WO2018028737A1 - Procédé de fixation ajustée d'un système de détection magnétique sur un actionneur et dispositif d'actionnement comprenant un actionneur et un système de détection magnétique - Google Patents

Procédé de fixation ajustée d'un système de détection magnétique sur un actionneur et dispositif d'actionnement comprenant un actionneur et un système de détection magnétique Download PDF

Info

Publication number
WO2018028737A1
WO2018028737A1 PCT/DE2017/100602 DE2017100602W WO2018028737A1 WO 2018028737 A1 WO2018028737 A1 WO 2018028737A1 DE 2017100602 W DE2017100602 W DE 2017100602W WO 2018028737 A1 WO2018028737 A1 WO 2018028737A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
actuator
magnetic field
module
permanent magnet
Prior art date
Application number
PCT/DE2017/100602
Other languages
German (de)
English (en)
Inventor
Viktor Franz
Paul WALDEN
Markus Dietrich
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112017003985.1T priority Critical patent/DE112017003985A5/de
Publication of WO2018028737A1 publication Critical patent/WO2018028737A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Definitions

  • the invention relates to a method for adjusted fixing a magnetic sensor device to an actuator, the magnetic sensor device comprising a transmitter module with at least one permanent magnet and a sensor module with a sensor for counting rotation, the actuator having an electric motor with a stator and a rotor.
  • the invention relates to an actuator with an actuator and a magnetic sensor device, the actuator having an electric motor with a stator and a rotor, the magnetic sensor device comprising a transmitter module with at least one permanent magnet and a sensor module with a sensor for counting the revolution.
  • a method for determining and / or controlling a position of an electric motor, in particular in a clutch actuating system of a motor vehicle, in which the position of a rotor of the electric motor from a, outside a rotational axis of the electric motor at a Sensor, which is picked up by the sensor, is evaluated by an evaluation unit, whereby the position signal output by the sensor during a sinusoidal control of the electric motor is made plausible by means of at least one position signal detected during a block control of the electric motor.
  • a magnetic encoder ring of a rotor position sensor of an electrically commutated motor which is rotatably connected to a rotor of the electrically commutated motor and which has a predetermined number of magnetic poles with an alternating magnetization direction, wherein each magnetic pole pair at least one indentation having.
  • A1 method for determining a position of an electric motor, in particular in a clutch actuation system of a motor vehicle, in which a position signal of a rotor of the electric motor of a ner, outside a rotational axis of the electric motor arranged on a stator of the electric motor sensor is removed and is evaluated by an evaluation unit with respect to the position of the electric motor, wherein after detection of a change in the position signal commutation of a control of the electric motor is triggered, wherein after Detecting the change of the position signal, a determination of the current position of the rotor is carried out, wherein the commutation of the electric motor in response to the detected current position of the rotor is triggered.
  • a method is known from DE 10 2013 213 948 A1 for determining a position of an electric motor, in particular in a clutch actuation system of a motor vehicle, in which a position signal of a rotor of the electric motor is taken from a sensor arranged outside a rotation axis of the electric motor on a stator of the electric motor which is evaluated by an evaluation unit with respect to the position of the electric motor, wherein at standstill of the rotor this is acted upon by a voltage and the position of the rotor corresponding response response of a commutation of the electric motor is assigned.
  • a method for determining and / or controlling a position of an electric motor, in particular in a clutch actuation system of a motor vehicle, in which the position of a rotor of the electric motor of a, outside a rotational axis of the electric motor to a stator of the
  • the position signal is evaluated by an evaluation unit as a function of a transmission distance between sensor and evaluation unit at short transmission distances by means of an SPI protocol signal and / or at longer transmission distances by means of a PWM Signal is transmitted.
  • the invention has for its object to improve a method mentioned above.
  • the invention has the object, structurally and / or functionally to improve an actuator mentioned above.
  • the object is achieved by a method having the features of claim 1.
  • the magnetic sensor device may be fixed to the actuator in such a manner as to enable secure detection of a rotation angle and safe revolution counting.
  • the magnetic sensor device may be fixed to the actuator in such a manner that a detection range of the sensor and an actuator displacement range are correlated with each other.
  • the magnetic sensor device can be attached to the actuator adjusted so that tolerance errors are compensated.
  • the method can be performed by means of an adjusting device.
  • the adjusting device may have at least one setting magnet.
  • the setting magnet can be used to apply the predetermined setting magnetic field to the sensor module.
  • the setting magnet can be placed axially against the sensor module.
  • the adjusting magnet may be rotatable.
  • the adjustment magnetic field can be rotated relative to the sensor module.
  • the tuning magnetic field can be rotated while the sensor module is fixed.
  • a magnetic field strength information of the sensor can be detected and stored.
  • the adjustment magnet may be removed from the sensor module to terminate the application of the adjustment magnetic field to the sensor module.
  • the sensor module can be fastened on the stator side.
  • an orientation of the magnetic field of the permanent magnet can be adjusted according to the orientation of the setting magnetic field.
  • the adjusting device may have at least one shielding element for magnetic shielding. The at least one shielding element can be
  • the permanent magnet can be shielded. Compensating a magnetic field of the permanent magnet may be started prior to a mechanical adjustment of the actuator to a predetermined actuator position and terminated after a setting.
  • an adjustment gauge For mechanically adjusting the actuator to a given actuator position, an adjustment gauge may be used.
  • the adjusting device may have an adjustment measuring device for mechanically adjusting the actuator.
  • an actuator mechanism After attaching the sensor module, an actuator mechanism can be completed.
