WO2018031296A1 - Procédé d'assemblage et de désassemblage de la colonne montante marine et des lignes auxiliaires ainsi que système de commande de la pression du puits - Google Patents
Procédé d'assemblage et de désassemblage de la colonne montante marine et des lignes auxiliaires ainsi que système de commande de la pression du puits Download PDFInfo
- Publication number
- WO2018031296A1 WO2018031296A1 PCT/US2017/044902 US2017044902W WO2018031296A1 WO 2018031296 A1 WO2018031296 A1 WO 2018031296A1 US 2017044902 W US2017044902 W US 2017044902W WO 2018031296 A1 WO2018031296 A1 WO 2018031296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- riser
- assembly
- segments
- auxiliary
- line
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000005553 drilling Methods 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000012530 fluid Substances 0.000 claims description 25
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/002—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
- E21B19/004—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling supporting a riser from a drilling or production platform
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B15/00—Supports for the drilling machine, e.g. derricks or masts
- E21B15/02—Supports for the drilling machine, e.g. derricks or masts specially adapted for underwater drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/01—Risers
- E21B17/012—Risers with buoyancy elements
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/02—Surface sealing or packing
- E21B33/03—Well heads; Setting-up thereof
- E21B33/06—Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/02—Surface sealing or packing
- E21B33/03—Well heads; Setting-up thereof
- E21B33/06—Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
- E21B33/064—Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers specially adapted for underwater well heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B35/4413—Floating drilling platforms, e.g. carrying water-oil separating devices
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/12—Underwater drilling
- E21B7/128—Underwater drilling from floating support with independent underwater anchored guide base
Definitions
- This disclosure relates to the field of marine petroleum drilling and production systems. More specifically, the invention relates to methods and systems for assembling and disassembling risers that connect a drilling and/or production platform on the surface of a body of water to a subsea wellhead.
- Floating or other water-surface deployed structures are known in the art for drilling wellbores in formations located below the bottom of a body of water, e.g., the ocean floor, and for producing petroleum from such wellbores.
- the wellbores are typically drilled using fluid pressure control equipment, called a "blowout preventer” (BOP) affixed to the top of a casing cemented into a relatively shallow portion of the wellbore.
- BOP fluid pressure control equipment
- a “riser” which is a pipe formed from segments coupled end to end, is affixed to the top of the BOP and extends therefrom to the platform on the water surface.
- the riser may provide a conduit for fluids to move from the wellbore upwardly to the platform.
- a riser as used in wellbore drilling and/or later wellbore intervention may form a conduit for drilling fluid and drill cuttings to be returned to the platform for processing and recirculation into the wellbore.
- the riser may also be used as a conduit for moving wellbore intervention tools into and out of the wellbore from the platform.
- the riser may have one or more external auxiliary lines associated with the riser to communicate fluid pressure to various components in and below the riser when needed. Such lines may include, for example, choke lines, kill lines and booster lines.
- a riser is assembled to the wellbore from the platform by coupling together segments, called “joints” of riser, and moving the assembled “string” of joints of riser downward from the platform as successive riser joints are coupled to the string on the platform.
- the foregoing procedure continues until the riser is long enough to reach the wellbore from the platform, whereupon the lowermost end of the riser is coupled to a lower marine riser package (LMRP) and the BOP.
- LMRP lower marine riser package
- the connections are typically made by bolting a flange on each end of the riser joint to a corresponding flange on a longitudinally adjacent riser joint.
- the auxiliary lines may be assembled contemporaneously with assembly of the riser joints to each other.
- Risers known in the art include auxiliary lines coupled to an exterior of the riser and generally assembled by passing segments of the auxiliary lines through openings on flanges that connect each riser segment to adjacent riser segments. See, for example, U.S. Patent No. 6,419,277 issued to Reynolds.
- pressure requirements of a riser and auxiliary lines may be such that using conventional auxiliary lines coupled through openings in each riser flange is impracticable.
