WO2018032771A1 - 一种用于航空发动机支架的激光喷丸校形质量控制方法 - Google Patents

一种用于航空发动机支架的激光喷丸校形质量控制方法 Download PDF

Info

Publication number
WO2018032771A1
WO2018032771A1 PCT/CN2017/078705 CN2017078705W WO2018032771A1 WO 2018032771 A1 WO2018032771 A1 WO 2018032771A1 CN 2017078705 W CN2017078705 W CN 2017078705W WO 2018032771 A1 WO2018032771 A1 WO 2018032771A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
correction
bracket
laser
laser peening
Prior art date
Application number
PCT/CN2017/078705
Other languages
English (en)
French (fr)
Inventor
张永康
苏波泳
张永俊
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2018032771A1 publication Critical patent/WO2018032771A1/zh
Priority to US16/116,905 priority Critical patent/US20180361511A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing

Definitions

  • the invention relates to the field of aeronautical component manufacturing, and in particular to a laser peening correction quality control method for an aircraft engine bracket.
  • the aero-engine bracket is a space frame structure obtained by welding hollow steel tubes. During the welding process, the base material is unevenly heated, which is prone to weld residual stress, causing large residual deformation of the space frame structure. Poor, causing the engine bracket mounting bolts to deviate from the mounting position, affecting subsequent assembly.
  • the method used in practical engineering applications is to increase the size, and then use mechanical processing to remove excess deformation. This method is time-consuming and labor-intensive, and the processing consistency is poor.
  • the existing calibration method is to repeatedly apply a reverse force to the deformed workpiece at an appropriate position, so that the deformation region of the workpiece is squeezed to produce reverse plastic deformation until the desired correction result is achieved.
  • the complex structure of the aero-engine bracket there are many factors affecting the welding deformation. There are many different types of deformation after the welding is completed, and the degree of deformation is quite different. Under these circumstances, it is difficult to obtain the ideal bracket design shape accuracy simply by local or large-area extrusion; and the local residual stress of the welded joint after the correction is large, which is not conducive to the stability of the workpiece and subsequent processing, affecting the actual support of the bracket.
  • Working life such a shape also changes the geometry that the workpiece should have, so it is not suitable for correcting the welding deformation of aero-engine brackets with high assembly precision and complex structure.
  • an object of the present invention is to provide a laser peening correction quality control method for an aircraft engine bracket, which is used to solve the problem of deformation during aero engine bracket welding.
  • the present invention provides the following technical solutions:
  • a laser shot peening quality control method for an aircraft engine bracket includes the following steps:
  • Establish correspondence database Determine the correspondence between laser peening correction parameters and welding deformation by computer simulation and laser shot peening test, and analyze and store the correspondence between laser peening correction parameters and welding deformation through big data platform;
  • the structure of the aero-engine bracket is refined: the aero-engine bracket structure is refined into a refined structure, and the refinement structure includes a straight pipe butt welded structure, a straight pipe butt welded structure, and a straight round pipe combined butt welded structure;
  • Refined structure welding and laser peening correction Different refinement structures are separately welded to obtain a refined structure after welding, and the welding deformation amount is measured after the welding, and the big data platform is refined according to the structure after welding.
  • the laser blasting correction parameters are selected for the welding deformation amount, and the welding deformation of the refined structure after welding is corrected by the laser peening correction method;
  • Bracket assembly welding and laser peening correction The different post-welding refining structures are assembled and welded to obtain the overall structure of the bracket, and the welding deformation measurement is performed on the overall structure of the bracket.
  • the big data platform selects the laser according to the welding deformation of the overall structure of the bracket.
  • the blasting correction parameters are corrected by the laser peening correction method for the welding deformation of the overall structure of the bracket;
  • Correction effect detection Check the calibration effect of the overall structure of the bracket to determine whether it is necessary to perform secondary calibration on the overall structure of the bracket. If yes, return to the previous step, and if not, end.
  • the big data platform comprises a data acquisition storage module, a distributed computing architecture and a cloud computing module.
  • the welding deformation amount measurement is performed by a three-dimensional topography system, and the three-dimensional topography system stores the measured welding deformation amount data on the big data platform.
  • the laser peening correction parameters include laser peening power density, shot peening, shot peening angle, and shot peening path.
  • the laser shot peening quality control method for the aero-engine bracket refines the complex aero-engine bracket into three simple refinement structures, and adopts segment welding, segment laser blasting,
  • the processing sequence of the final assembly welding and the final assembly laser peening correction because the method performs laser peening correction before the final assembly welding, the welding deformation of the overall structure of the bracket can be reduced, thereby making the overall structure of the bracket Correction is easier to achieve in laser shot peening.
  • the invention solves the problem that the aero-engine bracket is deformed during the welding process, and can accurately control the dimensional accuracy and shape precision of the bracket, and the correction effect is good.
