WO2018028654A1 - 参考信号映射方法及装置 - Google Patents

参考信号映射方法及装置 Download PDF

Info

Publication number
WO2018028654A1
WO2018028654A1 PCT/CN2017/096992 CN2017096992W WO2018028654A1 WO 2018028654 A1 WO2018028654 A1 WO 2018028654A1 CN 2017096992 W CN2017096992 W CN 2017096992W WO 2018028654 A1 WO2018028654 A1 WO 2018028654A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
resource group
reference signal
group
Prior art date
Application number
PCT/CN2017/096992
Other languages
English (en)
French (fr)
Inventor
张旭
薛丽霞
成艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17838784.1A priority Critical patent/EP3493453B1/en
Publication of WO2018028654A1 publication Critical patent/WO2018028654A1/zh
Priority to US16/265,971 priority patent/US10903954B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a reference signal mapping method and apparatus.
  • LTE networks transmit signals in units of radio frames.
  • the radio frames are composed of subframes, each subframe has two slots, and each slot is composed of a fixed number of Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the data transmission channel needs to be demodulated to obtain transmission data in the channel; for example, in the downlink, according to the reference signal transmitted along the control channel and the data channel, The control signal and/or the data signal received on the control channel and/or the data channel are demodulated.
  • the reference signal is a specific set of data sequences distributed over a specified time-frequency resource location for demodulation of the data signal and/or control signal.
  • the reference signal for demodulating the received data signal is dispersed in the entire physical resource block (PRB), and the user equipment needs to receive the signal in the entire PRB before the data in the PRB can be received.
  • the signal is demodulated.
  • the reference signal Since the reference signal is dispersed in the entire PRB, the reference signal occupies too much time-frequency resources, the overhead is too large, and the fast demodulation of the data signal cannot be realized, thereby failing to satisfy the fifth-generation mobile communication technology (fifth-generation, 5G) low latency requirements.
  • 5G fifth-generation mobile communication technology
  • an embodiment of the present disclosure provides a reference signal mapping mapping method and apparatus.
  • a reference signal mapping method comprising:
  • the base station maps the N reference signals to the specified time-frequency resource, where the N is a positive integer greater than or equal to 1; the base station sends at least one of the N reference signals to the user equipment at the specified time-frequency resource.
  • the specified time-frequency resource includes a first orthogonal frequency division multiplexing OFDM symbol of a data region in a time domain, the PRB including a first type of control channel and the a data area, the data area including a second type of control channel and a data channel, the first type of control channel including the first m OFDM symbols of the PRB in a time domain, the data area including the PRB in a time domain
  • the reference signal is mapped on a specified time-frequency resource composed of a plurality of REs including the first OFDM symbols of the data region in the time domain, so that the reference signal does not need to exist in the entire time-frequency resource, only when there is a data signal and/ Or the reference signal for demodulating the data signal and/or the control signal is transmitted when the control signal is transmitted, and the fast demodulation of the control signal and the data signal can be realized, which satisfies the low delay requirement of the 5G communication network, and is orthogonal to
  • the sequence implements code division multiplexing to increase the number of concurrent transmission channels of the data channel and the number of user equipments multiplexed by the control channel.
  • the specified time-frequency resource includes at least one OFDM symbol in the data channel in a time domain.
  • the number of concurrent transmission channels and the number of user equipments multiplexed by the control channel can be further improved; in addition, when the user equipment When in a high-speed mobile scenario, the channel estimation accuracy of the user equipment to the data channel can also be improved.
  • the mapping, by the base station, the N reference signals to the specified time-frequency resource includes: selecting any N sequences from the orthogonal sequence group, the orthogonal sequence The group includes M pairs of orthogonal sequences, the N is the number of antenna ports, the M and the N are both positive integers greater than or equal to 1, and M is not less than N; based on the N sequence generation Deriving the N reference signals; mapping the N reference signals corresponding to the N sequences to the specified time-frequency resource, so that the N reference signals are orthogonal to each other on the specified time-frequency resource.
  • mapping the reference signal to the specified time-frequency resource by mapping multiple reference signals to the specified time-frequency resource, by implementing code division multiplexing on the orthogonal sequence, one PRB can be improved without increasing resource consumption.
  • the number of reference signals sent within is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to mapping multiple reference signals to the specified time-frequency resource, by implementing code division multiplexing on the orthogonal sequence, one PRB can be improved without increasing resource consumption. The number of reference signals sent within.
  • the method before the sending, by the user equipment, the at least one of the N reference signals, the method further includes: sending, to the user equipment a first indication information, where the first indication information includes port information of a first preset antenna port, where the first preset antenna port is used to send the at least one reference signal; and correspondingly, the user equipment is Transmitting at least one of the N reference signals includes transmitting the at least one reference signal to the user equipment at the first preset antenna port.
  • the first indication information including the port information is sent to the user equipment, so that the user equipment can determine the antenna port that receives the at least one reference signal according to the port information.
  • the first indication information when the first indication information is transmitted in the first type of control channel of the subframe where the PRB is located, when the first preset antenna port is corresponding to The frequency information is in a data area of the subframe in which the PRB is located; or, when the first indication information is transmitted on the second type of control channel of the PRB, the first indication information further includes the at least one reference signal The subframe position of the subframe is located, and correspondingly, the time-frequency resource corresponding to the first preset antenna port is in the data region of the second PRB, and the second PRB is corresponding to the subframe where the at least one reference signal is located.
  • At least one PRB or, when the first indication information is transmitted on the first type of control channel of the subframe in which the PRB is located, the first indication information further includes a subframe position of the subframe in which the at least one reference signal is located
  • the time-frequency resource corresponding to the first preset antenna port is in the data region of the third PRB
  • the third PRB includes at least one PRB and the at least one reference signal in the subframe where the PRB is located. Subframe corresponding to At least one PRB.
  • the location of the time-frequency resource where the reference signal is located is prompted by the user equipment according to the different location of the reference signal, so that the user equipment can determine the corresponding time-frequency resource location according to the first prompt information, to receive the reference.
  • Signals can improve the efficiency of reference signal transmission and avoid signal transmission failure.
  • the specified time-frequency resource is And including: a first time-frequency resource group and a second time-frequency resource group, each time-frequency resource group corresponding to two antenna ports; and mapping the N reference signals corresponding to the N sequences to the specified time
  • the frequency resource includes: acquiring a mapping sequence of the first sequence group, where the first sequence group includes a first sequence and a second sequence, where the first sequence and the second sequence are from the orthogonal sequence group Selecting the two sequences; mapping the two reference signals corresponding to the mapping sequence to the first time-frequency resource group and the second time-frequency resource group respectively; wherein the first time-frequency group
  • the resource group and the second time-frequency resource group respectively include 2 REs of a first OFDM symbol of the data region and 2 REs of a second OFDM symbol of the data region, the first OFDM symbol 2 REs and 2 REs of the second OFDM symbol occupy sub
  • the intersection sequence implements code division multiplexing, and increases the number of concurrent transmission channels of the data channel and the number of user equipments multiplexed by the control channel.
  • the specified time-frequency resource further includes a third time-frequency resource group and a fourth time-frequency resource group, where each time-frequency resource group corresponds to two antenna ports;
  • the method further includes: mapping the reference signals corresponding to the third sequence in the second sequence group to the first time-frequency resource group and the second time-frequency resource according to a first preset rule And a reference signal corresponding to the fourth sequence in the second sequence group is respectively mapped to the first time-frequency resource group and the second time-frequency resource group according to the first preset rule, so that the The third sequence group corresponding to the third time-frequency resource group is composed of the third sequence and the fourth sequence; wherein the second sequence group is divided by the orthogonal sequence group except the first sequence group
  • the third time-frequency resource group includes the first one of the first time-frequency resource group and the second time-frequency resource group located in the data region 4 REs of an OFDM symbol, the fourth time-frequency resource group including the
  • the reference signal transmitted by the antenna port corresponding to the third time-frequency resource group and the reference signal transmitted by the antenna port corresponding to the first time-frequency resource group and the second time-frequency resource group can be orthogonalized by orthogonal codes.
  • the reference signal of the antenna port corresponding to the third time-frequency resource group can be used to demodulate the control in the second type of control channel.
  • the data signal in the signal and the data channel can implement fast demodulation of the control signal; when the time-frequency resource occupied by the second type of control channel does not include the third time-frequency resource group, the third time-frequency resource group corresponds to
  • the reference signal of the antenna port can also be used to demodulate the data signal.
  • the reference signals corresponding to the fourth sequence in the second sequence group are respectively mapped to the first time-frequency resource according to the first preset rule.
  • the method further includes: when the n is greater than or equal to 2, according to the second sequence group, the first time-frequency resource group and the second time Obtaining, by the mapping result of the frequency resource group, the fourth sequence group corresponding to the fourth time-frequency resource group, where the first preset rule is configured to obtain the fourth sequence group and the third group obtained according to the mapping result
  • the sequence group is the same, and the fourth time-frequency resource group reference signal is used as an auxiliary reference signal of the third time-frequency resource group reference signal.
  • Using the fourth time-frequency resource group reference signal as an auxiliary reference signal of the third time-frequency resource group reference signal No. can improve the demodulation success rate of the control signal and the data signal.
  • the method further includes: pressing the two reference signals corresponding to the mapping sequence by the first preset
  • the rules are respectively mapped to the first time-frequency resource group and the second time-frequency resource group, such that a reference signal in a first OFDM symbol of the data region and a second OFDM symbol of the data region is implemented in Even distribution of power in the time domain and frequency domain.
  • the first time-frequency resource group reference signal and the first time can be implemented by mapping the two reference signals corresponding to the mapping sequence to the first time-frequency resource group and the second time-frequency resource group according to the first preset rule.
  • the second time-frequency resource group reference signal, in the first OFDM symbol and the second OFDM symbol of the data region achieves uniform distribution of power in the time domain and uniform distribution of power in the frequency domain, thereby reducing transmission by the base station.
  • the signal distortion caused by power fluctuations improves the stability of the information transmission service and ensures the accuracy and success rate of information transmission.
  • the M is 8, and the N is 8; Mapping the N reference signals corresponding to the sequence to the specified time-frequency resource, including: mapping the eight reference signals corresponding to the eight sequences to the specified time-frequency resource, where the specified time-frequency resource corresponds to a reference signal for demodulating the data signal; wherein the specified time-frequency resource comprises 4 REs of a first OFDM symbol of the data region and 4 REs of a second OFDM symbol of the data region, The four REs of the first OFDM symbol and the four REs of the second OFDM symbol occupy subcarriers of the same frequency.
  • mapping of 8 antenna ports by time-frequency resources composed of 8 REs, thereby enabling simultaneous transmission of 8 reference signals, so that the reference signals do not need to exist in the entire time-frequency resource, only when there is a data signal.
  • the reference signal for demodulating the data signal is transmitted when transmitting, and the number of concurrent transmission channels and the number of user equipments multiplexed by the control channel are improved by performing code division multiplexing on the orthogonal sequence.
  • mapping the N reference signals corresponding to the N sequences to a specified time-frequency resource including: 8 corresponding to the 8 sequences
  • the reference signal is respectively mapped to the specified time-frequency resource according to a second preset rule, so that the specified time-frequency resource has four orthogonal sequences in four REs of the first OFDM symbol of the data region.
  • the reference signals corresponding to the 4 REs of the first OFDM symbol are used to demodulate the control signal and/or the data signal.
  • the specified time-frequency resource can have four orthogonal sequences in the four REs of the first OFDM symbol of the data region, and the time-frequency resources occupied by the second type of control channel include the
  • the corresponding 4 antenna ports can be shared by the data channel and the control channel, that is, the 4 antenna ports can transmit both the reference signal for demodulating the control signal and the reference for demodulating the data signal. signal.
  • the specified time frequency is
  • the resource includes: a fifth time-frequency resource group and a sixth time-frequency resource group, each time-frequency resource group corresponding to four antenna ports; and mapping the N reference signals corresponding to the N sequences to the designation
  • the time-frequency resource includes: acquiring a mapping sequence of the third sequence group, the third sequence group including the four sequences selected from the orthogonal sequence group; and four reference signals corresponding to the mapping sequence Mapping to the fifth time-frequency resource group and the sixth time-frequency resource group, respectively, wherein the fifth time-frequency resource group and the sixth time-frequency resource group respectively comprise the first one of the data regions 2 REs of an OFDM symbol, 2 REs of a second OFDM symbol, 2 REs of an i-th OFDM symbol, and 2 REs of a j-th OFDM symbol, and 2 REs of the first OFDM symbol, 2
  • mapping it is possible to implement mapping of eight antenna ports in a time-frequency resource composed of 16 REs, thereby enabling simultaneous transmission of eight reference signals.
  • the reference signals corresponding to the eight antenna ports may be used to demodulate the data signal;
  • the class 1 control channel occupies the first OFDM symbol of the PRB, and the second type of control channel occupies the second OFDM symbol of the PRB and the third OFDM symbol, and the data channel occupies other OFDM symbols of the PRB, the 8 antenna ports
  • the corresponding reference signal can be used to demodulate the data signal and can also be used to demodulate the control signal in the second type of control channel.
  • the specified time-frequency resource further includes a seventh time-frequency resource group, where the seventh time-frequency resource group includes the fifth time-frequency resource group and The fourth time-frequency resource group of the sixth time-frequency resource group is located at four REs of the first OFDM symbol, and the seventh time-frequency resource group corresponds to four antenna ports; correspondingly, the method further includes: Four reference signals corresponding to four sequences other than the four sequences included in the third sequence group in the orthogonal sequence group are respectively mapped to the fifth time-frequency resource group according to a third preset rule.
  • the mapping mode of the seventh time-frequency resource group and the fifth time-frequency resource group reference signal and the sixth time-frequency resource group reference signal are orthogonalized by orthogonal codes, and the second type of control channel is occupied by the foregoing mapping manner.
  • the seventh time-frequency resource group reference signal can be used to demodulate the control signal in the second type of control channel and the data signal in the data channel, and can implement the control signal. Fast demodulation.
  • the specified time-frequency resource further includes an eighth time-frequency resource group, where the eighth time-frequency resource group includes the fifth time-frequency resource group and 4 REs of the second OFDM symbol of the data area in the sixth time-frequency resource group, and the eighth time-frequency resource group corresponding to 4 antenna ports; correspondingly, the orthogonal sequence group is Four reference signals corresponding to four sequences other than the four sequences included in the third sequence group are respectively mapped to the fifth time-frequency resource group and the sixth time-frequency according to a third preset rule
  • the method further includes: when the n is greater than or equal to 2 and smaller than the i, acquiring, according to the mapping result, four sequences corresponding to the eighth time-frequency resource group, where The third preset rule is that the four sequences corresponding to the eighth time-frequency resource group acquired according to the mapping result are orthogonal to each other, and the eighth time-frequency resource group reference signal is used as the seventh The auxiliary reference
  • the resource group and the sixth time-frequency resource group are further configured to make the four sequences corresponding to the eighth time-frequency resource group orthogonal to each other, so that the eighth time-frequency resource group reference signal is used as the seventh time Auxiliary reference signal of the frequency resource group reference signal.
  • the specified time-frequency resource further includes a ninth time-frequency resource group, where the ninth time-frequency resource group includes the fifth time-frequency resource group and 4 REs of the ith OFDM symbol of the data area in the sixth time-frequency resource group, and the ninth time-frequency resource group corresponding to 4 antenna ports; correspondingly, the orthogonal sequence group is Four reference signals corresponding to four sequences other than the four sequences included in the third sequence group are respectively mapped to the fifth time-frequency resource group and the sixth time-frequency according to a third preset rule Resource group gets mapped
  • the method further includes: acquiring, according to the mapping result, four sequences corresponding to the eighth time-frequency resource group and four sequences corresponding to the ninth time-frequency resource group, where the third preset The rule is such that the four sequences corresponding to the eighth time-frequency resource group obtained by the mapping result are orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to
  • the resource group and the sixth time-frequency resource group are further configured to make the four sequences corresponding to the eighth time-frequency resource group orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other.
  • the eighth time-frequency resource group reference signal and/or the ninth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the eighth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal. And can be used to demodulate the control signal in the second type of control channel, and can also be used to demodulate the data signal in the data channel, where the ninth time-frequency resource group reference signal is used as the seventh time-frequency resource group reference signal.
  • a secondary reference signal that can be used to demodulate data signals in the data channel.
  • the eighth time-frequency resource group reference signal and the ninth time-frequency resource group reference signal are used as the seventh
  • the auxiliary reference signal of the time-frequency resource group reference signal can be used to demodulate the control signal in the second type of control channel, and can also be used to demodulate the data signal in the data channel.
  • the specified time-frequency resource further includes a tenth time-frequency resource group, where the tenth time-frequency resource group includes the fifth time-frequency resource group and 4 REs of the jth OFDM symbol of the data area in the sixth time-frequency resource group, and the tenth time-frequency resource group corresponds to four antenna ports; correspondingly, the orthogonal sequence group is Four reference signals corresponding to four sequences other than the four sequences included in the third sequence group are respectively mapped to the fifth time-frequency resource group and the sixth time-frequency according to a third preset rule
  • the method further includes: acquiring, according to the mapping result, four sequences corresponding to the eighth time-frequency resource group, four sequences corresponding to the ninth time-frequency resource group, and the The fourth sequence of the tenth time-frequency resource group, the third preset rule is such that the four sequences corresponding to the eighth time-frequency resource group obtained according to the mapping result are orthogonal to
  • the resource group and the sixth time-frequency resource group are further configured to make the four sequences corresponding to the eighth time-frequency resource group orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other. And/or the four sequences corresponding to the tenth time-frequency resource group are orthogonal to each other, thereby making the eighth time-frequency resource group reference signal and/or the ninth time-frequency resource group reference signal and/or the tenth time
  • the frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the eighth time-frequency resource group reference signal is used as the seventh time-frequency resource.
  • the auxiliary reference signal of the group reference signal may be used to demodulate the control signal in the second type of control channel, or may be used to demodulate the data signal in the data channel, the ninth time-frequency resource group reference signal and/or the The tenth time-frequency resource group reference signal is used as the seventh time-frequency resource group reference letter
  • the auxiliary reference signal of the number can be used to demodulate the data signal in the data channel.
  • the eighth time-frequency resource group reference signal and the ninth time The frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal, and can be used for demodulating the control signal in the second type of control channel, and can also be used for demodulating the data signal in the data channel.
  • the tenth time-frequency resource group reference signal is used as the seventh time-frequency resource group reference signal, and can be used to demodulate the data signal in the data channel.
  • the eighth time-frequency resource group reference signal and the ninth time-frequency resource group are used as auxiliary reference signals of the seventh time-frequency resource group reference signal, and can be used for demodulating the control signal in the second type of control channel, and can also be used for demodulation.
  • Data signal in the data channel is used as auxiliary reference signals of the seventh time-frequency resource group reference signal, and can be used for demodulating the control signal in the second type of control channel, and can also be used for demodulation.
  • the method further includes: using the fourth reference signal corresponding to the mapping sequence by the third pre- Setting a rule to the fifth time-frequency resource group and the sixth time-frequency resource group, respectively, such that a first OFDM symbol of the data region, a second OFDM symbol of the data region, and the data region
  • the i-th OFDM symbol and the reference signal in the j-th OFDM symbol of the data region achieve uniform distribution of power in the time domain and the frequency domain.
  • the fifth time-frequency resource group reference signal and the first phase can be implemented by mapping the four reference signals corresponding to the mapping sequence to the fifth time-frequency resource group and the sixth time-frequency resource group according to the third preset rule.
  • the six-time frequency resource group reference signal realizes uniform distribution of power in the time domain and uniform distribution of power in the frequency domain on the OFDM symbols in the time domain corresponding to the fifth time-frequency resource group and the sixth time-frequency resource group Therefore, the stability of the information transmission service is improved, and the accuracy and success rate of information transmission are ensured.
  • the specified time frequency is
  • the resource includes an eleventh time-frequency resource group and a twelfth time-frequency resource group, each time-frequency resource group corresponding to four antenna ports; and mapping the N reference signals corresponding to the N sequences to the Specifying a time-frequency resource, including: mapping four reference signals corresponding to the four sequences to the eleventh time-frequency resource group and the twelfth time-frequency resource group; wherein, the eleventh The time-frequency resource group and the twelfth time-frequency resource group respectively include any non-overlapping 4 REs on the first OFDM symbol of the data region, the eleventh time-frequency resource group reference signal and the The twelfth time-frequency resource reference signal is used to demodulate the data signal.
  • mapping the reference signal By mapping the reference signal by using the mapping method, it is possible to implement mapping of eight antenna ports in a time-frequency resource composed of eight REs, thereby enabling simultaneous transmission of eight reference signals.
  • the reference signals corresponding to the four antenna ports may be used to demodulate the data signal. It can also be used to demodulate control signals in the second type of control channel.
  • the method further includes: mapping, by using a fourth preset rule, four reference signals corresponding to four sequences in the orthogonal sequence group to The eleventh time-frequency resource group and the twelfth time-frequency resource group are such that reference signals in the first OFDM symbol of the data region achieve uniform distribution of power in the frequency domain.
  • the eleventh time-frequency resource group reference can be implemented by mapping the four reference signals corresponding to the four sequences to the eleventh time-frequency resource group and the twelfth time-frequency resource group according to the fourth preset rule.
  • the signal and the twelfth time-frequency resource group reference signal implement uniform distribution of power in the frequency domain on the first OFDM symbol of the data region, thereby improving stability of the information transmission service and ensuring accuracy of information transmission and Success rate.
  • the method further includes: selecting two antenna ports from the four antenna ports corresponding to the eleventh time-frequency resource group and the four antenna ports corresponding to the twelfth time-frequency resource group, respectively, for Data channel and control channel multiplexing.
  • the two antenna ports are respectively selected from the four antenna ports corresponding to the eleventh time-frequency resource group and the four antenna ports corresponding to the twelfth time-frequency resource group, for multiplexing the data channel and the control channel, thereby enabling control Fast demodulation of signal and data signals.
  • the first indication information further includes time-frequency resource extension indication information, where the time-frequency resource extension indication information is used to indicate that the at least one reference signal is located
  • the time-frequency resource includes the extended time-frequency resource group, where the first extended time-frequency resource is a plurality of REs on a preset OFDM symbol; or the first indication information is further used to indicate the specified time-frequency resource.
  • the second extended time-frequency resource is further included.
  • the first indication information further includes location information of the second extended time-frequency resource.
  • the reference signal mapped by using different mapping methods may exist in the same PRB, and the port information of the antenna port of the antenna corresponding to the different reference signals is the same, so that the user equipment can determine the reception.
  • the time-frequency resource location of the reference signal and the corresponding antenna port may exist in the same PRB, and the port information of the antenna port of the antenna corresponding to the different reference signals is the same, so that the user equipment can determine the reception.
  • the method before the sending the first indication information to the user equipment, the method further includes: sending, to the user equipment, second indication information, where The second indication information is used to indicate a time-frequency resource location where the second type of control channel is located.
  • the second indication information indicating the location of the time-frequency resource where the second type of control channel is located is sent to the user equipment, so that when the first indication information is sent by the second type of control channel, the user equipment learns the second The location of the time-frequency resource where the class control information is located, and then waiting for receiving the first indication information at the time-frequency resource location where the second type of control information is located, to prevent the user equipment from frequently monitoring the control channel, thereby improving signal reception. effectiveness.
  • the orthogonal sequence set is a Walsh-Hadamard sequence.
  • Code division multiplexing is implemented by using multiple Wals-Hadamard sequences as orthogonal sequence groups to implement multiple REs shared by multiple antenna ports.
  • a reference signal mapping method comprising:
  • the first preset time-frequency resource group receives at least one reference signal, where the first preset time-frequency resource group is the first preset Setting a time-frequency resource group corresponding to the antenna port;
  • the second preset time-frequency resource group receives the at least one reference signal, and the second preset time-frequency resource group includes the first pre- Set a time-frequency resource group and an extended time-frequency resource group;
  • the reference signal mapped by using different mapping methods exists in the same PRB type, and the port information of the antenna port corresponding to the antenna of the different reference signal is the same, and the receiving is determined.
  • the time-frequency resource location of the reference signal and the corresponding antenna port is determined.
  • the time-frequency resource extension indication information is used to indicate that the time-frequency resource where the at least one reference signal is located includes the extended time-frequency resource group, and the extension The time-frequency resource group is composed of a plurality of REs on a preset OFDM symbol.
  • the user equipment determines the first preset time-frequency resource group and the time-frequency resource extension indication information that is sent by the base station to indicate that the time-frequency resource where the at least one reference signal is located includes the extended time-frequency resource group.
  • a reference signal is received on a plurality of REs on a preset OFDM symbol.
  • the time-frequency resource extension indication information includes location information of the extended time-frequency resource group.
  • the user equipment determines that the first preset time-frequency resource group and the extended time-frequency resource group receive the reference signal by receiving the time-frequency resource extension indication information that is sent by the base station and includes the location information of the extended time-frequency resource group.
  • a reference signal mapping apparatus comprising:
  • a processing unit configured by the base station to map the N reference signals to the specified time-frequency resource, where the N is a positive integer greater than or equal to 1;
  • a sending unit configured to send, by the base station, at least one of the N reference signals to the user equipment in the specified time-frequency resource, where the specified time-frequency resource is in time for any physical resource block PRB
  • the first orthogonal frequency division multiplexing OFDM symbol of the data region is included in the domain
  • the PRB includes a first type of control channel and the data area, the data area includes a second type of control channel and a data channel, and the first type of control channel includes the first m OFDM symbols of the PRB in a time domain,
  • the data area includes an OFDM symbol in the PRB other than the first type of control channel in a time domain
  • the second type of control channel includes a first n OFDM symbols of the data region in a time domain, and the data channel includes an OFDM symbol in the data region other than the second type of control channel in a time domain,
  • the m and the n are both positive integers greater than or equal to 1.
  • the reference signal is mapped on a specified time-frequency resource composed of a plurality of REs including the first OFDM symbols of the data region in the time domain, so that the reference signal does not need to exist in the entire time-frequency resource, only when there is a control signal and/or Or the reference signal for demodulating the control signal and/or the data signal is transmitted when the data signal is transmitted, and the fast demodulation of the control signal and the data signal can be realized, which satisfies the low delay requirement of the 5G communication network, and is orthogonal to
  • the sequence implements code division multiplexing to increase the number of concurrent transmission channels of the data channel and the number of user equipments multiplexed by the control channel.
  • the specified time-frequency resource includes the data channel.
  • mapping the reference signal on the designated time-frequency resource including the data channel By mapping the reference signal on the designated time-frequency resource including the data channel, the number of concurrent transmission channels of the data channel and the number of user equipments multiplexed by the control channel can be further improved.
  • the processing unit is configured to:
  • the orthogonal sequence group includes M pairs of orthogonal sequences, the N is the number of antenna ports, and the M and the N are both greater than or equal to 1. a positive integer, and M is not less than N;
  • mapping the reference signal to the specified time-frequency resource by mapping multiple reference signals to the specified time-frequency resource, by implementing code division multiplexing on the orthogonal sequence, one PRB can be improved without increasing resource consumption.
  • the number of reference signals sent within is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to mapping multiple reference signals to the specified time-frequency resource, by implementing code division multiplexing on the orthogonal sequence, one PRB can be improved without increasing resource consumption. The number of reference signals sent within.
  • the sending unit is further configured to:
  • the indication information includes port information of a preset antenna port, where the preset antenna port is used to send the at least one reference signal;
  • the sending unit is configured to send the at least one reference signal to the user equipment at the preset antenna port.
  • the first indication information including the port information is sent to the user equipment, so that the user equipment can determine the antenna port that receives the at least one reference signal according to the port information.
  • the first indication information when the first indication information is transmitted in the first type of control channel of the subframe where the PRB is located, when the first preset antenna port is corresponding to The frequency information is in a data area of the subframe in which the PRB is located; or, when the first indication information is transmitted on the second type of control channel of the PRB, the first indication information further includes the at least one reference signal The subframe position of the subframe is located, and correspondingly, the time-frequency resource corresponding to the first preset antenna port is in the data region of the second PRB, and the second PRB is corresponding to the subframe where the at least one reference signal is located.
  • At least one PRB or, when the first indication information is transmitted on the first type of control channel of the subframe in which the PRB is located, the first indication information further includes a subframe position of the subframe in which the at least one reference signal is located
  • the time-frequency resource corresponding to the first preset antenna port is in the data region of the third PRB
  • the third PRB includes at least one PRB and the at least one reference signal in the subframe where the PRB is located. Subframe corresponding to At least one PRB.
  • the user equipment is prompted with the time-frequency resource location where the reference signal is located, so that the user equipment can determine the corresponding time-frequency resource location according to the first prompt information, to receive the reference signal. It can improve the efficiency of reference signal transmission and avoid the occurrence of signal transmission failure.
  • the specified time-frequency resource is The method includes: a first time-frequency resource group and a second time-frequency resource group, where each time-frequency resource group corresponds to two antenna ports; the processing unit is configured to:
  • mapping sequence of a first sequence group comprising a first sequence and a second sequence, the first sequence and the second sequence being the two selected from the orthogonal sequence group sequence;
  • the first time-frequency resource group and the second time-frequency resource group respectively include two REs of the first OFDM symbol of the data area and two REs of the second OFDM symbol of the data area.
  • the two REs of the first OFDM symbol and the two REs of the second OFDM symbol occupy subcarriers of the same frequency
  • the first time-frequency resource group reference signal and the second time-frequency resource group reference signal are used to demodulate a data signal.
  • the reference signal By mapping the reference signal on a specified time-frequency resource consisting of multiple REs of the first OFDM symbol of the data region in the time domain, so that the reference signal does not need to exist in the entire time-frequency resource, only when there is a control signal and/or When the data signal is transmitted, the reference signal for demodulating the control signal and/or the data signal is transmitted, and the control signal and/or the data signal can be quickly demodulated to meet the low delay requirement of the 5G communication network.
  • the orthogonal sequence implements code division multiplexing to improve the number of concurrent transmission channels of the data channel and the number of user equipments multiplexed by the control channel.
  • the specified time-frequency resource further includes a third time-frequency resource group and a fourth time-frequency resource group, where each time-frequency resource group corresponds to two antenna ports;
  • the processing unit is further configured to:
  • the reference signals corresponding to the third sequence in the second sequence group are respectively mapped to the first time-frequency resource group and the second time-frequency resource group according to a first preset rule
  • the second sequence group is composed of the third sequence and the fourth sequence except the first sequence group in the orthogonal sequence group.
  • the third time-frequency resource group includes four REs of the first time-frequency resource group and the first time-frequency resource group located in the first OFDM symbol of the data area
  • the fourth time-frequency resource The group includes four REs of the first time-frequency resource group and the second OFDM symbol of the second time-frequency resource group located in the data area
  • the third time-frequency resource group reference signal is used to demodulate the data signal and/or the control signal.
  • the reference signal transmitted by the antenna port corresponding to the third time-frequency resource group and the reference signal transmitted by the antenna port corresponding to the first time-frequency resource group and the second time-frequency resource group can be orthogonalized by orthogonal codes.
  • the reference signal of the antenna port corresponding to the third time-frequency resource group can be used to demodulate the control in the second type of control channel.
  • the data signal in the signal and the data channel can implement fast demodulation of the control signal; when the time-frequency resource occupied by the second type of control channel does not include the third time-frequency resource group, the third time-frequency resource group corresponds to
  • the reference signal of the antenna port can also be used to demodulate the data signal.
  • the processing unit is further configured to:
  • the mapping of the fourth time-frequency resource group is obtained according to the mapping result of the second sequence group, a fourth sequence group, the first preset rule is such that the fourth sequence group obtained according to the mapping result is the same as the third sequence group, and the fourth time-frequency resource group reference signal is used as a
  • the auxiliary reference signal of the reference signal of the third time-frequency resource group is described.
  • the demodulation success rate of the control signal and the data signal can be improved.
  • the processing unit is further configured to:
  • the symbol and the reference signal in the second OFDM symbol of the data region enable uniform distribution of power in the time domain and the frequency domain.
  • the first time-frequency resource group reference signal and the first time can be implemented by mapping the two reference signals corresponding to the mapping sequence to the first time-frequency resource group and the second time-frequency resource group according to the first preset rule.
  • the second time-frequency resource group reference signal in the first OFDM symbol and the second OFDM symbol of the data region, achieves uniform distribution of power in the time domain and uniform distribution of power in the frequency domain, thereby reducing the transmitter due to Signal distortion caused by power fluctuations, improve the stability of information transmission services, and ensure the accuracy and success rate of information transmission.
  • the processing unit is configured to:
  • the specified time-frequency resource includes 4 REs of a first OFDM symbol of the data region and 4 REs of a second OFDM symbol of the data region, and 4 of the first OFDM symbols RE and the second OFDM
  • the 4 REs of the symbol occupy subcarriers of the same frequency.
  • mapping of 8 antenna ports by time-frequency resources composed of 8 REs, thereby enabling simultaneous transmission of 8 reference signals, so that the reference signals do not need to exist in the entire time-frequency resource, only when there is a data signal.
  • the reference signal for demodulating the data signal is transmitted when transmitting, and the number of concurrent transmission channels and the number of user equipments multiplexed by the control channel are improved by performing code division multiplexing on the orthogonal sequence.
  • the processing unit is further configured to:
  • the RE has four orthogonal sequences, and the reference signals corresponding to the four REs of the first OFDM symbol are used to demodulate the control signal and/or the data signal.
  • the specified time-frequency resource can have four orthogonal sequences in the four REs of the first OFDM symbol of the data region, and the time-frequency resources occupied by the second type of control channel include the
  • the corresponding 4 antenna ports can be shared by the data channel and the control channel, that is, the 4 antenna ports can transmit both the reference signal for demodulating the control signal and the reference for demodulating the data signal. signal.
  • the specified time frequency is
  • the resource includes: a fifth time-frequency resource group and a sixth time-frequency resource group, each time-frequency resource group corresponding to four antenna ports; the processing unit is configured to:
  • mapping sequence of a third sequence group comprising the four sequences selected from the orthogonal sequence group;
  • the fifth time-frequency resource group and the sixth time-frequency resource group respectively include 2 REs of the first OFDM symbol of the data region, 2 REs of the second OFDM symbol, and an ith OFDM.
  • 2 REs of the symbol and 2 REs of the jth OFDM symbol, and 2 REs of the first OFDM symbol, 2 REs of the second OFDM symbol, 2 of the ith OFDM symbol The REs and the 2 REs of the jth OFDM symbol occupy subcarriers of the same frequency, the i is a positive integer greater than 2, and the j is a positive integer greater than i,
  • the fifth time-frequency resource group reference signal and the sixth time-frequency resource group reference signal are used to demodulate the data signal.
  • mapping it is possible to implement mapping of eight antenna ports in a time-frequency resource composed of 16 REs, thereby enabling simultaneous transmission of eight reference signals.
  • the reference signals corresponding to the eight antenna ports may be used to demodulate the data signal;
  • the class 1 control channel occupies the first OFDM symbol of the PRB, and the second type of control channel occupies the second OFDM symbol of the PRB and the third OFDM symbol, and the data channel occupies other OFDM symbols of the PRB, the 8 antenna ports
  • the corresponding reference signal can be used to demodulate the data signal and can also be used to demodulate the control signal in the second type of control channel.
  • the specified time-frequency resource further includes a seventh time-frequency resource group, where the seventh time-frequency resource group includes the fifth time-frequency resource group and The fourth time-frequency resource group is located in the first OFDM symbol of the data region, and the seventh time-frequency resource group corresponds to four antenna ports;
  • processing unit is further configured to:
  • the mapping result is such that the four sets of sequences of the seventh time-frequency resource group in the mapping result are orthogonal to each other, and the seventh time-frequency resource group reference signal is used to demodulate the data signal and/or the control signal.
  • the mapping mode of the seventh time-frequency resource group and the fifth time-frequency resource group reference signal and the sixth time-frequency resource group reference signal are orthogonalized by orthogonal codes, and the second type of control channel is occupied by the foregoing mapping manner.
  • the seventh time-frequency resource group reference signal can be used to demodulate the control signal in the second type of control channel and the data signal in the data channel, and can implement the control signal. Fast demodulation.
  • the specified time-frequency resource further includes an eighth time-frequency resource group, where the eighth time-frequency resource group includes the fifth time-frequency resource group and The fourth time-frequency resource group is located in the second OFDM symbol of the data region, and the eighth time-frequency resource group corresponds to four antenna ports;
  • processing unit is further configured to:
  • the third preset rule is obtained according to the mapping result.
  • the four sequences corresponding to the eighth time-frequency resource group are orthogonal to each other, and the eighth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the resource group and the sixth time-frequency resource group are further configured to make the four sequences corresponding to the eighth time-frequency resource group orthogonal to each other, so that the eighth time-frequency resource group reference signal is used as the seventh time Auxiliary reference signal of the frequency resource group reference signal.
  • the specified time-frequency resource further includes a ninth time-frequency resource group, where the ninth time-frequency resource group includes the fifth time-frequency resource group and 4 REs of the ith OFDM symbol of the data area in the sixth time-frequency resource group, and the ninth time-frequency resource group corresponds to 4 antenna ports;
  • processing unit is further configured to:
  • mapping result four sequences corresponding to the eighth time-frequency resource group and four sequences corresponding to the ninth time-frequency resource group, where the third preset rule is obtained according to the mapping result.
  • the four sequences corresponding to the eighth time-frequency resource group are orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other, and the eighth time-frequency resource group reference signal and And/or the ninth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the resource group and the sixth time-frequency resource group are further configured to make the four sequences corresponding to the eighth time-frequency resource group orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other.
  • the eighth time-frequency resource group reference signal and/or the ninth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the eighth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal. And can be used to demodulate the control signal in the second type of control channel, and can also be used to demodulate the data signal in the data channel, where the ninth time-frequency resource group reference signal is used as the seventh time-frequency resource group reference signal.
  • a secondary reference signal that can be used to demodulate data signals in the data channel.
  • the eighth time-frequency resource group reference signal and the ninth time-frequency resource group reference signal are used as the seventh
  • the auxiliary reference signal of the time-frequency resource group reference signal can be used for demodulating the control signal in the second type of control channel, and can also be used in demodulating the data channel. Data signal.
  • the specified time-frequency resource further includes a tenth time-frequency resource group, where the tenth time-frequency resource group includes the fifth time-frequency resource group and 4 REs of the jth OFDM symbol of the data area in the sixth time-frequency resource group, and the tenth time-frequency resource group corresponds to four antenna ports;
  • processing unit is further configured to:
