WO2018030053A1 - Solenoid actuator - Google Patents

Solenoid actuator Download PDF

Info

Publication number
WO2018030053A1
WO2018030053A1 PCT/JP2017/025135 JP2017025135W WO2018030053A1 WO 2018030053 A1 WO2018030053 A1 WO 2018030053A1 JP 2017025135 W JP2017025135 W JP 2017025135W WO 2018030053 A1 WO2018030053 A1 WO 2018030053A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
solenoid actuator
main body
iron core
magnetic flux
Prior art date
Application number
PCT/JP2017/025135
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 弘中
喜也 永溝
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018030053A1 publication Critical patent/WO2018030053A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures

Definitions

  • the present invention relates to a solenoid actuator.
  • JP 2004-218816A includes a coil that generates a magnetic force according to a supplied current, a fixed iron core that is excited by the magnetic force of the coil, and a movable iron core that moves in the axial direction by the attractive force of the excited fixed iron core.
  • a provided solenoid actuator is disclosed.
  • the fixed core of this solenoid actuator has an extending part surrounding the end of the movable core, and the end of the movable core is accommodated in a recess formed by the extending part.
  • hysteresis may occur when the moving direction of the movable core changes due to the frictional force generated between the extension portion of the fixed core and the movable core.
  • Such a phenomenon is caused in particular by the fact that the magnetic flux passing between the movable iron core and the extension portion increases, and the force that the extension portion attracts the movable iron core, that is, the force acting in the radial direction on the movable iron core. It becomes remarkable by becoming large.
  • An object of the present invention is to suppress hysteresis and improve the controllability of a solenoid actuator.
  • the solenoid actuator includes a coil that generates a magnetic force according to a supplied current, a fixed iron core that is excited by the magnetic force of the coil, and an axial direction that is attracted to the excited fixed iron core.
  • a movable iron core that moves to the movable iron core, and the fixed iron core extends from the outer edge side of the main body portion toward the movable iron core.
  • An extension part surrounding the periphery of the end part, and a saturation magnetic flux density in the extension part is set lower than that of the main body part.
  • FIG. 1 is a longitudinal sectional view of an actuator device including a solenoid actuator according to an embodiment of the present invention.
  • FIG. 2 is a graph (BH curve) showing the change in magnetic flux density with respect to the magnetic field strength of the members constituting the magnetic circuit.
  • FIG. 3 is a diagram showing a distribution state of magnetic flux passing between the movable iron core and the fixed iron core.
  • FIG. 4 is a diagram illustrating a distribution state of magnetic flux passing between the movable iron core and the fixed iron core.
  • FIG. 5 is a longitudinal sectional view of an actuator device including a modification of the solenoid actuator according to the embodiment of the present invention.
  • the actuator device 1 includes a solenoid actuator 20 and a valve device 10 driven by the solenoid actuator 20.
  • the valve device 10 is a spool valve installed in a flow path through which a working fluid such as hydraulic oil flows, and includes a cylindrical valve sleeve 11 and a spool 12 slidably provided in the valve sleeve 11.
  • a flow path (not shown) is connected to each side opening of the valve sleeve 11.
  • the flow rate of the working fluid flowing through the valve device 10 is changed by changing the communication opening degree that communicates each flow path according to the position of the spool 12.
  • the position of the spool 12 is controlled by the solenoid actuator 20.
  • the solenoid actuator 20 includes a coil 41 wound around the bobbin 40, a fixed core 50 as a fixed iron core fitted on the inner peripheral side of the bobbin 40, and a yoke 52 connected to the fixed core 50 via a nonmagnetic material 53.
  • a plunger 60 as a movable iron core slidably supported by the fixed core 50 and the yoke 52, a spring 62 interposed between the fixed core 50 and the plunger 60 in a compressed state, and A case 30 to be accommodated.
  • the plunger 60 is a cylindrical member having a through hole 60a through which the shaft 61 is inserted in the shaft center, and is formed of a magnetic material.
  • the plunger 60 has one end surface 60 b disposed on the fixed core 50 side, the other end surface 60 c provided on the opposite side of the one end surface 60 b, and an outer peripheral surface 60 d slidably contacting the fixed core 50 and the yoke 52.
  • the shaft 61 inserted through the through-hole 60a is a rod-shaped member formed of a nonmagnetic material such as stainless steel, and the plunger 60 is caulked and fixed to the outer peripheral surface of the shaft 61.
  • the shaft 61 penetrates the plunger 60 in the axial direction, and both end portions of the shaft 61 protrude from both end surfaces 60 b and 60 c of the plunger 60.
  • a hook-shaped spring receiving portion 61a having an outer diameter larger than that of the through hole 60a is formed at the end portion of the shaft 61 protruding from the one end surface 60b side of the plunger 60.
  • the end portion of the shaft 61 protruding from the other end surface 60c side of the plunger 60 is coupled to the spool 12 of the valve device 10 by a coupling means (not shown).
  • the fixed core 50 is a columnar member made of a magnetic material, and has a main body portion 50a that is opposed to the plunger 60 in the axial direction, and extends from the outer edge side of the main body portion 50a toward the plunger 60. It has an annular extending part 51 that surrounds the periphery of the end part on the end face 60b side, and an accommodation hole 50b that is formed in the main body part 50a and accommodates the spring 62.
  • a concavity is formed at the end of the fixed core 50 by the facing surface 50c of the main body 50a facing the one end surface 60b of the plunger 60 and the inner peripheral surface 51a of the extending portion 51. The end portion on the one end surface 60b side of 60 is slidably accommodated.
  • the fixed core 50 is formed so that the magnetic characteristics of the extending part 51 and the magnetic characteristics of the main body part 50a are different by magnetic annealing of the part other than the extending part 51.
  • the difference in magnetic characteristics between the extension part 51 and the main body part 50a will be described.
  • the solid line indicates the magnetic saturation curve (BH curve) of the main body 50a
  • the broken line indicates the magnetic saturation curve (BH curve) of the extension 51.
  • the magnetic flux density flowing through the magnetic material increases as the magnetic field becomes stronger.
  • the rate of increase of the magnetic flux density decreases, and the magnetic flux density is in an overcrowded state in the magnetic material.
  • the magnetic flux density flowing through the magnetic material becomes a substantially constant magnetic flux density, so-called saturation magnetic flux density, regardless of the strength of the magnetic field.
  • the saturation magnetic flux density in the extension part 51 that has not been magnetically annealed is lower than the saturation magnetic flux density of the magnetically annealed main body part 50a.
  • the magnetic permeability indicating the change rate of the magnetic flux density with respect to the strength of the magnetic field is always smaller in the extension part 51 that is not magnetically annealed than in the main body part 50a that is magnetically annealed. That is, the extending part 51 has a magnetic characteristic that is more easily magnetically saturated than the main body part 50a.
  • the effect by making the magnetic characteristic of the extension part 51 different from the magnetic characteristic of the main body part 50a will be described later.
  • the yoke 52 is a member formed of a magnetic material, a cylindrical portion 52a inserted on the inner peripheral side of the bobbin 40, a flange portion 52b formed to protrude radially outward from an end portion of the cylindrical portion 52a, And a sliding hole 52c formed penetrating from the cylindrical portion 52a to the flange portion 52b.
  • the end of the plunger 60 on the other end surface 60 c side is slidably supported by the sliding hole 52 c of the yoke 52.
  • the fixed core 50 and the yoke 52 are connected in the axial direction by a cylindrical nonmagnetic material 53 formed of a nonmagnetic material. For this reason, the yoke 52 and the fixed core 50 are in a state of being separated in the axial direction.
  • the nonmagnetic material 53 may be formed of a material having a low magnetic permeability such as aluminum, or may be a space formed between the yoke 52 and the fixed core 50.
  • the space on the fixed core 50 side partitioned by the plunger 60 and the space on the yoke 52 side are always communicated by a plurality of communication grooves 60e formed in the outer peripheral surface 60d of the plunger 60 along the axial direction. For this reason, the working fluid in each space can move through the communication groove 60e according to the movement of the plunger 60. Therefore, the movement of the plunger 60 is not hindered by the working fluid.
  • the spring 62 is a coil spring that biases the plunger 60 in a direction opposite to the attractive force acting on the plunger 60 when the coil 41 is energized.
  • One end of the spring 62 is locked to the spring receiving portion 61 a of the shaft 61, and the other end of the spring 62 is received and locked in the receiving hole 50 b of the fixed core 50.
  • the case 30 is a bottomed cylindrical member formed of a magnetic material and accommodates each member constituting the solenoid actuator 20.
  • the open end of the case 30 is configured as a caulking portion for caulking and fixing one end of the valve sleeve 11 with the flange portion 52 b of the yoke 52 sandwiched between the bobbin 40 and the valve sleeve 11.
  • the bobbin 40 is a cylindrical member having flanges at both ends, and is formed of a resin having electrical insulation.
