WO2018028588A1 - 指示和确定对话前监听参数的方法、基站和用户设备 - Google Patents

指示和确定对话前监听参数的方法、基站和用户设备 Download PDF

Info

Publication number
WO2018028588A1
WO2018028588A1 PCT/CN2017/096544 CN2017096544W WO2018028588A1 WO 2018028588 A1 WO2018028588 A1 WO 2018028588A1 CN 2017096544 W CN2017096544 W CN 2017096544W WO 2018028588 A1 WO2018028588 A1 WO 2018028588A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
type
parameter
subset
symbol
Prior art date
Application number
PCT/CN2017/096544
Other languages
English (en)
French (fr)
Inventor
姜宇
刘柳
王静
蒋惠玲
永田聪
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to US16/324,487 priority Critical patent/US10966250B2/en
Priority to CN201780044235.2A priority patent/CN109479243B/zh
Priority to EP17838718.9A priority patent/EP3499976A4/en
Priority to JP2019507127A priority patent/JP6938619B2/ja
Publication of WO2018028588A1 publication Critical patent/WO2018028588A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of mobile communications, and more particularly to a method for indicating a parameter value of a pre-session listening parameter in a base station, a method for indicating a parameter value of a pre-session listening parameter in a user equipment, and a base station and a user device.
  • LBT Listen-Before-Talk
  • the base station includes the parameter value of the LBT parameter in the downlink control information, and sends the parameter value to the user equipment.
  • the user equipment receives and detects the downlink control information, so that an LBT process is performed according to a parameter value of an LBT parameter included in the downlink control information.
  • the LBT parameters included in the downlink control information include, for example, an LBT type, a Physical Uplink Shared Channel (PUSCH) start position, an LBT priority, a contention window size (CWS), and a multi-subframe scheduling situation.
  • LBT type a Physical Uplink Shared Channel (PUSCH) start position
  • LBT priority a Physical Uplink Shared Channel (PUSCH) start position
  • LBT priority a contention window size (CWS)
  • CWS contention window size
  • multi-subframe scheduling situation Various parameters of the frame scheduling gap and the like.
  • a method for indicating a parameter value of a LBT parameter before a session in a base station comprising: determining a parameter value of an LBT parameter, the LBT parameter including an LBT type, an LBT priority, And a physical uplink shared channel PUSCH start location; an index for jointly indicating the LBT parameter is determined based on a subset of the ensemble formed by a combination of possible parameter values of the respective LBT parameters; generating the index Downlink control information; and transmitting the downlink control information to the user equipment.
  • the subset is formed by excluding conflicting combinations between the LBT type, the LBT priority, and possible parameter values of the PUSCH start position from the ensemble.
  • the possible parameter values of the LBT type include the second type LBT and the fourth type LBT; and are formed by not considering the LBT priority for the case where the LBT type is the second type LBT The subset.
  • the possible parameter values of the LBT type include a second type LBT and a fourth type LBT;
  • the possible parameter values of the PUSCH start position include a 0th symbol, a 1st symbol, and a 0th symbol
  • the timing of the predetermined value and the timing of the predetermined value and the timing advance value after the 0th symbol; and by including from the ensemble that the LBT type is the fourth type LBT, the PUSCH start position is a combination of timings of the predetermined value after the 0 symbol, and a combination of timings including the predetermined value and the timing advance value after the LBT type is the fourth type LBT and the PUSCH start position is the 0th symbol Forming the subset.
  • the LBT parameter further includes a contention window size CWS; the possible parameter values of the LBT type include a second type LBT and a fourth type LBT; and by the second type LBT for the LBT type The case is formed without considering the LBT priority and the CWS.
  • the subset is formed based on a usage probability of a combination between the LBT type, the LBT priority, and possible parameter values of the PUSCH start position.
  • the LBT parameter further includes a multi-subframe scheduling gap, the multi-subframe scheduling gap includes an LBT type of each gap; and based on the LBT type, the LBT priority, the The subset is formed by the probability of use of the combination between the PUSCH starting position and the possible parameter values of the LBT type for each gap.
  • the possible parameter values of the LBT type for each gap include the second type LBT and the fourth type LBT; and the subset is formed by using the second type LBT for each gap.
  • the multi-subframe scheduling gap further includes a PUSCH start position of the remaining subframes of the plurality of subframes except the first subframe, and possible parameters of the PUSCH start position of the remaining subframes.