  • the third preset rule is such that the four sequences corresponding to the eighth time-frequency resource group obtained according to the mapping result are orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are two or two Orthogonal and/or four sequences corresponding to the tenth time-frequency resource group are orthogonal to each other, the eighth time-frequency resource group reference signal and/or the ninth time-frequency resource group reference signal and/or The tenth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the resource group and the sixth time-frequency resource group are further configured to make the four sequences corresponding to the eighth time-frequency resource group orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other. And/or the four sequences corresponding to the tenth time-frequency resource group are orthogonal to each other, thereby making the eighth time-frequency resource group reference signal and/or the ninth time-frequency resource group reference signal and/or the tenth time
  • the frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the eighth time-frequency resource group reference signal is used as the seventh time-frequency resource.
  • the auxiliary reference signal of the group reference signal may be used to demodulate the control signal in the second type of control channel, or may be used to demodulate the data signal in the data channel, the ninth time-frequency resource group reference signal and/or the
  • the tenth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal, and can be used to demodulate the data signal in the data channel.
  • the eighth time-frequency resource group reference signal and the ninth time The frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal, and can be used for demodulating the control signal in the second type of control channel, and can also be used for demodulating the data signal in the data channel.
  • the tenth time-frequency resource group reference signal is used as the seventh time-frequency resource group reference signal, and can be used to demodulate the data signal in the data channel.
  • the eighth time-frequency resource group reference signal and the ninth time-frequency resource group are used as auxiliary reference signals of the seventh time-frequency resource group reference signal, and can be used for demodulating the control signal in the second type of control channel, and can also be used for demodulation.
  • Data signal in the data channel is used as auxiliary reference signals of the seventh time-frequency resource group reference signal, and can be used for demodulating the control signal in the second type of control channel, and can also be used for demodulation.
  • the processing unit is further configured to:
  • the symbol, the second OFDM symbol of the data region, the ith OFDM symbol of the data region, and the reference signal in the jth OFDM symbol of the data region achieve uniform distribution of power in the time domain and the frequency domain .
  • the fifth time-frequency resource group reference signal and the first phase can be implemented by mapping the four reference signals corresponding to the mapping sequence to the fifth time-frequency resource group and the sixth time-frequency resource group according to the third preset rule.
  • the six-time frequency resource group reference signal realizes uniform distribution of power in the time domain and uniform distribution of power in the frequency domain on the OFDM symbols in the time domain corresponding to the fifth time-frequency resource group and the sixth time-frequency resource group , thereby improving the stability of the information transmission service and ensuring the accuracy of information transmission. Authenticity and success rate.
  • the processing unit is configured to:
  • the eleventh time-frequency resource group and the twelfth time-frequency resource group respectively include any four non-overlapping REs on the first OFDM symbol of the data region, and the eleventh time-frequency
  • the resource group reference signal and the twelfth time-frequency resource reference signal are used to demodulate the data signal.
  • mapping the reference signal By mapping the reference signal by using the mapping method, it is possible to implement mapping of eight antenna ports in a time-frequency resource composed of eight REs, thereby enabling simultaneous transmission of eight reference signals.
  • the reference signals corresponding to the four antenna ports may be used to demodulate the data signal. It can also be used to demodulate control signals in the second type of control channel.
  • the processing unit is further configured to:
  • the eleventh time-frequency resource group reference can be implemented by mapping the four reference signals corresponding to the four sequences to the eleventh time-frequency resource group and the twelfth time-frequency resource group according to the fourth preset rule.
  • the signal and the twelfth time-frequency resource group reference signal implement uniform distribution of power in the frequency domain on the first OFDM symbol of the data region, thereby improving stability of the information transmission service and ensuring accuracy of information transmission and Success rate.
  • the processing unit is further configured to:
  • Two antenna ports are respectively selected from the four antenna ports corresponding to the eleventh time-frequency resource group and the four antenna ports corresponding to the twelfth time-frequency resource group, for multiplexing the data channel and the control channel.
  • the two antenna ports are respectively selected from the four antenna ports corresponding to the eleventh time-frequency resource group and the four antenna ports corresponding to the twelfth time-frequency resource group, for multiplexing the data channel and the control channel, thereby enabling control Fast demodulation of signal and data signals.
  • the indication information is further used to indicate that the specified time-frequency resource further includes a first extended time-frequency resource, where the first extended time-frequency resource is a pre- Let multiple REs on the OFDM symbol; or,
  • the indication information is further used to indicate that the specified time-frequency resource further includes a second extended time-frequency resource, and correspondingly, the indication information further includes location information of the second extended time-frequency resource.
  • the reference signal mapped by using different mapping methods may exist in the same PRB, and the port information of the antenna port of the antenna corresponding to the different reference signals is the same, so that the user equipment can determine the reception.
  • the time-frequency resource location of the reference signal and the corresponding antenna port may exist in the same PRB, and the port information of the antenna port of the antenna corresponding to the different reference signals is the same, so that the user equipment can determine the reception.
  • the sending unit is further configured to: send, to the user equipment, second indication information, where the second indication information is used to indicate the second The location of the time-frequency resource where the class control channel is located.
  • the second indication information indicating the location of the time-frequency resource where the second type of control channel is located is sent to the user equipment, so that when the first indication information is sent by the second type of control channel, the user equipment learns the second The location of the time-frequency resource where the class control information is located, and then waiting for receiving the first indication information at the time-frequency resource location where the second type of control information is located, to prevent the user equipment from frequently monitoring the control channel, thereby improving signal reception. effectiveness.
  • the orthogonal sequence set is a Walsh-Hadamard sequence.
  • Code division multiplexing is implemented by using multiple Wals-Hadamard sequences as orthogonal sequence groups to implement multiple REs shared by multiple antenna ports.
  • a reference signal mapping apparatus comprising:
  • a receiving unit configured to receive first indication information, where the first indication information includes at least port information of the first preset antenna port;
  • a processing unit configured to detect whether the first indication information further includes time-frequency resource extension indication information
  • the receiving unit is further configured to: when the first indication information does not include the time-frequency resource extension indication information, receive, by the first preset time-frequency resource group, at least one reference signal, where the first preset time-frequency resource group a time-frequency resource group corresponding to the first preset antenna port;
  • the receiving unit is further configured to: when the first indication information includes the time-frequency resource extension indication information, receive the at least one reference signal in the second preset time-frequency resource group, where the second preset time-frequency resource The group includes the first preset time-frequency resource group and the extended time-frequency resource group;
  • the processing unit is further configured to demodulate the control signal and/or the data signal according to the at least one reference signal.
  • the reference signal mapped by using different mapping methods exists in the same PRB type, and the port information of the antenna port corresponding to the antenna of the different reference signal is the same, and the receiving is determined.
  • the time-frequency resource location of the reference signal and the corresponding antenna port is determined.
  • the time-frequency resource extension indication information is used to indicate that the time-frequency resource where the at least one reference signal is located includes the extended time-frequency resource group, and the extension The time-frequency resource group is composed of a plurality of REs on a preset OFDM symbol.
  • the user equipment determines the first preset time-frequency resource group and the time-frequency resource extension indication information that is sent by the base station to indicate that the time-frequency resource where the at least one reference signal is located includes the extended time-frequency resource group.
  • a reference signal is received on a plurality of REs on a preset OFDM symbol.
  • the time-frequency resource extension indication information includes location information of the extended time-frequency resource group.
  • the user equipment determines that the first preset time-frequency resource group and the extended time-frequency resource group receive the reference signal by receiving the time-frequency resource extension indication information that is sent by the base station and includes the location information of the extended time-frequency resource group.
  • FIG. 1A is a schematic diagram of an LTE communication system according to an embodiment of the present disclosure.
  • 1B is a schematic structural diagram of a PRB according to an embodiment of the present disclosure
  • 2A is a schematic diagram of a specified time-frequency resource according to an embodiment of the present disclosure
  • 2B is a flowchart of a reference signal mapping method according to an embodiment of the present disclosure
  • 2C is a schematic diagram of a mapping manner corresponding to a first preset rule according to an embodiment of the present disclosure
  • 3A is a schematic diagram of a specified time-frequency resource according to an embodiment of the present disclosure.
  • FIG. 3B is a flowchart of a reference signal mapping method according to an embodiment of the present disclosure.
  • FIG. 3C is a schematic diagram of a mapping manner corresponding to a second preset rule according to an embodiment of the present disclosure
  • 3D is a schematic diagram of a sequence corresponding to a specified time-frequency resource according to an embodiment of the present disclosure
  • 4A is a schematic diagram of a specified time-frequency resource according to an embodiment of the present disclosure.
  • 4B is a flowchart of a reference signal mapping method according to an embodiment of the present disclosure.
  • 4C is a schematic diagram of a specified time-frequency resource according to an embodiment of the present disclosure.
  • 4D is a schematic diagram of a mapping manner corresponding to a third preset rule according to an embodiment of the present disclosure
  • 4E is a schematic diagram of a sequence corresponding to a specified time-frequency resource according to an embodiment of the present disclosure
  • FIG. 5A is a schematic diagram of a specified time-frequency resource according to an embodiment of the present disclosure.
  • FIG. 5B is a flowchart of a reference signal mapping method according to an embodiment of the present disclosure.
  • FIG. 5C is a schematic diagram of a mapping manner corresponding to a fourth preset rule according to an embodiment of the present disclosure.
  • FIG. 6 is a block diagram of a reference signal mapping apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a block diagram of a reference signal mapping apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a user equipment UE according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 1A is a schematic diagram of an LTE communication system according to an embodiment of the present disclosure
  • a downlink (DL) refers to a physical channel from a base station to a UE
  • an uplink (UpLink, UL) is Refers to the physical channel of the signal from the User Equipment (UE) to the base station; "" in Figure 1A indicates other more UEs that establish a communication connection with the base station.
  • each radio frame is composed of subframes in the time domain, and each subframe has two slots, each of which has a fixed number of OFDMs.
  • Symbol composition, one subframe corresponds to multiple physical resource blocks (Physical Resource Blocks, PRBs).
  • PRBs Physical Resource Blocks
  • the minimum scheduling granularity is one PRB, and each PRB includes 14 orthogonal frequency division multiplexing (OFDM) symbols in the time domain dimension, and 12 subcarriers in the frequency domain dimension, each of which will The time-frequency resources occupied by the subcarriers and each OFDM symbol are called resource elements (REs), and one PRB includes 168 REs, as shown in FIG. 1B.
  • OFDM orthogonal frequency division multiplexing
  • a first type of control channel and a data area are included in the PRB, and the data area includes a second type of control channel and a data channel; the first type of control channel is included in the time domain.
  • the first OFDM symbols of the PRB, the data region includes OFDM symbols in the PRB except the first type of control channel; the second type of control channel includes the first n OFDM of the data region in the time domain a symbol that includes the data area in the time domain In the domain except for the OFDM symbol of the second type of control channel, the m and the n are both positive integers greater than or equal to 1.
  • the first type of control channel including the first m OFDM symbols of the PRB in the time domain may include all REs of the first m OFDM symbols of the PRB in the frequency domain, and may also include the first m OFDMs of the PRB. a partial RE of the symbol; a second type of control channel including the first n OFDM symbols of the data region in the time domain, and may include all REs of the first n OFDM symbols of the data region in the frequency domain, and may also include the data
  • the partial RE of the first n OFDM symbols of the region is not specifically limited in this embodiment of the present disclosure.
  • the first type of control channel is configured to transmit location information of a time-frequency resource in which the reference signal is located in the PRB
  • the second type of control channel and the data channel in the data area are used for transmitting reference signals, control information, and data information, where The reference signal is used to demodulate the control signal and the data signal in the data region.
  • the specific reference signal mapping process is described in detail according to the number and location of REs occupied by the reference signals in the PRB.
  • the reference signal length of the reference signal of each antenna port is 4, that is, the reference signal of each antenna port occupies 4 REs in the PRB, as shown in FIG. 2A, the time-frequency resource indicated by the arrow in FIG. 2A
  • the reference signal of the antenna port 1 and the reference signal of the antenna port 2 occupy 4 REs, and the time-frequency resource indicated by the arrow in the figure below is the reference signal of the antenna port 3 and the 4 REs of the reference signal of the antenna port 4.
  • the corresponding reference signal can be code-multiplexed by using the orthogonal sequence group of length 4.
  • the antenna port 3 and the antenna port 4 4 is shared.
  • the corresponding reference signal can also implement code division multiplexing by using an orthogonal sequence group of length 4.
  • FIG. 2B is a flowchart of a reference signal mapping method according to an embodiment of the present disclosure. As shown in FIG. 2B, the method includes the following steps:
  • the base station selects any two sequences from the orthogonal sequence group, and the orthogonal sequence group includes four orthogonal sequences.
  • the orthogonal sequence group includes four orthogonal sequences, and any two sequences are selected from the orthogonal sequence group, and the number of selected sequences is the same as the number of antenna ports.
  • any two sequences are selected from the WOCC , and the arbitrary two sequences are may be for the first and second rows W OCC sequences, may be for the second and third rows W OCC sequences, or any other two lines, the present embodiment of the present disclosure which is not limited.
  • orthogonal sequence group is the 4-dimensional Walsh-Hadamard sequence
  • code division multiplexing of 4 REs shared by two antenna ports can be implemented.
  • the base station generates two reference signals based on the two sequences.
  • the reference signals corresponding to different antenna ports have different sequences, that is, each sequence corresponds to one reference signal, and the reference signal generated based on the sequence can be obtained according to formula (2).
  • p denotes the antenna port number
  • j' D ⁇ i+E ⁇ j
  • the value of j' is taken from the set ⁇ 0 1 2 3 ⁇
  • the " ⁇ " is a multiplication operation
  • i represents the reference signal in the frequency domain
  • the position of the carrier, j represents the position of the OFDM symbol in the time domain
  • A, B, C, D, and E are constants
  • w p (j') is a sequence corresponding to the antenna port of port number p, for example, when When the correspondence between the antenna port p and the sequence is as shown in Table 1, the sequence corresponding to the antenna port with the port number p is obtained from the table, and the reference signal of the antenna port is obtained according to the above formula (2) based on the sequence.
  • r(A ⁇ i+B ⁇ j+C) is a Gold Sequence sequence (complex random sequence), which can be implemented by referring to the method of demodulating reference signals in the third-generation Partnership Project (3GPP) standard. The signal generation process will not be described here.
  • the process of generating the reference signal based on the sequence may be implemented by using the foregoing method, or may be implemented by other methods.
  • the method for generating the reference signal is not limited in the embodiment of the present disclosure.
  • the base station maps the two reference signals corresponding to the two sequences to the specified time-frequency resource, so that the N reference signals are orthogonal to each other on the specified time-frequency resource.
  • the specified time-frequency resource includes: a first time-frequency resource group and a second time-frequency resource group, and each time-frequency resource group corresponds to two antenna ports.
  • the first time-frequency resource group and the second time-frequency resource group respectively include two REs of the first OFDM symbol of the data area and two REs of the second OFDM symbol of the data area, the first Two REs of one OFDM symbol and two REs of the second OFDM symbol occupy subcarriers of the same frequency.
  • the four REs indicated by the arrows are the first time-frequency resource group
  • the four REs indicated by the arrows in the following figure are the second time-frequency resource group
  • the first time-frequency resource group and The four REs of the second time-frequency resource group on the second OFDM symbol are the third time-frequency resource group
  • the first time-frequency resource group and the second time-frequency resource group are four REs on the third OFDM symbol.
  • the reference signal mapping method provided by the present disclosure is described in detail by taking the orthogonal sequence group as the W OCC sequence represented by the formula (1) as an example.
  • the first time-frequency resource group corresponds to the antenna port 1 and the antenna port 2
  • the second time-frequency resource group corresponds to the antenna port 3 and the antenna port 4.
  • the mapping method of the reference signal transmitted by the antenna port 1 and the reference signal transmitted by the antenna port 2 may be: acquiring a mapping sequence of the first sequence group, the first sequence group including the first sequence and the second sequence, the first sequence and The second sequence is the two sequences selected from the orthogonal sequence group; the two reference signals corresponding to the mapping sequence are respectively mapped to the first time-frequency resource group and the second time-frequency resource group; when two sequences W OCC sequences from a formula (1) in a first selected sequence and second rows, i.e., the first sequence is a first row of W OCC sequence, the second sequence is W OCC And shifting the two reference signals corresponding to the two sequences to the first time-frequency resource group.
  • the first time-frequency resource occupies the sub-carrier in the frequency domain.
  • the frequency is different, so the second time-frequency resource group reference signal is orthogonal to the first time-frequency resource group reference signal, so the first row and the second selected from the W OCC sequence shown in the above formula (1) can be used.
  • the sequence of the row is mapped to the second time-frequency resource group reference signal, and the specific mapping method is similar to the method for mapping the two reference signals corresponding to the two sequences to the first time-frequency resource group. Narration.
  • the mapping of the four antenna ports by the time-frequency resources composed of the eight REs can be realized, and the four reference signals can be simultaneously transmitted.
  • the reference signals corresponding to the four antenna ports may be used to demodulate the data signal;
  • the reference signals corresponding to the antenna ports can be used to demodulate the data signals, and can also be used to demodulate the control signals in the second type of control channels.
  • the specified time-frequency resource further includes a third time-frequency resource group and a fourth time-frequency resource group, where each time-frequency resource group corresponds to two antenna ports;
  • the third time-frequency resource group includes The first time-frequency resource group and the second time-frequency resource group are located in the first OFDM symbol of the data region;
  • the fourth time-frequency resource group includes the first time-frequency resource group and the second 4 REs of the second OFDM symbol in the data region in the time-frequency resource group;
  • the third time-frequency resource group corresponds to the antenna ports 5 and 6, and the fourth time-frequency resource group corresponds to the antenna ports 7 and 8.
  • the method for mapping the reference signals transmitted by the antenna port 5 and the antenna port 6 may be: mapping the reference signals corresponding to the third sequence in the second sequence group to the first time-frequency resource group according to the first preset rule And the second time-frequency resource group; the reference signal corresponding to the fourth sequence in the second sequence group is respectively mapped to the first time-frequency resource group and the second time-frequency resource group according to the first preset rule, And causing the third sequence group corresponding to the third time-frequency resource group to be composed of the third sequence and the fourth sequence, where the third time-frequency resource group reference signal is used for demodulating the data signal and/or the control signal;
  • the second sequence group is composed of the third sequence and the fourth sequence other than the first sequence group in the orthogonal sequence group.
  • the reference signal corresponding to the third sequence is respectively mapped to the first time-frequency resource group and the second time-frequency resource group according to a first preset rule, and refers to each of the reference signals corresponding to the third sequence.
  • the values of the bits are mapped to the corresponding REs of the first time-frequency resource group and the second time-frequency resource group, respectively.
  • FIG. 2C is a schematic diagram of a mapping manner corresponding to a first preset rule according to an embodiment of the present disclosure.
  • the first sequence and the second sequence W OCC sequences are the first and second rows of the third and fourth sequences are sequences for the third row and the second W OCC
  • the values are respectively mapped to the corresponding REs of the first time-frequency resource group as shown in FIG. 2C, such that the reference signals corresponding to the third time-frequency resource group on the second OFDM symbol in the PRB shown in FIG. 2C are mapped to
  • the group sequence is [1,1,-1,-1; 1,-1,-1,1].
  • the first preset rule may be a mapping manner as shown in FIG. 2C, or may be another third sequence group corresponding to the third time-frequency resource group that is obtained by the third sequence and the fourth sequence.
  • the mapping rule is not limited by the specific mapping manner corresponding to the first preset rule.
  • the reference signal of the antenna port 5 and the antenna port 6 corresponding to the third time-frequency resource group and the reference signal of the antenna port 1-4 can be orthogonalized by the orthogonal code, and the second type of control channel is occupied by the mapping method.
  • the time-frequency resource includes the third time-frequency resource group
  • the reference signal of the antenna port 5 and the reference signal of the antenna port 6 can be used to demodulate the control signal in the second type of control channel and the data signal in the data channel.
  • the fast demodulation of the control signal can be implemented.
  • the time-frequency resource occupied by the second type of control channel does not include the third time-frequency resource group
  • the reference signal of the antenna port 5 and the reference signal of the antenna port 6 are also available. Demodulate the data signal.
  • the fourth time-frequency is obtained according to the mapping result of the second sequence group in the first time-frequency resource group and the second time-frequency resource group.
  • the first preset rule is such that the fourth sequence group obtained according to the mapping result is the same as the third sequence group, and the fourth time-frequency resource group reference signal is used as the first sequence group Auxiliary reference signal for the reference signal of the three time-frequency resource group.
  • the antenna port 7 and the antenna port 8 corresponding to the fourth time-frequency resource group are
  • the reference signal may be used as an auxiliary reference signal of the reference signals of the antenna port 5 and the antenna port 6 corresponding to the third time-frequency resource group, for demodulating the control signal and the data signal.
  • the demodulation success rate of the control signal and the data signal can be improved.
  • the two reference signals corresponding to the mapping sequence are respectively mapped to the first time-frequency resource group and the second time-frequency resource group according to the first preset rule, so that the data area is The first OFDM symbol and the reference signal in the second OFDM symbol of the data region achieve uniform distribution of power in the time domain and the frequency domain.
  • the first time-frequency resource group reference signal and the first time can be implemented by mapping the two reference signals corresponding to the mapping sequence to the first time-frequency resource group and the second time-frequency resource group according to the first preset rule.
  • the second time-frequency resource group reference signal in the first OFDM symbol and the second OFDM symbol of the data region, achieves uniform distribution of power in the time domain and uniform distribution of power in the frequency domain, thereby reducing the power of the transmitter Signal distortion caused by fluctuations, improve the stability of information transmission services, and ensure the accuracy and success rate of information transmission.
  • the foregoing steps 201 to 203 are a process in which a base station maps N reference signals to a specified time-frequency resource, and after mapping the N reference signals to the specified time-frequency resource, the base station sends at least at least one of the N reference signals to the user equipment.
  • a reference signal, the following steps 204 to 209 are the process of transmitting a reference signal to the user equipment.
  • the base station sends second indication information to the user equipment.
  • the second indication information is used to indicate a time-frequency resource location where the second type of control channel in the PRB is located.
  • the first indication information includes port information of the first preset antenna port, where the first preset antenna port is used to send the at least one reference signal, and the port information may be a port number of the antenna port, or other unique identifiers
  • the information of the antenna port is not limited in this embodiment of the present disclosure.
  • the second indication information is transmitted by using the first type of control channel of the PRB, and the first indication information may be transmitted by the first type of control channel, that is, the time-frequency resource where the first indication information is located in the first type of control channel of the PRB.
  • the time-frequency resource in which the first indication information is located is also in the second type of control channel of the PRB.
  • the time-frequency resource corresponding to the first preset antenna port is in the data area of the subframe where the PRB is located, where the user equipment is located in the PRB.
  • the reference signal of the PRB transmission is received in the data area of the subframe.
  • one subframe may correspond to multiple PRBs, and the port information corresponding to the specified time-frequency resource location in each PRB is the same, that is, when the time-frequency resource location is represented in the coordinate form, in each PRB.
  • the port information corresponding to the location of the frequency resource is the same, that is, the reference signal on the time-frequency resource specified by each PRB is transmitted through the antenna port corresponding to the port information.
  • Transmitting the first indication information in the first type of control channel of the PRB so that the user equipment can transmit the data area of the PRB in the antenna port corresponding to the port information according to the port information in the first indication information.
  • a reference signal and demodulating the control signal and/or the data signal transmitted by the PRB according to the reference signal.
  • the first indication information When the first indication information is transmitted by the second type of control channel of the PRB, the first indication information further includes a subframe position of the subframe where the at least one reference signal is located, and correspondingly, the first preset antenna port corresponds to The time-frequency resource is in the data area of the second PRB, the second PRB is at least one PRB corresponding to the subframe in which the at least one reference signal is located, and the user equipment receives the reference of the second PRB transmission in the data area of the second PRB. signal.
  • the sub-frame position of the subframe in which the at least one reference signal is located may be represented by an offset.
  • the subframe where the first indication information is located is the start position, and the subframe where the first indication information is located is T0.
  • the position where T0 is located is 0.
  • the subframe position of the subframe in which the at least one reference signal is located is 5
  • the position of the subframe where the at least one reference signal is located is: 5th starting from T0.
  • Subframes may also be represented in other forms, which is not specifically limited in the embodiment of the present disclosure.
  • the data area of the plurality of PRBs in the frame receives the reference signal, and demodulates the control signal and/or the reference signal transmitted by the next PRB according to the reference signal.
  • the first indication information When the first indication information is transmitted on the first type of control channel of the subframe in which the PRB is located, the first indication information further includes a subframe position of the subframe in which the at least one reference signal is located, and correspondingly, the first preset antenna
  • the time-frequency resource corresponding to the port is in the data area of the third PRB, and the third PRB includes at least one PRB in the subframe where the PRB is located and at least one PRB corresponding to the subframe in which the at least one reference signal is located.
  • the subframe where the first indication information is located is the start position
  • the subframe where the first indication information is located is T0
  • the position where T0 is located is 0, when the subframe position of the subframe where the at least one reference signal is located is 0, 4, 5, when, the subframe position where the at least one reference signal is located is: the subframe T0 where the first indication information is located, the 4th subframe starting with the subframe T0 as the starting position, and the subframe T0 is The 5th subframe from the start of the start position.
  • the location of the time-frequency resource where the reference signal is located is prompted by the user equipment according to the different location of the reference signal, so that the user equipment can determine the corresponding time-frequency resource location according to the first prompt information, to receive the reference.
  • Signals can improve the efficiency of reference signal transmission and avoid signal transmission failure.
  • the user equipment receives the second indication information that is used to indicate a location of the time-frequency resource where the first indication information is located.
  • the base station sends the first indication information to the user equipment.
  • the user equipment receives the first indication information at a time-frequency resource location where the first indication information is located according to the time-frequency resource location where the first indication information is located.
  • the base station sends the at least one reference signal to the user equipment at the first preset antenna port.
  • the user equipment receives the at least one reference signal at the first preset antenna port to demodulate the control signal and/or the data signal according to the at least one reference signal.
  • the base station when the port information in the first indication information is the port information of the antenna port 1, the base station sends a reference signal to the user equipment at the antenna port 1, and correspondingly, the first time-frequency resource group corresponding to the user equipment at the antenna port 1 The reference signal is received on the corresponding RE.
  • the reference signal mapping method provided by the embodiment of the present disclosure maps a reference signal on a specified time-frequency resource composed of a plurality of REs including a plurality of OFDM symbols of the data region in the time domain, so that the reference signal does not need to exist in the whole time.
  • the reference signal for demodulating the control signal and/or the data signal is transmitted only when a control signal and/or a data signal is transmitted, so that the control signal and the data signal can be quickly demodulated to satisfy 5G.
  • the low latency requirement of the communication network is to improve the number of concurrent transmission layers of the data channel and the number of user equipments multiplexed by the control channel by performing code division multiplexing on the orthogonal sequence; further, by using the two reference signals corresponding to the mapping sequence And mapping the first time-frequency resource group and the second time-frequency resource group according to the first preset rule, respectively, to implement the first time-frequency resource group reference signal and the second time-frequency resource group reference signal, where the data is The first OFDM symbol and the second OFDM symbol of the region realize uniform distribution of power in the time domain and uniform distribution of power in the frequency domain, thereby reducing the transmitter Due to signal distortion caused by power fluctuations, the stability of the information transmission service is improved, and the accuracy and success rate of information transmission are ensured.
  • the time-frequency resource indicated by the arrow in FIG. 3A is The 8 REs occupied by the reference signals of antenna ports 1 to 8.
  • code division multiplexing can be implemented by using an orthogonal sequence group of length 8.
  • FIG. 3B is a flowchart of a reference signal mapping method according to an embodiment of the present disclosure. As shown in FIG. 3B, the method includes the following steps:
  • the base station selects any eight sequences from the orthogonal sequence group, and the orthogonal sequence group includes eight orthogonal sequences.
  • the orthogonal sequence group includes eight orthogonal sequences, and eight sequences in the orthogonal sequence group are obtained as orthogonal sequences for implementing code division multiplexing, and the number of selected sequences and the number of antenna ports are selected. the same.
  • the orthogonal sequence group is an 8-dimensional Walsh-Hadamard sequence W OCC as shown in the formula (3)
  • the 8 sequences may be the first row to the WO CCC sequence. Eight lines.
  • orthogonal sequence group is the 8-dimensional Walsh-Hadamard sequence
  • code division multiplexing of 8 REs shared by 8 antenna ports can be realized.
  • the base station generates eight reference signals based on the eight sequences.
  • the method for generating the reference signal based on the sequence is the same as the method for generating the reference signal in step 202, and details are not described herein.
  • the base station maps the eight reference signals corresponding to the eight sequences to the specified time-frequency resource, so that the N reference signals are orthogonal to each other on the specified time-frequency resource.
  • the specified time-frequency resource includes 4 REs of the first OFDM symbol of the data region and 4 REs of the second OFDM symbol of the data region, and 4 of the first OFDM symbol REs and the second OFDM
  • the 4 REs of the symbol occupy subcarriers of the same frequency.
  • the eight REs indicated by the arrows are the specified time-frequency resources.
  • the specified time-frequency resources may also be the first OFDM symbol of the data region and the other on the second OFDM symbol.
  • the configuration of the eight REs is not limited in the embodiment of the present disclosure.
  • the reference signal mapping method provided by the present disclosure is described in detail by taking the orthogonal sequence group as the W OCC sequence represented by the formula (3) as an example. Let the specified time-frequency resource group correspond to antenna ports 1 to 8.
  • the method for mapping the reference signals transmitted on the antenna ports 1 to 8 may be: mapping the eight reference signals corresponding to the eight sequences to the specified time-frequency resource, where the reference signal corresponding to the specified time-frequency resource is used for solution Adjust the data signal.
  • the other seven line sequences in 3) are also mapped in the same way, and the eight reference signals mapped are used to demodulate the data signals in the data channel.
  • mapping of 8 antenna ports by time-frequency resources composed of 8 REs, thereby enabling simultaneous transmission of 8 reference signals, so that the reference signals do not need to exist in the entire time-frequency resource, only when there is data information.
  • the reference signal for demodulating the data signal is transmitted when transmitting, and the number of concurrent transmission channels and the number of user equipments multiplexed by the control channel are improved by performing code division multiplexing on the orthogonal sequence.
  • the eight reference signals corresponding to the eight sequences are respectively mapped to the specified time-frequency resource according to a second preset rule, so that the specified time-frequency resource is in the first of the data regions.
  • the four REs of the OFDM symbol have four orthogonal sequences, and the reference signals corresponding to the four REs of the first OFDM symbol are used to demodulate the control signal and/or the data signal.
  • the eight reference signals corresponding to the eight sequences are respectively mapped to the specified time-frequency resource according to the second preset rule, which means that the value of each bit of the reference signal corresponding to each of the eight sequences is respectively Maps to the corresponding RE of the specified time-frequency resource.
  • FIG. 3C is a schematic diagram of a mapping manner corresponding to a second preset rule according to an embodiment of the present disclosure.
  • a, b, c, d, e which are marked in 8 REs of a time-frequency resource, are specified.
  • f, g, h are used to indicate that the value of the corresponding position of the sequence is mapped to the corresponding RE.
  • 3C that is, the part mapped on the four REs identified as a, b, c, and d in the time-frequency resource.
  • the two-two orthogonal sequences, the correspondence between the eight sequences and the sequence corresponding to the partial reference signals mapped on the four REs of the first OFDM symbol of the data region are as shown in Table 2.
  • the 4 reference signals corresponding to the 4 sets of orthogonal sequences may be used to demodulate the control signal transmitted in the second type of control channel, that is, the antenna port 1 4 A reference signal for demodulating the control signal can be transmitted, or a reference signal for demodulating the data signal can be transmitted.
  • the four groups of four REs corresponding to the first OFDM symbol of the data area corresponding to the antenna port 5-8 are also orthogonal to each other, and the antenna port 5-8 may also be selected for sharing the data channel and the control channel. .
  • the second preset rule may be a mapping manner as shown in FIG. 3C, or may be other four REs of the first OFDM symbol that can be made to have the specified time-frequency resource in the data region.
  • the mapping manner corresponding to the two orthogonal sequences does not limit the specific mapping manner corresponding to the second preset rule.
  • the specified time-frequency resource can have four orthogonal sequences in the four REs of the first OFDM symbol of the data region, and the time-frequency resources occupied by the second type of control channel include the
  • the corresponding 4 antenna ports can be shared by the data channel and the control channel, that is, the 4 antenna ports can transmit both the reference signal for demodulating the control signal and the reference for demodulating the data signal. signal.
  • the foregoing steps 301 to 303 are a process in which a base station maps N reference signals to a specified time-frequency resource, and after mapping the N reference signals to the specified time-frequency resource, the base station sends at least at least one of the N reference signals to the user equipment.
  • a reference signal, the following steps 304 to 309 are the process of transmitting a reference signal to the user equipment.
  • the base station sends the second indication information to the user equipment.
  • the definitions of the second indication information and the first indication information are the same as the definitions of the corresponding indication information in step 204, and are not described herein.
  • the user equipment receives the second indication information that is used to indicate a location of a time-frequency resource where the first indication information is located.
  • the base station sends the first indication information to the user equipment.
  • the user equipment receives the first indication information at a time-frequency resource location where the first indication information is located according to the time-frequency resource location where the first indication information is located.
  • the base station sends the at least one reference signal to the user equipment at the first preset antenna port.
  • the user equipment receives the at least one reference signal at the first preset antenna port to demodulate the control signal and/or the data signal according to the at least one reference signal.
  • the base station when the port information in the first indication information is the port information of the antenna port 1, the base station sends a reference signal to the user equipment at the antenna port 1, and correspondingly, the user equipment receives the time-frequency resource corresponding to the antenna port 1 Reference signal.
  • the reference signal mapping method maps a reference signal on a specified time-frequency resource composed of a plurality of REs including a plurality of OFDM symbols of the data region in the time domain, so that the reference signal does not need to exist in the whole Within a time-frequency resource, a reference signal for demodulating the control signal and/or the data signal is transmitted only when a control signal and/or a data signal is transmitted, so that a fast demodulation of the control signal and the data signal can be achieved.
  • the low latency requirement of the 5G communication network is to improve the number of concurrent transmission layers of the data channel and the number of user equipments multiplexed by the control channel by performing code division multiplexing on the orthogonal sequence; further, by 8 corresponding to the 8 sequences
  • the reference signal is respectively mapped to the specified time-frequency resource according to the second preset rule, so that the specified time-frequency resource has four orthogonal sequences in the four REs of the first OFDM symbol of the data region, and
  • the time-frequency resources occupied by the second type of control channel include the four REs
  • the corresponding four antenna ports are available for sharing the data channel and the control channel, that is, the four antenna ports can transmit the reference for demodulating the control signal.
  • the signal in turn, can transmit a reference signal for demodulating the data signal.
  • the reference signal length of the reference signal of each antenna port is 8 REs in the PRB, as shown in FIG. 4A, the time-frequency resource indicated by the arrow in FIG. 4A
  • the time-frequency resources indicated by the arrows in the following figure are the 8 REs occupied by the reference signals of the antenna ports 5 to 8.
  • the orthogonal sequence group of length 8 can be used for code division multiplexing.
  • the length can also be used.
  • the orthogonal sequence group of 4 implements code division multiplexing.
  • FIG. 4B is a flowchart of a reference signal mapping method according to an embodiment of the present disclosure. As shown in FIG. 4B, the method includes the following steps:
  • the base station selects any four sequences from the orthogonal sequence group, and the orthogonal sequence group includes eight orthogonal sequences.
  • the orthogonal sequence group includes eight orthogonal sequences, and any four sequences are selected from the orthogonal sequence group, and the number of selected sequences is the same as the number of antenna ports.
  • any four sequences are selected from the WOCC , and the arbitrary two sequences are selected. It can for the first row to fourth row of W OCC sequence may be the second and fifth lines for the W OCC sequences, or any other rows 4, the present embodiment of the present disclosure which is not limited.
  • orthogonal sequence group is the 8-dimensional Walsh-Hadamard sequence
  • code division multiplexing of 8 REs shared by 4 antenna ports can be implemented.
  • the base station generates four reference signals based on the four sequences.
  • the method for generating the reference signal based on the sequence is the same as the method for generating the reference signal in step 202, and details are not described herein.
  • the base station maps the four reference signals corresponding to the four sequences to the specified time-frequency resource, so that the N reference signals are orthogonal to each other on the specified time-frequency resource.
  • the specified time-frequency resource includes: a fifth time-frequency resource group and a sixth time-frequency resource group, each time-frequency resource group corresponding to four antenna ports.
  • the fifth time-frequency resource group and the sixth time-frequency resource group respectively include 2 REs of the first OFDM symbol of the data region, 2 REs of the second OFDM symbol, and 2 of the ith OFDM symbol.
  • 2 REs of the RE and the jth OFDM symbol, and 2 REs of the first OFDM symbol, 2 REs of the second OFDM symbol, 2 REs of the ith OFDM symbol, and the jth 2 REs of OFDM symbols occupy subcarriers of the same frequency
  • i is a positive integer greater than 2
  • j is a positive integer greater than i
  • the fifth time-frequency resource group reference signal and the sixth time-frequency resource group reference The signal is used to demodulate the data signal.
  • the eight REs indicated by the arrows are the fifth time-frequency resource group, under The eight REs shown by the arrows in the figure are the sixth time-frequency resource group.
  • the reference signal mapping method provided by the present disclosure is described in detail by taking the orthogonal sequence group as the W OCC sequence represented by the formula (3) as an example.
  • the fifth time-frequency resource group corresponding antenna is set. From port 1 to antenna port 4, the second time-frequency resource group corresponds to antenna port 5 to antenna port 8.
  • the mapping method for the reference signals transmitted on the antenna port 1 to the antenna port 4 may be: acquiring a mapping sequence of the third sequence group, the third sequence group including the four sequences selected from the orthogonal sequence group Mapping the four reference signals corresponding to the mapping sequence to the fifth time-frequency resource group and the sixth time-frequency resource group, respectively; when selecting four from the W OCC sequence shown in the equation (3)
  • the sequence is the sequence of the first row to the fourth row, that is, the third sequence group includes the sequence corresponding to the first row to the fourth row of the W OCC represented by the formula (3), and the 4 sequences correspond to the 4
  • the specific mapping method used for mapping the reference signals to the fifth time-frequency resource group is the same as the mapping method used for mapping the two reference signals corresponding to the two sequences to the first time-frequency resource group in step 203, where Do not repeat them.
  • the sixth time-frequency resource group corresponding to the antenna port 5 to the antenna port 8 is different from the frequency of the fifth time-frequency resource occupied sub-carrier in the time domain. Therefore, the sixth time-frequency resource group reference signal is orthogonal to the fifth time-frequency resource group reference signal, so that the sequence of the first to fourth lines selected from the W OCC sequence shown in the above equation (3) can be used. And mapping the sixth time-frequency resource group reference signal, and the specific mapping method is the same as the mapping method used in mapping the two reference signals corresponding to the two sequences to the first time-frequency resource group in the foregoing step 203, and is not used here. Narration.
  • mapping it is possible to implement mapping of eight antenna ports in a time-frequency resource composed of 16 REs, thereby enabling simultaneous transmission of eight reference signals.
  • the reference signals corresponding to the eight antenna ports may be used to demodulate the data signal;
  • the class 1 control channel occupies the first OFDM symbol of the PRB, and the second type of control channel occupies the second OFDM symbol of the PRB and the third OFDM symbol, and the data channel occupies other OFDM symbols of the PRB, the 8 antenna ports
  • the corresponding reference signal can be used to demodulate the data signal and can also be used to demodulate the control signal in the second type of control channel.
  • the specified time-frequency resource further includes a seventh time-frequency resource group, an eighth time-frequency resource group, a ninth time-frequency resource group, and a tenth time-frequency resource group, where each time-frequency resource group corresponds to 4 antenna ports;
