WO2018032433A1 - Dsp module-based autopilot for miniature unmanned aerial vehicle - Google Patents

Dsp module-based autopilot for miniature unmanned aerial vehicle Download PDF

Info

Publication number
WO2018032433A1
WO2018032433A1 PCT/CN2016/095762 CN2016095762W WO2018032433A1 WO 2018032433 A1 WO2018032433 A1 WO 2018032433A1 CN 2016095762 W CN2016095762 W CN 2016095762W WO 2018032433 A1 WO2018032433 A1 WO 2018032433A1
Authority
WO
WIPO (PCT)
Prior art keywords
dsp
combination
autopilot
processor
output
Prior art date
Application number
PCT/CN2016/095762
Other languages
French (fr)
Chinese (zh)
Inventor
邹霞
钟玲珑
Original Assignee
邹霞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邹霞 filed Critical 邹霞
Priority to PCT/CN2016/095762 priority Critical patent/WO2018032433A1/en
Publication of WO2018032433A1 publication Critical patent/WO2018032433A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

A DSP module-based autopilot for a miniature unmanned aerial vehicle, the autopilot comprising a processor (1), a GPS (2), an AD converter (3), an SRAM (4), an EEPROM (5), a simulator (6), a power amplifier circuit (7), a receiver (8), a JTAG (9), a remote station (10), a gyroscope assembly (11), an accelerometer assembly (12), and a sensor assembly (13). The processor (1) is connected to the GPS (2), AD converter (3), SRAM (4), EEPROM (5), simulator (6), power amplifier circuit (7), receiver (8), JTAG (9), and remote station (10). The present invention enables precise and intelligent control of an unmanned aerial vehicle.

