JP2006244810A - Electrode for solid oxide fuel cell and its manufacturing method - Google Patents
Electrode for solid oxide fuel cell and its manufacturing method Download PDFInfo
- Publication number
- JP2006244810A JP2006244810A JP2005057156A JP2005057156A JP2006244810A JP 2006244810 A JP2006244810 A JP 2006244810A JP 2005057156 A JP2005057156 A JP 2005057156A JP 2005057156 A JP2005057156 A JP 2005057156A JP 2006244810 A JP2006244810 A JP 2006244810A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- fuel cell
- solid oxide
- material particles
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、固体酸化物形燃料電池の製造に用いられる電極及びその製造方法に関する。 The present invention relates to an electrode used for manufacturing a solid oxide fuel cell and a manufacturing method thereof.
固体酸化物形燃料電池のセルは、電解質を燃料極及び空気極で挟み込むようにして構成され、該電解質、該燃料極及び該空気極ともに金属酸化物又は金属で構成されており、全て固体である。 A cell of a solid oxide fuel cell is configured such that an electrolyte is sandwiched between a fuel electrode and an air electrode, and the electrolyte, the fuel electrode, and the air electrode are both composed of a metal oxide or a metal, and are all solid. is there.
該固体酸化物形燃料電池において、電池反応は、ガス、イオン、電子のいずれもが反応可能な三相界面で起こる。そのため、電池性能、特に燃料電池の出力を向上させるためには、該三相界面を増加させることが必要である。 In the solid oxide fuel cell, the cell reaction occurs at a three-phase interface where any of gas, ions and electrons can react. Therefore, in order to improve the cell performance, particularly the output of the fuel cell, it is necessary to increase the three-phase interface.
そこで、従来より、電解質物質を電極物質に混合させることにより、該三相界面を、電解質と電極の接触面だけでなく、電極内部にも形成させ、該三相界面を増加させることが行われてきた。すなわち、燃料極物質に電解質物質を混合して燃料極を製造すること、又は空気極物質に電解質物質を混合して空気極を製造することが行われてきた。なお、本発明において、燃料極物質とは、燃料の水素及び酸化物イオンから水及び電子を生成させ且つ電子を導電する性質を持つ物質を指し、空気極物質とは、酸素及び電子から酸化物イオンを生成させ且つ電子を導電する性質を持つ物質を指し、電解質物質とは、空気極で生成する酸化物イオンを燃料極に導電させる性質を持つ物質を指す。 Therefore, conventionally, by mixing an electrolyte substance with an electrode substance, the three-phase interface is formed not only on the contact surface between the electrolyte and the electrode but also inside the electrode, thereby increasing the three-phase interface. I came. That is, it has been performed to manufacture a fuel electrode by mixing an electrolyte material with a fuel electrode material, or to manufacture an air electrode by mixing an electrolyte material with an air electrode material. In the present invention, the fuel electrode material refers to a material that generates water and electrons from hydrogen and oxide ions of the fuel and conducts electrons, and the air electrode material refers to oxides from oxygen and electrons. A substance that has the property of generating ions and conducting electrons, and an electrolyte substance refers to a substance that has the property of conducting oxide ions generated at the air electrode to the fuel electrode.
具体的には、電池の出力を高くするために、電極を形成する電極物質に、ジルコニア粉末等の電解質物質を混合することが行われてきた。 Specifically, in order to increase the output of the battery, it has been performed to mix an electrolyte substance such as zirconia powder with the electrode substance forming the electrode.
従来の電極では、ジルコニアの含有量が増えると、三相界面の量が増えるので、燃料電池の出力が高くなる反面、電極の導電率が低下する。そして、従来の電極では、電極中のジルコニアの含有量を増加させても、ジルコニアの増加量に見合った分の出力向上が得られず、三相界面が増加することによる燃料電池の出力向上という好影響よりも、ジルコニアの含有量の増加による導電率の低下という悪影響の方が大きかった。すなわち、従来の電極では、導電性が高く、且つ燃料電池の出力を高くすることができる電極を製造することは困難であるという問題があった。 In the conventional electrode, when the content of zirconia increases, the amount of the three-phase interface increases, so the output of the fuel cell increases, but the conductivity of the electrode decreases. And in the conventional electrode, even if the content of zirconia in the electrode is increased, the output improvement corresponding to the increased amount of zirconia is not obtained, and the output of the fuel cell is improved by increasing the three-phase interface. The adverse effect of a decrease in conductivity due to an increase in the content of zirconia was greater than a positive effect. That is, the conventional electrode has a problem that it is difficult to manufacture an electrode that has high conductivity and can increase the output of the fuel cell.
従って、本発明の課題は、導電性が高く、且つ燃料電池の出力を高くすることができる固体酸化物形燃料電池用電極、及び該電極の製造方法を提供することである。 Accordingly, an object of the present invention is to provide a solid oxide fuel cell electrode that has high conductivity and can increase the output of the fuel cell, and a method for manufacturing the electrode.
本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、(1)従来の電極で、電極中のジルコニアの含有量を増加させても、ジルコニアの含有量の増加に見合った分の出力向上が得られなかったのは、焼成の際に電極物質粒子が焼結して、粒径の大きな塊になってしまい、電極の比表面積の低下による燃料電池の出力低下が起こるためであること、(2)焼成原料混合物に、電解質物質ファイバーを含有させることにより、焼成の際に、電極物質粒子同士が、周辺の電極物質粒子と焼結を繰り返すのを抑制できること、(3)そのため、従来の電極に比べて、電解質物質の含有量が少なくても、燃料電池の出力を高くできるので、該焼成原料混合物を焼成して得られる電極は、導電率が高く、且つ燃料電池の出力を高くすることができること等を見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the problems in the conventional technology, the present inventors have (1) an increase in the content of zirconia even if the content of zirconia in the electrode is increased in the conventional electrode. The reason why the output was not improved in proportion to the reason is that the electrode material particles were sintered during firing, resulting in a large particle size, and the output of the fuel cell was decreased due to the decrease in the specific surface area of the electrode. (2) By containing the electrolyte material fiber in the firing raw material mixture, it is possible to suppress the electrode material particles from repeating sintering with the surrounding electrode material particles during firing, (3) Therefore, the output of the fuel cell can be increased even if the content of the electrolyte substance is small as compared with the conventional electrode. Therefore, the electrode obtained by firing the firing raw material mixture has high conductivity, and Fuel cell output It found such that it is possible Kusuru, thereby completing the present invention.
すなわち、本発明(1)は、燃料極物質粒子及び電解質物質ファイバーを含有する固体酸化物形燃料電池用燃料極を提供するものである。 That is, the present invention (1) provides a fuel electrode for a solid oxide fuel cell containing fuel electrode material particles and electrolyte material fibers.
また、本発明(2)は、空気極物質粒子及び電解質物質ファイバーを含有する固体酸化物形燃料電池用空気極を提供するものである。 Moreover, this invention (2) provides the air electrode for solid oxide fuel cells containing air electrode material particles and electrolyte material fibers.
また、本発明(3)は、粉末状の電極物質粒子及び電解質物質ファイバーを含有する、焼成原料混合物を焼成する固体酸化物形燃料電池用電極の製造方法を提供するものである。 Moreover, this invention (3) provides the manufacturing method of the electrode for solid oxide fuel cells which bakes a baking raw material mixture containing a powder-form electrode substance particle and electrolyte substance fiber.
