WO2018030691A1 - Method for manufacturing composite powder in core-shell structure for solid oxide fuel cell - Google Patents

Method for manufacturing composite powder in core-shell structure for solid oxide fuel cell Download PDF

Info

Publication number
WO2018030691A1
WO2018030691A1 PCT/KR2017/008222 KR2017008222W WO2018030691A1 WO 2018030691 A1 WO2018030691 A1 WO 2018030691A1 KR 2017008222 W KR2017008222 W KR 2017008222W WO 2018030691 A1 WO2018030691 A1 WO 2018030691A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
shell structure
fuel cell
solid oxide
oxide fuel
Prior art date
Application number
PCT/KR2017/008222
Other languages
French (fr)
Korean (ko)
Inventor
오성민
이영호
윤치호
곽진호
김장한
Original Assignee
대주전자재료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160108660A external-priority patent/KR20180018231A/en
Application filed by 대주전자재료 주식회사 filed Critical 대주전자재료 주식회사
Publication of WO2018030691A1 publication Critical patent/WO2018030691A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composite powder of a core-shell structure for a solid oxide fuel cell (SOFC) and a method of manufacturing the same, and more particularly to nickel, zirconium, and yttrium, which are stably formed in a core shell structure, so that the anode is heated at a high temperature.
  • the present invention relates to a method for producing a composite powder of a core-shell structure for a solid oxide fuel cell (SOFC) having a novel structure that can improve sintering and electrical conductivity while preventing deformation due to coarsening and shrinkage of nickel during operation.
  • Solid Oxide Fuel Cell which converts chemical energy directly into electrical energy, has high energy conversion efficiency, and it is possible to use various fuels by its own internal reforming. As it can be improved, it is attracting attention as a next generation energy source.
  • Solid oxide fuel cell is a structure that uses high oxygen ion conductivity of oxide electrolyte and connects anodes in series, and requires spatial separation of hydrogen and oxygen in order to use electron transfer. It is a battery that uses an electric current generated by chemical bonds to induce electrons to move to another pole.
  • a fuel electrode material nickel oxide (NiO) and stabilized zirconia (YSZ) are generally used as a mixture, and an electrolyte is used.
  • Y2O3 ceria
  • Scandia Sc2O3
  • Gd2O3 gadolinium oxide
  • ZrO2O3 zirconia
  • CeO2O3 ceria
  • Gd2O3 gadolinium oxide
  • SOFC solid oxide fuel cell
  • Yttria-stabilized zirconia which is stabilized by addition of nickel or nickel oxide and yttria, is used as a fuel electrode of a solid oxide fuel cell which is commonly used at present.
  • Nickel is an excellent conductor of electrons in the high-temperature reduction atmosphere and acts as a transport path for electrons.
  • Yttria stabilized zirconia prevents coarsening of the skeleton and nickel particles that maintain the microstructure, and adjusts the thermal expansion coefficient to be similar to other components. It forms an oxygen ion path and serves as an excellent ion conductor.
  • the anode mixed with nickel oxide and stabilized zirconia has a simple mixing method, but since the attraction force between stabilized zirconia and stabilized zirconia, nickel oxide and nickel oxide, or stabilized zirconia and nickel oxide is different from each other, the two powders under the same dispersion conditions At the same time it is not dispersed and aggregation of the powders occurs.
  • homogeneous aggregation of relatively large powders, where there is a difference in size of the powders can lead to microstructure non-uniformity of the anode.
  • about 30% of volume shrinkage occurs during heat treatment in a reducing atmosphere using nickel oxide and stabilized zirconia.
  • volume shrinkage occurs, electrical conductivity decreases due to the decrease in strength of the anode and the occurrence of cracks.
  • nickel (Ni) and stabilized zirconia are used, volume shrinkage does not occur and does not cause deterioration in the reducing atmosphere. It has advantages
  • Non-uniformities such as shape, size, and cohesion of the raw materials constituting the anode may adversely affect the properties of the anode, such as electrical conductivity, fuel permeability, and three-phase interface activity, which may degrade the durability, mechanical properties, and output characteristics of the unit cell. do.
