WO2018029805A1 - Air conditioner indoor unit - Google Patents

Air conditioner indoor unit Download PDF

Info

Publication number
WO2018029805A1
WO2018029805A1 PCT/JP2016/073572 JP2016073572W WO2018029805A1 WO 2018029805 A1 WO2018029805 A1 WO 2018029805A1 JP 2016073572 W JP2016073572 W JP 2016073572W WO 2018029805 A1 WO2018029805 A1 WO 2018029805A1
Authority
WO
WIPO (PCT)
Prior art keywords
human body
air
indoor unit
unit
detected
Prior art date
Application number
PCT/JP2016/073572
Other languages
French (fr)
Japanese (ja)
Inventor
薦正 田辺
弘志 ▲廣▼▲崎▼
淳一 岡崎
元志 手塚
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/073572 priority Critical patent/WO2018029805A1/en
Priority to JP2018533359A priority patent/JP6625222B2/en
Publication of WO2018029805A1 publication Critical patent/WO2018029805A1/en

Links

Images

Definitions

  • the present invention relates to an indoor unit of an air conditioner that performs indoor air conditioning.
  • an indoor unit of an air conditioner that detects a human body existing indoors using an infrared sensor has been proposed and put into practical use (see, for example, Patent Document 1).
  • the position of the human body in the room is specified by an infrared sensor, and the airflow is delivered toward the human body by adjusting the vertical and horizontal wind directions.
  • the human body in the room has the characteristic of “height”. For this reason, if the wind direction is determined only by the detected position of the human body, the strength of the wind against the human body and the position of the wind may not be as intended.
  • the airflow generated by the air sent from the indoor unit during heating generally has the property of spreading in the vertical direction near the floor surface. Therefore, even if the vertical wind direction is set so as to warm the detected feet of a specific human body, if the human body is short, such as a child, the wind may directly hit the face. In such a case, an unpleasant state such as feeling of cold wind and dry skin caused by strong winds is caused.
  • the airflow generated by the air sent from the indoor unit during cooling generally has the property that the cold air is lowered.
  • the airflow of the wind sent out from the blower outlet of the indoor unit diffuses little by little. Therefore, even if the vertical wind direction is set so that airflow is sent over the head of the detected specific human body in consideration of such a decrease in cold air, if the human body is short, such as a child, Cannot reach the human body and cannot be cooled effectively. Therefore, the user is forced to perform a non-energy-saving operation such as lowering the set temperature.
  • the present invention has been made in view of the above-described problems in the prior art, and provides an indoor unit for an air conditioner that can appropriately perform air conditioning in accordance with the characteristics of a human body existing in the room. Objective.
  • An indoor unit of an air conditioner is an indoor unit of an air conditioner in which a suction port and an air outlet are formed, and conditioned air based on the air sucked from the air inlet is sent out from the air outlet,
  • a wind direction plate that is provided at the air outlet and adjusts the delivery direction of the conditioned air
  • a blower that generates an air flow from the air inlet to the air outlet
  • a sensor that acquires temperature information in the air-conditioning target space
  • the temperature A control device that controls at least one of the wind direction plate and the blower based on the information to control the airflow of the conditioned air, and the control device is based on the temperature information, and the human body in the air conditioning target space
  • the position of the human body and the characteristics of the human body are detected, and at least one of the wind direction and the air volume of the conditioned air is controlled according to the detected position and characteristics of the human body.
  • Air conditioning can be performed appropriately according to the characteristics.
  • FIG. It is a perspective view which shows an example of the external appearance of the indoor unit which concerns on Embodiment 1.
  • FIG. It is the schematic which shows an example of a structure of the infrared sensor of FIG. It is the schematic which shows an example of the circuit structure of the air conditioner using the indoor unit which concerns on this Embodiment 1.
  • FIG. It is a block diagram which shows an example of a structure of the indoor control apparatus shown in FIG. It is a functional block diagram which shows an example of a structure of the arithmetic processing unit shown in FIG. It is a block diagram which shows an example of a structure of the outdoor control apparatus shown in FIG. 4 is a flowchart illustrating an example of a flow of wind direction setting processing by the indoor unit according to Embodiment 1.
  • FIG. 6 is a functional block diagram illustrating an example of a configuration of an arithmetic processing device according to a second embodiment.
  • FIG. 6 is a flowchart illustrating an example of a flow of air volume setting processing by the indoor unit 10 according to Embodiment 2. It is the schematic which shows an example for demonstrating the airflow when an airflow is set to the 2nd airflow at the time of heating operation by the airflow setting process of FIG.
  • Embodiment 1 FIG.
  • the indoor unit of the air conditioner according to Embodiment 1 of the present invention will be described.
  • FIG. 1 is a perspective view showing an example of the appearance of the indoor unit 10 according to the first embodiment.
  • the indoor unit 10 is, for example, a wall-hanging type indoor unit that is installed on a wall surface in a room.
  • the indoor unit 10 is provided with a suction port 1 and an air outlet 2 in a housing that forms an outer shell.
  • the suction port 1 is provided for sucking indoor air that is an air-conditioning target space.
  • the blower outlet 2 is provided in order to send out the conditioned air by the air conditioner 100 described later using the indoor unit 10 into the room.
  • the blower outlet 2 is provided with a vertical wind direction plate 3 and a left and right wind direction plate 4.
  • the up-and-down air direction plate 3 is rotatably provided in order to adjust the delivery direction in the vertical direction when delivering conditioned air.
  • the left and right wind direction plates 4 are rotatably provided to adjust the horizontal delivery direction when the conditioned air is delivered.
  • the indoor unit 10 is provided with an infrared sensor 5.
  • the infrared sensor 5 is provided at the lower left portion when viewed from the indoor unit 10 side.
  • the infrared sensor 5 scans the room temperature, detects infrared rays emitted from the surface of the object, and acquires temperature information.
  • the installation position of the infrared sensor 5 is not limited to the position shown in FIG.
  • the infrared sensor 5 should just be installed in the position which can acquire indoor temperature information.
  • the shape of the infrared sensor 5 is not limited to the shape as shown in FIG. 1 and may be any shape as long as indoor temperature information can be acquired.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the infrared sensor 5 of FIG.
  • a drive device 6 such as a stepping motor is attached to the infrared sensor 5.
  • the infrared sensor 5 is a thermopile sensor, for example, and detects the amount of infrared rays of the object and converts it into temperature information.
  • the infrared sensor 5 is driven by the driving device 6 to scan a preset range, detect a temperature based on the amount of infrared rays in the range, and output it as temperature information.
  • FIG. 3 is a schematic diagram illustrating an example of a circuit configuration of the air conditioner 100 using the indoor unit 10 according to the first embodiment.
  • the air conditioner 100 includes an indoor unit 10 and an outdoor unit 20.
  • the indoor unit 10 and the outdoor unit 20 are connected by a refrigerant pipe, and a refrigerant flows through the refrigerant pipe to form a refrigeration cycle.
  • FIG. 3 shows the case where one indoor unit 10 and one outdoor unit 20 are connected
  • the number of indoor units 10 and outdoor units 20 is not limited to this example.
  • a plurality of indoor units 10 may be connected to one outdoor unit 20.
  • one or a plurality of indoor units 10 may be connected to a plurality of outdoor units 20.
  • the indoor unit 10 includes an expansion valve 11, an indoor heat exchanger 12, an indoor blower 13, and an indoor control device 30, which are housed in the casing of the indoor unit 10.
  • the expansion valve 11 decompresses the refrigerant to expand it.
  • the expansion valve 11 is configured by a valve capable of controlling the opening degree, such as an electronic expansion valve.
  • the indoor heat exchanger 12 is supplied with an air blower 13 that generates an air flow from the inlet 1 to the outlet 2 such as a fan, and the air in the air-conditioning target space (hereinafter referred to as “room air” as appropriate) and a refrigerant. Exchange heat with Thereby, heating air or cooling air, which is conditioned air supplied to the indoor space, is generated.
  • the indoor heat exchanger 12 functions as an evaporator that evaporates the refrigerant during the cooling operation and cools the indoor air with the heat of vaporization at that time.
  • the indoor heat exchanger 12 functions as a condenser that radiates the heat of the refrigerant to the room air and condenses the refrigerant during the heating operation.
  • the indoor control device 30 includes, for example, software executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit), and hardware such as a circuit device that realizes various functions.
  • the indoor control device 30 controls the overall operation of the indoor unit 10 based on, for example, settings made by a user operation on a remote controller (not shown), temperature information from the infrared sensor 5, and the like.
  • the indoor control device 30 controls driving of the infrared sensor 5 when temperature information is acquired by the infrared sensor 5.
  • FIG. 4 is a block diagram showing an example of the configuration of the indoor control device 30 shown in FIG.
  • the indoor control device 30 includes an input circuit 31, an arithmetic processing device 32, a storage device 33, and an output circuit 34.
  • the input circuit 31 receives setting information from a remote controller or the like, temperature information from the infrared sensor 5, control information from the outdoor control device 40, and the like.
  • the input circuit 31 outputs various input information to the arithmetic processing device 32.
  • the arithmetic processing unit 32 performs various processes based on information received from the input circuit 31 using data stored in the storage unit 33 described later. For example, the arithmetic processing unit 32 creates a thermal image indicating the indoor temperature state based on the temperature information from the infrared sensor 5, detects the position of the human body existing in the room based on the created thermal image, and detects the human body. Processing to determine characteristics such as height is performed. Details of such processing by the arithmetic processing unit 32 will be described later.
  • the arithmetic processing device 32 sends control information for the operation device provided in the indoor unit 10 and control information for the outdoor unit 20 so as to send conditioned air according to the detected position of the human body and the determined characteristics of the human body.
  • control information generated at this time include information for controlling the air direction, information for controlling the air volume of the indoor blower 13, information for controlling the opening degree of the expansion valve 11, and the like.
  • the storage device 33 stores programs and various data necessary for processing performed by the arithmetic processing device 32.
  • the storage device 33 can also store data obtained by various processes in the arithmetic processing device 32.
  • the storage device 33 stores a thermal image when no human body is present in the room.
  • This thermal image is a thermal image serving as a reference (hereinafter referred to as “reference thermal image” as appropriate) used when the arithmetic processing unit 32 detects the position of the human body in the room and determines the characteristics of the human body.
  • the reference thermal image is created in advance by the arithmetic processing device 32 based on temperature information when it can be determined that no human body is present in the room, for example.
  • the output circuit 34 receives various control information from the arithmetic processing unit 32 and outputs it to the operation device provided in the corresponding indoor unit 10 or the outdoor unit 20. For example, when control information for controlling the wind direction is received, the output circuit 34 outputs this control information to a driving device (not shown) for driving the up and down wind direction plate 3 and the left and right wind direction plate 4. For example, when control information for controlling the air volume is received, the output circuit 34 outputs this control information to a drive device (not shown) for driving the indoor blower 13. Further, for example, when control information for the outdoor unit 20 is received, the output circuit 34 outputs this control information to the outdoor control device 40 of the outdoor unit 20.
  • FIG. 5 is a functional block diagram showing an example of the configuration of the arithmetic processing unit 32 shown in FIG.
  • the arithmetic processing unit 32 includes a thermal image creation unit 35, a human body position detection unit 36, a human body characteristic detection unit 37, a human body information creation unit 38, and a wind direction determination unit 39a.
  • FIG. 5 only functional blocks for portions related to the features of the present invention are illustrated, and illustration and description of other portions are omitted.
  • the temperature information acquired by the infrared sensor 5 is input from the input circuit 31 to the thermal image creation unit 35.
  • the thermal image creation unit 35 creates a thermal image indicating the temperature distribution in the room based on the input temperature information.
  • the human body position detection unit 36 detects a human body in the room based on the thermal image created by the thermal image creation unit 35 and the reference thermal image stored in advance in the storage device 33. Further, the human body position detection unit 36 detects the position of the detected human body based on the coordinates of the pixels in the thermal image indicating the detected human body (hereinafter referred to as “human body image” as appropriate).
  • the human body characteristic detection unit 37 determines whether the human body is an adult or a child based on the human body image corresponding to the detected human body. Detect features.
  • the human body information creation unit 38 creates human body information based on the position of the human body detected by the human body position detection unit 36 and the characteristics of the human body detected by the human body characteristic detection unit 37.
  • the human body information is information in which the position of the human body in the room is associated with the characteristics of the human body.
  • the wind direction determination unit 39a determines the wind direction of the conditioned air based on the human body information created by the human body information creation unit 38. Then, the wind direction determination unit 39a generates control information for controlling the directions of the upper and lower wind direction plates 3 and the left and right wind direction plates 4 so that the determined wind direction is obtained, and outputs the control information to the output circuit 34.
  • the outdoor unit 20 includes a compressor 21, a refrigerant flow switching device 22, an outdoor heat exchanger 23, an outdoor blower 24, and an outdoor control device 40.
  • the compressor 21 sucks a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state.
  • the compressor 21 for example, an inverter compressor or the like that can control the capacity that is the refrigerant delivery amount per unit time by arbitrarily changing the drive frequency can be used.
  • the refrigerant flow switching device 22 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows.
  • the refrigerant flow switching device 22 is not limited to the four-way valve described above, and other valves may be used in combination, for example.
  • the outdoor heat exchanger 23 performs heat exchange between the air (hereinafter referred to as “outdoor air” as appropriate) supplied by the outdoor blower 24 such as a fan and the refrigerant. Specifically, the outdoor heat exchanger 23 functions as a condenser during the cooling operation. The outdoor heat exchanger 23 functions as an evaporator during the heating operation.
  • the outdoor control device 40 includes, for example, software executed on a computing device such as a microcomputer or CPU, and hardware such as a circuit device that implements various functions.
  • the outdoor control device 40 controls the overall operation of the outdoor unit 20 based on various information received from each part of the outdoor unit 20.
  • the outdoor control device 40 for example, based on control information from the indoor control device 30 and information from various sensors (not shown) provided in the refrigeration cycle, the compressor frequency of the compressor 21 and refrigerant flow path switching. The switching of the flow path of the device 22 is controlled.
  • FIG. 6 is a block diagram showing an example of the configuration of the outdoor control device 40 shown in FIG. As shown in FIG. 6, the outdoor control device 40 includes an input circuit 41, an arithmetic processing device 42, a storage device 43, and an output circuit 44.
  • the input circuit 41 receives control information from the indoor control device 30, information acquired by various sensors (not shown) provided in the air conditioner 100, and the like.
  • the input circuit 41 outputs various input information to the arithmetic processing unit 42.
  • the arithmetic processing unit 42 performs various processes based on information received from the input circuit 41 using data stored in the storage unit 43 described later.
  • the arithmetic processing unit 42 generates control information for performing various operations provided in the outdoor unit 20, control information for the indoor unit 10, and the like, and outputs the control information to the output circuit 44.
  • Examples of the control information generated by the arithmetic processing unit 42 include information for controlling the capacity of the compressor 21, information for controlling the air volume of the outdoor blower 24, information for controlling the refrigerant flow path, and the like. It is.
  • the storage device 43 stores programs and various data necessary for processing performed by the arithmetic processing device 42.
  • the output circuit 44 receives various control information from the arithmetic processing unit 42 and outputs it to the operation device provided in the corresponding outdoor unit 20 or the indoor unit 10. For example, when control information for controlling the capacity of the compressor 21 is received, the output circuit 44 outputs this control information to the compressor 21. For example, when control information for controlling the air volume is received, the output circuit 44 outputs this control information to a driving device (not shown) for driving the outdoor blower 24. Further, for example, when control information for the indoor unit 10 is received, the output circuit 34 outputs this control information to the indoor control device 30 of the indoor unit 10.
  • the state indicated by the solid line of the refrigerant flow switching device 22 is the state in the cooling operation mode, and the flow direction of the refrigerant is indicated by the solid line.
  • coolant flow path switching apparatus 22 is a state in heating operation mode, and the flow direction of a refrigerant
  • coolant is shown with a dotted line.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 via the refrigerant flow switching device 22.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 23 is condensed with heat exchange with the outdoor air while dissipating heat, and becomes a supercooled high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 23.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 23 is decompressed by the expansion valve 11 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the indoor heat exchanger 12.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 12 cools the indoor air by exchanging heat with the indoor air and absorbs and evaporates, thereby becoming a low-temperature and low-pressure gas refrigerant. Spill from.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 12 passes through the refrigerant flow switching device 22 and is sucked into the compressor 21.
  • Heating operation mode Next, the operation of the refrigerant in the heating operation mode will be described.
  • the refrigerant flow switching device 22 is switched to the state indicated by the dotted line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 21 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the indoor heat exchanger 12 via the refrigerant flow switching device 22.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 12 is condensed while dissipating heat by exchanging heat with the indoor air, and flows out of the indoor heat exchanger 12 as a high-pressure liquid refrigerant in a supercooled state.
  • the high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 12 is decompressed by the expansion valve 11 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 23.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 23 exchanges heat with outdoor air, absorbs heat and evaporates, and flows out of the outdoor heat exchanger 23 as low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the outdoor heat exchanger 23 passes through the refrigerant flow switching device 22 and is sucked into the compressor 21.
  • Wind direction setting process Next, processing for setting the wind direction when a human body exists in the room will be described.
  • the presence / absence of the human body and the position of the human body are detected in the room, and the detected features such as the height of the human body are detected.
  • the wind direction is set according to the detected position and characteristics of the human body.
  • FIG. 7 is a flowchart showing an example of the flow of wind direction setting processing by the indoor unit 10 according to the first embodiment. Note that the processing shown in FIG. 7 shows a case where a human body exists in the room. In addition, this process is performed every preset time. In the first embodiment, prior to the wind direction setting process, a thermal image indicating the indoor temperature distribution, detection of the human body and the position of the human body, and detection of the characteristics of the human body are performed.
  • FIG. 8 is a schematic diagram showing a state when a thermal image is created when a human body exists by the thermal image creation unit 35 of FIG.
  • the example shown in FIG. 8 shows a case where a child 60 and an adult 61 that are human bodies are present together in a room.
  • the thermal image creation unit 35 creates a thermal image by, for example, arranging temperature values indicated by temperature information obtained by scanning the room with the infrared sensor 5 at coordinate positions obtained when scanning. In this case, the surface temperature of the child 60 and the adult 61 existing in the room and the ambient temperature are detected by the infrared sensor 5.
  • the arithmetic processing unit 32 detects the human body existing in the room by the human body position detection unit 36.
  • the thermal image created by the thermal image creation unit 35 is used.
  • a human body can be detected by extracting the part from which the temperature changed compared with the reference
  • a threshold value for the difference value is set in advance, and when the pixel difference value is equal to or greater than this threshold value, for example, a value corresponding to a temperature difference of 3 ° C. or greater, the pixel corresponds to the human body. It is assumed that the pixel Then, by performing such processing on all the pixels, the human body included in the thermal image can be detected.