  • a conductive wire wound around the outer peripheral surface of the bobbin body between the flanges constitutes the coil 41.
  • a terminal 42 that is electrically connected to the coil 41 is provided on one flange of the bobbin 40.
  • One end of the terminal 42 protrudes to the outside through a notch portion of the case 30 with the bobbin 40 disposed in the case 30.
  • a magnetic field is generated around the coil 41.
  • the fixed core 50, the plunger 60, the yoke 52, and the case 30 disposed so as to surround the coil 41 serve as a path through which magnetic flux flows when a magnetic field is generated around the coil 41, a so-called magnetic circuit.
  • steel materials with comparatively high magnetic permeability such as SUM23, MES3F, SUY, SS330, ELCH2, etc., are used, for example.
  • the plunger 60 when no current is supplied to the coil 41 of the solenoid actuator 20, the plunger 60 is biased in the direction of arrow A in FIG. At this time, the spool 12 comes into contact with a stopper portion provided on the valve sleeve 11, and the plunger 60 and the spool 12 are stopped at the initial position shown in FIG.
  • the fixed core 50 is excited by the magnetic field generated around the coil 41, and the plunger 60 is drawn toward the fixed core 50 in the axial direction. That is, the plunger 60 moves in the direction of arrow B in FIG.
  • the spool 12 connected to the plunger 60 via the shaft 61 also moves.
  • the spool 12 moves to a position where the magnetic attractive force acting on the plunger 60 and the urging force of the spring 62 acting on the plunger 60 are balanced.
  • the flow rate of the hydraulic oil that flows into the flow path through the valve sleeve 11 is adjusted.
  • the solenoid actuator 20 operates as a proportional solenoid actuator.
  • FIG. 3 is a diagram schematically showing the distribution state of magnetic flux when the extending portion 51 of the fixed core 50 and the main body portion 50a have the same magnetic characteristics as in the prior art, and FIG. Thus, it is the figure which showed roughly the distribution state of the magnetic flux in case the saturation magnetic flux density in the extension part 51 is set lower than the saturation magnetic flux density of the main-body part 50a.
  • the radial magnetic flux 65a flowing from the outer peripheral surface 60d of the plunger 60 toward the extending portion 51 and one of the plungers 60 are provided.
  • the axial magnetic flux 65b flowing from the end surface 60b toward the main body 50a is distributed at substantially equal intervals.
  • the saturation magnetic flux density in the extension part 51 is set lower than the saturation magnetic flux density of the main body part 50a, as shown in FIG. 4, it flows from the outer peripheral surface 60d of the plunger 60 toward the extension part 51.
  • the radial magnetic flux 65a is less than the axial magnetic flux 65b flowing from the one end surface 60b of the plunger 60 toward the main body 50a.
  • the main body part 50 a has a magnetic property that is less likely to be magnetically saturated than the extension part 51, so that the magnetic flux passing between the plunger 60 and the fixed core 50 is less than the extension part 51. It is because it becomes easy to flow toward.
  • the radial magnetic flux 65 a flowing from the outer peripheral surface 60 d of the plunger 60 toward the extending portion 51 is relatively small. For this reason, the force which acts on the plunger 60 in the radial direction is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. Therefore, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
  • the solenoid actuator 20 of the actuator device 1 according to the above embodiment has the following effects.
  • the saturation magnetic flux density in the extending part 51 is set lower than that of the main body part 50a. For this reason, the magnetic flux passing between the plunger 60 and the fixed core 50 becomes easier to flow toward the main body 50 a than the extension 51. As a result, the force acting in the radial direction on the plunger 60 is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. By reducing the frictional force, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
  • the extending part 51 is formed integrally with the main body part 50a.
  • the extending portion 51 may be formed of a member different from the main body portion 50a.
  • the extending part 51 is formed in an annular shape and is fitted and fixed to a step part 50d formed on the facing surface 50c of the main body part 50a.
  • the extension part 51 is formed with the steel material which is more easily magnetically saturated than the main-body part 50a, ie, the steel material with a low saturation magnetic flux density.
  • the main body 50a is formed of ELCH2
  • the extension 51 is formed of SUM 23 that is more easily magnetically saturated than ELCH2.
  • the extension part 51 should just be formed with the steel material which is more easily magnetically saturated than the main-body part 50a, for example, a main-body part 50a may be formed of ELCH2 that is magnetically annealed, and the extension 51 may be formed of ELCH2 that is not magnetically annealed.
  • the extending portion 51 is formed of a member different from the main body portion 50a as described above, steel materials having different saturation magnetic flux densities can be combined in various ways, so that desired solenoid characteristics can be realized.
  • the fixed core 50 can be easily formed as compared with the case where the portion excluding the extended portion 51 of the fixed core 50 in which the extended portion 51 and the main body portion 50a are integrally formed is magnetically annealed.
  • the material of the plunger 60, the yoke 52, and the case 30 constituting the magnetic circuit is not specified, but these are formed of a material having a saturation magnetic flux density higher than that of the extending portion 51. Is preferred.
  • the fixed core 50, the plunger 60, the yoke 52, and the case 30 are formed of the same magnetic material, and the portion other than the extension portion 51 of the fixed core 50 is magnetically annealed so that the magnetic saturation is less likely than the extension portion 51. You may make it become a magnetic characteristic.
  • steel materials other than SUM23, MES3F, SUY, SS330, and ELCH2 may be used as long as they have a relatively high magnetic permeability.
  • the shaft 61 is fixed to the plunger 60.
  • the shaft 61 may be inserted into the through hole 60a of the plunger 60 with play.
  • a retaining member such as a C-shaped ring is provided in the sliding hole 52 c of the yoke 52.
  • the solenoid actuator 20 includes a coil 41 that generates a magnetic force according to a supplied current, a fixed core 50 that is excited by the magnetic force of the coil 41, and a plunger 60 that is attracted to the excited fixed core 50 and moves in the axial direction.
  • the fixed core 50 includes a main body portion 50a that faces the plunger 60 in the axial direction, and an extension portion that protrudes from the outer edge side of the main body portion 50a toward the plunger 60 and surrounds the periphery of the end portion of the plunger 60. 51, and the saturation magnetic flux density in the extending part 51 is set lower than that of the main body part 50a.
  • the saturation magnetic flux density in the extending part 51 is set lower than that of the main body part 50a. That is, the extending part 51 has a magnetic characteristic that is more easily magnetically saturated than the main body part 50a. For this reason, the magnetic flux passing between the plunger 60 and the fixed core 50 becomes easier to flow toward the main body 50 a than the extension 51. As a result, the force acting in the radial direction on the plunger 60 is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. By reducing the frictional force, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
  • the fixed core 50 is magnetically annealed except for the extending portion 51.
  • the magnetic properties of the main body 50a are less likely to be magnetically saturated than the extending portion 51 by magnetically annealing the portion other than the extending portion 51. For this reason, the magnetic flux passing between the plunger 60 and the fixed core 50 becomes easier to flow toward the main body 50 a than the extension 51. As a result, the force acting in the radial direction on the plunger 60 is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. By reducing the frictional force, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
  • the extending part 51 is a separate member from the main body part 50a, and is formed of a material having a saturation magnetic flux density lower than that of the main body part 50a.
  • the extending portion 51 and the main body portion 50a are formed of different members, and the extending portion 51 is formed of a material that is more easily magnetically saturated than the main body portion 50a. Therefore, since steel materials having different saturation magnetic flux densities can be combined in various ways, desired solenoid characteristics can be realized.
  • the magnetic permeability in the extending part 51 is set lower than that of the main body part 50a.
  • the magnetic permeability in the extending part 51 is set lower than that of the main body part 50a. That is, the density of the magnetic flux flowing from the plunger 60 toward the extending part 51 is always lower than the density of the magnetic flux flowing from the plunger 60 toward the main body part 50a even if the strength of the magnetic field changes. As a result, the force acting in the radial direction on the plunger 60 is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. By reducing the frictional force, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
  • the solenoid actuator 20 is a so-called pull type that displaces the spool 12 toward the coil 41 by energizing the coil 41.
  • the solenoid actuator may be a so-called push type that displaces the spool 12 to the opposite side to the coil 41 by energizing the coil 41.
  • the solenoid actuator 20 drives the spool 12 connected to the plunger 60.
  • the solenoid actuators 20 and 21 may drive the poppet valve by the plunger 60.
  • the valve element driven by the plunger 60 may be any type of valve element as long as it adjusts the opening of the flow path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Abstract