  • the obtained aero-engine bracket has high diameter and shape accuracy, meets the design accuracy requirements, and produces residuals on the surface of the bracket during laser shot peening.
  • the compressive stress increases the service life of the bracket structure.
  • the solution has the advantages of high control precision, high work efficiency, material saving, and fatigue life of structural parts, and meets the high requirements of aviation parts.
  • FIG. 1 is a flow chart of a laser shot peening quality control method according to an embodiment of the present invention
  • FIG. 5 is a butt welded structure of a straight circular tube according to a specific embodiment of the present invention.
  • the core of the invention is to provide a laser shot peening quality control method for an aircraft engine bracket, which is used to solve the problem of deformation during the welding process of the aircraft engine bracket.
  • FIG. 1 is a flow chart of a laser peening correction quality control method according to an embodiment of the present invention
  • FIG. 2 to FIG. 5 are schematic diagrams of different refinement structures in a specific embodiment of the present invention.
  • the present invention provides the following technical solutions:
  • a laser shot peening quality control method for an aircraft engine bracket includes the following steps:
  • the refining structure comprises a straight pipe butt welding structure, a straight pipe butt welding structure, and a straight pipe combined butt welding structure;
  • Bracket assembly welding and laser peening correction The different post-welding refinement structures are assembled and welded to obtain the overall structure of the bracket, and the welding deformation measurement is performed on the overall structure of the bracket. The welding deformation of the big data platform according to the overall structure of the bracket The laser peening correction parameters are selected, and the welding deformation of the overall structure of the bracket is corrected by laser peening correction method;
  • Correction effect detection Detect the calibration effect of the overall structure of the bracket, determine whether it is necessary to perform secondary calibration on the overall structure of the bracket, and if yes, return to step S4); if not, end.
  • the welding deformation is caused by the uneven heating of the welded joint during the welding process, resulting in residual tensile stress, which leads to residual deformation.
  • the principle of the laser peening correction method is to apply high-density and short-pulse laser to the planned area (determine the area where laser peening is required according to different deformations), adjust the residual stress in the welding deformation area, and then correct the welding process. Residual deformation produced.
  • the big data platform comprises a data acquisition storage module, a distributed computing architecture and a cloud computing module.
  • the corresponding relational database refers to a database for storing detailed deformation modes and specific laser peening correction parameters required for a specific deformation amount.
  • the laser peening correction parameters include laser peening power density, shot peening, shot peening angle, shot peening path, and the like.
  • the person skilled in the art can set the maximum value of i according to different division conditions, which is not limited herein.
  • the correspondence between the laser peening correction parameter G i and the welding deformation amount X i is first obtained by computer simulation, and then verified by laser shot peening test. Finally, the laser peening correction parameter G i and the welding deformation amount X i The corresponding relationship is saved to the data collection storage module of the big data platform, thereby establishing a corresponding relational database.
  • the welded structure and the overall structure of the stent are respectively welded.
  • the deformation amount measurement preferably, the welding deformation amount measurement is performed by a three-dimensional topography system, and the three-dimensional topography system stores the measured welding deformation amount data on the big data platform.
  • the specific measurement process is as follows: the three-dimensional shape system is performed by scanning the stent topography.
  • the scanning system first scans the standard support to establish a detailed standard three-dimensional shape data model of the support as a comparison benchmark for measuring welding deformation;
  • the three-dimensional shape system scans the bracket after welding to obtain a three-dimensional model of the welded bracket, and compares the three-dimensional model of the welded bracket with the three-dimensional shape data model of the standard bracket, thereby determining the detailed deformation position, deformation mode and welding of the welded bracket.
  • the amount of deformation is included in the scanning process, the surface of the stent is coated with a developer for measurement.
  • the three-dimensional shape system is docked with the data acquisition and storage module of the big data platform, and the three-dimensional shape system also stores the measured welding deformation data in the big data platform, and at the same time obtains the corresponding laser shot peening through computer simulation.
  • the calibration parameter is designed to further enrich the correspondence database of the big data platform, so that the big data platform can select the corresponding laser peening correction parameter closer to the measured welding deformation amount in the next calibration process.
  • the three-dimensional topography system and the residual stress testing device are used to respectively measure the three-dimensional deformation amount of the welded support and the residual stress of the key region (for example, the weld bead region), and the obtained three-dimensional shape.
  • the deformation data and residual stress data are input to the big data platform, and the three-dimensional deformation of the welded bracket is analyzed by the cloud computing module in the big data platform, and the final shape of the bracket is compared with the final shape of the bracket to determine the deformation amount and the shape of the shape to be corrected. path.