  • the threshold value for example, a preset uniform numerical value may be used, or an air temperature or a numerical value set according to the average temperature of all or some of the pixels in the reference thermal image may be used. Good.
  • the human body position detection unit 36 calculates the difference between the indoor thermal image created by the thermal image creation unit 35 and the reference thermal image stored in the storage device 33 for each pixel. Then, for example, a pixel whose calculated difference is equal to or greater than a preset threshold value can be determined as a pixel corresponding to the human body, and a human body image formed by such a pixel can be extracted.
  • the human body position detection unit 36 detects the position of the detected human body.
  • the position of the human body can be detected based on the coordinates of the human body image in the thermal image.
  • the human body position detection unit 36 acquires the coordinates of the pixels forming the human body image from the thermal image. Thereby, the position of the human body image with respect to the indoor thermal image, that is, the position of the human body in the room can be detected.
  • the human body characteristic detection unit 37 detects the characteristics of the human body detected by the human body position detection unit 36.
  • the characteristics of the human body indicate, for example, whether the human body is an adult or a child. This can be determined by the size of the human body, for example.
  • the human body characteristic detection unit 37 is, for example, a human body image such as the posture of the human body, the lower end position, the number of pixels constituting the human body image, and the aspect ratio of the human body image based on the number of pixels in the human body image corresponding to the human body detected from the thermal image. Based on the above characteristics, it is determined whether the human body is an adult or a child.
  • the human body position detection method by the human body position detection unit 36 and the human body feature detection method by the human body characteristic detection unit 37 will be specifically described.
  • the number of pixels constituting the human body image In such a thermal image, the number of pixels varies depending on the distance from the infrared sensor 5 to the human body, even for the same human body. Therefore, in such a case, the size of the human body cannot be simply determined based on the number of pixels of the human body image. For example, when the human body approaches the indoor unit 10 including the infrared sensor 5, the human body image included in the thermal image becomes large, and when the human body moves away, the human body image becomes small.
  • the human body position detection unit 36 calculates the position of the human body, that is, the distance from the indoor unit 10 to the human body.
  • the distance between the indoor unit 10 and the human body can be calculated based on the position of the lower end pixel of the human body image in the thermal image, for example.
  • the relationship between the position of the lower end pixel of the human body image and the distance from the indoor unit 10 to the human body can be obtained from the viewing angle of the infrared sensor 5. Therefore, in the first embodiment, a table indicating such a correspondence relationship is prepared in advance, and the distance from the indoor unit 10 of the human body corresponding to the human body image is obtained using this table.
  • FIG. 9 is a schematic diagram showing a thermal image in a state where a human body image is extracted from the thermal image acquired in the state of FIG.
  • the “black pixel” refers to a pixel having a pixel value “0” corresponding to black. That is, in the example shown in FIG. 9, the values of all the pixels constituting the human body image are “0”.
  • FIG. 10 is a schematic diagram showing an example of a distance table showing the relationship between the position of the lower end pixel of the human body image and the distance from the indoor unit 10 to the human body.
  • this distance table the position of the lower end pixel of the human body image with respect to the lower end of the entire thermal image and the distance from the indoor unit 10 to the human body are associated with each other. For example, when the position of the lower end pixel of the human body image is the first pixel from the lower end of the entire thermal image, it indicates that the distance from the indoor unit 10 to the human body is 0.5 m.
  • the distance table is stored in the storage device 33 in advance.
  • the value of the distance from the indoor unit 10 to the human body may be a predetermined value regardless of the height of the infrared sensor 5, or may be a different value for each height of the infrared sensor 5.
  • the human body position detection unit 36 can determine that the distance from the indoor unit 10 to the child 60 is 1.5 m based on the distance table of FIG. Further, the lower end pixel in the human body image of the adult 61 is located at the sixth pixel from the lower end of the entire thermal image. Therefore, the human body position detection unit 36 can determine that the distance from the indoor unit 10 to the adult 61 is 3.0 m.
  • Such a posture of the human body can be estimated by, for example, obtaining an aspect ratio n that is a ratio of the maximum number of pixels in the vertical direction and the maximum number of pixels in the horizontal direction in the human body image.
  • the aspect ratio n of the maximum number of pixels in the vertical direction and the horizontal direction is calculated by “the maximum number of pixels in the vertical direction ⁇ the maximum number of pixels in the horizontal direction”.
  • FIG. 11 is a schematic diagram showing an example of a posture table showing the relationship between the aspect ratio n of the maximum number of pixels in the vertical direction and the horizontal direction in the human body image and the posture of the human body.
  • the aspect ratio n when the aspect ratio n is 0.2 or less, it is possible to estimate that the posture of the human body is “the supine position”.
  • the aspect ratio n is larger than 0.2 and smaller than 0.5, it can be estimated that the posture of the human body is “sitting position”.
  • the aspect ratio n is 0.5 or more, it can be estimated that the posture of the human body is “standing”.
  • the posture table is stored in the storage device 33 in advance.
  • the maximum number of pixels in the vertical direction in the human body image of the child 60 is 10 pixels, and the maximum number of pixels in the horizontal direction is 7 pixels. Therefore, since the aspect ratio n in the human body image of the child 60 is “10 ⁇ 7 ⁇ 1.4”, the human body characteristic detection unit 37 can estimate that the child 60 is in the “standing position”. .
  • the human body characteristic detection unit 37 determines whether the human body is an adult or a child. At this time, whether the human body is an adult or a child can be determined by the size of the human body image corresponding to the distance from the indoor unit 10 to the human body, that is, the number of pixels of the human body image.
  • the size of the human body image varies depending on the distance from the indoor unit 10 to the human body and the posture of the human body. Therefore, when determining whether the human body is an adult or a child, for example, a threshold is set in advance for each of the distance from the indoor unit 10 to the human body and the posture of the human body. Then, the human body characteristic detection unit 37 determines that the human body is an adult when the number of pixels of the extracted human body image is equal to or greater than the set threshold value, and determines that the human body is a child when the number is less than the threshold value. to decide.
  • step S ⁇ b> 1 the arithmetic processing device 32 creates human body information by the human body information creation unit 38. Based on the position of the human body and the characteristics of the human body detected as described above, the human body information creating unit 38 creates human body information in which these are associated.
  • step S2 the wind direction determining unit 39a determines whether the human body existing in the room is an adult based on the human body information created in step S1. If it is determined that the human body is an adult, the process proceeds to step S3. On the other hand, if it is determined that the human body is a child, the process proceeds to step S4.
  • step S3 the wind direction determination unit 39a generates control information for controlling the vertical wind direction plate 3 such that the wind direction of the conditioned air sent from the indoor unit 10 becomes the first vertical wind direction, and this control information Based on the above, the vertical wind direction plate 3 is controlled.
  • the first vertical wind direction is the vertical wind direction when the human body in the room is an adult.
  • the direction of the vertical wind direction plate 3 is set so that the wind direction faces the feet of the human body, as in the conventional case.
  • the direction of the vertical wind direction plate 3 is set so that the wind direction is over the head of the human body, as in the conventional case.
  • the direction of the up-and-down wind direction board 3 at the time of heating operation is set so that it may face the coordinate position of the lower end in the human body image about the detected human body, for example.
  • cooling operation is set so that it may face in the coordinate position above the coordinate of the upper end in a human body image, for example.
  • step S4 the wind direction determination unit 39a controls the vertical wind direction plate 3 so that the wind direction of the conditioned air sent from the indoor unit 10 becomes a second vertical wind direction different from the first vertical wind direction.
  • Information is produced and the up-and-down wind direction board 3 is controlled based on this control information.
  • the second vertical wind direction is the vertical wind direction when the human body existing in the room is a child. Therefore, for example, in the heating operation, considering that the air current spreads up and down near the floor surface, the up-and-down wind direction plate is set so that the wind direction is more toward the indoor unit 10 than the foot of the human body than the first up-and-down wind direction for adults.
  • the direction of 3 is set. That is, when the second up-and-down air direction is selected, the up-and-down air direction plate 3 is set to be lower than the direction in the first up-and-down air direction. For example, during the cooling operation, the direction of the vertical wind direction plate 3 is set so that the wind direction is directed above the human body.
  • the direction of the up-and-down wind direction board 3 at the time of heating operation is set so that it may face the coordinate position below the coordinate of the lower end in a human body image, for example.
  • cooling operation is set so that it may face in the coordinate position above the coordinate of the upper end in a human body image, for example.
  • step S3 and step S4 are set in the same direction according to the position of the human body regardless of the characteristics of the human body. That is, the right and left wind directions of the conditioned air in the first embodiment are determined only by the position of the human body regardless of the characteristics of the human body.
  • FIG. 12 is a schematic diagram illustrating a first example for explaining the airflow when the vertical airflow direction is set to the first vertical airflow direction during the heating operation by the airflow direction setting process of FIG.
  • FIG. 13 is a schematic diagram illustrating a second example for explaining the airflow when the vertical airflow direction is set to the first vertical airflow direction during the heating operation.
  • FIG. 14 is a schematic diagram illustrating a third example for explaining the air flow when the up / down wind direction is set to the second up / down wind direction during the heating operation by the wind direction setting process of FIG. 7.
  • the first example shown in FIG. 12 is a flow of conditioned air sent when an adult human body 50a is present in the room and warm air is sent from the indoor unit 10 by the air conditioner 100 performing a heating operation. 51 is shown.
  • the indoor unit 10 adjusts the direction of the vertical wind direction plate 3 according to the position and characteristics of the human body 50a existing in the room, and the vertical wind direction is set to the first level. Set up and down wind direction.
  • the air flow 51 of the conditioned air reaches the feet of the human body 50a.
  • the air flow 51 of the conditioned air diffuses near the floor surface, and a part of the air flow 51a flows upward. Therefore, the human body can be appropriately warmed by the airflow 51a.
  • the second example shown in FIG. 13 is a flow of conditioned air sent when a child's human body 50b exists in the room and the air conditioner 100 sends warm air from the indoor unit 10 by performing a heating operation. 51 is shown.
  • the case where the vertical wind direction is set to the first vertical wind direction by adjusting the direction of the vertical wind direction plate 3 is shown.
  • the position of the human body 50b with respect to the indoor unit 10 is equivalent to the position of the human body 50a in the first example.
  • the conditioned air flow 51 is diffused near the floor as in the first example, and a part of the air flow 51a is upward. Flowing into.
  • the human body 50b existing in the room is a child and is shorter than an adult, the conditioned air generated by the airflow 51a that flows upward directly hits the face of the human body 50b.
  • the air conditioner 100 performs a heating operation to send warm air from the indoor unit 10.
  • the conditioned air flow 52 is shown.
  • the direction of the vertical wind direction plate 3 is adjusted by the wind direction setting process according to the first embodiment in accordance with the position and characteristics of the human body 50b in the room.
  • the up / down air direction is set to the second up / down air direction.
  • the air flow 52 of the conditioned air diffuses in the vicinity of the floor surface as in the first and second examples, and a part of the air flow 52a flows upward, but the vertical air direction is higher than the first vertical air direction. Since it reaches the 10 side, the human body 50b can be appropriately warmed while preventing the airflow 52a from directly hitting the face of the human body 50b.
  • the suction port 1 and the air outlet 2 are formed, and conditioned air based on the air sucked from the air inlet 1 is supplied from the air outlet 2.
  • An up-and-down wind direction plate 3 that adjusts the vertical direction of the conditioned air
  • an infrared sensor 5 that acquires temperature information in the air-conditioning target space, and an up-and-down direction based on the temperature information.
  • an indoor control device 30 that controls the wind direction plate 3 to control the airflow of conditioned air.
  • the indoor control device 30 detects the human body and the position of the human body in the air-conditioning space and the characteristics of the human body based on the temperature information, and controls the wind direction of the conditioned air according to the detected position and characteristics of the human body. .
  • the wind direction of the conditioned air sent from the indoor unit 10 is adjusted based on the position and characteristics of the human body detected based on the temperature information in the air-conditioning target space. Therefore, it is possible to prevent the airflow from hitting the human body face, and to suppress discomfort such as feeling of cold air and dry skin from the airflow to the human body, so that air conditioning can be appropriately performed. .
  • Embodiment 2 an air conditioner indoor unit according to Embodiment 2 of the present invention will be described.
  • the second embodiment is different from the first embodiment in which the air direction of the conditioned air is controlled in that the air volume of the conditioned air sent from the indoor unit is controlled according to the detected characteristics of the human body.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the indoor unit 10 in the second embodiment has the configuration shown in FIGS. 1 to 4 as in the first embodiment, the description thereof is omitted here.
  • FIG. 15 is a functional block diagram showing an example of the configuration of the arithmetic processing device 32 according to the second embodiment.
  • the arithmetic processing unit 32 includes a thermal image creation unit 35, a human body position detection unit 36, a human body characteristic detection unit 37, a human body information creation unit 38, and an air volume determination unit 39b.
  • FIG. 15 only functional blocks for parts related to the features of the present invention are illustrated, and illustration and description of other parts are omitted. Further, description of portions common to the above-described first embodiment will be omitted.
  • the air volume determining unit 39b determines the air volume of the conditioned air based on the human body information created by the human body information creating unit 38. Then, the air volume determination unit 39b generates control information for controlling the rotational speed of the indoor blower 13 so as to achieve the determined air volume, and outputs the control information to the output circuit 34.
  • Airflow setting processing Next, processing for setting the air volume when a human body exists in the room will be described.
  • the air volume is set according to the position and characteristics of the human body in the room detected in the same manner as in the first embodiment.
  • FIG. 16 is a flowchart showing an example of the flow of air volume setting processing by the indoor unit 10 according to the second embodiment. Note that the processing shown in FIG. 16 shows a case where a human body exists in the room. In addition, this process is performed every preset time. In the second embodiment, prior to this air volume setting process, the creation of a thermal image, the detection of the human body and the position of the human body, and the detection of the characteristics of the human body are performed by the same processing as in the first embodiment.
  • step S ⁇ b> 11 the arithmetic processing unit 32 uses the human body information creation unit 38 to create human body information that associates the position of the human body detected as described above with the characteristics of the human body.
  • step S12 the air volume determining unit 39b determines whether the human body existing in the room is an adult based on the human body information created in step S11. If it is determined that the human body is an adult, the process proceeds to step S13. On the other hand, if it is determined that the human body is a child, the process proceeds to step S14.
  • step S13 the air volume determination unit 39b generates control information for controlling the indoor fan 13 so that the air volume of the conditioned air sent from the indoor unit 10 becomes the first air volume, and based on this control information. Then, the rotational speed of the indoor blower 13 is controlled.
  • the first air volume is the air volume when the human body in the room is an adult. Therefore, for example, at the time of heating operation, an air volume comparable to that in the past is set.
  • the direction of the up-and-down wind direction board 3 is set so that it may face to the leg of a human body like the past.
  • step S14 the air volume determination unit 39b generates control information for controlling the indoor blower 13 so that the air volume of the conditioned air sent from the indoor unit 10 becomes a second air volume different from the first air volume.
  • the indoor control device 30 controls the rotational speed of the indoor blower 13 based on this control information.
  • the second air volume is an air volume when the human body present in the room is a child, and is an air volume that can suppress an air current spreading upward near the floor surface relative to an air current for an adult.
  • the second air volume is set so that the air volume is larger than the first air volume, and the air flow spreading upward near the floor surface is suppressed.
  • the wind direction is set so that the wind direction plate 3 is directed toward the human foot.
  • FIG. 17 is a schematic diagram illustrating an example for explaining the air flow when the air volume is set to the second air volume during the heating operation by the air volume setting process of FIG. 16.
  • the example shown in FIG. 17 shows the air flow 53 of the sent conditioned air when the human body 50b exists in the room and the air conditioner 100 sends warm air from the indoor unit 10 by performing the heating operation. .
  • the air volume is set according to the position and characteristics of the human body 50b in which the indoor unit 10 exists indoors by the air volume setting processing according to the second embodiment.
  • a second air volume larger than the first air volume is set as the air volume of the conditioned air sent from the indoor unit 10.
  • the air flow 53 of the conditioned air reaches the feet of the human body 50b, diffuses near the floor surface, and a part of the air flow 53a flows upward.
  • the conditioned air is sent with a second air volume that is larger than the first air volume, the wind speed increases compared to the case where the conditioned air is sent with the first air volume. Can be suppressed. Accordingly, the human body 50b can be appropriately warmed while preventing the airflow 53a from directly hitting the face of the human body 50b.
  • the suction port 1 and the air outlet 2 are formed, and conditioned air based on the air sucked from the air inlet 1 is supplied from the air outlet 2.
  • the indoor blower 13 that generates airflow from the inlet 1 to the blowout outlet 2, the infrared sensor 5 that acquires temperature information in the air-conditioning target space, and the indoor blower 13 are controlled based on the temperature information.
  • an indoor control device 30 that controls the flow of conditioned air.
  • the indoor control device 30 detects the human body and the position of the human body in the air-conditioning target space and the characteristics of the human body based on the temperature information, and controls the air volume of the conditioned air according to the detected position and characteristics of the human body. .
  • the air volume of the conditioned air sent from the indoor unit 10 is adjusted based on the position and characteristics of the human body detected based on the temperature information in the air conditioning target space. Therefore, it is possible to prevent the airflow from hitting the human body face, and to suppress discomfort such as feeling of cold air and dry skin from the airflow to the human body, so that air conditioning can be appropriately performed. .
  • Embodiment 3 An air conditioner indoor unit according to Embodiment 3 of the present invention will be described.
  • the third embodiment is a combination of the first embodiment and the second embodiment described above, and the up and down wind direction and the air volume of the conditioned air sent from the indoor unit according to the detected position and characteristics of the human body. Control both.
  • the airflow can be controlled more finely by controlling the vertical wind direction and the air volume according to the detected position and characteristics of the human body. Therefore, for example, even when the human body that is present in the room during the heating operation is a child, the conditioned air can be prevented from directly hitting the face, and the human body can be appropriately warmed or cooled.
  • the human body can be appropriately heated and cooled, the set temperature is not changed more than necessary, so that unnecessary energy consumption can be reduced and energy saving can be ensured.