- a method for assembling a riser from a platform on the surface of a body of water includes assembling segments of riser end to end through a drill floor using a main drilling unit on the platform. At least one auxiliary line is assembled from segments connected end to end through an auxiliary hoisting unit on the platform. The auxiliary hoisting unit is displaced laterally from the main drilling unit.
- the assembled riser is connected to a wellhead proximate the bottom of the body of water.
- disassembling the riser may comprise reversing the actions performed in assembling the riser.
- a well pressure control system includes a riser coupled at one end to an upper end of a lower marine riser package and blowout preventer assembly.
- a lower end of the lower marine riser package and blowout preventer assembly is coupled to a wellhead disposed on the top of a well.
- the riser extends to a platform on the surface of a body of water.
- At least one auxiliary line extends from proximate the bottom of the body of water to the platform.
- the at least one auxiliary line is separate from and is disposed at a selected lateral distance from the riser.
- At least one fluid line hydraulically connects a lower end of the at least one auxiliary line to a part of the lower marine riser package and blowout preventer assembly.
- FIG. 1 shows an example embodiment of a drilling platform with a riser extending therefrom to a wellhead on the water bottom, auxiliary lines and an accumulator vessel assembly on the water bottom.
- FIG. 2 shows a detailed view of the auxiliary lines.
- FIG. 3 shows a detailed view of an accumulator vessel assembly.
- FIG. 4 shows a more detailed view of a blowout preventer (BOP) assembly.
- BOP blowout preventer
- FIG. 5 shows a more detailed view of a portion of the riser having buoyancy devices on an exterior surface of auxiliary lines.
- FIG. 1 shows an example embodiment of a surface deployed platform 1, which may be a floating drilling platform such as a semisubmersible drilling platform or a drill ship with dynamic positioning thrusters 2.
- the platform 1 may be maintained in position by fixed moorings (not shown).
- the platform 1 is positioned approximately above a wellhead 22 on the bottom 23 of a body of water 24.
- any marine platform known in the art including without limitation bottom supported platforms, jackup drilling units and the like may be used in accordance with the present disclosure.
- a main drilling unit 10 disposed on the platform 1 includes equipment (not shown separately) for raising and lowering drilling and/or wellbore intervention tools and pipe, e.g., drill pipe, into a wellbore extending into the sub-bottom below the wellhead 22 for drilling and completing the wellbore and/or for later wellbore intervention procedures.
- the main drilling unit 10 hoisting equipment is capable of supporting the weight of casing, tubing, riser, drill pipe and any other type of tubular and drilling and/or wellbore intervention tools needed to construct the wellbore and/or effect intervention operations in the wellbore.
- a riser 14 extends from the main drilling unit 10 to an upper end (explained in more detail with reference to FIG. 4) of a lower marine riser package (LMRP) and blowout preventer (BOP) assembly("LMRP/BOP assembly”), shown generally at 16, which is itself coupled at its lower end (16B in FIG. 4) to the wellhead 22.
- LMRP lower marine riser package
- BOP blowout prevent
- FIG. 5 shows a more detailed view of a portion of the riser 14, which may consist of riser segments 14A some of which are each surrounded by a buoyancy device (“buoyancy can”) 14C.
- the riser 14 may be assembled on the main drilling unit 10 by coupling riser segments (“joints") 14A together end to end, some with the buoyancy cans 14C already assembled thereto or assembled to the riser 14 as it is lowered below a main drilling deck 10A of the main drilling unit 10.
- the riser segments 14A may be coupled end to end by bolting a flange 14B at each longitudinal end of each riser segment 14A to a corresponding flange on each longitudinally adjacent riser segment.
- one or more auxiliary lines may be assembled separately from the riser 14.
- the one or more auxiliary lines 18 may be, for example, a choke line, a kill line and/or a booster line.
- the auxiliary lines 18 may be made from conventional threadedly connected segments of pipe used to drill the well, that is, drill pipe.
- the auxiliary lines 18 may be assembled from segments of conduit assembled end to end and extended into the water 24 from an auxiliary hoisting unit 12 disposed on the floating drilling platform 1.