  • the grain size and pores are non-uniform in size, and densification and coarsening of Ni occur. The coarsening of Ni generated in this way causes volume change by thermal cycle and redox reaction, resulting in damage of electrolyte, Ni, YSZ and Due to the reduction of the three-phase interface consisting of pores, the electrochemical activity is reduced to reduce the output of the unit cell.
  • An object of the present invention is to provide a cathode composite having a new structure of nickel yttria core-cell in order to solve the problem of the anode mixed with nickel oxide and stabilized zirconia.
  • Another object of the present invention is to provide a method for producing a fuel electrode having a novel structure according to the present invention.
  • the present invention to solve the above problems
  • a core portion composed of at least one component of Ni particles or NiO particles
  • SOFC solid oxide fuel cell
  • the average diameter of the core portion is 0.1 to 5.0 ⁇ m, and the average thickness of the shell portion is 10 to 500 nm.
  • the shell portion is characterized in that it contains yttrium and zirconium.
  • the composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is characterized in that 40 to 80% by weight of nickel, 1 to 10% by weight of yttrium, and 20 to 60% by weight of zirconium.
  • the composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is characterized by having a specific surface area of 1 to 20 m 2 / g.
  • the composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is characterized in that the average particle size (D50) is 0.2 to 20um.
  • the present invention also provides
  • the zirconium precursor is zirconium hydroxide (Zr (OH) 4 ), and the yttrium precursor is yttrium nitrate Y (NO 3). ) 3 ⁇ 6H 2 O.
  • the present invention also provides
  • the composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is stably formed with a core shell structure of nickel, zirconium, and yttrium, which is caused by coarsening and shrinking of nickel when the anode is operated at a high temperature. It can improve sintering and electrical conductivity while preventing deformation.
  • Figure 2 is a graph measuring the electrical conductivity of the particles produced in the embodiment of the present invention by the probe method.
  • Example 1 a micro-sized nickel powder required for preparing a nickel / yttria stabilized zirconia core-shell structure powder was prepared using a liquid phase reduction method.
  • Comparative Example 1 in order to prepare a nickel / yttria stabilized zirconia core-shell structure powder, a micro-sized nickel powder and a nano-sized yttria stabilized zirconia powder were mixed at a speed of at least 4000 rpm for 30 minutes or more using a high speed mixing method.
  • the core-shell composite structure was prepared as shown in FIG.
  • Example 2 in order to synthesize nano-sized yttria stabilized zirconia powder, zirconium chloride (ZrOCl2.8H2O) and yttrium nitrate (Y (NO3) 3.6H2O) were uniformly dissolved in distilled water using a starting material of the shell portion, and then in an aqueous solution state. was prepared.
  • zirconium chloride ZrOCl2.8H2O
  • Y (NO3) 3.6H2O yttrium nitrate
  • Example 4 the powder of the nickel / yttria stabilized zirconia core-shell structure of Examples 1 to 3 according to the present invention was added to a hydrothermal synthesizer, and then distilled water was poured by twice the powder and stirred evenly.
  • the hydrothermal synthesizer was maintained at a temperature of 200 degrees for 8 hours to allow zirconium hydroxide and yttrium hydroxide to grow into zirconium oxide and yttrium oxide nanocrystals, respectively.
  • Example 6 in order to coat the nickel / yttria stabilized zirconia core-shell powder on the anode for the solid oxide fuel cell, carbon black was mixed and paste-processed.
  • the surface state of the core-shell powder prepared by the present invention and the powder prepared in the comparative example 1 was measured by FE-SEM. The results are shown in Figure 1 After.
  • the paste was prepared, and a measurement cell was prepared by coating a fuel electrode and an air electrode of a 200um YSZ electrolyte support.
  • the anode was heat-treated in an air atmosphere at 1200 degrees, and the cathode was made of LSCF and GDC powder.
  • a value of 0.07 mm 2 was shown, and the results are shown in FIGS. 3 and 4.
  • the composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is stably formed with a core shell structure of nickel, zirconium, and yttrium, which is caused by coarsening and shrinking of nickel when the anode is operated at a high temperature. It can improve sintering and electrical conductivity while preventing deformation.