Abstract

An air conditioner indoor unit, having an inlet and an outlet formed therein and blowing out from the outlet conditioned air originating from air taken in from the inlet, comprises: a wind direction plate that is provided in the outlet and that adjusts the direction the conditioned air is discharged; a fan that generates an air flow from the inlet to the outlet; a sensor that acquires temperature information for the interior a space to be air conditioned; and a control device that controls the air flow of the conditioned air by controlling at least one of the wind direction plate and the fan on the basis of the temperature information. On the basis of the temperature information, the control device detects a body and the position of the body in the space to be air conditioned and the characteristics of the body and controls at least one of the wind direction and the air volume of the conditioned air in accordance with the position and the characteristics of the detected body.

Description

空気調和機の室内機Air conditioner indoor unit
 本発明は、室内の空気調和を行う空気調和機の室内機に関するものである。 The present invention relates to an indoor unit of an air conditioner that performs indoor air conditioning.
 従来、赤外線センサを用いて室内に存在する人体を検出する空気調和機の室内機が提案され、実用化されている(例えば、特許文献1参照)。このような空気調和機では、赤外線センサによって室内における人体の位置を特定し、上下風向および左右風向を調整することにより、人体に向けて気流を届けるようにしている。 Conventionally, an indoor unit of an air conditioner that detects a human body existing indoors using an infrared sensor has been proposed and put into practical use (see, for example, Patent Document 1). In such an air conditioner, the position of the human body in the room is specified by an infrared sensor, and the airflow is delivered toward the human body by adjusting the vertical and horizontal wind directions.
特開2012-72965号公報JP 2012-72965 A
 しかし、室内に存在する人体には、「身長」という特徴がある。そのため、検出された人体の位置のみで風向を決定すると、人体に対する風当たりの強弱、風当たりの位置などが意図した通りにならない場合がある。 However, the human body in the room has the characteristic of “height”. For this reason, if the wind direction is determined only by the detected position of the human body, the strength of the wind against the human body and the position of the wind may not be as intended.
 例えば、暖房時に室内機から送出された風による気流は、一般的に、床面付近で上下方向に広がる性質がある。そのため、検出された特定の人体の足下を暖めるように上下風向を設定したとしても、当該人体が子ども等の身長が低い場合には、風が顔に直接当たってしまう可能性がある。そして、このような場合には、風が強く当たることによる冷風感、肌の乾燥といった不快な状態を招いてしまう。 For example, the airflow generated by the air sent from the indoor unit during heating generally has the property of spreading in the vertical direction near the floor surface. Therefore, even if the vertical wind direction is set so as to warm the detected feet of a specific human body, if the human body is short, such as a child, the wind may directly hit the face. In such a case, an unpleasant state such as feeling of cold wind and dry skin caused by strong winds is caused.
 一方、例えば、冷房時に室内機から送出された風による気流は、一般的に、冷気が下がる性質がある。また、室内機の吹出口から送出された風の気流は、少しずつ拡散する。そのため、このように冷気が下がることを考慮して、検出された特定の人体の頭上に気流を送るように上下風向を設定したとしても、当該人体が子ども等の身長が低い場合には、気流が人体の頭上に届かず、効果的に冷やすことができない。したがって、使用者は、設定温度を下げるといった非省エネルギーな操作をせざるを得なくなってしまう。 On the other hand, for example, the airflow generated by the air sent from the indoor unit during cooling generally has the property that the cold air is lowered. Moreover, the airflow of the wind sent out from the blower outlet of the indoor unit diffuses little by little. Therefore, even if the vertical wind direction is set so that airflow is sent over the head of the detected specific human body in consideration of such a decrease in cold air, if the human body is short, such as a child, Cannot reach the human body and cannot be cooled effectively. Therefore, the user is forced to perform a non-energy-saving operation such as lowering the set temperature.
 本発明は、上記従来の技術における課題に鑑みてなされたものであって、室内に存在する人体の特徴に合わせて適切に空気調和を行うことができる空気調和機の室内機を提供することを目的とする。 The present invention has been made in view of the above-described problems in the prior art, and provides an indoor unit for an air conditioner that can appropriately perform air conditioning in accordance with the characteristics of a human body existing in the room. Objective.
 本発明の空気調和機の室内機は、吸込口および吹出口が形成され、前記吸込口から吸い込まれた空気に基づく調和空気を前記吹出口から送出する空気調和機の室内機であって、前記吹出口に設けられ、前記調和空気の送出方向を調整する風向板と、前記吸込口から前記吹出口に至る気流を生成する送風機と、空調対象空間内の温度情報を取得するセンサと、前記温度情報に基づき、前記風向板および前記送風機の少なくとも一方を制御して、前記調和空気の気流を制御する制御装置とを備え、前記制御装置は、前記温度情報に基づき、前記空調対象空間内の人体および該人体の位置と、該人体の特徴とを検出し、検出された前記人体の位置および特徴に応じて、前記調和空気の風向および風量の少なくとも一方を制御するものである。 An indoor unit of an air conditioner according to the present invention is an indoor unit of an air conditioner in which a suction port and an air outlet are formed, and conditioned air based on the air sucked from the air inlet is sent out from the air outlet, A wind direction plate that is provided at the air outlet and adjusts the delivery direction of the conditioned air, a blower that generates an air flow from the air inlet to the air outlet, a sensor that acquires temperature information in the air-conditioning target space, and the temperature A control device that controls at least one of the wind direction plate and the blower based on the information to control the airflow of the conditioned air, and the control device is based on the temperature information, and the human body in the air conditioning target space The position of the human body and the characteristics of the human body are detected, and at least one of the wind direction and the air volume of the conditioned air is controlled according to the detected position and characteristics of the human body.
 以上のように、本発明の空気調和機の室内機によれば、空調対象空間内から検出された人体の位置および特徴に基づき、調和空気の風向を調整することにより、室内に存在する人体の特徴に合わせて、適切に空気調和を行うことができる。 As described above, according to the indoor unit of an air conditioner of the present invention, by adjusting the wind direction of the conditioned air based on the position and characteristics of the human body detected from within the air-conditioning target space, Air conditioning can be performed appropriately according to the characteristics.
実施の形態1に係る室内機の外観の一例を示す斜視図である。It is a perspective view which shows an example of the external appearance of the indoor unit which concerns on Embodiment 1. FIG. 図1の赤外線センサの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the infrared sensor of FIG. 本実施の形態1に係る室内機を用いた空気調和機の回路構成の一例を示す概略図である。It is the schematic which shows an example of the circuit structure of the air conditioner using the indoor unit which concerns on this Embodiment 1. FIG. 図3に示す室内制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the indoor control apparatus shown in FIG. 図4に示す演算処理装置の構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of a structure of the arithmetic processing unit shown in FIG. 図3に示す室外制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the outdoor control apparatus shown in FIG. 実施の形態1に係る室内機による風向設定処理の流れの一例を示すフローチャートである。4 is a flowchart illustrating an example of a flow of wind direction setting processing by the indoor unit according to Embodiment 1. 図5の熱画像作成部によって、人体が存在する場合の熱画像を作成する際の様子を示す概略図である。It is the schematic which shows a mode at the time of creating a thermal image in case a human body exists by the thermal image creation part of FIG. 図8の状態で取得した熱画像から人体画像を抽出した状態の熱画像を示す概略図である。It is the schematic which shows the thermal image of the state which extracted the human body image from the thermal image acquired in the state of FIG. 人体画像の下端画素の位置と室内機から人体までの距離との関係を示す距離テーブルの一例を示す概略図である。It is the schematic which shows an example of the distance table which shows the relationship between the position of the lower end pixel of a human body image, and the distance from an indoor unit to a human body. 人体画像における縦方向および横方向の最大画素数の縦横比と、人体の姿勢との関係を示す姿勢テーブルの一例を示す概略図である。It is the schematic which shows an example of the attitude | position table which shows the relationship between the aspect ratio of the maximum pixel count of the vertical direction and horizontal direction in a human body image, and the attitude | position of a human body. 図7の風向設定処理によって暖房運転時に上下風向が第1の上下風向に設定された場合の気流について説明するための第1の例を示す概略図である。It is the schematic which shows the 1st example for demonstrating the airflow when an up-down wind direction is set to the 1st up-down wind direction at the time of heating operation by the wind direction setting process of FIG. 暖房運転時に上下風向が第1の上下風向に設定された場合の気流について説明するための第2の例を示す概略図である。It is the schematic which shows the 2nd example for demonstrating the airflow when an up-down wind direction is set to the 1st up-down wind direction at the time of heating operation. 図7の風向設定処理によって暖房運転時に上下風向が第2の上下風向に設定された場合の気流について説明するための第3の例を示す概略図である。It is the schematic which shows the 3rd example for demonstrating the airflow when the up-down wind direction is set to the 2nd up-down wind direction at the time of heating operation by the wind direction setting process of FIG. 実施の形態2による演算処理装置の構成の一例を示す機能ブロック図である。FIG. 6 is a functional block diagram illustrating an example of a configuration of an arithmetic processing device according to a second embodiment. 実施の形態2に係る室内機10による風量設定処理の流れの一例を示すフローチャートである。6 is a flowchart illustrating an example of a flow of air volume setting processing by the indoor unit 10 according to Embodiment 2. 図16の風量設定処理によって暖房運転時に風量が第2の風量に設定された場合の気流について説明するための一例を示す概略図である。It is the schematic which shows an example for demonstrating the airflow when an airflow is set to the 2nd airflow at the time of heating operation by the airflow setting process of FIG.
 実施の形態1.
 以下、本発明の実施の形態1に係る空気調和機の室内機について説明する。
Embodiment 1 FIG.
Hereinafter, the indoor unit of the air conditioner according to Embodiment 1 of the present invention will be described.
[室内機の外観例]
 図1は、本実施の形態1に係る室内機10の外観の一例を示す斜視図である。この室内機10は、例えば、室内の壁面に設置される壁掛けタイプの室内機である。図1に示すように、室内機10には、外郭を形成する筐体に、吸込口1および吹出口2が設けられている。吸込口1は、空調対象空間である室内の空気を吸い込むために設けられている。吹出口2は、この室内機10を用いた後述する空気調和機100による調和空気を室内に送出するために設けられている。
[External appearance of indoor unit]
FIG. 1 is a perspective view showing an example of the appearance of the indoor unit 10 according to the first embodiment. The indoor unit 10 is, for example, a wall-hanging type indoor unit that is installed on a wall surface in a room. As shown in FIG. 1, the indoor unit 10 is provided with a suction port 1 and an air outlet 2 in a housing that forms an outer shell. The suction port 1 is provided for sucking indoor air that is an air-conditioning target space. The blower outlet 2 is provided in order to send out the conditioned air by the air conditioner 100 described later using the indoor unit 10 into the room.
 吹出口2には、上下風向板3および左右風向板4が設けられている。上下風向板3は、調和空気を送出する際の鉛直方向の送出方向を調整するため、回動自在に設けられている。左右風向板4は、調和空気を送出する際の水平方向の送出方向を調整するため、回動自在に設けられている。 The blower outlet 2 is provided with a vertical wind direction plate 3 and a left and right wind direction plate 4. The up-and-down air direction plate 3 is rotatably provided in order to adjust the delivery direction in the vertical direction when delivering conditioned air. The left and right wind direction plates 4 are rotatably provided to adjust the horizontal delivery direction when the conditioned air is delivered.
 また、室内機10には、赤外線センサ5が設けられている。図1に示す例において、赤外線センサ5は、室内機10側から見た際に左側の下部に設けられている。赤外線センサ5は、室内の温度を走査し、物体の表面から放射される赤外線を検出して温度情報を取得する。 In addition, the indoor unit 10 is provided with an infrared sensor 5. In the example shown in FIG. 1, the infrared sensor 5 is provided at the lower left portion when viewed from the indoor unit 10 side. The infrared sensor 5 scans the room temperature, detects infrared rays emitted from the surface of the object, and acquires temperature information.
 なお、赤外線センサ5の設置位置は、図1に示す位置に限られない。例えば、赤外線センサ5が室内の温度情報を取得できる位置に設置されていればよい。また、赤外線センサ5の形状についても、図1に示すような形状に限られず、室内の温度情報が取得できれば、どのような形状でもよい。 The installation position of the infrared sensor 5 is not limited to the position shown in FIG. For example, the infrared sensor 5 should just be installed in the position which can acquire indoor temperature information. Also, the shape of the infrared sensor 5 is not limited to the shape as shown in FIG. 1 and may be any shape as long as indoor temperature information can be acquired.
 図2は、図1の赤外線センサ5の構成の一例を示す概略図である。図2に示すように、赤外線センサ5には、ステッピングモータ等の駆動装置6が取り付けられている。
 赤外線センサ5は、例えばサーモパイルセンサであり、対象物の赤外線量を検出して温度情報に変換する。赤外線センサ5は、駆動装置6によって駆動されることにより、予め設定された範囲を走査して当該範囲内の赤外線量に基づく温度を検出し、温度情報として出力する。
FIG. 2 is a schematic diagram showing an example of the configuration of the infrared sensor 5 of FIG. As shown in FIG. 2, a drive device 6 such as a stepping motor is attached to the infrared sensor 5.
The infrared sensor 5 is a thermopile sensor, for example, and detects the amount of infrared rays of the object and converts it into temperature information. The infrared sensor 5 is driven by the driving device 6 to scan a preset range, detect a temperature based on the amount of infrared rays in the range, and output it as temperature information.
[空気調和機の回路構成]
 図3は、本実施の形態1に係る室内機10を用いた空気調和機100の回路構成の一例を示す概略図である。図3に示すように、空気調和機100は、室内機10および室外機20で構成されている。そして、空気調和機100は、室内機10および室外機20が冷媒配管によって接続され、この冷媒配管内を冷媒が流れることによって冷凍サイクルを形成している。
[Circuit configuration of air conditioner]
FIG. 3 is a schematic diagram illustrating an example of a circuit configuration of the air conditioner 100 using the indoor unit 10 according to the first embodiment. As shown in FIG. 3, the air conditioner 100 includes an indoor unit 10 and an outdoor unit 20. In the air conditioner 100, the indoor unit 10 and the outdoor unit 20 are connected by a refrigerant pipe, and a refrigerant flows through the refrigerant pipe to form a refrigeration cycle.
 なお、図3の例では、1台の室内機10と1台の室外機20とが接続される場合を示すが、室内機10および室外機20の台数は、この例に限られない。例えば、1台の室外機20に対して複数台の室内機10が接続されてもよい。また、例えば、複数の室外機20に対して1または複数の室内機10が接続されてもよい。 In addition, although the example of FIG. 3 shows the case where one indoor unit 10 and one outdoor unit 20 are connected, the number of indoor units 10 and outdoor units 20 is not limited to this example. For example, a plurality of indoor units 10 may be connected to one outdoor unit 20. For example, one or a plurality of indoor units 10 may be connected to a plurality of outdoor units 20.
(室内機)
 室内機10は、膨張弁11、室内熱交換器12、室内送風機13、および室内制御装置30で構成され、これらが室内機10の筐体に収容されている。
(Indoor unit)
The indoor unit 10 includes an expansion valve 11, an indoor heat exchanger 12, an indoor blower 13, and an indoor control device 30, which are housed in the casing of the indoor unit 10.
 膨張弁11は、冷媒を減圧して膨張させる。膨張弁11は、例えば、電子式膨張弁などの開度の制御が可能な弁で構成されている。 The expansion valve 11 decompresses the refrigerant to expand it. The expansion valve 11 is configured by a valve capable of controlling the opening degree, such as an electronic expansion valve.
 室内熱交換器12は、ファン等の吸込口1から吹出口2に至る気流を生成する室内送風機13によって供給される、空調対象空間内の空気(以下、「室内空気」と適宜称する)と冷媒との間で熱交換を行う。これにより、室内空間に供給される調和空気である暖房用空気または冷房用空気が生成される。室内熱交換器12は、冷房運転の際に、冷媒を蒸発させ、その際の気化熱により室内空気を冷却する蒸発器として機能する。また、室内熱交換器12は、暖房運転の際に、冷媒の熱を室内空気に放熱して冷媒を凝縮させる凝縮器として機能する。 The indoor heat exchanger 12 is supplied with an air blower 13 that generates an air flow from the inlet 1 to the outlet 2 such as a fan, and the air in the air-conditioning target space (hereinafter referred to as “room air” as appropriate) and a refrigerant. Exchange heat with Thereby, heating air or cooling air, which is conditioned air supplied to the indoor space, is generated. The indoor heat exchanger 12 functions as an evaporator that evaporates the refrigerant during the cooling operation and cools the indoor air with the heat of vaporization at that time. In addition, the indoor heat exchanger 12 functions as a condenser that radiates the heat of the refrigerant to the room air and condenses the refrigerant during the heating operation.
 室内制御装置30は、例えばマイクロコンピュータ、CPU(Central Processing Unit)などの演算装置上で実行されるソフトウェア、各種機能を実現する回路デバイスなどのハードウェア等で構成されている。室内制御装置30は、例えば、図示しないリモートコントローラに対する使用者の操作による設定、赤外線センサ5からの温度情報などに基づき、この室内機10全体の動作を制御する。また、室内制御装置30は、赤外線センサ5によって温度情報が取得される際の、赤外線センサ5の駆動を制御する。 The indoor control device 30 includes, for example, software executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit), and hardware such as a circuit device that realizes various functions. The indoor control device 30 controls the overall operation of the indoor unit 10 based on, for example, settings made by a user operation on a remote controller (not shown), temperature information from the infrared sensor 5, and the like. The indoor control device 30 controls driving of the infrared sensor 5 when temperature information is acquired by the infrared sensor 5.
 図4は、図3に示す室内制御装置30の構成の一例を示すブロック図である。図4に示すように、室内制御装置30は、入力回路31、演算処理装置32、記憶装置33、および出力回路34で構成されている。 FIG. 4 is a block diagram showing an example of the configuration of the indoor control device 30 shown in FIG. As shown in FIG. 4, the indoor control device 30 includes an input circuit 31, an arithmetic processing device 32, a storage device 33, and an output circuit 34.
 入力回路31は、リモートコントローラ等からの設定情報、赤外線センサ5からの温度情報、室外制御装置40からの制御情報などが入力される。入力回路31は、入力された各種情報を演算処理装置32に対して出力する。 The input circuit 31 receives setting information from a remote controller or the like, temperature information from the infrared sensor 5, control information from the outdoor control device 40, and the like. The input circuit 31 outputs various input information to the arithmetic processing device 32.
 演算処理装置32は、後述する記憶装置33に記憶されたデータを用いて、入力回路31から受け取った情報に基づき各種処理を行う。例えば、演算処理装置32は、赤外線センサ5からの温度情報に基づき、室内の温度状態を示す熱画像を作成する処理、作成した熱画像に基づいて室内に存在する人体の位置の検出および人体の身長などの特徴を判断する処理などを行う。このような演算処理装置32による処理の詳細については、後述する。 The arithmetic processing unit 32 performs various processes based on information received from the input circuit 31 using data stored in the storage unit 33 described later. For example, the arithmetic processing unit 32 creates a thermal image indicating the indoor temperature state based on the temperature information from the infrared sensor 5, detects the position of the human body existing in the room based on the created thermal image, and detects the human body. Processing to determine characteristics such as height is performed. Details of such processing by the arithmetic processing unit 32 will be described later.
 そして、演算処理装置32は、検出された人体の位置および判断した人体の特徴に応じて調和空気を送出するように、室内機10に設けられた動作装置に対する制御情報、室外機20に対する制御情報などを生成して出力回路34に出力する。このとき生成される制御情報としては、例えば、風向を制御するための情報、室内送風機13の風量を制御するための情報、膨張弁11の開度を制御するための情報等である。 Then, the arithmetic processing device 32 sends control information for the operation device provided in the indoor unit 10 and control information for the outdoor unit 20 so as to send conditioned air according to the detected position of the human body and the determined characteristics of the human body. Are generated and output to the output circuit 34. Examples of the control information generated at this time include information for controlling the air direction, information for controlling the air volume of the indoor blower 13, information for controlling the opening degree of the expansion valve 11, and the like.
 記憶装置33は、演算処理装置32で行われる処理に必要なプログラムおよび各種データを記憶する。また、記憶装置33は、演算処理装置32における各種処理によって得られたデータを記憶することもできる。 The storage device 33 stores programs and various data necessary for processing performed by the arithmetic processing device 32. The storage device 33 can also store data obtained by various processes in the arithmetic processing device 32.
 例えば、記憶装置33は、室内に人体が存在しない場合の熱画像を記憶する。この熱画像は、演算処理装置32によって室内の人体の位置の検出、および人体の特徴を判断する際に用いられる基準となる熱画像(以下、「基準熱画像」と適宜称する)である。基準熱画像は、例えば、室内に人体が存在しないと判断できる場合の温度情報に基づき、演算処理装置32によって予め作成される。 For example, the storage device 33 stores a thermal image when no human body is present in the room. This thermal image is a thermal image serving as a reference (hereinafter referred to as “reference thermal image” as appropriate) used when the arithmetic processing unit 32 detects the position of the human body in the room and determines the characteristics of the human body. The reference thermal image is created in advance by the arithmetic processing device 32 based on temperature information when it can be determined that no human body is present in the room, for example.
