WO2018032322A1 - Procédé de fabrication d'électrode positive de condensateur lithium-ion - Google Patents

Procédé de fabrication d'électrode positive de condensateur lithium-ion Download PDF

Info

Publication number
WO2018032322A1
WO2018032322A1 PCT/CN2016/095454 CN2016095454W WO2018032322A1 WO 2018032322 A1 WO2018032322 A1 WO 2018032322A1 CN 2016095454 W CN2016095454 W CN 2016095454W WO 2018032322 A1 WO2018032322 A1 WO 2018032322A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
electrode sheet
positive electrode
lithium ion
muffle furnace
Prior art date
Application number
PCT/CN2016/095454
Other languages
English (en)
Chinese (zh)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/095454 priority Critical patent/WO2018032322A1/fr
Publication of WO2018032322A1 publication Critical patent/WO2018032322A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention belongs to the technical field of lithium ion supercapacitors, and in particular, to a method for preparing a lithium ion supercapacitor positive electrode sheet.
  • the battery negative electrode generally uses a carbon material such as graphite
  • the positive electrode uses a lithium-containing metal oxide such as lithium cobaltate or lithium manganate.
  • the charged negative electrode supplies lithium ions to the positive electrode, and the lithium ion of the positive electrode of the discharge positive electrode returns to the negative electrode, so it is called a "rocking chair type battery".
  • This battery is characterized by high safety and high cycle life compared to lithium batteries using metallic lithium.
  • Lithium-ion capacitors generally use carbon materials such as graphite and hard carbon for the anode material, and activated carbon materials with double-layer characteristics for the cathode material, and the lithium anode is pre-diffused to the anode material, so that the potential of the anode is greatly reduced, thereby improving Energy Density.
  • a lithium ion capacitor is disclosed in the special ljCN200580001498.2.
  • the positive current collector and the negative current collector used in the lithium ion capacitor have holes penetrating the front and back surfaces, and the electrode layer is formed by the positive electrode active material and the negative electrode active material respectively. Electrochemical contact is made to the negative electrode, and lithium ions are carried in the negative electrode in advance.
  • a pretreatment method for a negative electrode for an electrochemical capacitor is disclosed in the Japanese Patent Publication No. Hei. No. 1,200, 406, 9.6, a lithium layer is formed on a substrate by a vapor phase method or a liquid phase method, and then the lithium layer is transferred to an electrode layer of a negative electrode.
  • These pre-excessive methods involve complex processes and require special handling of the raw materials, which makes the manufacturing process difficult.
  • the technical problem to be solved by the present invention is to provide a method for preparing a positive electrode sheet for a lithium ion supercapacitor.
  • the positive electrode sheet prepared by the method can replace the aluminum current collector and the positive active material, and can be provided in a lithium ion capacitor.
  • Lithium source eliminating the need for complex pre-intercalation of lithium or lithium-ion capacitors
  • the addition of lithium sheets in the device simplifies the process of preparing lithium ion capacitors and reduces the cost of the process.
  • the preparation method of the lithium ion supercapacitor positive electrode sheet provided by the invention is:
  • Step (1) Adding graphite oxide and polypropylene fine to a ball mill for 30-60 min, and then adding the ball-milled mixture to a mixed solution of ethanol and water to ultrasonically disperse to form a suspension having a concentration of l-20 g/L.
  • Step (2) The nickel foam is soaked in the above suspension for 10-60 min, the solvent is evaporated, and then placed in a hydrogen-nitrogen mixed gas-protected muffle furnace at 800-1100 ° C for 1-10 h, after the reaction is completed. Naturally cooled.
  • Step (3) The above product is immersed in l-3 mol/L hydrochloric acid, and reacted at 60-80 ° C for 5-10 h, and after completion of the reaction, foamed graphene is obtained.
  • Step (4) The nano Li 2 MoO 3 is forced into toluene, sonicated for 10-30 min to form a suspension, and then Li 2 MoO 3 is contained.
  • the toluene suspension droplets were applied to the foamed graphene, dried, and then placed in a muffle furnace and annealed at 200 ° C for 30-60 min. After cooling, the crucible was pressed to obtain an electrode sheet.
  • the ball mill is 30-60 min;
  • the mass of the polypropylene clear in the step (1) is 0.01-5% of the mass of the graphite oxide
  • the volume ratio of ethanol to water in the mixed solution of ethanol and water in the step (1) is 0.25-4
  • step (1) in the concentration of the graphite oxide suspension is l-20g / L of the suspension
  • the foamed nickel is immersed in the graphite oxide suspension in the crucible is 10-60mi n;
  • the atmosphere in the muffle furnace is a hydrogen-nitrogen mixed gas containing a volume concentration of 5% hydrogen;
  • step (2) in the muffle furnace reaction temperature is 800-1100 ° C, the reaction time is 1- 10h;
  • the concentration of hydrochloric acid in the step (3) is l-3mol / L;
  • the reaction temperature of the step (3) in hydrochloric acid is 60-80 ° C, and the reaction time is 5-10 h ;
  • the mass concentration of the Li 2 MoO 3 toluene suspension in the step (4) is 30-70%;
  • the ultrasonic inter-turn is 10-30 min;