- the auxiliary hoisting unit 12 may be located at a selected lateral distance from the well center (not shown separately) of the main drilling unit 10.
- the auxiliary lines 18 and the riser 14 may be assembled substantially contemporaneously.
- the auxiliary lines 18 may comprise threadedly connected pipe, for example, drill pipe or tubing, and thereby save substantial time in assembling the auxiliary lines 18.
- the auxiliary lines 18 may be coupled to an accumulator assembly 20 at the beginning of assembly of the auxiliary lines 18. When the auxiliary lines 18 are fully assembled, the accumulator assembly 20 may be disposed on the water bottom 23. Pressurized fluid lines 20B may extend from the accumulator assembly 20 to the LMRP/BOP assembly 16.
- the pressurized fluid lines 22 may comprise well fluid pressure control lines, e.g., choke, kill and/or boost lines hydraulically connected to the wellhead 22 below the LMRP/BOP assembly 16.
- the pressurized fluid lines 20B may comprise hydraulic fluid lines which may be used to selectively conduct hydraulic fluid under pressure to the BOP part (see FIG. 4) of the LMRP/BOP assembly 16. Hydraulic fluid under pressure may be used to operate components of the BOP part.
- the LMRP/BOP assembly 16 is coupled to the lowermost riser segment, and successive segments of riser are coupled end to end to the riser 14 as it is lengthened and subsequently lowered into the water 24.
- the LMRP/BOP assembly 16 may be coupled to the wellhead 22, for example using a remotely operated vehicle (ROV) of types known in the art.
- ROV remotely operated vehicle
- the present example embodiment of the riser 14 may be assembled by bolting together corresponding flanges at each longitudinal end of each riser segment, it is within the scope of the present disclosure to use threadedly coupled riser segments to assemble the riser 14.
- LMRP/BOP assembly 16 auxiliary lines 18, accumulator assembly 20 and fluid lines 22 form a well pressure control apparatus.
- the one or more auxiliary lines 18 are separate from and are spaced at a selected lateral distance from the riser 14. The selected lateral distance may be related to a distance between the main drilling unit 10 and the auxiliary hoisting unit 12.
- a lower end 18A of the auxiliary lines 18 may be coupled to the accumulator assembly, as shown in and explained with reference to FIG. 3.
- the auxiliary lines 18 may also have buoyancy devices (“cans") 18B affixed externally thereto during assembly to provide buoyant force needed to prevent the auxiliary lines 18 from collapsing under their own weight in the water (24 in FIG. 1).
- the auxiliary lines (18 in FIG. 2) may be connected at their lower end (18A in FIG. 2) to the accumulator assembly 20 at a suitable connection therefor, e.g., as shown at 20A.
- Connection of pressure lines from the accumulator assembly 20 to the LMRP/BOP assembly (16 in FIG. 1) may be made through suitably pressure rated fluid lines 20B.
- the actual connection of the fluid lines 20B to the LMRP/BOP assembly (16 in FIG. 1) may be made after the riser (14 in FIG. 1) and the auxiliary lines (18 in FIG. 1) are fully assembled using a remotely operated vessel (ROV).
- the auxiliary lines 18 may be assembled from pipe segments that provide the auxiliary lines 18 with internal pressure capacity of up to 20,000 psi (138,000 kPa).
- FIG. 4 shows the LMRP/BOP assembly 16 in more detail.
- the LMRP part 17 may comprise a frame 17A on which may be mounted one or more accumulators 17B.
- the one or more accumulators 17B may have hydraulic fluid stored under pressure to selectively operate one or more rams 19A in the BOP part 19 of the LMRP/BOP assembly 16.
- a first connection 16A may be provided on the upper end of the LMRP/BOP assembly for connection of the LMRP/BOP assembly 16 to the lower end of the riser (14 in FIG. 1).
- a second connection 16B may be provided on the lower end of the LMRP/BOP assembly 16 for connection to the wellhead (22 in FIG. 1).
- FIG. 5 shows an example of a portion of the riser 14, wherein one or more pipe segments 14A of the riser 14 have buoyancy devices (“cans") 14A or similar devices disposed on the exterior thereof.