  • the seventh time-frequency resource group includes the fifth time-frequency resource group and the four REs of the first time-frequency resource group in the first OFDM symbol of the data region, as shown in FIG. 4C ( 1) 4 REs indicated by the arrow;
  • the eighth time-frequency resource group includes the fifth time-frequency resource group and the four REs of the second OFDM symbol in the data region in the sixth time-frequency resource group, 4 REs as indicated by the arrow in (2) of FIG.
  • the ninth time-frequency resource group includes the fifth time-frequency resource group and the ith OFDM symbol located in the data region of the sixth time-frequency resource group 4 REs, as shown in the arrow of (3) in FIG. 4C;
  • the tenth time-frequency resource group includes the fifth time-frequency resource group and the sixth time-frequency resource group located in the data area
  • the four REs of the jth OFDM symbol are four REs as indicated by the arrow in Fig. 4C (4).
  • the mapping method of the seventh time-frequency resource group reference signal may be: selecting four reference signals corresponding to four sequences other than the four sequences included in the third sequence group in the orthogonal sequence group, according to the third The preset rules are respectively mapped to the fifth time-frequency resource group and the sixth time-frequency resource group to obtain a mapping result, so that the four groups of the seventh time-frequency resource group in the mapping result are orthogonal to each other, and the seventh The time-frequency resource group reference signal is used to demodulate the data signal and/or the control signal.
  • the four reference signals corresponding to the four sequences except the four sequences included in the third sequence group in the orthogonal sequence group are respectively mapped to the fifth time-frequency resource group according to a third preset rule.
  • the sixth time-frequency resource group refers to the orthogonal sequence
  • the four sequences in the column group except the third sequence group are respectively mapped to the fifth time-frequency resource group and the sixth time-frequency resource group according to the mapping corresponding manner indicated by the third preset rule.
  • the four sets of sequences corresponding to the seventh time-frequency resource group reference signal are orthogonal to each other.
  • 4D is a schematic diagram of a mapping manner corresponding to a third preset rule according to an embodiment of the present disclosure.
  • a, b, c, d which are marked in 8 REs of the fifth time-frequency resource group, e, f, g, h are used to indicate that the value of the corresponding position of the reference signal is mapped to the corresponding RE.
  • the third sequence group includes a sequence corresponding to the first row to the fourth row in the WOC sequence shown in the above formula (3)
  • the values of each bit in the -1, -1, 1, 1, 1, -1, -1, 1] reference map are mapped to the corresponding REs of the fifth time-frequency resource group as shown in FIG. 4D, respectively.
  • the reference signals corresponding to the fifth row to the eighth row are respectively mapped to the fifth time-frequency resource group and the sixth time-frequency resource group according to the corresponding manner indicated by the third preset rule, and the specific method may be:
  • the reference signals corresponding to the fifth to eighth rows are respectively mapped to the fifth time-frequency resource group and the sixth time-frequency resource group respectively; or the mapping corresponding manner may also be: ⁇ the fifth row, the sixth row, the seventh row
  • the corresponding reference of the eighth row is respectively mapped to the fifth time-frequency resource group, and the reference signals corresponding to the ⁇ th row, the eighth line, the fifth line, and the sixth line ⁇ are respectively mapped to the sixth time-frequency resource group. So that the four sets of sequences corresponding to the seventh time-frequency resource group reference signal are orthogonal to each other.
  • the time-frequency resource group and the sixth time-frequency resource group obtain mapping results, and the reference signal mapping method provided by the disclosure may further include the following three methods:
  • the first type when the n is greater than or equal to 2 and less than the i, obtains four sequences corresponding to the eighth time-frequency resource group according to the mapping result, and the third preset rule is obtained according to the mapping result.
  • the four sequences corresponding to the eighth time-frequency resource group are orthogonal to each other, and the eighth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the second type of control channel when the n is greater than or equal to 2 and less than the i, includes the eighth time-frequency resource group.
  • the resource group and the sixth time-frequency resource group are further configured to make the four sequences corresponding to the eighth time-frequency resource group orthogonal to each other, so that the eighth time-frequency resource group reference signal is used as the seventh time Auxiliary reference signal of the frequency resource group reference signal.
  • the eighth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal, and can be used to demodulate the second type.
  • the control signal in the control channel may also be used to demodulate the data signal in the data channel.
  • the eighth time-frequency resource group reference signal is used as the first
  • the auxiliary reference signal of the seven-time frequency resource group reference signal can be used to demodulate the data signal in the data channel.
  • the four sequences corresponding to the eighth time-frequency resource group and the four sequences corresponding to the ninth time-frequency resource group are obtained, and the third preset rule is obtained according to the mapping result.
  • the four sequences corresponding to the eighth time-frequency resource group are orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other, and the eighth time-frequency resource group reference signal and/or the first
  • the nine time-frequency resource group reference signal is used as an auxiliary reference signal for the seventh time-frequency resource group reference signal.
  • the four reference signals are respectively mapped to the fifth time-frequency resource group and the sixth time-frequency resource group according to a third preset rule, and the four sequences corresponding to the eighth time-frequency resource group can also be made two or two.
  • Orthogonal and/or four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other, so that the eighth time-frequency resource group reference signal and/or the ninth time-frequency resource group reference signal are used as the first Auxiliary reference signal for the reference signal of the seven-time frequency resource group.
  • the eighth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal. And can be used to demodulate the control signal in the second type of control channel, and can also be used to demodulate the data signal in the data channel, where the ninth time-frequency resource group reference signal is used as the seventh time-frequency resource group reference signal.
  • a secondary reference signal that can be used to demodulate data signals in the data channel.
  • the eighth time-frequency resource group reference signal and the ninth time-frequency resource group reference signal are used as the seventh
  • the auxiliary reference signal of the time-frequency resource group reference signal can be used to demodulate the control signal in the second type of control channel, and can also be used to demodulate the data signal in the data channel.
  • the four sequences corresponding to the eighth time-frequency resource group, the four sequences corresponding to the ninth time-frequency resource group, and the four sequences corresponding to the tenth time-frequency resource group are obtained.
  • the third preset rule is such that the four sequences corresponding to the eighth time-frequency resource group obtained according to the mapping result are orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other and/or Or the four sequences corresponding to the tenth time-frequency resource group are orthogonal to each other, the eighth time-frequency resource group reference signal and/or the ninth time-frequency resource group reference signal and/or the tenth time-frequency resource group reference The signal is used as an auxiliary reference signal for the seventh time-frequency resource group reference signal.
  • the resource group and the sixth time-frequency resource group are further configured to make the four sequences corresponding to the eighth time-frequency resource group orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other. And/or the four sequences corresponding to the tenth time-frequency resource group are orthogonal to each other, thereby making the eighth time-frequency resource group reference signal and/or the ninth time-frequency resource group reference signal and/or the tenth time
  • the frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the eighth time-frequency resource group reference signal is used as the seventh time-frequency resource.
  • the auxiliary reference signal of the group reference signal may be used to demodulate the control signal in the second type of control channel, or may be used to demodulate the data signal in the data channel, the ninth time-frequency resource group reference signal and/or the
  • the tenth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal, and can be used to demodulate the data signal in the data channel.
  • the eighth time-frequency resource group reference signal and the ninth time The frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal, and can be used for demodulating the control signal in the second type of control channel, and can also be used for demodulating the data signal in the data channel.
  • the tenth time-frequency resource group reference signal is used as the seventh time-frequency resource group reference signal, and can be used to demodulate the data signal in the data channel.
  • the eighth time-frequency resource group reference signal and the ninth time-frequency resource group are used as auxiliary reference signals of the seventh time-frequency resource group reference signal, and can be used for demodulating the control signal in the second type of control channel, and can also be used for demodulation.
  • Data signal in the data channel is used as auxiliary reference signals of the seventh time-frequency resource group reference signal, and can be used for demodulating the control signal in the second type of control channel, and can also be used for demodulation.
  • mapping by the third preset rule, the fifth time-frequency to the four reference signals corresponding to the four sequences other than the four sequences included in the third sequence group a resource group and the sixth time-frequency resource group,
  • the four sequences corresponding to the seventh time-frequency resource group are orthogonal to each other, and the four sequences corresponding to the eighth time-frequency resource group, the four sequences corresponding to the ninth time-frequency resource group, and the tenth time
  • the four sequences corresponding to at least one of the four sequences corresponding to the frequency resource group are orthogonal to each other.
  • the four sequences corresponding to each time-frequency resource group in the seventh time-frequency resource group to the tenth time-frequency resource group that are mapped according to the third preset rule are both orthogonal
  • the mapping manner indicated by the third preset rule may be the mapping manner shown in Table 3 or the mapping manner corresponding to the mapping shown in Table 4, and Table 3 and Table 4 also show the mapping manner and corresponding manner. The result of the mapping.
  • the "fifth row + the fifth row” in the third preset rule means that the fifth row in the W OCC sequence shown in the above formula (3) is respectively mapped to the fifth time-frequency resource group and the The sixth time-frequency resource group, similarly, the "fifth row + the seventh row” shown in Table 4 refers to mapping the fifth row in the W OCC sequence shown in the above formula (3) to the fifth time-frequency resource.
  • the group is mapped to the seventh time-frequency resource group, and the four sequences corresponding to each time-frequency resource group in the seventh time-frequency resource group to the tenth time-frequency resource group are obtained according to the method shown in FIG. 4E. . It can be known from the mapping results shown in Table 3 and Table 4 that the two mapping corresponding manners can make the four sequences corresponding to each time-frequency resource group in the seventh time-frequency resource group to the tenth time-frequency resource group. Both are orthogonal.
  • the third preset rule may be a mapping manner as shown in FIG. 4C, or may be another four sequences orthogonal to the seventh time-frequency resource group that are obtained and the eighth time-frequency resource.
  • the mapping rules of the four sequences that are corresponding to the at least one group of the time-frequency resource groups in the tenth time-frequency resource group are orthogonal to each other, and correspondingly, the mapping corresponding manner indicated by the third preset rule may also be And the mapping manner other than the table 4, the specificity corresponding to the third preset rule in the present disclosure
  • the mapping method is not limited.
  • the reference signal of the seventh time-frequency resource group and the reference signal and the antenna port 1-4 can be orthogonalized by the orthogonal code, and when the time-frequency resource occupied by the second type of control channel includes the seventh time In the frequency resource group, the seventh time-frequency resource group reference signal can be used to demodulate the control signal in the second type of control channel and the data signal in the data channel, thereby enabling rapid demodulation of the control signal; further, in the foregoing mapping manner, the time-frequency resource group reference signal of the eighth time-frequency resource group to the tenth time-frequency resource group may be used as an auxiliary reference signal of the reference signal of the seventh time-frequency resource group, and the control signal and the data may be improved. The demodulation success rate of the signal.
  • the four reference signals corresponding to the mapping sequence are respectively mapped to the fifth time-frequency resource group and the sixth time-frequency resource group according to the third preset rule, so that the data area is The first OFDM symbol, the second OFDM symbol of the data region, the i-th OFDM symbol of the data region, and the reference signal in the j-th OFDM symbol of the data region achieve uniform power in the time domain and the frequency domain distribution.
  • mapping the four reference signals corresponding to the mapping sequence to the specific mapping method corresponding to the fifth time-frequency resource group and the sixth time-frequency resource group according to the third preset rule, and corresponding to the mapping sequence in step 203 The two reference signals are mapped to the mapping method corresponding to the first time-frequency resource group and the second time-frequency resource group according to the third preset rule, and are not described herein.
  • the fifth time-frequency resource group reference signal and the first phase can be implemented by mapping the four reference signals corresponding to the mapping sequence to the fifth time-frequency resource group and the sixth time-frequency resource group according to the third preset rule.
  • the six-time frequency resource group reference signal realizes uniform distribution of power in the time domain and uniform distribution of power in the frequency domain on the OFDM symbols in the time domain corresponding to the fifth time-frequency resource group and the sixth time-frequency resource group Therefore, the signal distortion caused by the power fluctuation of the transmitter is reduced, the stability of the information transmission service is improved, and the accuracy and success rate of the information transmission are ensured.
  • the foregoing steps 401 to 403 are a process in which a base station maps N reference signals to a specified time-frequency resource, and after mapping the N reference signals to the specified time-frequency resource, the base station sends at least at least one of the N reference signals to the user equipment.
  • a reference signal is a reference signal.
  • the method for transmitting the reference signal to the user equipment may be the same as the method for transmitting the reference signal in the first embodiment, or may be different; specifically, when the base station uses the reference shown in the first embodiment and the third embodiment at the same time.
  • the signal mapping method performs reference signal mapping, that is, in a PRB, there is a reference signal of the first time-frequency resource group mapping as shown in the upper figure of FIG. 2A, and also exists in the fifth figure shown in the upper figure of FIG. 4A.
  • the reference signal of the time-frequency resource group mapping is known from the first time-frequency resource group shown in the upper figure of FIG. 2A and the fifth time-frequency resource group shown in the upper figure of FIG.
  • the fifth time-frequency resource group includes the first a time-frequency resource group
  • the port information of the antenna port corresponding to the first time-frequency resource group overlaps with the port information of the antenna port corresponding to the fifth time-frequency resource group, for example, the first time-frequency resource group corresponding antenna Port 1 and antenna port 2
  • the fifth time-frequency resource group corresponds to antenna port 1 to antenna port 4
  • antenna port 1 and antenna port 2 are overlapping port information.
  • the base station transmits an antenna to the user equipment.
  • the method employed may comprise the steps 404-411.
  • the base station sends the second indication information to the user equipment.
  • the definitions of the second indication information and the first indication information are the same as the definitions of the corresponding indication information in step 204, and are not described herein.
  • the user equipment receives the second indication information that is used to indicate a location of the time-frequency resource where the first indication information is located.
  • the base station sends the first indication information to the user equipment.
  • the user equipment is configured according to the time-frequency resource location where the first indication information is located, where the first indication information is located.
  • the frequency resource location receives the first indication information.
  • the base station sends the at least one reference signal to the user equipment.
  • the user equipment detects whether the first indication information includes time-frequency resource extension indication information, and if the first indication information does not include the time-frequency resource extension indication information, step 410 is performed; if the first indication information includes the time-frequency resource The instruction information is extended, and step 411 is performed.
  • the time-frequency resource extension indication information is used to indicate whether the time-frequency resource where the transmitted reference signal is located includes an extended time-frequency resource group, for the first time-frequency resource group shown in the upper figure of FIG. 2A and the upper figure shown in FIG. 4A.
  • the fifth time-frequency resource group the 7th OFDM symbol in the time domain and the 4 REs on the 8th OFDM symbol of the PRB shown in the upper diagram of FIG. 4A are extended time-frequency resource groups.
  • the time-frequency resource extension indication information may be expressed in the following two manners:
  • the first type of time-frequency resource extension indication information is used to indicate that the time-frequency resource where the at least one reference signal is located includes the extended time-frequency resource group, where the extended time-frequency resource group is composed of multiple REs on the preset OFDM symbol.
  • the time-frequency resource extension indication information may be a specific string of characters, and the preset OFDM symbol may be any OFDM symbol in a data region within a PRB, and the preset OFDM symbol and the string may be used by a developer.
  • the setting may also be set by other methods, which is not specifically limited in the embodiment of the present disclosure.
  • the second time, the time-frequency resource extension indication information includes location information of the extended time-frequency resource group.
  • the location information of the extended time-frequency resource group may be expressed in the form of coordinates, for example, when the location information of the extended time-frequency resource group is ⁇ (x1, y1), (x2, y2), (x3, y3), (x4) , y4) ⁇ , x1 represents the position of the corresponding OFDM symbol in the time domain of the first RE in the extended time-frequency resource group, and y1 represents the position of the corresponding subcarrier in the frequency domain of the first RE, x2
  • the meanings expressed by y2, x3, y3, x4, and y4 are the same, and are not described here.
  • the location information of the extended time-frequency resource group may also be represented by other forms, which is not specifically limited in the embodiment of the present disclosure.
  • the method for expressing the time-frequency resource extension indication information may be represented by any one of the above two methods, or may be represented by other representation methods, which is not specifically limited in the embodiment of the present disclosure.
  • the reference signal mapped by using different mapping methods exists in the same PRB type, and the port information of the antenna port corresponding to the antenna of the different reference signal is the same, and the receiving is determined.
  • the time-frequency resource location of the reference signal and the corresponding antenna port is determined.
  • the first preset time-frequency resource group receives at least one reference signal, where the first preset time-frequency resource group is the first preset antenna. The time-frequency resource group corresponding to the port.
  • the base station uses the reference signal mapping method shown in the first embodiment and the third embodiment to perform reference signal mapping, that is, in a PRB, there is a reference to the first time-frequency resource group mapping shown in the upper figure of FIG. 2A.
  • the signal also has a reference signal mapped by the fifth time-frequency resource group as shown in the upper figure of FIG. 4A, and the port information of the antenna port corresponding to the first time-frequency resource group is T1 and T2, and the fifth time-frequency resource group
  • the port information of the corresponding antenna port is T1, T2, T3, and T4, and T1 and T2 are overlapping port information.
  • the first indication information includes the port information of the first preset antenna port is T1
  • the first The indication information does not include the time-frequency resource extension indication information
  • the reference port signal sent by the base station is received by the antenna port corresponding to the port information of the first time-frequency resource group, and the control signal and/or data is demodulated according to the at least one reference signal. signal.
  • the second preset time-frequency resource group receives the at least one reference signal, where the second preset time-frequency resource group includes the first preset time-frequency. Resource groups and extended time-frequency resource groups.
  • the first indication information includes the port information of the first preset antenna port is T1
  • the first indication information includes the time-frequency resource extension indication information
  • the fifth time-frequency resource is used.
  • the corresponding port information of the group is the antenna port of the T1 receiving the reference signal transmitted by the base station, and demodulating the control signal and/or the data signal according to the at least one reference signal.
  • the reference signal may be transmitted by using the transmission methods shown in Embodiment 1 and Embodiment 2.
  • the reference signal mapping method provided by the embodiment of the present disclosure maps a reference signal on a specified time-frequency resource composed of a plurality of REs including a plurality of OFDM symbols of the data region in the time domain, so that the reference signal does not need to exist in the whole time.
  • the reference signal for demodulating the control signal and/or the data signal is transmitted only when a control signal and/or a data signal is transmitted, so that the control signal and the data signal can be quickly demodulated to satisfy 5G.
  • the low latency requirement of the communication network is to improve the number of concurrent transmission layers of the data channel and the number of user equipments multiplexed by the control channel by performing code division multiplexing on the orthogonal sequence; further, by using the four reference signals corresponding to the mapping sequence Mapping to the fifth time-frequency resource group and the sixth time-frequency resource group according to the third preset rule, respectively, implementing the fifth time-frequency resource group reference signal and the sixth time-frequency resource group reference signal, in the fifth The time-frequency resource group and the time-domain OFDM symbol corresponding to the sixth time-frequency resource group realize uniform distribution of power in the time domain and uniform power distribution in the frequency domain,
  • the transmitter reduces signal distortion due to power fluctuations caused, improve the stability of the information transmission services, to ensure the accuracy and success rate of information transfer.
  • the reference signal corresponding to the reference signal of each antenna port has a length of 4, that is, the reference signal of each antenna port occupies 4 REs in the PRB, as shown in FIG. 5A, antenna ports 1 to 4 are shown in FIG. 5A.
  • the four REs occupied by the reference signal that is, the eleventh time-frequency resource group, and the four REs occupied by the reference signals of the antenna ports 5 to 8, that is, the twelfth time-frequency resource group.
  • the code division multiplexing can be implemented by using the orthogonal sequence group of length 4.
  • FIG. 5B is a flowchart of a reference signal mapping method according to an embodiment of the present disclosure. As shown in FIG. 5B, the method includes the following steps:
  • the orthogonal sequence group includes four orthogonal sequences, and four sequences in the orthogonal sequence group are obtained as orthogonal sequences for implementing code division multiplexing, and the number of selected sequences and each time The number of antenna ports corresponding to the frequency resource group is the same.
  • the orthogonal sequence group is a 4-dimensional Walsh-Hadamard sequence W OCC as shown in the formula (1)
  • the four sequences may be the first row to the first of the WOCC sequences. Four lines.
  • orthogonal sequence group is the 8-dimensional Walsh-Hadamard sequence
  • code division multiplexing of 4 REs shared by 4 antenna ports can be implemented.
  • the method for generating the reference signal based on the sequence is the same as the method for generating the reference signal in step 202, and details are not described herein.
  • the specified time-frequency resource includes an eleventh time-frequency resource group and a twelfth time-frequency resource group, and the eleventh time-frequency resource group and the twelfth time-frequency resource group respectively include the data.
  • Any of the first OFDM symbols in the region The four REs that do not overlap, the eleventh time-frequency resource group reference signal and the twelfth time-frequency resource reference signal are used to demodulate the data signal.
  • the specified time-frequency resource may also be the other four REs on the first OFDM symbol of the data region.
  • the time-frequency resource group is not limited in this embodiment of the present disclosure.
  • the reference signal mapping method provided by the present disclosure is described in detail by taking the orthogonal sequence group as the W OCC sequence represented by the formula (1) as an example.
  • the method for mapping the reference signals transmitted on the antenna port 1 to the antenna port 4 may be: mapping the four reference signals corresponding to the four sequences to the eleventh time-frequency resource group and the twelfth time-frequency resource group
  • the value of each bit in the corresponding reference signal is mapped to the corresponding RE in turn, and correspondingly, the reference signals corresponding to other rows in the formula (1) are also mapped in the same manner, and the eight reference signals are mapped. Used to demodulate data signals in a data channel.
  • the time-frequency resource occupied subcarrier in the frequency domain and the eleventh time domain due to the twelfth time-frequency resource group corresponding to the antenna port 5 to the antenna port 8 The frequency is different, so the twelfth time-frequency resource group reference signal is orthogonal to the eleventh time-frequency resource group reference signal, so the first line selected from the W OCC sequence shown in the above formula (1) can be used. And the sequence of the fourth row is used to map the twelfth time-frequency resource group reference signal, and the specific mapping method is the same as the method for mapping the four reference signals corresponding to the four sequences to the eleventh time-frequency resource group. Reason, not to repeat here.
  • mapping the reference signal By mapping the reference signal by using the mapping method, it is possible to implement mapping of eight antenna ports in a time-frequency resource composed of eight REs, thereby enabling simultaneous transmission of eight reference signals.
  • the reference signals corresponding to the four antenna ports may be used to demodulate the data signal. It can also be used to demodulate control signals in the second type of control channel.
  • the mapping method of the four reference signals corresponding to the four sequences in the orthogonal sequence group may be: pressing four reference signals corresponding to the four sequences in the orthogonal sequence group.
  • the fourth preset rule is respectively mapped to the eleventh time-frequency resource group and the twelfth time-frequency resource group, so that the reference signal in the first OFDM symbol of the data region achieves uniform distribution of power in the frequency domain.
  • the four reference signals corresponding to the four sequences are respectively mapped to the eleventh time-frequency resource group and the ten-second time-frequency resource group according to a fourth preset rule, which refers to a reference corresponding to the four sequences.
  • the value of each bit of the signal is mapped to the corresponding RE of the eleventh time-frequency resource group and the twelfth time-frequency resource group, respectively.
  • FIG. 5C is a schematic diagram of a mapping manner corresponding to a fourth preset rule according to an embodiment of the present disclosure.
  • a, b, c, and d marked in four REs of the eleventh time-frequency resource group. And indicating that the value of the corresponding position of the sequence corresponding to the reference signal is mapped to the corresponding RE, and the specific mapping method and the two reference signals corresponding to the selected two sequences are mapped to the second preset rule in step 203.
  • the mapping method corresponding to the first time-frequency resource is the same, and is not described here.
  • the fourth preset rule may be a mapping manner as shown in FIG. 5C, or may be another mapping that enables the reference signal in the first OFDM symbol of the data region to be uniformly distributed in the frequency domain.
  • the specific disclosure manner of the fourth preset rule is not limited in this disclosure.
  • the eleventh time-frequency resource group reference can be implemented by mapping the four reference signals corresponding to the four sequences to the eleventh time-frequency resource group and the twelfth time-frequency resource group according to the fourth preset rule. a signal and the twelfth time-frequency resource group reference signal, achieving uniform distribution of power in the frequency domain on the first OFDM symbol of the data region, thereby improving the signal.
  • the stability of the information transmission service ensures the accuracy and success rate of information transmission.
  • the eleventh time-frequency resource is used.
  • the four antenna ports corresponding to the group and the four antenna ports corresponding to the twelfth time-frequency resource group respectively select two antenna ports for multiplexing the data channel and the control channel.
  • the antenna port is selected for multiplexing the data channel and the control channel, and the reference signal for demodulating the data signal and the control signal is transmitted by using the selected channel.
  • antenna ports 1, 2, 5, and 6 may be selected for data channel and control channel multiplexing, and other four antenna ports may be selected for data channel and control channel multiplexing, which is not specifically limited in this disclosure.
  • the two antenna ports are respectively selected from the four antenna ports corresponding to the eleventh time-frequency resource group and the four antenna ports corresponding to the twelfth time-frequency resource group, for multiplexing the data channel and the control channel, thereby enabling control Fast demodulation of signal and data signals.
  • the foregoing steps 501 to 503 are a process in which a base station maps N reference signals to a specified time-frequency resource, and after mapping the N reference signals to the specified time-frequency resource, the base station sends at least at least one of the N reference signals to the user equipment.
  • a reference signal, the following steps 504 to 509 are the process of transmitting a reference signal to the user equipment.
  • the base station sends the second indication information to the user equipment.
  • the definitions of the second indication information and the first indication information are the same as the definitions of the corresponding indication information in step 204, and are not described herein.
  • the user equipment receives the second indication information that is used to indicate a location of the time-frequency resource where the first indication information is located.
  • the base station sends the first indication information to the user equipment.
  • the user equipment receives the first indication information at a time-frequency resource location where the first indication information is located according to the time-frequency resource location where the first indication information is located.
  • the base station sends the at least one reference signal to the user equipment at the first preset antenna port.
  • the user equipment receives the at least one reference signal at the first preset antenna port to demodulate the control signal and/or the data signal according to the at least one reference signal.
  • the reference signal mapping method provided by the embodiment of the present disclosure maps a reference signal on a specified time-frequency resource composed of a plurality of REs including a plurality of OFDM symbols of the data region in the time domain, so that the reference signal does not need to exist in the whole time.
  • the reference signal for demodulating the control signal and/or the data signal is transmitted only when a control signal and/or a data signal is transmitted, so that the control signal and the data signal can be quickly demodulated to satisfy 5G.
  • the low latency requirement of the communication network is to improve the number of concurrent transmission layers of the data channel and the number of user equipments multiplexed by the control channel by performing code division multiplexing on the orthogonal sequence; further, by referring to the four references corresponding to the four sequences
  • the signal is mapped to the eleventh time-frequency resource group and the twelfth time-frequency resource group according to the fourth preset rule, and the eleventh time-frequency resource group reference signal and the twelfth time-frequency resource group reference can be implemented.
  • the stability of the information transmission service ensures the accuracy and success rate of information transmission.
  • FIG. 6 is a block diagram of a reference signal mapping apparatus according to an embodiment of the present disclosure.
  • the apparatus includes a processing unit 601 and a transmitting unit 602.
  • the processing unit 601 is configured to: the base station maps the N reference signals to the specified time-frequency resource, where the N is a positive integer greater than or equal to 1;
  • the sending unit 602 is configured to send, by the base station, at least one of the N reference signals to the user equipment in the specified time-frequency resource, where the specified time-frequency resource is in any physical resource block PRB
  • the first orthogonal frequency division multiplexing OFDM symbol of the data region is included in the time domain
  • the PRB includes a first type of control channel and the data area, the data area includes a second type of control channel and a data channel, and the first type of control channel includes the first m OFDM symbols of the PRB in a time domain,
  • the data area includes an OFDM symbol in the PRB other than the first type of control channel in a time domain
  • the second type of control channel includes a first n OFDM symbols of the data region in a time domain, and the data channel includes an OFDM symbol in the data region other than the second type of control channel in a time domain,
  • the m and the n are both positive integers greater than or equal to 1.
  • the specified time-frequency resource includes the data channel.
  • the processing unit 601 is configured to:
  • the orthogonal sequence group includes M pairs of orthogonal sequences, the N is the number of antenna ports, and the M and the N are both greater than or equal to 1. a positive integer, and M is not less than N;
  • the sending unit 602 is further configured to:
  • the first indication information includes port information of a first preset antenna port, where the first preset antenna port is used to send the at least one reference signal;
  • the sending unit is configured to send the at least one reference signal to the user equipment at the first preset antenna port.
  • the time-frequency resource corresponding to the first preset antenna port is The data area of the subframe in which the PRB is located; or,
  • the first indication information When the first indication information is transmitted on the second type of control channel of the PRB, the first indication information further includes a subframe position of a subframe where the at least one reference signal is located, and correspondingly, the first pre- The time-frequency resource corresponding to the antenna port is in the data area of the second PRB, and the second PRB is the at least one PRB corresponding to the subframe where the at least one reference signal is located; or
  • the first indication information When the first indication information is transmitted on the first type of control channel of the subframe in which the PRB is located, the first indication information further includes a subframe position of a subframe in which the at least one reference signal is located, and correspondingly, the The time-frequency resource corresponding to the first preset antenna port is in the data region of the third PRB, and the third PRB includes at least one PRB in the subframe in which the PRB is located and at least one subframe corresponding to the subframe in which the at least one reference signal is located.
  • the specified time-frequency resource includes: a time-frequency resource group and a second time-frequency resource group, each time-frequency resource group corresponding to two antenna ports; the processing unit 601 is configured to:
  • mapping sequence of a first sequence group comprising a first sequence and a second sequence, the first sequence and the second sequence being the two selected from the orthogonal sequence group sequence;
  • the first time-frequency resource group and the second time-frequency resource group respectively include two REs of the first OFDM symbol of the data area and two REs of the second OFDM symbol of the data area.
  • the two REs of the first OFDM symbol and the two REs of the second OFDM symbol occupy subcarriers of the same frequency
  • the first time-frequency resource group reference signal and the second time-frequency resource group reference signal are used to demodulate a data signal.
  • the specified time-frequency resource further includes a third time-frequency resource group and a fourth time-frequency resource group, where each time-frequency resource group corresponds to two antenna ports; correspondingly,
  • the processing unit 601 is further configured to:
  • the reference signals corresponding to the third sequence in the second sequence group are respectively mapped to the first time-frequency resource group and the second time-frequency resource group according to a first preset rule
  • the second sequence group is composed of the third sequence and the fourth sequence except the first sequence group in the orthogonal sequence group.
  • the third time-frequency resource group includes four REs of the first time-frequency resource group and the first time-frequency resource group located in the first OFDM symbol of the data area
  • the fourth time-frequency resource The group includes four REs of the first time-frequency resource group and the second OFDM symbol of the second time-frequency resource group located in the data area
  • the third time-frequency resource group reference signal is used to demodulate the data signal and/or the control signal.
  • the processing unit 601 is further configured to:
  • the mapping of the fourth time-frequency resource group is obtained according to the mapping result of the second sequence group, a fourth sequence group, the first preset rule is such that the fourth sequence group obtained according to the mapping result is the same as the third sequence group, and the fourth time-frequency resource group reference signal is used as a
  • the auxiliary reference signal of the reference signal of the third time-frequency resource group is described.
  • processing unit 601 is further configured to:
  • the symbol and the reference signal in the second OFDM symbol of the data region enable uniform distribution of power in the time domain and the frequency domain.
  • the processing unit 601 is configured to:
  • the specified time-frequency resource includes 4 REs of a first OFDM symbol of the data region and 4 REs of a second OFDM symbol of the data region, and 4 of the first OFDM symbols
  • the RE and the 4 REs of the second OFDM symbol occupy subcarriers of the same frequency.
  • the processing unit 601 is further configured to:
  • the RE has four orthogonal sequences, and the reference signals corresponding to the four REs of the first OFDM symbol are used to demodulate the control signal and/or the data signal.
  • the specified time-frequency resource includes: Fifth time-frequency resource group and sixth time-frequency a resource group, each time-frequency resource group corresponding to 4 antenna ports; the processing unit 601 is configured to:
  • mapping sequence of a third sequence group comprising the four sequences selected from the orthogonal sequence group;
  • the fifth time-frequency resource group and the sixth time-frequency resource group respectively include 2 REs of the first OFDM symbol of the data region, 2 REs of the second OFDM symbol, and an ith OFDM.
  • 2 REs of the symbol and 2 REs of the jth OFDM symbol, and 2 REs of the first OFDM symbol, 2 REs of the second OFDM symbol, 2 of the ith OFDM symbol The REs and the 2 REs of the jth OFDM symbol occupy subcarriers of the same frequency, the i is a positive integer greater than 2, and the j is a positive integer greater than i,
  • the fifth time-frequency resource group reference signal and the sixth time-frequency resource group reference signal are used to demodulate the data signal.
  • the specified time-frequency resource further includes a seventh time-frequency resource group, where the seventh time-frequency resource group includes the fifth time-frequency resource group and the 4 REs of the first OFDM symbol in the data area in the six time-frequency resource group, and the seventh time-frequency resource group corresponds to four antenna ports;
  • processing unit 601 is further configured to:
  • the group and the sixth time-frequency resource group obtain a mapping result, so that the four groups of the seventh time-frequency resource group in the mapping result are orthogonal to each other, and the seventh time-frequency resource group reference signal is used for The data signal and/or the control signal are demodulated.
  • the specified time-frequency resource further includes an eighth time-frequency resource group, where the eighth time-frequency resource group includes the fifth time-frequency resource group and the Four REs of the second OFDM symbol in the data area of the six time-frequency resource group, and the eighth time-frequency resource group corresponding to four antenna ports;
  • processing unit 601 is further configured to:
  • the third preset rule is obtained according to the mapping result.
  • the four sequences corresponding to the eighth time-frequency resource group are orthogonal to each other, and the eighth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the specified time-frequency resource further includes a ninth time-frequency resource group, where the ninth time-frequency resource group includes the fifth time-frequency resource group and the 4 REs of the ith OFDM symbol of the data area in the six time-frequency resource group, and the ninth time-frequency resource group corresponds to four antenna ports;
  • processing unit 601 is further configured to:
  • mapping result four sequences corresponding to the eighth time-frequency resource group and four sequences corresponding to the ninth time-frequency resource group, where the third preset rule is obtained according to the mapping result.
  • the four sequences corresponding to the eighth time-frequency resource group are orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are orthogonal to each other, and the eighth time-frequency resource group reference signal and And/or the ninth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • the specified time-frequency resource further includes a tenth time-frequency resource group, where the tenth time-frequency resource group includes the fifth time-frequency resource group and the 4 REs of the jth OFDM symbol of the data area in the six time-frequency resource group, and the tenth time-frequency resource group corresponds to four antenna ports;
  • processing unit 601 is further configured to:
  • the third preset rule is such that the four sequences corresponding to the eighth time-frequency resource group obtained according to the mapping result are orthogonal to each other and/or the four sequences corresponding to the ninth time-frequency resource group are two or two Orthogonal and/or four sequences corresponding to the tenth time-frequency resource group are orthogonal to each other, the eighth time-frequency resource group reference signal and/or the ninth time-frequency resource group reference signal and/or The tenth time-frequency resource group reference signal is used as an auxiliary reference signal of the seventh time-frequency resource group reference signal.
  • processing unit 601 is further configured to:
  • the symbol, the second OFDM symbol of the data region, the ith OFDM symbol of the data region, and the reference signal in the jth OFDM symbol of the data region achieve uniform distribution of power in the time domain and the frequency domain .
  • the specified time-frequency resource includes the first An 11th time-frequency resource group and a twelfth time-frequency resource group, each time-frequency resource group corresponding to 4 antenna ports; the processing unit 601 is configured to:
  • the eleventh time-frequency resource group and the twelfth time-frequency resource group respectively include any four non-overlapping REs on the first OFDM symbol of the data region, and the eleventh time-frequency
  • the resource group reference signal and the twelfth time-frequency resource reference signal are used to demodulate the data signal.
  • processing unit 601 is further configured to:
  • the processing unit 601 is further configured to:
  • Two antenna ports are respectively selected from the four antenna ports corresponding to the eleventh time-frequency resource group and the four antenna ports corresponding to the twelfth time-frequency resource group, for multiplexing the data channel and the control channel.
  • the indication information is further used to indicate that the specified time-frequency resource further includes a first extended time-frequency resource, where the first extended time-frequency resource is a preset OFDM symbol. Multiple REs on; or,
  • the indication information is further used to indicate that the specified time-frequency resource further includes a second extended time-frequency resource, and correspondingly, the indication information further includes location information of the second extended time-frequency resource.
  • the sending unit 602 is further configured to:
  • the second indication information is used to indicate a time-frequency resource location where the second type of control channel is located.
  • the orthogonal sequence group is a Walsh-Hadamard sequence.
  • FIG. 7 is a block diagram of a reference signal mapping apparatus according to an embodiment of the present disclosure.
  • the apparatus includes a receiving unit 701 and a processing unit 702.
  • the receiving unit 701 is configured to receive first indication information, where the first indication information includes at least a first preset antenna port. Port information;
  • the processing unit 702 is configured to detect whether the first indication information further includes time-frequency resource extension indication information
  • the receiving unit 701 is further configured to: when the first indication information does not include the time-frequency resource extension indication information, receive, by the first preset time-frequency resource group, at least one reference signal, where the first preset time-frequency resource The group is a time-frequency resource group corresponding to the first preset antenna port;
  • the receiving unit 701 is further configured to: when the first indication information includes the time-frequency resource extension indication information, receive, by the second preset time-frequency resource group, the at least one reference signal, the second preset time-frequency The resource group includes the first preset time-frequency resource group and the extended time-frequency resource group;
  • the processing unit 702 is further configured to demodulate the control signal and/or the data signal according to the at least one reference signal.
  • the time-frequency resource extension indication information is used to indicate that the time-frequency resource where the at least one reference signal is located includes the extended time-frequency resource group, and the extended time-frequency resource The group consists of a plurality of REs on a preset OFDM symbol.
  • the time-frequency resource extension indication information includes location information of the extended time-frequency resource group.
  • FIG. 8 is a schematic structural diagram of a user equipment UE according to an embodiment of the present disclosure.
  • the UE includes a transmitter 801, a receiver 802, and a processor 803 that is coupled to the transmitter 801 and the receiver 802, respectively.
  • the UE may also include general components such as a memory 804, an antenna, and the like, and the embodiments of the present disclosure are not limited herein.
  • the processor is configured to perform the method performed by the user equipment side in the above-described Embodiments 1 to 4.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station includes a transmitter 901, a receiver 902, and a processor 903 connected to the transmitter 901 and the receiver 902, respectively.
  • the base station may further include a general component such as a memory 904, an antenna, a baseband processing component, a medium RF processing component, an input/output device, and the like, and the embodiment of the present disclosure is not limited herein.
  • the processor is configured to perform the method performed by the base station side in the first to fourth embodiments described above.
  • a person skilled in the art can understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium to which it is obtained may be a read only memory, a magnetic disk or an optical disk or the like.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种参考信号映射方法及装置,属于通信技术领域。所述方法包括:基站将N个参考信号映射到指定时频资源;基站在指定时频资源向用户设备发送参考信号,对于任一PRB,指定时频资源在时域上包括数据区域的第一个OFDM符号,PRB包括第一类控制信道和数据区域,数据区域包括第二类控制信道和数据信道,第一类控制信道在时域上包括PRB前m个OFDM符号,数据区域在时域上包括PRB中除第一类控制信道以外的OFDM符号,第二类控制信道在时域上包括数据区域的前n个OFDM符号,数据信道在时域上包括数据区域中除第二类控制信道以外的OFDM符号。本公开实现控制信号和数据信号的快速解调,满足低时延要求,提高数据信道并发传输层数及控制信道复用的用户设备数。