  • the actuator mechanism may include an actuator gear.
  • the sensor module can be initialized using the setpoint magnetic field.
  • an axial actuator position can be detected.
  • a revolution count of the sensor may be adjusted using an external magnetic field corresponding to an axial actuator position.
  • the adjusting device may have a magnetic device for generating an external magnetic field.
  • a magnetic field strength of the permanent magnet can be weakened.
  • a sensor-specific threshold can be weakened.
  • a magnetic field strength of the permanent magnet may be mitigated to compensate for a magnetic field of the permanent magnet.
  • a magnetic field strength of the permanent magnet can be attenuated to initialize the sensor module. To attenuate the magnetic field strength of the permanent magnet, a shield plate can be used.
  • the actuator device can serve for actuating a friction coupling device.
  • the actuator device can be used to act on a master cylinder of a hydrostatic actuating device of a friction coupling device.
  • the hydrostatic actuator may have a hydraulic path.
  • the hydrostatic actuator may comprise a slave cylinder.
  • the slave cylinder may be associated with the friction coupling device.
  • the actuator device may be controllable by means of an electrical control device.
  • the electrical control device may be a controller.
  • the electrical control device may be a local actuator control device.
  • the electrical control device may include a computing device.
  • the electrical control device may comprise a storage device.
  • the electrical control device may have at least one electrical signal input.
  • the electrical control device may have at least one electrical signal output.
  • the electrical control device can structurally and / or functionally with at least one be connected to another electrical control device signal conducting.
  • the signal-conducting connection can be a bus system, such as a CAN bus.
  • the friction clutch device may be for placement in a drive train of a vehicle.
  • the drive train may have at least one drive machine.
  • the at least one prime mover may be an internal combustion engine.
  • the at least one prime mover may be an electric machine.
  • the electric machine can be operated as a motor.
  • the electric machine can be operated as a generator.
  • the powertrain may include a friction clutch device.
  • the drive train may have a transmission.
  • the transmission can be a manual transmission.
  • the drive train may have at least one drivable vehicle wheel.
  • the vehicle may be a hybrid electric vehicle.
  • the encoder module can be fastened to the actuator on the rotor side.
  • the sensor module can be attached to the stator on the stator side.
  • the transmitter module and the sensor module can limit a measuring gap for contactless rotation angle measurement and revolution counting.
  • the sensor can be a GMR sensor (giant magneto-resistance sensor).
  • a GMR sensor is a sensor based on the giant magneto-resistance effect.
  • a GMR sensor can have a spiral. The spiral may have spiral arms. The spiral can be arranged in a diamond shape.
  • a GMR sensor may comprise a GMR layer stack.
  • a GMR sensor may include a reference layer and a sensor layer. A magnetization state of the sensor layer can be changed.
  • a GMR sensor may include a domain wall generator. The domain wall generator may be disposed at one end of the spiral. In the domain wall generator 180 ° domains can be generated. The domains may be injectable and / or erasable in the coil.
  • a magnetization state of the spiral arms can be changeable under the influence of a moving magnetic field.
  • a magnetization state of the spiral arms may be changeable by rotating a magnetic field and the spiral relative to each other. One number of revolutions can be stored magnetically.
  • a rotational movement can also be detected without electrical power supply.
  • a rotational movement can be stored without electrical power supply.
  • An electrical resistance value of Spiral may be dependent on a magnetization state.
  • the magnetic sensor device may comprise a further sensor, the further sensor may serve for the rotation angle measurement.
  • the additional sensor can have a measuring range of approx. 360 °.
  • the further sensor may have at least one Hall element.
  • the further sensor may have a plurality of Hall elements distributed in the circumferential direction of the further sensor.
  • the sensor and the further sensor can be arranged on a common printed circuit board.
  • the actuator may include an actuator housing.
  • the stator can be fixed to the housing.
  • the rotor may be rotatably mounted in the housing.
  • the actuator may include an actuator gear.
  • the actuator gear can be used to convert a rotary motion into a linear motion.
  • the transmission can be a worm gear.
  • the transmission may have a threaded spindle.
  • the transmission may have a spindle nut.
  • the threaded spindle can be rotatably connected to the rotor.
  • the spindle nut can be connected to a master cylinder so as to be axially movable.
  • the invention thus provides, inter alia, a method for multiturn sensor commissioning and calibration by means of magnetic field compensation.
  • a multi-turn sensor can be adjusted / calibrated.
  • the sensor magnet can be compensated / attenuated.
  • a procedure may refer to a (path) measuring system which includes a magnetic 360 ° angle sensor capable of detecting a B-field in its magnitude in all three spatial directions.
  • a multi-turn sensor which is capable of outputting entire revolutions of the path axis by means of a GMR effect due to magnetic domain transitions, this information also remaining after a supply voltage loss.
  • Both sensors can detect an angular position of a sensor magnet by an orientation of its B field to these sensors.
  • An apparatus to which the displacement sensor is applied may consist of a circuit board containing the sensors and a mechanical part whose spindle revolution or stroke information is to be detected. In an initial merge of both modules should once the sensor can be adjusted to a path information of a mechanics.
  • the path axis should be smaller than a coverage area of the sensor, so that it can not come to adjustment operations between sensor and distance (total rotation angle) of the mechanism during operation. This would be the case if the overall detection angle of the multiturn sensor is run over, so that, depending on how many revolutions the sensor is overtravelled in a direction of rotation, the point would be interpreted as a new zero point from the reversal in a subsequent reversal of the direction of rotation, so that a source calibration of the path axis would be adjusted. This would result in adjusting processes during operation of the apparatus, which are interpreted incorrectly by the sensor with regard to a total stroke (too small or too large a stroke as actually present).