本発明によれば、導電性が高く且つ燃料電池の出力を高くすることができる固体酸化物形燃料電池用電極を提供することができ、また、焼成の際に、電極物質粒子同士が焼結を繰り返すのを抑制できるので、電解質物質の含有量が少なくても、燃料電池の出力を高くすることができる固体酸化物形燃料電池用電極を製造することができる。 According to the present invention, it is possible to provide a solid oxide fuel cell electrode that has high conductivity and can increase the output of a fuel cell, and electrode material particles are sintered together during firing. Therefore, it is possible to manufacture a solid oxide fuel cell electrode that can increase the output of the fuel cell even when the content of the electrolyte substance is small.
本発明の固体酸化物形燃料電池用燃料極は、燃料極物質粒子及び電解質物質ファイバーを含有する。また、本発明の固体酸化物形燃料電池用空気極は、空気極物質粒子及び電解質物質ファイバーを含有する。そして、該固体酸化物形燃料電池用燃料極と、該固体酸化物形燃料電池用空気極が主に異なる点は、該電解質物質ファイバーと共に電極に含有される物質が、前者が燃料極物質粒子であるのに対し、後者は空気極物質粒子である点である。そして、該空気極物質粒子は、該空気極物質粒子を構成する金属酸化物の種類が主に異なり、他は該燃料極物質粒子と同様である。従って、該固体酸化物形燃料電池用燃料極と、該固体酸化物形燃料電池用空気極のいずれにも共通する点については、燃料極(空気極)と記載し、説明する。 The fuel electrode for a solid oxide fuel cell of the present invention contains fuel electrode material particles and electrolyte material fibers. The air electrode for a solid oxide fuel cell of the present invention contains air electrode material particles and electrolyte material fibers. The main difference between the fuel electrode for the solid oxide fuel cell and the air electrode for the solid oxide fuel cell is that the material contained in the electrode together with the electrolyte fiber is the material of the anode material particles. On the other hand, the latter is a cathode material particle. The air electrode material particles are the same as the fuel electrode material particles except that the type of metal oxide constituting the air electrode material particles is mainly different. Therefore, the points common to both the solid oxide fuel cell fuel electrode and the solid oxide fuel cell air electrode are described as a fuel electrode (air electrode) and will be described.
該燃料極(空気極)物質粒子は、金属酸化物(一次粒子)が凝集した凝集体(二次粒子)である。該燃料極(空気極)物質粒子について、図1を参照に説明する。図1は、本発明に係る燃料極(空気極)物質粒子の模式図である。図1に示すように、燃料極(空気極)物質粒子(二次粒子)1は、金属酸化物(一次粒子)2が凝集して形成されている。 The fuel electrode (air electrode) substance particles are aggregates (secondary particles) in which metal oxides (primary particles) are aggregated. The fuel electrode (air electrode) material particles will be described with reference to FIG. FIG. 1 is a schematic diagram of fuel electrode (air electrode) material particles according to the present invention. As shown in FIG. 1, fuel electrode (air electrode) material particles (secondary particles) 1 are formed by aggregation of metal oxides (primary particles) 2.
該燃料極物質粒子を構成する金属酸化物は、イットリウム(Y)、ジルコニウム(Zr)、スカンジウム(Sc)、セリウム(Ce)、サマリウム(Sm)、アルミニウム(Al)、チタン(Ti)、マグネシウム(Mg)、ランタン(La)、ガリウム(Ga)、ニオブ(Nb)、タンタル(Ta)、シリコン(Si)、ガドリニウム(Gd)、ストロンチウム(Sr)、イッテルビウム(Yb)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)及びカルシウム(Ca)から選ばれる1種又は2種以上の金属の酸化物である。そして、該燃料極物質粒子は、該燃料極物質粒子を構成する金属酸化物の1種又は2種以上の凝集体であり、例えば、酸化ニッケル(NiO)とサマリアドープセリア(Sm2O3−CeO2)の混合物の凝集体、酸化ニッケルとイットリア安定化ジルコニアの混合物(NiO−YSZ)の凝集体、酸化ニッケルとスカンジア安定化ジルコニアの混合物(NiO−ScSZ)の凝集体、酸化ニッケルとイットリア安定化ジルコニアとサマリアドープセリアの混合物の凝集体、酸化ニッケルとスカンジア安定化ジルコニアとサマリアドープセリアの混合物の凝集体、酸化ニッケルとイットリア安定化ジルコニアと酸化セリア(CeO2)の混合物の凝集体、酸化ニッケルとスカンジア安定化ジルコニアと酸化セリアの混合物の凝集体、酸化コバルト(Co3O4)とイットリア安定化ジルコニアの混合物の凝集体、酸化コバルトとスカンジア安定化ジルコニアの混合物の凝集体、酸化ルテニウム(RuO2)とイットリア安定化ジルコニアの混合物の凝集体、酸化ルテニウムとスカンジア安定化ジルコニアの混合物の凝集体、酸化ニッケルとガドリニアドープセリア(Gd2O3−CeO2)の混合物の凝集体等が挙げられる。これらのうち、酸化ニッケルとサマリアドープセリアの混合物の凝集体、酸化ニッケルとイットリア安定化ジルコニアの混合物の凝集体及び酸化ニッケルとスカンジア安定化ジルコニアの混合物の凝集体が、電解質物質と反応せず、また、電解質物質と熱膨張率が近いので接合が良好である点で好ましい。
The metal oxides constituting the anode material particles are yttrium (Y), zirconium (Zr), scandium (Sc), cerium (Ce), samarium (Sm), aluminum (Al), titanium (Ti), magnesium ( Mg), lanthanum (La), gallium (Ga), niobium (Nb), tantalum (Ta), silicon (Si), gadolinium (Gd), strontium (Sr), ytterbium (Yb), iron (Fe), cobalt ( It is an oxide of one or more metals selected from Co), nickel (Ni), and calcium (Ca). The anode material particles are one or more aggregates of metal oxides constituting the anode material particles. For example, nickel oxide (NiO) and samaria doped ceria (Sm 2 O 3 − Aggregates of mixture of CeO 2 ), aggregates of nickel oxide and yttria stabilized zirconia (NiO—YSZ), aggregates of nickel oxide and scandia stabilized zirconia (NiO—ScSZ), nickel oxide and yttria stable Agglomerates of a mixture of zirconia and samaria doped ceria, aggregates of a mixture of nickel oxide and scandia stabilized zirconia and samaria doped ceria, aggregates of a mixture of nickel oxide and yttria stabilized zirconia and ceria (CeO 2 ), oxidation Aggregates of nickel, scandia stabilized zirconia and ceria oxide, acid Aggregates of cobalt (
なお、該燃料極物質粒子が、2種以上の金属種の金属酸化物により構成される場合、例えば、X、Y及びZが金属種であるとして、該燃料極物質粒子は、Xの酸化物及びYの酸化物の混合物のような複数の酸化物の混合物が凝集した凝集体、Xの酸化物とZの酸化物の固溶体(X−Z酸化物固溶体)のような複数の酸化物の固溶体が凝集した凝集体、Yの酸化物及びX−Z酸化物固溶体の混合物のような酸化物及び固溶体の混合物が凝集した凝集体のいずれでもよい(後述する電解質物質ファイバー及び空気極物質粒子についても同様である。)。 When the anode material particles are composed of metal oxides of two or more metal species, for example, assuming that X, Y, and Z are metal species, the anode material particles are oxides of X. Agglomerates of a mixture of a plurality of oxides such as a mixture of oxides of Y and Y, a solid solution of a plurality of oxides such as a solid solution of oxides of X and Z (XZ oxide solid solution) May be any of aggregates in which a mixture of oxides and solid solutions is aggregated, such as a mixture of oxides of Y and X-Z oxide solid solutions (also for electrolyte material fibers and air electrode material particles to be described later) The same).