Description

说明书 发明名称:基于 DSP模块化小型无人机自驾仪 技术领域  Manual Title: Based on DSP modular small drone autopilot
[0001] 本发明涉及一种基于 DSP模块化小型无人机自驾仪, 属于无人机控制领域。  [0001] The present invention relates to a modular small drone autopilot based on DSP, which belongs to the field of UAV control.
背景技术  Background technique
[0002] 无人机 (Unmaned Aerial Vehicle, UAV) 是一种机上无人驾驶的、 有动力驱动 的、 可重复使用的飞行器简称。 与载人飞机相比较, 它具有体积小、 造价低、 使用方便等优点, 备受世界各国青睐, 拥有广泛的民用和军事用途。 无人机自 驾仪是无人机的核心部分, 承担着数据采集, 通信, 控制量计算, 控制量输出 等多重任务。 无人机的先进程度在很大程度上体现在其自驾仪上。 从总体情况 来看, 我国无人机在军事领域发展迅速, 目前很多技术已经走在世界的前列, 但是在民用方面, 起步比较晚, 应用还比较有限。 但是最近几年, 民用的小型 无人机自动驾驶仪的研究有所增加, 特别是高新技术企业, 幵始研制自己无人 机自动驾驶仪产品。  [0002] The Unmaned Aerial Vehicle (UAV) is an acronym for an unmanned, powered, reusable aircraft on board. Compared with manned aircraft, it has the advantages of small size, low cost and convenient use. It is favored by all countries in the world and has a wide range of civil and military uses. The drone autopilot is the core part of the drone, and it undertakes multiple tasks such as data acquisition, communication, control quantity calculation, and control quantity output. The advanced level of drones is largely reflected in their autopilots. From the overall situation, China's UAVs have developed rapidly in the military field. At present, many technologies have already taken the lead in the world, but in terms of civilian use, they have started late and have limited application. However, in recent years, research on civilian small drone autopilots has increased, especially for high-tech enterprises, and they have begun to develop their own drone autopilot products.
技术问题  technical problem
[0003] 但是由于无人机关键技术的限制, 精度、 性能与国外的同期产品相比差距还比 较大, 无人机自动驾驶仪的产品数量和功能也很有限, 拥有自主知识产权的产 品较少。 要想从根本上提高自己的无人机自动驾驶仪产品, 就必须走自主研发 的道路。  [0003] However, due to the limitations of the key technologies of drones, the accuracy and performance are quite different from those of foreign counterparts. The number and functions of drone autopilots are limited, and products with independent intellectual property rights are more less. In order to fundamentally improve your own drone autopilot products, you must take the road of independent research and development.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0004] 鉴于上述现有技术的不足之处, 本发明的目的在于提供一种可以有利于换挡控 制的基于 DSP模块化小型无人机自驾仪。  In view of the above deficiencies of the prior art, it is an object of the present invention to provide a DSP-based modular small drone autopilot that can facilitate shift control.
[0005] 为了达到上述目的, 本发明采取了以下技术方案: [0005] In order to achieve the above object, the present invention adopts the following technical solutions:
[0006] 一种基于 DSP模块化小型无人机自驾仪, 包括处理器、 GPS、 AD转换器、 SRA M、 EEPROM、 模拟器、 功率放大电路、 接收机、 JTAG、 远程电台、 陀螺仪组 合、 加速度计组合以及传感器组合, 其中处理器分别与 GPS、 AD转换器、 SRA M、 EEPROM、 模拟器、 功率放大电路、 接收机、 JTAG以及远程电台相连接, AD转换器分别与陀螺仪组合、 加速度计组合以及传感器组合连接, 功率放大电 路连接一信号控制器, 处理器包括 DSP芯片, 内部集成有 SCI (异步串行通信接 口) 和 SPI (同步串行通信接口) 。 [0006] A DSP based modular small drone autopilot, including processor, GPS, AD converter, SRA M, EEPROM, simulator, power amplifier circuit, receiver, JTAG, remote station, gyroscope combination, Accelerometer combination and sensor combination, where the processor is separate from GPS, AD converter, SRA M, EEPROM, simulator, power amplifier circuit, receiver, JTAG and remote station are connected, AD converter is respectively connected with gyroscope combination, accelerometer combination and sensor combination, and power amplifier circuit is connected with a signal controller, and the processor includes The DSP chip is internally integrated with SCI (Asynchronous Serial Communication Interface) and SPI (Synchronous Serial Communication Interface).