Abstract

The present invention relates to a composite powder in a core-shell structure for a solid oxide fuel cell (SOFC), and more specifically, to a composite powder in a core-shell structure for a solid oxide fuel cell (SOFC) having a novel structure in which nickel, zirconium, and yttrium are stably formed in the core-shell structure, thereby preventing deformation due to the coarsening and shrinking of nickel when an anode is operated at a high temperature while enhancing sintering properties and electrical conductivity.

Description

고체산화물 연료전지용 코어-쉘 구조의 복합 분말의 제조 방법Method for producing composite powder of core-shell structure for solid oxide fuel cell
본 발명은 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 니켈과, 지르코늄, 이트륨이 코어 쉘 구조로 안정적으로 형성되어, 연료극을 고온에서 작동 시 니켈의 조대화와 수축으로 인한 변형을 방지하면서도 소결성과 전기전도도를 향상시킬 수 있는 새로운 구조의 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말의 제조 방법에 관한 것이다. The present invention relates to a composite powder of a core-shell structure for a solid oxide fuel cell (SOFC) and a method of manufacturing the same, and more particularly to nickel, zirconium, and yttrium, which are stably formed in a core shell structure, so that the anode is heated at a high temperature. The present invention relates to a method for producing a composite powder of a core-shell structure for a solid oxide fuel cell (SOFC) having a novel structure that can improve sintering and electrical conductivity while preventing deformation due to coarsening and shrinkage of nickel during operation.
화석원료가 점차 고갈됨에 따라, 새로운 에너지원에 대한 요구가 커지고 있다. 화학에너지를 전기에너지로 직접 변환시키는 고체산화물 연료전지(Solid Oxide Fuel Cell)는 에너지 변환효율이 높고, 자체적인 내부 개질에 의해 다양한 연료의 사용이 가능하며, 가스터빈과의 하이브리드를 통하여 효율을 더욱 향상시킬 수 있어 차세대 에너지원으로 주목 받고 있다.As fossil raw materials are gradually depleted, the demand for new energy sources is increasing. Solid Oxide Fuel Cell, which converts chemical energy directly into electrical energy, has high energy conversion efficiency, and it is possible to use various fuels by its own internal reforming. As it can be improved, it is attracting attention as a next generation energy source.
고체산화물 연료전지(solid oxide fuel cell)는 산화물 전해질의 높은 산소이온 전도성을 이용하고 양극을 직렬로 연결한 구조로서 전자의 이동을 이용하기 위해서는 수소와 산소의 공간적 분리가 필요하며, 수소와 산소의 화학적 결합에 의해 전자가 생성되고 이 전자를 다른 극으로 이동하게 유도함으로써 생성되는 전류를 이용하는 전지이다.연료극 재료로서는 일반적으로 산화니켈(NiO)과 안정화 지르코니아(YSZ)를 혼합하여 사용하고 있고, 전해질로는 지르코니아(ZrO2)나 세리아(CeO2)에 이트리아(Y2O3), 세리아(CeO2), 스칸디아(Sc2O3), 산화가돌리늄(Gd2O3)등이 첨가되어 고온에서 열적안정성과 이온 전도성이 높은 재료를 사용하고 있다. 고체산화물 연료전지(SOFC)의 단위 셀은 고체전해질들을 가운데 두고 한쪽 면에는 공기극을, 그리고 다른 쪽 면에는 연료극을 부착한 형태로 만들어 진다. Solid oxide fuel cell is a structure that uses high oxygen ion conductivity of oxide electrolyte and connects anodes in series, and requires spatial separation of hydrogen and oxygen in order to use electron transfer. It is a battery that uses an electric current generated by chemical bonds to induce electrons to move to another pole. As a fuel electrode material, nickel oxide (NiO) and stabilized zirconia (YSZ) are generally used as a mixture, and an electrolyte is used. Yttria (Y2O3), ceria (CeO2), Scandia (Sc2O3), gadolinium oxide (Gd2O3), etc., are added to zirconia (ZrO2) and ceria (CeO2), and the material uses high thermal stability and ion conductivity at high temperatures. have. A unit cell of a solid oxide fuel cell (SOFC) is made of solid electrolytes with a cathode on one side and a cathode on the other.
현재 통상적으로 사용되는 고체산화물 연료전지의 연료극으로는 니켈 또는 산화니켈과 이트리아를 첨가하여 안정화시킨 이트리아 안정화 지르코니아(YSZ, Yttria-stabilized zirconia)가 이용된다. 니켈은 고온 환원분위기에서 우수한 전자전도체로 전자의 이동통로의 역할을 하며, 이트리아 안정화 지르코니아는 미세구조를 유지하는 골격과 니켈입자의 조대화를 방지하고 열팽창계수가 다른 구성소재와 비슷해지도록 조절하며, 산소 이온길(path)을 형성하여 우수한 이온전도체로서 역할을 한다. Yttria-stabilized zirconia (YSZ), which is stabilized by addition of nickel or nickel oxide and yttria, is used as a fuel electrode of a solid oxide fuel cell which is commonly used at present. Nickel is an excellent conductor of electrons in the high-temperature reduction atmosphere and acts as a transport path for electrons. Yttria stabilized zirconia prevents coarsening of the skeleton and nickel particles that maintain the microstructure, and adjusts the thermal expansion coefficient to be similar to other components. It forms an oxygen ion path and serves as an excellent ion conductor.