該空気極物質粒子を構成する金属酸化物は、イットリウム、ジルコニウム、スカンジウム、セリウム、サマリウム、アルミニウム、チタン、マグネシウム、ランタン、ガリウム、ニオブ、タンタル、シリコン、ガドリニウム、ストロンチウム、イッテルビウム、鉄、コバルト、ニッケル、カルシウム及びマンガン(Mn)から選ばれる1種又は2種以上の金属の酸化物である。そして、該空気極物質粒子は、該空気極物質粒子を構成する金属酸化物の1種又は2種以上の凝集体であり、例えば、ランタンストロンチウムマンガネート(La0.8Sr0.2MnO3)、ランタンカルシウムコバルテート(La0.9Ca0.1CoO3)、ランタンストロンチウムコバルテート(La0.9Sr0.1CoO3)、ランタンコバルテート(LaCoO3)、ランタンカルシウムマンガネート(La0.9Ca0.1MnO3)等が挙げられ、これらの金属酸化物のうち、ランタンストロンチウムマンガネートが、電解質物質と反応せず、また、電解質物質と熱膨張率が近いので接合が良好である点で好ましい。 The metal oxide constituting the air electrode material particles is yttrium, zirconium, scandium, cerium, samarium, aluminum, titanium, magnesium, lanthanum, gallium, niobium, tantalum, silicon, gadolinium, strontium, ytterbium, iron, cobalt, nickel. , Oxides of one or more metals selected from calcium and manganese (Mn). The air electrode material particles are one or more aggregates of metal oxides constituting the air electrode material particles. For example, lanthanum strontium manganate (La 0.8 Sr 0.2 MnO 3 ), Lanthanum calcium cobaltate (La 0.9 Ca 0.1 CoO 3 ), lanthanum strontium cobaltate (La 0.9 Sr 0.1 CoO 3 ), lanthanum cobaltate (LaCoO 3 ), lanthanum calcium manganate (La 0.9 Ca 0.1 MnO 3 ), etc. Among these metal oxides, lanthanum strontium manganate does not react with the electrolyte material, and its thermal expansion coefficient is close to that of the electrolyte material, so that the bonding is good. It is preferable at this point.
該燃料極(空気極)物質粒子の平均粒径は、0.01〜10μm、好ましくは0.1〜5μm、特に好ましくは0.2〜3μmである。該平均粒径が、0.01μm未満だと、燃料電池の作動時に該燃料極(空気極)物質粒子同士が、焼結を繰り返し、粒径が大きな塊になり易く、また、10μmを超えると、該燃料極(空気極)の比表面積が小さくなる。 The average particle diameter of the fuel electrode (air electrode) material particles is 0.01 to 10 μm, preferably 0.1 to 5 μm, and particularly preferably 0.2 to 3 μm. When the average particle size is less than 0.01 μm, the fuel electrode (air electrode) material particles repeat sintering during the operation of the fuel cell, and the particle size tends to become a large lump. When the average particle size exceeds 10 μm The specific surface area of the fuel electrode (air electrode) is reduced.
該燃料極(空気極)物質粒子は、公知の方法を用いて得られ、また、市販の金属酸化物を粉砕及び分級することによっても得られる。 The fuel electrode (air electrode) material particles can be obtained by a known method, and can also be obtained by pulverizing and classifying a commercially available metal oxide.
該電解質物質ファイバーは、金属酸化物(一次粒子)が繊維状に凝集した凝集体、又は金属酸化物の単結晶である。該電解質物質ファイバーを構成する金属酸化物は、イットリウム、ジルコニウム、スカンジウム、セリウム、サマリウム、アルミニウム、チタン、マグネシウム、ランタン、ガリウム、ニオブ、タンタル、ケイ素、ガドリニウム、ストロンチウム、イッテルビウム、鉄、コバルト及びニッケルから選ばれる1種又は2種以上の金属の酸化物である。該電解質物質ファイバーを構成する金属酸化物のうち、金属種が2種以上である金属酸化物としては、例えば、スカンジア安定化ジルコニア(ScSZ;Sc2O3−ZrO2)、イットリア安定化ジルコニア(YSZ;Y2O3−ZrO2)、ランタンストロンチウムマグネシウムガレート(LSGM;La0.8Sr0.2Ga0.8Mg0.2O3)等のランタンガレート、ガドリニア安定化ジルコニア(Gd2O3−ZrO2)、サマリアドープセリア(Sm2O3−CeO2)、ガドリニアドープセリア(Gd2O3−CeO2)、酸化イットリウム固溶酸化ビスマス(Y2O3−Bi2O3)等が挙げられ、これらの金属酸化物のうち、酸素イオン導電性が良好であり、また、動作温度においても熱的に安定な点で、スカンジア安定化ジルコニア、イットリア安定化ジルコニア、ランタンストロンチウムマグネシウムガレート等のランタンガレートが好ましい。なお、サマリアドープセリア、ガドリニアドープセリアは、イオン導電性及び電子伝導性の両方を有しているので、電解質物質の金属酸化物として用いることも、酸化ニッケルと混合物して、前記燃料極物質の金属酸化物として用いることもできる。また、該電解質物質ファイバーの形状は、柱状又は棒状の形状であり、例えば、円柱形状等が挙げられる。また、断面の形状は、円形、だ円形、多角形等、特に制限されない。 The electrolyte material fiber is an aggregate in which metal oxides (primary particles) are aggregated in a fibrous form, or a single crystal of metal oxide. The metal oxide constituting the electrolyte material fiber is yttrium, zirconium, scandium, cerium, samarium, aluminum, titanium, magnesium, lanthanum, gallium, niobium, tantalum, silicon, gadolinium, strontium, ytterbium, iron, cobalt, and nickel. It is an oxide of one or more metals selected. Of the metal oxide constituting the electrolyte material fiber, a metal oxide metal species is 2 or more, for example, scandia-stabilized zirconia (ScSZ; Sc 2 O 3 -ZrO 2), yttria-stabilized zirconia ( YSZ; Y 2 O 3 —ZrO 2 ), lanthanum strontium magnesium gallate (LSGM; La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3 ) and other lanthanum gallate, gadolinia stabilized zirconia (Gd 2 O 3 -ZrO 2), samaria-doped ceria (Sm 2 O 3 -CeO 2) , gadolinia-doped ceria (Gd 2 O 3 -CeO 2) , yttrium oxide solid solution of bismuth oxide (Y 2 O 3 -Bi 2 O 3) , etc. Of these metal oxides, the oxygen ion conductivity is good and the operating temperature is Also thermally stable point, scandia-stabilized zirconia, yttria stabilized zirconia, lanthanum gallate such as lanthanum strontium magnesium gallate preferred. Since samaria-doped ceria and gadolinia-doped ceria have both ionic conductivity and electronic conductivity, they can be used as a metal oxide of an electrolyte material or mixed with nickel oxide, It can also be used as a metal oxide. Moreover, the shape of the electrolyte substance fiber is a columnar shape or a rod shape, and examples thereof include a columnar shape. The cross-sectional shape is not particularly limited, such as a circle, an ellipse, or a polygon.