  • the aim of the procedure may be to connect the sensor information (number of revolutions) to a previously unknown calibration point.
  • the sensor input signal rotating magnetic field
  • Sensor and mechanics can be calibrated / configured as follows:
  • a device-bound Sensoreinstellmagnet known magnet strength can be set against a defined, a design corresponding known axial dimension of both sensors.
  • the sensor may be rotated in one direction to provide a twist count greater than a total twist angle detection range of the multi-turn sensor.
  • the direction of rotation can be reversed and it can be driven to a certain number of revolutions.
  • a magnetic field intensity information of the rotation angle sensor and / or the multi-turn sensor can be read out and stored.
  • the magnet can be moved axially away from the sensor, wherein the magnetic field orientation can be noted / recorded in accordance with the last set angle.
  • the sensor can now be built on a mechanic. It can be noted here that the angle of rotation of the sensor magnet corresponds to that of the original setting sensor.
  • the magnetic field of the sensor unit can be compensated so that the multiturn does not result in any resulting magnetic field lines
  • the mechanics can be moved to a specific / unique calibration point.
  • the external B-field can be varied, so that the multi-turn sensor - during the rotation of the sensor magnet - receives no signal input (magnetic). This may be necessary because the sensor magnet rotates during startup.
  • the method of mechanics may have a change in the count of the multi-turn sensor without compensation of the magnetic field of the sensor magnet and thus can not match the desired association between count and approached calibration point.
  • an external magnetic field can be used for initialization of the sensor.
  • the magnetic field of the sensor magnet (in the assembly) is compensated; the position of the path axis is detected.
  • the count of the sensor can be adjusted so that the sensor value coincides with the position of the path axis.
  • the sensor magnet can not be twisted and the stroke of the system can not be changed.
  • the count value of the multiturn sensor can be set to a specific linear path. Possibly. It may be necessary for this purpose to attenuate the sensor magnetic field by a shield, so that the externally applied rotating field can be applied in sufficient strength or is not affected by the sensor magnet.
  • Suitable or conceivable design elements could be shielding plates which adequately attenuate the magnetic field of the sensor magnet and are temporarily introduced between the multiturn sensor and the sensor magnet for the adjustment process.
  • an adjusted fastening of a magnetic sensor device to an actuator is made possible. Commissioning is possible. Initial assembly of a magnetic sensor device and an actuator is enabled. A matching of a magnetic sensor device to a path information of a mechanism is made possible. Referencing a sensor signal on a linear axis is made possible. Unintentional adjustment during operation is prevented. A misinterpretation of an actuator movement is prevented. A perfect determination of a rotation angle and a perfect revolution count are guaranteed.
  • FIG. 1 shows schematically and by way of example an actuator device 100.
  • the actuator device 100 has an actuator with an electric motor and a magnetic sensor device adjusted to the actuator and having a transmitter module and a sensor module.
  • the actuator device 100 serves to act on a master cylinder of a hydrostatic actuating device of a friction coupling device of a motor vehicle.
  • the actuator has a housing 102.
  • the electric motor has a stator and a rotor 104.
  • the stator is fixed to the housing.
  • the rotor 104 is rotatably supported in the housing 102.
  • the actuator has a spindle drive with a spindle nut 106 and a spindle rod 108.
  • the spindle drive is used to convert a rotational movement of the rotor 104 into a linear movement of the spindle rod 108.
  • the spindle rod 108 is axiallyterrorismsübertragend connected to a piston 1 10 of the donor cylinder not shown here.
  • the transmitter module of the magnetic sensor device has permanent magnets 1 12 and is fixed to the rotor 104 of the electric motor. In the present case, the perma- Magnets 1 12 pressed.
  • the sensor module of the magnetic sensor device is arranged fixed to the housing.
  • the sensor module has a first sensor 1 14 for measuring the angle of rotation and a second sensor 1 16 for counting the revolution.
  • the first sensor 1 14 has Hall elements and can detect angles of rotation of up to 360 ° and a strength of a B-field.
  • the second sensor 1 16 is a GMR sensor with counting function.
  • the sensors 1 14, 1 16 are arranged on a common printed circuit board 1 18.
  • the adjusting magnet For adjusting the fastening of the magnetic sensor device to the actuator, first of all the sensor module is acted upon by means of a setting magnet with a predetermined adjusting magnetic field and the adjusting magnet is rotated relative to the sensor module until a revolution counting range of the second sensor 16 is left. Subsequently, the adjusting magnet is rotated relative to the sensor module in an opposite direction of rotation to set the second sensor 1 16 to a predetermined revolution count. During the rotation of the setting magnet, a magnetic field strength information of the second sensor 16 is detected and stored. Subsequently, an orientation of the adjusting magnetic field is stored and the adjusting magnet is removed.
  • the sensor module is attached to the stator, thereby ensuring that a rotation angle of the permanent magnet 1 12 corresponds to a rotation angle of the setting magnet.
  • a magnetic field of the permanent magnet 1 12 is compensated so that the second sensor 1 16 receives no signal upon rotation of the rotor 104 with the permanent magnet 1 12 and remains at its previously set count.
  • the actuator is set to a predetermined actuator position.
  • a compensation of the magnetic field of the permanent magnet 1 12 is canceled, so that the second sensor 1 16 again receives a signal upon rotation of the rotor 104 with the permanent magnet 1 12 and counts revolutions.
  • the magnetic sensor device is thus attached to the actuator adjusted such that an actuator 120 is within a measuring range 122 of the second sensor 1 16 and the measuring range 122 is not left in the end positions 124, 126 of the actuator.
  • the sensor signal is referenced on a linear axis. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