A solenoid actuator (20) is provided with a coil (41) for generating magnetic force in accordance with a supplied current, a fixed core (50) that is excited by the magnetic force of the coil (41), and a plunger (60) that is attracted by the excited fixed core (50) and moved in the axial direction. The fixed core (50) has a body part (50a) facing the axial direction in relation to the plunger (60), and an extension part (51) that extends from the outer edge side of the body part (50a) toward the plunger (60) and surrounds the end of the plunger (60), the saturation magnetic flux density of the extension part (51) being set to be lower than that of the body part (50a).

Description

ソレノイドアクチュエータSolenoid actuator
 本発明は、ソレノイドアクチュエータに関するものである。 The present invention relates to a solenoid actuator.
 JP2004-218816Aには、供給される電流に応じて磁力を発生するコイルと、コイルの磁力によって励磁される固定鉄心と、励磁された固定鉄心の吸引力によって軸方向に移動する可動鉄心と、を備えたソレノイドアクチュエータが開示されている。 JP 2004-218816A includes a coil that generates a magnetic force according to a supplied current, a fixed iron core that is excited by the magnetic force of the coil, and a movable iron core that moves in the axial direction by the attractive force of the excited fixed iron core. A provided solenoid actuator is disclosed.
 このソレノイドアクチュエータの固定鉄心は、可動鉄心の端部を包囲する延出部を有し、可動鉄心の端部は、延出部によって形成された凹部内に収容される。 The fixed core of this solenoid actuator has an extending part surrounding the end of the movable core, and the end of the movable core is accommodated in a recess formed by the extending part.
 しかしながら、JP2004-218816Aに記載のソレノイドアクチュエータでは、固定鉄心の延出部と可動鉄心との間に生じる摩擦力により、可動鉄心の移動方向が変化する際にヒステリシスが発生するおそれがある。このような現象は、特に、可動鉄心と延出部との間を通過する磁束が増加し、延出部が可動鉄心を吸引する力、すなわち、可動鉄心に対して径方向に作用する力が大きくなることで顕著となる。 However, in the solenoid actuator described in JP2004-218816A, hysteresis may occur when the moving direction of the movable core changes due to the frictional force generated between the extension portion of the fixed core and the movable core. Such a phenomenon is caused in particular by the fact that the magnetic flux passing between the movable iron core and the extension portion increases, and the force that the extension portion attracts the movable iron core, that is, the force acting in the radial direction on the movable iron core. It becomes remarkable by becoming large.
 本発明は、ヒステリシスを抑制し、ソレノイドアクチュエータの制御性を向上させることを目的とする。 An object of the present invention is to suppress hysteresis and improve the controllability of a solenoid actuator.
 本発明のある態様によれば、ソレノイドアクチュエータは、供給される電流に応じて磁力を発生するコイルと、前記コイルの磁力によって励磁される固定鉄心と、励磁された前記固定鉄心に吸引され軸方向に移動する可動鉄心と、を備え、前記固定鉄心は、前記可動鉄心に対して前記軸方向に対向する本体部と、前記本体部の外縁側から前記可動鉄心に向かって延出し前記可動鉄心の端部の周囲を包囲する延出部と、を有し、前記延出部における飽和磁束密度は、前記本体部よりも低く設定される。 According to an aspect of the present invention, the solenoid actuator includes a coil that generates a magnetic force according to a supplied current, a fixed iron core that is excited by the magnetic force of the coil, and an axial direction that is attracted to the excited fixed iron core. A movable iron core that moves to the movable iron core, and the fixed iron core extends from the outer edge side of the main body portion toward the movable iron core. An extension part surrounding the periphery of the end part, and a saturation magnetic flux density in the extension part is set lower than that of the main body part.
図1は、本発明の実施形態に係るソレノイドアクチュエータを含むアクチュエータ装置の縦断面図である。FIG. 1 is a longitudinal sectional view of an actuator device including a solenoid actuator according to an embodiment of the present invention. 図2は、磁気回路を構成する部材の磁界の強さに対する磁束密度の変化を示すグラフ(B-H曲線)である。FIG. 2 is a graph (BH curve) showing the change in magnetic flux density with respect to the magnetic field strength of the members constituting the magnetic circuit. 図3は、可動鉄心と固定鉄心との間を通過する磁束の分布状態を示す図である。FIG. 3 is a diagram showing a distribution state of magnetic flux passing between the movable iron core and the fixed iron core. 図4は、可動鉄心と固定鉄心との間を通過する磁束の分布状態を示す図である。FIG. 4 is a diagram illustrating a distribution state of magnetic flux passing between the movable iron core and the fixed iron core. 図5は、本発明の実施形態に係るソレノイドアクチュエータの変形例を含むアクチュエータ装置の縦断面図である。FIG. 5 is a longitudinal sectional view of an actuator device including a modification of the solenoid actuator according to the embodiment of the present invention.
 以下、図1を参照して、本発明の実施形態に係るソレノイドアクチュエータ20を備えるアクチュエータ装置1について説明する。 Hereinafter, an actuator device 1 including a solenoid actuator 20 according to an embodiment of the present invention will be described with reference to FIG.
 図1に示すように、アクチュエータ装置1は、ソレノイドアクチュエータ20と、ソレノイドアクチュエータ20により駆動されるバルブ装置10と、を備える。 As shown in FIG. 1, the actuator device 1 includes a solenoid actuator 20 and a valve device 10 driven by the solenoid actuator 20.
 バルブ装置10は、作動油等の作動流体が流れる流路に設置されるスプール弁であり、円筒状のバルブスリーブ11と、バルブスリーブ11内に摺動自在に設けられるスプール12と、を有する。バルブスリーブ11の側面の開口部には図示しない流路がそれぞれ接続される。 The valve device 10 is a spool valve installed in a flow path through which a working fluid such as hydraulic oil flows, and includes a cylindrical valve sleeve 11 and a spool 12 slidably provided in the valve sleeve 11. A flow path (not shown) is connected to each side opening of the valve sleeve 11.
 バルブ装置10では、スプール12の位置に応じて各流路を連通する連通開度が変更されることにより、バルブ装置10を通じて流れる作動流体の流量が変化する。スプール12の位置は、ソレノイドアクチュエータ20によって制御される。 In the valve device 10, the flow rate of the working fluid flowing through the valve device 10 is changed by changing the communication opening degree that communicates each flow path according to the position of the spool 12. The position of the spool 12 is controlled by the solenoid actuator 20.
 ソレノイドアクチュエータ20は、ボビン40に巻き回されたコイル41と、ボビン40の内周側に嵌め込まれる固定鉄心としての固定コア50と、非磁性体53を介して固定コア50と接続されるヨーク52と、固定コア50とヨーク52とにより摺動自在に支持される可動鉄心としてのプランジャ60と、固定コア50とプランジャ60との間に圧縮された状態で介装されるスプリング62と、これらを収容するケース30と、を備える。 The solenoid actuator 20 includes a coil 41 wound around the bobbin 40, a fixed core 50 as a fixed iron core fitted on the inner peripheral side of the bobbin 40, and a yoke 52 connected to the fixed core 50 via a nonmagnetic material 53. A plunger 60 as a movable iron core slidably supported by the fixed core 50 and the yoke 52, a spring 62 interposed between the fixed core 50 and the plunger 60 in a compressed state, and A case 30 to be accommodated.
 プランジャ60は、軸心にシャフト61が挿通する貫通孔60aが形成された円筒状部材であり、磁性材によって形成される。プランジャ60は、固定コア50側に配置される一端面60bと、一端面60bとは反対側に設けられる他端面60cと、固定コア50とヨーク52とに摺接する外周面60dと、を有する。 The plunger 60 is a cylindrical member having a through hole 60a through which the shaft 61 is inserted in the shaft center, and is formed of a magnetic material. The plunger 60 has one end surface 60 b disposed on the fixed core 50 side, the other end surface 60 c provided on the opposite side of the one end surface 60 b, and an outer peripheral surface 60 d slidably contacting the fixed core 50 and the yoke 52.
 貫通孔60aを挿通するシャフト61は、ステンレス鋼等の非磁性材によって形成される棒状部材であり、シャフト61の外周面には、プランジャ60がかしめ固定される。シャフト61は、プランジャ60を軸方向に貫通しており、プランジャ60の両端面60b,60cからシャフト61の両端部が突出している。プランジャ60の一端面60b側から突出するシャフト61の端部には、貫通孔60aよりも外径が大きい鍔状のばね受け部61aが形成される。プランジャ60の他端面60c側から突出するシャフト61の端部は、図示しない結合手段によってバルブ装置10のスプール12に結合される。 The shaft 61 inserted through the through-hole 60a is a rod-shaped member formed of a nonmagnetic material such as stainless steel, and the plunger 60 is caulked and fixed to the outer peripheral surface of the shaft 61. The shaft 61 penetrates the plunger 60 in the axial direction, and both end portions of the shaft 61 protrude from both end surfaces 60 b and 60 c of the plunger 60. A hook-shaped spring receiving portion 61a having an outer diameter larger than that of the through hole 60a is formed at the end portion of the shaft 61 protruding from the one end surface 60b side of the plunger 60. The end portion of the shaft 61 protruding from the other end surface 60c side of the plunger 60 is coupled to the spool 12 of the valve device 10 by a coupling means (not shown).