 出力回路34は、演算処理装置32から各種の制御情報を受け取り、対応する室内機10に設けられた動作装置、または室外機20に対して出力する。例えば、風向を制御するための制御情報を受け取った場合、出力回路34は、上下風向板3および左右風向板4を駆動するための図示しない駆動装置に対してこの制御情報を出力する。また、例えば、風量を制御するための制御情報を受け取った場合、出力回路34は、室内送風機13を駆動するための図示しない駆動装置に対してこの制御情報を出力する。さらに、例えば、室外機20に対する制御情報を受け取った場合、出力回路34は、室外機20の室外制御装置40に対してこの制御情報を出力する。 The output circuit 34 receives various control information from the arithmetic processing unit 32 and outputs it to the operation device provided in the corresponding indoor unit 10 or the outdoor unit 20. For example, when control information for controlling the wind direction is received, the output circuit 34 outputs this control information to a driving device (not shown) for driving the up and down wind direction plate 3 and the left and right wind direction plate 4. For example, when control information for controlling the air volume is received, the output circuit 34 outputs this control information to a drive device (not shown) for driving the indoor blower 13. Further, for example, when control information for the outdoor unit 20 is received, the output circuit 34 outputs this control information to the outdoor control device 40 of the outdoor unit 20.
 図5は、図4に示す演算処理装置32の構成の一例を示す機能ブロック図である。図5に示すように、演算処理装置32は、熱画像作成部35、人体位置検出部36、人体特性検出部37、人体情報作成部38、および風向決定部39aで構成されている。なお、図5では、本発明の特徴に関連する部分についての機能ブロックのみを図示し、それ以外の部分については、図示および説明を省略する。 FIG. 5 is a functional block diagram showing an example of the configuration of the arithmetic processing unit 32 shown in FIG. As shown in FIG. 5, the arithmetic processing unit 32 includes a thermal image creation unit 35, a human body position detection unit 36, a human body characteristic detection unit 37, a human body information creation unit 38, and a wind direction determination unit 39a. In FIG. 5, only functional blocks for portions related to the features of the present invention are illustrated, and illustration and description of other portions are omitted.
 熱画像作成部35は、赤外線センサ5によって取得された温度情報が入力回路31から入力される。熱画像作成部35は、入力された温度情報に基づき、室内の温度分布を示す熱画像を作成する。 The temperature information acquired by the infrared sensor 5 is input from the input circuit 31 to the thermal image creation unit 35. The thermal image creation unit 35 creates a thermal image indicating the temperature distribution in the room based on the input temperature information.
 人体位置検出部36は、熱画像作成部35で作成された熱画像と、記憶装置33に予め記憶された基準熱画像とに基づき、室内の人体を検出する。また、人体位置検出部36は、検出された人体を示す熱画像(以下、「人体画像」と適宜称する)中の画素の座標に基づき、検出された人体の位置を検出する。 The human body position detection unit 36 detects a human body in the room based on the thermal image created by the thermal image creation unit 35 and the reference thermal image stored in advance in the storage device 33. Further, the human body position detection unit 36 detects the position of the detected human body based on the coordinates of the pixels in the thermal image indicating the detected human body (hereinafter referred to as “human body image” as appropriate).
 人体特性検出部37は、人体位置検出部36で熱画像中から人体が検出された場合に、検出された人体に対応する人体画像に基づき、その人体が大人または子供のいずれであるのか等の特徴を検出する。 When the human body position detection unit 36 detects a human body from the thermal image, the human body characteristic detection unit 37 determines whether the human body is an adult or a child based on the human body image corresponding to the detected human body. Detect features.
 人体情報作成部38は、人体位置検出部36で検出された人体の位置と、人体特性検出部37で検出された人体の特徴とに基づき、人体情報を作成する。人体情報は、室内の人体の位置と当該人体の特徴とを関連付けた情報である。 The human body information creation unit 38 creates human body information based on the position of the human body detected by the human body position detection unit 36 and the characteristics of the human body detected by the human body characteristic detection unit 37. The human body information is information in which the position of the human body in the room is associated with the characteristics of the human body.
 風向決定部39aは、人体情報作成部38で作成された人体情報に基づき、調和空気の風向を決定する。そして、風向決定部39aは、決定した風向となるように上下風向板3および左右風向板4の向きを制御するための制御情報を生成し、出力回路34に対して出力する。 The wind direction determination unit 39a determines the wind direction of the conditioned air based on the human body information created by the human body information creation unit 38. Then, the wind direction determination unit 39a generates control information for controlling the directions of the upper and lower wind direction plates 3 and the left and right wind direction plates 4 so that the determined wind direction is obtained, and outputs the control information to the output circuit 34.
(室外機)
 説明は図3に戻り、室外機20は、圧縮機21、冷媒流路切替装置22、室外熱交換器23、室外送風機24、および室外制御装置40で構成されている。
(Outdoor unit)
Returning to FIG. 3, the outdoor unit 20 includes a compressor 21, a refrigerant flow switching device 22, an outdoor heat exchanger 23, an outdoor blower 24, and an outdoor control device 40.
 圧縮機21は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出する。圧縮機21としては、例えば、駆動周波数を任意に変化させることにより、単位時間あたりの冷媒送出量である容量を制御することが可能なインバータ圧縮機等を用いることができる。 The compressor 21 sucks a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state. As the compressor 21, for example, an inverter compressor or the like that can control the capacity that is the refrigerant delivery amount per unit time by arbitrarily changing the drive frequency can be used.
 冷媒流路切替装置22は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置22としては、上述した四方弁に限らず、例えば他の弁を組み合わせて使用してもよい。 The refrigerant flow switching device 22 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows. The refrigerant flow switching device 22 is not limited to the four-way valve described above, and other valves may be used in combination, for example.
 室外熱交換器23は、ファン等の室外送風機24によって供給される空気(以下、「室外空気」と適宜称する)と冷媒との間で熱交換を行う。具体的には、室外熱交換器23は、冷房運転の際に凝縮器として機能する。また、室外熱交換器23は、暖房運転の際に蒸発器として機能する。 The outdoor heat exchanger 23 performs heat exchange between the air (hereinafter referred to as “outdoor air” as appropriate) supplied by the outdoor blower 24 such as a fan and the refrigerant. Specifically, the outdoor heat exchanger 23 functions as a condenser during the cooling operation. The outdoor heat exchanger 23 functions as an evaporator during the heating operation.
 室外制御装置40は、例えばマイクロコンピュータ、CPUなどの演算装置上で実行されるソフトウェア、各種機能を実現する回路デバイスなどのハードウェア等で構成されている。室外制御装置40は、室外機20の各部から受け取る各種情報に基づき、この室外機20全体の動作を制御する。具体的には、室外制御装置40は、例えば室内制御装置30からの制御情報、冷凍サイクル中に設けられた図示しない各種センサからの情報に基づき、圧縮機21の圧縮機周波数、冷媒流路切替装置22の流路の切替などを制御する。 The outdoor control device 40 includes, for example, software executed on a computing device such as a microcomputer or CPU, and hardware such as a circuit device that implements various functions. The outdoor control device 40 controls the overall operation of the outdoor unit 20 based on various information received from each part of the outdoor unit 20. Specifically, the outdoor control device 40, for example, based on control information from the indoor control device 30 and information from various sensors (not shown) provided in the refrigeration cycle, the compressor frequency of the compressor 21 and refrigerant flow path switching. The switching of the flow path of the device 22 is controlled.
 図6は、図3に示す室外制御装置40の構成の一例を示すブロック図である。図6に示すように、室外制御装置40は、入力回路41、演算処理装置42、記憶装置43、および出力回路44で構成されている。 FIG. 6 is a block diagram showing an example of the configuration of the outdoor control device 40 shown in FIG. As shown in FIG. 6, the outdoor control device 40 includes an input circuit 41, an arithmetic processing device 42, a storage device 43, and an output circuit 44.
 入力回路41は、室内制御装置30からの制御情報、空気調和機100内に設けられた図示しない各種センサによって取得した情報などが入力される。入力回路41は、入力された各種情報を演算処理装置42に対して出力する。 The input circuit 41 receives control information from the indoor control device 30, information acquired by various sensors (not shown) provided in the air conditioner 100, and the like. The input circuit 41 outputs various input information to the arithmetic processing unit 42.
 演算処理装置42は、後述する記憶装置43に記憶されたデータを用いて、入力回路41から受け取った情報に基づき各種処理を行う。そして、演算処理装置42は、室外機20に設けられた各種動作を行うための制御情報、室内機10に対する制御情報などを生成し、出力回路44に対して出力する。 The arithmetic processing unit 42 performs various processes based on information received from the input circuit 41 using data stored in the storage unit 43 described later. The arithmetic processing unit 42 generates control information for performing various operations provided in the outdoor unit 20, control information for the indoor unit 10, and the like, and outputs the control information to the output circuit 44.
 演算処理装置42で生成される制御情報としては、例えば、圧縮機21の容量を制御するための情報、室外送風機24の風量を制御するための情報、冷媒の流路を制御するための情報等である。記憶装置43は、演算処理装置42で行われる処理に必要なプログラムおよび各種データを記憶する。 Examples of the control information generated by the arithmetic processing unit 42 include information for controlling the capacity of the compressor 21, information for controlling the air volume of the outdoor blower 24, information for controlling the refrigerant flow path, and the like. It is. The storage device 43 stores programs and various data necessary for processing performed by the arithmetic processing device 42.
 出力回路44は、演算処理装置42から各種の制御情報を受け取り、対応する室外機20に設けられた動作装置、または室内機10に対して出力する。例えば、圧縮機21の容量を制御するための制御情報を受け取った場合、出力回路44は、圧縮機21に対してこの制御情報を出力する。また、例えば、風量を制御するための制御情報を受け取った場合、出力回路44は、室外送風機24を駆動するための図示しない駆動装置に対してこの制御情報を出力する。さらに、例えば、室内機10に対する制御情報を受け取った場合、出力回路34は、室内機10の室内制御装置30に対してこの制御情報を出力する。 The output circuit 44 receives various control information from the arithmetic processing unit 42 and outputs it to the operation device provided in the corresponding outdoor unit 20 or the indoor unit 10. For example, when control information for controlling the capacity of the compressor 21 is received, the output circuit 44 outputs this control information to the compressor 21. For example, when control information for controlling the air volume is received, the output circuit 44 outputs this control information to a driving device (not shown) for driving the outdoor blower 24. Further, for example, when control information for the indoor unit 10 is received, the output circuit 34 outputs this control information to the indoor control device 30 of the indoor unit 10.
[空気調和機の動作]
 次に、上記構成を有する空気調和機100における冷房運転モードおよび暖房運転モードでの冷媒の動作について説明する。なお、図3に示す例において、冷媒流路切替装置22の実線で示す状態が冷房運転モードでの状態であり、冷媒の流れ方向を実線で示す。また、冷媒流路切替装置22の点線で示す状態が暖房運転モードでの状態であり、冷媒の流れ方向を点線で示す。
[Air conditioner operation]
Next, the operation of the refrigerant in the cooling operation mode and the heating operation mode in the air conditioner 100 having the above configuration will be described. In the example shown in FIG. 3, the state indicated by the solid line of the refrigerant flow switching device 22 is the state in the cooling operation mode, and the flow direction of the refrigerant is indicated by the solid line. Moreover, the state shown with the dotted line of the refrigerant | coolant flow path switching apparatus 22 is a state in heating operation mode, and the flow direction of a refrigerant | coolant is shown with a dotted line.
(冷房運転モード)
 まず、冷房運転モードでの冷媒の動作について説明する。冷房運転モードでは、冷媒流路切替装置22が図3の実線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機21によって圧縮され、高温高圧のガス冷媒となって吐出される。
(Cooling operation mode)
First, the operation of the refrigerant in the cooling operation mode will be described. In the cooling operation mode, the refrigerant flow switching device 22 is switched to the state shown by the solid line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 21 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機21から吐出された高温高圧のガス冷媒は、冷媒流路切替装置22を介して室外熱交換器23に流入する。室外熱交換器23に流入した高温高圧のガス冷媒は、室外空気と熱交換して放熱しながら凝縮し、過冷却状態の高圧の液冷媒となって室外熱交換器23から流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 via the refrigerant flow switching device 22. The high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 23 is condensed with heat exchange with the outdoor air while dissipating heat, and becomes a supercooled high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 23.
 室外熱交換器23から流出した高圧の液冷媒は、膨張弁11によって減圧されて低温低圧の気液二相冷媒となり、室内熱交換器12に流入する。室内熱交換器12に流入した低温低圧の気液二相冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低温低圧のガス冷媒となって室内熱交換器12から流出する。 The high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 23 is decompressed by the expansion valve 11 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the indoor heat exchanger 12. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 12 cools the indoor air by exchanging heat with the indoor air and absorbs and evaporates, thereby becoming a low-temperature and low-pressure gas refrigerant. Spill from.
 室内熱交換器12から流出した低温低圧のガス冷媒は、冷媒流路切替装置22を通過して、圧縮機21へ吸入される。 The low-temperature and low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 12 passes through the refrigerant flow switching device 22 and is sucked into the compressor 21.
(暖房運転モード)
 次に、暖房運転モードでの冷媒の動作について説明する。
 暖房運転モードでは、冷媒流路切替装置22が図3の点線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機21によって圧縮され、高温高圧のガス冷媒となって吐出される。
(Heating operation mode)
Next, the operation of the refrigerant in the heating operation mode will be described.
In the heating operation mode, the refrigerant flow switching device 22 is switched to the state indicated by the dotted line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 21 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機21から吐出された高温高圧のガス冷媒は、冷媒流路切替装置22を介して室内熱交換器12に流入する。室内熱交換器12に流入した高温高圧のガス冷媒は、室内空気と熱交換して放熱しながら凝縮し、過冷却状態の高圧の液冷媒となって室内熱交換器12から流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the indoor heat exchanger 12 via the refrigerant flow switching device 22. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 12 is condensed while dissipating heat by exchanging heat with the indoor air, and flows out of the indoor heat exchanger 12 as a high-pressure liquid refrigerant in a supercooled state.
 室内熱交換器12から流出した高圧の液冷媒は、膨張弁11によって減圧されて低温低圧の気液二相冷媒となり、室外熱交換器23に流入する。室外熱交換器23に流入した低温低圧の気液二相冷媒は、室外空気と熱交換して吸熱および蒸発し、低温低圧のガス冷媒となって室外熱交換器23から流出する。 The high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 12 is decompressed by the expansion valve 11 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 23. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 23 exchanges heat with outdoor air, absorbs heat and evaporates, and flows out of the outdoor heat exchanger 23 as low-temperature and low-pressure gas refrigerant.
 室外熱交換器23から流出した低温低圧のガス冷媒は、冷媒流路切替装置22を通過して、圧縮機21へ吸入される。 The low-temperature and low-pressure gas refrigerant that has flowed out of the outdoor heat exchanger 23 passes through the refrigerant flow switching device 22 and is sucked into the compressor 21.
[風向設定処理]
 次に、室内に人体が存在する場合の風向を設定する処理について説明する。本実施の形態1では、室内における人体の有無および人体の位置を検出するとともに、検出された人体の身長などの特徴を検出する。そして、検出された当該人体の位置および特徴に応じて風向が設定される。
[Wind direction setting process]
Next, processing for setting the wind direction when a human body exists in the room will be described. In the first embodiment, the presence / absence of the human body and the position of the human body are detected in the room, and the detected features such as the height of the human body are detected. Then, the wind direction is set according to the detected position and characteristics of the human body.
 図7は、本実施の形態1に係る室内機10による風向設定処理の流れの一例を示すフローチャートである。なお、図7に示す処理は、室内に人体が存在する場合について示すものである。また、この処理は、予め設定された時間毎に行われるものとする。本実施の形態1では、この風向設定処理に先立って、室内の温度分布を示す熱画像の作成と、人体および当該人体の位置の検出と、人体の特徴の検出とが行われる。 FIG. 7 is a flowchart showing an example of the flow of wind direction setting processing by the indoor unit 10 according to the first embodiment. Note that the processing shown in FIG. 7 shows a case where a human body exists in the room. In addition, this process is performed every preset time. In the first embodiment, prior to the wind direction setting process, a thermal image indicating the indoor temperature distribution, detection of the human body and the position of the human body, and detection of the characteristics of the human body are performed.
(熱画像の作成)
 まず、熱画像の作成方法について説明する。室内制御装置30の演算処理装置32は、熱画像作成部35により、赤外線センサ5からの温度情報に基づいて熱画像を作成する。図8は、図5の熱画像作成部35によって、人体が存在する場合の熱画像を作成する際の様子を示す概略図である。図8に示す例は、室内に人体である子供60と大人61とが共に立った状態で存在する場合を示す。
(Create thermal image)
First, a method for creating a thermal image will be described. The arithmetic processing device 32 of the indoor control device 30 creates a thermal image based on the temperature information from the infrared sensor 5 by the thermal image creation unit 35. FIG. 8 is a schematic diagram showing a state when a thermal image is created when a human body exists by the thermal image creation unit 35 of FIG. The example shown in FIG. 8 shows a case where a child 60 and an adult 61 that are human bodies are present together in a room.
 熱画像作成部35は、例えば、赤外線センサ5が室内を走査することによって得られた温度情報が示す温度値を、走査した際に得られる座標位置に並べることにより、熱画像を作成する。この場合、室内に存在する子供60および大人61の表面温度、ならびに周囲の温度が赤外線センサ5によって検出される。 The thermal image creation unit 35 creates a thermal image by, for example, arranging temperature values indicated by temperature information obtained by scanning the room with the infrared sensor 5 at coordinate positions obtained when scanning. In this case, the surface temperature of the child 60 and the adult 61 existing in the room and the ambient temperature are detected by the infrared sensor 5.
(人体の検出)
 次に、熱画像に基づく人体の検出方法について説明する。演算処理装置32は、人体位置検出部36により、室内に存在する人体を検出する。人体を検出する場合には、熱画像作成部35によって作成された熱画像を用いる。そして、この熱画像から、記憶装置33に記憶されている基準熱画像と比較して温度が変化した部分を抽出することにより、人体を検出することができる。
(Detection of human body)
Next, a human body detection method based on a thermal image will be described. The arithmetic processing unit 32 detects the human body existing in the room by the human body position detection unit 36. When detecting a human body, the thermal image created by the thermal image creation unit 35 is used. And a human body can be detected by extracting the part from which the temperature changed compared with the reference | standard thermal image memorize | stored in the memory | storage device 33 from this thermal image.
 具体的には、例えば、人体が存在する熱画像と基準画像との差分を算出した場合、人体に対応する画素の差分値は、それ以外の画素の差分値よりも大きな値となる。そこで、本実施の形態1では、差分値に対する閾値を予め設定し、画素の差分値がこの閾値以上、例えば3℃以上の温度差に相当する値以上である場合に、当該画素が人体に対応する画素であるものとする。そして、このような処理をすべての画素に対して行うことにより、熱画像に含まれる人体を検出することができる。なお、閾値は、例えば予め設定された一律の数値を用いてもよいし、空気温度、あるいは基準熱画像中のすべてまたは一部の画素の平均温度に応じて設定された数値等を用いてもよい。 Specifically, for example, when a difference between a thermal image in which a human body exists and a reference image is calculated, a difference value of a pixel corresponding to the human body is larger than a difference value of other pixels. Therefore, in the first embodiment, a threshold value for the difference value is set in advance, and when the pixel difference value is equal to or greater than this threshold value, for example, a value corresponding to a temperature difference of 3 ° C. or greater, the pixel corresponds to the human body. It is assumed that the pixel Then, by performing such processing on all the pixels, the human body included in the thermal image can be detected. As the threshold value, for example, a preset uniform numerical value may be used, or an air temperature or a numerical value set according to the average temperature of all or some of the pixels in the reference thermal image may be used. Good.
 すなわち、人体位置検出部36は、熱画像作成部35によって作成された室内の熱画像と、記憶装置33に記憶されている基準熱画像との間の差分を画素毎に算出する。そして、例えば、算出された差分が予め設定された閾値以上となる画素が、人体に対応する画素と判断し、このような画素によって形成された人体画像を抽出することができる。 That is, the human body position detection unit 36 calculates the difference between the indoor thermal image created by the thermal image creation unit 35 and the reference thermal image stored in the storage device 33 for each pixel. Then, for example, a pixel whose calculated difference is equal to or greater than a preset threshold value can be determined as a pixel corresponding to the human body, and a human body image formed by such a pixel can be extracted.