- Each pipe segment 14A may comprise a connector 14B at each longitudinal end, for example a bolt flange or a threaded connector.
- the connector 14B may couple each pipe segment 14A to an adjacent pipe segment 14A to assemble the riser 14.
- the riser 14 may be disassembled by reversing the above described assembly procedure using the main drilling unit (10 in FIG. 1) for the riser 14.
- the auxiliary lines 18 may be substantially contemporaneously disassembled using the auxiliary hoisting unit (12 in FIG. 1) to reverse the procedure explained with reference to FIGS. 1 and 2.
- a riser assembly method may enable faster assembly and disassembly of the riser and auxiliary lines.
- the auxiliary lines may be capable of withstanding higher pressure than auxiliary lines known in the art.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
Abstract
La présente invention concerne un procédé d'assemblage d'une colonne montante, à partir d'une plate-forme sur la surface d'un plan d'eau, comprenant l'assemblage de segments de la colonne montante de bout en bout, à travers un sol de forage, à l'aide d'une unité de forage principale sur la plate-forme. Au moins une ligne auxiliaire est assemblée à partir des segments, reliés bout en bout, à l'aide d'une unité de levage auxiliaire sur la plate-forme. L'unité de levage auxiliaire est déplacée latéralement à partir de l'unité de forage principale. La colonne montante assemblée est reliée à une tête de puits à proximité du fond du plan d'eau.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/272,329 US20190376350A1 (en) | 2016-08-11 | 2019-02-11 | Method for assembling and disassembling marine riser and auxiliary lines and well pressure control system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662373543P | 2016-08-11 | 2016-08-11 | |
US62/373,543 | 2016-08-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/272,329 Continuation US20190376350A1 (en) | 2016-08-11 | 2019-02-11 | Method for assembling and disassembling marine riser and auxiliary lines and well pressure control system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018031296A1 true WO2018031296A1 (fr) | 2018-02-15 |
Family
ID=61162430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/044902 WO2018031296A1 (fr) | 2016-08-11 | 2017-08-01 | Procédé d'assemblage et de désassemblage de la colonne montante marine et des lignes auxiliaires ainsi que système de commande de la pression du puits |
Country Status (2)
Country | Link |
---|---|
US (1) | US20190376350A1 (fr) |
WO (1) | WO2018031296A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11035192B1 (en) | 2018-12-07 | 2021-06-15 | Blade Energy Partners Ltd. | Systems and processes for subsea managed pressure operations |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6321675B1 (en) * | 1998-12-10 | 2001-11-27 | Ormen Brede As | Floating installation |
US6352114B1 (en) * | 1998-12-11 | 2002-03-05 | Ocean Drilling Technology, L.L.C. | Deep ocean riser positioning system and method of running casing |
US20110017511A1 (en) * | 2009-07-23 | 2011-01-27 | Payne Michael L | Offshore drilling system |
US20140048331A1 (en) * | 2012-08-14 | 2014-02-20 | Weatherford/Lamb, Inc. | Managed pressure drilling system having well control mode |
US20140102789A1 (en) * | 2012-10-15 | 2014-04-17 | National Oilwell Varco, L.P. | Dual gradient drilling system |
US20160109874A1 (en) * | 2014-10-17 | 2016-04-21 | Hydril Usa Distribution, Llc | High Pressure Blowout Preventer System |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK517285D0 (da) * | 1985-11-08 | 1985-11-08 | Dansk Ind Syndikat | Fremgangsmaade og borerig til boring af borehuller |