Description

参考信号映射方法及装置
本公开要求于2016年8月12日提交中国专利局、申请号为201610670143.2、发明名称为“参考信号映射方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,特别涉及一种参考信号映射方法及装置。
背景技术
随着通信技术的不断发展,以及人们对通信速度、可靠性等的要求越来越高,推动了长期演进技术(Long Term Evolution,LTE)的出现,LTE网络以无线帧为单位传输信号,每个无线帧由子帧构成,每个子帧有两个时隙,每个时隙由固定个数的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号组成。在LTE通信系统进行数据传输的过程中,需要对数据传输信道进行解调,以得到信道中的传输数据;例如,在下行链路中,需根据随控制信道和数据信道发送的参考信号,对在该控制信道和/或该数据信道接收到的控制信号和或数据信号进行解调。该参考信号是一组特定的数据序列,分布在指定时频资源位置上,用于对数据信号和/或控制信号的解调。
在相关技术中,解调接收到的数据信号的参考信号分散在整个物理资源块(Physical Resource Block,PRB)内,用户设备需要接收到整个PRB中的信号后,才能够对该PRB内的数据信号进行解调。
在实现本公开的过程中,发明人发现现有技术至少存在以下问题:
由于参考信号分散在整个PRB内,导致参考信号所占时频资源过多、开销过大,而且无法实现对数据信号的快速解调,从而导致无法满足第五代移动通信技术(fifth-Generation,5G)的低时延要求。
发明内容
为了解决现有技术的问题,本公开实施例提供了一种参考信号映射映射方法及装置。
所述技术方案如下:
第一方面,提供了一种参考信号映射方法,所述方法包括:
基站将N个参考信号映射到指定时频资源,所述N为大于或等于1的正整数;所述基站在所述指定时频资源向用户设备发送所述N个参考信号中的至少一个参考信号,其中,对于任一物理资源块PRB,所述指定时频资源在时域上包括数据区域的第一个正交频分复用OFDM符号,所述PRB包括第一类控制信道和所述数据区域,所述数据区域包括第二类控制信道和数据信道,所述第一类控制信道在时域上包括所述PRB前m个OFDM符号,所述数据区域在时域上包括所述PRB中除所述第一类控制信道以外的OFDM符号,所述第二类控制信道在时域上包括所述数据区域的前n个OFDM符号,所述数据信道在时域上包括所述数据区 域中除所述第二类控制信道以外的OFDM符号,所述m和所述n均为大于或等于1的正整数。
通过在包括该数据区域在时域上的首部若干个OFDM符号的多个RE构成的指定时频资源上映射参考信号,使得参考信号无需存在于整个时频资源内,只有当有数据信号和/或控制信号发送时才会传输用于解调该数据信号和/或控制信号的参考信号,能够实现控制信号和数据信号的快速解调,满足5G通信网络的低时延要求,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数。
在本公开的第一方面的第一种可能实现方式中,所述指定时频资源在时域上包括所述数据信道内的至少一个OFDM符号。
通过在包括数据信道内至少一个正交频分复用OFDM符号的指定时频资源上映射参考信号,能够进一步提高数据信道并发传输层数及控制信道复用的用户设备数;此外,当用户设备在高速移动场景下时,还能够提高用户设备对数据信道的信道估计准确性。
在本公开的第一方面的第二种可能实现方式中,所述基站将N个参考信号映射到指定时频资源,包括:从正交序列组中选取任意N个序列,所述正交序列组包括M个两两正交的序列,所述N为天线端口数,所述M和所述N均为大于或等于1的正整数,且M不小于N;基于所述N个序列生成所述N个参考信号;将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,使得所述N个参考信号在所述指定时频资源上两两正交。
通过上述方法向指定时频资源映射参考信号,能够在向指定时频资源映射多个参考信号的同时,通过对正交序列实现码分复用,在不增加资源消耗的情况下,提高一个PRB内发送的参考信号数。
在本公开的第一方面的第三种可能实现方式中,所述向所述用户设备发送所述N个参考信号中的至少一个参考信号之前,所述方法还包括:向所述用户设备发送第一指示信息,所述第一指示信息包括第一预设天线端口的端口信息,所述第一预设天线端口用于发送所述至少一个参考信号;相应地,所述向所述用户设备发送所述N个参考信号中的至少一个参考信号包括:在所述第一预设天线端口向所述用户设备发送所述至少一个参考信号。
通过向用户设备发送包括端口信息的该第一指示信息,使得用户设备能够根据该端口信息,确定接收该至少一个参考信号的天线端口。
在本公开的第一方面的第四种可能实现方式中,当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一预设天线端口对应的时频资源在所述PRB所在子帧的数据区域中;或,当所述第一指示信息在所述PRB的第二类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第二PRB的数据区域中,所述第二PRB为所述至少一个参考信号所在子帧对应的至少一个PRB;或,当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第三PRB的数据区域中,所述第三PRB包括所述PRB所在子帧内的至少一个PRB和所述至少一个参考信号所在子帧对应的至少一个PRB。
通过根据参考信号所在位置不同,采用不同的方法向用户设备提示该参考信号所在的时频资源位置,从而使得用户设备能够根据该第一提示信息,确定对应的时频资源位置,以接收该参考信号,能够提高参考信号传输效率,避免发生信号传输失败的情况。
在本公开的第一方面的第五种可能实现方式中,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为2时,所述指定时频资源包括:第一时频资源组和第二时频资源组,每个时频资源组对应2个天线端口;所述将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,包括:获取第一序列组的映射序列,所述第一序列组包括第一序列和第二序列,所述第一序列和所述第二序列为从所述正交序列组中选取的所述2个序列;将所述映射序列对应的所述2个参考信号分别映射到所述第一时频资源组和所述第二时频资源组;其中,所述第一时频资源组和所述第二时频资源组分别包括所述数据区域的第一个OFDM符号的2个RE和所述数据区域的第二个OFDM符号的2个RE,所述第一个OFDM符号的2个RE与所述第二个OFDM符号的2个RE占用相同频率的子载波,所述第一时频资源组参考信号和所述第二时频资源组参考信号用于解调数据信号。
通过在包括数据区域在时域上的首部若干个OFDM符号的多个RE构成的指定时频资源上映射参考信号,使得参考信号无需存在于整个时频资源内,只有当有数据信号和/或控制信号发送时才会传输用于解调该数据信号和/或控制信号的参考信号,能够实现控制信号和/或数据信号的快速解调,满足5G通信网络的低时延要求,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数。
在本公开的第一方面的第六种可能实现方式中,所述指定时频资源还包括第三时频资源组和第四时频资源组,每个时频资源组对应两个天线端口;相应地,所述方法还包括:将所述第二序列组中的第三序列对应的参考信号按第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组;将所述第二序列组中的第四序列对应的参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述第三时频资源组对应的第三序列组由所述第三序列和所述第四序列构成;其中,所述第二序列组由所述正交序列组中除所述第一序列组以外的所述第三序列和所述第四序列构成,所述第三时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第一个OFDM符号的4个RE,所述第四时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,所述第三时频资源组参考信号用于解调数据信号和/或控制信号。
通过上述映射方式,能够使第三时频资源组对应的天线端口传输的参考信号与第一时频资源组和第二时频资源组对应的天线端口传输的参考信号通过正交码实现正交,而且当第二类控制信道占用的时频资源包括该第三时频资源组时,该第三时频资源组对应的天线端口的参考信号可以用于解调第二类控制信道中的控制信号和数据信道中的数据信号,能够实现对控制信号的快速解调;当该第二类控制信道占用的时频资源不包括该第三时频资源组时,该第三时频资源组对应的天线端口的参考信号也可用于解调数据信号。
在本公开的第一方面的第七种可能实现方式中,将所述第二序列组中的第四序列对应的参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组之后,所述方法还包括:当所述n大于或等于2时,根据所述第二序列组在所述第一时频资源组和所述第二时频资源组的映射结果,获取所述第四时频资源组对应的第四序列组,所述第一预设规则使得根据所述映射结果获取到的所述第四序列组与所述第三序列组相同,所述第四时频资源组参考信号用于作为所述第三时频资源组参考信号的辅助参考信号。
通过使用该第四时频资源组参考信号作为该第三时频资源组参考信号的辅助参考信 号,能够提高控制信号和数据信号的解调成功率。
在本公开的第一方面的第八种可能实现方式中,获取第一序列组的映射序列之后,所述方法还包括:将所述映射序列对应的2个参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述数据区域的第一个OFDM符号和所述数据区域的第二个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
通过将该映射序列对应的2个参考信号按该第一预设规则分别映射到该第一时频资源组和该第二时频资源组,能够实现第一时频资源组参考信号和该第二时频资源组参考信号,在该数据区域的第一个OFDM符号和第二个OFDM符号,实现在时域的功率的均匀分配和在频域的功率的均匀分配,从而降低所述基站发送机由于功率起伏导致的信号失真,提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
在本公开的第一方面的第九种可能实现方式中,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为8时;所述将所述N个序列对应的所述N个参考信号映射到指定时频资源上,包括:将所述8个序列对应的8个参考信号分别映射到所述指定时频资源上,所述指定时频资源对应的参考信号用于解调数据信号;其中,所述指定时频资源包括所述数据区域的第一个OFDM符号的4个RE和所述数据区域的第二个OFDM符号的4个RE,所述第一个OFDM符号的4个RE与所述第二个OFDM符号的4个RE占用相同频率的子载波。
通过上述映射,能够实现在8个RE组成的时频资源实现8个天线端口的映射,进而能够实现同时传输8个参考信号,使得参考信号无需存在于整个时频资源内,只有当有数据信号发送时才会传输用于解调该数据信号的参考信号,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数。
在本公开的第一方面的第十种可能实现方式中,将所述N个序列对应的所述N个参考信号映射到指定时频资源上,包括:将所述8个序列对应的8个参考信号按第二预设规则分别映射到所述指定时频资源上,使得所述指定时频资源在所述数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,所述第一个OFDM符号的4个RE对应的参考信号用于解调控制信号和/或数据信号。
通过上述映射方式,能够使该指定时频资源在该数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,而且当第二类控制信道占用的时频资源包括该4个RE时,对应的4个天线端口可供数据信道和控制信道共用,即该4个天线端口既可以传输用于解调控制信号的参考信号,又可以传输用于解调数据信号的参考信号。
在本公开的第一方面的第十一种可能实现方式中,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为4时,所述指定时频资源包括:第五时频资源组和第六时频资源组,每个时频资源组对应4个天线端口;所述将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,包括:获取第三序列组的映射序列,所述第三序列组包括从所述正交序列组中选取的所述4个序列;将所述映射序列对应的4个参考信号分别映射到所述第五时频资源组和所述第六时频资源组;其中,所述第五时频资源组和所述第六时频资源组分别包括所述数据区域的第一个OFDM符号的2个RE、第二个OFDM符号的2个RE、第i个OFDM符号的2个RE和第j个OFDM符号的2个RE,且所述第一个OFDM符号的2个RE、所述第二个OFDM符号的2个RE、所述第i个OFDM符号的2个RE和所述第j 个OFDM符号的2个RE占用相同频率的子载波,所述i为大于2的正整数,所述j为大于i的正整数,所述第五时频资源组参考信号和所述第六时频资源组参考信号用于解调数据信号。
通过上述映射,能够实现在16个RE组成的时频资源实现8个天线端口的映射,进而能够实现同时传输8个参考信号,需要说明的是,当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该8个天线端口对应的参考信号可以用于解调数据信号;当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号和第三个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该8个天线端口对应的参考信号可以用于解调数据信号,也可以用于解调第二类控制信道中的控制信号。
在本公开的第一方面的第十二种可能实现方式中,所述指定时频资源还包括第七时频资源组,所述第七时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第一个OFDM符号的的4个RE,所述第七时频资源组对应4个天线端口;相应地,所述方法还包括:将所述正交序列组中除所述第三序列组中所包括的4个序列以外的4个序列对应的4个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果,使得所述映射结果中的所述第七时频资源组的4组序列两两正交,所述第七时频资源组参考信号用于解调数据信号和/或控制信号。
通过上述映射方式,能够使第七时频资源组对参考信号与第五时频资源组参考信号和第六时频资源组参考信号通过正交码实现正交,而且当第二类控制信道占用的时频资源包括该第七时频资源组时,该第七时频资源组参考信号可以用于解调第二类控制信道中的控制信号和数据信道中的数据信号,能够实现对控制信号的快速解调。
在本公开的第一方面的第十三种可能实现方式中,所述指定时频资源还包括第八时频资源组,所述第八时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,所述第八时频资源组对应4个天线端口;相应地,将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果之后,所述方法还包括:当所述n大于或等于2且小于所述i时,根据所述映射结果,获取所述第八时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,还能够使得该第八时频资源组对应的4个序列两两正交,进而使得该第八时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
在本公开的第一方面的第十四种可能实现方式中,所述指定时频资源还包括第九时频资源组,所述第九时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第i个OFDM符号的4个RE,所述第九时频资源组对应4个天线端口;相应地,将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射 结果之后,所述方法还包括:根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,还能够使得该第八时频资源组对应的4个序列两两正交和/或该第九时频资源组对应的4个序列两两正交,进而使得该第八时频资源组参考信号和/或该第九时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
当该第二类控制信道包括该第八时频资源组且不包括该第九时频资源组时,该第八时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,该第九时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可用于解调数据信道中的数据信号。当该第二类控制信道既包括该第八时频资源组也包括该第九时频资源组时,该第八时频资源组参考信号和该第九时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,既可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号。
在本公开的第一方面的第十五种可能实现方式中,所述指定时频资源还包括第十时频资源组,所述第十时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第j个OFDM符号的4个RE,所述第十时频资源组对应4个天线端口;相应地,将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果之后,所述方法还包括:根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列、所述第十时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交和/或所述第十时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号和/或所述第十时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,还能够使得该第八时频资源组对应的4个序列两两正交和/或该第九时频资源组对应的4个序列两两正交和/或该第十时频资源组对应的4个序列两两正交,进而使得该第八时频资源组参考信号和/或该第九时频资源组参考信号和/或该第十时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
当该第二类控制信道包括该第八时频资源组且不包括该第九时频资源组和第十时频资源组时,该第八时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,该第九时频资源组参考信号和/或该第十时频资源组参考信号作为该第七时频资源组参考信 号的辅助参考信号,可用于解调数据信道中的数据信号。当该第二类控制信道既包括该第八时频资源组和该第九时频资源组但不包括该第十时频资源组时,该第八时频资源组参考信号和该第九时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,既可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,而该第十时频资源组参考信号作为该第七时频资源组参考信号,可用于解调数据信道中的数据信号。当该第二类控制信道包括该第八时频资源组、该第九时频资源组和该第十时频资源组时,该第八时频资源组参考信号、该第九时频资源组参考信号和该第十时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,既可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号。
在本公开的第一方面的第十六种可能实现方式中,获取第三序列组的映射序列之后,所述方法还包括:将所述映射序列对应的4个参考信号按所述第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,使得所述数据区域的第一个OFDM符号、所述数据区域的第二个OFDM符号、所述数据区域的第i个OFDM符号和所述数据区域的第j个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
通过将该映射序列对应的4个参考信号按该第三预设规则分别映射到该第五时频资源组和该第六时频资源组,能够实现第五时频资源组参考信号和该第六时频资源组参考信号,在第五时频资源组和该第六时频资源组对应的时域的OFDM符号上,实现在时域的功率的均匀分配和在频域的功率的均匀分配,从而提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
在本公开的第一方面的第十七种可能实现方式中,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为4时,所述指定时频资源包括第十一时频资源组和第十二时频资源组,每个时频资源组对应4个天线端口;所述将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,包括:将所述4个序列对应的4个参考信号分别映射到所述第十一时频资源组和所述第十二时频资源组;其中,所述第十一时频资源组和所述第十二时频资源组分别包括所述数据区域的第一个OFDM符号上的任意不重叠的4个RE,所述第十一时频资源组参考信号和所述第十二时频资源参考信号用于解调数据信号。
通过上述映射方法映射参考信号,能够实现在8个RE组成的时频资源实现8个天线端口的映射,进而能够实现同时传输8个参考信号,需要说明的是,当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该4个天线端口对应的参考信号可以用于解调数据信号,也可以用于解调第二类控制信道中的控制信号。
在本公开的第一方面的第十八种可能实现方式中,所述方法还包括:将所述正交序列组中的4个序列对应的4个参考信号按第四预设规则分别映射到所述第十一时频资源组和所述第十二时频资源组,使得所述数据区域的第一个OFDM符号中的参考信号实现在频域的功率的均匀分配。
通过将该4个序列对应的4个参考信号按该第四预设规则分别映射到该第十一时频资源组和该第十二时频资源组,能够实现第十一时频资源组参考信号和该第十二时频资源组参考信号,在该数据区域的第一个OFDM符号上实现在频域的功率的均匀分配,从而提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
在本公开的第一方面的第十九种可能实现方式中,将所述4个序列对应的4个参考信号分别映射到所述第十一时频资源组和所述第十二时频资源组之后,所述方法还包括:从所述第十一时频资源组对应的4个天线端口和所述第十二时频资源组对应的4个天线端口分别选取2个天线端口,以供数据信道和控制信道复用。
通过从该第十一时频资源组对应的4个天线端口和该第十二时频资源组对应的4个天线端口分别选取2个天线端口,供数据信道和控制信道复用,能够实现控制信号和数据信号的快速解调。
在本公开的第一方面的第二十种可能实现方式中,所述第一指示信息还包括时频资源扩展指示信息,所述时频资源扩展指示信息用于指示所述至少一个参考信号所在的时频资源包括所述扩展时频资源组,所述第一扩展时频资源为预设OFDM符号上的多个RE;或,所述第一指示信息还用于指示所述指定时频资源还包括第二扩展时频资源,相应地,所述第一指示信息还包括所述第二扩展时频资源的位置信息。
通过向用户设备发送时频资源扩展指示信息,能够在同一PRB种存在采用不同映射方法映射的参考信号,且不同参考信号对应天线的天线端口的端口信息相同的情况下,使得用户设备能够确定接收参考信号的时频资源位置及对应的天线端口。
在本公开的第一方面的第二十一种可能实现方式中,所述向所述用户设备发送第一指示信息之前,所述方法还包括:向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述第二类控制信道所在的时频资源位置。
通过向用户设备发送用于指示该第二类控制信道所在的时频资源位置的该第二指示信息,能够使得当第一指示信息由第二类控制信道发送时,该用户设备获知该第二类控制信息所在的时频资源位置,进而能够在该第二类控制信息所在的时频资源位置,等待接收该第一指示信息,避免用户设备频繁对控制信道进行监测,进而能够提高信号的接收效率。
在本公开的第一方面的第二十二种可能实现方式中,所述正交序列组为Walsh-Hadamard序列。
通过采用Walsh-Hadamard序列作为正交序列组实现多个天线端口共同占用的多个RE实现码分复用。
第二方面,提供了一种参考信号映射方法,所述方法包括:
接收第一指示信息,所述第一指示信息包括第一预设天线端口的端口信息;
检测所述第一指示信息是否包括时频资源扩展指示信息;
如果所述第一指示信息不包括所述时频资源扩展指示信息,在第一预设时频资源组接收至少一个参考信号,所述第一预设时频资源组为与所述第一预设天线端口对应的时频资源组;
如果所述第一指示信息包括所述时频资源扩展指示信息,在第二预设时频资源组接收所述至少一个参考信号,所述第二预设时频资源组包括所述第一预设时频资源组和扩展时频资源组;
根据所述至少一个参考信号解调控制信号和/或数据信号。
通过检测该第一指示信息是否包括时频资源扩展指示信息,能够在同一PRB种存在采用不同映射方法映射的参考信号,且不同参考信号对应天线的天线端口的端口信息相同的情况下,确定接收参考信号的时频资源位置及对应的天线端口。
在本公开的第二方面的第一种可能实现方式中,所述时频资源扩展指示信息用于指示所述至少一个参考信号所在的时频资源包括所述扩展时频资源组,所述扩展时频资源组由预设OFDM符号上的多个RE构成。
通过接收基站发送的用于指示所述至少一个参考信号所在的时频资源包括所述扩展时频资源组的时频资源扩展指示信息,能够使得用户设备确定第一预设时频资源组和该预设OFDM符号上的多个RE上接收参考信号。
在本公开的第二方面的第二种可能实现方式中,所述时频资源扩展指示信息包括所述扩展时频资源组的位置信息。
通过接收基站发送的包括扩展时频资源组的位置信息的时频资源扩展指示信息,能够使得用户设备确定第一预设时频资源组和该扩展时频资源组上接收参考信号。
第三方面,提供了一种参考信号映射装置,所述装置包括:
处理单元,用于基站将N个参考信号映射到指定时频资源,所述N为大于或等于1的正整数;
发送单元,用于所述基站在所述指定时频资源向用户设备发送所述N个参考信号中的至少一个参考信号,其中,对于任一物理资源块PRB,所述指定时频资源在时域上包括数据区域的第一个正交频分复用OFDM符号,
所述PRB包括第一类控制信道和所述数据区域,所述数据区域包括第二类控制信道和数据信道,所述第一类控制信道在时域上包括所述PRB前m个OFDM符号,所述数据区域在时域上包括所述PRB中除所述第一类控制信道以外的OFDM符号,
所述第二类控制信道在时域上包括所述数据区域的前n个OFDM符号,所述数据信道在时域上包括所述数据区域中除所述第二类控制信道以外的OFDM符号,所述m和所述n均为大于或等于1的正整数。
通过在包括该数据区域在时域上的首部若干个OFDM符号的多个RE构成的指定时频资源上映射参考信号,使得参考信号无需存在于整个时频资源内,只有当有控制信号和/或数据信号发送时才会传输用于解调该控制信号和/或数据信号的参考信号,能够实现控制信号和数据信号的快速解调,满足5G通信网络的低时延要求,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数。
在本公开的第三方面的第一种可能实现方式中,所述指定时频资源包括所述数据信道。
通过在包括数据信道的指定时频资源上映射参考信号,能够进一步提高数据信道并发传输层数及控制信道复用的用户设备数。
在本公开的第三方面的第二种可能实现方式中,所述处理单元用于:
从正交序列组中选取任意N个序列,所述正交序列组包括M个两两正交的序列,所述N为天线端口数,所述M和所述N均为大于或等于1的正整数,且M不小于N;
基于所述N个序列生成所述N个参考信号;
将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,使得所述N个参考信号在所述指定时频资源上两两正交。
通过上述方法向指定时频资源映射参考信号,能够在向指定时频资源映射多个参考信号的同时,通过对正交序列实现码分复用,在不增加资源消耗的情况下,提高一个PRB内发送的参考信号数。
在本公开的第三方面的第三种可能实现方式中,所述发送单元还用于:
向所述用户设备发送指示信息,所述指示信息包括预设天线端口的端口信息,所述预设天线端口用于发送所述至少一个参考信号;
相应地,所述发送单元用于在所述预设天线端口向所述用户设备发送所述至少一个参考信号。
通过向用户设备发送包括端口信息的该第一指示信息,使得用户设备能够根据该端口信息,确定接收该至少一个参考信号的天线端口。
在本公开的第三方面的第四种可能实现方式中,当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一预设天线端口对应的时频资源在所述PRB所在子帧的数据区域中;或,当所述第一指示信息在所述PRB的第二类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第二PRB的数据区域中,所述第二PRB为所述至少一个参考信号所在子帧对应的至少一个PRB;或,当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第三PRB的数据区域中,所述第三PRB包括所述PRB所在子帧内的至少一个PRB和所述至少一个参考信号所在子帧对应的至少一个PRB。
根据参考信号所在位置不同,采用不同的方法向用户设备提示该参考信号所在的时频资源位置,从而使得用户设备能够根据该第一提示信息,确定对应的时频资源位置,以接收该参考信号,能够提高参考信号传输效率,避免发生信号传输失败的情况。
在本公开的第三方面的第五种可能实现方式中,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为2时,所述指定时频资源包括:第一时频资源组和第二时频资源组,每个时频资源组对应2个天线端口;所述处理单元用于:
获取第一序列组的映射序列,所述第一序列组包括第一序列和第二序列,所述第一序列和所述第二序列为从所述正交序列组中选取的所述2个序列;
将所述映射序列对应的所述2个参考信号分别映射到所述第一时频资源组和所述第二时频资源组;
其中,所述第一时频资源组和所述第二时频资源组分别包括所述数据区域的第一个OFDM符号的2个RE和所述数据区域的第二个OFDM符号的2个RE,所述第一个OFDM符号的2个RE与所述第二个OFDM符号的2个RE占用相同频率的子载波,
所述第一时频资源组参考信号和所述第二时频资源组参考信号用于解调数据信号。
通过在包括数据区域在时域上的首部若干个OFDM符号的多个RE构成的指定时频资源上映射参考信号,使得参考信号无需存在于整个时频资源内,只有当有控制信号和/或数据信号发送时才会传输用于解调该控制信号和/或该数据信号的参考信号,能够实现控制信号和/或数据信号的快速解调,满足5G通信网络的低时延要求,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数。
在本公开的第三方面的第六种可能实现方式中,所述指定时频资源还包括第三时频资源组和第四时频资源组,每个时频资源组对应两个天线端口;相应地,所述处理单元还用于:
将所述第二序列组中的第三序列对应的参考信号按第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组;
将所述第二序列组中的第四序列对应的参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述第三时频资源组对应的第三序列组由所述第三序列和所述第四序列构成;
其中,所述第二序列组由所述正交序列组中除所述第一序列组以外的所述第三序列和所述第四序列构成,
所述第三时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第一个OFDM符号的4个RE,所述第四时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,
所述第三时频资源组参考信号用于解调数据信号和/或控制信号。
通过上述映射方式,能够使第三时频资源组对应的天线端口传输的参考信号与第一时频资源组和第二时频资源组对应的天线端口传输的参考信号通过正交码实现正交,而且当第二类控制信道占用的时频资源包括该第三时频资源组时,该第三时频资源组对应的天线端口的参考信号可以用于解调第二类控制信道中的控制信号和数据信道中的数据信号,能够实现对控制信号的快速解调;当该第二类控制信道占用的时频资源不包括该第三时频资源组时,该第三时频资源组对应的天线端口的参考信号也可用于解调数据信号。
在本公开的第三方面的第七种可能实现方式中,所述处理单元还用于:
当所述n大于或等于2时,根据所述第二序列组在所述第一时频资源组和所述第二时频资源组的映射结果,获取所述第四时频资源组对应的第四序列组,所述第一预设规则使得根据所述映射结果获取到的所述第四序列组与所述第三序列组相同,所述第四时频资源组参考信号用于作为所述第三时频资源组参考信号的辅助参考信号。
通过使用该第四时频资源组参考信号作为该第三时频资源组参考信号的辅助参考信号,能够提高控制信号和数据信号的解调成功率。
在本公开的第三方面的第八种可能实现方式中,所述处理单元还用于:
将所述映射序列对应的2个参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述数据区域的第一个OFDM符号和所述数据区域的第二个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
通过将该映射序列对应的2个参考信号按该第一预设规则分别映射到该第一时频资源组和该第二时频资源组,能够实现第一时频资源组参考信号和该第二时频资源组参考信号,在该数据区域的第一个OFDM符号和第二个OFDM符号,实现在时域的功率的均匀分配和在频域的功率的均匀分配,从而从而降低发送机由于功率起伏导致的信号失真,提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
在本公开的第三方面的第九种可能实现方式中,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为8时,将所述8个序列对应的8个参考信号分别映射到所述指定时频资源上,所述指定时频资源对应的参考信号用于解调数据信号;所述处理单元用于:
其中,所述指定时频资源包括所述数据区域的第一个OFDM符号的4个RE和所述数据区域的第二个OFDM符号的4个RE,且所述第一个OFDM符号的4个RE与所述第二个OFDM 符号的4个RE占用相同频率的子载波。
通过上述映射,能够实现在8个RE组成的时频资源实现8个天线端口的映射,进而能够实现同时传输8个参考信号,使得参考信号无需存在于整个时频资源内,只有当有数据信号发送时才会传输用于解调该数据信号的参考信号,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数。
在本公开的第三方面的第十种可能实现方式中,所述处理单元还用于:
将所述8个序列对应的8个参考信号按第二预设规则分别映射到所述指定时频资源上,使得所述指定时频资源在所述数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,所述第一个OFDM符号的4个RE对应的参考信号用于解调控制信号和/或数据信号。
通过上述映射方式,能够使该指定时频资源在该数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,而且当第二类控制信道占用的时频资源包括该4个RE时,对应的4个天线端口可供数据信道和控制信道共用,即该4个天线端口既可以传输用于解调控制信号的参考信号,又可以传输用于解调数据信号的参考信号。
在本公开的第三方面的第十一种可能实现方式中,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为4时,所述指定时频资源包括:第五时频资源组和第六时频资源组,每个时频资源组对应4个天线端口;所述处理单元用于:
获取第三序列组的映射序列,所述第三序列组包括从所述正交序列组中选取的所述4个序列;
将所述映射序列对应的4个参考信号分别映射到所述第五时频资源组和所述第六时频资源组;
其中,所述第五时频资源组和所述第六时频资源组分别包括所述数据区域的第一个OFDM符号的2个RE、第二个OFDM符号的2个RE、第i个OFDM符号的2个RE和第j个OFDM符号的2个RE,且所述第一个OFDM符号的2个RE、所述第二个OFDM符号的2个RE、所述第i个OFDM符号的2个RE和所述第j个OFDM符号的2个RE占用相同频率的子载波,所述i为大于2的正整数,所述j为大于i的正整数,
所述第五时频资源组参考信号和所述第六时频资源组参考信号用于解调数据信号。
通过上述映射,能够实现在16个RE组成的时频资源实现8个天线端口的映射,进而能够实现同时传输8个参考信号,需要说明的是,当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该8个天线端口对应的参考信号可以用于解调数据信号;当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号和第三个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该8个天线端口对应的参考信号可以用于解调数据信号,也可以用于解调第二类控制信道中的控制信号。
在本公开的第三方面的第十二种可能实现方式中,所述指定时频资源还包括第七时频资源组,所述第七时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第一个OFDM符号的的4个RE,所述第七时频资源组对应4个天线端口;
相应地,所述处理单元还用于:
将所述正交序列组中除所述第三序列组中所包括的4个序列以外的4个序列对应的4个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到 映射结果,使得所述映射结果中的所述第七时频资源组的4组序列两两正交,所述第七时频资源组参考信号用于解调数据信号和/或控制信号。
通过上述映射方式,能够使第七时频资源组对参考信号与第五时频资源组参考信号和第六时频资源组参考信号通过正交码实现正交,而且当第二类控制信道占用的时频资源包括该第七时频资源组时,该第七时频资源组参考信号可以用于解调第二类控制信道中的控制信号和数据信道中的数据信号,能够实现对控制信号的快速解调。
在本公开的第三方面的第十三种可能实现方式中,所述指定时频资源还包括第八时频资源组,所述第八时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,所述第八时频资源组对应4个天线端口;
相应地,所述处理单元还用于:
当所述n大于或等于2且小于所述i时,根据所述映射结果,获取所述第八时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,还能够使得该第八时频资源组对应的4个序列两两正交,进而使得该第八时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
在本公开的第三方面的第十四种可能实现方式中,所述指定时频资源还包括第九时频资源组,所述第九时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第i个OFDM符号的4个RE,所述第九时频资源组对应4个天线端口;