이러한 산화니켈과 안정화지르코니아가 혼합된 연료극은 혼합 방법이 간단한 장점은 있으나, 본말로 안정화지르코니아와 안정화지르코니아, 산화니켈과 산화니켈 또는 안정화 지르코니아과 산화니켈 사이의 인력이 서로 상이하므로 동일한 분산 조건에서 두 분말이 동시에 분산되지 못하고 분말들의 응집이 일어나게 된다. 특히, 분말의 크기 차이가 존재하는 겨우 상대적으로 큰 분말의 동종 응집이 연료극의 미세구조 불균일을 초래할 수 있다. 또한 산화니켈과 안정화지르코니아를 사용하여 환원 분위기 열처리 시 약 30%의 부피수축이 일어나게 된다. 부피수축이 일어나게 되면서 연료극의 강도 저하 및 크랙(crack)의 발생으로 인해 전기전도도의 저하를 가져오게 되는데 니켈(Ni)과 안정화지르코니아를 사용하게 되면 부피수축이 일어나지 않고 환원분위기에서 특성 저하를 일으키지 않는 장점을 가지고 있다.The anode mixed with nickel oxide and stabilized zirconia has a simple mixing method, but since the attraction force between stabilized zirconia and stabilized zirconia, nickel oxide and nickel oxide, or stabilized zirconia and nickel oxide is different from each other, the two powders under the same dispersion conditions At the same time it is not dispersed and aggregation of the powders occurs. In particular, homogeneous aggregation of relatively large powders, where there is a difference in size of the powders, can lead to microstructure non-uniformity of the anode. In addition, about 30% of volume shrinkage occurs during heat treatment in a reducing atmosphere using nickel oxide and stabilized zirconia. As the volume shrinkage occurs, electrical conductivity decreases due to the decrease in strength of the anode and the occurrence of cracks. When nickel (Ni) and stabilized zirconia are used, volume shrinkage does not occur and does not cause deterioration in the reducing atmosphere. It has advantages
이러한 연료극을 구성하는 원료의 형상, 크기, 응집도 등의 불균일은 전기전도도, 연료투과도, 삼상계면 활성도 등이 연료극의 물성에 악영향을 주게 되고, 이는 단전지의 내구성과 기계적 물성 및 출력 특성을 저하시키게 된다. 또한 결정립과 기공의 크기가 불균일하여 Ni의 치밀화와 조대화가 일어나고, 이렇게 발생된 Ni 상의 조대화는 열 싸이클과 산화환원 반응에 의한 부피변화가 발생하여 전해질의 손상을 가져오고, Ni, YSZ 및 기공으로 이루어진 삼상계면의 감소 때문에 전기화학적 활성도가 감소하여 단전지의 출력을 저하시키는 등의 문제점을 가지고 있다.Non-uniformities such as shape, size, and cohesion of the raw materials constituting the anode may adversely affect the properties of the anode, such as electrical conductivity, fuel permeability, and three-phase interface activity, which may degrade the durability, mechanical properties, and output characteristics of the unit cell. do. In addition, the grain size and pores are non-uniform in size, and densification and coarsening of Ni occur. The coarsening of Ni generated in this way causes volume change by thermal cycle and redox reaction, resulting in damage of electrolyte, Ni, YSZ and Due to the reduction of the three-phase interface consisting of pores, the electrochemical activity is reduced to reduce the output of the unit cell.
본 발명은 종래 산화니켈과 안정화지르코니아가 혼합된 연료극의 문제점을 해결하기 위하여 니켈 이트리아 코어-셀 의 새로운 구조의 연료극 복합체를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a cathode composite having a new structure of nickel yttria core-cell in order to solve the problem of the anode mixed with nickel oxide and stabilized zirconia.
본 발명은 또한, 본 발명에 의한 새로운 구조의 연료극의 제조 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for producing a fuel electrode having a novel structure according to the present invention.
본 발명은 상기와 같은 과제를 해결하기 위하여The present invention to solve the above problems
Ni 입자 또는 NiO 입자 중의 적어도 하나 이상의 성분으로 이루어진 코어부; A core portion composed of at least one component of Ni particles or NiO particles;
상기 코어부 주위에 형성되고, 이트륨, 지르코늄, 세슘, 세륨, 스칸디움, 란타늄, 스트론튬, 갈륨, 마그네슘, 가도리리움 중의 적어도 하나 이상의 성분으로 이루어진 쉘부; 를 포함하는 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말을 제공한다. A shell portion formed around the core portion and composed of at least one component of yttrium, zirconium, cesium, cerium, scandium, lanthanum, strontium, gallium, magnesium, and gadolium; It provides a composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) comprising a.
본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말에 있어서, 상기 코어부의 평균 직경은 0.1 내지 5.0 ㎛ 이고, 상기 쉘부의 평균 두께는 10 내지 500 nm 인 것을 특징으로 한다.In the composite powder of a core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention, the average diameter of the core portion is 0.1 to 5.0 μm, and the average thickness of the shell portion is 10 to 500 nm.
본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말에 있어서, 상기 쉘부는 이트리움 및 지르코늄을 포함하는 것을 특징으로 한다.In the composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention, the shell portion is characterized in that it contains yttrium and zirconium.
본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말은 니켈이 40~80 중량%, 이트리움이 1~10 중량%, 지르코늄이 20~60 중량% 인 것을 특징으로 한다. The composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is characterized in that 40 to 80% by weight of nickel, 1 to 10% by weight of yttrium, and 20 to 60% by weight of zirconium.
본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말은 비표면적이 1~20 m2/g 인 것을 특징으로 한다.The composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is characterized by having a specific surface area of 1 to 20 m 2 / g.