[0007] 优选地, 上述陀螺仪组合包括三个方向的陀螺仪, 加速度计组合包括三个方向 的加速度计, 传感器组合包括两个气压传感器。  Preferably, the gyroscope combination described above includes three directions of gyroscopes, the accelerometer combination includes three directions of accelerometers, and the sensor combination includes two air pressure sensors.
[0008] 优选地, 上述 AD转换器包括高精度的 AD转换芯片。  Preferably, the AD converter described above includes a high precision AD conversion chip.
[0009] 优选地, 上述模拟器输出模拟信号。  [0009] Preferably, the simulator outputs an analog signal.
[0010] 优选地, 自驾仪还包括一电源, 包括电压转换芯片, 固定输出设计可以输出 +3 .3V, +5V和 +12V, 可调电压输出范围在 +1.2V到 +37V, 其能够输出 3A的驱动电 流, 内部集成频率补偿和固定频率发生器, 幵关频率为 150KHz。  [0010] Preferably, the autopilot further includes a power supply, including a voltage conversion chip, the fixed output design can output +3. 3V, +5V and +12V, and the adjustable voltage output range is from +1.2V to +37V, which can output 3A drive current, internal integrated frequency compensation and fixed frequency generator, the switching frequency is 150KHz.
[0011] 优选地, 上述处理器具有 150MHz的高速处理能力, 具有 32位浮点处理单元, 6 个 DMA通道支持 ADC、 McBSP和 EMTF, 有多达 18路的 PWM输出, 其中 6路为 T I特有的更高精度的 PWM输出 (HRPWM) , 12位 16通道 ADC模数转换模块。 发明的有益效果  [0011] Preferably, the processor has a high-speed processing capability of 150 MHz, has a 32-bit floating-point processing unit, 6 DMA channels support ADC, McBSP and EMTF, and has up to 18 PWM outputs, of which 6 are unique to TI. Higher precision PWM output (HRPWM), 12-bit 16-channel ADC analog-to-digital conversion module. Advantageous effects of the invention
有益效果  Beneficial effect
[0012] 相较于现有技术, 本发明提供的基于 DSP模块化小型无人机自驾仪, 用单一高 性能的处理器 DSP芯片来完成自驾仪设计的改进, 具有自主知识产权, 性能先进 , 实现了对无人机的精确智能控制。  [0012] Compared with the prior art, the present invention provides a DSP-based small-sized UAV self-driving device, and uses a single high-performance processor DSP chip to complete the improvement of the autopilot design, with independent intellectual property rights and advanced performance. Achieve precise and intelligent control of the drone.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0013] 图 1为本发明基于 DSP模块化小型无人机自驾仪结构示意图。  1 is a schematic structural view of a self-driving device based on a DSP modular small unmanned aerial vehicle according to the present invention.
[0014] 附图标记: 1-处理器; 2-GPS; 3-AD转换器; 4-SRAM; 5-EEPROM; 6-模拟器 [0014] Reference numerals: 1-processor; 2-GPS; 3-AD converter; 4-SRAM; 5-EEPROM; 6-emulator
; 7-功率放大电路; 8-接收机; 9-JTAG; 10-远程电台; 11-陀螺仪组合; 12-加速 度计组合; 13-传感器组合; 14-电源; 15-信号控制器。 7-power amplifier circuit; 8-receiver; 9-JTAG; 10-remote station; 11-gyroscope combination; 12-acceleration meter combination; 13-sensor combination; 14-power supply; 15-signal controller.
本发明的实施方式 [0015] 本发明提供一种基于 DSP模块化小型无人机自驾仪, 为使本发明的目的、 技术 方案及效果更加清楚、 明确, 以下参照附图并举实施例对本发明进一步详细说 明。 应当理解, 此处所描述的具体实施例仅用以解释本发明, 并不用于限定本 发明。 Embodiments of the invention [0015] The present invention provides a modular small-sized unmanned aerial vehicle based on a DSP. The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