該電解質物質ファイバーの平均繊維径は、0.01〜20μm、好ましくは0.1〜10μm、特に好ましくは0.1〜5μmである。該電解質物質ファイバーの平均繊維径が、0.01μm未満だと電池の作動時に燃料極(空気極)物質粒子同士が、焼結を繰り返して、粒径が大きな塊になり易くなり、また、20μmを超えると燃料極(空気極)の導電率が低くなり易い。 The average fiber diameter of the electrolyte substance fiber is 0.01 to 20 μm, preferably 0.1 to 10 μm, particularly preferably 0.1 to 5 μm. If the average fiber diameter of the electrolyte material fiber is less than 0.01 μm, the fuel electrode (air electrode) material particles are repeatedly sintered during the operation of the battery, so that the particles tend to become large in size and 20 μm. If it exceeds, the conductivity of the fuel electrode (air electrode) tends to be low.
該電解質物質ファイバーの平均繊維長は、0.1〜100μm、好ましくは0.1〜10μm、特に好ましくは0.1〜5μmである。該電解質物質ファイバーの平均繊維長が、0.1μm未満だと電池の作動時に燃料極(空気極)物質粒子同士が、焼結を繰り返して、粒径が大きな塊になり易くなり、また、100μmを超えると燃料極(空気極)の導電率が低くなり易い。 The average fiber length of the electrolyte substance fiber is 0.1 to 100 μm, preferably 0.1 to 10 μm, particularly preferably 0.1 to 5 μm. When the average fiber length of the electrolyte material fiber is less than 0.1 μm, the fuel electrode (air electrode) material particles are repeatedly sintered during the operation of the battery, and easily become a large lump with a particle size of 100 μm. If it exceeds, the conductivity of the fuel electrode (air electrode) tends to be low.
該電解質物質ファイバーは、公知の方法を用いて得られる。また、市販のものを用いることもできる。 The electrolyte material fiber is obtained using a known method. Commercially available products can also be used.
該燃料極(空気極)物質粒子の平均粒径に対する該電解質物質ファイバーの平均繊維径の比(電解質物質ファイバーの平均繊維径/燃料極(空気極)物質粒子の平均粒径)は、0.5〜1.5、好ましくは0.5〜1.0、特に好ましくは0.5〜0.8である。該平均繊維径の比が、0.5未満だと電池の作動時に該燃料極(空気極)物質粒子同士が、焼結を繰り返して、粒径の大きな塊になり易くなり、また、1.5を超えると燃料極(空気極)の導電率が低くなり易い。 The ratio of the average fiber diameter of the electrolyte material fiber to the average particle diameter of the fuel electrode (air electrode) material particles (average fiber diameter of the electrolyte material fiber / average particle diameter of the fuel electrode (air electrode) material particles) is 0. It is 5-1.5, preferably 0.5-1.0, particularly preferably 0.5-0.8. When the ratio of the average fiber diameters is less than 0.5, the fuel electrode (air electrode) material particles are repeatedly sintered during the operation of the battery, and tend to be a lump having a large particle diameter. If it exceeds 5, the conductivity of the fuel electrode (air electrode) tends to be low.
該燃料極(空気極)物質粒子の平均粒径に対する該電解質物質ファイバーの平均繊維長の比(電解質物質ファイバーの平均繊維長/燃料極(空気極)物質粒子の平均粒径)は、1〜10、好ましくは2〜8、特に好ましくは3〜5である。該平均繊維径の比が、1未満だと電池の作動時に該燃料極(空気極)物質粒子同士が、焼結を繰り返し、粒径の大きな塊になり易くなり、また、10を超えると燃料極(空気極)の導電率が低くなり易い。 The ratio of the average fiber length of the electrolyte material fiber to the average particle size of the fuel electrode (air electrode) material particles (average fiber length of the electrolyte material fiber / average particle size of the fuel electrode (air electrode) material particles) is 1 to 10, preferably 2 to 8, particularly preferably 3 to 5. When the ratio of the average fiber diameter is less than 1, the fuel electrode (air electrode) material particles are repeatedly sintered during operation of the battery, and tend to be a large lump of particle diameter. The conductivity of the electrode (air electrode) tends to be low.
該固体酸化物形燃料電池用燃料極中、該燃料極物質粒子の含有量は、20〜90重量%、好ましくは40〜80重量%、特に好ましくは45〜65重量%である。また、該固体酸化物形燃料電池用空気極中、該空気極物質粒子の含有量は、10〜90重量%、好ましくは40〜85重量%、特に好ましくは50〜80重量%である。該固体酸化物形燃料電池用燃料極(空気極)中の該燃料極(空気極)物質粒子の含有量が、上記範囲未満だと燃料電池の出力が低くなり易く、また、上記範囲を超えると燃料電池の作動時に、該燃料極(空気極)物質粒子同士が、焼結を繰り返し、粒径の大きな塊になり易い。 In the fuel electrode for a solid oxide fuel cell, the content of the anode material particles is 20 to 90% by weight, preferably 40 to 80% by weight, particularly preferably 45 to 65% by weight. In the air electrode for the solid oxide fuel cell, the content of the air electrode material particles is 10 to 90% by weight, preferably 40 to 85% by weight, particularly preferably 50 to 80% by weight. When the content of the fuel electrode (air electrode) material particles in the fuel electrode (air electrode) for the solid oxide fuel cell is less than the above range, the output of the fuel cell tends to be low, and exceeds the above range. During the operation of the fuel cell, the fuel electrode (air electrode) material particles repeatedly sinter and tend to be a lump having a large particle size.
該固体酸化物形燃料電池用燃料極中、該電解質物質ファイバーの含有量は、10〜80重量%、好ましくは30〜70重量%、特に好ましくは40〜60重量%である。また、該固体酸化物形燃料電池用空気極中、該電解質物質ファイバーの含有量は、10〜50重量%、好ましくは10〜30重量%、特に好ましくは20〜30重量%である。該固体酸化物形燃料電池用燃料極(空気極)中の該電解質物質ファイバーの含有量が、上記範囲未満だと、燃料電池の作動時に燃料電池の出力が低くなり易く、また、上記範囲を超えると燃料極(空気極)の導電率が低くなり易い。 The content of the electrolyte substance fiber in the anode for the solid oxide fuel cell is 10 to 80% by weight, preferably 30 to 70% by weight, particularly preferably 40 to 60% by weight. The content of the electrolyte substance fiber in the air electrode for a solid oxide fuel cell is 10 to 50% by weight, preferably 10 to 30% by weight, and particularly preferably 20 to 30% by weight. If the content of the electrolyte substance fiber in the fuel electrode (air electrode) for the solid oxide fuel cell is less than the above range, the output of the fuel cell tends to be low during the operation of the fuel cell. If it exceeds, the conductivity of the fuel electrode (air electrode) tends to be low.