(人体の位置の検出)
 次に、人体の位置の検出方法について説明する。演算処理装置32は、人体位置検出部36により、検出された人体の位置を検出する。人体の位置の検出は、熱画像中の人体画像の座標に基づいて検出することができる。人体位置検出部36は、熱画像から人体画像を形成する画素の座標を取得する。これにより、室内の熱画像に対する人体画像の位置、すなわち室内における人体の位置を検出することができる。
(Detection of human body position)
Next, a method for detecting the position of the human body will be described. In the arithmetic processing device 32, the human body position detection unit 36 detects the position of the detected human body. The position of the human body can be detected based on the coordinates of the human body image in the thermal image. The human body position detection unit 36 acquires the coordinates of the pixels forming the human body image from the thermal image. Thereby, the position of the human body image with respect to the indoor thermal image, that is, the position of the human body in the room can be detected.
(人体の特徴の検出)
 次に、人体の特徴の検出方法について説明する。演算処理装置32は、人体特性検出部37により、人体位置検出部36で検出された人体の特徴を検出する。ここで、人体の特徴は、例えば当該人体が大人または子供のいずれであるかを示すものである。これは、例えば人体の大きさによって判断することができる。
(Detection of human characteristics)
Next, a method for detecting human body features will be described. In the arithmetic processing device 32, the human body characteristic detection unit 37 detects the characteristics of the human body detected by the human body position detection unit 36. Here, the characteristics of the human body indicate, for example, whether the human body is an adult or a child. This can be determined by the size of the human body, for example.
 人体特性検出部37は、例えば、熱画像中から検出された人体に対応する人体画像における人体の姿勢、下端位置、人体画像を構成する画素数、画素数による人体画像の縦横比などの人体画像の特徴に基づき、人体が大人または子供のいずれであるかを判断する。 The human body characteristic detection unit 37 is, for example, a human body image such as the posture of the human body, the lower end position, the number of pixels constituting the human body image, and the aspect ratio of the human body image based on the number of pixels in the human body image corresponding to the human body detected from the thermal image. Based on the above characteristics, it is determined whether the human body is an adult or a child.
 ここで、人体位置検出部36による人体の位置の検出方法、および人体特性検出部37による人体の特徴の検出方法について、具体的に説明する。検出された人体が大人または子供いずれであるのかを判断する場合には、例えば、人体画像を構成する画素数によって判断することが考えられる。しかし、このような熱画像においては、例え同一人体であっても、赤外線センサ5から人体までの距離によって画素数が異なる。そのため、このような場合には、人体画像の画素数によって単純に人体の大きさを判断することができない。例えば、赤外線センサ5を備えた室内機10に人体が近づいた場合には、熱画像に含まれる人体画像が大きくなり、遠ざかった場合には人体画像が小さくなる。 Here, the human body position detection method by the human body position detection unit 36 and the human body feature detection method by the human body characteristic detection unit 37 will be specifically described. When determining whether the detected human body is an adult or a child, for example, it may be determined based on the number of pixels constituting the human body image. However, in such a thermal image, the number of pixels varies depending on the distance from the infrared sensor 5 to the human body, even for the same human body. Therefore, in such a case, the size of the human body cannot be simply determined based on the number of pixels of the human body image. For example, when the human body approaches the indoor unit 10 including the infrared sensor 5, the human body image included in the thermal image becomes large, and when the human body moves away, the human body image becomes small.
 そこで、室内に存在する人体の大きさを推定する場合には、まず、人体位置検出部36により、人体の位置、すなわち室内機10から人体までの距離を算出する。室内機10と人体との距離は、例えば、熱画像における人体画像の下端画素の位置に基づき、算出することができる。 Therefore, when estimating the size of the human body existing in the room, first, the human body position detection unit 36 calculates the position of the human body, that is, the distance from the indoor unit 10 to the human body. The distance between the indoor unit 10 and the human body can be calculated based on the position of the lower end pixel of the human body image in the thermal image, for example.
 ところで、人体画像の下端画素の位置と室内機10から人体までの距離との関係は、赤外線センサ5の視野角により求めることができる。そこで、本実施の形態1では、このような対応関係を示すテーブルを予め用意しておき、このテーブルを用いて人体画像に対応する人体の室内機10からの距離を求める。 By the way, the relationship between the position of the lower end pixel of the human body image and the distance from the indoor unit 10 to the human body can be obtained from the viewing angle of the infrared sensor 5. Therefore, in the first embodiment, a table indicating such a correspondence relationship is prepared in advance, and the distance from the indoor unit 10 of the human body corresponding to the human body image is obtained using this table.
 図9は、図8の状態で取得した熱画像から人体画像を抽出した状態の熱画像を示す概略図である。図9に示す例では、人体画像を構成するすべての画素を黒画素に変換した場合を示す。なお、「黒画素」とは、画素値が黒色に対応する値「0」である画素のことをいう。すなわち、図9に示す例は、人体画像を構成するすべての画素の値を「0」としたものである。 FIG. 9 is a schematic diagram showing a thermal image in a state where a human body image is extracted from the thermal image acquired in the state of FIG. In the example shown in FIG. 9, the case where all the pixels which comprise a human body image are converted into a black pixel is shown. The “black pixel” refers to a pixel having a pixel value “0” corresponding to black. That is, in the example shown in FIG. 9, the values of all the pixels constituting the human body image are “0”.
 図10は、人体画像の下端画素の位置と室内機10から人体までの距離との関係を示す距離テーブルの一例を示す概略図である。この距離テーブルでは、熱画像全体の下端に対する人体画像の下端画素の位置と、室内機10から人体までの距離とが互いに対応付けられている。例えば、人体画像の下端画素の位置が熱画像全体の下端から1画素目である場合、室内機10から人体までの距離は、0.5mであることを示す。 FIG. 10 is a schematic diagram showing an example of a distance table showing the relationship between the position of the lower end pixel of the human body image and the distance from the indoor unit 10 to the human body. In this distance table, the position of the lower end pixel of the human body image with respect to the lower end of the entire thermal image and the distance from the indoor unit 10 to the human body are associated with each other. For example, when the position of the lower end pixel of the human body image is the first pixel from the lower end of the entire thermal image, it indicates that the distance from the indoor unit 10 to the human body is 0.5 m.
 本実施の形態1において、距離テーブルは、記憶装置33に予め記憶しておく。なお、室内機10から人体までの距離の値は、例えば、赤外線センサ5の高さに関わらず、予め定められた値としてもよいし、赤外線センサ5の高さ毎に異なる値としてもよい。 In the first embodiment, the distance table is stored in the storage device 33 in advance. Note that the value of the distance from the indoor unit 10 to the human body may be a predetermined value regardless of the height of the infrared sensor 5, or may be a different value for each height of the infrared sensor 5.
 図9に示す例において、子供60の人体画像における下端画素は、熱画像全体の下端から3画素目に位置している。したがって、人体位置検出部36は、図10の距離テーブルに基づき、室内機10から子供60までの距離が1.5mであると判断することができる。また、大人61の人体画像における下端画素は、熱画像全体の下端から6画素目に位置している。したがって、人体位置検出部36は、室内機10から大人61までの距離が3.0mであると判断することができる。 In the example shown in FIG. 9, the lower end pixel in the human body image of the child 60 is located at the third pixel from the lower end of the entire thermal image. Therefore, the human body position detection unit 36 can determine that the distance from the indoor unit 10 to the child 60 is 1.5 m based on the distance table of FIG. Further, the lower end pixel in the human body image of the adult 61 is located at the sixth pixel from the lower end of the entire thermal image. Therefore, the human body position detection unit 36 can determine that the distance from the indoor unit 10 to the adult 61 is 3.0 m.
 次に、例えば人体が床に座っている場合と立っている場合とでは、同一人体であっても熱画像に含まれる人体画像の大きさが異なるため、人体の姿勢を推定する必要がある。このような人体の姿勢は、例えば、人体画像における縦方向の最大画素数と横方向の最大画素数の比である縦横比nを求めることによって推定することができる。なお、縦方向および横方向の最大画素数の縦横比nは、「縦方向の最大画素数÷横方向の最大画素数」によって算出される。 Next, for example, when the human body is sitting on the floor and when standing, the size of the human body image included in the thermal image is different even if the human body is the same, so it is necessary to estimate the posture of the human body. Such a posture of the human body can be estimated by, for example, obtaining an aspect ratio n that is a ratio of the maximum number of pixels in the vertical direction and the maximum number of pixels in the horizontal direction in the human body image. The aspect ratio n of the maximum number of pixels in the vertical direction and the horizontal direction is calculated by “the maximum number of pixels in the vertical direction ÷ the maximum number of pixels in the horizontal direction”.
 図11は、人体画像における縦方向および横方向の最大画素数の縦横比nと、人体の姿勢との関係を示す姿勢テーブルの一例を示す概略図である。図11に示す例では、例えば、縦横比nが0.2以下である場合には、人体の姿勢が「臥位」であると推定することができる。また、縦横比nが0.2よりも大きく、0.5よりも小さい場合には、人体の姿勢が「座位」であると推定することができる。さらに、縦横比nが0.5以上である場合には、人体の姿勢が「立位」であると推定することができる。本実施の形態1において、姿勢テーブルは、記憶装置33に予め記憶しておく。 FIG. 11 is a schematic diagram showing an example of a posture table showing the relationship between the aspect ratio n of the maximum number of pixels in the vertical direction and the horizontal direction in the human body image and the posture of the human body. In the example illustrated in FIG. 11, for example, when the aspect ratio n is 0.2 or less, it is possible to estimate that the posture of the human body is “the supine position”. When the aspect ratio n is larger than 0.2 and smaller than 0.5, it can be estimated that the posture of the human body is “sitting position”. Furthermore, when the aspect ratio n is 0.5 or more, it can be estimated that the posture of the human body is “standing”. In the first embodiment, the posture table is stored in the storage device 33 in advance.
 図9に示す例において、子供60の人体画像における縦方向の最大画素数は10画素であり、横方向の最大画素数は7画素である。したがって、人体特性検出部37は、子供60の人体画像における縦横比nが「10÷7≒1.4」となることから、子供60が「立位」の状態であると推定することができる。また、大人61の人体画像における縦方向の最大画素数は12画素であり、横方向の最大画素数は6画素である。したがって、人体特性検出部37は、大人61の人体画像における縦横比nが「12÷6=2.0」となることから、大人61が「立位」の状態であると推定することができる。 In the example shown in FIG. 9, the maximum number of pixels in the vertical direction in the human body image of the child 60 is 10 pixels, and the maximum number of pixels in the horizontal direction is 7 pixels. Therefore, since the aspect ratio n in the human body image of the child 60 is “10 ÷ 7≈1.4”, the human body characteristic detection unit 37 can estimate that the child 60 is in the “standing position”. . The maximum number of pixels in the vertical direction in the human body image of the adult 61 is 12 pixels, and the maximum number of pixels in the horizontal direction is 6 pixels. Therefore, since the aspect ratio n in the human body image of the adult 61 is “12 ÷ 6 = 2.0”, the human body characteristic detection unit 37 can estimate that the adult 61 is in the “standing position”. .
 このようにして得られた室内機10から人体までの距離と人体の姿勢とを用いて、人体特性検出部37は、人体が大人または子供のいずれであるかを判断する。このとき、人体が大人または子供のいずれであるのかについては、室内機10から人体までの距離に応じた人体画像の大きさ、すなわち人体画像の画素数によって判断することができる。 Using the distance from the indoor unit 10 thus obtained to the human body and the posture of the human body, the human body characteristic detection unit 37 determines whether the human body is an adult or a child. At this time, whether the human body is an adult or a child can be determined by the size of the human body image corresponding to the distance from the indoor unit 10 to the human body, that is, the number of pixels of the human body image.
 なお、上述したように、人体画像の大きさは、室内機10から人体までの距離と、人体の姿勢によって変化する。そこで、人体が大人または子供のいずれであるのかを判断する場合には、例えば、室内機10から人体までの距離および人体の姿勢のそれぞれに対して予め閾値を設定する。そして、人体特性検出部37は、抽出された人体画像の画素数が、設定された閾値以上である場合に人体が大人であると判断し、当該閾値未満である場合に人体が子供であると判断する。 As described above, the size of the human body image varies depending on the distance from the indoor unit 10 to the human body and the posture of the human body. Therefore, when determining whether the human body is an adult or a child, for example, a threshold is set in advance for each of the distance from the indoor unit 10 to the human body and the posture of the human body. Then, the human body characteristic detection unit 37 determines that the human body is an adult when the number of pixels of the extracted human body image is equal to or greater than the set threshold value, and determines that the human body is a child when the number is less than the threshold value. to decide.
(風向の設定)
 次に、上述したようにして得られた人体の特徴に基づく室内機10の風向設定処理について説明する。図7に示すように、ステップS1において、演算処理装置32は、人体情報作成部38により、人体情報を作成する。人体情報作成部38は、上述したようにして検出された人体の位置と人体の特徴とに基づき、これらを関連付けた人体情報を作成する。
(Wind direction setting)
Next, the wind direction setting process of the indoor unit 10 based on the characteristics of the human body obtained as described above will be described. As shown in FIG. 7, in step S <b> 1, the arithmetic processing device 32 creates human body information by the human body information creation unit 38. Based on the position of the human body and the characteristics of the human body detected as described above, the human body information creating unit 38 creates human body information in which these are associated.
 次に、ステップS2において、風向決定部39aは、ステップS1で作成された人体情報に基づき、室内に存在する人体が大人であるか否かを判断する。人体が大人であると判断した場合には、処理がステップS3に移行する。一方、人体が子供であると判断した場合には、処理がステップS4に移行する。 Next, in step S2, the wind direction determining unit 39a determines whether the human body existing in the room is an adult based on the human body information created in step S1. If it is determined that the human body is an adult, the process proceeds to step S3. On the other hand, if it is determined that the human body is a child, the process proceeds to step S4.
 ステップS3において、風向決定部39aは、室内機10から送出される調和空気の風向が第1の上下風向となるように、上下風向板3を制御するための制御情報を生成し、この制御情報に基づいて上下風向板3を制御する。 In step S3, the wind direction determination unit 39a generates control information for controlling the vertical wind direction plate 3 such that the wind direction of the conditioned air sent from the indoor unit 10 becomes the first vertical wind direction, and this control information Based on the above, the vertical wind direction plate 3 is controlled.
 第1の上下風向は、室内に存在する人体が大人である場合の上下風向である。そのため、例えば暖房運転時には、従来と同様に、風向が人体の足下に向くように上下風向板3の向きが設定される。また、例えば冷房運転時には、従来と同様に、風向が人体の頭上に向くように上下風向板3の向きが設定される。 The first vertical wind direction is the vertical wind direction when the human body in the room is an adult. For this reason, for example, during the heating operation, the direction of the vertical wind direction plate 3 is set so that the wind direction faces the feet of the human body, as in the conventional case. For example, during the cooling operation, the direction of the vertical wind direction plate 3 is set so that the wind direction is over the head of the human body, as in the conventional case.
 なお、暖房運転時の上下風向板3の向きは、例えば、検出された人体についての人体画像における下端の座標位置に向くように設定される。また、冷房運転時の上下風向板3の向きは、例えば、人体画像における上端の座標よりも上の座標位置に向くように設定される。 In addition, the direction of the up-and-down wind direction board 3 at the time of heating operation is set so that it may face the coordinate position of the lower end in the human body image about the detected human body, for example. Moreover, the direction of the up-and-down wind direction board 3 at the time of air_conditionaing | cooling operation is set so that it may face in the coordinate position above the coordinate of the upper end in a human body image, for example.
 ステップS4において、風向決定部39aは、室内機10から送出される調和空気の風向が第1の上下風向とは異なる第2の上下風向となるように、上下風向板3を制御するための制御情報を生成し、この制御情報に基づいて上下風向板3を制御する。 In step S4, the wind direction determination unit 39a controls the vertical wind direction plate 3 so that the wind direction of the conditioned air sent from the indoor unit 10 becomes a second vertical wind direction different from the first vertical wind direction. Information is produced | generated and the up-and-down wind direction board 3 is controlled based on this control information.
 第2の上下風向は、室内に存在する人体が子供である場合の上下風向である。そのため、例えば暖房運転時には、気流が床面付近で上下に広がることを考慮して、大人に対する第1の上下風向よりも風向が人体の足下よりも室内機10側に向くように、上下風向板3の向きが設定される。すなわち、第2の上下風向が選択された場合、上下風向板3の向きは、第1の上下風向時の向きよりも下側となるように設定される。また、例えば冷房運転時には、風向が人体の頭上に向くように上下風向板3の向きが設定される。 The second vertical wind direction is the vertical wind direction when the human body existing in the room is a child. Therefore, for example, in the heating operation, considering that the air current spreads up and down near the floor surface, the up-and-down wind direction plate is set so that the wind direction is more toward the indoor unit 10 than the foot of the human body than the first up-and-down wind direction for adults. The direction of 3 is set. That is, when the second up-and-down air direction is selected, the up-and-down air direction plate 3 is set to be lower than the direction in the first up-and-down air direction. For example, during the cooling operation, the direction of the vertical wind direction plate 3 is set so that the wind direction is directed above the human body.
 なお、暖房運転時の上下風向板3の向きは、例えば、人体画像における下端の座標よりも下の座標位置に向くように設定される。また、冷房運転時の上下風向板3の向きは、例えば、人体画像における上端の座標よりも上の座標位置に向くように設定される。 In addition, the direction of the up-and-down wind direction board 3 at the time of heating operation is set so that it may face the coordinate position below the coordinate of the lower end in a human body image, for example. Moreover, the direction of the up-and-down wind direction board 3 at the time of air_conditionaing | cooling operation is set so that it may face in the coordinate position above the coordinate of the upper end in a human body image, for example.
 また、ステップS3およびステップS4における左右風向は、人体の特徴に関わらず、人体の位置に応じて同一方向に設定される。すなわち、本実施の形態1における調和空気の左右風向は、人体の特徴によらず、人体の位置のみによって決定される。 Also, the left and right wind directions in step S3 and step S4 are set in the same direction according to the position of the human body regardless of the characteristics of the human body. That is, the right and left wind directions of the conditioned air in the first embodiment are determined only by the position of the human body regardless of the characteristics of the human body.
 図12は、図7の風向設定処理によって暖房運転時に上下風向が第1の上下風向に設定された場合の気流について説明するための第1の例を示す概略図である。図13は、暖房運転時に上下風向が第1の上下風向に設定された場合の気流について説明するための第2の例を示す概略図である。図14は、図7の風向設定処理によって暖房運転時に上下風向が第2の上下風向に設定された場合の気流について説明するための第3の例を示す概略図である。 FIG. 12 is a schematic diagram illustrating a first example for explaining the airflow when the vertical airflow direction is set to the first vertical airflow direction during the heating operation by the airflow direction setting process of FIG. FIG. 13 is a schematic diagram illustrating a second example for explaining the airflow when the vertical airflow direction is set to the first vertical airflow direction during the heating operation. FIG. 14 is a schematic diagram illustrating a third example for explaining the air flow when the up / down wind direction is set to the second up / down wind direction during the heating operation by the wind direction setting process of FIG. 7.
 図12に示す第1の例は、室内に大人の人体50aが存在し、空気調和機100が暖房運転を行うことによって室内機10から温風を送出する場合の、送出された調和空気の気流51を示す。第1の例では、本実施の形態1による風向設定処理により、室内機10が室内に存在する人体50aの位置および特徴に応じて上下風向板3の向きを調整し、上下風向を第1の上下風向に設定する。これにより、調和空気の気流51は、人体50aの足下に到達するようにされている。このとき、調和空気の気流51は床面付近で拡散し、一部の気流51aが上向きに流れる。そのため、このような気流51aによって人体を適切に暖めることができる。 The first example shown in FIG. 12 is a flow of conditioned air sent when an adult human body 50a is present in the room and warm air is sent from the indoor unit 10 by the air conditioner 100 performing a heating operation. 51 is shown. In the first example, by the wind direction setting process according to the first embodiment, the indoor unit 10 adjusts the direction of the vertical wind direction plate 3 according to the position and characteristics of the human body 50a existing in the room, and the vertical wind direction is set to the first level. Set up and down wind direction. Thereby, the air flow 51 of the conditioned air reaches the feet of the human body 50a. At this time, the air flow 51 of the conditioned air diffuses near the floor surface, and a part of the air flow 51a flows upward. Therefore, the human body can be appropriately warmed by the airflow 51a.