US4819730A (en) * | 1987-07-24 | 1989-04-11 | Schlumberger Technology Corporation | Development drilling system |
US5676209A (en) * | 1995-11-20 | 1997-10-14 | Hydril Company | Deep water riser assembly |
US6085851A (en) * | 1996-05-03 | 2000-07-11 | Transocean Offshore Inc. | Multi-activity offshore exploration and/or development drill method and apparatus |
JP3187726B2 (ja) * | 1996-12-05 | 2001-07-11 | 日本海洋掘削株式会社 | 大水深掘削用複合型パイプ揚降装置 |
US6450262B1 (en) * | 1999-12-09 | 2002-09-17 | Stewart & Stevenson Services, Inc. | Riser isolation tool |
US6453838B1 (en) * | 2000-10-20 | 2002-09-24 | Ocean Production Technology, Llc | Turret-less floating production ship |
US7891429B2 (en) * | 2005-03-11 | 2011-02-22 | Saipem America Inc. | Riserless modular subsea well intervention, method and apparatus |
MY148792A (en) * | 2005-12-22 | 2013-05-31 | Transocean Offshore Deepwater | Dual-bop and common riser system |
US7926501B2 (en) * | 2007-02-07 | 2011-04-19 | National Oilwell Varco L.P. | Subsea pressure systems for fluid recovery |
US9556711B2 (en) * | 2007-07-24 | 2017-01-31 | One Subsea IP UK Limited | Funnel system and method |
US9222326B2 (en) * | 2008-04-24 | 2015-12-29 | Cameron International Corporation | Subsea pressure delivery system |
US8322429B2 (en) * | 2008-05-29 | 2012-12-04 | Hydril Usa Manufacturing Llc | Interchangeable subsea wellhead devices and methods |
NO330288B1 (no) * | 2008-06-20 | 2011-03-21 | Norocean As | Slippforbindelse med justerbar forspenning |
US20110109081A1 (en) * | 2009-11-10 | 2011-05-12 | Benton Frederick Baugh | Drilling riser connector |
US8387706B2 (en) * | 2010-05-20 | 2013-03-05 | Reel Power Licensing Corp | Negative accumulator for BOP shear rams |
EP2609284B1 (fr) * | 2010-08-27 | 2018-10-03 | Bastion Technologies, Inc. | Système de sécurisation d'un puits sous-marin |
US8651190B2 (en) * | 2010-10-28 | 2014-02-18 | Hydril Usa Manufacturing Llc | Shear boost triggering and bottle reducing system and method |
WO2012064812A2 (fr) * | 2010-11-09 | 2012-05-18 | Wild Well Control, Inc. | Système de commande de secours pour bloc obturateur de puits sous-marin |
US8393399B2 (en) * | 2010-11-30 | 2013-03-12 | Hydril Usa Manufacturing Llc | Blowout preventer with intervention, workover control system functionality and method |
US8403053B2 (en) * | 2010-12-17 | 2013-03-26 | Hydril Usa Manufacturing Llc | Circuit functional test system and method |
US9068424B2 (en) * | 2011-04-28 | 2015-06-30 | Bp Corporation North America Inc. | Offshore fluid transfer systems and methods |
US9033049B2 (en) * | 2011-11-10 | 2015-05-19 | Johnnie E. Kotrla | Blowout preventer shut-in assembly of last resort |
US9080393B2 (en) * | 2012-05-31 | 2015-07-14 | Transocean Sedco Forex Ventures Limited | Drilling riser retrieval in high current |
US9074425B2 (en) * | 2012-12-21 | 2015-07-07 | Weatherford Technology Holdings, Llc | Riser auxiliary line jumper system for rotating control device |
DE102013217383A1 (de) * | 2013-08-30 | 2015-03-19 | Klaus Biester | Blowout-Preventer Stack und Versorgungssystem |
US9200493B1 (en) * | 2014-01-10 | 2015-12-01 | Trendsetter Engineering, Inc. | Apparatus for the shearing of pipe through the use of shape charges |
US9422776B2 (en) * | 2014-01-20 | 2016-08-23 | Weatherford Technology Holdings, Llc | Rotating control device having jumper for riser auxiliary line |
US9797220B2 (en) * | 2014-03-06 | 2017-10-24 | Weatherford Technology Holdings, Llc | Tieback cementing plug system |
US9670740B2 (en) * | 2015-02-26 | 2017-06-06 | Exxonmobil Upstream Research Company | Drilling riser with distributed buoyancy |
US10767438B2 (en) * | 2015-04-23 | 2020-09-08 | Wanda Papadimitriou | Autonomous blowout preventer |