相应地,所述处理单元还用于:
根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,还能够使得该第八时频资源组对应的4个序列两两正交和/或该第九时频资源组对应的4个序列两两正交,进而使得该第八时频资源组参考信号和/或该第九时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
当该第二类控制信道包括该第八时频资源组且不包括该第九时频资源组时,该第八时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,该第九时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可用于解调数据信道中的数据信号。当该第二类控制信道既包括该第八时频资源组也包括该第九时频资源组时,该第八时频资源组参考信号和该第九时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,既可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的 数据信号。
在本公开的第三方面的第十五种可能实现方式中,所述指定时频资源还包括第十时频资源组,所述第十时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第j个OFDM符号的4个RE,所述第十时频资源组对应4个天线端口;
相应地,所述处理单元还用于:
根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列、所述第十时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交和/或所述第十时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号和/或所述第十时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,还能够使得该第八时频资源组对应的4个序列两两正交和/或该第九时频资源组对应的4个序列两两正交和/或该第十时频资源组对应的4个序列两两正交,进而使得该第八时频资源组参考信号和/或该第九时频资源组参考信号和/或该第十时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
当该第二类控制信道包括该第八时频资源组且不包括该第九时频资源组和第十时频资源组时,该第八时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,该第九时频资源组参考信号和/或该第十时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可用于解调数据信道中的数据信号。当该第二类控制信道既包括该第八时频资源组和该第九时频资源组但不包括该第十时频资源组时,该第八时频资源组参考信号和该第九时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,既可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,而该第十时频资源组参考信号作为该第七时频资源组参考信号,可用于解调数据信道中的数据信号。当该第二类控制信道包括该第八时频资源组、该第九时频资源组和该第十时频资源组时,该第八时频资源组参考信号、该第九时频资源组参考信号和该第十时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,既可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号。
在本公开的第三方面的第十六种可能实现方式中,所述处理单元还用于:
将所述映射序列对应的4个参考信号按所述第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,使得所述数据区域的第一个OFDM符号、所述数据区域的第二个OFDM符号、所述数据区域的第i个OFDM符号和所述数据区域的第j个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
通过将该映射序列对应的4个参考信号按该第三预设规则分别映射到该第五时频资源组和该第六时频资源组,能够实现第五时频资源组参考信号和该第六时频资源组参考信号,在第五时频资源组和该第六时频资源组对应的时域的OFDM符号上,实现在时域的功率的均匀分配和在频域的功率的均匀分配,从而提高信息传输业务的稳定性,确保信息传输的准 确性和成功率。
在本公开的第三方面的第十七种可能实现方式中,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为4时,所述指定时频资源包括第十一时频资源组和第十二时频资源组,每个时频资源组对应4个天线端口;所述处理单元用于:
将所述4个序列对应的4个参考信号分别映射到所述第十一时频资源组和所述第十二时频资源组;
其中,所述第十一时频资源组和所述第十二时频资源组分别包括所述数据区域的第一个OFDM符号上的任意不重叠的4个RE,所述第十一时频资源组参考信号和所述第十二时频资源参考信号用于解调数据信号。
通过上述映射方法映射参考信号,能够实现在8个RE组成的时频资源实现8个天线端口的映射,进而能够实现同时传输8个参考信号,需要说明的是,当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该4个天线端口对应的参考信号可以用于解调数据信号,也可以用于解调第二类控制信道中的控制信号。
在本公开的第三方面的第十八种可能实现方式中,所述处理单元还用于:
将所述正交序列组中的4个序列对应的4个参考信号按第四预设规则分别映射到所述第十一时频资源组和所述第十二时频资源组,使得所述数据区域的第一个OFDM符号中的参考信号实现在频域的功率的均匀分配。
通过将该4个序列对应的4个参考信号按该第四预设规则分别映射到该第十一时频资源组和该第十二时频资源组,能够实现第十一时频资源组参考信号和该第十二时频资源组参考信号,在该数据区域的第一个OFDM符号上实现在频域的功率的均匀分配,从而提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
在本公开的第三方面的第十九种可能实现方式中,所述处理单元还用于:
从所述第十一时频资源组对应的4个天线端口和所述第十二时频资源组对应的4个天线端口分别选取2个天线端口,以供数据信道和控制信道复用。
通过从该第十一时频资源组对应的4个天线端口和该第十二时频资源组对应的4个天线端口分别选取2个天线端口,供数据信道和控制信道复用,能够实现控制信号和数据信号的快速解调。
在本公开的第三方面的第二十种可能实现方式中,所述指示信息还用于指示所述指定时频资源还包括第一扩展时频资源,所述第一扩展时频资源为预设OFDM符号上的多个RE;或,
所述指示信息还用于指示所述指定时频资源还包括第二扩展时频资源,相应地,所述指示信息还包括所述第二扩展时频资源的位置信息。
通过向用户设备发送时频资源扩展指示信息,能够在同一PRB种存在采用不同映射方法映射的参考信号,且不同参考信号对应天线的天线端口的端口信息相同的情况下,使得用户设备能够确定接收参考信号的时频资源位置及对应的天线端口。
在本公开的第三方面的第二十一种可能实现方式中,所述发送单元还用于:向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述第二类控制信道所在的时频资源位置。
通过向用户设备发送用于指示该第二类控制信道所在的时频资源位置的该第二指示信息,能够使得当第一指示信息由第二类控制信道发送时,该用户设备获知该第二类控制信息所在的时频资源位置,进而能够在该第二类控制信息所在的时频资源位置,等待接收该第一指示信息,避免用户设备频繁对控制信道进行监测,进而能够提高信号的接收效率。
在本公开的第一方面的第二十二种可能实现方式中,所述正交序列组为Walsh-Hadamard序列。
通过采用Walsh-Hadamard序列作为正交序列组实现多个天线端口共同占用的多个RE实现码分复用。
第四方面,提供了一种参考信号映射装置,所述装置包括:
接收单元,用于接收第一指示信息,所述第一指示信息至少包括第一预设天线端口的端口信息;
处理单元,用于检测所述第一指示信息是否还包括时频资源扩展指示信息;
所述接收单元还用于如果所述第一指示信息不包括所述时频资源扩展指示信息,在第一预设时频资源组接收至少一个参考信号,所述第一预设时频资源组为与所述第一预设天线端口对应的时频资源组;
所述接收单元还用于如果所述第一指示信息包括所述时频资源扩展指示信息,在第二预设时频资源组接收所述至少一个参考信号,所述第二预设时频资源组包括所述第一预设时频资源组和扩展时频资源组;
所述处理单元还用于根据所述至少一个参考信号解调控制信号和/或数据信号。
通过检测该第一指示信息是否包括时频资源扩展指示信息,能够在同一PRB种存在采用不同映射方法映射的参考信号,且不同参考信号对应天线的天线端口的端口信息相同的情况下,确定接收参考信号的时频资源位置及对应的天线端口。
在本公开的第四方面的第一种可能实现方式中,所述时频资源扩展指示信息用于指示所述至少一个参考信号所在的时频资源包括所述扩展时频资源组,所述扩展时频资源组由预设OFDM符号上的多个RE构成。
通过接收基站发送的用于指示所述至少一个参考信号所在的时频资源包括所述扩展时频资源组的时频资源扩展指示信息,能够使得用户设备确定第一预设时频资源组和该预设OFDM符号上的多个RE上接收参考信号。
在本公开的第四方面的第二种可能实现方式中,所述时频资源扩展指示信息包括所述扩展时频资源组的位置信息。
通过接收基站发送的包括扩展时频资源组的位置信息的时频资源扩展指示信息,能够使得用户设备确定第一预设时频资源组和该扩展时频资源组上接收参考信号。
附图说明
图1A是本公开实施例提供的一种LTE通信系统示意图;
图1B是本公开实施例提供的一种PRB结构示意图;
图2A是本公开实施例提供的一种指定时频资源示意图;
图2B是本公开实施例提供的一种参考信号映射方法流程图;
图2C为本公开实施例提供的一种第一预设规则对应的映射方式的示意图;
图3A是本公开实施例提供的一种指定时频资源示意图;
图3B是本公开实施例提供的一种参考信号映射方法流程图;
图3C为本公开实施例提供的一种第二预设规则对应的映射方式的示意图;
图3D是本公开实施例提供的一种指定时频资源所对应的序列的示意图;
图4A是本公开实施例提供的一种指定时频资源示意图;
图4B是本公开实施例提供的一种参考信号映射方法流程图;
图4C是本公开实施例提供的一种指定时频资源示意图;
图4D为本公开实施例提供的一种第三预设规则对应的映射方式的示意图;
图4E是本公开实施例提供的一种指定时频资源所对应的序列的示意图;
图5A是本公开实施例提供的一种指定时频资源示意图;
图5B是本公开实施例提供的一种参考信号映射方法流程图;
图5C为本公开实施例提供的一种第四预设规则对应的映射方式的示意图;
图6是本公开实施例提供的一种参考信号映射装置框图;
图7是本公开实施例提供的一种参考信号映射装置框图;
图8是本公开实施例所提供的一种用户设备UE的结构示意图;
图9是本公开实施例所提供的一种基站的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1A是本公开实施例提供的一种LTE通信系统示意图;在LTE通信系统中,下行链路(DownLink,DL)是指信号从基站到UE的物理信道,上行链路(UpLink,UL)是指信号从用户设备(User Equipment,UE)到基站的物理信道;图1A中“……”表示与基站建立通信连接的其他更多UE。
基站和UE之间以无线帧为单位传输数据,针对DL,每个无线帧在时域上由子帧构成,每个子帧有两个时隙(slot),每个时隙由固定个数的OFDM符号组成,一个子帧对应多个物理资源块(Physical Resource Block,PRB)。
在LTE系统中,最小的调度粒度为一个PRB,每个PRB在时域维度包括14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,在频域维度包括12个子载波,将每个子载波和每个OFDM符号所占用的时频资源称为资源粒子(Resource Element,RE),一个PRB包括168个RE,如图1B所示。
在本公开实施例中,对于任一PRB,在该PRB内包括第一类控制信道和数据区域,该数据区域包括第二类控制信道和数据信道;该第一类控制信道在时域上包括该PRB前m个OFDM符号,该数据区域在时域上包括该PRB中除该第一类控制信道以外的OFDM符号;该第二类控制信道在时域上包括该数据区域的前n个OFDM符号,该数据信道在时域上包括该数据区 域中除该第二类控制信道以外的OFDM符号,该m和该n均为大于或等于1的正整数。
需要说明的是,在时域上包括该PRB前m个OFDM符号的第一类控制信道,在频域上可以包括该PRB前m个OFDM符号的全部RE,也可以包括该PRB前m个OFDM符号的部分RE;在时域上包括该数据区域的前n个OFDM符号的第二类控制信道,在频域上可以包括该数据区域的前n个OFDM符号的全部RE,也可以包括该数据区域的前n个OFDM符号的部分RE,本公开实施例对此均不作具体限定。
该第一类控制信道用于传输在该PRB内参考信号所在的时频资源的位置信息,该数据区域中的第二类控制信道和数据信道用于传输参考信号、控制信息和数据信息,该参考信号用于解调该数据区域中的控制信号和数据信号。
在本公开实施例中,根据PRB内参考信号所占的RE个数及位置不同,对具体的参考信号映射过程进行详细说明。
实施例一
当每个天线端口的参考信号对应的序列长度为4,即每个天线端口的参考信号占PRB内的4个RE时,如图2A所示,在图2A上图箭头所指的时频资源为天线端口1的参考信号和天线端口2的参考信号所占的4个RE,下图箭头所指的时频资源为天线端口3的参考信号和天线端口4的参考信号所占的4个RE。对于天线端口1和天线端口2共同占用的4个RE,对应的参考信号可以利用长度为4的正交序列组实现码分复用,同理,对于天线端口3和天线端口4共同占用的4个RE,对应的参考信号也可以利用长度为4的正交序列组实现码分复用。
图2B是本公开实施例提供的一种参考信号映射方法流程图,如图2B所示,包括以下步骤:
201、基站从正交序列组中选取任意2个序列,该正交序列组包括4个两两正交的序列。
该正交序列组包括4个两两正交的序列,从该正交序列组中选取任意2个序列,所选取的序列个数与天线端口数相同。
在本公开另一实施例中,当该正交序列组为如式(1)所示的4维Walsh-Hadamard序列WOCC时,从该WOCC中选取任意2个序列,该任意两个序列可以为该WOCC序列的第一行和第二行,也可以为该WOCC序列的第二行和第三行,或者其他任意两行,本公开实施例对此不作限定。
Figure PCTCN2017096992-appb-000001
当该正交序列组为该4维Walsh-Hadamard序列时,能够实现两个天线端口共同占用的4个RE的码分复用。
202、基站基于该2个序列生成2个参考信号。
对应不同天线端口的参考信号具有不同的序列,即每个序列对应一个参考信号,基于序列生成参考信号可以根据公式(2)得到。
a(p) i,j=wp(j')·r(A·i+B·j+C)        (2)
其中,p表示天线端口号,j’=D·i+E·j,j’的值取自集合{0 1 2 3},该“·”为乘法运算;i表示参考信号在频域的子载波的位置,j表示在时域的OFDM符号的位置,A、B、C、D和E均为常数;wp(j')为与端口号为p的天线端口对应的序列,例如,当天线端口p和序列的对应关系如下表1所示时,从该表中获取与端口号为p的天线端口对应的序列,并基于该序列根据上述公式(2)得到该天线端口的参考信号。r(A·i+B·j+C)为Gold Sequence序列(复数随机序列),可参考第三代合作伙伴计划(third-Generation Partnership Project,3GPP)标准中解调参考信号的方法实现该参考信号的生成过程,在此不作赘述。
表1
Figure PCTCN2017096992-appb-000002
基于序列生成参考信号的过程可以采用上述方法实现,也可以通过其他方法实现,本公开实施例对参考信号的生成方法不作限定。
203、基站将该2个序列对应的该2个参考信号映射到指定时频资源上,使得该N个参考信号在该指定时频资源上两两正交。
在本公开实施例中,该指定时频资源包括:第一时频资源组、第二时频资源组,每个时频资源组对应2个天线端口。其中,该第一时频资源组和该第二时频资源组分别包括该数据区域的第一个OFDM符号的2个RE和该数据区域的第二个OFDM符号的2个RE,该第一个OFDM符号的2个RE与该第二个OFDM符号的2个RE占用相同频率的子载波。
例如,在图2B的上图,箭头所指示的4个RE为该第一时频资源组,下图箭头所指示的4个RE为该第二时频资源组,第一时频资源组和第二时频资源组在第二个OFDM符号上的4个RE为该第三时频资源组,第一时频资源组和第二时频资源组在第三个OFDM符号上的4个RE为该第四时频资源组。
在本公开实施例中,以该正交序列组为式(1)所示的WOCC序列为例,对本公开所提供的参考信号映射方法进行详细说明。设该第一时频资源组对应天线端口1和天线端口2,该第二时频资源组对应天线端口3和天线端口4。
对于天线端口1传输的参考信号和天线端口2传输的参考信号的映射方法可以为:获取第一序列组的映射序列,该第一序列组包括第一序列和第二序列,该第一序列和该第二序列为从该正交序列组中选取的该2个序列;将该映射序列对应的该2个参考信号分别映射到该第一时频资源组和该第二时频资源组;当从式(1)所示的WOCC序列中选取的两个序列为第一行和第二行的序列时,即该第一序列为WOCC的第一行序列,该第二序列为WOCC的第 二行序列时,将该2个序列对应的该2个参考信号映射到该第一时频资源组。
对于天线端口3传输的参考信号和天线端口4传输的参考信号,由于该天线端口3和该天线端口4对应的第二时频资源组,在频域上与第一时频资源占用子载波的频率不同,所以该第二时频资源组参考信号与该第一时频资源组参考信号正交,因此可以使用从上式(1)所示的WOCC序列中选取的第一行和第二行的序列对该第二时频资源组参考信号进行映射,具体映射方法与上述将该2个序列对应的该2个参考信号映射到该第一时频资源组的方法同理,此处不作赘述。
通过上述方法映射参考信号,能够实现在8个RE组成的时频资源实现4个天线端口的映射,进而能够实现同时传输4个参考信号,需要说明的是,当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该4个天线端口对应的参考信号可以用于解调数据信号;当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号和第三个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该4个天线端口对应的参考信号可以用于解调数据信号,也可以用于解调第二类控制信道中的控制信号。
在本公开另一实施例中,该指定时频资源还包括第三时频资源组和第四时频资源组,每个时频资源组对应两个天线端口;该第三时频资源组包括该第一时频资源组和该第二时频资源组中位于该数据区域的第一个OFDM符号的4个RE;该第四时频资源组包括该第一时频资源组和该第二时频资源组中位于该数据区域的第二个OFDM符号的4个RE;设该第三时频资源组对应天线端口5和6,该第四时频资源组对应天线端口7和8。
对于天线端口5和天线端口6所传输的参考信号的映射方法可以为:将该第二序列组中的第三序列对应的参考信号按第一预设规则分别映射到该第一时频资源组和该第二时频资源组;将该第二序列组中的第四序列对应的参考信号按该第一预设规则分别映射到该第一时频资源组和该第二时频资源组,使得该第三时频资源组对应的第三序列组由该第三序列和该第四序列构成,该第三时频资源组参考信号用于解调数据信号和/或控制信号;其中,该第二序列组由该正交序列组中除该第一序列组以外的该第三序列和该第四序列构成。其中,将该第三序列对应的参考信号按第一预设规则分别映射到该第一时频资源组和该第二时频资源组,是指将该第三序列对应的参考信号的每一位的值分别映射到第一时频资源组和第二时频资源组的对应RE上。
图2C为本公开实施例提供的一种第一预设规则对应的映射方式的示意图,在图2C中,第一时频资源组的4个RE中所标注的a、b、c、d,用于指示将序列相应位置的值映射到对应的RE上。例如,当该第一序列和该第二序列分别为WOCC中的第一行和第二行的序列时,该第三序列和该第四序列分别为该WOCC中的第三行和第四行的序列,将WOCC中的第三行[a,b,c,d]=[1,1,-1,-1]对应参考信号中每一位的值分别映射到如图2C所示的第一时频资源组的对应RE上,将WOCC中的第四行[a,b,c,d]=[1,-1,-1,1]对应参考信号中每一位的值分别映射到如图2C所示的第一时频资源组的对应RE上,使得图2C所示PRB中的第二个OFDM符号上的第三时频资源组映射到的参考信号对应的两组序列为[1,1,-1,-1;1,-1,-1,1]。
当然,该第一预设规则可以是如图2C所示的映射方式,也可以是其他能够使得到的该第三时频资源组对应的第三序列组由该第三序列和该第四序列构成的映射规则,本公开对该第一预设规则对应的具体映射方式不作限定。
通过上述映射方式,能够使第三时频资源组对应的天线端口5和天线端口6的参考信号与天线端口1-4的参考信号通过正交码实现正交,而且当第二类控制信道占用的时频资源包括该第三时频资源组时,该天线端口5的参考信号和天线端口6的参考信号可以用于解调第二类控制信道中的控制信号和数据信道中的数据信号,能够实现对控制信号的快速解调;当该第二类控制信道占用的时频资源不包括该第三时频资源组时,该天线端口5的参考信号和该天线端口6的参考信号也可用于解调数据信号。
在本公开另一实施例中,当该n大于或等于2时,根据该第二序列组在该第一时频资源组和该第二时频资源组的映射结果,获取该第四时频资源组对应的第四序列组,该第一预设规则使得根据该映射结果获取到的该第四序列组与该第三序列组相同,该第四时频资源组参考信号用于作为该第三时频资源组参考信号的辅助参考信号。也即是,当该第二类控制信道占用的时频资源包括该第三时频资源组和该第四时频资源组时,该第四时频资源组对应的天线端口7和天线端口8的参考信号可以作为该第三时频资源组对应的天线端口5和天线端口6的参考信号的辅助参考信号,用于解调控制信号和数据信号。
通过使用该第四时频资源组参考信号作为该第三时频资源组参考信号的辅助参考信号,能够提高控制信号和数据信号的解调成功率。
在本公开再一实施例中,将该映射序列对应的2个参考信号按该第一预设规则分别映射到该第一时频资源组和该第二时频资源组,使得该数据区域的第一个OFDM符号和该数据区域的第二个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
通过将该映射序列对应的2个参考信号按该第一预设规则分别映射到该第一时频资源组和该第二时频资源组,能够实现第一时频资源组参考信号和该第二时频资源组参考信号,在该数据区域的第一个OFDM符号和第二个OFDM符号,实现在时域的功率的均匀分配和在频域的功率的均匀分配,从而降低发送机由于功率起伏导致的信号失真,提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
上述步骤201至203为基站将N个参考信号映射到指定时频资源的过程,基站在将该N个参考信号映射到该指定时频资源以后,向用户设备发送该N个参考信号中的至少一个参考信号,以下步骤204至209为向用户设备发送参考信号的过程。
204、基站向用户设备发送第二指示信息。
该第二指示信息用于指示该PRB中第二类控制信道所在的时频资源位置。该第一指示信息包括第一预设天线端口的端口信息,该第一预设天线端口用于发送该至少一个参考信,该端口信息可以为天线端口的端口号,或者是其他能够唯一标识对应天线端口的信息,本公开实施例对此不作限定。该第二指示信息通过该PRB的第一类控制信道传输,该第一指示信息可以由第一类控制信道传输,即该第一指示信息所在的时频资源在该PRB的第一类控制信道中,也可以由PRB的第二类控制信道传输,即该第一指示信息所在的时频资源在该PRB的第二类控制信道中。
具体地,当该第一指示信息由该PRB的第一类控制信道传输时,该第一预设天线端口对应的时频资源在该PRB所在子帧的数据区域中,用户设备在该PRB所在子帧的数据区域中接收该PRB传输的参考信号。
需要说明的是,一个子帧可以对应多个PRB,每个PRB中的指定时频资源位置对应的端口信息相同,也即是,当以坐标形式表示时频资源位置时,在每个PRB中,坐标相同的时 频资源位置对应的端口信息相同,即每个PRB指定时频资源上的参考信号通过与该端口信息对应的天线端口传输。
通过在该PRB的第一类控制信道中传输该第一指示信息,使得用户设备能够根据该第一指示信息中的端口信息,在与该端口信息对应的天线端口接收该PRB的数据区域中传输的参考信号,并根据该参考信号解调该PRB所传输的控制信号和/或数据信号。
当该第一指示信息由该PRB的第二类控制信道传输时,该第一指示信息还包括该至少一个参考信号所在子帧的子帧位置,相应地,该第一预设天线端口对应的时频资源在第二PRB的数据区域中,该第二PRB为所述至少一个参考信号所在子帧对应的至少一个PRB,用户设备在该第二PRB的数据区域接收该第二PRB传输的参考信号。
其中,该至少一个参考信号所在子帧的子帧位置可以以偏移量的形式表示;例如,以该第一指示信息所在子帧为起始位置,设该第一指示信息所在子帧为T0,T0所在的位置即为0,当该至少一个参考信号所在子帧的子帧位置为5时,表示该至少一个参考信号所在的子帧位置为:在以T0为起始位置开始的第5个子帧。当然,该至少一个参考信号所在子帧的子帧位置还可以采用其他形式表示,本公开实施例对此不作具体限定。
通过在该PRB的第二类控制信道中传输该第一指示信息,使得用户设备能够根据该第一指示信息中的端口信息及参考信号所在子帧的子帧位置,在该子帧位置对应子帧内的多个PRB的数据区域接收该参考信号,并根据该参考信号解调该下一个PRB所传输控制信号和/或参考信号。
当该第一指示信息在该PRB所在子帧的第一类控制信道传输时,该第一指示信息还包括该至少一个参考信号所在子帧的子帧位置,相应地,该第一预设天线端口对应的时频资源在第三PRB的数据区域中,该第三PRB包括该PRB所在子帧内的至少一个PRB和该至少一个参考信号所在子帧对应的至少一个PRB。
例如,以该第一指示信息所在子帧为起始位置,设该第一指示信息所在子帧为T0,T0所在的位置即为0,当该至少一个参考信号所在子帧的子帧位置为0,4,5,时,表示该至少一个参考信号所在的子帧位置为:第一指示信息所在子帧T0,以子帧T0为起始位置开始的第4个子帧和以子帧T0为起始位置开始的第5个子帧。
通过根据参考信号所在位置不同,采用不同的方法向用户设备提示该参考信号所在的时频资源位置,从而使得用户设备能够根据该第一提示信息,确定对应的时频资源位置,以接收该参考信号,能够提高参考信号传输效率,避免发生信号传输失败的情况。
205、用户设备接收用于指示该第一指示信息所在的时频资源位置的该第二指示信息。
206、基站向用户设备发送第一指示信息。
207、用户设备根据该第一指示信息所在的时频资源位置,在该第一指示信息所在的时频资源位置接收该第一指示信息。
208、基站在该第一预设天线端口向该用户设备发送该至少一个参考信号。
209、用户设备在该第一预设天线端口接收该至少一个参考信号,以根据该至少一个参考信号解调控制信号和/或数据信号。
例如,当该第一指示信息中的端口信息为天线端口1的端口信息时,基站在天线端口1向用户设备发送参考信号,相应地,用户设备在天线端口1对应的第一时频资源组对应的RE上接收该参考信号。
本公开实施例提供的参考信号映射方法,通过在包括该数据区域在时域上的首部若干个OFDM符号的多个RE构成的指定时频资源上映射参考信号,使得参考信号无需存在于整个时频资源内,只有当有控制信号和/或数据信号发送时才会传输用于解调该控制信号和/或该数据信号的参考信号,能够实现控制信号和数据信号的快速解调,满足5G通信网络的低时延要求,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数;进一步地,通过将该映射序列对应的2个参考信号按该第一预设规则分别映射到该第一时频资源组和该第二时频资源组,能够实现第一时频资源组参考信号和该第二时频资源组参考信号,在该数据区域的第一个OFDM符号和第二个OFDM符号,实现在时域的功率的均匀分配和在频域的功率的均匀分配,从而降低发送机由于功率起伏导致的信号失真,提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
实施例二
当每个天线端口的参考信号对应的序列长度为8,即每个天线端口的参考信号占PRB内的8个RE时,如图3A所示,在图3A中箭头所指的时频资源为天线端口1至8的参考信号所占的8个RE。对于天线端口1至8共同占用的8个RE,可以利用长度为8的正交序列组实现码分复用。
图3B是本公开实施例提供的一种参考信号映射方法流程图,如图3B所示,包括以下步骤:
301、基站从正交序列组中选取任意8个序列,该正交序列组包括8个两两正交的序列。
该正交序列组包括8个两两正交的序列,将该正交序列组中的8个序列获取为用于实现码分复用的正交序列,所选取的序列个数与天线端口数相同。
在本公开另一实施例中,当该正交序列组为如式(3)所示的8维Walsh-Hadamard序列WOCC时,该8个序列可以为该WOCC序列的第一行至第八行。
Figure PCTCN2017096992-appb-000003
当该正交序列组为该8维Walsh-Hadamard序列时,能够实现8个天线端口共同占用的8个RE的码分复用。
302、基站基于该8个序列生成8个参考信号。
基于序列生成参考信号的方法与步骤202中生成参考信号的方法同理,此处不作赘述。
303、基站将该8个序列对应的该8个参考信号映射到指定时频资源上,使得该N个参考信号在该指定时频资源上两两正交。
在本公开实施例中,该指定时频资源包括该数据区域的第一个OFDM符号的4个RE和该数据区域的第二个OFDM符号的4个RE,且该第一个OFDM符号的4个RE与该第二个OFDM 符号的4个RE占用相同频率的子载波。例如,在图3A中,箭头所示的8个RE为该指定时频资源,当然,该指定时频资源也可以由该数据区域的第一个OFDM符号和该第二个OFDM符号上的其他8个RE构成,本公开实施例对此不作限定。
在本公开实施例中,以该正交序列组为式(3)所示的WOCC序列为例,对本公开所提供的参考信号映射方法进行详细说明。设该指定时频资源组对应天线端口1至8。
对于天线端口1至8上传输的参考信号的映射方法可以为:将该8个序列对应的8个参考信号分别映射到该指定时频资源上,该指定时频资源对应的参考信号用于解调数据信号。例如,将式(3)中第一行序列对应的参考信号映射到图3A中的指定时频资源的方法可以为:将[a,b,c,d,e,f,g,h]=[1,1,1,1,1,1,1,1]对应参考信号中每一位的值按图3A中箭头从左到右的顺序依次映射到对应的RE上,相应地,式(3)中其他七行序列也以相同方式进行映射,所映射的8个参考信号用于解调数据信道中的数据信号。
通过上述映射,能够实现在8个RE组成的时频资源实现8个天线端口的映射,进而能够实现同时传输8个参考信号,使得参考信号无需存在于整个时频资源内,只有当有数据信息发送时才会传输用于解调该数据信号的参考信号,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数。
在本公开另一实施例中,将该8个序列对应的8个参考信号按第二预设规则分别映射到该指定时频资源上,使得该指定时频资源在该数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,该第一个OFDM符号的4个RE对应的参考信号用于解调控制信号和/或数据信号。其中,将该8个序列对应的8个参考信号按第二预设规则分别映射到该指定时频资源,是指将该8个序列中每个序列对应的参考信号的每一位的值分别映射到该指定时频资源的对应RE上。
图3C为本公开实施例提供的一种第二预设规则对应的映射方式的示意图,在图3C中,指定时频资源的8个RE中所标注的a、b、c、d、e、f、g、h,用于指示将序列相应位置的值映射到对应的RE上。例如,将式(3)中WOCC的第二行[a,b,c,d,e,f,g,h]=[1,1,1,1,-1,-1,-1,-1]中每一位的值分别映射到如图3C所示的指定时频资源的对应RE上,即指定时频资源中标识为a、b、c、d的4个RE上映射的部分参考信号对应的序列为[a,b,c,d]=[1,1,1,1],指定时频资源中标识为e、f、g、h的4个RE上映射的部分参考信号对应的序列为[e,f,g,h]=[-1,-1,-1,-1],使得图3D所示PRB中的数据区域的第一个OFDM符号上的4个RE映射到的参考信号对应的序列为[a,b,c,d]=[1,1,-1,-1],对于该式(3)中WOCC中其他行序列对应的参考信号的映射方法与上述过程同理。
通过将该8个序列对应的8个参考信号按第二预设规则分别映射到该指定时频资源上,使得该指定时频资源在该数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,该8个序列与该数据区域的第一个OFDM符号的4个RE上映射的部分参考信号对应的序列之间的对应关系如表2所示。
表2
Figure PCTCN2017096992-appb-000004
Figure PCTCN2017096992-appb-000005
由表2的对应关系可以获知,该数据区域的第一个OFDM符号的4个RE上映射的部分参考信号对应的8组序列中,存在4组两两正交的序列,例如,天线端口1-4对应的该数据区域的第一个OFDM符号的4个RE对应的4组序列两两正交,当图3C所示PRB中的第二类控制信道占用的时频资源包括该数据区域的第一个OFDM符号的4个RE时,该4组两两正交的序列对应的4个参考信号可以用于解调该第二类控制信道中传输的控制信号,也即是天线端口1-4既可以传输用于解调控制信号的参考信号,也可以用于传输用于解调数据信号的参考信号。同理,天线端口5-8对应的该数据区域的第一个OFDM符号的4个RE对应的4组序列也两两正交,也可以选用该天线端口5-8供数据信道和控制信道共用。
当然,该第二预设规则可以是如图3C所示的映射方式,也可以是其他能够使得到的该指定时频资源在该数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列对应的映射方式,本公开对该第二预设规则对应的具体映射方式不作限定。
通过上述映射方式,能够使该指定时频资源在该数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,而且当第二类控制信道占用的时频资源包括该4个RE时,对应的4个天线端口可供数据信道和控制信道共用,即该4个天线端口既可以传输用于解调控制信号的参考信号,又可以传输用于解调数据信号的参考信号。
上述步骤301至303为基站将N个参考信号映射到指定时频资源的过程,基站在将该N个参考信号映射到该指定时频资源以后,向用户设备发送该N个参考信号中的至少一个参考信号,以下步骤304至309为向用户设备发送参考信号的过程。
304、基站向用户设备发送第二指示信息。
在本公开实施例中,该第二指示信息和该第一指示信息的定义与步骤204中对应指示信息的定义相同,此处不作赘述。
305、用户设备接收用于指示该第一指示信息所在的时频资源位置的该第二指示信息。
306、基站向用户设备发送第一指示信息。
307、用户设备根据该第一指示信息所在的时频资源位置,在该第一指示信息所在的时频资源位置接收该第一指示信息。
308、基站在该第一预设天线端口向该用户设备发送该至少一个参考信号。
309、用户设备在该第一预设天线端口接收该至少一个参考信号,以根据该至少一个参考信号解调控制信号和/或数据信号。
例如,当该第一指示信息中的端口信息为天线端口1的端口信息时,基站在天线端口1向用户设备发送参考信号,相应地,用户设备在天线端口1对应的时频资源上接收该参考信号。
本公开实施例提供的参考信号映射方法,通过在包括该数据区域在时域上的首部若干个OFDM符号的多个RE构成的指定时频资源上映射参考信号,使得参考信号无需存在于整 个时频资源内,只有当有控制信号和/或数据信号发送时才会传输用于解调该控制信号和/或数据信号的参考信号,能够实现控制信号和数据信号的快速解调,满足5G通信网络的低时延要求,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数;进一步地,通过将该8个序列对应的8个参考信号按第二预设规则分别映射到该指定时频资源上,能够使该指定时频资源在该数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,而且当第二类控制信道占用的时频资源包括该4个RE时,对应的4个天线端口可供数据信道和控制信道共用,即该4个天线端口既可以传输用于解调控制信号的参考信号,又可以传输用于解调数据信号的参考信号。
实施例三
当每个天线端口的参考信号对应的序列长度为8,即每个天线端口的参考信号占PRB内的8个RE时,如图4A所示,在图4A上图箭头所指的时频资源为天线端口1至4的参考信号所占的8个RE,下图箭头所指的时频资源为天线端口5至8的参考信号所占的8个RE。对于天线端口1至4共同占用的4个RE,可以利用长度为8的正交序列组实现码分复用,同理,对于天线端口5至8共同占用的8个RE,也可以利用长度为4的正交序列组实现码分复用。
图4B是本公开实施例提供的一种参考信号映射方法流程图,如图4B所示,包括以下步骤:
401、基站从正交序列组中选取任意4个序列,该正交序列组包括8个两两正交的序列。
该正交序列组包括8个两两正交的序列,从该正交序列组中选取任意4个序列,所选取的序列个数与天线端口数相同。
在本公开另一实施例中,当该正交序列组为如式(3)所示的8维Walsh-Hadamard序列WOCC时,从该WOCC中选取任意4个序列,该任意两个序列可以为该WOCC序列的第一行至第四行,也可以为该WOCC序列的第二行和第五行,或者其他任意4行,本公开实施例对此不作限定。
当该正交序列组为该8维Walsh-Hadamard序列时,能够实现4个天线端口共同占用的8个RE的码分复用。
402、基站基于该4个序列生成4个参考信号。
基于序列生成参考信号的方法与步骤202中生成参考信号的方法同理,此处不作赘述。
403、基站将该4个序列对应的该4个参考信号映射到指定时频资源上,使得该N个参考信号在该指定时频资源上两两正交。
在本公开实施例中,该指定时频资源包括:第五时频资源组和第六时频资源组每个时频资源组对应4个天线端口。
其中,该第五时频资源组和该第六时频资源组分别包括该数据区域的第一个OFDM符号的2个RE、第二个OFDM符号的2个RE、第i个OFDM符号的2个RE和第j个OFDM符号的2个RE,且该第一个OFDM符号的2个RE、该第二个OFDM符号的2个RE、该第i个OFDM符号的2个RE和该第j个OFDM符号的2个RE占用相同频率的子载波,该i为大于2的正整数,该j为大于i的正整数;该第五时频资源组参考信号和该第六时频资源组参考信号用于解调数据信号。例如,在图4A的上图,箭头所示的8个RE为该第五时频资源组,下 图箭头所示的8个RE为该第六时频资源组。
在本公开实施例中,以该正交序列组为式(3)所示的WOCC序列为例,对本公开所提供的参考信号映射方法进行详细说明;设该第五时频资源组对应天线端口1至天线端口4,该第二时频资源组对应天线端口5至天线端口8。
对于天线端口1至天线端口4上传输的参考信号的映射方法可以为:获取第三序列组的映射序列,所述第三序列组包括从所述正交序列组中选取的所述4个序列;将所述映射序列对应的4个参考信号分别映射到所述第五时频资源组和所述第六时频资源组;当从式(3)所示的WOCC序列中选取的四个序列为第一行至第四行的序列时,即该第三序列组包括式(3)所示的WOCC的第一行至第四行对应的序列,将该4个序列对应的该4个参考信号映射到该第五时频资源组所采用的具体映射方法与步骤203中将2个序列对应的2个参考信号映射到第一时频资源组所采用的映射方法同理,此处不作赘述。