 図13に示す第2の例は、室内に子供の人体50bが存在し、空気調和機100が暖房運転を行うことによって室内機10から温風を送出する場合の、送出された調和空気の気流51を示す。第2の例では、上述した第1の例と同様に、上下風向板3の向きを調整して上下風向を第1の上下風向に設定した場合を示す。なお、この例において、室内機10に対する人体50bの位置は、第1の例における人体50aの位置と同等であるものとする。このように、室内に存在する人体の特徴によらずに上下風向を設定した場合、調和空気の気流51は、第1の例と同様に床面付近で拡散し、一部の気流51aが上向きに流れる。このとき、室内に存在する人体50bが子供であり、大人よりも身長が低いため、上向きに流れた気流51aによる調和空気が人体50bの顔に直接当たってしまう。 The second example shown in FIG. 13 is a flow of conditioned air sent when a child's human body 50b exists in the room and the air conditioner 100 sends warm air from the indoor unit 10 by performing a heating operation. 51 is shown. In the second example, as in the first example described above, the case where the vertical wind direction is set to the first vertical wind direction by adjusting the direction of the vertical wind direction plate 3 is shown. In this example, it is assumed that the position of the human body 50b with respect to the indoor unit 10 is equivalent to the position of the human body 50a in the first example. In this way, when the vertical wind direction is set regardless of the characteristics of the human body present in the room, the conditioned air flow 51 is diffused near the floor as in the first example, and a part of the air flow 51a is upward. Flowing into. At this time, since the human body 50b existing in the room is a child and is shorter than an adult, the conditioned air generated by the airflow 51a that flows upward directly hits the face of the human body 50b.
 一方、図14に示す第3の例は、第2の例と同様に、室内に子供の人体50bが存在し、空気調和機100が暖房運転を行うことによって室内機10から温風を送出する場合の、送出された調和空気の気流52を示す。第3の例では、第2の例と異なり、本実施の形態1による風向設定処理により、室内機10が室内に存在する人体50bの位置および特徴に応じて上下風向板3の向きを調整し、上下風向を第2の上下風向に設定する。これにより、調和空気の気流52は、人体50bの足下よりも手前側、すなわち室内機10側に到達するようにされている。このとき、調和空気の気流52は、第1および第2の例と同様に床面付近で拡散し、一部の気流52aが上向きに流れるものの、上下風向が第1の上下風向よりも室内機10側に到達するようにされているため、気流52aが人体50bの顔に直接当たるのを防ぎながら、人体50bを適切に暖めることができる。 On the other hand, in the third example shown in FIG. 14, similarly to the second example, a child's human body 50 b exists in the room, and the air conditioner 100 performs a heating operation to send warm air from the indoor unit 10. In the case, the conditioned air flow 52 is shown. In the third example, unlike the second example, the direction of the vertical wind direction plate 3 is adjusted by the wind direction setting process according to the first embodiment in accordance with the position and characteristics of the human body 50b in the room. The up / down air direction is set to the second up / down air direction. Thereby, the air flow 52 of the conditioned air reaches the front side of the human body 50b, that is, the indoor unit 10 side. At this time, the air flow 52 of the conditioned air diffuses in the vicinity of the floor surface as in the first and second examples, and a part of the air flow 52a flows upward, but the vertical air direction is higher than the first vertical air direction. Since it reaches the 10 side, the human body 50b can be appropriately warmed while preventing the airflow 52a from directly hitting the face of the human body 50b.
 以上のように、本実施の形態1に係る空気調和機100の室内機10は、吸込口1および吹出口2が形成され、吸込口1から吸い込まれた空気に基づく調和空気を吹出口2から送出するものであり、吹出口2に設けられ、調和空気の鉛直方向の送出方向を調整する上下風向板3と、空調対象空間内の温度情報を取得する赤外線センサ5と、温度情報に基づき上下風向板3を制御して、調和空気の気流を制御する室内制御装置30とを備えている。室内制御装置30は、温度情報に基づき、空調対象空間内の人体および人体の位置と、人体の特徴とを検出し、検出された人体の位置および特徴に応じて、調和空気の風向を制御する。 As described above, in the indoor unit 10 of the air conditioner 100 according to Embodiment 1, the suction port 1 and the air outlet 2 are formed, and conditioned air based on the air sucked from the air inlet 1 is supplied from the air outlet 2. An up-and-down wind direction plate 3 that adjusts the vertical direction of the conditioned air, an infrared sensor 5 that acquires temperature information in the air-conditioning target space, and an up-and-down direction based on the temperature information. And an indoor control device 30 that controls the wind direction plate 3 to control the airflow of conditioned air. The indoor control device 30 detects the human body and the position of the human body in the air-conditioning space and the characteristics of the human body based on the temperature information, and controls the wind direction of the conditioned air according to the detected position and characteristics of the human body. .
 このように、空調対象空間内の温度情報に基づいて検出された人体の位置および特徴に基づき、室内機10から送出される調和空気の風向を調整する。そのため、人体の顔に気流が当たるのを防ぐことができ、この気流による冷風感、肌の乾燥といった不快感を人体に与えることを抑制することができるので、適切に空気調和を行うことができる。 Thus, the wind direction of the conditioned air sent from the indoor unit 10 is adjusted based on the position and characteristics of the human body detected based on the temperature information in the air-conditioning target space. Therefore, it is possible to prevent the airflow from hitting the human body face, and to suppress discomfort such as feeling of cold air and dry skin from the airflow to the human body, so that air conditioning can be appropriately performed. .
 また、このような不快感を抑制できることにより、不快に感じた使用者による設定温度の変更を抑制することができるので、不要な消費エネルギーを削減し、省エネルギー性を確保することができる。 Moreover, since such discomfort can be suppressed, a change in the set temperature by a user who feels uncomfortable can be suppressed, so that unnecessary energy consumption can be reduced and energy saving can be ensured.
 実施の形態2.
 次に、本発明の実施の形態2に係る空気調和機の室内機について説明する。本実施の形態2は、検出された人体の特徴に応じて室内機から送出される調和空気の風量を制御する点で、調和空気の風向を制御する実施の形態1と相違する。なお、以下の説明において、上述した実施の形態1と同様の部分については、同一の符号を付し、説明を省略する。
Embodiment 2. FIG.
Next, an air conditioner indoor unit according to Embodiment 2 of the present invention will be described. The second embodiment is different from the first embodiment in which the air direction of the conditioned air is controlled in that the air volume of the conditioned air sent from the indoor unit is controlled according to the detected characteristics of the human body. In the following description, the same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 本実施の形態2における室内機10は、実施の形態1と同様に、図1~図4の構成を有しているため、ここでは説明を省略する。 Since the indoor unit 10 in the second embodiment has the configuration shown in FIGS. 1 to 4 as in the first embodiment, the description thereof is omitted here.
[演算処理装置の構成]
 図15は、本実施の形態2による演算処理装置32の構成の一例を示す機能ブロック図である。図15に示すように、演算処理装置32は、熱画像作成部35、人体位置検出部36、人体特性検出部37、人体情報作成部38、および風量決定部39bで構成されている。なお、図15では、本発明の特徴に関連する部分についての機能ブロックのみを図示し、それ以外の部分については、図示および説明を省略する。また、上述した実施の形態1と共通する部分については、説明を省略する。
[Configuration of arithmetic processing unit]
FIG. 15 is a functional block diagram showing an example of the configuration of the arithmetic processing device 32 according to the second embodiment. As shown in FIG. 15, the arithmetic processing unit 32 includes a thermal image creation unit 35, a human body position detection unit 36, a human body characteristic detection unit 37, a human body information creation unit 38, and an air volume determination unit 39b. In FIG. 15, only functional blocks for parts related to the features of the present invention are illustrated, and illustration and description of other parts are omitted. Further, description of portions common to the above-described first embodiment will be omitted.
 風量決定部39bは、人体情報作成部38で作成された人体情報に基づき、調和空気の風量を決定する。そして、風量決定部39bは、決定した風量となるように室内送風機13の回転数を制御するための制御情報を生成し、出力回路34に対して出力する。 The air volume determining unit 39b determines the air volume of the conditioned air based on the human body information created by the human body information creating unit 38. Then, the air volume determination unit 39b generates control information for controlling the rotational speed of the indoor blower 13 so as to achieve the determined air volume, and outputs the control information to the output circuit 34.
[風量設定処理]
 次に、室内に人体が存在する場合の風量を設定する処理について説明する。本実施の形態2では、実施の形態1と同様にして検出された室内における人体の位置および特徴に応じて、風量が設定される。
[Airflow setting processing]
Next, processing for setting the air volume when a human body exists in the room will be described. In the second embodiment, the air volume is set according to the position and characteristics of the human body in the room detected in the same manner as in the first embodiment.
 図16は、本実施の形態2に係る室内機10による風量設定処理の流れの一例を示すフローチャートである。なお、図16に示す処理は、室内に人体が存在する場合について示すものである。また、この処理は、予め設定された時間毎に行われるものとする。本実施の形態2では、この風量設定処理に先立って、実施の形態1と同様の処理によって熱画像の作成、人体および当該人体の位置の検出、人体の特徴の検出が行われる。 FIG. 16 is a flowchart showing an example of the flow of air volume setting processing by the indoor unit 10 according to the second embodiment. Note that the processing shown in FIG. 16 shows a case where a human body exists in the room. In addition, this process is performed every preset time. In the second embodiment, prior to this air volume setting process, the creation of a thermal image, the detection of the human body and the position of the human body, and the detection of the characteristics of the human body are performed by the same processing as in the first embodiment.
 図16に示すように、ステップS11において、演算処理装置32は、人体情報作成部38により、上述したようにして検出された人体の位置と人体の特徴とを関連付けた人体情報を作成する。 As shown in FIG. 16, in step S <b> 11, the arithmetic processing unit 32 uses the human body information creation unit 38 to create human body information that associates the position of the human body detected as described above with the characteristics of the human body.
 次に、ステップS12において、風量決定部39bは、ステップS11で作成された人体情報に基づき、室内に存在する人体が大人であるか否かを判断する。人体が大人であると判断した場合には、処理がステップS13に移行する。一方、人体が子供であると判断した場合には、処理がステップS14に移行する。 Next, in step S12, the air volume determining unit 39b determines whether the human body existing in the room is an adult based on the human body information created in step S11. If it is determined that the human body is an adult, the process proceeds to step S13. On the other hand, if it is determined that the human body is a child, the process proceeds to step S14.
 ステップS13において、風量決定部39bは、室内機10から送出される調和空気の風量が第1の風量となるように、室内送風機13を制御するための制御情報を生成し、この制御情報に基づいて室内送風機13の回転数を制御する。 In step S13, the air volume determination unit 39b generates control information for controlling the indoor fan 13 so that the air volume of the conditioned air sent from the indoor unit 10 becomes the first air volume, and based on this control information. Then, the rotational speed of the indoor blower 13 is controlled.
 第1の風量は、室内に存在する人体が大人である場合の風量である。そのため、例えば暖房運転時には、従来と同程度の風量が設定される。なお、風向については、従来と同様に、人体の足下に向くように上下風向板3の向きが設定される。 The first air volume is the air volume when the human body in the room is an adult. Therefore, for example, at the time of heating operation, an air volume comparable to that in the past is set. In addition, about the wind direction, the direction of the up-and-down wind direction board 3 is set so that it may face to the leg of a human body like the past.
 ステップS14において、風量決定部39bは、室内機10から送出される調和空気の風量が第1の風量とは異なる第2の風量となるように、室内送風機13を制御するための制御情報を生成する。室内制御装置30は、この制御情報に基づいて室内送風機13の回転数を制御する。なお、第2の風量は、室内に存在する人体が子供である場合の風量であり、大人に対する気流よりも床面付近で上側に広がる気流を抑制することができるような風量である。 In step S14, the air volume determination unit 39b generates control information for controlling the indoor blower 13 so that the air volume of the conditioned air sent from the indoor unit 10 becomes a second air volume different from the first air volume. To do. The indoor control device 30 controls the rotational speed of the indoor blower 13 based on this control information. Note that the second air volume is an air volume when the human body present in the room is a child, and is an air volume that can suppress an air current spreading upward near the floor surface relative to an air current for an adult.
 ここで、風量と気流の関係について考える。暖房運転時において室内機10から送出された調和空気の気流は、上述したように床面付近で上下に広がるが、一般的には、風量が大きくなるほど風速が上がる。そのため、調和空気の風量を大きくして風速を上げることにより、床面付近で上方向に広がる気流を抑制することができる。そこで、本実施の形態2では、風量が第1の風量よりも大きくなるように第2の風量を設定し、床面付近で上方向に広がる気流を抑制する。なお、この場合においても、ステップS13と同様に、風向については、人体の足下に向くように上下風向板3の向きが設定される。 Here, consider the relationship between air volume and airflow. The airflow of the conditioned air sent from the indoor unit 10 during the heating operation spreads up and down near the floor as described above, but generally the wind speed increases as the air volume increases. Therefore, by increasing the air volume of the conditioned air and increasing the wind speed, it is possible to suppress the airflow spreading upward near the floor surface. Therefore, in the second embodiment, the second air volume is set so that the air volume is larger than the first air volume, and the air flow spreading upward near the floor surface is suppressed. In this case as well, as in step S13, the wind direction is set so that the wind direction plate 3 is directed toward the human foot.
 図17は、図16の風量設定処理によって暖房運転時に風量が第2の風量に設定された場合の気流について説明するための一例を示す概略図である。図17に示す例は、室内に子供の人体50bが存在し、空気調和機100が暖房運転を行うことによって室内機10から温風を送出する場合の、送出された調和空気の気流53を示す。 FIG. 17 is a schematic diagram illustrating an example for explaining the air flow when the air volume is set to the second air volume during the heating operation by the air volume setting process of FIG. 16. The example shown in FIG. 17 shows the air flow 53 of the sent conditioned air when the human body 50b exists in the room and the air conditioner 100 sends warm air from the indoor unit 10 by performing the heating operation. .
 この例では、本実施の形態2による風量設定処理により、室内機10が室内に存在する人体50bの位置および特徴に応じて風量を設定する。この場合には、検出された人体が子供であるため、室内機10から送出される調和空気の風量として、第1の風量よりも大きい第2の風量を設定する。 In this example, the air volume is set according to the position and characteristics of the human body 50b in which the indoor unit 10 exists indoors by the air volume setting processing according to the second embodiment. In this case, since the detected human body is a child, a second air volume larger than the first air volume is set as the air volume of the conditioned air sent from the indoor unit 10.
 このようにして風量を設定することにより、調和空気の気流53は人体50bの足下に到達し、床面付近で拡散して一部の気流53aが上向きに流れる。しかしながら、第1の風量よりも大きい第2の風量で調和空気が送出されているため、第1の風量で調和空気を送出した場合と比較して風速が大きくなるので、上向きに流れる気流53aを抑制することができる。これにより、気流53aが人体50bの顔に直接当たるのを防ぎながら、人体50bを適切に暖めることができる。 By setting the air volume in this way, the air flow 53 of the conditioned air reaches the feet of the human body 50b, diffuses near the floor surface, and a part of the air flow 53a flows upward. However, since the conditioned air is sent with a second air volume that is larger than the first air volume, the wind speed increases compared to the case where the conditioned air is sent with the first air volume. Can be suppressed. Accordingly, the human body 50b can be appropriately warmed while preventing the airflow 53a from directly hitting the face of the human body 50b.
 以上のように、本実施の形態2に係る空気調和機100の室内機10は、吸込口1および吹出口2が形成され、吸込口1から吸い込まれた空気に基づく調和空気を吹出口2から送出するものであり、吸込口1から吹出口2に至る気流を生成する室内送風機13と、空調対象空間内の温度情報を取得する赤外線センサ5と、温度情報に基づき室内送風機13を制御して、調和空気の気流を制御する室内制御装置30とを備えている。室内制御装置30は、温度情報に基づき、空調対象空間内の人体および人体の位置と、人体の特徴とを検出し、検出された人体の位置および特徴に応じて、調和空気の風量を制御する。 As described above, in the indoor unit 10 of the air conditioner 100 according to Embodiment 2, the suction port 1 and the air outlet 2 are formed, and conditioned air based on the air sucked from the air inlet 1 is supplied from the air outlet 2. The indoor blower 13 that generates airflow from the inlet 1 to the blowout outlet 2, the infrared sensor 5 that acquires temperature information in the air-conditioning target space, and the indoor blower 13 are controlled based on the temperature information. And an indoor control device 30 that controls the flow of conditioned air. The indoor control device 30 detects the human body and the position of the human body in the air-conditioning target space and the characteristics of the human body based on the temperature information, and controls the air volume of the conditioned air according to the detected position and characteristics of the human body. .
 このように、空調対象空間内の温度情報に基づいて検出された人体の位置および特徴に基づき、室内機10から送出される調和空気の風量を調整する。そのため、人体の顔に気流が当たるのを防ぐことができ、この気流による冷風感、肌の乾燥といった不快感を人体に与えることを抑制することができるので、適切に空気調和を行うことができる。 Thus, the air volume of the conditioned air sent from the indoor unit 10 is adjusted based on the position and characteristics of the human body detected based on the temperature information in the air conditioning target space. Therefore, it is possible to prevent the airflow from hitting the human body face, and to suppress discomfort such as feeling of cold air and dry skin from the airflow to the human body, so that air conditioning can be appropriately performed. .
 また、このような不快感を抑制できることにより、不快に感じた使用者による設定温度の変更を抑制することができるので、不要な消費エネルギーを削減し、省エネルギー性を確保することができる。 Moreover, since such discomfort can be suppressed, a change in the set temperature by a user who feels uncomfortable can be suppressed, so that unnecessary energy consumption can be reduced and energy saving can be ensured.
 実施の形態3.
 次に、本発明の実施の形態3に係る空気調和機の室内機について説明する。本実施の形態3は、上述した実施の形態1および実施の形態2を組み合わせたものであり、検出された人体の位置および特徴に応じて室内機から送出される調和空気の上下風向および風量の双方を制御する。
Embodiment 3 FIG.
Next, an air conditioner indoor unit according to Embodiment 3 of the present invention will be described. The third embodiment is a combination of the first embodiment and the second embodiment described above, and the up and down wind direction and the air volume of the conditioned air sent from the indoor unit according to the detected position and characteristics of the human body. Control both.
 このように、検出された人体の位置および特徴に応じて上下風向および風量を制御することにより、気流の制御をより細かく行うことができる。そのため、例えば暖房運転時に室内に存在する人体が子供である場合でも、調和空気が顔に直接当たるのを防ぐことができ、人体を適切に暖めたり、冷やしたりすることができる。 As described above, the airflow can be controlled more finely by controlling the vertical wind direction and the air volume according to the detected position and characteristics of the human body. Therefore, for example, even when the human body that is present in the room during the heating operation is a child, the conditioned air can be prevented from directly hitting the face, and the human body can be appropriately warmed or cooled.
 また、人体を適切に暖めたり冷やしたりすることができることにより、必要以上に設定温度を変更することがなくなるため、不要な消費エネルギーを削減することができ、省エネルギー性を確保することができる。 Also, since the human body can be appropriately heated and cooled, the set temperature is not changed more than necessary, so that unnecessary energy consumption can be reduced and energy saving can be ensured.
 1 吸込口、2 吹出口、3 上下風向板、4 左右風向板、5 赤外線センサ、6 駆動装置、10 室内機、11 膨張弁、12 室内熱交換器、13 室内送風機、20 室外機、21 圧縮機、22 冷媒流路切替装置、23 室外熱交換器、24 室外送風機、30 室内制御装置、31 入力回路、32 演算処理装置、33 記憶装置、34出力回路、35 熱画像作成部、36 人体位置検出部、37 人体特性検出部、38 人体情報作成部、39a 風向決定部、39b 風量決定部、40 室外制御装置、41 入力回路、42 演算処理装置、43 記憶装置、44 出力回路、50a、50b 人体、51、51a、52、52a、53、53a 気流、60 子供、61 大人、100 空気調和機。 1 inlet, 2 outlet, 3 vertical wind direction plate, 4 left and right wind direction plate, 5 infrared sensor, 6 drive unit, 10 indoor unit, 11 expansion valve, 12 indoor heat exchanger, 13 indoor blower, 20 outdoor unit, 21 compression Machine, 22 refrigerant flow switching device, 23 outdoor heat exchanger, 24 outdoor blower, 30 indoor control device, 31 input circuit, 32 arithmetic processing device, 33 storage device, 34 output circuit, 35 thermal image creation unit, 36 human body position Detection unit, 37 Human body characteristic detection unit, 38 Human body information creation unit, 39a Wind direction determination unit, 39b Air volume determination unit, 40 Outdoor control device, 41 Input circuit, 42 Arithmetic processing device, 43 Storage device, 44 Output circuit, 50a, 50b Human body, 51, 51a, 52, 52a, 53, 53a Airflow, 60 children, 61 adults, 100 air conditioners.