본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말은 평균 입도(D50)이 0.2 ~ 20um인 것을 특징으로 한다.The composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is characterized in that the average particle size (D50) is 0.2 to 20um.
본 발명은 또한, The present invention also provides
(A) Ni 또는 NiO와 지르코늄 전구체 및 이트륨 전구체를 준비하는 단계; 및 (A) preparing Ni or NiO and a zirconium precursor and a yttrium precursor; And
(B) 암모니아수(NH4OH)을 첨가하여 공침 반응으로 상기 Ni 또는 NiO 표면에 지르코늄 전구체 및 이트륨 전구체가 형성되는 단계; 를 포함하는 본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말의 제조 방법을 제공한다. (B) adding ammonia water (NH 4 OH) to form a zirconium precursor and a yttrium precursor on the surface of the Ni or NiO by a coprecipitation reaction; It provides a method for producing a composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention comprising a.
본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말의 제조 방법에 있어서, 상기 지르코늄 전구체는 수산화지르코늄(Zr(OH)4) 이고, 상기 이트륨 전구체는 질산이트륨Y(NO3)3ㆍ6H2O 인 것을 특징으로 한다. In the method for preparing a composite powder of a core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention, the zirconium precursor is zirconium hydroxide (Zr (OH) 4 ), and the yttrium precursor is yttrium nitrate Y (NO 3). ) 3 ㆍ 6H 2 O.
본 발명은 또한, The present invention also provides
(A) Ni 또는 NiO와 지르코늄 전구체 및 이트륨 전구체가 수열합성 반응을 통해 Ni 또는 NiO 표면에 이트리아 안정화 지르코니아(YSZ) 정방정계 결정으로 성장한 코어-쉘 구조가 형성되는 단계; 및 (A) forming a core-shell structure in which Ni or NiO, a zirconium precursor and a yttrium precursor are grown by yttria stabilized zirconia (YSZ) tetragonal crystals on the surface of Ni or NiO through a hydrothermal synthesis reaction; And
(B) 상기 수열합성된 복합 분말을 pH 5~8 조건에서 100 ℃ 이상의 온도에서 건조시키는 단계; 포함하는 본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말의 제조 방법을 제공한다. (B) drying the hydrothermally synthesized composite powder at a temperature of 100 ° C. or higher at a pH of 5 to 8; It provides a method for producing a composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) comprising the present invention.
본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말은 니켈과, 지르코늄, 이트륨이 코어 쉘 구조로 안정적으로 형성되어, 연료극을 고온에서 작동 시 니켈의 조대화와 수축으로 인한 변형을 방지하면서도 소결성과 전기전도도를 향상시킬 수 있다. The composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is stably formed with a core shell structure of nickel, zirconium, and yttrium, which is caused by coarsening and shrinking of nickel when the anode is operated at a high temperature. It can improve sintering and electrical conductivity while preventing deformation.
도 1에 본 발명의 실시예 및 비교예에서 제조된 입자의 SEM 사진을 나타내었다. 1 is a SEM photograph of the particles produced in the Examples and Comparative Examples of the present invention.
도 2는 본 발명의 실시예에서 제조된 입자를 탐침법으로 전기전도도를 측정한 그래프이다.Figure 2 is a graph measuring the electrical conductivity of the particles produced in the embodiment of the present invention by the probe method.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by the following examples.
<실시예 1><Example 1>
실시예 1에서는 니켈/이트리아 안정화 지르코니아 코어-쉘 구조의 분말 제조에 필요한 마이크로 크기의 니켈 분말을 액상환원법을 이용하여 제조하였다.In Example 1, a micro-sized nickel powder required for preparing a nickel / yttria stabilized zirconia core-shell structure powder was prepared using a liquid phase reduction method.
<비교예 1>Comparative Example 1
비교예 1에서는 니켈/이트리아 안정화 지르코니아 코어-쉘 구조의 분말 제조하기 위해 마이크로 크기의 니켈 분말과 나노 크기의 이트리아 안정화 지르코니아 분말을 사용하여 고속혼합법을 사용하여 4000rpm 이상에서 30분 이상으로 혼합하여 그림 1에 나타낸 바와 같이 코어-쉘 복합 구조를 제조하였다.In Comparative Example 1, in order to prepare a nickel / yttria stabilized zirconia core-shell structure powder, a micro-sized nickel powder and a nano-sized yttria stabilized zirconia powder were mixed at a speed of at least 4000 rpm for 30 minutes or more using a high speed mixing method. The core-shell composite structure was prepared as shown in FIG.
<실시예 2> <Example 2>
실시예 2에서는 나노 크기의 이트리아 안정화 지르코니아 분말을 합성하기 위해 산염화지르코늄(ZrOCl2·8H2O)와 질산이트륨(Y(NO3)3ㆍ6H2O)를 쉘부의 출발 물질로 하여 증류수에 고르게 용해하여 수용액 상태로 제조하였다. In Example 2, in order to synthesize nano-sized yttria stabilized zirconia powder, zirconium chloride (ZrOCl2.8H2O) and yttrium nitrate (Y (NO3) 3.6H2O) were uniformly dissolved in distilled water using a starting material of the shell portion, and then in an aqueous solution state. Was prepared.
<실시예 3><Example 3>