  • the value includes a 0th symbol, a 1st symbol, a timing at which a predetermined value is passed after the 0th symbol, and a timing at which the predetermined value and the timing advance value are passed after the 0th symbol; and by using the 0th symbol for the remaining subframes
  • the subset is formed by timing of a predetermined value.
  • the possible parameter values of the LBT type include the second type LBT and the fourth type LBT; and for the case where the LBT type is the fourth type LBT, The subset is formed without using a gap between adjacent subframes of a plurality of subframes.
  • the possible parameter values of the LBT priority include 1, 2, 3, and 4; and the subset is formed by excluding a combination including the LBT priority of 3 from the ensemble .
  • the possible parameter values of the LBT type include a second type LBT and a fourth type LBT;
  • the possible parameter values of the PUSCH start position include a 0th symbol, a 1st symbol, and a 0th symbol
  • the timing of the predetermined value and the timing of the predetermined value and the timing advance value after the 0th symbol; and by including from the ensemble that the LBT type is the second type LBT, the PUSCH start position is A combination of 1 symbols forms the subset.
  • a base station for indicating a parameter value of a LBT parameter before a session, the base station comprising: a parameter value determining unit configured to determine a parameter value of an LBT parameter, the LBT parameter The LBT type, the LBT priority, and the physical uplink shared channel PUSCH start position are included; the index determining unit is configured to determine the pair for the pair based on the subset of the ensemble formed by the combination of the possible parameter values of the respective LBT parameters The LBT parameter performs an index of the joint indication; the generating unit is configured to generate downlink control information including the index; and the transmitting unit is configured to send the downlink control information to the user equipment.
  • the subset is formed by excluding conflicting combinations between the LBT type, the LBT priority, and the possible parameter values of the PUSCH start position from the ensemble.
  • the subset is formed based on a usage probability of a combination between the LBT type, the LBT priority, and possible parameter values of the PUSCH start position.
  • the LBT parameter further includes a multi-subframe scheduling gap, the multi-subframe scheduling gap includes an LBT type of each gap; and based on the LBT type, the LBT priority, the The subset is formed by the probability of use of the combination between the PUSCH starting position and the possible parameter values of the LBT type for each gap.
  • a method for determining a parameter value of a pre-session listening LBT parameter in a user equipment comprising: receiving downlink control information, the downlink control information being included for The LBT parameter performs an index of a joint indication, the LBT parameter including an LBT type, an LBT priority, and a physical uplink shared channel PUSCH start position; and a ensemble based on a combination of possible parameter values of the respective LBT parameters And determining a parameter value of the LBT parameter according to the index.
  • a user equipment for determining a parameter value of a pre-session listening LBT parameter, the user equipment comprising: a receiving unit configured to receive downlink control information, the downlink The path control information includes an index for jointly indicating the LBT parameter, the LBT parameter including an LBT type, an LBT priority, and a physical uplink shared channel PUSCH start position; and a determining unit configured to be based on each LBT A subset of the ensemble formed by the combination of possible parameter values of the parameters, the parameter values of the LBT parameters are determined according to the index.
  • the base station, and the user equipment indicating and determining the parameter values of the pre-session listening parameters can be effectively reduced.
  • FIG. 1 is a schematic diagram of a system for applying a method of indicating and determining parameter values of pre-session listening parameters in accordance with an embodiment of the present disclosure
  • FIG. 2 is a flow chart showing the main steps of a method of indicating a parameter value of a pre-session listening parameter, in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing a first embodiment of a lossless manner of a method of indicating a parameter value of a pre-session listening parameter, according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a second embodiment of a lossless manner of a method of indicating a parameter value of a pre-session listening parameter, according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing a first embodiment of a lossy manner of a method of indicating a parameter value of a pre-session listening parameter, in accordance with an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing a second embodiment of a lossy manner of a method of indicating a parameter value of a pre-session listening parameter, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing a third embodiment of a lossy manner of a method of indicating a parameter value of a pre-session listening parameter, in accordance with an embodiment of the present disclosure
  • FIG. 8 is a diagram illustrating a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure. Schematic diagram of a fourth embodiment of a lossy manner
  • FIG. 9 is a schematic diagram showing a first example of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram showing a second example of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram showing a third example of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram showing a fourth example of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram showing a fifth example of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram showing a sixth example of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • 15 is a schematic diagram showing a seventh example of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • 16 is a schematic diagram showing an eighth example of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • 17 is a schematic diagram showing a ninth example of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • FIG. 18 is a schematic diagram showing a summary and comparison of first to ninth examples of a subset formed by a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure
  • FIG. 19 is a block diagram schematically showing a main configuration of a base station according to an embodiment of the present disclosure.