Claims (12)

  1.  吸込口および吹出口が形成され、前記吸込口から吸い込まれた空気に基づく調和空気を前記吹出口から送出する空気調和機の室内機であって、
     前記吹出口に設けられ、前記調和空気の送出方向を調整する風向板と、
     前記吸込口から前記吹出口に至る気流を生成する送風機と、
     空調対象空間内の温度情報を取得するセンサと、
     前記温度情報に基づき、前記風向板および前記送風機の少なくとも一方を制御して、前記調和空気の気流を制御する制御装置と
    を備え、
     前記制御装置は、
     前記温度情報に基づき、前記空調対象空間内の人体および該人体の位置と、該人体の特徴とを検出し、
     検出された前記人体の位置および特徴に応じて、前記調和空気の風向および風量の少なくとも一方を制御する
    空気調和機の室内機。
    An air conditioner indoor unit that forms a suction port and a blow-out port, and sends out conditioned air based on the air sucked from the suction port from the blow-out port,
    A wind direction plate that is provided at the outlet and adjusts the delivery direction of the conditioned air;
    A blower that generates an airflow from the suction port to the blowout port;
    A sensor for acquiring temperature information in the air-conditioned space;
    A control device for controlling the airflow of the conditioned air by controlling at least one of the wind direction plate and the blower based on the temperature information;
    The control device includes:
    Based on the temperature information, the human body in the air conditioning target space and the position of the human body, and the characteristics of the human body are detected,
    An indoor unit of an air conditioner that controls at least one of a wind direction and an air volume of the conditioned air according to the detected position and characteristics of the human body.
  2.  前記制御装置は、
     前記センサによって取得された前記温度情報に基づき、前記空調対象空間の温度分布を示す熱画像を作成する熱画像作成部と、
     作成された前記熱画像から前記人体および該人体の位置を検出する人体位置検出部と、
     作成された前記熱画像に基づき、検出された前記人体の特徴を検出する人体特性検出部と、
     検出された前記人体の位置および特徴を関連付けた人体情報を作成する人体情報作成部と、
     作成された前記人体情報に基づき、前記調和空気の風向を決定する風向決定部と
    を有する
    請求項1に記載の空気調和機の室内機。
    The control device includes:
    Based on the temperature information acquired by the sensor, a thermal image creation unit that creates a thermal image indicating a temperature distribution of the air-conditioning target space;
    A human body position detecting unit for detecting the human body and the position of the human body from the created thermal image;
    Based on the created thermal image, a human body characteristic detection unit that detects the detected characteristics of the human body,
    A human body information creation unit for creating human body information in association with the detected position and characteristics of the human body;
    The indoor unit of an air conditioner according to claim 1, further comprising: a wind direction determining unit that determines a wind direction of the conditioned air based on the created human body information.
  3.  前記風向決定部は、
     検出された前記人体の特徴に基づき、該人体が大人または子供のいずれであるのかを判断し、
     前記人体が大人である場合に、前記調和空気の上下風向が第1の上下風向となるように制御し、
     前記人体が子供である場合に、前記調和空気の上下風向が前記第1の上下風向とは異なる第2の上下風向となるように制御する
    請求項2に記載の空気調和機の室内機。
    The wind direction determination unit
    Based on the detected characteristics of the human body, determine whether the human body is an adult or a child,
    When the human body is an adult, the vertical air direction of the conditioned air is controlled to be the first vertical air direction,
    The indoor unit of an air conditioner according to claim 2, wherein when the human body is a child, the air conditioner indoor unit is controlled such that the up and down air direction of the conditioned air is a second up and down air direction different from the first up and down air direction.
  4.  暖房運転の際の前記第1の上下風向は、検出された前記人体の足下に前記調和空気の気流が流れる向きであり、
     暖房運転の際の前記第2の上下風向は、前記第1の上下風向よりも下側に前記調和空気の気流が流れる向きである
    請求項3に記載の空気調和機の室内機。
    The first up-and-down wind direction during the heating operation is a direction in which the air flow of the conditioned air flows under the detected foot of the human body,
    The indoor unit of an air conditioner according to claim 3, wherein the second up-and-down air direction during the heating operation is a direction in which the air flow of the conditioned air flows below the first up-and-down air direction.
  5.  前記制御装置は、
     前記センサによって取得された前記温度情報に基づき、前記空調対象空間の温度分布を示す熱画像を作成する熱画像作成部と、
     作成された前記熱画像から前記人体および該人体の位置を検出する人体位置検出部と、
     作成された前記熱画像に基づき、検出された前記人体の特徴を検出する前記人体特性検出部と、
     検出された前記人体の位置および特徴を関連付けた人体情報を作成する人体情報作成部と、
     作成された前記人体情報に基づき、前記調和空気の風量を決定する風量決定部と
    を有する
    請求項1~4のいずれか一項に記載の空気調和機の室内機。
    The control device includes:
    Based on the temperature information acquired by the sensor, a thermal image creation unit that creates a thermal image indicating a temperature distribution of the air-conditioning target space;
    A human body position detecting unit for detecting the human body and the position of the human body from the created thermal image;
    Based on the created thermal image, the human body characteristic detection unit that detects the detected characteristics of the human body,
    A human body information creation unit for creating human body information in association with the detected position and characteristics of the human body;
    The air conditioner indoor unit according to any one of claims 1 to 4, further comprising an air volume determining unit that determines an air volume of the conditioned air based on the created human body information.
  6.  前記風量決定部は、
     検出された前記人体の特徴に基づき、該人体が大人または子供のいずれであるのかを判断し、
     前記人体が大人である場合に、前記調和空気の風量が第1の風量となるように制御し、
     前記人体が子供である場合に、前記調和空気の風量が前記第1の風量とは異なる第2の風量となるように制御する
    請求項5に記載の空気調和機の室内機。
    The air volume determining unit
    Based on the detected characteristics of the human body, determine whether the human body is an adult or a child,
    When the human body is an adult, the air volume of the conditioned air is controlled to be the first air volume,
    The indoor unit of an air conditioner according to claim 5, wherein when the human body is a child, the air volume of the conditioned air is controlled to be a second air volume different from the first air volume.
  7.  暖房運転の際の前記第2の風量は、前記第1の風量よりも大きい
    請求項6に記載の空気調和機の室内機。
    The indoor unit of an air conditioner according to claim 6, wherein the second air volume during the heating operation is larger than the first air volume.
  8.  前記人体位置検出部は、
     作成された前記熱画像と、予め作成された、人体に対応する画像を含まない基準熱画像との差分に基づき、前記人体を検出し、
     前記熱画像から検出された前記人体を示す部分の画像である人体画像の座標に基づき、前記人体の位置を検出する
    請求項2~7のいずれか一項に記載の空気調和機の室内機。
    The human body position detection unit is
    Based on the difference between the created thermal image and a reference thermal image that is created in advance and does not include an image corresponding to the human body, the human body is detected,
    The indoor unit of an air conditioner according to any one of claims 2 to 7, wherein the position of the human body is detected based on coordinates of a human body image that is an image of a portion showing the human body detected from the thermal image.
  9.  前記制御装置は、
     前記熱画像の下端に対する前記人体画像の下端画素の位置と、前記室内機から人体までの距離との関係を示す距離テーブルを記憶する記憶装置を有し、
     前記人体位置検出部は、
     前記距離テーブルを参照して、前記人体画像の下端画素に対応付けられた距離に基づき、前記人体の位置を検出する
    請求項8に記載の空気調和機の室内機。
    The control device includes:
    A storage device for storing a distance table indicating a relationship between a position of a lower end pixel of the human body image with respect to a lower end of the thermal image and a distance from the indoor unit to the human body;
    The human body position detection unit is
    The indoor unit of the air conditioner according to claim 8, wherein the position of the human body is detected based on a distance associated with a lower end pixel of the human body image with reference to the distance table.
  10.  前記人体の特徴は、該人体が大人または子供のいずれであるかを示すものであり、
     前記人体特性検出部は、
     前記熱画像に含まれる検出された前記人体を示す部分の画像である人体画像の特徴に基づき、検出された前記人体が大人または子供のいずれであるかを推定する
    請求項2~9のいずれか一項に記載の空気調和機の室内機。
    The characteristics of the human body indicate whether the human body is an adult or a child,
    The human body characteristic detection unit is
    10. The method according to claim 2, wherein the detected human body is an adult or a child based on a feature of a human body image that is an image of a portion indicating the detected human body included in the thermal image. The indoor unit of an air conditioner according to one item.
  11.  前記制御装置は、
     前記人体画像における縦方向および横方向の最大画素数の縦横比と、人体の姿勢との関係を示す姿勢テーブルを記憶する記憶装置を有し、
     前記人体特性検出部は、
     前記姿勢テーブルを参照して、前記人体画像の前記縦横比に対応付けられた姿勢に基づき、前記人体の姿勢を推定し、
     前記人体画像を構成するすべての画素の数を検出し、
     前記人体位置検出部によって検出された前記人体の位置と、推定された前記人体の姿勢と、前記人体画像の画素数とに基づき、前記人体が大人または子供のいずれであるかを推定する
    請求項10に記載の空気調和機の室内機。
    The control device includes:
    A storage device for storing a posture table indicating a relationship between an aspect ratio of the maximum number of pixels in the vertical direction and the horizontal direction in the human body image and a posture of the human body;
    The human body characteristic detection unit is
    With reference to the posture table, the posture of the human body is estimated based on the posture associated with the aspect ratio of the human body image,
    Detecting the number of all pixels constituting the human body image,
    The human body is estimated to be an adult or a child based on the position of the human body detected by the human body position detection unit, the estimated posture of the human body, and the number of pixels of the human body image. The indoor unit of the air conditioner according to 10.
  12.  前記センサは、
     物体の表面から放射された赤外線を検出する赤外線センサである
    請求項1~11のいずれか一項に記載の空気調和機の室内機。
    The sensor is
    The indoor unit of an air conditioner according to any one of claims 1 to 11, wherein the indoor unit is an infrared sensor that detects infrared radiation emitted from the surface of an object.
PCT/JP2016/073572 2016-08-10 2016-08-10 Air conditioner indoor unit WO2018029805A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/073572 WO2018029805A1 (en) 2016-08-10 2016-08-10 Air conditioner indoor unit
JP2018533359A JP6625222B2 (en) 2016-08-10 2016-08-10 Air conditioner indoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073572 WO2018029805A1 (en) 2016-08-10 2016-08-10 Air conditioner indoor unit