L'invention concerne un procédé de fixation ajustée d'un système de détection magnétique sur un actionneur (100), ledit système de détection magnétique présentant un module transmetteur pourvu d'au moins un aimant permanent (112), ainsi qu'au moins un module de détection comprenant un détecteur (116) pour compter le nombre de tours, et ledit actionneur (100) présentant un moteur électrique pourvu d'un stator et d'un rotor (104). Le procédé selon l'invention consiste à : appliquer un champ magnétique de réglage prédéfini au module de détection ; faire tourner le champ magnétique de réglage et le module de détection dans un premier sens de rotation l'un par rapport à l'autre jusqu'à ce qu'une plage de comptage de tours du détecteur (116) soit quittée ; faire tourner le champ magnétique de réglage et le module de détection l'un par rapport à l'autre dans un second sens de rotation opposé au premier, d'un nombre de tours prédéfini de manière à régler le détecteur (116) à une valeur de comptage de tours prédéfinie ; mémoriser une orientation du champ magnétique de réglage et cesser d'appliquer le champ magnétique de réglage au module de détection ; fixer le module de détection côté stator ; compenser un champ magnétique de l'aimant permanent (112) ; régler mécaniquement l'actionneur (100) avec le module transmetteur sur une position d'actionneur prédéfinie ; mettre fin à la compensation du champ magnétique de l'aimant permanent. L'invention concerne également un actionneur (100) pourvu d'un moteur électrique et d'un système de détection magnétique, le moteur électrique présentant un stator et un rotor (104) et le système de détection magnétique présentant un module transmetteur pourvu d'au moins un aimant permanent (112), ainsi qu'un module de détection pourvu d'un détecteur (116) pour compter les tours, le système de détection magnétique étant fixé de manière ajustée sur l'actionneur (100) conformément à un procédé de ce type.
PCT/DE2017/100602 2016-08-11 2017-07-20 Procédé de fixation ajustée d'un système de détection magnétique sur un actionneur et dispositif d'actionnement comprenant un actionneur et un système de détection magnétique WO2018028737A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017003985.1T DE112017003985A5 (de) 2016-08-11 2017-07-20 Verfahren zum justierten Befestigen einer Magnetsensorvorrichtung an einem Aktuator und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016214949.0A DE102016214949A1 (de) 2016-08-11 2016-08-11 Verfahren zum justierten Befestigen einer Magnetsensorvorrichtung an einem Aktuator und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016214949.0 2016-08-11