  • the big data platform calls the detailed deformation data in the data acquisition storage module, compares with the existing welding deformation data in the corresponding relational database, determines the specific laser shot peening parameters, and the specific laser shot peening parameters have passed the computer.
  • the simulation and laser shot peening tests are mutually validated and determined and stored in the corresponding relational database of the big data platform.
  • the big data platform selects the laser peening correction parameter of the required shape of the refined structure after welding according to the welding deformation amount of the refined structure after welding, for example, automatically searches through the big data platform.
  • a database of correspondence between the laser shot peening parameters and the welding deformation amount stored in advance is used to find the shot peening intensity corresponding to the welding deformation amount.
  • the optimal scheme of laser shot peening is selected for the overall structure of the bracket, specifically: after the welding deformation measurement is performed on the overall structure of the bracket and the welding deformation amount is determined, the total welding deformation amount of the bracket is The welding deformation amount in the data acquisition and storage module in the big data platform is compared, and the optimal calibration scheme is determined according to the database of the correspondence between the laser peening correction parameters and the welding deformation amount in the data acquisition storage module.
  • the selection of the optimal solution for laser peening correction includes laser peening correction parameters (laser blasting power density, shot peening, shot peening angle, shot peening path) The choice and the choice of the calibration area.
  • the laser peening correction method is used to correct the welding deformation of the refined structure or the overall structure of the stent after welding, which specifically means that the determined laser peening correction parameter (laser peening)
  • the power density, the number of shots, the shot peening angle, and the shot peening path are input into the laser impact device, and the laser impact device determines the good shot peening path according to the big data platform to correct the refined structure and the overall structure of the support after welding. .
  • the coupling effect refers to the influence of deformation or deformation on other connected parts during the assembly welding process of the bracket due to the welding deformation of a certain part.
  • the coupling effect refers to the influence of deformation or deformation on other connected parts during the assembly welding process of the bracket due to the welding deformation of a certain part.
  • the distance between the lower structure nodes becomes larger due to the angular deformation of the upper welded joint during the welding process. Therefore, the lower welded joints are generated during the welding process. Torsional deformation.
  • the incidental deformation caused by the coupling effect is also a kind of welding deformation, which also needs to be corrected.
  • the correction effect detection includes detecting the correcting effect of the overall structure of the bracket, and determining whether it is necessary to perform secondary calibration on the overall structure of the bracket, and if yes, returning to step S4); if not, Then it ends.
  • the calibration effect of the overall structure of the bracket is detected, specifically, the overall structure of the bracket after the correction is compared with the standard bracket structure, and it is determined whether the welding deformation portion after the calibration satisfies the requirements for dimensional accuracy and shape accuracy of the product, if If the requirements are not met, the judgment result is that the overall structure of the bracket needs to be re-corrected, and the process returns to step S4) to correct the shape again; if the requirement is met, the judgment result is that the overall structure of the bracket does not need to be re-calibrated, the whole The process ends.
  • Step S5 can gradually make the overall structure of the stent gradually approach the correction accuracy required by the product.
  • the solution refines the complex aero-engine bracket into three simple refinement structures: straight pipe butt welding structure, that is, straight pipe and straight pipe welding structure; straight pipe butt welding structure That is, the straight pipe and the round pipe welded structure; the straight pipe combined with the butt welded structure, that is, the straight pipe and the straight pipe plus the straight pipe and the round pipe combined welded structure.
  • straight pipe butt welding structure that is, straight pipe and straight pipe welding structure
  • straight pipe butt welding structure That is, the straight pipe and the round pipe welded structure
  • the straight pipe combined with the butt welded structure that is, the straight pipe and the straight pipe plus the straight pipe and the round pipe combined welded structure.
  • the laser shot peening quality control method for the aero-engine bracket refines the complex aero-engine bracket into three simple refinement structures, and adopts segment welding, segment laser blasting,
  • the processing sequence of the final assembly welding and the final assembly laser peening correction because the method performs laser peening correction before the final assembly welding, the welding deformation of the overall structure of the bracket can be reduced, thereby making the overall structure of the bracket Correction is easier to achieve in laser shot peening.
  • Solution of the invention The problem that the aero-engine bracket is deformed during the welding process is determined, and the dimensional accuracy and shape accuracy of the bracket can be accurately controlled, and the correction effect is good.
  • the obtained aero-engine bracket has high diameter and shape precision, meets the design precision requirements, and generates residual compressive stress on the surface of the bracket during laser shot peening, which improves the service life of the bracket structure.
  • the solution has the advantages of high control precision, high work efficiency, material saving, and fatigue life of structural parts, and meets the high requirements of aviation parts.