상기 실시예 1의 방법으로 제조된 마이크로 크기의 니켈 분말을 실시 예 2에서 산염화지르코늄과 질산이트륨이 용해된 수용액에 질량비를 계산하여 (니켈:이트리아 안정화 지르코니아=60~80:40~50) 투입하고 지속적으로 교반하였다. 수용액 안에서 니켈 분말이 균일하게 분산된 상태를 확인한 후, 암모니아수를 10~30ml/min의 유속으로 하여 투입하여 공침반응을 진행하였다. 암모니아수가 투입될수록 수용액이 불투명해지며 수산화지르코늄과 수산화이트륨이 니켈 분말과 균일한 상태로 혼합됨을 확인하였다. 암모니아수의 투입이 완료되면 pH가 8이 될 대까지 증류수로 교반, 여과를 반복한다.The micro-sized nickel powder prepared by the method of Example 1 was calculated by mass ratio in the aqueous solution in which zirconium chloride and yttrium nitrate dissolved in Example 2 (nickel: yttria stabilized zirconia = 60 ~ 80: 40 ~ 50) Charged and stirred continuously. After confirming that the nickel powder was uniformly dispersed in the aqueous solution, ammonia water was added at a flow rate of 10 to 30 ml / min to proceed with the coprecipitation reaction. As the ammonia water was added, the aqueous solution became opaque, and it was confirmed that zirconium hydroxide and yttrium hydroxide were uniformly mixed with nickel powder. After the addition of the ammonia water, the mixture is stirred and distilled with distilled water until the pH reaches 8 again.
<실시예 4><Example 4>
실시 예 4에서는 본 발명에 따른 실시 예 1~3의 니켈/이트리아 안정화 지르코니아 코어-쉘 구조의 분말을 수열합성기에 투입한 후 증류수를 분말의 2배만큼을 부어넣어 고르게 저어준다. 수열합성기는 200도의 온도로 8시간동안 유지시켜 수산화지르코늄과 수산화 이트륨이 각각 산화지르코늄과 산화이트륨 나노 결정으로 성장하도록 하였다. In Example 4, the powder of the nickel / yttria stabilized zirconia core-shell structure of Examples 1 to 3 according to the present invention was added to a hydrothermal synthesizer, and then distilled water was poured by twice the powder and stirred evenly. The hydrothermal synthesizer was maintained at a temperature of 200 degrees for 8 hours to allow zirconium hydroxide and yttrium hydroxide to grow into zirconium oxide and yttrium oxide nanocrystals, respectively.
<실시예 5>Example 5
실시예 4에서 제조된 분말을 비교 예 1에서 제조된 분말과 비교하기 위해 FE-SEM을 측정하였고 그 결과를 도면 1 Before에 나타내었다.In order to compare the powder prepared in Example 4 with the powder prepared in Comparative Example 1, FE-SEM was measured and the results are shown in FIG. 1 Before.
<실시예 6><Example 6>
실시예 6에서는 니켈/이트리아 안정화 지르코니아 코어-쉘 분말을 고체산화물 연료전지용 연료극에 입히기 위해 카본 블랙을 혼합하여 볼-밀 과정을 진행하여 paste화 하였다. 니켈/이트리아 안정화 지르코니아 코어-쉘 분말의 표면을 관찰하기 위해 볼-밀 공정 후 본 발명으로 제조된 코어-쉘 분말과 비교 예 1의 방식으로 제조된 분말의 표면 상태를 FE-SEM을 측정하였고, 그 결과를 도면 1 After에 나타내었다.In Example 6, in order to coat the nickel / yttria stabilized zirconia core-shell powder on the anode for the solid oxide fuel cell, carbon black was mixed and paste-processed. In order to observe the surface of the nickel / yttria stabilized zirconia core-shell powder, after the ball-mill process, the surface state of the core-shell powder prepared by the present invention and the powder prepared in the comparative example 1 was measured by FE-SEM. The results are shown in Figure 1 After.
paste를 제조하고 200um YSZ 전해질 지지체의 연료극과 공기극을 입혀 측정 셀을 제작하였다. 연료극은 1200도에서 공기 분위기로 열처리하였고, 공기극은 LSCF와 GDC 분말을 이용하였다.The paste was prepared, and a measurement cell was prepared by coating a fuel electrode and an air electrode of a 200um YSZ electrolyte support. The anode was heat-treated in an air atmosphere at 1200 degrees, and the cathode was made of LSCF and GDC powder.
본 발명에서 제조한 연료극의 경우, 750도에서 3054 S/cm2, 800도에서 2968 S/cm2의 전기전도도 값을 나타내었고, 연료극 분극저항(ASR)의는 800도에서 0.05Ω㎠, 750도에서 0.07Ω㎠의 값을 나타내었으며, 그 결과를 도면 3, 4에 나타내었다. In the case of the anode manufactured in the present invention, the electrical conductivity value of 3054 S / cm2 at 750 degrees, and 2968 S / cm2 at 800 degrees, and the anode polarization resistance (ASR) at 0.05 극 ㎠ and the 750 degrees at 800 degrees. A value of 0.07 mm 2 was shown, and the results are shown in FIGS. 3 and 4.
셀 특성을 측정하기 위하여 제작된 셀의 연료극에는 수소가스를, 셀의 공기극에는 산소를 주입하면서 700, 750, 800도의 온도 범위에서 전류 부하를 변화시키며 출력 밀도를 측정하였고 그 결과를 도면 4에 나타내었다.In order to measure the cell characteristics, hydrogen gas was injected into the anode of the cell and oxygen was injected into the cathode of the cell, and the power density was measured by varying the current load in the temperature range of 700, 750, and 800 degrees. It was.
본 발명에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말은 니켈과, 지르코늄, 이트륨이 코어 쉘 구조로 안정적으로 형성되어, 연료극을 고온에서 작동 시 니켈의 조대화와 수축으로 인한 변형을 방지하면서도 소결성과 전기전도도를 향상시킬 수 있다. The composite powder of the core-shell structure for a solid oxide fuel cell (SOFC) according to the present invention is stably formed with a core shell structure of nickel, zirconium, and yttrium, which is caused by coarsening and shrinking of nickel when the anode is operated at a high temperature. It can improve sintering and electrical conductivity while preventing deformation.