[0016] 本发明提供的基于 DSP模块化小型无人机自驾仪, 包括处理器 1、 GPS2、 AD转 换器 3、 SRAM4、 EEPROM5、 模拟器 6、 功率放大电路 7、 接收机 8、 JTAG9、 远 程电台 10、 陀螺仪组合 11、 加速度计组合 12以及传感器组合 13, 其中处理器 1分 别与 GPS2、 AD转换器 3、 SRAM4、 EEPROM5、 模拟器 6、 功率放大电路 7、 接 收机 8、 JTAG9以及远程电台 10相连接, 所述 AD转换器 3分别与陀螺仪组合 11、 加速度计组合 12以及传感器组合 13连接, 所述功率放大电路 7连接一信号控制器 15, 所述处理器 1包括 DSP芯片, 内部集成有 SCI (异步串行通信接口) 和 SPI ( 同步串行通信接口) 。  [0016] The present invention provides a DSP based modular small drone autopilot, including processor 1, GPS2, AD converter 3, SRAM4, EEPROM5, simulator 6, power amplifier circuit 7, receiver 8, JTAG9, remote Radio 10, gyroscope combination 11, accelerometer combination 12, and sensor combination 13, wherein processor 1 is coupled to GPS2, AD converter 3, SRAM 4, EEPROM 5, simulator 6, power amplifier circuit 7, receiver 8, JTAG 9, and remote The radios 10 are connected to each other, and the AD converters 3 are respectively connected to the gyroscope combination 11, the accelerometer combination 12, and the sensor combination 13. The power amplifying circuit 7 is connected to a signal controller 15, and the processor 1 includes a DSP chip. SCI (Asynchronous Serial Communication Interface) and SPI (Synchronous Serial Communication Interface) are integrated internally.
[0017] 其中, 陀螺仪组合 11包括三个方向的陀螺仪, 所述加速度计组合 12包括三个方 向的加速度计, 所述传感器组合 13包括两个气压传感器。 AD转换器 3包括高精度 的 AD转换芯片。 模拟器 6输出模拟信号。 自驾仪还包括一电源 14, 包括电压转换 芯片, 固定输出设计可以输出 +3.3V, +5V和 +12V, 可调电压输出范围在 +1.2V 到 +37V, 其能够输出 3A的驱动电流, 内部集成频率补偿和固定频率发生器, 幵 关频率为 150KHz。 处理器 1具有 150MHz的高速处理能力, 具有 32位浮点处理单 元, 6个 DMA通道支持 ADC、 McBSP和 EMTF, 有多达 18路的 PWM输出, 其中 6 路为 TI特有的更高精度的 PWM输出 HRPWM, 12位 16通道 ADC模数转换模块。  [0017] wherein the gyroscope combination 11 includes three directions of gyroscopes, the accelerometer combination 12 includes three directions of accelerometers, and the sensor combination 13 includes two air pressure sensors. The AD converter 3 includes a high precision AD conversion chip. The simulator 6 outputs an analog signal. The autopilot also includes a power supply 14, including a voltage conversion chip. The fixed output design can output +3.3V, +5V and +12V, and the adjustable voltage output range is from +1.2V to +37V. It can output 3A of drive current, internal. Integrated frequency compensation and fixed frequency generator with a switching frequency of 150KHz. Processor 1 has 150MHz high-speed processing capability, 32-bit floating-point processing unit, 6 DMA channels support ADC, McBSP and EMTF, with up to 18 PWM outputs, 6 of which are TI-specific higher precision PWM Output HRPWM, 12-bit 16-channel ADC analog-to-digital conversion module.
[0018] 本发明的处理器是面向工业控制的带有浮点运算的高性能芯片 DSP, 将利用该 DSP芯片的 SCI (异步串行通信接口) 和 SPI (同步串行通信接口) 模块完成与地 面站通信, 接收 GPS2的信号和采集高精度 AD转换器 3的信息; 禾 lj用 DSP的 AD转 换装置采集对精度要求不高的模拟量; 利用 DSP的 eCAP装置采集遥控器接收机 的信号; 禾 lj用 DSP的 ePWM装置输出 PWM控制信号, 并经驱动放大芯片放大后 控制舵机转动。 组合导航装置的传感采用基于 MEMS (微机电技术) 技术的陀螺 仪组合 11 (三个方向的陀螺) 、 加速度计组合 12 (三个方向的加速度计) 和传 感器组合 13 (两个气压传感器) 测量无人机的角速度、 加速度、 气压等信息; 采用 GPS接收机接收卫星导航信息。 电源 14利用电源转换芯片得到自驾仪所需的 各种电压值。 [0018] The processor of the present invention is a high-performance chip DSP with floating point operation for industrial control, which will be completed by using the SCI (Asynchronous Serial Communication Interface) and SPI (Synchronous Serial Communication Interface) modules of the DSP chip. The ground station communicates, receives the GPS2 signal and collects the information of the high-precision AD converter 3; and uses the DSP AD conversion device to collect the analog quantity with low precision; and uses the DSP eCAP device to collect the signal of the remote control receiver; Wo lj uses the DSP's ePWM device to output the PWM control signal, and drives the amplifying chip to amplify and control the steering wheel to rotate. The sensing of the integrated navigation device uses a gyro combination 11 (three-way gyro) based on MEMS (Micro Electro Mechanical Technology) technology, an accelerometer combination 12 (three-direction accelerometer) and a sensor combination 13 (two air pressure sensors) Measuring the angular velocity, acceleration, and pressure of the drone; A satellite receiver is used to receive satellite navigation information. The power source 14 uses the power conversion chip to obtain various voltage values required by the autopilot.
[0019] 其中, 自动驾驶仪在飞行吋采用电池供电, 为了增加其工作吋间, 采用三块大 容量的锂电池串联为之供电, 串联后的电压为 +12V。 电源的稳定性在一定程度 上会影响到处理器的运行、 传感器的精度、 A/D转换的精度、 输出信号的稳定性 等方面。 本款自动驾驶仪需要 +5V、 +3.3V、 +1.8V等多档电源。 为了获得稳定的 电源电压, 减少数字信号对模拟信号的串扰, 陀螺仪、 加速度计等模拟量部分 要和数字量部分要分幵供电。  [0019] Among them, the autopilot is powered by a battery during flight, and in order to increase its working time, three large-capacity lithium batteries are used in series to supply power, and the voltage after the series is +12V. The stability of the power supply will affect the operation of the processor, the accuracy of the sensor, the accuracy of the A/D conversion, and the stability of the output signal to a certain extent. This autopilot requires multiple power supplies such as +5V, +3.3V, +1.8V. In order to obtain a stable power supply voltage and reduce the crosstalk of the digital signal to the analog signal, the analog part such as the gyroscope and the accelerometer should be supplied separately from the digital part.
[0020] 在电源设计中, 首先要将 +12V的总供电电压转换成 +5V, 本发明采用 LM2596s -5.0电压转换芯片。 该芯片固定输出设计可以输出 +3.3V, +5V和 +12V, 可调电 压输出范围在 +1.2V到 +37V, 其能够输出 3A的驱动电流, 具有很强的驱动能力 。 该器件内部集成频率补偿和固定频率发生器, 幵关频率为 150KHz, 与低频幵 关调节器相比较, 可以使用更小规格的滤波元件。 该器件只需 4个外接元件, 可 以使用通用标准的电感, 这极大的简化了电路设计。  [0020] In the power supply design, the total supply voltage of +12V is first converted to +5V, and the present invention uses the LM2596s-5.0 voltage conversion chip. The chip's fixed output design can output +3.3V, +5V and +12V, and the adjustable voltage output range is from +1.2V to +37V. It can output 3A of driving current and has strong driving capability. The device integrates a frequency compensation and fixed frequency generator with a switching frequency of 150KHz. Compared to a low frequency switching regulator, a smaller size filter element can be used. The device requires only four external components and can be used with a common standard inductor, which greatly simplifies circuit design.
