘着フィルムの前記層(b)を、前記層(a)と貼り合わせる工程(2)、
     前記金属酸化物粒子が、前記層(a)及び前記層(b)を合わせた層中に埋没し、かつ、前記層(a)の前記プラスチック基材側の界面とは反対側の界面から突出するように、前記層(a)と前記層(b)の界面の位置を前記プラスチック基材側に移動させる工程(3)、
     前記金属酸化物粒子が、前記層(a)及び前記層(b)を合わせた層中に埋没した状態で前記層(a)を硬化する工程(4)、
     前記層(b)を前記層(a)から剥離する工程(5)、
    をこの順に有し、前記工程(1)~(4)を行う際の温度が60℃以下である反射防止フィルムの製造方法。
    On the plastic substrate, a curable compound and metal oxide particles having an average primary particle size of 100 nm or more and 190 nm or less are provided in such a thickness that the metal oxide particles are buried in the layer (a) containing the curable compound. Step (1),
    A step of bonding the layer (b) of the pressure-sensitive adhesive film having a support and a layer (b) containing a pressure-sensitive adhesive having a gel fraction of 95.0% or more on the support (2). ,
    The metal oxide particles are embedded in a layer combining the layer (a) and the layer (b), and project from an interface on the side opposite to the interface on the plastic substrate side of the layer (a). Step (3) of moving the position of the interface between the layer (a) and the layer (b) to the plastic substrate side,
    A step (4) of curing the layer (a) in a state in which the metal oxide particles are buried in a combined layer of the layer (a) and the layer (b);
    Step (5) of peeling the layer (b) from the layer (a);
    In this order, and the temperature at which the steps (1) to (4) are performed is 60 ° C. or less.
PCT/JP2017/027315 2016-08-15 2017-07-27 Antireflective film, antireflective article, polarizing plate, image display device, module, touch panel liquid crystal display device, and method for manufacturing antireflective film WO2018034126A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780050120.4A CN109642963A (en) 2016-08-15 2017-07-27 Antireflection film, reflection preventing article, polarizing film, image display device, module, the manufacturing method of the liquid crystal display device with touch panel and antireflection film
KR1020197004406A KR102253371B1 (en) 2016-08-15 2017-07-27 Antireflection film, antireflection article, polarizing plate, image display device, module, liquid crystal display device with touch panel, and manufacturing method of antireflection film
US16/276,164 US10871596B2 (en) 2016-08-15 2019-02-14 Antireflection film, antireflection product, polarizing plate, image display device, module, liquid crystal display device with touch panel, and method of manufacturing antireflection film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016159295 2016-08-15
JP2016-159295 2016-08-15
JP2017-027380 2017-02-16
JP2017027380 2017-02-16
JP2017072565A JP6778646B2 (en) 2016-08-15 2017-03-31 Manufacturing method of antireflection film, antireflection article, polarizing plate, image display device, module, liquid crystal display device with touch panel, and antireflection film
JP2017-072565 2017-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/276,164 Continuation US10871596B2 (en) 2016-08-15 2019-02-14 Antireflection film, antireflection product, polarizing plate, image display device, module, liquid crystal display device with touch panel, and method of manufacturing antireflection film

Publications (1)

Publication Number Publication Date
WO2018034126A1 true WO2018034126A1 (en) 2018-02-22

Family

ID=61197432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027315 WO2018034126A1 (en) 2016-08-15 2017-07-27 Antireflective film, antireflective article, polarizing plate, image display device, module, touch panel liquid crystal display device, and method for manufacturing antireflective film

Country Status (1)

Country Link
WO (1) WO2018034126A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015223A (en) * 2018-07-25 2020-01-30 株式会社デンソー Antireflection film and display device for vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480904A (en) * 1987-09-22 1989-03-27 Nippon Sheet Glass Co Ltd Transparent plate stuck with conductive antireflection film
JP2008216733A (en) * 2007-03-06 2008-09-18 Toshiba Matsushita Display Technology Co Ltd Display element
JP2014095731A (en) * 2012-10-12 2014-05-22 Fujifilm Corp Optical film, polarizing plate and liquid crystal display device
JP2016061794A (en) * 2014-09-12 2016-04-25 富士フイルム株式会社 Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
JP2016136228A (en) * 2014-03-31 2016-07-28 富士フイルム株式会社 Anti-reflection film, polarizing plate, cover glass, image display device, and manufacturing method for anti-reflection film
WO2017006936A1 (en) * 2015-07-06 2017-01-12 富士フイルム株式会社 Anti-reflection film production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480904A (en) * 1987-09-22 1989-03-27 Nippon Sheet Glass Co Ltd Transparent plate stuck with conductive antireflection film
JP2008216733A (en) * 2007-03-06 2008-09-18 Toshiba Matsushita Display Technology Co Ltd Display element
JP2014095731A (en) * 2012-10-12 2014-05-22 Fujifilm Corp Optical film, polarizing plate and liquid crystal display device
JP2016136228A (en) * 2014-03-31 2016-07-28 富士フイルム株式会社 Anti-reflection film, polarizing plate, cover glass, image display device, and manufacturing method for anti-reflection film
JP2016061794A (en) * 2014-09-12 2016-04-25 富士フイルム株式会社 Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
WO2017006936A1 (en) * 2015-07-06 2017-01-12 富士フイルム株式会社 Anti-reflection film production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015223A (en) * 2018-07-25 2020-01-30 株式会社デンソー Antireflection film and display device for vehicle

Similar Documents

Publication Publication Date Title
KR102511645B1 (en) Antireflective film, polarizing plate, cover glass, image display device, and method of manufacturing antireflective film
US10399309B2 (en) Antireflection film, polarizing plate, cover glass, and image display device, and method for producing antireflection film
JP6868103B2 (en) Anti-reflective film, polarizing plate, and image display device
US10871596B2 (en) Antireflection film, antireflection product, polarizing plate, image display device, module, liquid crystal display device with touch panel, and method of manufacturing antireflection film
JP2018533065A (en) Antireflection film and display device
US20220075095A1 (en) Laminate, antireflection product, and manufacturing method thereof
JP6596572B2 (en) Laminate, method for producing laminate, and method for producing antireflection film
JP6825095B2 (en) Anti-glare anti-reflective film, manufacturing method of anti-glare anti-reflective film, polarizing plate, image display device, and self-luminous display device
KR20190132231A (en) Anti-reflective film, polarizing plate, and display apparatus
WO2015152308A1 (en) Anti-reflection film, polarizing plate, cover glass, image display device and method for producing anti-reflection film
JP2016061794A (en) Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
WO2018034126A1 (en) Antireflective film, antireflective article, polarizing plate, image display device, module, touch panel liquid crystal display device, and method for manufacturing antireflective film
JP6343540B2 (en) Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
WO2017163861A1 (en) Method for manufacturing anti-reflection film, anti-reflection film, polarizing plate, cover glass, and image display apparatus
JP6802906B2 (en) Laminated body, manufacturing method of laminated body, and manufacturing method of antireflection film
WO2018186241A1 (en) Multilayer body, reflection preventing article having three-dimensional curved surface, and method for manufacturing reflection preventing article
JP6726809B2 (en) Antireflection film, antireflection article, polarizing plate, and image display device
WO2019221573A1 (en) Anti-reflective film, polarizing plate, and display apparatus
WO2019073718A1 (en) Transmission filter and liquid immersion exposure device
JP2004291573A (en) Antireflective hard coat film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197004406

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841354

Country of ref document: EP

Kind code of ref document: A1