Claims (3)

  1. (A) Ni 또는 NiO와 지르코늄 전구체 및 이트륨 전구체를 준비하는 단계; 및 (A) preparing Ni or NiO and a zirconium precursor and a yttrium precursor; And
    (B) 암모니아수(NH4OH)을 첨가하여 공침 반응으로 상기 Ni 또는 NiO 표면에 지르코늄 전구체 및 이트륨 전구체가 형성되는 단계; 를 포함하는 (B) adding ammonia water (NH 4 OH) to form a zirconium precursor and a yttrium precursor on the surface of the Ni or NiO by a coprecipitation reaction; Containing
    고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말의 제조 방법.A method for producing a composite powder having a core-shell structure for a solid oxide fuel cell (SOFC).
  2. 제 1 항에 있어서, The method of claim 1,
    상기 지르코늄 전구체는 수산화지르코늄(Zr(OH)4 )이고, 상기 이트륨 전구체는 질산이트륨Y(NO3)3ㆍ6H2O 인 것인 The zirconium precursor is zirconium hydroxide (Zr (OH) 4 ) And the yttrium precursor is yttrium nitrate Y (NO 3 ) 3 .6H 2 O.
    제 1 항에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말의 제조 방법.A method for producing a composite powder having a core-shell structure for a solid oxide fuel cell (SOFC) according to claim 1.
  3. (A) Ni 또는 NiO와 지르코늄 전구체 및 이트륨 전구체가 수열합성 반응을 통해 Ni 또는 NiO 표면에 이트리아 안정화 지르코니아(YSZ) 정방정계 결정으로 성장한 코어-쉘 구조가 형성되는 단계; 및 (A) forming a core-shell structure in which Ni or NiO, a zirconium precursor and a yttrium precursor are grown by yttria stabilized zirconia (YSZ) tetragonal crystals on the surface of Ni or NiO through a hydrothermal synthesis reaction; And
    (B) 상기 수열합성된 복합 분말을 pH 5~8 조건에서 100 ℃ 이상의 온도에서 건조시키는 단계; 포함하는 (B) drying the hydrothermally synthesized composite powder at a temperature of 100 ° C. or higher at a pH of 5 to 8; Containing
    제 1 항에 의한 고체산화물 연료전지(SOFC)용 코어-쉘 구조의 복합 분말의 제조 방법.A method for producing a composite powder having a core-shell structure for a solid oxide fuel cell (SOFC) according to claim 1.
PCT/KR2017/008222 2016-08-10 2017-07-31 Method for manufacturing composite powder in core-shell structure for solid oxide fuel cell WO2018030691A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160101985 2016-08-10
KR10-2016-0101985 2016-08-10
KR10-2016-0108660 2016-08-25
KR1020160108660A KR20180018231A (en) 2016-08-10 2016-08-25 Manufacturing method of core­shell structured composite powder for solid oxide fuel cell

Publications (1)

Publication Number Publication Date
WO2018030691A1 true WO2018030691A1 (en) 2018-02-15