  • 20 is a flowchart showing main steps of a method of determining a parameter value of a pre-session listening parameter, according to an embodiment of the present disclosure
  • 21 is a block diagram schematically showing a main configuration of a user equipment according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a system to which a method of indicating and determining parameter values of pre-session listening parameters is applied in accordance with an embodiment of the present disclosure.
  • the system includes a base station 10 and a user equipment 20, which can be applied to scenarios of unlicensed spectrum transmission.
  • base station 10 transmits downlink control information to user equipment 20.
  • the user equipment 20 receives and detects the downlink control information to perform an LBT procedure based on information related to the LBT parameters in the downlink control information.
  • the LBT parameters include various parameters such as LBT type, PUSCH start position, LBT priority, contention window size (CWS), multi-subframe scheduling gap in the case of multi-subframe scheduling, and the like. If separate indications are used for the various parameters, a significant signaling overhead is required.
  • the inventors have devised a method, base station and user equipment for determining and indicating parameter values of pre-session listening parameters in accordance with an embodiment of the present disclosure.
  • the parameter value of the LBT parameter is determined.
  • the LBT parameter includes at least an LBT type, an LBT priority, and a PUSCH start position.
  • the possible parameter values of the LBT type include a second type LBT and a fourth type LBT.
  • the second type of LBT refers, for example, to an LBT type based on 25 ⁇ s listening.
  • the fourth type LBT refers, for example, to an LBT type based on random backoff of a variable size contention window. Thus, if the parameter value of the LBT type is indicated separately, at least 1 separate bit is required.
  • the LBT priority can be used for multiplexing of transport services. Possible parameter values for LBT priority include 1, 2, 3, and 4. Thus, if the parameter value of the LBT priority is indicated separately, at least 2 separate bits are required.
  • the PUSCH start position is used to indicate a timing when the UE starts PUSCH transmission after a successful LBT. More specifically, the PUSCH start location may indicate a starting PUSCH DFT-S-OFDM symbol. Possible parameter values of the PUSCH starting position include the 0th symbol, 0th The timing after the sign has passed the predetermined value, the timing after the 0th symbol, the timing of the predetermined value and the Timing Advance (TA) value, and the first symbol are passed.
  • the predetermined value is, for example, 25 ⁇ s or the like. Thus, if the parameter value of the PUSCH start position is indicated separately, at least 2 separate bits are required.
  • step S220 an index for joint indication of the LBT parameters is determined based on a subset of the ensemble formed by a combination of possible parameter values of the respective LBT parameters.
  • step S230 downlink control information including the index is generated.
  • step S240 the downlink control information is transmitted to the user equipment.
  • the LBT parameters as described above are not separately indicated, but a predetermined sub-set is selected in advance from the corpus formed by the combination of the possible parameter values of the respective LBT parameters.
  • the set, the corresponding index is obtained from the subset according to the parameter values of the respective LBT parameters, and the index is indicated.
  • the sub-form is formed by excluding conflicting combinations between the LBT type, the LBT priority, and possible parameter values of the PUSCH start position from the ensemble set.
  • collision of conflicts means that the application scenarios of the parameter values of the respective LBT parameters in the combination are contradictory. In other words, the combination is unreasonable.
  • the subset formed by excluding the conflicting combinations from the ensemble has no effect on the actual performance indicated by the LBT parameters. Therefore, this method is also called lossless mode.
  • the subset is formed based on a usage probability of a combination between possible parameter values of respective LBT parameters.
  • usage probability means the possibility that the combination exists in the actual application scenario.
  • the combinations that are common in the actual application scenario have a high probability of use, while the combinations that are not common in the actual application scenario have a low probability of use.
  • a subset formed by excluding uncommon combinations from the corpus can satisfy the requirements of common LBT parameter indications, but cannot meet the requirements in the case of unusual LBT parameter indications. That is, the subset has a slight impact on the flexibility indicated by the LBT parameters. This is a compromise between a reduction in signaling overhead and a decrease in indicated flexibility. Therefore, this method is also called lossy mode.
  • the subset is formed by excluding conflicting combinations between the LBT type, the LBT priority, and the possible parameter values of the PUSCH start position from the ensemble.