Abstract

一种用于航空发动机支架的激光喷丸校形质量控制方法,包括步骤:通过大数据平台建立激光喷丸校形参数与焊接变形量的对应关系数据库;航空发动机支架结构细化;细化结构焊接及激光喷丸校形;支架总装焊接及激光喷丸校形;校形效果检测。该方法将复杂的航空发动机支架细化成为三种简单的细化结构,并且采用分段焊接、分段激光喷丸校形、总装焊接、总装激光喷丸校形的加工顺序,由于将各个细化结构在总装焊接之前进行了激光喷丸校形,因此可以减小支架总体结构的焊接变形,从而使支架总体结构在激光喷丸校形中更容易校正,解决了航空发动机支架在焊接过程中产生变形的问题,能够准确控制支架的尺寸精度、形状精度,校正效果良好。

Description

一种用于航空发动机支架的激光喷丸校形质量控制方法
本申请要求于2016年08月17日提交中国专利局、申请号为201610682336.X、发明名称为“一种用于航空发动机支架的激光喷丸校形质量控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及航空构件制造领域,尤其涉及一种用于航空发动机支架的激光喷丸校形质量控制方法。
背景技术
航空发动机支架是由空心钢管焊接而得到的空间框架结构,其支架节点在焊接过程中,母材局部受热不匀,容易产生焊接残余应力,引起空间框架结构发生很大的残余变形,形状精度较差,导致发动机支架安装螺栓偏离安装位置,影响了后续的装配。目前,在实际工程应用中采用的方法是增大尺寸,然后,用机械加工的方式切除多余的变形量,这种方法费时费工,加工一致性差。
目前,已有的校形方法是对已变形的工件在适当位置反复施加反向作用力,使工件变形区域受到挤压,产生反向塑性变形,直至达到所需的校形结果。但由于航空发动机支架结构复杂,焊接变形影响因素众多,其在焊接完成后存在多种不同类型的变形,且变形程度差异较大。在这些情况下,单纯靠局部或大面积挤压很难获得理想的支架设计形状精度;且校形后的焊接节点局部残余应力较大,不利于工件的稳定性及后续加工,影响支架实际的工作寿命;这样的校形还会改变工件本应具有的几何尺寸,因此不适用于对装配精度要求高且结构复杂的航空发动机支架焊接变形进行校形。
因此,如何解决航空发动机支架焊接过程中产生变形的问题,是本领域技术人员目前需要解决的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种用于航空发动机支架的激光喷丸校形质量控制方法,用于解决航空发动机支架焊接过程中产生变形的问题。
为了实现上述目的,本发明提供了如下技术方案:
一种用于航空发动机支架的激光喷丸校形质量控制方法,包括以下步骤:
建立对应关系数据库:通过计算机仿真及激光喷丸试验确定激光喷丸校形参数与焊接变形量的对应关系,通过大数据平台对激光喷丸校形参数与焊接变形量的对应关系进行分析存储;
航空发动机支架结构细化:将航空发动机支架结构细化为细化结构,细化结构包括直管对接焊结构、直圆管对接焊结构、直圆管组合对接焊结构;
细化结构焊接及激光喷丸校形:将不同的细化结构分别进行焊接,得到焊接后细化结构,对焊接后细化结构进行焊接变形量测量,大数据平台根据焊接后细化结构的焊接变形量选择激光喷丸校形参数,并通过激光喷丸校形方法对焊接后细化结构的焊接变形进行校正;
支架总装焊接及激光喷丸校形:将不同的焊接后细化结构进行总装焊接,得到支架总体结构,对支架总体结构进行焊接变形量测量,大数据平台根据支架总体结构的焊接变形量选择激光喷丸校形参数,再通过激光喷丸校形方法对支架总体结构的焊接变形进行校正;
校形效果检测:对支架总体结构的校形效果进行检测,判断是否需要对支架总体结构进行二次校形,如果是,则返回上一步骤,如果否,则结束。
优选地,在上述激光喷丸校形质量控制方法中,大数据平台包括数据采集存储模块、分布式计算架构和云计算模块。
优选地,在上述激光喷丸校形质量控制方法中,焊接变形量测量是通过三维形貌系统进行的,并且,三维形貌系统将测量的焊接变形量数据存储于大数据平台。
优选地,在上述激光喷丸校形质量控制方法中,激光喷丸校形参数包括激光喷丸功率密度、喷丸次数、喷丸角度、喷丸路径。