对于天线端口5至天线端口8上传输的参考信号,由于该天线端口5至该天线端口8对应的第六时频资源组,在时域上与第五时频资源占用子载波的频率不同,所以该第六时频资源组参考信号与该第五时频资源组参考信号正交,因此可以使用从上式(3)所示的WOCC序列中选取的第一行至第四行的序列对该第六时频资源组参考信号进行映射,具体映射方法与上述步骤203中将2个序列对应的2个参考信号映射到第一时频资源组所采用的映射方法同理,此处不作赘述。
通过上述映射,能够实现在16个RE组成的时频资源实现8个天线端口的映射,进而能够实现同时传输8个参考信号,需要说明的是,当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该8个天线端口对应的参考信号可以用于解调数据信号;当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号和第三个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该8个天线端口对应的参考信号可以用于解调数据信号,也可以用于解调第二类控制信道中的控制信号。
在本公开另一实施例中,指定时频资源还包括第七时频资源组、第八时频资源组、第九时频资源组和第十时频资源组,每个时频资源组对应4个天线端口;该第七时频资源组包括该第五时频资源组和该第六时频资源组中位于该数据区域的第一个OFDM符号的的4个RE,如图4C中(1)图箭头所指的4个RE;该第八时频资源组包括该第五时频资源组和该第六时频资源组中位于该数据区域的第二个OFDM符号的4个RE,如图4C中(2)图箭头所指的4个RE;该第九时频资源组包括该第五时频资源组和该第六时频资源组中位于该数据区域的第i个OFDM符号的4个RE,如图4C中(3)图箭头所指的4个RE;该第十时频资源组包括该第五时频资源组和该第六时频资源组中位于该数据区域的第j个OFDM符号的4个RE,如图4C中(4)图箭头所指的4个RE。
该第七时频资源组参考信号的映射方法可以为:将该正交序列组中除该第三序列组中所包括的4个序列以外的4个序列对应的4个参考信号,按第三预设规则分别映射到该第五时频资源组和该第六时频资源组得到映射结果,使得该映射结果中的该第七时频资源组的4组序列两两正交,该第七时频资源组参考信号用于解调数据信号和/或控制信号。其中,将该正交序列组中除该第三序列组中所包括的4个序列以外的4个序列对应的4个参考信号,按第三预设规则分别映射到该第五时频资源组和该第六时频资源组,是指将该正交序 列组中除该第三序列组以外的4个序列按第三预设规则所指示的映射对应方式将该4个序列分别映射到该第五时频资源组和该第六时频资源组,以使得该第七时频资源组参考信号对应的4组序列两两正交。
图4D为本公开实施例提供的一种第三预设规则对应的映射方式的示意图,在图4D中,第五时频资源组的8个RE中所标注的a、b、c、d、e、f、g、h,用于指示将参考信号相应位置的值映射到对应的RE上。例如,当该第三序列组包括上式(3)所示的WOCC序列中第一行至第四行对应的序列时,该正交序列组中除该第三序列组以外的4个序列为上式(3)所示的WOCC序列中第五行至第八行对应的序列,将WOCC中的第五行[a,b,c,d,e,f,g,h]=[1,-1,-1,1,1,-1,-1,1]对应参考信号中每一位的值分别映射到如图4D所示的第五时频资源组的对应RE上。
将该第五行至第八行对应的参考信号按第三预设规则所指示的对应方式分别映射到该第五时频资源组和该第六时频资源组,具体方法可以为:将该第五行至第八行对应的参考信号依次分别映射到该第五时频资源组和该第六时频资源组;或者该映射对应方式还可以为:将{第五行,第六行,第七行,第八行}对应的参考分别映射到该第五时频资源组,将{第七行,第八行,第五行,第六行}对应的参考信号分别映射到该第六时频资源组,以使得该第七时频资源组参考信号对应的4组序列两两正交。
进一步地,将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果,本公开所提供的参考信号映射方法还可以包括以下三种方法:
第一种、当该n大于或等于2且小于该i时,根据该映射结果,获取该第八时频资源组对应的4个序列,该第三预设规则使得根据该映射结果获取到的该第八时频资源组对应的4个序列两两正交,该第八时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。其中,当该n大于或等于2且小于该i时,该第二类控制信道包括该第八时频资源组。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,还能够使得该第八时频资源组对应的4个序列两两正交,进而使得该第八时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
当该第二类控制信道包括该第八时频资源组时,该第八时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,当该第二类控制信道不包括该第八时频资源组时,该第八时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可用于解调数据信道中的数据信号。
第二种、根据该映射结果,获取该第八时频资源组对应的4个序列、该第九时频资源组对应的4个序列,该第三预设规则使得根据该映射结果获取到的该第八时频资源组对应的4个序列两两正交和/或该第九时频资源组对应的4个序列两两正交,该第八时频资源组参考信号和/或该第九时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应 的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,还能够使得该第八时频资源组对应的4个序列两两正交和/或该第九时频资源组对应的4个序列两两正交,进而使得该第八时频资源组参考信号和/或该第九时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
当该第二类控制信道包括该第八时频资源组且不包括该第九时频资源组时,该第八时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,该第九时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可用于解调数据信道中的数据信号。当该第二类控制信道既包括该第八时频资源组也包括该第九时频资源组时,该第八时频资源组参考信号和该第九时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,既可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号。
第三种、根据该映射结果,获取该第八时频资源组对应的4个序列、该第九时频资源组对应的4个序列、该第十时频资源组对应的4个序列,该第三预设规则使得根据该映射结果获取到的该第八时频资源组对应的4个序列两两正交和/或该第九时频资源组对应的4个序列两两正交和/或该第十时频资源组对应的4个序列两两正交,该第八时频资源组参考信号和/或该第九时频资源组参考信号和/或该第十时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,还能够使得该第八时频资源组对应的4个序列两两正交和/或该第九时频资源组对应的4个序列两两正交和/或该第十时频资源组对应的4个序列两两正交,进而使得该第八时频资源组参考信号和/或该第九时频资源组参考信号和/或该第十时频资源组参考信号用于作为该第七时频资源组参考信号的辅助参考信号。
当该第二类控制信道包括该第八时频资源组且不包括该第九时频资源组和第十时频资源组时,该第八时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,该第九时频资源组参考信号和/或该第十时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,可用于解调数据信道中的数据信号。当该第二类控制信道既包括该第八时频资源组和该第九时频资源组但不包括该第十时频资源组时,该第八时频资源组参考信号和该第九时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,既可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号,而该第十时频资源组参考信号作为该第七时频资源组参考信号,可用于解调数据信道中的数据信号。当该第二类控制信道包括该第八时频资源组、该第九时频资源组和该第十时频资源组时,该第八时频资源组参考信号、该第九时频资源组参考信号和该第十时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,既可以用于解调该第二类控制信道中的控制信号,也可以用于解调数据信道中的数据信号。
通过将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组, 既能够使得该第七时频资源组对应的4个序列两两正交,还可以使第八时频资源组对应的4个序列、第九时频资源组对应的4个序列、第十时频资源组对应的4个序列中的至少一个时频资源组对应的4个序列两两正交。
在本公开实施例中,以按该第三预设规则映射得到的第七时频资源组至第十时频资源组中每个时频资源组对应的4个序列均两两正交为例,该第三预设规则所指示的映射对应方式可以为表3所示的映射方式,也可以为表4所示的映射对应的映射方式,表3和表4还示出了映射方式及对应的映射结果。在表3中,该第三预设规则中的“第五行+第五行”是指将上式(3)所示的WOCC序列中的第五行分别映射到该第五时频资源组和该第六时频资源组,同理,表4中所示的“第五行+第七行”是指将上式(3)所示的WOCC序列中的第五行映射到该第五时频资源组,将第七行映射到第七时频资源组,可以按图4E所示的方法得到该第七时频资源组至第十时频资源组中每个时频资源组对应的4个序列。由表3和表4所示的映射结果可以获知,两种映射对应方式均可以使映射得到的第七时频资源组至第十时频资源组中每个时频资源组对应的4个序列均两两正交。
表3
Figure PCTCN2017096992-appb-000006
表4
Figure PCTCN2017096992-appb-000007
当然,该第三预设规则可以是如图4C所示的映射方式,也可以是其他能够使得到的该第七时频资源组对应的4个序列两两正交及该第八时频资源组至第十时频资源组中至少一组时频资源组对应的4个序列两两正交的映射规则,相应地,该第三预设规则所指示的映射对应方式也可以为除表3和表4以外的映射方式,本公开对该第三预设规则对应的具体 映射方式不作限定。
通过上述映射方式,能够使第七时频资源组对参考信号与天线端口1-4的参考信号通过正交码实现正交,而且当第二类控制信道占用的时频资源包括该第七时频资源组时,该第七时频资源组参考信号可以用于解调第二类控制信道中的控制信号和数据信道中的数据信号,能够实现对控制信号的快速解调;进一步地,通过上述映射方式,还可以使该第八时频资源组至该第十时频资源组任一时频资源组参考信号作为该第七时频资源组参考信号的辅助参考信号,能够提高控制信号和数据信号的解调成功率。
在本公开再一实施例中,将该映射序列对应的4个参考信号按该第三预设规则分别映射到该第五时频资源组和该第六时频资源组,使得该数据区域的第一个OFDM符号、该数据区域的第二个OFDM符号、该数据区域的第i个OFDM符号和该数据区域的第j个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
将该映射序列对应的4个参考信号按该第三预设规则分别映射到该第五时频资源组和该第六时频资源组对应的具体映射方法,与步骤203中将该映射序列对应的2个参考信号按该第三预设规则分别映射到该第一时频资源组和该第二时频资源组对应的映射方法同理,此处不作赘述。
通过将该映射序列对应的4个参考信号按该第三预设规则分别映射到该第五时频资源组和该第六时频资源组,能够实现第五时频资源组参考信号和该第六时频资源组参考信号,在第五时频资源组和该第六时频资源组对应的时域的OFDM符号上,实现在时域的功率的均匀分配和在频域的功率的均匀分配,从而降低发送机由于功率起伏导致的信号失真,提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
上述步骤401至403为基站将N个参考信号映射到指定时频资源的过程,基站在将该N个参考信号映射到该指定时频资源以后,向用户设备发送该N个参考信号中的至少一个参考信号。
在本公开实施例中,向用户设备发送参考信号的方法可以与实施例一中发送参考信号的方法相同,也可以不同;具体地,当基站同时采用实施例一和实施例三所示的参考信号映射方法进行参考信号映射时,即在一个PRB内,既存在在如图2A上图所示的第一时频资源组映射的参考信号,也存在在如图4A上图所示的第五时频资源组映射的参考信号,由图2A上图所示的第一时频资源组和图4A上图所示的第五时频资源组可以获知,该第五时频资源组包括该第一时频资源组,在该第一时频资源组对应的天线端口的端口信息与该第五时频资源组对应的天线端口的端口信息有重叠时,例如,第一时频资源组对应天线端口1和天线端口2,该第五时频资源组对应天线端口1至天线端口4,天线端口1和天线端口2即为重叠的端口信息,在这种情况下,基站在向用户设备发送天线端口的端口信息时,所采用的方法可以包括下述步骤404至411。
404、基站向用户设备发送第二指示信息。
在本公开实施例中,该第二指示信息和该第一指示信息的定义与步骤204中对应指示信息的定义相同,此处不作赘述。
405、用户设备接收用于指示该第一指示信息所在的时频资源位置的该第二指示信息。
406、基站向用户设备发送第一指示信息。
407、用户设备根据该第一指示信息所在的时频资源位置,在该第一指示信息所在的时 频资源位置接收该第一指示信息。
408、基站向用户设备发送该至少一个参考信号。
409、用户设备检测该第一指示信息是否包括时频资源扩展指示信息,如果该第一指示信息不包括该时频资源扩展指示信息,执行步骤410;如果该第一指示信息包括该时频资源扩展指示信息,执行步骤411。
该时频资源扩展指示信息用于指示所发送的参考信号所在的时频资源是否包括扩展时频资源组,对于图2A上图所示的第一时频资源组和图4A上图所示的第五时频资源组而言,在图4A上图所示的PRB在时域上的第7个OFDM符号和第8个OFDM符号上的4个RE即为扩展时频资源组。
在本公开实施例中,该时频资源扩展指示信息可以通过以下两种方式表示:
第一种、该时频资源扩展指示信息用于指示该至少一个参考信号所在的时频资源包括该扩展时频资源组,该扩展时频资源组由预设OFDM符号上的多个RE构成。
其中,该时频资源扩展指示信息可以为一段特定的字符串,该预设OFDM符号可以为一个PRB内的数据区域中的任意OFDM符号,该预设OFDM符号和该字符串可以由开发人员自行设置,也可以通过其他方法设置,本公开实施例对此不作具体限定。
第二种、该时频资源扩展指示信息包括该扩展时频资源组的位置信息。
该扩展时频资源组的位置信息可以通过坐标的形式表示,例如,当该扩展时频资源组的位置信息为{(x1,y1),(x2,y2),(x3,y3),(x4,y4)}时,x1表示扩展时频资源组中的第一个RE在时域上对应的OFDM符号的位置,y1表示该第一个RE在频域上对应的子载波的位置,x2、y2、x3、y3、x4、y4所表示的含义同理,此处不作赘述。当然,该扩展时频资源组的位置信息也可以通过其他形式表示,本公开实施例对此不作具体限定。
该时频资源扩展指示信息的表示方法可以采用上述两种方法中的任一种方法表示,也可以采用其他表示方法进行表示,本公开实施例对此不作具体限定。
通过检测该第一指示信息是否包括时频资源扩展指示信息,能够在同一PRB种存在采用不同映射方法映射的参考信号,且不同参考信号对应天线的天线端口的端口信息相同的情况下,确定接收参考信号的时频资源位置及对应的天线端口。
410、如果该第一指示信息不包括该时频资源扩展指示信息,在第一预设时频资源组接收至少一个参考信号,该第一预设时频资源组为与该第一预设天线端口对应的时频资源组。
当基站同时采用实施例一和实施例三所示的参考信号映射方法进行参考信号映射时,即在一个PRB内,既存在在如图2A上图所示的第一时频资源组映射的参考信号,也存在在如图4A上图所示的第五时频资源组映射的参考信号,其第一时频资源组对应的天线端口的端口信息为T1和T2,该第五时频资源组对应的天线端口的端口信息为T1、T2、T3和T4,T1和T2即为重叠的端口信息,当该第一指示信息包括第一预设天线端口的端口信息为T1时,如果该第一指示信息不包括该时频资源扩展指示信息,在第一时频资源组对应的端口信息为T1的天线端口接收基站发送的参考信号,并根据该至少一个参考信号解调控制信号和/或数据信号。
411、如果该第一指示信息包括该时频资源扩展指示信息,在第二预设时频资源组接收该至少一个参考信号,该第二预设时频资源组包括该第一预设时频资源组和扩展时频资源组。
在步骤410所描述的场景下,当该第一指示信息包括第一预设天线端口的端口信息为T1时,如果该第一指示信息包括该时频资源扩展指示信息,在第五时频资源组对应的端口信息为T1的天线端口接收基站发送的参考信号,并根据该至少一个参考信号解调控制信号和/或数据信号。
需要说明的是,当图2A上图所示的第一时频资源组对应的天线端口的端口信息,与图4A上图所示的第五时频资源组对应的天线端口的端口信息不重叠时,可以采用实施例一和实施例二所示的发送方法发送参考信号。
本公开实施例提供的参考信号映射方法,通过在包括该数据区域在时域上的首部若干个OFDM符号的多个RE构成的指定时频资源上映射参考信号,使得参考信号无需存在于整个时频资源内,只有当有控制信号和/或数据信号发送时才会传输用于解调该控制信号和/或该数据信号的参考信号,能够实现控制信号和数据信号的快速解调,满足5G通信网络的低时延要求,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数;进一步地,通过将该映射序列对应的4个参考信号按该第三预设规则分别映射到该第五时频资源组和该第六时频资源组,能够实现第五时频资源组参考信号和该第六时频资源组参考信号,在第五时频资源组和该第六时频资源组对应的时域的OFDM符号上,实现在时域的功率的均匀分配和在频域的功率的均匀分配,从而降低发送机由于功率起伏导致的信号失真,提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
实施例四
当每个天线端口的参考信号对应的序列长度为4,即每个天线端口的参考信号占PRB内的4个RE时,如图5A所示,在图5A中示出了天线端口1至4的参考信号所占的4个RE,即第十一时频资源组,以及天线端口5至8的参考信号占用的4个RE,即第十二时频资源组。对于天线端口1至4共同占用的4个RE及天线端口5至8共同占用的4个RE,均可以利用长度为4的正交序列组实现码分复用。
图5B是本公开实施例提供的一种参考信号映射方法流程图,如图5B所示,包括以下步骤:
501、从正交序列组中选取任意4个序列,该正交序列组包括4个两两正交的序列。
该正交序列组包括4个两两正交的序列,将该正交序列组中的4个序列获取为用于实现码分复用的正交序列,所选取的序列个数与每个时频资源组对应的天线端口数相同。
在本公开另一实施例中,当该正交序列组为如式(1)所示的4维Walsh-Hadamard序列WOCC时,该4个序列可以为该WOCC序列的第一行至第四行。
当该正交序列组为该8维Walsh-Hadamard序列时,能够实现4个天线端口共同占用的4个RE的码分复用。
502、基于该4个序列生成4个参考信号。
基于序列生成参考信号的方法与步骤202中生成参考信号的方法同理,此处不作赘述。
503、将该4个序列对应的该4个参考信号映射到指定时频资源上,使得该N个参考信号在该指定时频资源上两两正交。
在本公开实施例中,该指定时频资源包括第十一时频资源组和第十二时频资源组,该第十一时频资源组和该第十二时频资源组分别包括该数据区域的第一个OFDM符号上的任意 不重叠的4个RE,该第十一时频资源组参考信号和该第十二时频资源参考信号用于解调数据信号。例如,在图5A中所示的第十一时频资源组和第十二时频资源组,当然,该指定时频资源也可以由该数据区域的第一个OFDM符号上的其他4个RE构成的时频资源组,本公开实施例对此不作限定。
在本公开实施例中,以该正交序列组为式(1)所示的WOCC序列为例,对本公开所提供的参考信号映射方法进行详细说明。
对于天线端口1至天线端口4上传输的参考信号的映射方法可以为:将该4个序列对应的4个参考信号分别映射到该第十一时频资源组和该第十二时频资源组;例如,将式(1)中第一行序列对应的参考信号映射到图5A中的第十一时频资源组的方法可以为:将[a,b,c,d]=[1,1,1,1]对应参考信号中每一位的值依次映射到对应的RE上,相应地,式(1)中其他行对应的参考信号也以相同方式进行映射,所映射的8个参考信号用于解调数据信道中的数据信号。
对于天线端口5至天线端口8上传输的参考信号,由于该天线端口5至该天线端口8对应的第十二时频资源组,在频域上与第十一时域时频资源占用子载波的频率不同,所以该第十二时频资源组参考信号与该第十一时频资源组参考信号正交,因此可以使用从上式(1)所示的WOCC序列中选取的第一行和第四行的序列对该第十二时频资源组参考信号进行映射,具体映射方法与上述将该4个序列对应的该4个参考信号映射到该第十一时频资源组的方法同理,此处不作赘述。
通过上述映射方法映射参考信号,能够实现在8个RE组成的时频资源实现8个天线端口的映射,进而能够实现同时传输8个参考信号,需要说明的是,当第一类控制信道占用该PRB的第一个OFDM符号,第二类控制信道占用该PRB的第二个OFDM符号、数据信道占用该PRB的其他OFDM符号时,该4个天线端口对应的参考信号可以用于解调数据信号,也可以用于解调第二类控制信道中的控制信号。
在本公开另一实施例中,该正交序列组中的4个序列对应的4个参考信号的映射方法还可以为:将该正交序列组中的4个序列对应的4个参考信号按第四预设规则分别映射到该第十一时频资源组和该第十二时频资源组,使得该数据区域的第一个OFDM符号中的参考信号实现在频域的功率的均匀分配。其中,将该4个序列对应的4个参考信号按第四预设规则分别映射到该第十一时频资源组和该十第二时频资源组,是指将该4个序列对应的参考信号的每一位的值分别映射到第十一时频资源组和第十二时频资源组的对应RE上。
图5C为本公开实施例提供的一种第四预设规则对应的映射方式的示意图,在图5C中,第十一时频资源组的4个RE中所标注的a、b、c、d,用于指示将序列对应参考信号的相应位置的值映射到对应的RE上,具体映射方法与步骤203中将所选取的两个序列对应的两个参考信号按第四预设规则映射到该第一时频资源对应的映射方法同理,此处不作赘述。
当然,该第四预设规则可以是如图5C所示的映射方式,也可以是其他能够使得使得该数据区域的第一个OFDM符号中的参考信号实现在频域的功率的均匀分配的映射规则,本公开对该第四预设规则对应的具体映射方式不作限定。
通过将该4个序列对应的4个参考信号按该第四预设规则分别映射到该第十一时频资源组和该第十二时频资源组,能够实现第十一时频资源组参考信号和该第十二时频资源组参考信号,在该数据区域的第一个OFDM符号上实现在频域的功率的均匀分配,从而提高信 息传输业务的稳定性,确保信息传输的准确性和成功率。
在本公开另一实施例中,将该4个序列对应的4个参考信号分别映射到该第十一时频资源组和该第十二时频资源组之后,从该第十一时频资源组对应的4个天线端口和该第十二时频资源组对应的4个天线端口分别选取2个天线端口,以供数据信道和控制信道复用。
其中,选取天线端口以供数据信道和控制信道复用,是指使用所选取的信道传输既可以解调数据信号和控制信号的参考信号。例如,可以选取天线端口1、2、5和6供数据信道和控制信道复用,也可以选取其他四个天线端口供数据信道和控制信道复用,本公开对此不作具体限定。
通过从该第十一时频资源组对应的4个天线端口和该第十二时频资源组对应的4个天线端口分别选取2个天线端口,供数据信道和控制信道复用,能够实现控制信号和数据信号的快速解调。
上述步骤501至503为基站将N个参考信号映射到指定时频资源的过程,基站在将该N个参考信号映射到该指定时频资源以后,向用户设备发送该N个参考信号中的至少一个参考信号,以下步骤504至509为向用户设备发送参考信号的过程。
504、基站向用户设备发送第二指示信息。
在本公开实施例中,该第二指示信息和该第一指示信息的定义与步骤204中对应指示信息的定义相同,此处不作赘述。
505、用户设备接收用于指示该第一指示信息所在的时频资源位置的该第二指示信息。
506、基站向用户设备发送第一指示信息。
507、用户设备根据该第一指示信息所在的时频资源位置,在该第一指示信息所在的时频资源位置接收该第一指示信息。
508、基站在该第一预设天线端口向该用户设备发送该至少一个参考信号。
509、用户设备在该第一预设天线端口接收该至少一个参考信号,以根据该至少一个参考信号解调控制信号和/或数据信号。
本公开实施例提供的参考信号映射方法,通过在包括该数据区域在时域上的首部若干个OFDM符号的多个RE构成的指定时频资源上映射参考信号,使得参考信号无需存在于整个时频资源内,只有当有控制信号和/或数据信号发送时才会传输用于解调该控制信号和/或该数据信号的参考信号,能够实现控制信号和数据信号的快速解调,满足5G通信网络的低时延要求,通过对正交序列实现码分复用,提高数据信道并发传输层数及控制信道复用的用户设备数;进一步地,通过将该4个序列对应的4个参考信号按该第四预设规则分别映射到该第十一时频资源组和该第十二时频资源组,能够实现第十一时频资源组参考信号和该第十二时频资源组参考信号,在该数据区域的第一个OFDM符号上实现在频域的功率的均匀分配,从而降低发送机由于功率起伏导致的信号失真,提高信息传输业务的稳定性,确保信息传输的准确性和成功率。
图6是本公开实施例提供的一种参考信号映射装置框图。参照图6,该装置包括处理单元601和发送单元602。
处理单元601,用于基站将N个参考信号映射到指定时频资源,所述N为大于或对于1的正整数;
发送单元602,用于所述基站在所述指定时频资源向用户设备发送所述N个参考信号中的至少一个参考信号,其中,对于任一物理资源块PRB,所述指定时频资源在时域上包括数据区域的第一个正交频分复用OFDM符号,
所述PRB包括第一类控制信道和所述数据区域,所述数据区域包括第二类控制信道和数据信道,所述第一类控制信道在时域上包括所述PRB前m个OFDM符号,所述数据区域在时域上包括所述PRB中除所述第一类控制信道以外的OFDM符号,
所述第二类控制信道在时域上包括所述数据区域的前n个OFDM符号,所述数据信道在时域上包括所述数据区域中除所述第二类控制信道以外的OFDM符号,所述m和所述n均为大于或等于1的正整数。
在本公开提供的第一种可能实现方式中,所述指定时频资源包括所述数据信道。
在本公开提供的第二种可能实现方式中,所述处理单元601用于:
从正交序列组中选取任意N个序列,所述正交序列组包括M个两两正交的序列,所述N为天线端口数,所述M和所述N均为大于或等于1的正整数,且M不小于N;
基于所述N个序列生成所述N个参考信号;
将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,使得所述N个参考信号在所述指定时频资源上两两正交。
在本公开提供的第三种可能实现方式中,所述发送单元602还用于:
向所述用户设备发送第一指示信息,所述第一指示信息包括第一预设天线端口的端口信息,所述第一预设天线端口用于发送所述至少一个参考信号;
相应地,所述发送单元用于在所述第一预设天线端口向所述用户设备发送所述至少一个参考信号。
在本公开提供的第四种可能实现方式中,当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一预设天线端口对应的时频资源在所述PRB所在子帧的数据区域中;或,
当所述第一指示信息在所述PRB的第二类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第二PRB的数据区域中,所述第二PRB为所述至少一个参考信号所在子帧对应的至少一个PRB;或,
当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第三PRB的数据区域中,所述第三PRB包括所述PRB所在子帧内的至少一个PRB和所述至少一个参考信号所在子帧对应的至少一个PRB。
在本公开提供的第五种可能实现方式中,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为2时,所述指定时频资源包括:第一时频资源组和第二时频资源组,每个时频资源组对应2个天线端口;所述处理单元601用于:
获取第一序列组的映射序列,所述第一序列组包括第一序列和第二序列,所述第一序列和所述第二序列为从所述正交序列组中选取的所述2个序列;
将所述映射序列对应的所述2个参考信号分别映射到所述第一时频资源组和所述第二时频资源组;
其中,所述第一时频资源组和所述第二时频资源组分别包括所述数据区域的第一个OFDM符号的2个RE和所述数据区域的第二个OFDM符号的2个RE,所述第一个OFDM符号的2个RE与所述第二个OFDM符号的2个RE占用相同频率的子载波,
所述第一时频资源组参考信号和所述第二时频资源组参考信号用于解调数据信号。
在本公开提供的第六种可能实现方式中,所述指定时频资源还包括第三时频资源组和第四时频资源组,每个时频资源组对应两个天线端口;相应地,所述处理单元601还用于:
将所述第二序列组中的第三序列对应的参考信号按第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组;
将所述第二序列组中的第四序列对应的参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述第三时频资源组对应的第三序列组由所述第三序列和所述第四序列构成;
其中,所述第二序列组由所述正交序列组中除所述第一序列组以外的所述第三序列和所述第四序列构成,
所述第三时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第一个OFDM符号的4个RE,所述第四时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,
所述第三时频资源组参考信号用于解调数据信号和/或控制信号。
在本公开提供的第七种可能实现方式中,所述处理单元601还用于:
当所述n大于或等于2时,根据所述第二序列组在所述第一时频资源组和所述第二时频资源组的映射结果,获取所述第四时频资源组对应的第四序列组,所述第一预设规则使得根据所述映射结果获取到的所述第四序列组与所述第三序列组相同,所述第四时频资源组参考信号用于作为所述第三时频资源组参考信号的辅助参考信号。
在本公开提供的第八种可能实现方式中,所述处理单元601还用于:
将所述映射序列对应的2个参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述数据区域的第一个OFDM符号和所述数据区域的第二个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
在本公开提供的第九种可能实现方式中,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为8时,将所述8个序列对应的8个参考信号分别映射到所述指定时频资源上,所述指定时频资源对应的参考信号用于解调数据信号;所述处理单元601用于:
其中,所述指定时频资源包括所述数据区域的第一个OFDM符号的4个RE和所述数据区域的第二个OFDM符号的4个RE,且所述第一个OFDM符号的4个RE与所述第二个OFDM符号的4个RE占用相同频率的子载波。
在本公开提供的第十种可能实现方式中,所述处理单元601还用于:
将所述8个序列对应的8个参考信号按第二预设规则分别映射到所述指定时频资源上,使得所述指定时频资源在所述数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,所述第一个OFDM符号的4个RE对应的参考信号用于解调控制信号和/或数据信号。
在本公开提供的第十一种可能实现方式中,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为4时,所述指定时频资源包括:第五时频资源组和第六时频 资源组,每个时频资源组对应4个天线端口;所述处理单元601用于:
获取第三序列组的映射序列,所述第三序列组包括从所述正交序列组中选取的所述4个序列;
将所述映射序列对应的4个参考信号分别映射到所述第五时频资源组和所述第六时频资源组;
其中,所述第五时频资源组和所述第六时频资源组分别包括所述数据区域的第一个OFDM符号的2个RE、第二个OFDM符号的2个RE、第i个OFDM符号的2个RE和第j个OFDM符号的2个RE,且所述第一个OFDM符号的2个RE、所述第二个OFDM符号的2个RE、所述第i个OFDM符号的2个RE和所述第j个OFDM符号的2个RE占用相同频率的子载波,所述i为大于2的正整数,所述j为大于i的正整数,
所述第五时频资源组参考信号和所述第六时频资源组参考信号用于解调数据信号。
在本公开提供的第十二种可能实现方式中,所述指定时频资源还包括第七时频资源组,所述第七时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第一个OFDM符号的的4个RE,所述第七时频资源组对应4个天线端口;
相应地,所述处理单元601还用于:
将所述正交序列组中除所述第三序列组中所包括的4个序列以外的4个序列对应的4个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果,使得所述映射结果中的所述第七时频资源组的4组序列两两正交,所述第七时频资源组参考信号用于解调数据信号和/或控制信号。
在本公开提供的第十三种可能实现方式中,所述指定时频资源还包括第八时频资源组,所述第八时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,所述第八时频资源组对应4个天线端口;
相应地,所述处理单元601还用于:
当所述n大于或等于2且小于所述i时,根据所述映射结果,获取所述第八时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
在本公开提供的第十四种可能实现方式中,所述指定时频资源还包括第九时频资源组,所述第九时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第i个OFDM符号的4个RE,所述第九时频资源组对应4个天线端口;
相应地,所述处理单元601还用于:
根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
在本公开提供的第十五种可能实现方式中,所述指定时频资源还包括第十时频资源组,所述第十时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第j个OFDM符号的4个RE,所述第十时频资源组对应4个天线端口;
相应地,所述处理单元601还用于:
根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列、所述第十时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交和/或所述第十时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号和/或所述第十时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
在本公开提供的第十六种可能实现方式中,所述处理单元601还用于:
将所述映射序列对应的4个参考信号按所述第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,使得所述数据区域的第一个OFDM符号、所述数据区域的第二个OFDM符号、所述数据区域的第i个OFDM符号和所述数据区域的第j个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
在本公开提供的第十七种可能实现方式中,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为4时,所述指定时频资源包括第十一时频资源组和第十二时频资源组,每个时频资源组对应4个天线端口;所述处理单元601用于:
将所述4个序列对应的4个参考信号分别映射到所述第十一时频资源组和所述第十二时频资源组;
其中,所述第十一时频资源组和所述第十二时频资源组分别包括所述数据区域的第一个OFDM符号上的任意不重叠的4个RE,所述第十一时频资源组参考信号和所述第十二时频资源参考信号用于解调数据信号。
在本公开提供的第十八种可能实现方式中,所述处理单元601还用于:
将所述正交序列组中的4个序列对应的4个参考信号按第四预设规则分别映射到所述第十一时频资源组和所述第十二时频资源组,使得所述数据区域的第一个OFDM符号中的参考信号实现在频域的功率的均匀分配。
在本公开提供的第十九种可能实现方式中,所述处理单元601还用于:
从所述第十一时频资源组对应的4个天线端口和所述第十二时频资源组对应的4个天线端口分别选取2个天线端口,以供数据信道和控制信道复用。
在本公开提供的第二十种可能实现方式中,所述指示信息还用于指示所述指定时频资源还包括第一扩展时频资源,所述第一扩展时频资源为预设OFDM符号上的多个RE;或,
所述指示信息还用于指示所述指定时频资源还包括第二扩展时频资源,相应地,所述指示信息还包括所述第二扩展时频资源的位置信息。
在本公开提供的第二十一种可能实现方式中,所述发送单元602还用于:
向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述第二类控制信道所在的时频资源位置。
在本公开提供的第二十二种可能实现方式中,所述正交序列组为Walsh-Hadamard序列。
图7是本公开实施例提供的一种参考信号映射装置框图。参照图7,该装置包括接收单元701和处理单元702。
接收单元701,用于接收第一指示信息,所述第一指示信息至少包括第一预设天线端口 的端口信息;
处理单元702,用于检测所述第一指示信息是否还包括时频资源扩展指示信息;
所述接收单元701还用于如果所述第一指示信息不包括所述时频资源扩展指示信息,在第一预设时频资源组接收至少一个参考信号,所述第一预设时频资源组为与所述第一预设天线端口对应的时频资源组;
所述接收单元701还用于如果所述第一指示信息包括所述时频资源扩展指示信息,在第二预设时频资源组接收所述至少一个参考信号,所述第二预设时频资源组包括所述第一预设时频资源组和扩展时频资源组;
所述处理单元702还用于根据所述至少一个参考信号解调控制信号和/或数据信号。
在本公开提供的第一种可能实现方式中,所述时频资源扩展指示信息用于指示所述至少一个参考信号所在的时频资源包括所述扩展时频资源组,所述扩展时频资源组由预设OFDM符号上的多个RE构成。
在本公开提供的第二种可能实现方式中,所述时频资源扩展指示信息包括所述扩展时频资源组的位置信息。
图8是本公开实施例所提供的一种用户设备UE的结构示意图。如图所示,该UE包括发送器801、接收器802以及分别与发送器801、接收器802连接的处理器803。当然,UE还可以包括存储器804、天线等通用部件,本公开实施例在此不再任何限制。
所述处理器被配置为执行上述实施例一至实施例四中用户设备侧所执行的方法。
图9是本公开实施例所提供的一种基站的结构示意图。如图所示,该基站包括发送机901、接收机902以及分别与发送机901、接收机902连接的处理器903。当然,基站还可以包括存储器904、天线、基带处理部件、中射频处理部件、输入输出装置等通用部件,本公开实施例在此不再任何限制。
所述处理器被配置为执行上述实施例一至实施例四中基站侧所执行的方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,该的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上该仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (52)