  • the relationship between the LBT priority and the LBT type is considered. specifically, Since the LBT priority is required only in the case of the fourth type LBT, it is not necessary to include a combination of any of the values of the second type LBT and the LBT priority. Thus, the subset is formed by not considering the LBT priority for the case where the LBT type is the second type LBT.
  • the relationship between the LBT type and the PUSCH start position is considered.
  • not all PUSCH starting positions are applicable to various LBT types.
  • the timing at which the predetermined value is passed after the 0th symbol and the timing at which the predetermined value and the timing advance value pass after the 0th symbol are not applicable to the fourth type LBT. Therefore, a combination of the timing of including the fourth type of LBT and the timing after the 0th symbol, or the timing of passing the predetermined value and the timing advance value after the fourth type LBT and the 0th symbol is unnecessary.
  • the PUSCH start position is the 0th symbol, and the predetermined value is passed, and the inclusion of the LBT type is excluded
  • the fourth type LBT, the PUSCH start position is a combination of the predetermined value and the timing advance value after the 0th symbol, forming the subset.
  • the LBT parameters further include a CWS as described above.
  • the CWS is used to indicate that the UE generates a window size of a random backoff counter, and its possible parameter values include ⁇ 3, 7, 15, 31, 63, 127, 255, 511, 1023 ⁇ . That is, if the CWS is indicated separately, at least 4 separate bits are required.
  • the relationship between the CWS and the LBT type is considered.
  • CWS is only applicable to the fourth type of LBT. Therefore, it is not necessary to include a combination of the second type of LBT and CWS.
  • the subset is formed by not considering the CWS for the case where the LBT type is the second type LBT. Further, since the parameter value of the CWS is associated with the parameter value of the LBT priority in the current agreement, the LBT priority and the location are not considered by the case where the LBT type is the second type LBT.
  • the subset is formed by describing the CWS.
  • subsets described above may be pre-stored in the user equipment and the base station in various forms such as tables. For example, it can be placed in the user equipment and the base station by means such as hard coding. Alternatively, the subset may also be communicated between the user equipment and the base station in a manner such as higher layer signaling during operation. Thus, there is no ambiguity in understanding between the user equipment and the base station.
  • lossless indication manner described above is merely an example. Those skilled in the art can design the subset based on other relationships between the various LBT parameters based on the teachings of the present disclosure.
  • FIG. 3 shows a schematic diagram of a first application example of a method of indicating a parameter value of an LBT parameter according to an embodiment of the present disclosure.
  • the first embodiment and the second embodiment as described above are considered in combination.
  • the LBT priority is not considered for the second type LBT, and only the case where the PUSCH start position is the 0th symbol and the 1st symbol is considered for the fourth type LBT, only a maximum of 16 cases need to be indicated ( The index 12-15 is reserved). Therefore, the required bit is 4 bits.
  • the signaling overhead is reduced by 1 bit compared to the case where the LBT type (1 bit), the LBT priority (2 bits), and the PUSCH start position (2 bits) are independently indicated.
  • FIG. 4 shows a schematic diagram of a second application example of a method of indicating a parameter value of an LBT parameter according to an embodiment of the present disclosure.
  • the first embodiment, the second embodiment, and the third embodiment as described above are considered in combination.
  • the LBT priority is not considered for the second type LBT
  • only the case where the PUSCH start position is the 0th symbol and the 1st symbol is considered for the fourth type LBT
  • the second is for the LBT type.
  • the case of the type LBT does not consider the LBT priority and the associated CWS, and only needs to indicate a maximum of 64 cases (where the indexes 40-63 are reserved). Therefore, the required bit is 6 bits.
  • the signaling overhead is reduced by 3 bits as compared with the case where the LBT type (1 bit), the LBT priority (2 bits), the CWS (4 bits), and the PUSCH start position (2 bits) are independently indicated.
  • the subset is formed based on a usage probability of a combination between possible parameter values of respective LBT parameters. More specifically, the second embodiment can be applied to the case of multi-subframe scheduling, and can also be applied to the case of single subframe scheduling.
  • the LBT type as described above may be an LBT type of the first subframe of the plurality of subframes, and the LBT priority as described above may be the LBT priority of the first subframe,
  • the PUSCH start position as described above may be the PUSCH start position of the first subframe.
  • the LBT parameters further include a multi-subframe scheduling gap.