  • the annealing temperature is 200-300 ° C, and the annealing time is 30-60 min;
  • the electrode sheet obtained in the step (4) has a thickness of 100-500 um.
  • the present invention provides a lithium ion supercapacitor preparation process as follows:
  • the negative electrode sheet, the separator and the positive electrode sheet prepared by the invention are laminated to form a battery core, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/ L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealing, get lithium ion super electricity
  • the graphene material Since the graphene material has high strength and high electrical conductivity, it can be used as a current collector, and the graphene having a high specific surface can be used as a positive electrode active material. Therefore, the graphene material is directly prepared into a positive electrode sheet by the present invention.
  • the preparation process of the positive electrode is omitted, and the process of the lithium ion supercapacitor is a general lithium ion battery preparation process, which greatly simplifies the preparation process of the lithium ion supercapacitor.
  • the graphene composite Li 2 MoO 3 material positive electrode sheet prepared by the invention is used as a lithium ion supercapacitor cathode material, and the Li 2 MoO material provides a lithium source, and the lithium ion ion stripping Li 2 Mo0 3 material is inserted into the graphite during the first charging.
  • the negative electrode the negative electrode potential is pulled down, so that it is not necessary to use a metal lithium plate or a complicated pre-lithium process in the negative electrode.
  • the present invention has the following beneficial effects: (1) Graphene composite Li 2 MoO rf material positive electrode sheet as the positive electrode of the lithium ion super capacitor, the anode does not need to be added with lithium sheet or complex pre-intercalation lithium process, simplifying the preparation process (2) Foamed graphene composite Li 2 MoO 3 material positive electrode sheet has high strength, high electrical conductivity and high specific surface area, which can effectively replace conventional activated carbon cathode material and aluminum current collector to achieve high energy density and high power. density.
  • FIG. 1 is a cycle life diagram of a lithium ion supercapacitor of the present invention.
  • the negative electrode sheet, the separator and the positive electrode sheet of the present invention are formed into a battery core by laminating according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L.
  • LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed to obtain lithium ion supercapacitor
  • the negative electrode sheet, the separator and the positive electrode sheet of the present invention are formed into a battery cell by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L.
  • LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed to obtain lithium ion supercapacitor
  • the negative electrode sheet, the separator and the positive electrode sheet of the present invention are formed into a battery cell by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L.
  • LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed to obtain lithium ion supercapacitor
  • the negative electrode sheet, the separator and the positive electrode sheet of the present invention are formed into a battery core by laminating according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L.
  • LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed to obtain lithium ion supercapacitor
  • the lithium ion supercapacitor prepared by the present invention is charged and discharged 1000 times, and the energy is not significantly attenuated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'une électrode positive d'un supercondensateur lithium-ion. Le procédé comprend les étapes suivantes consistant : étape (1) à ajouter un oxyde de graphite et un polyacrylonitrile dans un broyeur à boulets destiné au broyage à boulets, à ajouter un mélange broyé aux boulets dans une solution mixte d'éthanol et d'eau permettant une dispersion ultrasonore afin de former une suspension; étape (2) à immerger une mousse de nickel dans la suspension, à sécher à la vapeur le solvant et à ajouter un mélange gazeux d'hydrogène et d'azote afin de protéger une réaction dans un four à moufle, puis à faire réagir jusqu'à l'achèvement de la réaction, suivie d'un refroidissement naturel; étape (3) à immerger un produit de l'étape précédente dans de l'acide chlorhydrique, à effectuer une réaction, puis à faire réagir jusqu'à l'achèvement de la réaction pour obtenir une mousse de graphène; et étape (4) à ajouter du Li2MoO3 à l'échelle nanométrique dans un toluène, à utiliser des ultrasons pour former une suspension, puis à revêtir par goutte-à-goutte la suspension de toluène contenant du Li2MoO3 sur la mousse de graphène, à sécher et à placer dans un four à moufle pour le recuit, à refroidir, puis à laminer pour obtenir une électrode. L'électrode positive de matériau composite de mousse de graphène-Li2MoO3 présente une densité d'énergie élevée et une puissance volumique élevée.
PCT/CN2016/095454 2016-08-16 2016-08-16 Procédé de fabrication d'électrode positive de condensateur lithium-ion WO2018032322A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095454 WO2018032322A1 (fr) 2016-08-16 2016-08-16 Procédé de fabrication d'électrode positive de condensateur lithium-ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095454 WO2018032322A1 (fr) 2016-08-16 2016-08-16 Procédé de fabrication d'électrode positive de condensateur lithium-ion