[0021] 处理器 1是自动驾驶仪的核心, 主要负责采集各种信号并进行数据处理, 然后 把处理结果输出, 以达到控制无人机的目的。 所选择的处理器 1接口要丰富以满 足信号采集和控制输出的要求, 同吋要有足够的数据处理能力, 以保证控制算 法的实现和保证一定的控制精度。 处理器 1的设计主要包括供电部分设计, 吋钟 设计, 引导加载选择模式设计和 JTAG接口设计。  [0021] The processor 1 is the core of the autopilot, and is mainly responsible for collecting various signals and performing data processing, and then outputting the processing results to achieve the purpose of controlling the drone. The selected processor 1 interface should be rich to meet the requirements of signal acquisition and control output, and must have sufficient data processing capability to ensure the implementation of the control algorithm and ensure a certain control accuracy. The design of processor 1 mainly includes power supply part design, 吋 clock design, boot load selection mode design and JTAG interface design.
[0022] 本发明采用的是三个相同的角速率陀螺仪, 安装位置相互垂直正交, 这样就可 以测量无人机三个轴的角度率。 加速度计采用单轴加速度计, 该传感器采用 8脚 DIP塑封, 测量范围是 -1.7〜1.7g, 灵敏度是 1.2V/g, 最大零点误差 125mg, 单击 +5V供电, 双向加速度测量。 该芯片具有良好的稳定性, 可靠的精度, 并且具有 较好的负载和抗冲击能力, 可满足自驾仪的需要。 和陀螺仪一样, 也需要三个 相互垂直安装的相同的加速度计来测量无人机三个轴向的加速度。 气压传感器 是利用大气压力变化转化成电压进行测量的传感器。 自动驾驶仪上主要有两个 气压传感器, 一个用于测量飞机的静压, 是由无人机飞行高度的变化产生大气 压力的变化, 与飞机运动速度无关, 该压力值主要用来计算无人机的高度; 另 一个用于测量飞机的动压, 主要是测量无人机运动方向上大气压强大小, 通过 该压力值与静压值可以计算出无人机相对于空气的速度。 [0022] The present invention employs three identical angular rate gyroscopes, the mounting positions being perpendicular to each other, so that the angular rates of the three axes of the drone can be measured. The accelerometer uses a single-axis accelerometer. The sensor is a 8-pin DIP plastic package. The measurement range is -1.7~1.7g, the sensitivity is 1.2V/g, and the maximum zero error is 125mg. Click +5V to supply the bidirectional acceleration measurement. The chip has good stability, reliable accuracy, and has good load and impact resistance to meet the needs of autopilot. As with the gyroscope, three identical accelerometers mounted perpendicular to each other are required to measure the three axial accelerations of the drone. A barometric pressure sensor is a sensor that uses a change in atmospheric pressure to convert it into a voltage for measurement. There are two main pressure sensors on the autopilot. One is used to measure the static pressure of the aircraft. It is the change of the atmospheric pressure caused by the change of the flying height of the drone. It is independent of the speed of the aircraft. The pressure is mainly used to calculate the unmanned. Height of the machine; One is used to measure the dynamic pressure of the aircraft, mainly to measure the magnitude of the atmospheric pressure in the direction of movement of the drone. The pressure value and the static pressure value can be used to calculate the speed of the drone relative to the air.
[0023] 本发明提供的基于 DSP模块化小型无人机自驾仪, 用单一高性能的处理器 DSP 芯片来完成自驾仪设计的改进, 具有自主知识产权, 性能先进, 实现了对无人 机的精确智能控制。 [0023] The invention provides a DSP-based small-sized UAV self-driving device, and uses a single high-performance processor DSP chip to complete the improvement of the autopilot design, has independent intellectual property rights, and has advanced performance, realizing the UAV. Precise and intelligent control.
[0024]  [0024]
[0025] 可以理解的是, 对本领域普通技术人员来说, 可以根据本发明的技术方案及其 发明构思加以等同替换或改变, 而所有这些改变或替换都应属于本发明所附的 权利要求的保护范围。  [0025] It is to be understood that those skilled in the art can make equivalent substitutions or changes in accordance with the technical solutions of the present invention and the inventive concept thereof, and all such changes or substitutions should belong to the appended claims. protected range.