 固定コア50は、磁性材によって形成される円柱状部材であり、プランジャ60に対して軸方向に対向する本体部50aと、本体部50aの外縁側からプランジャ60に向かって延出しプランジャ60の一端面60b側の端部の周囲を包囲する環状の延出部51と、本体部50aに形成されスプリング62が収容される収容穴50bと、を有する。プランジャ60の一端面60bに対向する本体部50aの対向面50cと、延出部51の内周面51aと、によって固定コア50の端部には凹部が形成され、この凹部内には、プランジャ60の一端面60b側の端部が摺動自在に収容される。 The fixed core 50 is a columnar member made of a magnetic material, and has a main body portion 50a that is opposed to the plunger 60 in the axial direction, and extends from the outer edge side of the main body portion 50a toward the plunger 60. It has an annular extending part 51 that surrounds the periphery of the end part on the end face 60b side, and an accommodation hole 50b that is formed in the main body part 50a and accommodates the spring 62. A concavity is formed at the end of the fixed core 50 by the facing surface 50c of the main body 50a facing the one end surface 60b of the plunger 60 and the inner peripheral surface 51a of the extending portion 51. The end portion on the one end surface 60b side of 60 is slidably accommodated.
 また、固定コア50は、延出部51を除く部分が磁気焼鈍されることにより、延出部51の磁気特性と本体部50aの磁気特性とが異なるように形成される。 Further, the fixed core 50 is formed so that the magnetic characteristics of the extending part 51 and the magnetic characteristics of the main body part 50a are different by magnetic annealing of the part other than the extending part 51.
 ここで、図2を参照し、延出部51と本体部50aとの磁気特性の違いについて説明する。図2に示されるグラフにおいて、実線は本体部50aの磁気飽和曲線(B-H曲線)を示しており、破線は延出部51の磁気飽和曲線(B-H曲線)を示している。 Here, with reference to FIG. 2, the difference in magnetic characteristics between the extension part 51 and the main body part 50a will be described. In the graph shown in FIG. 2, the solid line indicates the magnetic saturation curve (BH curve) of the main body 50a, and the broken line indicates the magnetic saturation curve (BH curve) of the extension 51.
 一般的に、磁性材を流れる磁束密度は磁界が強くなるのに伴って増加する。しかし、磁界がある程度の強さになると磁束密度の増加割合が減少し、磁性材の中で磁束密度が過密な状態となる。やがて、磁性材を流れる磁束密度は、磁界の強さに関わらずほぼ一定の磁束密度、いわゆる飽和磁束密度となる。 Generally, the magnetic flux density flowing through the magnetic material increases as the magnetic field becomes stronger. However, when the magnetic field becomes a certain strength, the rate of increase of the magnetic flux density decreases, and the magnetic flux density is in an overcrowded state in the magnetic material. Eventually, the magnetic flux density flowing through the magnetic material becomes a substantially constant magnetic flux density, so-called saturation magnetic flux density, regardless of the strength of the magnetic field.
 図2に示されるように、磁気焼鈍されていない延出部51における飽和磁束密度は、磁気焼鈍された本体部50aの飽和磁束密度よりも低くなる。また、磁界の強さに対する磁束密度の変化率を示す透磁率は、磁気焼鈍された本体部50aよりも磁気焼鈍されていない延出部51の方が常に小さくなる。つまり、延出部51は、本体部50aよりも磁気飽和し易い磁気特性を有している。このように延出部51の磁気特性と本体部50aの磁気特性とを異ならせることによる作用効果については後述する。 As shown in FIG. 2, the saturation magnetic flux density in the extension part 51 that has not been magnetically annealed is lower than the saturation magnetic flux density of the magnetically annealed main body part 50a. Further, the magnetic permeability indicating the change rate of the magnetic flux density with respect to the strength of the magnetic field is always smaller in the extension part 51 that is not magnetically annealed than in the main body part 50a that is magnetically annealed. That is, the extending part 51 has a magnetic characteristic that is more easily magnetically saturated than the main body part 50a. Thus, the effect by making the magnetic characteristic of the extension part 51 different from the magnetic characteristic of the main body part 50a will be described later.
 ヨーク52は、磁性材によって形成される部材であり、ボビン40の内周側に挿入される筒部52aと、筒部52aの端部から径方向外側に突出して形成されるフランジ部52bと、筒部52aからフランジ部52bに渡って貫通して形成される摺動孔52cと、を有する。ヨーク52の摺動孔52cによってプランジャ60の他端面60c側の端部が摺動自在に支持される。 The yoke 52 is a member formed of a magnetic material, a cylindrical portion 52a inserted on the inner peripheral side of the bobbin 40, a flange portion 52b formed to protrude radially outward from an end portion of the cylindrical portion 52a, And a sliding hole 52c formed penetrating from the cylindrical portion 52a to the flange portion 52b. The end of the plunger 60 on the other end surface 60 c side is slidably supported by the sliding hole 52 c of the yoke 52.
 固定コア50とヨーク52とは、非磁性材によって形成される円筒状の非磁性体53によって軸方向に連結される。このため、ヨーク52と固定コア50とは軸方向に離間した状態となる。なお、非磁性体53は、アルミ等の透磁率が低い材料で形成されてもよいし、ヨーク52と固定コア50との間に形成される空間であってもよい。 The fixed core 50 and the yoke 52 are connected in the axial direction by a cylindrical nonmagnetic material 53 formed of a nonmagnetic material. For this reason, the yoke 52 and the fixed core 50 are in a state of being separated in the axial direction. The nonmagnetic material 53 may be formed of a material having a low magnetic permeability such as aluminum, or may be a space formed between the yoke 52 and the fixed core 50.
 プランジャ60によって仕切られる固定コア50側の空間とヨーク52側の空間とは、プランジャ60の外周面60dに軸方向に沿って形成された複数の連通溝60eによって常時連通される。このため、各空間内の作動流体はプランジャ60の移動に応じて連通溝60eを通じて移動可能である。したがって、プランジャ60の移動が作動流体によって妨げられることはない。 The space on the fixed core 50 side partitioned by the plunger 60 and the space on the yoke 52 side are always communicated by a plurality of communication grooves 60e formed in the outer peripheral surface 60d of the plunger 60 along the axial direction. For this reason, the working fluid in each space can move through the communication groove 60e according to the movement of the plunger 60. Therefore, the movement of the plunger 60 is not hindered by the working fluid.
 スプリング62は、コイル41への通電時にプランジャ60に作用する吸引力とは反対の方向にプランジャ60を付勢するコイルスプリングである。スプリング62の一端は、シャフト61のばね受け部61aに係止され、スプリング62の他端は、固定コア50の収容穴50b内に収容され係止される。 The spring 62 is a coil spring that biases the plunger 60 in a direction opposite to the attractive force acting on the plunger 60 when the coil 41 is energized. One end of the spring 62 is locked to the spring receiving portion 61 a of the shaft 61, and the other end of the spring 62 is received and locked in the receiving hole 50 b of the fixed core 50.
 ケース30は、磁性材によって形成される有底円筒状部材であり、ソレノイドアクチュエータ20を構成する各部材を収容する。ケース30の開口端は、ボビン40とバルブスリーブ11との間にヨーク52のフランジ部52bを挟み込んだ状態で、バルブスリーブ11の一端をかしめ固定するかしめ部として構成される。 The case 30 is a bottomed cylindrical member formed of a magnetic material and accommodates each member constituting the solenoid actuator 20. The open end of the case 30 is configured as a caulking portion for caulking and fixing one end of the valve sleeve 11 with the flange portion 52 b of the yoke 52 sandwiched between the bobbin 40 and the valve sleeve 11.
 ボビン40は、両端に鍔部を有する円筒状部材であり、電気絶縁性を有する樹脂によって形成される。鍔部の間のボビン胴体部の外周面に巻き回された導電性線材がコイル41を構成する。ボビン40の一方の鍔部には、コイル41に電気的に接続される端子42が設けられる。 The bobbin 40 is a cylindrical member having flanges at both ends, and is formed of a resin having electrical insulation. A conductive wire wound around the outer peripheral surface of the bobbin body between the flanges constitutes the coil 41. A terminal 42 that is electrically connected to the coil 41 is provided on one flange of the bobbin 40.
 端子42の一端は、ボビン40がケース30内に配置された状態で、ケース30の切欠部を通じて外部に突出する。端子42を介してコイル41に電流が供給されることで、コイル41の周囲に磁界が発生する。また、コイル41を取り囲むように配置された固定コア50,プランジャ60,ヨーク52,及びケース30は、コイル41の周囲に磁界が発生した際に磁束が流れる通路、いわゆる磁気回路となる。なお、磁気回路を構成するこれらの部材を形成する磁性材としては、例えば、SUM23やMES3F,SUY,SS330,ELCH2等の比較的透磁率が高い鋼材が用いられる。 One end of the terminal 42 protrudes to the outside through a notch portion of the case 30 with the bobbin 40 disposed in the case 30. When a current is supplied to the coil 41 via the terminal 42, a magnetic field is generated around the coil 41. The fixed core 50, the plunger 60, the yoke 52, and the case 30 disposed so as to surround the coil 41 serve as a path through which magnetic flux flows when a magnetic field is generated around the coil 41, a so-called magnetic circuit. In addition, as a magnetic material which forms these members which comprise a magnetic circuit, steel materials with comparatively high magnetic permeability, such as SUM23, MES3F, SUY, SS330, ELCH2, etc., are used, for example.
 次に、上記構成のアクチュエータ装置1の作動について説明する。 Next, the operation of the actuator device 1 configured as described above will be described.
 アクチュエータ装置1では、ソレノイドアクチュエータ20のコイル41に電流が通電されていない場合、プランジャ60は、スプリング62によって図1の矢印Aの方向へ付勢される。この時、スプール12はバルブスリーブ11に設けられたストッパ部に当接し、プランジャ60とスプール12とは、図1に示される初期位置で停止した状態となる。 In the actuator device 1, when no current is supplied to the coil 41 of the solenoid actuator 20, the plunger 60 is biased in the direction of arrow A in FIG. At this time, the spool 12 comes into contact with a stopper portion provided on the valve sleeve 11, and the plunger 60 and the spool 12 are stopped at the initial position shown in FIG.