本发明提供的用于航空发动机支架的激光喷丸校形质量控制方法,将复杂的航空发动机支架细化成为三种简单的细化结构,并且采用分段焊接、分段激光喷丸校形、总装焊接、总装激光喷丸校形的加工顺序,由于本方法将各个细化结构在总装焊接之前进行了激光喷丸校形,因此,可以减小支架总体结构的焊接变形,从而使支架总体结构在激光喷丸校形中更容易得到校正。本发明解决了航空发动机支架在焊接过程中产生变形的问题,能够准确控制支架的尺寸精度、形状精度,校正效果良好。所得到的航空发动机支架直径尺寸和形状精度较高,满足设计的精度要求,且在激光喷丸校形过程中在支架表面产生残余 压应力,提高了支架结构的使用寿命。相比目前所采用的控制变形的方法,本方案具有控制精度高、工作效率高、节省材料、提高结构件疲劳寿命等优点,符合航空零件高要求的标准。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明具体实施例的激光喷丸校形质量控制方法流程图;
图2为本发明具体实施例中的一种直管对接焊结构;
图3为本发明具体实施例中的另一种直管对接焊结构;
图4为本发明具体实施例中的一种直圆管对接焊结构;
图5为本发明具体实施例中的一种直圆管组合对接焊结构。
具体实施方式
本发明的核心在于提供一种用于航空发动机支架的激光喷丸校形质量控制方法,用于解决航空发动机支架焊接过程中产生变形的问题。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1至5,图1为本发明具体实施例的激光喷丸校形质量控制方法流程图,图2至图5为本发明具体实施例中的不同细化结构示意图。
在一种具体实施例方案中,本发明提供了以下技术方案:
一种用于航空发动机支架的激光喷丸校形质量控制方法,包括以下步骤:
S1)建立对应关系数据库:通过计算机仿真及激光喷丸试验确定激光喷丸校形参数与焊接变形量的对应关系,通过大数据平台对激光喷丸校形参数与焊接变形量的对应关系进行分析存储;
S2)航空发动机支架结构细化:将航空发动机支架结构细化为细化结构, 细化结构包括直管对接焊结构、直圆管对接焊结构、直圆管组合对接焊结构;
S3)细化结构焊接及激光喷丸校形:将不同的细化结构分别进行焊接,得到焊接后细化结构,对焊接后细化结构进行焊接变形量测量,大数据平台根据焊接后细化结构的焊接变形量选择激光喷丸校形参数,并通过激光喷丸校形方法对焊接后细化结构的焊接变形进行校正;
S4)支架总装焊接及激光喷丸校形:将不同的焊接后细化结构进行总装焊接,得到支架总体结构,对支架总体结构进行焊接变形量测量,大数据平台根据支架总体结构的焊接变形量选择激光喷丸校形参数,再通过激光喷丸校形方法对支架总体结构的焊接变形进行校正;
S5)校形效果检测:对支架总体结构的校形效果进行检测,判断是否需要对支架总体结构进行二次校形,如果是,则返回到步骤S4);如果否,则结束。
焊接变形是由于焊接节点在焊接过程中受热不均,产生残余拉应力,进而产生残余变形。激光喷丸校形方法的原理是,将高密度、短脉冲激光作用于规划好的区域(根据不同变形确定需激光喷丸的区域),调整焊接变形区域的残余应力,进而校正由焊接过程中产生的残余变形。
优选地,在步骤S1)中,大数据平台包括数据采集存储模块、分布式计算架构和云计算模块。
针对不同变形方式的焊接变形量(如角变形的变形角度、弯曲变形的变形曲率等),每一种变形方式的校正均需确定校正所需的激光喷丸校形参数,步骤S1)中所述的对应关系数据库就是指用于存储详细的变形方式及特定变形量对应所需的具体的激光喷丸校形参数的数据库。需要说明的是,激光喷丸校形参数包括激光喷丸功率密度、喷丸次数、喷丸角度、喷丸路径等。
步骤S1)的详细过程如下:对焊接变形量进行划分,记作Xi(i为正整数,即i=1,2,3,4,……);同时,将不同焊接变形量对应的激光喷丸校形参数记作Gi(i为正整数,即i=1,2,3,4,……),其中,上述i的最大值取决于焊接变形量的划分情况,如划分的精细度,本领域技术人员可以根据不同划分情况来设置i的最大值,本文不做限定。激光喷丸校形参数Gi与焊接变形量Xi的对应关系先通过计算机仿真获得,再经过激光喷丸试验进行验证确定,最后,将激光喷丸校形参数Gi与焊接变形量Xi的对应关系保存至大数据平台的数据采集存储模块中,从而建立对应关系数据库。
上述步骤S3)和S4)中分别对焊接后细化结构和支架总体结构进行焊接 变形量测量,优选地,焊接变形量测量是通过三维形貌系统进行的,并且,三维形貌系统将测量的焊接变形量数据存储于大数据平台。具体的测量过程如下:三维形貌系统是通过扫描支架形貌进行的,扫描系统先对标准支架进行扫描,建立详细的标准支架三维形貌数据模型,以作为测量焊接变形时的对比基准;其次,三维形貌系统对焊接完成后的支架进行扫描,得到焊接支架三维模型,将焊接支架三维模型与标准支架三维形貌数据模型进行对比,从而可以确定焊接支架的详细变形位置、变形方式以及焊接变形量。其中,在扫描过程中,在支架表面涂有显影剂,便于测量。