Claims

权利要求书 Claim
[权利要求 1] 一种基于 DSP模块化小型无人机自驾仪, 其特征在于: 所述自驾仪包 括处理器 (1) 、 GPS (2) 、 AD转换器 (3) 、 SRAM (4) 、 EEPR OM (5) 、 模拟器 (6) 、 功率放大电路 (7) 、 接收机 (8) 、 JTAG [Claim 1] A DSP-based modular small drone autopilot, characterized in that: the autopilot includes a processor (1), a GPS (2), an AD converter (3), and an SRAM (4), EEPR OM (5), simulator (6), power amplifier circuit (7), receiver (8), JTAG
(9) 、 远程电台 (10) 陀螺仪组合 (11) 、 加速度计组合 (12) 以及传感器组合 (13) 其中处理器 (1) 分别与 GPS (2) 、 AD转 换器 (3) 、 SRAM (4; 、 EEPROM (5) 、 模拟器 (6) 、 功率放大 电路 (7) 、 接收机 (8 、 JTAG (9) 以及远程电台 (10) 相连接, 所述 AD转换器 (3) 分别与陀螺仪组合 (11) 、 加速度计组合 (12) 以及传感器组合 (13) 连接, 所述功率放大电路 (7) 连接一信号控 制器 (15) , 所述处理器 (1) 包括 DSP芯片, 内部集成有 SCI (异步 串行通信接口) 和 SPI (同步串行通信接口) 。 (9), remote station (10) gyroscope combination (11), accelerometer combination (12) and sensor combination (13) where processor (1) and GPS (2), AD converter (3), SRAM ( 4; , EEPROM (5), simulator (6), power amplifier circuit (7), receiver (8, JTAG (9) and remote station (10) are connected, the AD converter (3) and the gyro respectively The instrument combination (11), the accelerometer combination (12) and the sensor combination (13) are connected, the power amplification circuit (7) is connected to a signal controller (15), and the processor (1) comprises a DSP chip, and is internally integrated. There are SCI (Asynchronous Serial Communication Interface) and SPI (Synchronous Serial Communication Interface).
[权利要求 2] 如权利要求 1所述的基于 DSP模块化小型无人机自驾仪, 其特征在于[Claim 2] The DSP-based modular small drone autopilot according to claim 1, wherein
: 所述陀螺仪组合 (11) 包括三个方向的陀螺仪, 所述加速度计组合 (12) 包括三个方向的加速度计, 所述传感器组合 (13) 包括两个气 压传感器。 The gyroscope combination (11) includes three directions of gyroscopes, the accelerometer combination (12) includes three directions of accelerometers, and the sensor combination (13) includes two air pressure sensors.
[权利要求 3] 如权利要求 1所述的基于 DSP模块化小型无人机自驾仪, 其特征在于 [Claim 3] The DSP-based modular small drone autopilot according to claim 1, wherein
: 所述 AD转换器 (3) 包括高精度的 AD转换芯片。 : The AD converter (3) includes a high precision AD conversion chip.
[权利要求 4] 如权利要求 1所述的基于 DSP模块化小型无人机自驾仪, 其特征在于 [Claim 4] The DSP-based modular small drone autopilot according to claim 1, wherein
: 所述模拟器 (6) 输出模拟信号。 : The simulator (6) outputs an analog signal.
[权利要求 5] 如权利要求 1所述的基于 DSP模块化小型无人机自驾仪, 其特征在于 [Claim 5] The DSP-based modular small drone autopilot according to claim 1, wherein
: 所述自驾仪还包括一电源 (14) , 包括电压转换芯片, 固定输出设 计可以输出 +3.3V, +5V和 +12V, 可调电压输出范围在 +1.2V到 +37V , 其能够输出 3A的驱动电流, 内部集成频率补偿和固定频率发生器 , 幵关频率为 150KHz。 The autopilot also includes a power supply (14) including a voltage conversion chip. The fixed output design can output +3.3V, +5V and +12V, and the adjustable voltage output range is from +1.2V to +37V, which can output 3A. The drive current, internal integrated frequency compensation and fixed frequency generator, the switching frequency is 150KHz.
[权利要求 6] 如权利要求 1所述的基于 DSP模块化小型无人机自驾仪, 其特征在于 [Claim 6] The DSP-based modular small drone autopilot according to claim 1, wherein
: 所述处理器 (1) 具有 150MHz的高速处理能力, 具有 32位浮点处理 单元, 6个 DMA通道支持 ADC、 McBSP和 EMTF, 有多达 18路的 PW M输出, 其中 6路为 TI特有的更高精度的 PWM输出 (HRPWM) , 12 位 16通道 ADC模数转换模块。 : The processor (1) has a high-speed processing capability of 150MHz, has a 32-bit floating-point processing unit, 6 DMA channels support ADC, McBSP and EMTF, and has up to 18 channels of PW M output, 6 of which are TI's unique higher precision PWM output (HRPWM), 12-bit 16-channel ADC analog-to-digital conversion module.
PCT/CN2016/095762 2016-08-17 2016-08-17 Dsp module-based autopilot for miniature unmanned aerial vehicle WO2018032433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095762 WO2018032433A1 (en) 2016-08-17 2016-08-17 Dsp module-based autopilot for miniature unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095762 WO2018032433A1 (en) 2016-08-17 2016-08-17 Dsp module-based autopilot for miniature unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2018032433A1 true WO2018032433A1 (en) 2018-02-22

Family

ID=61196378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095762 WO2018032433A1 (en) 2016-08-17 2016-08-17 Dsp module-based autopilot for miniature unmanned aerial vehicle

Country Status (1)

Country Link
WO (1) WO2018032433A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070069083A1 (en) * 2005-06-20 2007-03-29 United States Of America As Represented By The Administrator Of The National Aeronautics And Spac Self-Contained Avionics Sensing And Flight Control System For Small Unmanned Aerial Vehicle
WO2007103644A2 (en) * 2006-02-24 2007-09-13 Samuel Johnson Aerial robot
US20140244078A1 (en) * 2011-08-16 2014-08-28 Jonathan Downey Modular flight management system incorporating an autopilot
CN104615142A (en) * 2014-12-19 2015-05-13 重庆大学 Flight controller for civil small UAV (Unmanned Aerial Vehicle)
CN104898699A (en) * 2015-05-28 2015-09-09 小米科技有限责任公司 Flight control method, device, electronic device
CN105278544A (en) * 2015-10-30 2016-01-27 小米科技有限责任公司 Control method and device of unmanned aerial vehicle
CN105334861A (en) * 2015-10-18 2016-02-17 上海圣尧智能科技有限公司 Unmanned plane flight control module, unmanned plane flight control system and unmanned plane
CN105446356A (en) * 2015-12-17 2016-03-30 小米科技有限责任公司 Unmanned plane control method and unmanned plane control device
CN105652883A (en) * 2016-01-15 2016-06-08 中国人民解放军国防科学技术大学 Unmanned plane self-driving instrument realizing single board modularization and high reliability
CN106200675A (en) * 2016-08-17 2016-12-07 邹霞 Based on DSP module SUAV autopilot