NO340742B1 (no) * | 2015-05-08 | 2017-06-12 | Fmc Kongsberg Subsea As | Fjernstyrt brønnkompletterings utstyr |
US9797224B1 (en) * | 2016-10-17 | 2017-10-24 | Ensco International Incorporated | Wellhead stabilizing subsea module |
US10538986B2 (en) * | 2017-01-16 | 2020-01-21 | Ensco International Incorporated | Subsea pressure reduction manifold |
US11105174B2 (en) * | 2017-07-28 | 2021-08-31 | Schlumberger Technology Corporation | Systems and method for retrievable subsea blowout preventer stack modules |
WO2020117793A1 (fr) * | 2018-12-03 | 2020-06-11 | Bp Corporation North America, Inc. | Systèmes et procédés d'accès à des conduits sous-marins |
-
2017
- 2017-08-01 WO PCT/US2017/044902 patent/WO2018031296A1/fr active Application Filing
-
2019
- 2019-02-11 US US16/272,329 patent/US20190376350A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6321675B1 (en) * | 1998-12-10 | 2001-11-27 | Ormen Brede As | Floating installation |
US6352114B1 (en) * | 1998-12-11 | 2002-03-05 | Ocean Drilling Technology, L.L.C. | Deep ocean riser positioning system and method of running casing |
US20110017511A1 (en) * | 2009-07-23 | 2011-01-27 | Payne Michael L | Offshore drilling system |
US20140048331A1 (en) * | 2012-08-14 | 2014-02-20 | Weatherford/Lamb, Inc. | Managed pressure drilling system having well control mode |
US20140102789A1 (en) * | 2012-10-15 | 2014-04-17 | National Oilwell Varco, L.P. | Dual gradient drilling system |
US20160109874A1 (en) * | 2014-10-17 | 2016-04-21 | Hydril Usa Distribution, Llc | High Pressure Blowout Preventer System |
Also Published As
Publication number | Publication date |
---|---|
US20190376350A1 (en) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8365830B2 (en) | Multi-deployable subsea stack system | |
US5533574A (en) | Dual concentric string high pressure riser | |
US9574426B2 (en) | Offshore well system with a subsea pressure control system movable with a remotely operated vehicle | |
US20120199360A1 (en) | Subsea Connection Apparatus for a Surface Blowout Preventer Stack | |
US9500046B2 (en) | System for conveying fluid from an offshore well | |
US3256937A (en) | Underwater well completion method | |
US20140193282A1 (en) | Drilling Fluid Pump Module Coupled to Specially Configured Riser Segment and Method for Coupling the Pump Module to the Riser | |
US6367554B1 (en) | Riser method and apparatus | |
US10227824B2 (en) | Mobile offshore drilling unit, a method of using such a unit and a system comprising such a unit | |
WO2004015239A3 (fr) | Plateforme offshore comprenant un systeme de flottabilite et un pont de coffre a mouvement limite verticalement | |
US11702889B2 (en) | Maritime drilling with fluid reverse circulation without using drilling riser | |
US4105068A (en) | Apparatus for producing oil and gas offshore | |
US20190376350A1 (en) | Method for assembling and disassembling marine riser and auxiliary lines and well pressure control system | |
US20150354296A1 (en) | Telescopic riser joint | |
US20190186221A1 (en) | Offshore coiled tubing system | |
CA2986049A1 (fr) | Outil de liberation de train de tiges/commande de puits combine | |
GB1590387A (en) | Apparatus and method for conducting deep water well operations | |
EP3514320A1 (fr) | Système de tubage enroulé offshore | |
EP3219904A1 (fr) | Procédé d'intervention sans tube-guide | |
WO2017048422A1 (fr) | Système à tube prolongateur | |
JAVA | PROCEEDINGS INDONESIAN PETROLEUM ASSOCIATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17840027 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17840027 Country of ref document: EP Kind code of ref document: A1 |