需要说明的是,三维形貌系统与大数据平台的数据采集存储模块是对接的,三维形貌系统还将测量的焊接变形量数据存储于大数据平台,同时通过计算机仿真获得对应的激光喷丸校形参数,其目的是为了进一步丰富大数据平台的对应关系数据库,从而可以使大数据平台在下一次校形过程中选择更加接近于所测的焊接变形量的对应激光喷丸校形参数。
具体的,在上述步骤S3)和S4)中,利用三维形貌系统和残余应力测试设备来分别测量焊接支架的三维变形量及关键区域(例如焊缝区域)的残余应力,并将获得的三维变形量数据及残余应力数据输入到大数据平台,利用大数据平台中的云计算模块对焊接支架的三维变形进行分析,并与支架的最终形状对比来确定需校形部位的变形量及校形路径。大数据平台调用数据采集存储模块中的详细变形数据,与对应关系数据库中已有的焊接变形量数据进行对比,确定具体的激光喷丸校形参数,具体的激光喷丸校形参数已通过计算机仿真和激光喷丸试验相互验证的方式确定并存储于大数据平台的对应关系数据库中。
在上述步骤S3)中,大数据平台根据焊接后细化结构的焊接变形量选择焊接后细化结构的需校形部位的激光喷丸校形参数,例如:通过大数据平台自动搜索在其内预先存储的激光喷丸校形参数与焊接变形量的对应关系数据库,来查找与该焊接变形量对应的喷丸强度。
在上述步骤S4)中,为支架总体结构选择激光喷丸校形最优方案,具体为:在对支架总体结构进行焊接变形量测量并确定了焊接变形量之后,将支架总体的焊接变形量与大数据平台中的数据采集存储模块中已有的焊接变形量进行对比,根据数据采集存储模块中已有的激光喷丸校形参数与焊接变形量的对应关系数据库,确定最佳校形方案。优选地,激光喷丸校形最优方案的选择包括激光喷丸校形参数(激光喷丸功率密度、喷丸次数、喷丸角度、喷丸路径) 的选择以及校形区域的选择。
在上述步骤S3)和S4)中,通过激光喷丸校形方法对焊接后细化结构或支架总体结构的焊接变形进行校正具体是指,将确定后的激光喷丸校形参数(激光喷丸功率密度、喷丸次数、喷丸角度、喷丸路径)输入激光冲击设备中,由该激光冲击设备按大数据平台确定好的喷丸路径对焊接后细化结构和支架总体结构进行校形处理。
需要说明的是,在上述步骤S4中,在对支架总体结构进行焊接变形量测量时,需判断在支架总装焊接过程中是否对已校正的焊接后细化结构产生耦合影响。耦合影响是指在支架总装焊接过程中,由于某部位产生焊接变形,而对其他与之连接的部位产生影响或变形。例如:当焊接后细化结构达到所需的形状及尺寸精度后,由于上部焊接节点在焊接过程中产生角变形,则对下部结构节点距离变大,因此,在焊接过程中下部焊接节点会产生扭转变形。耦合影响产生的附带变形也属于焊接变形的一种,同样需要进行校正。
在上述步骤S5)中,校形效果检测包括对支架总体结构的校形效果进行检测,并判断是否需要对支架总体结构进行二次校形,如果是,则返回到步骤S4);如果否,则结束。其中,对支架总体结构的校形效果进行检测,具体是指将校正之后的支架总体结构与标准支架结构进行对比,确定校正之后的焊接变形部位是否满足产品的尺寸精度和形状精度等要求,如果不满足要求,则判断结果为还需要对支架总体结构进行二次校形,返回到步骤S4)再次校形;如果满足要求,则判断结果为不需要对支架总体结构进行二次校形,整个流程结束。步骤S5)可以使支架总体结构逐步逼近产品所需的校形精度。
请参照图2至图5,可见,本方案将复杂的航空发动机支架细化成了三种简单的细化结构:直管对接焊结构,即直管与直管焊接结构;直圆管对接焊结构,即直管与圆管焊接结构;直圆管组合对接焊结构,即直管与直管加直管与圆管组合焊接结构。上述三种细化结构的焊接变形,容易通过激光喷丸校形方法进行校正,因此,可以减小在支架总装焊接过程中的焊接变形。
本发明提供的用于航空发动机支架的激光喷丸校形质量控制方法,将复杂的航空发动机支架细化成为三种简单的细化结构,并且采用分段焊接、分段激光喷丸校形、总装焊接、总装激光喷丸校形的加工顺序,由于本方法将各个细化结构在总装焊接之前进行了激光喷丸校形,因此,可以减小支架总体结构的焊接变形,从而使支架总体结构在激光喷丸校形中更容易得到校正。本发明解 决了航空发动机支架在焊接过程中产生变形的问题,能够准确控制支架的尺寸精度、形状精度,校正效果良好。所得到的航空发动机支架直径尺寸和形状精度较高,满足设计的精度要求,且在激光喷丸校形过程中在支架表面产生残余压应力,提高了支架结构的使用寿命。相比目前所采用的控制变形的方法,本方案具有控制精度高、工作效率高、节省材料、提高结构件疲劳寿命等优点,符合航空零件高要求的标准。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (4)