Publications (1)

Publication Number Publication Date
WO2018029805A1 true WO2018029805A1 (en) 2018-02-15

Family

ID=61161928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073572 WO2018029805A1 (en) 2016-08-10 2016-08-10 Air conditioner indoor unit

Country Status (2)

Country Link
JP (1) JP6625222B2 (en)
WO (1) WO2018029805A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112129562A (en) * 2020-09-23 2020-12-25 中车长春轨道客车股份有限公司 Fresh air volume testing device and system for air conditioning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220405A (en) * 2005-01-12 2006-08-24 Mitsubishi Electric Corp Air conditioner
JP2009139010A (en) * 2007-12-06 2009-06-25 Sharp Corp Air conditioner
JP2009174830A (en) * 2008-01-28 2009-08-06 Sharp Corp Person position detecting device, and air conditioner
JP2012037102A (en) * 2010-08-05 2012-02-23 Panasonic Corp Device and method for identifying person and air conditioner with person identification device
JP2015017728A (en) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 Air conditioner
JP2015222260A (en) * 2013-05-17 2015-12-10 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Thermal image sensor and air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220405A (en) * 2005-01-12 2006-08-24 Mitsubishi Electric Corp Air conditioner
JP2009139010A (en) * 2007-12-06 2009-06-25 Sharp Corp Air conditioner
JP2009174830A (en) * 2008-01-28 2009-08-06 Sharp Corp Person position detecting device, and air conditioner
JP2012037102A (en) * 2010-08-05 2012-02-23 Panasonic Corp Device and method for identifying person and air conditioner with person identification device
JP2015222260A (en) * 2013-05-17 2015-12-10 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Thermal image sensor and air conditioner
JP2015017728A (en) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112129562A (en) * 2020-09-23 2020-12-25 中车长春轨道客车股份有限公司 Fresh air volume testing device and system for air conditioning system

Also Published As

Publication number Publication date
JPWO2018029805A1 (en) 2019-06-06
JP6625222B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6242300B2 (en) Air conditioner indoor unit and air conditioner
JP5585556B2 (en) Air conditioner
JP6628865B2 (en) Air conditioner indoor unit
JP6618625B2 (en) Air conditioner
JP6906311B2 (en) Air conditioner
JP6678748B2 (en) Air conditioner
CN107305035B (en) Air conditioner
JP6790220B2 (en) Indoor unit and air conditioner
US10830484B2 (en) Air-conditioning apparatus
JP2016176653A (en) Air conditioner
JP2016183799A (en) Air conditioner
JPH0650595A (en) Air conditioner
JP6421667B2 (en) Air conditioner
JP2017058062A (en) Air conditioner
JP6956594B2 (en) Air conditioner
JP2018128155A (en) Air conditioner
WO2018029805A1 (en) Air conditioner indoor unit
JP2014142099A (en) Air conditioner
US10837670B2 (en) Air-conditioning apparatus
JP6540336B2 (en) Air conditioner
JPWO2019008642A1 (en) Air conditioner
JP7268407B2 (en) air blower system
JP2004218894A (en) Air conditioner and air conditioning method
JP2014142098A (en) Air conditioner
WO2018069961A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533359

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912686

Country of ref document: EP

Kind code of ref document: A1