該固体酸化物形燃料電池用燃料極中、該燃料極物質粒子の含有量に対する、該電解質物質ファイバーの含有量の比(電解質物質ファイバーの重量%/燃料極物質粒子の重量%)は、0.01〜2.0、好ましくは0.1〜0.5、特に好ましくは0.2〜0.4である。また、該固体酸化物形燃料電池用空気極中、該空気極物質粒子の含有量に対する、該電解質物質ファイバーの含有量の比は、0.01〜1.0、好ましくは0.1〜0.5、特に好ましくは0.25〜0.43である。該含有量の比が、上記範囲未満だと、燃料電池の作動時に該燃料極(空気極)物質粒子同士が、焼結を繰り返し、粒径の大きな塊となり易くなり、また、上記範囲を超えると燃料極(空気極)の導電率が低くなり易い。 The ratio of the content of the electrolyte material fiber to the content of the anode material particle in the anode for the solid oxide fuel cell (weight% of the electrolyte material fiber / weight% of the anode material particle) is 0. 0.01 to 2.0, preferably 0.1 to 0.5, particularly preferably 0.2 to 0.4. The ratio of the content of the electrolyte material fiber to the content of the air electrode material particles in the air electrode for the solid oxide fuel cell is 0.01 to 1.0, preferably 0.1 to 0. .5, particularly preferably 0.25 to 0.43. If the content ratio is less than the above range, the fuel electrode (air electrode) substance particles are repeatedly sintered during operation of the fuel cell, and tend to be a large lump with a large particle size, and exceeds the above range. And the conductivity of the fuel electrode (air electrode) tends to be low.
該固体酸化物形燃料電池用燃料極(空気極)は、該燃料極(空気極)物質粒子及び該電解質物質ファイバーの他に、電解質物質粒子を含有することができる。 The fuel electrode (air electrode) for the solid oxide fuel cell can contain electrolyte material particles in addition to the fuel electrode (air electrode) material particles and the electrolyte material fiber.
該固体酸化物形燃料電池用燃料極(空気極)の比表面積は、1.0〜15m2/g、好ましくは1.5〜10m2/g、特に好ましくは1.5〜7.0m2/gである。 The specific surface area of the solid oxide fuel cell fuel electrode (air electrode) is 1.0 to 15 m 2 / g, preferably 1.5 to 10 m 2 / g, particularly preferably 1.5 to 7.0 m 2. / G.
従来の固体酸化物形燃料電池用燃料極(空気極)は、燃料極(空気極)物質及び電解質物質のいずれもが、球状であったため、燃料極(空気極)物質粒子が、他の燃料極(空気極)物質粒子及び電解質物質粒子の表面上を転がるようにして動くので、周辺に存在する燃料極(空気極)物質粒と焼結を繰り返し、粒径の大きな塊になり易い。一方、本発明の固体酸化物形燃料電池用燃料極(空気極)では、図2に示すように、電解質物質ファイバー3が、燃料極(空気極)物質粒子4の間に入り込むようにして存在している。言い換えると、該燃料極(空気極)物質粒子4は、棒状の該電解質物質ファイバー3により、挟み込まれるようにして存在している。そのため、該電解質物質ファイバー3は、該燃料極(空気極)物質粒子4が、燃料電池の作動時に、電極中で動くことによって、周りの燃料極(空気極)物質粒子と焼結を繰り返して、粒径の大きな塊になるのを抑制することができる。従って、本発明の固体酸化物形燃料電池用燃料極(空気極)は、燃料極(空気極)物質粒子が焼結を繰り返すことに起因する、燃料極(空気極)の比表面積の低下による燃料電池の出力の低下が少ない。
In the conventional fuel electrode (air electrode) for a solid oxide fuel cell, both the fuel electrode (air electrode) material and the electrolyte material are spherical. Since it moves so as to roll on the surfaces of the electrode (air electrode) material particles and the electrolyte material particles, the fuel electrode (air electrode) material particles existing in the vicinity are repeatedly sintered and easily become a large lump. On the other hand, in the fuel electrode (air electrode) for the solid oxide fuel cell of the present invention, as shown in FIG. 2, the
なお、図2は、本発明の固体酸化物形燃料電池用燃料極(空気極)における、電極中の燃料極(空気極)物質粒子及び電解質物質ファイバーの配置を示す模式図である。 FIG. 2 is a schematic view showing the arrangement of the fuel electrode (air electrode) material particles and the electrolyte material fibers in the electrode in the solid oxide fuel cell fuel electrode (air electrode) of the present invention.
また、焼成により本発明の固体酸化物形燃料電池用燃料極(空気極)が形成される際に、該電解質物質ファイバー3は、該燃料極(空気極)物質粒子4が、該燃料極(空気極)物質粒子4及び該電解質物質ファイバー3の混合物中で動くことによって、周りの燃料極(空気極)物質粒子と焼結を繰り返して、粒径の大きな塊になるのを抑制することができる。そのため、本発明の固体酸化物形燃料電池用燃料極(空気極)は、焼成時に、燃料極(空気極)物質粒子が焼結を繰り返すことに起因する、燃料極(空気極)の比表面積の低下が少ない。このことにより、本発明の固体酸化物形燃料電池用燃料極(空気極)は、電解質物質の含有量に見合った分の燃料電池の出力向上効果が得られる。従って、本発明の固体酸化物形燃料電池用燃料極(空気極)は、電解質物質の含有量が同程度の従来の電極よりも、燃料電池の出力が高い。言い換えると、本発明の固体酸化物形燃料電池用燃料極(空気極)は、従来の電極に比べ、電解質物質の含有量が少なくても、燃料電池の出力を、従来の電極と同程度にすることができるので、燃料極(空気極)の導電率を、従来の電極に比べ、高くすることができる。
Further, when the fuel electrode (air electrode) for the solid oxide fuel cell of the present invention is formed by firing, the
本発明の固体酸化物形燃料電池用電極の製造方法(以下、単に本発明の製造方法とも記載する。)は、粉末状の電極物質粒子及び電解質物質ファイバーを含有する焼成原料混合物を、焼成する方法である。 The method for producing an electrode for a solid oxide fuel cell of the present invention (hereinafter, also simply referred to as the production method of the present invention) fires a firing raw material mixture containing powdered electrode material particles and electrolyte material fibers. Is the method.
該本発明の製造方法に係る粉末状の電極物質粒子は、(1)固体酸化形燃料電池用燃料極を製造する場合、(2)固体酸化形燃料電池用空気極を製造する場合で異なる。そして、該(1)の場合に係る粉末状の電極物質粒子は、前記本発明の固体酸化物形燃料電池用燃料極に係る燃料極物質粒子と同様であり(以下、(1)の場合に係る粉末状の電極物質粒子を、粉末状の燃料極物質粒子とも記載する。)、該(2)の場合に係る粉末状の電極物質粒子は、前記本発明の固体酸化物形燃料電池用空気極に係る燃料極物質粒子と同様である(以下、(2)の場合に係る粉末状の電極物質粒子を、粉末状の空気極物質粒子とも記載する。)。 The powdered electrode material particles according to the production method of the present invention differ depending on (1) the production of a solid oxide fuel cell fuel electrode and (2) the production of a solid oxide fuel cell air electrode. The powdered electrode material particles according to the case (1) are the same as the fuel electrode material particles according to the fuel electrode for a solid oxide fuel cell of the present invention (hereinafter referred to as (1)). The powdered electrode material particles are also referred to as powdered fuel electrode material particles.) The powdered electrode material particles in the case of (2) are the air for the solid oxide fuel cell of the present invention. This is the same as the fuel electrode material particles related to the electrode (hereinafter, the powdered electrode material particles in the case of (2) are also referred to as powdered air electrode material particles).
本発明の製造方法の係る粉末状の電極物質粒子の平均粒径は、0.01〜10μm、好ましくは0.1〜5μm、特に好ましくは0.2〜3μmである。該平均粒径が、0.01μm未満だと、焼成時に粉末状の電極物質粒子同士が、焼結を繰り返して、粒径の大きな塊になり易くなり、また、10μmを超えると、電極の比表面積が小さくなる。 The average particle diameter of the powdered electrode substance particles according to the production method of the present invention is 0.01 to 10 μm, preferably 0.1 to 5 μm, particularly preferably 0.2 to 3 μm. When the average particle size is less than 0.01 μm, the powdered electrode material particles are repeatedly sintered during firing, and tend to be a large lump of particle size. When the average particle size exceeds 10 μm, the electrode ratio The surface area is reduced.