  1. 一种参考信号映射方法,其特征在于,所述方法包括:
    基站将N个参考信号映射到指定时频资源,所述N为大于或等于1的正整数;
    所述基站在所述指定时频资源向用户设备发送所述N个参考信号中的至少一个参考信号,其中,对于任一物理资源块PRB,所述指定时频资源在时域上包括数据区域的第一个正交频分复用OFDM符号,
    所述PRB包括第一类控制信道和所述数据区域,所述数据区域包括第二类控制信道和数据信道,所述第一类控制信道在时域上包括所述PRB前m个OFDM符号,所述数据区域在时域上包括所述PRB中除所述第一类控制信道以外的OFDM符号,
    所述第二类控制信道在时域上包括所述数据区域的前n个OFDM符号,所述数据信道在时域上包括所述数据区域中除所述第二类控制信道以外的OFDM符号,所述m和所述n均为大于或等于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述指定时频资源在时域上还包括所述数据信道内的至少一个OFDM符号。
  3. 根据权利要求1所述的方法,其特征在于,所述基站将N个参考信号映射到指定时频资源,包括:
    从正交序列组中选取任意N个序列,所述正交序列组包括M个两两正交的序列,所述N为天线端口数,所述M和所述N均为大于或等于1的正整数,且M不小于N;
    基于所述N个序列生成所述N个参考信号;
    将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,使得所述N个参考信号在所述指定时频资源上两两正交。
  4. 根据权利要求1所述的方法,其特征在于,所述向所述用户设备发送所述N个参考信号中的至少一个参考信号之前,所述方法还包括:
    向所述用户设备发送第一指示信息,所述第一指示信息包括第一预设天线端口的端口信息,所述第一预设天线端口用于发送所述至少一个参考信号;
    相应地,所述向所述用户设备发送所述N个参考信号中的至少一个参考信号包括:
    在所述第一预设天线端口向所述用户设备发送所述至少一个参考信号。
  5. 根据权利要求4所述的方法,其特征在于,当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一预设天线端口对应的时频资源在所述PRB所在子帧的数据区域中;或,
    当所述第一指示信息在所述PRB的第二类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第二PRB的数据区域中,所述第二PRB为所述至少一个参考信号所在子帧对应的至少一个PRB;或,
    当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第三PRB的数据区域中,所述第三PRB包括所述PRB所在子帧内的至少一个PRB和所述至少一个参考信号所在子帧对应的至少一个PRB。
  6. 根据权利要求3所述的方法,其特征在于,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为2时,所述指定时频资源包括:第一时频资源组和第二时频资源组,每个时频资源组对应2个天线端口;
    所述将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,包括:
    获取第一序列组的映射序列,所述第一序列组包括第一序列和第二序列,所述第一序列和所述第二序列为从所述正交序列组中选取的所述2个序列;
    将所述映射序列对应的所述2个参考信号分别映射到所述第一时频资源组和所述第二时频资源组;
    其中,所述第一时频资源组和所述第二时频资源组分别包括所述数据区域的第一个OFDM符号的2个资源粒子RE和所述数据区域的第二个OFDM符号的2个RE,所述第一个OFDM符号的2个RE与所述第二个OFDM符号的2个RE占用相同频率的子载波,
    所述第一时频资源组参考信号和所述第二时频资源组参考信号用于解调数据信号。
  7. 根据权利要求6所述的方法,其特征在于,所述指定时频资源还包括第三时频资源组和第四时频资源组,每个时频资源组对应两个天线端口;相应地,所述方法还包括:
    将所述第二序列组中的第三序列对应的参考信号按第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组;
    将所述第二序列组中的第四序列对应的参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述第三时频资源组对应的第三序列组由所述第三序列和所述第四序列构成;
    其中,所述第二序列组由所述正交序列组中除所述第一序列组以外的所述第三序列和所述第四序列构成,
    所述第三时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第一个OFDM符号的4个RE,所述第四时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,
    所述第三时频资源组参考信号用于解调数据信号和/或控制信号。
  8. 根据权利要求7所述的方法,其特征在于,将所述第二序列组中的第四序列对应的参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组之后,所述方法还包括:
    当所述n大于或等于2时,根据所述第二序列组在所述第一时频资源组和所述第二时频资源组的映射结果,获取所述第四时频资源组对应的第四序列组,所述第一预设规则使得根据所述映射结果获取到的所述第四序列组与所述第三序列组相同,所述第四时频资源组参考信号用于作为所述第三时频资源组参考信号的辅助参考信号。
  9. 根据权利要求7所述的方法,其特征在于,获取第一序列组的映射序列之后,所述方法还包括:
    将所述映射序列对应的2个参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述数据区域的第一个OFDM符号和所述数据区域的第二个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
  10. 根据权利要求3所述的方法,其特征在于,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为8时;所述将所述N个序列对应的所述N个参考信号映射到 指定时频资源上,包括:
    将所述8个序列对应的8个参考信号分别映射到所述指定时频资源上,所述指定时频资源对应的参考信号用于解调数据信号;
    其中,所述指定时频资源包括所述数据区域的第一个OFDM符号的4个RE和所述数据区域的第二个OFDM符号的4个RE,所述第一个OFDM符号的4个RE与所述第二个OFDM符号的4个RE占用相同频率的子载波。
  11. 根据权利要求10所述的方法,其特征在于,将所述N个序列对应的所述N个参考信号映射到指定时频资源上,包括:
    将所述8个序列对应的8个参考信号按第二预设规则分别映射到所述指定时频资源上,使得所述指定时频资源在所述数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,所述第一个OFDM符号的4个RE对应的参考信号用于解调控制信号和/或数据信号。
  12. 根据权利要求3所述的方法,其特征在于,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为4时,所述指定时频资源包括:第五时频资源组和第六时频资源组,每个时频资源组对应4个天线端口;
    所述将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,包括:
    获取第三序列组的映射序列,所述第三序列组包括从所述正交序列组中选取的所述4个序列;
    将所述映射序列对应的4个参考信号分别映射到所述第五时频资源组和所述第六时频资源组;
    其中,所述第五时频资源组和所述第六时频资源组分别包括所述数据区域的第一个OFDM符号的2个RE、第二个OFDM符号的2个RE、第i个OFDM符号的2个RE和第j个OFDM符号的2个RE,且所述第一个OFDM符号的2个RE、所述第二个OFDM符号的2个RE、所述第i个OFDM符号的2个RE和所述第j个OFDM符号的2个RE占用相同频率的子载波,所述i为大于2的正整数,所述j为大于i的正整数,
    所述第五时频资源组参考信号和所述第六时频资源组参考信号用于解调数据信号。
  13. 根据权利要求12所述的方法,其特征在于,所述指定时频资源还包括第七时频资源组,所述第七时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第一个OFDM符号的的4个RE,所述第七时频资源组对应4个天线端口;
    相应地,所述方法还包括:
    将所述正交序列组中除所述第三序列组中所包括的4个序列以外的4个序列对应的4个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果,使得所述映射结果中的所述第七时频资源组的4组序列两两正交,所述第七时频资源组参考信号用于解调数据信号和/或控制信号。
  14. 根据权利要求13所述的方法,其特征在于,所述指定时频资源还包括第八时频资源组,所述第八时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,所述第八时频资源组对应4个天线端口;
    相应地,将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果之后,所述方法还包括:
    当所述n大于或等于2且小于所述i时,根据所述映射结果,获取所述第八时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
  15. 根据权利要求13所述的方法,其特征在于,所述指定时频资源还包括第九时频资源组,所述第九时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第i个OFDM符号的4个RE,所述第九时频资源组对应4个天线端口;
    相应地,将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果之后,所述方法还包括:
    根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
  16. 根据权利要求13所述的方法,其特征在于,所述指定时频资源还包括第十时频资源组,所述第十时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第j个OFDM符号的4个RE,所述第十时频资源组对应4个天线端口;
    相应地,将所述正交序列组中除所述第三序列组中所包括的四个序列以外的四个序列对应的四个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果之后,所述方法还包括:
    根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列、所述第十时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交和/或所述第十时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号和/或所述第十时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
  17. 根据权利要求13所述的方法,其特征在于,获取第三序列组的映射序列之后,所述方法还包括:
    将所述映射序列对应的4个参考信号按所述第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,使得所述数据区域的第一个OFDM符号、所述数据区域的第二个OFDM符号、所述数据区域的第i个OFDM符号和所述数据区域的第j个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
  18. 根据权利要求3所述的方法,其特征在于,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为4时,所述指定时频资源包括第十一时频资源组和第十二时频资源组,每个时频资源组对应4个天线端口;
    所述将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,包括:
    将所述4个序列对应的4个参考信号分别映射到所述第十一时频资源组和所述第十二时频资源组;
    其中,所述第十一时频资源组和所述第十二时频资源组分别包括所述数据区域的第一个OFDM符号上的任意不重叠的4个RE,所述第十一时频资源组参考信号和所述第十二时频资源参考信号用于解调数据信号。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    将所述正交序列组中的4个序列对应的4个参考信号按第四预设规则分别映射到所述第十一时频资源组和所述第十二时频资源组,使得所述数据区域的第一个OFDM符号中的参考信号实现在频域的功率的均匀分配。
  20. 根据权利要求18所述的方法,其特征在于,将所述4个序列对应的4个参考信号分别映射到所述第十一时频资源组和所述第十二时频资源组之后,所述方法还包括:
    从所述第十一时频资源组对应的4个天线端口和所述第十二时频资源组对应的4个天线端口分别选取2个天线端口,以供数据信道和控制信道复用。
  21. 根据权利要求4所述的方法,其特征在于,所述第一指示信息还包括时频资源扩展指示信息,所述时频资源扩展指示信息用于指示所述至少一个参考信号所在的时频资源包括所述扩展时频资源组,所述第一扩展时频资源为预设OFDM符号上的多个RE;或,
    所述第一指示信息还用于指示所述指定时频资源还包括第二扩展时频资源,相应地,所述第一指示信息还包括所述第二扩展时频资源的位置信息。
  22. 根据权利要求4所述的方法,其特征在于,所述向所述用户设备发送第一指示信息之前,所述方法还包括:
    向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述第二类控制信道所在的时频资源位置。
  23. 根据权利要求1-22任一项所述的方法,其特征在于,所述正交序列组为Walsh-Hadamard序列。
  24. 一种参考信号映射方法,其特征在于,所述方法包括:
    接收第一指示信息,所述第一指示信息包括第一预设天线端口的端口信息;
    检测所述第一指示信息是否包括时频资源扩展指示信息;
    如果所述第一指示信息不包括所述时频资源扩展指示信息,在第一预设时频资源组接收至少一个参考信号,所述第一预设时频资源组为与所述第一预设天线端口对应的时频资源组;
    如果所述第一指示信息包括所述时频资源扩展指示信息,在第二预设时频资源组接收所述至少一个参考信号,所述第二预设时频资源组包括所述第一预设时频资源组和扩展时频资源组;
    根据所述至少一个参考信号解调控制信号和/或数据信号。
  25. 根据权利要求24所述的方法,其特征在于,所述时频资源扩展指示信息用于指示所述至少一个参考信号所在的时频资源包括所述扩展时频资源组,所述扩展时频资源组由预设OFDM符号上的多个RE构成。
  26. 根据权利要求24所述的方法,其特征在于,所述时频资源扩展指示信息包括所述扩展时频资源组的位置信息。
  27. 一种参考信号映射装置,其特征在于,所述装置包括:
    处理单元,用于基站将N个参考信号映射到指定时频资源,所述N为大于或对于1的正整数;
    发送单元,用于所述基站在所述指定时频资源向用户设备发送所述N个参考信号中的至少一个参考信号,其中,对于任一物理资源块PRB,所述指定时频资源在时域上包括数据区域的第一个正交频分复用OFDM符号,
    所述PRB包括第一类控制信道和所述数据区域,所述数据区域包括第二类控制信道和数据信道,所述第一类控制信道在时域上包括所述PRB前m个OFDM符号,所述数据区域在时域上包括所述PRB中除所述第一类控制信道以外的OFDM符号,
    所述第二类控制信道在时域上包括所述数据区域的前n个OFDM符号,所述数据信道在时域上包括所述数据区域中除所述第二类控制信道以外的OFDM符号,所述m和所述n均为大于或等于1的正整数。
  28. 根据权利要求27所述的装置,其特征在于,所述指定时频资源包括所述数据信道。
  29. 根据权利要求27所述的装置,其特征在于,所述处理单元用于:
    从正交序列组中选取任意N个序列,所述正交序列组包括M个两两正交的序列,所述N为天线端口数,所述M和所述N均为大于或等于1的正整数,且M不小于N;
    基于所述N个序列生成所述N个参考信号;
    将所述N个序列对应的所述N个参考信号映射到所述指定时频资源上,使得所述N个参考信号在所述指定时频资源上两两正交。
  30. 根据权利要求27所述的装置,其特征在于,所述发送单元还用于:
    向所述用户设备发送第一指示信息,所述第一指示信息包括第一预设天线端口的端口信息,所述第一预设天线端口用于发送所述至少一个参考信号;
    相应地,所述发送单元用于在所述第一预设天线端口向所述用户设备发送所述至少一个参考信号。
  31. 根据权利要求30所述的装置,其特征在于,当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一预设天线端口对应的时频资源在所述PRB所在子帧的数据区域中;或,
    当所述第一指示信息在所述PRB的第二类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第二PRB的数据区域中,所述第二PRB为所述至少一个参考信号所在子帧对应的至少一个PRB;或,
    当所述第一指示信息在所述PRB所在子帧的第一类控制信道传输时,所述第一指示信息还包括所述至少一个参考信号所在子帧的子帧位置,相应地,所述第一预设天线端口对应的时频资源在第三PRB的数据区域中,所述第三PRB包括所述PRB所在子帧内的至少一个PRB和所述至少一个参考信号所在子帧对应的至少一个PRB。
  32. 根据权利要求29所述的装置,其特征在于,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为2时,所述指定时频资源包括:第一时频资源组和第二时频资源组,每个时频资源组对应2个天线端口;所述处理单元用于:
    获取第一序列组的映射序列,所述第一序列组包括第一序列和第二序列,所述第一序列和所述第二序列为从所述正交序列组中选取的所述2个序列;
    将所述映射序列对应的所述2个参考信号分别映射到所述第一时频资源组和所述第二时频资源组;
    其中,所述第一时频资源组和所述第二时频资源组分别包括所述数据区域的第一个OFDM符号的2个RE和所述数据区域的第二个OFDM符号的2个RE,所述第一个OFDM符号的2个RE与所述第二个OFDM符号的2个RE占用相同频率的子载波,
    所述第一时频资源组参考信号和所述第二时频资源组参考信号用于解调数据信号。
  33. 根据权利要求32所述的装置,其特征在于,所述指定时频资源还包括第三时频资源组和第四时频资源组,每个时频资源组对应两个天线端口;相应地,所述处理单元还用于:
    将所述第二序列组中的第三序列对应的参考信号按第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组;
    将所述第二序列组中的第四序列对应的参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述第三时频资源组对应的第三序列组由所述第三序列和所述第四序列构成;
    其中,所述第二序列组由所述正交序列组中除所述第一序列组以外的所述第三序列和所述第四序列构成,
    所述第三时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第一个OFDM符号的4个RE,所述第四时频资源组包括所述第一时频资源组和所述第二时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,
    所述第三时频资源组参考信号用于解调数据信号和/或控制信号。
  34. 根据权利要求33所述的装置,其特征在于,所述处理单元还用于:
    当所述n大于或等于2时,根据所述第二序列组在所述第一时频资源组和所述第二时频资源组的映射结果,获取所述第四时频资源组对应的第四序列组,所述第一预设规则使得根据所述映射结果获取到的所述第四序列组与所述第三序列组相同,所述第四时频资源组参考信号用于作为所述第三时频资源组参考信号的辅助参考信号。
  35. 根据权利要求33所述的装置,其特征在于,所述处理单元还用于:
    将所述映射序列对应的2个参考信号按所述第一预设规则分别映射到所述第一时频资源组和所述第二时频资源组,使得所述数据区域的第一个OFDM符号和所述数据区域的第二个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
  36. 根据权利要求29所述的装置,其特征在于,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为8时,将所述8个序列对应的8个参考信号分别映射到所述指定时频资源上,所述指定时频资源对应的参考信号用于解调数据信号;所述处理单元用于:
    其中,所述指定时频资源包括所述数据区域的第一个OFDM符号的4个RE和所述数据区域的第二个OFDM符号的4个RE,且所述第一个OFDM符号的4个RE与所述第二个OFDM符号的4个RE占用相同频率的子载波。
  37. 根据权利要求36所述的装置,其特征在于,所述处理单元还用于:
    将所述8个序列对应的8个参考信号按第二预设规则分别映射到所述指定时频资源上,使得所述指定时频资源在所述数据区域的第一个OFDM符号的4个RE存在4个两两正交的序列,所述第一个OFDM符号的4个RE对应的参考信号用于解调控制信号和/或数据信号。
  38. 根据权利要求29所述的装置,其特征在于,当每个天线端口的参考信号对应的序列长度为8,所述M为8,所述N为4时,所述指定时频资源包括:第五时频资源组和第六时频资源组,每个时频资源组对应4个天线端口;所述处理单元用于:
    获取第三序列组的映射序列,所述第三序列组包括从所述正交序列组中选取的所述4个序列;
    将所述映射序列对应的4个参考信号分别映射到所述第五时频资源组和所述第六时频资源组;
    其中,所述第五时频资源组和所述第六时频资源组分别包括所述数据区域的第一个OFDM符号的2个RE、第二个OFDM符号的2个RE、第i个OFDM符号的2个RE和第j个OFDM符号的2个RE,且所述第一个OFDM符号的2个RE、所述第二个OFDM符号的2个RE、所述第i个OFDM符号的2个RE和所述第j个OFDM符号的2个RE占用相同频率的子载波,所述i为大于2的正整数,所述j为大于i的正整数,
    所述第五时频资源组参考信号和所述第六时频资源组参考信号用于解调数据信号。
  39. 根据权利要求38所述的装置,其特征在于,所述指定时频资源还包括第七时频资源组,所述第七时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第一个OFDM符号的的4个RE,所述第七时频资源组对应4个天线端口;
    相应地,所述处理单元还用于:
    将所述正交序列组中除所述第三序列组中所包括的4个序列以外的4个序列对应的4个参考信号,按第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组得到映射结果,使得所述映射结果中的所述第七时频资源组的4组序列两两正交,所述第七时频资源组参考信号用于解调数据信号和/或控制信号。
  40. 根据权利要求39所述的装置,其特征在于,所述指定时频资源还包括第八时频资源组,所述第八时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第二个OFDM符号的4个RE,所述第八时频资源组对应4个天线端口;
    相应地,所述处理单元还用于:
    当所述n大于或等于2且小于所述i时,根据所述映射结果,获取所述第八时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
  41. 根据权利要求39所述的装置,其特征在于,所述指定时频资源还包括第九时频资源组,所述第九时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第i个OFDM符号的4个RE,所述第九时频资源组对应4个天线端口;
    相应地,所述处理单元还用于:
    根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
  42. 根据权利要求39所述的装置,其特征在于,所述指定时频资源还包括第十时频资源组,所述第十时频资源组包括所述第五时频资源组和所述第六时频资源组中位于所述数据区域的第j个OFDM符号的4个RE,所述第十时频资源组对应4个天线端口;
    相应地,所述处理单元还用于:
    根据所述映射结果,获取所述第八时频资源组对应的4个序列、所述第九时频资源组对应的4个序列、所述第十时频资源组对应的4个序列,所述第三预设规则使得根据所述映射结果获取到的所述第八时频资源组对应的4个序列两两正交和/或所述第九时频资源组对应的4个序列两两正交和/或所述第十时频资源组对应的4个序列两两正交,所述第八时频资源组参考信号和/或所述第九时频资源组参考信号和/或所述第十时频资源组参考信号用于作为所述第七时频资源组参考信号的辅助参考信号。
  43. 根据权利要求39所述的装置,其特征在于,所述处理单元还用于:
    将所述映射序列对应的4个参考信号按所述第三预设规则分别映射到所述第五时频资源组和所述第六时频资源组,使得所述数据区域的第一个OFDM符号、所述数据区域的第二个OFDM符号、所述数据区域的第i个OFDM符号和所述数据区域的第j个OFDM符号中的参考信号实现在时域和频域的功率的均匀分配。
  44. 根据权利要求29所述的装置,其特征在于,当每个天线端口的参考信号对应的序列长度为4,所述M为4,所述N为4时,所述指定时频资源包括第十一时频资源组和第十二时频资源组,每个时频资源组对应4个天线端口;所述处理单元用于:
    将所述4个序列对应的4个参考信号分别映射到所述第十一时频资源组和所述第十二时频资源组;
    其中,所述第十一时频资源组和所述第十二时频资源组分别包括所述数据区域的第一个OFDM符号上的任意不重叠的4个RE,所述第十一时频资源组参考信号和所述第十二时频资源参考信号用于解调数据信号。
  45. 根据权利要求44所述的装置,其特征在于,所述处理单元还用于:
    将所述正交序列组中的4个序列对应的4个参考信号按第四预设规则分别映射到所述第十一时频资源组和所述第十二时频资源组,使得所述数据区域的第一个OFDM符号中的参考信号实现在频域的功率的均匀分配。
  46. 根据权利要求44所述的装置,其特征在于,所述处理单元还用于:
    从所述第十一时频资源组对应的4个天线端口和所述第十二时频资源组对应的4个天线端口分别选取2个天线端口,以供数据信道和控制信道复用。
  47. 根据权利要求29所述的装置,其特征在于,所述指示信息还用于指示所述指定时频资源还包括第一扩展时频资源,所述第一扩展时频资源为预设OFDM符号上的多个RE;或,
    所述指示信息还用于指示所述指定时频资源还包括第二扩展时频资源,相应地,所述指示信息还包括所述第二扩展时频资源的位置信息。
  48. 根据权利要求29所述的装置,其特征在于,所述发送单元还用于:
    向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述第二类控制信道所在的时频资源位置。
  49. 根据权利要求27-48任一项所述的装置,其特征在于,所述正交序列组为Walsh-Hadamard序列。
  50. 一种参考信号映射装置,其特征在于,所述装置包括:
    接收单元,用于接收第一指示信息,所述第一指示信息至少包括第一预设天线端口的端口信息;
    处理单元,用于检测所述第一指示信息是否还包括时频资源扩展指示信息;
    所述接收单元还用于如果所述第一指示信息不包括所述时频资源扩展指示信息,在第一预设时频资源组接收至少一个参考信号,所述第一预设时频资源组为与所述第一预设天线端口对应的时频资源组;
    所述接收单元还用于如果所述第一指示信息包括所述时频资源扩展指示信息,在第二预设时频资源组接收所述至少一个参考信号,所述第二预设时频资源组包括所述第一预设时频资源组和扩展时频资源组;
    所述处理单元还用于根据所述至少一个参考信号解调控制信号和/或数据信号。
  51. 根据权利要求50所述的装置,其特征在于,所述时频资源扩展指示信息用于指示所述至少一个参考信号所在的时频资源包括所述扩展时频资源组,所述扩展时频资源组由预设OFDM符号上的多个RE构成。
  52. 根据权利要求50所述的装置,其特征在于,所述时频资源扩展指示信息包括所述扩展时频资源组的位置信息。
PCT/CN2017/096992 2016-08-12 2017-08-11 参考信号映射方法及装置 WO2018028654A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17838784.1A EP3493453B1 (en) 2016-08-12 2017-08-11 Reference signal mapping method and apparatus
US16/265,971 US10903954B2 (en) 2016-08-12 2019-02-01 Reference signal mapping method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610670143.2 2016-08-12
CN201610670143.2A CN107733617B (zh) 2016-08-12 2016-08-12 参考信号映射方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/265,971 Continuation US10903954B2 (en) 2016-08-12 2019-02-01 Reference signal mapping method and apparatus