 ソレノイドアクチュエータ20のコイル41に所定以上の電流が供給されると、コイル41の周囲に発生した磁界によって固定コア50が励磁され、プランジャ60は固定コア50に向けて軸方向に引き寄せられる。つまり、プランジャ60は、図1の矢印Bの方向へと移動する。プランジャ60の移動に伴って、シャフト61を介してプランジャ60と連結されるスプール12も移動する。スプール12は、プランジャ60に作用する磁気吸引力と、プランジャ60に作用するスプリング62の付勢力と、が釣り合う位置に至るまで移動する。スプール12が移動することで、バルブスリーブ11を通過して流路に流れ込む作動油の流量が調整される。 When a current exceeding a predetermined value is supplied to the coil 41 of the solenoid actuator 20, the fixed core 50 is excited by the magnetic field generated around the coil 41, and the plunger 60 is drawn toward the fixed core 50 in the axial direction. That is, the plunger 60 moves in the direction of arrow B in FIG. As the plunger 60 moves, the spool 12 connected to the plunger 60 via the shaft 61 also moves. The spool 12 moves to a position where the magnetic attractive force acting on the plunger 60 and the urging force of the spring 62 acting on the plunger 60 are balanced. As the spool 12 moves, the flow rate of the hydraulic oil that flows into the flow path through the valve sleeve 11 is adjusted.
 プランジャ60に作用する磁気吸引力は、コイル41に供給される電流の大きさに応じて変化するため、コイル41に供給される電流値を変更することによって、スプール12のストローク量、すなわち、バルブスリーブ11を通じて流路に流れ込む作動油の流量を任意に制御することができる。このようにソレノイドアクチュエータ20は、比例ソレノイドアクチュエータとして作動する。 Since the magnetic attractive force acting on the plunger 60 changes according to the magnitude of the current supplied to the coil 41, the stroke amount of the spool 12, that is, the valve is changed by changing the current value supplied to the coil 41. The flow rate of the hydraulic oil flowing into the flow path through the sleeve 11 can be arbitrarily controlled. Thus, the solenoid actuator 20 operates as a proportional solenoid actuator.
 続いて、図3及び図4を参照し、コイル41に電流が供給されたときにプランジャ60と固定コア50との間を通過する磁束と磁束の影響について説明する。図3は、従来のように、固定コア50の延出部51と本体部50aとが同じ磁気特性である場合の磁束の分布状態を概略的に示した図であり、図4は、上述のように、延出部51における飽和磁束密度が、本体部50aの飽和磁束密度よりも低く設定される場合の磁束の分布状態を概略的に示した図である。 Subsequently, with reference to FIGS. 3 and 4, the magnetic flux passing between the plunger 60 and the fixed core 50 when the current is supplied to the coil 41 and the influence of the magnetic flux will be described. FIG. 3 is a diagram schematically showing the distribution state of magnetic flux when the extending portion 51 of the fixed core 50 and the main body portion 50a have the same magnetic characteristics as in the prior art, and FIG. Thus, it is the figure which showed roughly the distribution state of the magnetic flux in case the saturation magnetic flux density in the extension part 51 is set lower than the saturation magnetic flux density of the main-body part 50a.
 延出部51と本体部50aとが同じ磁気特性である場合、図3に示されるように、プランジャ60の外周面60dから延出部51に向かって流れる径方向磁束65aと、プランジャ60の一端面60bから本体部50aに向かって流れる軸方向磁束65bと、は、ほぼ均等な間隔で分布することとなる。 When the extending portion 51 and the main body portion 50a have the same magnetic characteristics, as shown in FIG. 3, the radial magnetic flux 65a flowing from the outer peripheral surface 60d of the plunger 60 toward the extending portion 51 and one of the plungers 60 are provided. The axial magnetic flux 65b flowing from the end surface 60b toward the main body 50a is distributed at substantially equal intervals.
 一方、延出部51における飽和磁束密度が、本体部50aの飽和磁束密度よりも低く設定される場合、図4に示されるように、プランジャ60の外周面60dから延出部51に向かって流れる径方向磁束65aは、プランジャ60の一端面60bから本体部50aに向かって流れる軸方向磁束65bよりも少なくなる。これは、本体部50aの方が延出部51よりも磁気飽和しにくい磁気特性を有することで、プランジャ60と固定コア50との間を通過する磁束は、延出部51よりも本体部50aに向かって流れ易くなるためである。 On the other hand, when the saturation magnetic flux density in the extension part 51 is set lower than the saturation magnetic flux density of the main body part 50a, as shown in FIG. 4, it flows from the outer peripheral surface 60d of the plunger 60 toward the extension part 51. The radial magnetic flux 65a is less than the axial magnetic flux 65b flowing from the one end surface 60b of the plunger 60 toward the main body 50a. This is because the main body part 50 a has a magnetic property that is less likely to be magnetically saturated than the extension part 51, so that the magnetic flux passing between the plunger 60 and the fixed core 50 is less than the extension part 51. It is because it becomes easy to flow toward.
 ここで、図3に示されるように、プランジャ60の外周面60dから延出部51に向かって流れる径方向磁束65aが比較的多いと、延出部51がプランジャ60を吸引する力、すなわち、プランジャ60に対して径方向に作用する力が大きくなる。このようにプランジャ60に作用する径方向の力が大きいと、プランジャ60が延出部51に対して押し付けられた状態となり、延出部51とプランジャ60との間に生じる摩擦力が大きくなる。したがって、プランジャ60の移動方向が変化する際にヒステリシスが発生するおそれがある。 Here, as shown in FIG. 3, when the radial magnetic flux 65a flowing from the outer peripheral surface 60d of the plunger 60 toward the extending portion 51 is relatively large, the force that the extending portion 51 attracts the plunger 60, that is, The force acting in the radial direction on the plunger 60 is increased. When the radial force acting on the plunger 60 is large as described above, the plunger 60 is pressed against the extending portion 51, and the frictional force generated between the extending portion 51 and the plunger 60 increases. Therefore, hysteresis may occur when the moving direction of the plunger 60 changes.
 これに対して、本実施形態では、図4に示されるように、プランジャ60の外周面60dから延出部51に向かって流れる径方向磁束65aが比較的少なくなる。このため、プランジャ60に対して径方向に作用する力が低減され、延出部51とプランジャ60との間に生じる摩擦力も小さくなる。したがって、プランジャ60の移動方向が変化する際にヒステリシスが発生することが抑制され、結果として、ソレノイドアクチュエータ20の制御性を向上させることが可能となる。 On the other hand, in this embodiment, as shown in FIG. 4, the radial magnetic flux 65 a flowing from the outer peripheral surface 60 d of the plunger 60 toward the extending portion 51 is relatively small. For this reason, the force which acts on the plunger 60 in the radial direction is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. Therefore, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
 上記実施形態に係るアクチュエータ装置1のソレノイドアクチュエータ20によれば、以下に示す効果を奏する。 The solenoid actuator 20 of the actuator device 1 according to the above embodiment has the following effects.
 ソレノイドアクチュエータ20では、延出部51における飽和磁束密度が、本体部50aよりも低く設定される。このため、プランジャ60と固定コア50との間を通過する磁束は、延出部51よりも本体部50aに向かって流れ易くなる。この結果、プランジャ60に対して径方向に作用する力が低減され、延出部51とプランジャ60との間に生じる摩擦力も小さくなる。摩擦力が小さくなることで、プランジャ60の移動方向が変化する際にヒステリシスが発生することが抑制され、結果として、ソレノイドアクチュエータ20の制御性を向上させることが可能となる。 In the solenoid actuator 20, the saturation magnetic flux density in the extending part 51 is set lower than that of the main body part 50a. For this reason, the magnetic flux passing between the plunger 60 and the fixed core 50 becomes easier to flow toward the main body 50 a than the extension 51. As a result, the force acting in the radial direction on the plunger 60 is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. By reducing the frictional force, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
 次に、上記実施形態に係るソレノイドアクチュエータ20の変形例について説明する。 Next, a modification of the solenoid actuator 20 according to the above embodiment will be described.
 上記ソレノイドアクチュエータ20では、延出部51は本体部50aと一体的に形成される。これに代えて、図5に示すように、延出部51を本体部50aとは別の部材で形成してもよい。 In the solenoid actuator 20, the extending part 51 is formed integrally with the main body part 50a. Instead of this, as shown in FIG. 5, the extending portion 51 may be formed of a member different from the main body portion 50a.
 この変形例では、延出部51は、円環状に形成され、本体部50aの対向面50cに形成された段部50dに嵌合固定される。そして、延出部51は、本体部50aよりも磁気飽和し易い鋼材、すなわち、飽和磁束密度が低い鋼材で形成される。具体的には、本体部50aをELCH2により形成し、延出部51をELCH2より磁気飽和し易いSUM23により形成する。なお、本体部50aと延出部51の材料の組み合わせとしては、これに限定されず、延出部51が本体部50aよりも磁気飽和し易い鋼材で形成されていればよく、例えば、本体部50aを磁気焼鈍されたELCH2により形成し、延出部51を磁気焼鈍されていないELCH2より形成してもよい。 In this modification, the extending part 51 is formed in an annular shape and is fitted and fixed to a step part 50d formed on the facing surface 50c of the main body part 50a. And the extension part 51 is formed with the steel material which is more easily magnetically saturated than the main-body part 50a, ie, the steel material with a low saturation magnetic flux density. Specifically, the main body 50a is formed of ELCH2, and the extension 51 is formed of SUM 23 that is more easily magnetically saturated than ELCH2. In addition, as a combination of the material of the main-body part 50a and the extension part 51, it is not limited to this, The extension part 51 should just be formed with the steel material which is more easily magnetically saturated than the main-body part 50a, for example, a main-body part 50a may be formed of ELCH2 that is magnetically annealed, and the extension 51 may be formed of ELCH2 that is not magnetically annealed.