本発明の製造方法に係る電解質物質ファイバーは、前記本発明の固体酸化物形燃料電池用燃料極(空気極)に係る電解質物質ファイバーと同様である。 The electrolyte material fiber according to the production method of the present invention is the same as the electrolyte material fiber according to the fuel electrode (air electrode) for the solid oxide fuel cell of the present invention.
本発明の製造方法に係る電解質物質ファイバーの平均繊維径は、0.01〜20μm、好ましくは0.1〜10μm、特に好ましくは0.1〜5μmである。該電解質物質ファイバーの平均繊維径が、0.01μm未満だと、焼成時に該粉末状の電極物質粒子同士が、焼結を繰り返して、粒径の大きな塊になり易くなり、また、20μmを超えると電極の導電率が低くなり易い。 The average fiber diameter of the electrolyte substance fiber according to the production method of the present invention is 0.01 to 20 μm, preferably 0.1 to 10 μm, particularly preferably 0.1 to 5 μm. When the average fiber diameter of the electrolyte material fiber is less than 0.01 μm, the powdered electrode material particles are repeatedly sintered during firing, and tend to become a lump having a large particle diameter, and more than 20 μm. And the conductivity of the electrode tends to be low.
該電解質物質ファイバーの平均繊維長は、0.1〜100μm、好ましくは0.1〜10μm、特に好ましくは0.1〜5μmである。該電解質物質ファイバーの平均繊維長が、0.1μm未満だと、焼成時に該粉末状の電極物質粒子同士が、焼結を繰り返して、粒径の大きな塊になり易くなり、また、100μmを超えると電極の導電率が低くなり易い。 The average fiber length of the electrolyte substance fiber is 0.1 to 100 μm, preferably 0.1 to 10 μm, particularly preferably 0.1 to 5 μm. When the average fiber length of the electrolyte material fiber is less than 0.1 μm, the powdered electrode material particles are repeatedly sintered during firing, and tend to become a lump having a large particle diameter, and more than 100 μm. And the conductivity of the electrode tends to be low.
該粉末状の電極物質粒子の平均粒径に対する該電解質物質ファイバーの平均繊維径の比(電解質物質ファイバーの平均繊維径/電極物質粒子の平均粒径)は、0.5〜1.5、好ましくは0.5〜1.0、特に好ましくは0.5〜0.8である。該平均繊維径の比が、0.5未満だと焼成時に該粉末状の電極物質粒子同士が、焼結を繰り返して、粒径の大きな塊になり易くなり、また、1.5を超えると導電率が低くなり易い。 The ratio of the average fiber diameter of the electrolyte material fibers to the average particle diameter of the powdered electrode material particles (average fiber diameter of electrolyte material fibers / average particle diameter of electrode material particles) is preferably 0.5 to 1.5. Is 0.5 to 1.0, particularly preferably 0.5 to 0.8. When the ratio of the average fiber diameter is less than 0.5, the powdered electrode material particles are repeatedly sintered during firing, and tend to be a large lump with a particle diameter. The conductivity tends to be low.
該粉末状の電極物質粒子の平均粒径に対する該電解質物質ファイバーの平均繊維長の比(電解質物質ファイバーの平均繊維長/電極物質粒子の平均粒径)は、1〜10、好ましくは2〜8、特に好ましくは3〜5である。該平均繊維径の比が、1未満だと焼成時に該粉末状の電極物質粒子同士が、焼結を繰り返して、粒径の大きな塊になり易くなり、また、10を超えると導電率が低くなり易い。 The ratio of the average fiber length of the electrolyte material fiber to the average particle size of the powdered electrode material particles (average fiber length of the electrolyte material fiber / average particle size of the electrode material particles) is 1 to 10, preferably 2 to 8. Especially preferably, it is 3-5. If the ratio of the average fiber diameter is less than 1, the powdered electrode material particles are repeatedly sintered during firing, and tend to be a large lump of particle diameter, and if it exceeds 10, the conductivity is low. Easy to be.
そして、該粉末状の電極物質粒子及び該電解質物質ファイバーを混合し、焼成原料混合物を得る。 Then, the powdered electrode material particles and the electrolyte material fiber are mixed to obtain a firing raw material mixture.
該焼成原料混合物中、該粉末状の電極物質粒子の含有量は、(1)固体酸化物形燃料電池用燃料極を製造する場合と、(2)固体酸化物形燃料電池用空気極を製造する場合で異なる。該(1)の場合、該焼成原料混合物中の該粉末状の燃料極物質粒子の含有量は、20〜90重量%、好ましくは40〜80重量%、特に好ましくは45〜65重量%である。また、該(2)の場合、該焼成原料混合物中の該粉末状の空気極物質粒子の含有量は、10〜90重量%、好ましくは40〜85重量%、特に好ましくは50〜80重量%である。該粉末状の電極物質粒子の含有量が、上記範囲未満だと燃料電池の出力が低くなり易く、また、上記範囲を超えると、焼成時に該粉末状の電極物質粒子同士が、焼結を繰り返して、粒径の大きな塊になり易くなる。 The content of the powdered electrode material particles in the firing raw material mixture is as follows: (1) when producing a fuel electrode for a solid oxide fuel cell; and (2) producing an air electrode for a solid oxide fuel cell. It depends on the case. In the case of (1), the content of the powdered anode material particles in the calcined raw material mixture is 20 to 90% by weight, preferably 40 to 80% by weight, particularly preferably 45 to 65% by weight. . In the case of (2), the content of the powdered air electrode material particles in the firing raw material mixture is 10 to 90% by weight, preferably 40 to 85% by weight, particularly preferably 50 to 80% by weight. It is. If the content of the powdered electrode material particles is less than the above range, the output of the fuel cell tends to be low, and if it exceeds the above range, the powdered electrode material particles repeatedly sinter during firing. Therefore, it becomes easy to become a lump having a large particle diameter.
該焼成原料混合物中、該電解質物質ファイバーの含有量は、該(1)の場合と、該(2)の場合で異なる。該(1)の場合、該焼成原料混合物中の該電解質物質ファイバーの含有量は、10〜80重量%、好ましくは30〜70重量%、特に好ましくは40〜60重量%である。また、該(2)の場合、該焼成原料混合物中の該電解質物質ファイバーの含有量は、10〜50重量%、好ましくは10〜30重量%、特に好ましくは20〜30重量%である。該焼成原料混合物中の該電解質物質ファイバーの含有量が、上記範囲未満だと、焼成時に該粉末状の電極物質粒子同士が、焼結を繰り返して、粒径の大きな塊になり易くなり、また、上記範囲を超えると電極の導電率が低くなり易い。 The content of the electrolyte substance fiber in the firing raw material mixture is different between the case (1) and the case (2). In the case of (1), the content of the electrolyte substance fiber in the firing raw material mixture is 10 to 80% by weight, preferably 30 to 70% by weight, particularly preferably 40 to 60% by weight. In the case of (2), the content of the electrolyte substance fiber in the firing raw material mixture is 10 to 50% by weight, preferably 10 to 30% by weight, particularly preferably 20 to 30% by weight. If the content of the electrolyte material fiber in the firing raw material mixture is less than the above range, the powdered electrode material particles are repeatedly sintered during firing, and tend to be a large lump of particle size. If the above range is exceeded, the conductivity of the electrode tends to be low.