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070069083A1 (en) * 2005-06-20 2007-03-29 United States Of America As Represented By The Administrator Of The National Aeronautics And Spac Self-Contained Avionics Sensing And Flight Control System For Small Unmanned Aerial Vehicle
WO2007103644A2 (en) * 2006-02-24 2007-09-13 Samuel Johnson Aerial robot
US20140244078A1 (en) * 2011-08-16 2014-08-28 Jonathan Downey Modular flight management system incorporating an autopilot
CN104615142A (en) * 2014-12-19 2015-05-13 重庆大学 Flight controller for civil small UAV (Unmanned Aerial Vehicle)
CN104898699A (en) * 2015-05-28 2015-09-09 小米科技有限责任公司 Flight control method, device, electronic device
CN105334861A (en) * 2015-10-18 2016-02-17 上海圣尧智能科技有限公司 Unmanned plane flight control module, unmanned plane flight control system and unmanned plane
CN105278544A (en) * 2015-10-30 2016-01-27 小米科技有限责任公司 Control method and device of unmanned aerial vehicle
CN105446356A (en) * 2015-12-17 2016-03-30 小米科技有限责任公司 Unmanned plane control method and unmanned plane control device
CN105652883A (en) * 2016-01-15 2016-06-08 中国人民解放军国防科学技术大学 Unmanned plane self-driving instrument realizing single board modularization and high reliability
CN106200675A (en) * 2016-08-17 2016-12-07 邹霞 Based on DSP module SUAV autopilot

Similar Documents

Publication Publication Date Title
CN205281183U (en) Low latitude environmental monitoring unmanned aerial vehicle system
CN104615142A (en) Flight controller for civil small UAV (Unmanned Aerial Vehicle)
CN102360218A (en) ARM (advanced RISC (reduced instruction set computer) machines) and FPGA (field-programmable gate array) based navigation and flight control system for unmanned helicopter
CN202771262U (en) Fixed-wing automatic navigation flight control system
CN1669874A (en) Automatic pilot for aircraft
CN102968123A (en) Automatic pilot of unmanned aerial vehicle
CN105589467A (en) Low-cost expansion flight attitude sensor module
CN205353762U (en) High integrated micro air vehicle flight control system that independently flies
CN106325289A (en) Renesas R5F100LEA master control-based four-rotor flight controller and control method thereof
CN104386246A (en) Four-rotor aircraft
CN106052689A (en) IMU (inertial measurement unit) signal acquisition system based on C8051F064 single chip microcomputer
CN2681997Y (en) Aircraft automatic pilot with double processors
CN201004180Y (en) Pose control system for unmanned plane
CN202939490U (en) Autopilot for unmanned aerial vehicles
CN106125755A (en) The atmospheric boundary layer environment Autonomous Exploration of a kind of unmanned plane and control method thereof
CN103034238B (en) Automatic navigation flight control system based on cross-flow fan
CN203025564U (en) Automatic navigation flight control system based on cross-flow fan
CN202583877U (en) General autopilot of unmanned aerial vehicle
CN103644914A (en) High precision micro-electromechanical combined inertial navigation unit
CN110488857A (en) A kind of control system of the quadrotor unmanned vehicle of solar energy
CN204788412U (en) Inertial sensor subassembly suitable for small -size unmanned helicopter
WO2018032433A1 (en) Dsp module-based autopilot for miniature unmanned aerial vehicle
Wei Autonomous control system for the quadrotor unmanned aerial vehicle
CN207397095U (en) A kind of multi-rotor aerocraft control system
CN100462723C (en) Miniature mechanical three-axis angular rate sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913190

Country of ref document: EP

Kind code of ref document: A1