Publications (1)

Publication Number Publication Date
WO2018028654A1 true WO2018028654A1 (zh) 2018-02-15

Family

ID=61161597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096992 WO2018028654A1 (zh) 2016-08-12 2017-08-11 参考信号映射方法及装置

Country Status (4)

Country Link
US (1) US10903954B2 (zh)
EP (1) EP3493453B1 (zh)
CN (1) CN107733617B (zh)
WO (1) WO2018028654A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051349B2 (en) * 2018-05-10 2021-06-29 Qualcomm Incorporated Concurrent communications in a network
WO2020056777A1 (zh) * 2018-09-21 2020-03-26 Oppo广东移动通信有限公司 无线通信的方法、发送节点和接收节点
CN112751796B (zh) * 2019-10-31 2022-06-14 华为技术有限公司 一种参考信号序列映射、解映射的方法及装置
CA3194470A1 (en) * 2020-09-30 2022-04-07 Fengwei LIU Diversity communication method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594335A (zh) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 参考信号和物理资源块的映射方法
CN101662443A (zh) * 2009-09-18 2010-03-03 中兴通讯股份有限公司 一种参考信号的序列产生和映射方法及发送装置
US20100322179A1 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Reference Signal Design For Wireless Communication System
CN103109479A (zh) * 2010-09-16 2013-05-15 Lg电子株式会社 用于在支持多个服务小区的无线通信系统中发射/接收基本资源网格类型信息的装置及其方法
CN103220029A (zh) * 2012-01-21 2013-07-24 华为技术有限公司 数据的传输方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635883B1 (ko) * 2009-02-03 2016-07-20 엘지전자 주식회사 하향링크 참조 신호 송수신 기법
CN101510868A (zh) * 2009-03-17 2009-08-19 中兴通讯股份有限公司 参考信号和物理资源块的映射方法
CN102396165B (zh) 2009-04-15 2014-12-17 Lg电子株式会社 发射参考信号的方法和设备
CN101990308B (zh) * 2009-07-31 2015-05-20 中兴通讯股份有限公司 中继链路的物理下行控制信道通知的方法及基站
CN102076076B (zh) * 2009-11-20 2015-11-25 夏普株式会社 一种解调参考信号的资源分配通知方法
EP2583514B1 (en) * 2010-06-16 2019-03-20 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for transmitting and decoding reference signals
US9344230B2 (en) * 2011-05-04 2016-05-17 Lg Electronics Inc. Method for searching for enhanced PDCCH area
KR102040312B1 (ko) * 2011-06-07 2019-11-04 한국전자통신연구원 이동 통신 시스템의 제어 정보 전송 및 수신 방법
KR101959398B1 (ko) * 2012-01-25 2019-03-18 삼성전자주식회사 직교 주파수 분할 다중 통신 시스템에서 제어 채널 신호 전송 방법 및 장치
WO2016163943A1 (en) * 2015-04-10 2016-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced positioning reference signal patterns for positioning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594335A (zh) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 参考信号和物理资源块的映射方法
US20100322179A1 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Reference Signal Design For Wireless Communication System
CN101662443A (zh) * 2009-09-18 2010-03-03 中兴通讯股份有限公司 一种参考信号的序列产生和映射方法及发送装置
CN103109479A (zh) * 2010-09-16 2013-05-15 Lg电子株式会社 用于在支持多个服务小区的无线通信系统中发射/接收基本资源网格类型信息的装置及其方法
CN103220029A (zh) * 2012-01-21 2013-07-24 华为技术有限公司 数据的传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3493453A4 *

Also Published As

Publication number Publication date
EP3493453B1 (en) 2023-05-31
EP3493453A1 (en) 2019-06-05
EP3493453A4 (en) 2019-11-20
US10903954B2 (en) 2021-01-26
CN107733617A (zh) 2018-02-23
CN107733617B (zh) 2020-11-06
US20190173642A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP7136423B2 (ja) リソース指示方法、端末デバイス、及びネットワークデバイス
CN102395206B (zh) 下行控制信息的传输方法和设备
RU2538773C2 (ru) Способ и устройство для формирования специального опорного сигнала
JP5598544B2 (ja) ダウンリンクmimo用ダウンリンク制御シグナリング
WO2019029240A1 (zh) 一种信号加扰、解扰方法及装置
CN106411486B (zh) 一种上行解调导频的发送接收方法及装置
WO2017133306A1 (zh) 传输导频信号的方法和装置
WO2017050065A1 (zh) 一种配置信道状态测量导频的方法及装置
CN109392122B (zh) 数据传输方法、终端和基站
WO2019137058A1 (zh) 资源指示方法、终端设备和网络设备
CN102638892B (zh) 一种对e-pdcch进行资源映射的方法及装置
WO2018171752A1 (zh) 一种资源指示方法及网络设备、终端设备
EP2660994B1 (en) Method and device for allocating reference resource
JP2022122973A (ja) システムメッセージの伝送方法及び装置
US11349579B2 (en) Antenna port determining method and terminal side device
CN110392433A (zh) 一种数据传输方法及装置
WO2018028654A1 (zh) 参考信号映射方法及装置
CN103378885B (zh) 下行数据的发送、接收方法和装置
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
WO2018177022A1 (zh) 一种预编码颗粒度的确定方法和装置
WO2018137460A1 (zh) 一种参考信号配置方法、基站和终端
WO2017193714A1 (zh) 一种信道传输方法及装置
JP6893241B2 (ja) 信号の伝送方法、ネットワーク装置及び端末装置
CN111406431A (zh) 指示连续的资源分配
JP2019500797A (ja) データを伝送するための方法およびデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838784

Country of ref document: EP

Effective date: 20190227