該焼成原料混合物中、該粉末状の電極物質粒子の含有量に対する、該電解質物質ファイバーの含有量の比(電解質物質ファイバーの重量%/電極物質粒子の重量%)は、該(1)の場合と、該(2)の場合で異なる。該(1)の場合、該焼成原料混合物中、該粉末状の燃料極物質粒子の含有量に対する、該電解質物質ファイバーの含有量の比は、0.01〜2.0、好ましくは0.1〜0.5、特に好ましくは0.2〜0.4である。また、該(2)の場合、該焼成原料混合物中、該粉末状の空気極物質粒子の含有量に対する、該電解質物質ファイバーの含有量の比は、0.01〜1.0、好ましくは0.1〜0.5、特に好ましくは0.25〜0.43である。該含有量の比が、上記範囲未満だと、焼成時に該粉末状の電極物質粒子同士が、焼結を繰り返して、粒径の大きな塊になり易くなり、また、上記範囲を超えると電極の導電率が低くなり易い。 In the firing raw material mixture, the ratio of the content of the electrolyte material fiber to the content of the electrode material particle in powder form (weight% of the electrolyte material fiber / weight% of the electrode material particle) is the case of (1) And in the case of (2). In the case of (1), the ratio of the content of the electrolyte material fiber to the content of the powdered anode material particles in the firing raw material mixture is 0.01 to 2.0, preferably 0.1. It is -0.5, Most preferably, it is 0.2-0.4. In the case of (2), the ratio of the content of the electrolyte material fiber to the content of the powdered air electrode material particles in the firing raw material mixture is 0.01 to 1.0, preferably 0. .1 to 0.5, particularly preferably 0.25 to 0.43. When the content ratio is less than the above range, the powdered electrode material particles are repeatedly sintered during firing, and tend to be a large lump of particle size. The conductivity tends to be low.
該焼成原料混合物は、該粉末状の電極物質粒子及び該電解質物質ファイバーの他に、粉末状の電解質物質粒子を含有することができる。また、該焼成原料混合物は、電極の気孔率を高くするために、セルロース、ポリブチルビニラール等の高分子化合物を含有することもできる。 The firing raw material mixture may contain powdered electrolyte material particles in addition to the powdered electrode material particles and the electrolyte material fibers. The firing raw material mixture may also contain a polymer compound such as cellulose and polybutyl vinyl in order to increase the porosity of the electrode.
また、該焼成原料混合物は、固形物のみの混合物であっても、固形物が分散媒に分散されているスラリーであってもよい。該焼成原料混合物が、スラリーである場合、分散媒としては、例えば、アセトン、イソプロピルアルコール、トルエン等の有機溶媒を用いることができ、他に水を含有することができる。 In addition, the firing raw material mixture may be a solid-only mixture or a slurry in which the solid is dispersed in a dispersion medium. When the firing raw material mixture is a slurry, as a dispersion medium, for example, an organic solvent such as acetone, isopropyl alcohol, or toluene can be used, and water can also be contained.
そして、該焼成原料混合物を、公知の方法を用いて電極の形状に成形し、焼成する。該焼成を行う際の焼成温度は、1000〜1400℃、好ましくは1100〜1400℃、特に好ましくは1200〜1350℃である。該焼成温度が、1000℃未満だと、該粉末状の電極物質粒子と該電解質物質ファイバーとの接合が、低くなり易いため、電極の導電率が低くなり易く、また、1400℃を超えると、該電解質物質ファイバーと該粉末状の電極物質粒子の焼結が起こり易くなる。また、該焼成を行う際の焼成時間は、特に制限されないが、好ましくは2〜10時間、特に好ましくは3〜5時間である。 And this baking raw material mixture is shape | molded in the shape of an electrode using a well-known method, and is baked. The firing temperature at the time of firing is 1000 to 1400 ° C, preferably 1100 to 1400 ° C, and particularly preferably 1200 to 1350 ° C. When the firing temperature is less than 1000 ° C., the bonding between the powdered electrode material particles and the electrolyte material fiber tends to be low, so that the conductivity of the electrode tends to be low, and when it exceeds 1400 ° C., Sintering of the electrolyte material fibers and the powdered electrode material particles is likely to occur. Moreover, the firing time when performing the firing is not particularly limited, but is preferably 2 to 10 hours, particularly preferably 3 to 5 hours.
なお、該焼成原料混合物を電極の形状に成形する方法としては、特に制限されず、公知の方法を用いることができ、例えば、スクリーン印刷法、ドクタープレート法等が挙げられる。 In addition, it does not restrict | limit especially as a method of shape | molding this baking raw material mixture in the shape of an electrode, A well-known method can be used, For example, a screen printing method, a doctor plate method, etc. are mentioned.
従来の固体酸化物形燃料電池用電極の製造方法では、燃料極(空気極)物質及び電解質物質のいずれもが球状であったため、焼成の際に、燃料極(空気極)物質粒子及び電解質物質粒子の混合物中で、該燃料極(空気極)物質粒子が、該電解質物質粒子の表面上を転がるようにして動くので、周辺に存在する燃料極(空気極)物質粒子と焼結を繰り返し、粒径の大きな塊になり易い。そのため、従来の固体酸化物形燃料電池用電極の製造方法は、焼成の際に、電極の比表面積が低下し易い。一方、本発明の固体酸化物形燃料電池用電極の製造方法では、図3に示すように、焼成前の燃料極(空気極)物質粒子6及び電解質物質ファイバー5の混合物(焼成原料混合物)中で、該電解質物質ファイバー5は、燃料極(空気極)物質粒子6の間に入り込むようにして存在している(図3中(I))。言い換えると、該燃料極(空気極)物質粒子6は、棒状の該電解質物質ファイバー5により、挟み込まれるようにして存在している。そのため、該電解質物質ファイバー5は、該燃料極(空気極)物質粒子6が、焼成の際に、焼成原料混合物中で動くことにより、周りの燃料極(空気極)物質粒子と焼結を繰り返して、粒径の大きな塊になるのを抑制することができる。よって、焼成後にも、基の粒径を保っている燃料極(空気極)物質粒子6が多いので、本発明の固体酸化物形燃料電池用電極の製造方法は、焼成の際に電極の比表面積の低下が少ない(図3中(II))。このことにより、本発明の固体酸化物形燃料電池用電極の製造方法は、電解質物質の含有量が同程度である場合、従来の製造方法よりも、燃料電池の出力が高い電極を製造することができる。言い換えると、本発明の固体酸化物形燃料電池用電極の製造方法は、従来の製造方法に比べ、電解質物質の含有量が少なくても、燃料電池の出力を、従来の製造方法により得られる電極と同程度にすることができるので、燃料極(空気極)の導電率を、従来の電極に比べ、高くすることができる。
In the conventional method for producing an electrode for a solid oxide fuel cell, since both the fuel electrode (air electrode) material and the electrolyte material are spherical, the fuel electrode (air electrode) material particles and the electrolyte material are used during firing. In the mixture of particles, the fuel electrode (air electrode) material particles move so as to roll on the surface of the electrolyte material particles, so that sintering with the fuel electrode (air electrode) material particles present in the periphery is repeated, It tends to be a lump with a large particle size. Therefore, in the conventional method for producing a solid oxide fuel cell electrode, the specific surface area of the electrode tends to decrease during firing. On the other hand, in the method for producing an electrode for a solid oxide fuel cell according to the present invention, as shown in FIG. 3, in a mixture (firing raw material mixture) of fuel electrode (air electrode) material particles 6 and
なお、図3は、本発明の固体酸化物形燃料電池用電極の製造方法における、焼成前後の燃料極(空気極)物質粒子及び電解質物質ファイバーの配置を示す模式図である。 FIG. 3 is a schematic view showing the arrangement of fuel electrode (air electrode) material particles and electrolyte material fibers before and after firing in the method for producing an electrode for a solid oxide fuel cell of the present invention.