 このように延出部51を本体部50aとは別の部材で形成することで、飽和磁束密度が異なる鋼材を様々に組み合わせることができるため、所望のソレノイド特性を実現することが可能となる。また、延出部51と本体部50aとが一体的に形成された固定コア50の延出部51を除く部分を磁気焼鈍する場合と比較し、固定コア50を容易に形成することができる。 Since the extending portion 51 is formed of a member different from the main body portion 50a as described above, steel materials having different saturation magnetic flux densities can be combined in various ways, so that desired solenoid characteristics can be realized. In addition, the fixed core 50 can be easily formed as compared with the case where the portion excluding the extended portion 51 of the fixed core 50 in which the extended portion 51 and the main body portion 50a are integrally formed is magnetically annealed.
 また、上記ソレノイドアクチュエータ20では、磁気回路を構成するプランジャ60,ヨーク52,及びケース30の材料は特定されていないが、これらは延出部51よりも飽和磁束密度が高い材料で形成されることが好ましい。例えば、固定コア50,プランジャ60,ヨーク52,及びケース30を同じ磁性材で形成し、固定コア50の延出部51を除く部分を磁気焼鈍することで延出部51よりも磁気飽和しにくい磁気特性となるようにしてもよい。固定コア50,プランジャ60,ヨーク52,及びケース30の材料としては、比較的透磁率が高い鋼材であれば、SUM23やMES3F,SUY,SS330,ELCH2以外の鋼材が用いられてもよい。 In the solenoid actuator 20, the material of the plunger 60, the yoke 52, and the case 30 constituting the magnetic circuit is not specified, but these are formed of a material having a saturation magnetic flux density higher than that of the extending portion 51. Is preferred. For example, the fixed core 50, the plunger 60, the yoke 52, and the case 30 are formed of the same magnetic material, and the portion other than the extension portion 51 of the fixed core 50 is magnetically annealed so that the magnetic saturation is less likely than the extension portion 51. You may make it become a magnetic characteristic. As materials for the fixed core 50, the plunger 60, the yoke 52, and the case 30, steel materials other than SUM23, MES3F, SUY, SS330, and ELCH2 may be used as long as they have a relatively high magnetic permeability.
 また、上記ソレノイドアクチュエータ20では、シャフト61はプランジャ60に固定されている。これに代えて、シャフト61はプランジャ60の貫通孔60aに遊びを持って挿入されてもよい。この場合、プランジャ60がヨーク52から抜け出ることを防止するために、ヨーク52の摺動孔52cにC字状リング等の抜止部材が設けられる。 In the solenoid actuator 20, the shaft 61 is fixed to the plunger 60. Alternatively, the shaft 61 may be inserted into the through hole 60a of the plunger 60 with play. In this case, in order to prevent the plunger 60 from coming out of the yoke 52, a retaining member such as a C-shaped ring is provided in the sliding hole 52 c of the yoke 52.
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 Hereinafter, the configuration, operation, and effect of the embodiment of the present invention will be described together.
 ソレノイドアクチュエータ20は、供給される電流に応じて磁力を発生するコイル41と、コイル41の磁力によって励磁される固定コア50と、励磁された固定コア50に吸引され軸方向に移動するプランジャ60と、を備え、固定コア50は、プランジャ60に対して軸方向に対向する本体部50aと、本体部50aの外縁側からプランジャ60に向かって突出しプランジャ60の端部の周囲を包囲する延出部51と、を有し、延出部51における飽和磁束密度は、本体部50aよりも低く設定される。 The solenoid actuator 20 includes a coil 41 that generates a magnetic force according to a supplied current, a fixed core 50 that is excited by the magnetic force of the coil 41, and a plunger 60 that is attracted to the excited fixed core 50 and moves in the axial direction. The fixed core 50 includes a main body portion 50a that faces the plunger 60 in the axial direction, and an extension portion that protrudes from the outer edge side of the main body portion 50a toward the plunger 60 and surrounds the periphery of the end portion of the plunger 60. 51, and the saturation magnetic flux density in the extending part 51 is set lower than that of the main body part 50a.
 この構成では、延出部51における飽和磁束密度が、本体部50aよりも低く設定される。つまり、延出部51は、本体部50aよりも磁気飽和し易い磁気特性を有する。このため、プランジャ60と固定コア50との間を通過する磁束は、延出部51よりも本体部50aに向かって流れ易くなる。この結果、プランジャ60に対して径方向に作用する力が低減され、延出部51とプランジャ60との間に生じる摩擦力も小さくなる。摩擦力が小さくなることで、プランジャ60の移動方向が変化する際にヒステリシスが発生することが抑制され、結果として、ソレノイドアクチュエータ20の制御性を向上させることが可能となる。 In this configuration, the saturation magnetic flux density in the extending part 51 is set lower than that of the main body part 50a. That is, the extending part 51 has a magnetic characteristic that is more easily magnetically saturated than the main body part 50a. For this reason, the magnetic flux passing between the plunger 60 and the fixed core 50 becomes easier to flow toward the main body 50 a than the extension 51. As a result, the force acting in the radial direction on the plunger 60 is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. By reducing the frictional force, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
 また、固定コア50は、延出部51を除く部分が磁気焼鈍される。 Further, the fixed core 50 is magnetically annealed except for the extending portion 51.
 この構成では、延出部51を除く部分が磁気焼鈍されることにより、本体部50aの磁気特性は延出部51よりも磁気飽和しにくい特性となる。このため、プランジャ60と固定コア50との間を通過する磁束は、延出部51よりも本体部50aに向かって流れ易くなる。この結果、プランジャ60に対して径方向に作用する力が低減され、延出部51とプランジャ60との間に生じる摩擦力も小さくなる。摩擦力が小さくなることで、プランジャ60の移動方向が変化する際にヒステリシスが発生することが抑制され、結果として、ソレノイドアクチュエータ20の制御性を向上させることが可能となる。 In this configuration, the magnetic properties of the main body 50a are less likely to be magnetically saturated than the extending portion 51 by magnetically annealing the portion other than the extending portion 51. For this reason, the magnetic flux passing between the plunger 60 and the fixed core 50 becomes easier to flow toward the main body 50 a than the extension 51. As a result, the force acting in the radial direction on the plunger 60 is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. By reducing the frictional force, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
 また、延出部51は、本体部50aとは別部材であって、本体部50aよりも飽和磁束密度が低い材料により形成される。 Further, the extending part 51 is a separate member from the main body part 50a, and is formed of a material having a saturation magnetic flux density lower than that of the main body part 50a.
 この構成では、延出部51と本体部50aとは別の部材で形成され、延出部51は、本体部50aよりも磁気飽和し易い材料によって形成される。したがって、飽和磁束密度が異なる鋼材を様々に組み合わせることができるため、所望のソレノイド特性を実現することが可能となる。 In this configuration, the extending portion 51 and the main body portion 50a are formed of different members, and the extending portion 51 is formed of a material that is more easily magnetically saturated than the main body portion 50a. Therefore, since steel materials having different saturation magnetic flux densities can be combined in various ways, desired solenoid characteristics can be realized.
 また、延出部51における透磁率は、本体部50aよりも低く設定される。 Moreover, the magnetic permeability in the extending part 51 is set lower than that of the main body part 50a.
 この構成では、延出部51における透磁率が、本体部50aよりも低く設定される。つまり、プランジャ60から延出部51に向かって流れる磁束の密度は、磁界の強さが変化しても常にプランジャ60から本体部50aに向かって流れる磁束の密度よりも低い状態となる。この結果、プランジャ60に対して径方向に作用する力が低減され、延出部51とプランジャ60との間に生じる摩擦力も小さくなる。摩擦力が小さくなることで、プランジャ60の移動方向が変化する際にヒステリシスが発生することが抑制され、結果として、ソレノイドアクチュエータ20の制御性を向上させることが可能となる。 In this configuration, the magnetic permeability in the extending part 51 is set lower than that of the main body part 50a. That is, the density of the magnetic flux flowing from the plunger 60 toward the extending part 51 is always lower than the density of the magnetic flux flowing from the plunger 60 toward the main body part 50a even if the strength of the magnetic field changes. As a result, the force acting in the radial direction on the plunger 60 is reduced, and the frictional force generated between the extending portion 51 and the plunger 60 is also reduced. By reducing the frictional force, the occurrence of hysteresis when the moving direction of the plunger 60 changes is suppressed, and as a result, the controllability of the solenoid actuator 20 can be improved.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 例えば、ソレノイドアクチュエータ20は、コイル41に通電することで、スプール12をコイル41側に変位させるいわゆるプル式である。これに代えて、ソレノイドアクチュエータは、コイル41に通電することで、スプール12をコイル41とは反対側に変位させるいわゆるプッシュ式であってもよい。 For example, the solenoid actuator 20 is a so-called pull type that displaces the spool 12 toward the coil 41 by energizing the coil 41. Instead of this, the solenoid actuator may be a so-called push type that displaces the spool 12 to the opposite side to the coil 41 by energizing the coil 41.
 また、ソレノイドアクチュエータ20は、プランジャ60に連結されたスプール12を駆動するものである。これに代えて、ソレノイドアクチュエータ20,21は、プランジャ60によりポペット弁を駆動させるものであってもよい。なお、プランジャ60により駆動される弁体としては、流路の開度を調整するものであれば、どのような形式の弁体であってもよい。 Further, the solenoid actuator 20 drives the spool 12 connected to the plunger 60. Instead of this, the solenoid actuators 20 and 21 may drive the poppet valve by the plunger 60. The valve element driven by the plunger 60 may be any type of valve element as long as it adjusts the opening of the flow path.
 本願は2016年8月10日に日本国特許庁に出願された特願2016-157952に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-155792 filed with the Japan Patent Office on August 10, 2016, the entire contents of which are incorporated herein by reference.