  1. 一种用于航空发动机支架的激光喷丸校形质量控制方法,其特征在于,包括以下步骤:
    建立对应关系数据库:通过计算机仿真及激光喷丸试验确定激光喷丸校形参数与焊接变形量的对应关系,通过大数据平台对激光喷丸校形参数与焊接变形量的对应关系进行分析存储;
    航空发动机支架结构细化:将航空发动机支架结构细化为细化结构,细化结构包括直管对接焊结构、直圆管对接焊结构、直圆管组合对接焊结构;
    细化结构焊接及激光喷丸校形:将不同的细化结构分别进行焊接,得到焊接后细化结构,对焊接后细化结构进行焊接变形量测量,大数据平台根据焊接后细化结构的焊接变形量选择激光喷丸校形参数,并通过激光喷丸校形方法对焊接后细化结构的焊接变形进行校正;
    支架总装焊接及激光喷丸校形:将不同的焊接后细化结构进行总装焊接,得到支架总体结构,对支架总体结构进行焊接变形量测量,大数据平台根据支架总体结构的焊接变形量选择激光喷丸校形参数,再通过激光喷丸校形方法对支架总体结构的焊接变形进行校正;
    校形效果检测:对支架总体结构的校形效果进行检测,判断是否需要对支架总体结构进行二次校形,如果是,则返回上一步骤,如果否,则结束。
  2. 根据权利要求1所述的激光喷丸校形质量控制方法,其特征在于,大数据平台包括数据采集存储模块、分布式计算架构和云计算模块。
  3. 根据权利要求1所述的激光喷丸校形质量控制方法,其特征在于,焊接变形量测量是通过三维形貌系统进行的,并且,三维形貌系统将测量的焊接变形量数据存储于大数据平台。
  4. 根据权利要求1所述的激光喷丸校形质量控制方法,其特征在于,激光喷丸校形参数包括激光喷丸功率密度、喷丸次数、喷丸角度、喷丸路径。
PCT/CN2017/078705 2016-08-17 2017-03-30 一种用于航空发动机支架的激光喷丸校形质量控制方法 WO2018032771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/116,905 US20180361511A1 (en) 2016-08-17 2018-08-30 Method for quality control on laser peening correction of aero-engine support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610682336.XA CN106041344B (zh) 2016-08-17 2016-08-17 一种用于航空发动机支架的激光喷丸校形质量控制方法
CN201610682336.X 2016-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/116,905 Continuation US20180361511A1 (en) 2016-08-17 2018-08-30 Method for quality control on laser peening correction of aero-engine support