Publications (1)

Publication Number Publication Date
WO2018028737A1 true WO2018028737A1 (fr) 2018-02-15

Family

ID=59626409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100602 WO2018028737A1 (fr) 2016-08-11 2017-07-20 Procédé de fixation ajustée d'un système de détection magnétique sur un actionneur et dispositif d'actionnement comprenant un actionneur et un système de détection magnétique

Country Status (2)

Country Link
DE (2) DE102016214949A1 (fr)
WO (1) WO2018028737A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078489A1 (en) * 2007-09-25 2009-03-26 Magna Powertrain Ag & Co Kg Transmission unit
US20120181958A1 (en) * 2009-07-31 2012-07-19 Antoine Chabaud Commutated electric drive and method for controlling a commutated electric motor
DE102011007147A1 (de) * 2011-04-11 2012-10-11 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit einer Rotorpositionserfassung mit Störfeldkompensation
DE102013205905A1 (de) 2012-04-25 2013-10-31 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013208986A1 (de) 2012-06-11 2013-12-12 Schaeffler Technologies AG & Co. KG Magnetgeberring einer Rotorlagesensorik eines elektrisch kommutierten Elektromotors
DE102013213948A1 (de) 2012-08-02 2014-02-06 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013222366A1 (de) 2012-11-22 2014-05-22 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors
DE102013211041A1 (de) 2013-06-13 2014-12-18 Schaeffler Technologies Gmbh & Co. Kg Verfahren und Vorrichtung zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013222184A1 (de) * 2013-10-31 2015-04-30 Continental Teves Ag & Co. Ohg Vorrichtung zur Bestimmung der Absolutposition eines Linearaktuators
US20160041235A1 (en) * 2014-08-06 2016-02-11 Infineon Technologies Ag Maximization of target signal and elimination of backbias component for a differential upright position sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239904A1 (de) * 2002-08-30 2004-03-04 Horst Siedle Gmbh & Co. Kg. Sensorelement für einen Umdrehungszähler