Claims (4)

  1.  ソレノイドアクチュエータであって、
     供給される電流に応じて磁力を発生するコイルと、
     前記コイルの磁力によって励磁される固定鉄心と、
     励磁された前記固定鉄心に吸引され軸方向に移動する可動鉄心と、を備え、
     前記固定鉄心は、前記可動鉄心に対して前記軸方向に対向する本体部と、前記本体部の外縁側から前記可動鉄心に向かって延出し前記可動鉄心の端部の周囲を包囲する延出部と、を有し、
     前記延出部における飽和磁束密度は、前記本体部よりも低く設定されるソレノイドアクチュエータ。
    A solenoid actuator,
    A coil that generates a magnetic force according to the supplied current;
    A fixed iron core excited by the magnetic force of the coil;
    A movable iron core that is attracted to the magnetized fixed iron core and moves in the axial direction;
    The fixed iron core includes a main body that faces the movable iron core in the axial direction, and an extending portion that extends from an outer edge side of the main body toward the movable iron core and surrounds the periphery of the end of the movable iron core. And having
    A solenoid actuator in which a saturation magnetic flux density in the extension portion is set lower than that of the main body portion.
  2.  請求項1に記載のソレノイドアクチュエータであって、
     前記固定鉄心は、前記延出部を除く部分が磁気焼鈍されるソレノイドアクチュエータ。
    The solenoid actuator according to claim 1,
    The fixed iron core is a solenoid actuator in which a portion excluding the extending portion is magnetically annealed.
  3.  請求項1に記載のソレノイドアクチュエータであって、
     前記延出部は、前記本体部とは別部材であって、前記本体部よりも飽和磁束密度が低い材料により形成されるソレノイドアクチュエータ。
    The solenoid actuator according to claim 1,
    The extension portion is a solenoid actuator formed of a material different from the main body portion and having a saturation magnetic flux density lower than that of the main body portion.
  4.  請求項1に記載のソレノイドアクチュエータであって、
     前記延出部における透磁率は、前記本体部よりも低く設定されるソレノイドアクチュエータ。
    The solenoid actuator according to claim 1,
    The solenoid actuator in which the magnetic permeability in the extension part is set lower than that of the main body part.
PCT/JP2017/025135 2016-08-10 2017-07-10 Solenoid actuator WO2018030053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-157952 2016-08-10
JP2016157952A JP6379142B2 (en) 2016-08-10 2016-08-10 Solenoid actuator