Publications (1)

Publication Number Publication Date
WO2018032771A1 true WO2018032771A1 (zh) 2018-02-22

Family

ID=57194734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078705 WO2018032771A1 (zh) 2016-08-17 2017-03-30 一种用于航空发动机支架的激光喷丸校形质量控制方法

Country Status (3)

Country Link
US (1) US20180361511A1 (zh)
CN (1) CN106041344B (zh)
WO (1) WO2018032771A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112536531A (zh) * 2020-11-24 2021-03-23 南通大学 控制复杂曲面薄壁零件在激光喷丸强化过程中变形的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106041344B (zh) * 2016-08-17 2018-03-23 广东工业大学 一种用于航空发动机支架的激光喷丸校形质量控制方法
CN106312323B (zh) * 2016-11-02 2019-03-12 广东工业大学 一种变形叶片的激光喷丸校形方法及装置
CN107052534A (zh) * 2017-01-12 2017-08-18 南京工程学院 一种同步喷丸镁合金焊接装置及方法
JP7039806B2 (ja) * 2018-01-17 2022-03-23 三菱重工業株式会社 伝熱パネルの歪み修正方法、伝熱パネルの歪み修正支援システム、及び伝熱パネルの歪み修正プログラム
CN109454155B (zh) * 2018-10-10 2020-05-22 温州大学激光与光电智能制造研究院 一种针对薄壁通孔件的激光喷丸矫形方法
CN110293151B (zh) * 2019-06-03 2020-06-30 西安飞机工业(集团)有限责任公司 一种钛合金滑轨类零件槽口变形的校形方法
CN110560511A (zh) * 2019-09-19 2019-12-13 深圳市鑫迪科技有限公司 一种针对变形不规则薄壁件的整形工艺
CN111203676A (zh) * 2020-01-17 2020-05-29 湘潭大学 一种基于激光视觉的航空发动机前支架相贯线焊缝识别方法
CN114131233B (zh) * 2021-09-29 2023-09-22 中国石油大学(华东) 一种平板单边焊动态弯曲变形实验系统及方法
CN117047274B (zh) * 2023-09-05 2024-03-19 浙江人驰汽车配件有限公司 内撑式双焊接张紧轮及其智能加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101011777A (zh) * 2006-12-11 2007-08-08 江苏大学 一种中厚板料激光预应力复合喷丸成形的方法和装置
CN103143593A (zh) * 2011-12-07 2013-06-12 江苏大学 一种激光冲击波金属板料校形方法及装置
US20130180969A1 (en) * 2012-01-18 2013-07-18 Purdue Research Foundation Laser shock peening apparatuses and methods
CN104899345A (zh) * 2015-03-09 2015-09-09 上海交通大学 用于确定复杂曲面形状工件激光喷丸成形工艺参数的方法
CN106041344A (zh) * 2016-08-17 2016-10-26 广东工业大学 一种用于航空发动机支架的激光喷丸校形质量控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144012A (en) * 1997-11-05 2000-11-07 Lsp Technologies, Inc. Efficient laser peening
CN100355514C (zh) * 2005-05-20 2007-12-19 江苏大学 中厚板材激光喷丸成形的方法和装置
CN100429589C (zh) * 2007-01-19 2008-10-29 中国科学院力学研究所 飞机外壳成形件激光精调方法
CN101289733A (zh) * 2008-06-25 2008-10-22 中国科学院力学研究所 激光辅助预应力喷丸成形-强化复合方法
CN102601167A (zh) * 2012-03-23 2012-07-25 天津大学 一种矫正薄板焊接失稳变形的超声喷丸法及其应用
CN103246772A (zh) * 2013-05-11 2013-08-14 天津大学 一种基于abaqus的超声喷丸矫正焊接变形的有限元模拟方法
CN103752651B (zh) * 2014-01-09 2015-09-09 上海飞机制造有限公司 焊接整体壁板激光冲击校形方法
CN105396899B (zh) * 2015-11-30 2017-06-06 中航飞机股份有限公司西安飞机分公司 一种薄壁大曲率复杂外形壁板的喷丸校形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101011777A (zh) * 2006-12-11 2007-08-08 江苏大学 一种中厚板料激光预应力复合喷丸成形的方法和装置
CN103143593A (zh) * 2011-12-07 2013-06-12 江苏大学 一种激光冲击波金属板料校形方法及装置
US20130180969A1 (en) * 2012-01-18 2013-07-18 Purdue Research Foundation Laser shock peening apparatuses and methods
CN104899345A (zh) * 2015-03-09 2015-09-09 上海交通大学 用于确定复杂曲面形状工件激光喷丸成形工艺参数的方法
CN106041344A (zh) * 2016-08-17 2016-10-26 广东工业大学 一种用于航空发动机支架的激光喷丸校形质量控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112536531A (zh) * 2020-11-24 2021-03-23 南通大学 控制复杂曲面薄壁零件在激光喷丸强化过程中变形的方法
CN112536531B (zh) * 2020-11-24 2021-11-19 南通大学 控制复杂曲面薄壁零件在激光喷丸强化过程中变形的方法

Also Published As

Publication number Publication date
CN106041344B (zh) 2018-03-23
US20180361511A1 (en) 2018-12-20
CN106041344A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
WO2018032771A1 (zh) 一种用于航空发动机支架的激光喷丸校形质量控制方法
CN103752651B (zh) 焊接整体壁板激光冲击校形方法
CN103028914B (zh) 钢箱梁曲线板制作方法
JP6070514B2 (ja) レーザ重ね溶接継手の疲労寿命予測方法
CN106312299B (zh) 航空发动机支架激光喷丸校形形状精度在线控制的方法与装置
CN107330181A (zh) 预测激光焊接变形量的实现方法
CN106269998A (zh) 焊接整体壁板在线自适应激光喷丸校形方法和装置
CN104008219A (zh) 一种焊接变形分析预测方法
CN112276313A (zh) 预测大型钢结构件冷热多丝复合埋弧焊热循环参数的方法
CN110415331A (zh) 一种基于点云数据的轮廓或孔洞快速检测判别和孔洞修补方法
CN104057210A (zh) 基于强度理论的焊接设计方法
CN109735695A (zh) 一种高压水射流降低焊接残余应力的工艺方法
CN109014643A (zh) 一种基于弹性周长的大型薄壁贮箱箱体装配方法
CN117195662A (zh) 一种大型结构件焊接变形预测方法及系统
CN108959702A (zh) 一种基于面偏差传递的火箭贮箱偏差分析方法
CN104646875B (zh) 一种5m级弱刚性超长贮箱的形位尺寸控制方法
Pasternak et al. Investigation of the buckling behaviour of ring‐stiffened cylindrical shells under axial pressure
CN116467806A (zh) 对接环形焊缝焊接数值计算方法及系统
JP2009128085A (ja) 有限要素法による残留応力解析方法
CN111774813B (zh) 一种合拢管内场制作方法
CN113441863B (zh) 焊接件的焊缝疲劳强度评判方法
CN111366283A (zh) 一种辅助压痕应变法检测焊接结构件残余应力的方法
CN106284649A (zh) 一种焊接球网架杆件的球内斜对接施工方法
CN110539077A (zh) 一种轻量化结构舱段与支耳的激光焊接变形控制工装及变形控制方法
CN208375229U (zh) 一种能满足门框总成焊接及产品精度测量一体的检具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17840747

Country of ref document: EP

Kind code of ref document: A1