該本発明の製造方法により製造される固体酸化物形燃料電池用電極の比表面積は、1.0〜15m2/g、好ましくは1.5〜10m2/g、特に好ましくは1.5〜7.0m2/gである。 The specific surface area of the solid oxide fuel cell electrode produced by the production method of the main invention, 1.0~15m 2 / g, preferably 1.5~10m 2 / g, particularly preferably 1.5 to 7.0 m 2 / g.
1 燃料極(空気極)物質粒子
2 金属酸化物
3、5 電解質物質ファイバー
4、6 燃料極(空気極)物質粒子
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005057156A JP2006244810A (en) | 2005-03-02 | 2005-03-02 | Electrode for solid oxide fuel cell and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005057156A JP2006244810A (en) | 2005-03-02 | 2005-03-02 | Electrode for solid oxide fuel cell and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006244810A true JP2006244810A (en) | 2006-09-14 |
Family
ID=37051024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005057156A Pending JP2006244810A (en) | 2005-03-02 | 2005-03-02 | Electrode for solid oxide fuel cell and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006244810A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009197351A (en) * | 2008-02-19 | 2009-09-03 | National Institute Of Advanced Industrial & Technology | Functional ceramic fiber |
JP2009245628A (en) * | 2008-03-28 | 2009-10-22 | Mitsubishi Materials Corp | Solid electrolye and flat-type solid-oxide fuel cell |
US9564653B2 (en) | 2010-03-31 | 2017-02-07 | Toyota Jidosha Kabushiki Kaisha | Method for producing fuel cell including nanofibers of metal oxide |
US9829463B2 (en) | 2010-03-31 | 2017-11-28 | Toyota Jidosha Kabushiki Kaisha | Method for producing oxygen sensor |
CN115224402A (en) * | 2022-04-27 | 2022-10-21 | 海南大学 | Metal-air battery based on thermoelectric effect and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647475A (en) * | 1987-06-30 | 1989-01-11 | Mitsubishi Heavy Ind Ltd | Manufacture of flat type solid electrolyte fuel cell |
JPH0215564A (en) * | 1988-07-01 | 1990-01-19 | Nkk Corp | Electrode member of solid electrolyte type fuel cell and solid electrolyte type fuel cell |
JPH07122282A (en) * | 1993-10-26 | 1995-05-12 | Fuji Electric Co Ltd | Solid electrolyte type fuel cell |
JP2002538597A (en) * | 1999-03-03 | 2002-11-12 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルベニア | Method for producing anode for solid oxide fuel cell |
JP2005005025A (en) * | 2003-06-10 | 2005-01-06 | Nissan Motor Co Ltd | Electrode for fuel cell, solid oxide fuel cell using this, and its manufacturing method |
-
2005
- 2005-03-02 JP JP2005057156A patent/JP2006244810A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647475A (en) * | 1987-06-30 | 1989-01-11 | Mitsubishi Heavy Ind Ltd | Manufacture of flat type solid electrolyte fuel cell |
JPH0215564A (en) * | 1988-07-01 | 1990-01-19 | Nkk Corp | Electrode member of solid electrolyte type fuel cell and solid electrolyte type fuel cell |
JPH07122282A (en) * | 1993-10-26 | 1995-05-12 | Fuji Electric Co Ltd | Solid electrolyte type fuel cell |
JP2002538597A (en) * | 1999-03-03 | 2002-11-12 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルベニア | Method for producing anode for solid oxide fuel cell |
JP2005005025A (en) * | 2003-06-10 | 2005-01-06 | Nissan Motor Co Ltd | Electrode for fuel cell, solid oxide fuel cell using this, and its manufacturing method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009197351A (en) * | 2008-02-19 | 2009-09-03 | National Institute Of Advanced Industrial & Technology | Functional ceramic fiber |
JP2009245628A (en) * | 2008-03-28 | 2009-10-22 | Mitsubishi Materials Corp | Solid electrolye and flat-type solid-oxide fuel cell |
US9564653B2 (en) | 2010-03-31 | 2017-02-07 | Toyota Jidosha Kabushiki Kaisha | Method for producing fuel cell including nanofibers of metal oxide |
US9829463B2 (en) | 2010-03-31 | 2017-11-28 | Toyota Jidosha Kabushiki Kaisha | Method for producing oxygen sensor |
CN115224402A (en) * | 2022-04-27 | 2022-10-21 | 海南大学 | Metal-air battery based on thermoelectric effect and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5163122B2 (en) | Nickel oxide powder material for solid oxide fuel cell, method for producing the same, raw material composition used therefor, and fuel electrode material using the same | |
WO2014050148A1 (en) | Half cell for solid oxide fuel cells, and solid oxide fuel cell | |
JP2010282772A (en) | Electrode material for solid oxide fuel cell, and electrode for solid oxide fuel cell | |
JP2008305804A (en) | High ion-conductivity solid electrolyte material and its manufacturing method, sintered body, and solid electrolyte fuel cell | |
JP5439959B2 (en) | Electrode for solid oxide fuel cell and cell for solid oxide fuel cell | |
JP5031187B2 (en) | SOLAR ELECTRODE FOR SOLID OXIDE FUEL CELL AND SOLID OXIDE FUEL CELL | |
KR102105056B1 (en) | triple doped Stabilized Bismuth Oxide based electrolyte and the manufacturing method thereof | |
JP2006244810A (en) | Electrode for solid oxide fuel cell and its manufacturing method | |
JP5611249B2 (en) | Solid oxide fuel cell and cathode forming material of the fuel cell | |
JP4524791B2 (en) | Solid oxide fuel cell | |
JP3661676B2 (en) | Solid oxide fuel cell | |
JP2016012550A (en) | Solid oxide fuel cell air electrode, solid oxide fuel cell, and method for manufacturing solid oxide fuel cell air electrode | |
JP2007115536A (en) | Manufacturing method of electrode for porous solid oxide fuel cell | |
JP2003217597A (en) | Solid electrolyte type fuel cell | |
JP2006040822A (en) | Porous mixed conductor, its manufacturing method, and air pole material of solid oxide fuel cell | |
JP2008071668A (en) | Composite particle powder and its manufacturing method, electrode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel battery cell | |
JP4889166B2 (en) | Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same | |
JP2010282933A (en) | Air electrode for solid oxide fuel cell, and cell of solid oxide fuel cell | |
JP2004303712A (en) | Solid oxide fuel cell | |
JP2013051043A (en) | Fuel electrode for fuel battery, and method of manufacturing the same | |
KR102137988B1 (en) | symmetrical solid oxide fuel cell having perovskite structure, method of manufacturing the same and symmetrical solid oxide electrolyzer cell having the perovskite structure | |
KR20180017718A (en) | Coreshell structured composite powder for solid oxide fuel cell | |
JP2012156007A (en) | Solid electrolyte fuel cell | |
JP2005139024A (en) | Mixed conductive ceramic material and solid oxide type fuel cell using this material | |
JP2004303713A (en) | Solid oxide fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110322 |