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078489A1 (en) * 2007-09-25 2009-03-26 Magna Powertrain Ag & Co Kg Transmission unit
US20120181958A1 (en) * 2009-07-31 2012-07-19 Antoine Chabaud Commutated electric drive and method for controlling a commutated electric motor
DE102011007147A1 (de) * 2011-04-11 2012-10-11 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit einer Rotorpositionserfassung mit Störfeldkompensation
DE102013205905A1 (de) 2012-04-25 2013-10-31 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013208986A1 (de) 2012-06-11 2013-12-12 Schaeffler Technologies AG & Co. KG Magnetgeberring einer Rotorlagesensorik eines elektrisch kommutierten Elektromotors
DE102013213948A1 (de) 2012-08-02 2014-02-06 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013222366A1 (de) 2012-11-22 2014-05-22 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors
DE102013211041A1 (de) 2013-06-13 2014-12-18 Schaeffler Technologies Gmbh & Co. Kg Verfahren und Vorrichtung zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013222184A1 (de) * 2013-10-31 2015-04-30 Continental Teves Ag & Co. Ohg Vorrichtung zur Bestimmung der Absolutposition eines Linearaktuators
US20160041235A1 (en) * 2014-08-06 2016-02-11 Infineon Technologies Ag Maximization of target signal and elimination of backbias component for a differential upright position sensor

Also Published As

Publication number Publication date
DE112017003985A5 (de) 2019-04-18
DE102016214949A1 (de) 2018-02-15

Similar Documents

Publication Publication Date Title
EP2272162B1 (fr) Détermination de l'angle de décalage dans des machines synchrones
EP2601739B1 (fr) Procédé et circuiterie pour vérifier la position du rotor d'une machine synchrone
WO2018028739A1 (fr) Procédé de réglage interdépendant d'un dispositif de détection magnétique et d'un actionneur et disposition d'actionnement muni d'un actionneur et un dispositif de détection magnétique
DE112012002732T5 (de) Drehwinkelmessvorrichtung, Steuervorrichtung und Drehmaschinensystem
DE102019115787B3 (de) Verfahren zur Ermittlung des Winkels des Rotors eines Elektromotors, Steuergerät sowie Fahrzeug
DE102011055717B4 (de) Verfahren und Anordnung zur Bestimmung des dynamischen Zustands eines Elektromotors
DE102020211327A1 (de) DC-Motor, Liege mit DC-Motor und Verfahren zum Betreiben eines DC-Motors
DE102012018209A1 (de) Messverfahren und Vorrichtung zum Ermitteln eines Eisenverlustes in einem Blechpaket für eine elektrische Maschine
EP2686537B1 (fr) Procédé et dispositif d'étalonnage d'un système de détection de position comprenant un mécanisme de commande commuté électroniquement
WO2017162232A1 (fr) Procédé de fixation ajustée d'un système de capteur magnétique sur un actionneur et actionneur muni d'un moteur électrique et d'un système de capteur magnétique
EP2360830B1 (fr) Procédé et dispositif de simulation d'un convertisseur électromécanique
DE10333414A1 (de) Verfahren zum Betrieb einer motorischen Positionierungsvorrichtung sowie zugehörige Positionierungsvorrichtung
WO2018028737A1 (fr) Procédé de fixation ajustée d'un système de détection magnétique sur un actionneur et dispositif d'actionnement comprenant un actionneur et un système de détection magnétique
WO2019001629A1 (fr) Procédé et dispositif servant à ajuster une position d'un aimant en direction d'un capteur gmr
DE102014211881A1 (de) Verfahren zur Überprüfung einer Lage eines Rotors einer elektrischen Maschine
DE102014013429A1 (de) Verfahren zur genauen Positionsbestimmung
DE102012016287A1 (de) Verfahren zum Bestimmen einer Drehposition einer Welle
DE102021212470A1 (de) Steer-by-wire-Lenkung für ein Kraftfahrzeug
DE102016206768A1 (de) Bürstenloser Gleichstrommotor und Verfahren zur Bereitstellung eines Winkelsignals
DE102016206714A1 (de) Verfahren zum Ermitteln einer absoluten Winkellage einer rotierenden Welle
WO2018028736A1 (fr) Procédé d'ajustage d'un système actionneur ayant un dispositif de détection magnétique et un actionneur, et système actionneur ayant un actionneur et un dispositif de détection magnétique
DE102015202229A1 (de) Verfahren und Vorrichtung zur Drehmomentwelligkeitsbestimmung
DE102015116438B4 (de) Verfahren und Vorrichtung zum Betreiben eines Servolenksystems, Servolenksystem
WO2018065002A1 (fr) Procédé de détermination de position absolue, moteur électrique et dispositif d'actionnement pour accouplement à friction
DE102009028749A1 (de) Temperaturerfassung durch Magnetfeldveränderungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17751988

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112017003985

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17751988

Country of ref document: EP

Kind code of ref document: A1