Publications (1)

Publication Number Publication Date
WO2018032322A1 true WO2018032322A1 (fr) 2018-02-22

Family

ID=61196076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095454 WO2018032322A1 (fr) 2016-08-16 2016-08-16 Procédé de fabrication d'électrode positive de condensateur lithium-ion

Country Status (1)

Country Link
WO (1) WO2018032322A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713277A (zh) * 2020-12-30 2021-04-27 宁波杉杉新材料科技有限公司 一种硬炭材料及其制备方法和应用、锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515110A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 Li2MoO3/石墨烯复合材料及其制备方法和锂离子电容器
CN103682368A (zh) * 2012-09-20 2014-03-26 中国科学院金属研究所 一种快充的柔性锂离子电池及其电极的制备方法
CN104157467A (zh) * 2014-08-22 2014-11-19 东莞市迈科新能源有限公司 一种碳基锂离子超级电容器
CN105609736A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种三维碳纳米管/氮掺杂石墨烯/硫电极片的制备方法
CN106229150A (zh) * 2016-08-16 2016-12-14 肖丽芳 一种锂离子电容器正极片的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515110A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 Li2MoO3/石墨烯复合材料及其制备方法和锂离子电容器
CN103682368A (zh) * 2012-09-20 2014-03-26 中国科学院金属研究所 一种快充的柔性锂离子电池及其电极的制备方法
CN104157467A (zh) * 2014-08-22 2014-11-19 东莞市迈科新能源有限公司 一种碳基锂离子超级电容器
CN105609736A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种三维碳纳米管/氮掺杂石墨烯/硫电极片的制备方法
CN106229150A (zh) * 2016-08-16 2016-12-14 肖丽芳 一种锂离子电容器正极片的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713277A (zh) * 2020-12-30 2021-04-27 宁波杉杉新材料科技有限公司 一种硬炭材料及其制备方法和应用、锂离子电池

Similar Documents

Publication Publication Date Title
WO2021189836A1 (fr) Materiau d'électrode négative de graphite pour batterie au lithium-ion à haute performance et sa méthode de préparation
WO2012146046A1 (fr) Batterie de capacité au polyimide et son procédé de fabrication
US20240063361A1 (en) Negative electrode, preparation method therefor, and application thereof
CN113540416A (zh) 一种固体电解质包覆石墨复合材料及其制备方法和应用、锂离子电池
WO2018059180A1 (fr) Alimentation électrique chimique haute puissance et à haute énergie, et son procédé de préparation
CN112803018B (zh) 一种硅掺杂的石墨烯复合材料及其制备方法和应用
WO2018023321A1 (fr) Procédé de préparation d'une feuille d'électrode positive contenant un revêtement polymère conducteur lithium-ion
CN112436146B (zh) 一种锂电池正极材料、制备方法及锂电池
CN114613613A (zh) 聚多巴胺/石墨烯复合材料锂离子混合电容器及制备方法
WO2018032322A1 (fr) Procédé de fabrication d'électrode positive de condensateur lithium-ion
WO2018023322A1 (fr) Procédé de préparation de feuille d'électrode positive comprenant un revêtement composite de graphène
CN106206080A (zh) 一种锂离子电容器预嵌锂正极片的制备方法
WO2018023325A1 (fr) Procédé de préparation d'un matériau composite d'électrode positive de graphène comprenant du lithium à base d'alcool
CN113921812A (zh) 一种超高功率密度钠离子电池及其制备方法
WO2018032323A1 (fr) Procédé d'électrodéposition permettant la fabrication d'une électrode positive d'un condensateur au lithium-ion
CN112635200A (zh) 一种基于新型正极预嵌锂工艺锂离子电容器的制备方法
WO2018032321A1 (fr) Procédé de fabrication d'électrode positive en mousse de graphène pour batterie lithium-soufre
WO2018023326A1 (fr) Procédé de préparation d'un matériau cathodique composite de graphène d'un supercondensateur au lithium-ion
CN106229150A (zh) 一种锂离子电容器正极片的制备方法
WO2018032318A1 (fr) Procédé de fabrication d'électrode composite en mousse de graphène-nanotubes de carbone
WO2018023323A1 (fr) Procédé de préparation d'une feuille d'électrode positive comprenant un revêtement li 2 moo 3
CN117594749B (zh) 一种硅基负极片及其制备方法和应用
CN106158424A (zh) 一种电沉积法制备锂离子电容器正极片的方法
CN114094076B (zh) 一种负极片及包括该负极片的锂离子电池
WO2018023324A1 (fr) Procédé de préparation d'une feuille d'électrode positive composite de graphène d'un condensateur lithium-ion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913084

Country of ref document: EP

Kind code of ref document: A1