  • the multi-subframe scheduling gap may include an LBT type of each slot, or an LBT type of remaining subframes other than the first subframe among the plurality of scheduled subframes. Possible parameter values for the LBT type of each gap include the second type LBT and the fourth type LBT as described above.
  • Multi-subframe scheduling gap The PUSCH start position of the remaining subframes may also be. Possible parameter values of the PUSCH start position of the remaining subframe include a 0th symbol, a 1st symbol, a timing after a predetermined value after the 0th symbol, and a timing at which the predetermined value and the timing advance value are passed after the 0th symbol.
  • the multi-subframe scheduling gap may further include a starting position of which subframes the gap is in, an LBT priority of the remaining subframes, a CWS of the remaining subframes, and the like. Information.
  • the subset may be formed based on a usage probability of a combination between the LBT type, the LBT priority, and possible parameter values of the PUSCH start position.
  • a usage probability of a combination between possible values of the LBT type, the LBT priority, the PUSCH start position, and the LBT type of each gap may be used, The subset is formed.
  • the first embodiment considering that in the case of multi-subframe scheduling, whether within the Maximum Channel Occupancy Time (MCOT) or MCOT, between the sub-frames The gaps are all used to enable multi-user multiplexing.
  • the backoff counter used in the fourth type LBT is asynchronous between a plurality of scheduled user equipments, and the interference conditions between the plurality of user equipments are different, the fourth is used.
  • Type LBT for multi-user multiplexing is not efficient. Therefore, in the first embodiment, the first limitation is made, that is, in the case of multi-subframe scheduling, if there is a gap, each gap uses the second type LBT. That is, the subset is formed by using a second type of LBT for each gap.
  • the PUSCH start position of the current subframe should be the timing at which a predetermined value elapses after the 0th symbol. Therefore, the first limitation also means that the timing at which the PUSCH start position passes the predetermined value after the 0th symbol is used for the remaining subframes other than the first subframe. That is, the subset is formed by timing at which a predetermined value is passed after the 0th symbol is used for the remaining subframes.
  • FIG. 5 is a schematic diagram showing a first embodiment of a lossy manner of a method of indicating a parameter value of a pre-session listening parameter, in accordance with an embodiment of the present disclosure.
  • a case where a plurality of subframes including a total of four subframes (that is, the remaining subframes are the second, third, and fourth subframes) are scheduled is illustrated as an example.
  • the required bit is 7 bits. Therefore, although the flexibility of indicating LBT parameters is slightly reduced, the signaling overhead is significantly reduced.
  • a new uplink transmission initiated by other user equipment ie, for the first subframe in the case of multi-subframe scheduling
  • the second type of LBT is used between the remaining subframes of the user equipment, it is difficult to implement multiplexing between the user equipment and other user equipments, so that the second of the remaining subframes Type LBT is basically not necessary. Therefore, in the second embodiment, a second limitation is made, that is, in the case of multi-subframe scheduling, if the first subframe uses the fourth type LBT, there is no gap between the remaining subframes. In other words, for the case where the LBT type is the fourth type LBT, the subset is formed by not using a gap between adjacent subframes of the plurality of subframes.
  • FIG. 6 is a schematic diagram showing a second embodiment of a lossy manner of a method of indicating a parameter value of a pre-session listening parameter, in accordance with an embodiment of the present disclosure.
  • a case where a plurality of subframes including a total of four subframes are scheduled is illustrated as an example.
  • the fourth type LBT since no gap is used between the remaining subframes in the case where the fourth type LBT is used for the first subframe, only a maximum of 64 cases (in which indexes 40-63 are reserved) are indicated. Therefore, the required bit is 5 bits. Compared with Fig. 5, 2 bits are further reduced. Therefore, although the flexibility of indicating LBT parameters is slightly reduced, the signaling overhead is significantly reduced.
  • the fourth restriction is made.
  • One of the LBT priority level 3 and the LBT priority level 4 is removed, for example, the LBT priority level 3 is removed. That is, the subset is formed by excluding from the ensemble a combination comprising the LBT priority of 3 (and its associated CWS).
  • FIG. 7 is a diagram illustrating a method of indicating a parameter value of a pre-session listening parameter according to an embodiment of the present disclosure.
  • the required bits are 5 bits, which significantly reduces the signaling overhead.
  • the case where the PUSCH start position is the first symbol is mainly applied to the LBT type 4, and therefore, in order to reduce the signaling overhead, in this embodiment, the fourth limitation is performed, that is, the inclusion is excluded.