Publications (1)

Publication Number Publication Date
WO2018030053A1 true WO2018030053A1 (en) 2018-02-15

Family

ID=61162153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025135 WO2018030053A1 (en) 2016-08-10 2017-07-10 Solenoid actuator

Country Status (2)

Country Link
JP (1) JP6379142B2 (en)
WO (1) WO2018030053A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027839A (en) * 2018-08-10 2020-02-20 新電元メカトロニクス株式会社 solenoid
JP7113782B2 (en) * 2019-04-18 2022-08-05 株式会社Soken Solenoid device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856414U (en) * 1981-10-09 1983-04-16 株式会社広業社通信機器製作所 solenoid
JPH07183123A (en) * 1993-12-24 1995-07-21 Nissan Motor Co Ltd Solenoid device
JP2009174651A (en) * 2008-01-25 2009-08-06 Nippon Soken Inc Solenoid valve and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856414U (en) * 1981-10-09 1983-04-16 株式会社広業社通信機器製作所 solenoid
JPH07183123A (en) * 1993-12-24 1995-07-21 Nissan Motor Co Ltd Solenoid device
JP2009174651A (en) * 2008-01-25 2009-08-06 Nippon Soken Inc Solenoid valve and its manufacturing method

Also Published As

Publication number Publication date
JP6379142B2 (en) 2018-08-22
JP2018026474A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
KR101900587B1 (en) Solenoid robust against misalignment of pole piece and flux sleeve
US8143984B2 (en) Linear solenoid
JP2009036328A (en) Linear solenoid
US8141842B2 (en) Solenoid valve
WO2016129261A1 (en) Linear solenoid
US20180315533A1 (en) Electromagnetic actuator
CA2922819C (en) Control solenoid with improved magnetic circuit
KR102450682B1 (en) solenoid
WO2018030053A1 (en) Solenoid actuator
JP5494681B2 (en) solenoid valve
JP6276942B2 (en) Solenoid actuator
EP3039691B1 (en) Control solenoid with improved magnetic circuit
US20050178451A1 (en) Solenoid valve
JP2006140246A (en) Actuator
JP2010025217A (en) Solenoid valve
JP2009019742A (en) Bleed type valve device
JP6163337B2 (en) Solenoid actuator
JP6736330B2 (en) Solenoid valve cartridge assembly, solenoid valve solenoid and solenoid valve
JP2019110747A (en) Latch prevention damping shim for electromagnetic actuator
WO2017110814A1 (en) Solenoid actuator
JP2019114412A (en) Electromagnetic relay
JP2009281469A (en) Linear solenoid
JP2009228801A (en) Solenoid valve
JP4775356B2 (en) Linear solenoid
JP5659032B2 (en) Electromagnetic drive unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839127

Country of ref document: EP

Kind code of ref document: A1