Family

ID=61162287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008222 WO2018030691A1 (en) 2016-08-10 2017-07-31 Method for manufacturing composite powder in core-shell structure for solid oxide fuel cell

Country Status (1)

Country Link
WO (1) WO2018030691A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2591462A (en) * 2020-01-27 2021-08-04 Ceres Ip Co Ltd Interlayer for solid oxide cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255796A (en) * 1991-06-28 1993-10-05 Eniricerche Spa Nickel-cermet and its production
KR101159139B1 (en) * 2012-03-30 2012-06-25 삼전순약공업(주) Method of forming a ni-ysz complex and method of manufacturing a fuel cell
KR20120089939A (en) * 2010-12-28 2012-08-16 주식회사 포스코 A method for preparing nio/ysz composite for a solid oxide fuel cell
KR20150138482A (en) * 2014-05-29 2015-12-10 한국세라믹기술원 Method of preparing Ni/YSZ core-shell structures by using surfactant and ultrasonication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255796A (en) * 1991-06-28 1993-10-05 Eniricerche Spa Nickel-cermet and its production
KR20120089939A (en) * 2010-12-28 2012-08-16 주식회사 포스코 A method for preparing nio/ysz composite for a solid oxide fuel cell
KR101159139B1 (en) * 2012-03-30 2012-06-25 삼전순약공업(주) Method of forming a ni-ysz complex and method of manufacturing a fuel cell
KR20150138482A (en) * 2014-05-29 2015-12-10 한국세라믹기술원 Method of preparing Ni/YSZ core-shell structures by using surfactant and ultrasonication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, F.H.: "Preparation and properties of Ni/YSZ anode by coating precipitation method", MATERIALS LETTERS, vol. 58, no. 24, 2004, pages 3079 - 3083, XP004525843, DOI: doi:10.1016/j.matlet.2004.05.047 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2591462A (en) * 2020-01-27 2021-08-04 Ceres Ip Co Ltd Interlayer for solid oxide cell
WO2021151692A1 (en) * 2020-01-27 2021-08-05 Ceres Intellectual Property Company Limited Interlayer for solid oxide cell
GB2591462B (en) * 2020-01-27 2022-04-20 Ceres Ip Co Ltd Interlayer for solid oxide cell

Similar Documents

Publication Publication Date Title
Ishihara et al. Preparation of Yttria‐Stabilized Zirconia Thin Films on Strontium‐Doped LaMnO3 Cathode Substrates via Electrophoretic Deposition for Solid Oxide Fuel Cells
Chen et al. High performance low temperature solid oxide fuel cells with novel electrode architecture
KR20130099704A (en) Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer
KR20140085431A (en) Composite anode for a solid oxide fuel cell with improved mechanical integrity and increased efficiency
Chen et al. Electrochemical properties of micro-tubular intermediate temperature solid oxide fuel cell with novel asymmetric structure based on BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ proton conducting electrolyte
JP5218419B2 (en) Nickel oxide powder material for solid oxide fuel cell, method for producing the same, fuel electrode material using the same, fuel electrode, and solid oxide fuel cell
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
KR20090023254A (en) Polymerised inorganic-organic precursor solutions
KR101220586B1 (en) A Method for Preparing NiO/YSZ Composite for a Solid Oxide Fuel Cell
CN108091885B (en) High-temperature fuel cell cathode and application thereof
JP3661676B2 (en) Solid oxide fuel cell
Zhou et al. Self-assembled cathode induced by polarization for high-performance solid oxide fuel cell
CN105742674B (en) A kind of cathode material of high-temperature fuel cell and preparation method thereof
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
WO2018030691A1 (en) Method for manufacturing composite powder in core-shell structure for solid oxide fuel cell
JP2004265746A (en) Solid oxide fuel cell
JP2007335193A (en) Ceria layer for air electrode of solid oxide fuel cell, and its manufacturing method
RU2368983C1 (en) High-temperature electrochemical element with electrophoretically deposited hard electrolyte and method of its manufacturing
KR101756695B1 (en) Method of preparing Ni/YSZ core-shell structures by using surfactant and ultrasonication
CN109360991A (en) A kind of low-temperature solid oxide fuel cell composite cathode and preparation method thereof
WO2018030558A1 (en) Composite powder in core-shell structure for solid oxide fuel cell
Ding et al. Improved sintering behavior and electrical performance of Ce0. 8Sm0. 2O2-δ-BaZr0. 1Ce0. 7Y0. 2O3-δ (SDC-BZCY) composite electrolytes with the addition of iron (III) oxide for IT-SOFCs
KR20180018231A (en) Manufacturing method of core­shell structured composite powder for solid oxide fuel cell
JP2006244810A (en) Electrode for solid oxide fuel cell and its manufacturing method
JP2013051043A (en) Fuel electrode for fuel battery, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839709

Country of ref document: EP

Kind code of ref document: A1