  • the LBT type is a second type LBT
  • the PUSCH start position is a combination of the first symbols. That is, the subset is formed by excluding from the ensemble a combination including the LBT type being the second type LBT and the PUSCH start position being the first symbol.
  • FIG. 8 is a schematic diagram showing a fourth embodiment of a lossy manner of a method of indicating a parameter value of a pre-session listening parameter, in accordance with an embodiment of the present disclosure.
  • the required bits are 5 bits, which significantly reduces the signaling overhead.
  • FIG. 8 is a case where the restriction 4 is applied in the case of multi-subframe scheduling.
  • the limitation 4 is not limited thereto, but can be applied to the case of single subframe scheduling. That is, a new table can be formed by removing the rightmost column in FIG. 8 and re-indexing the order.
  • Figures 3-8 only show some exemplary subsets used in the method of indicating parameter values for LBT parameters in accordance with embodiments of the present disclosure. Those skilled in the art can design other various subsets on this basis.
  • FIGS. 3-8 may not separately apply one of the first to third examples in the lossless manner as described above, or the first to fourth examples in the lossy manner.
  • Figure 8 applies both Limit 2 and Limit 4 in the lossy mode.
  • various combinations, sub-combinations, modifications, and substitutions can be made to the various subsets of the lossless or lossy modes illustrated in Figures 3-8.
  • FIG. 9 shows a first example of a subset formed by a lossless indication manner. Specifically, through The LBT priority is not considered for the second type LBT, and only the subset formed by the PUSCH start position being the 0th symbol and the 1st symbol is considered for the fourth type LBT, which is the same as that shown in FIG. 3, and is not here. More details will be described.
  • Fig. 10 shows a second example of a lossy indication mode obtained by combining a lossless indication mode and a lossy indication mode.
  • the LBT priority for the second type LBT only the PUSCH start position is considered to be the 0th symbol and the 1st symbol for the fourth type LBT, and the LBT priority is excluded from the ensemble.
  • a combination of 3, and the combination including the LBT type being the second type LBT and the PUSCH start position being the first symbol is excluded from the ensemble to form the subset.
  • Fig. 11 shows a third example as a lossless indication mode. Specifically, by considering the LBT priority and the CWS for the second type LBT, the subset is formed by considering only the PUSCH start position as the 0th symbol and the 1st symbol for the fourth type LBT. 4 is the same and will not be described in detail here.
  • Fig. 12 shows a fourth example of a lossy indication mode obtained by combining a lossless indication mode and a lossy indication mode.
  • the LBT priority for the second type LBT only the PUSCH start position is considered to be the 0th symbol and the 1st symbol for the fourth type LBT, and the LBT priority is excluded from the ensemble.
  • Fig. 13 shows a fifth example of the lossy indication mode obtained by combining the lossless indication mode and the lossy indication mode.
  • the LBT priority for the second type LBT only the PUSCH start position is considered to be the 0th symbol and the 1st symbol for the fourth type LBT, and the LBT priority is excluded from the ensemble.
  • Fig. 14 shows a sixth example of a lossy indication mode obtained by combining a lossless indication mode and a lossy indication mode. Specifically, by considering the LBT priority for the second type LBT, only the PUSCH start position is the 0th symbol and the 1st symbol for the fourth type LBT, And excluding a combination including the LBT type being the second type LBT, the PUSCH start position being the first symbol, and using the second type LBT for each gap by using the second type LBT for the first subframe, In the case where the fourth type LBT is used for the first subframe, there is no gap between the remaining subframes, and the subset is formed, which is the same as that shown in FIG. 8, and will not be described in detail herein.
  • Fig. 15 shows a seventh example of the lossy indication mode obtained by combining the lossless indication mode and the lossy indication mode.
  • the PUSCH start position is the 0th symbol and the 1st symbol for the fourth type LBT, and the LBT type is the second type LBT, and the LBT is excluded.
  • the PUSCH start position is a combination of the first symbols, and the second type LBT is used for each gap by using the second type LBT for the first subframe, and the fourth type LBT is used for the first subframe.
  • Fig. 16 shows an eighth example of the lossy indication mode obtained by combining the lossless indication mode and the lossy indication mode.
  • the PUSCH start position is considered to be the 0th symbol and the 1st symbol for the fourth type LBT, and the inclusion of the LBT type as the second type is excluded.
  • the PUSCH start position is a combination of the first symbols, and uses a second type LBT for each gap and a fourth type LBT for the first subframe by using a second type LBT for the first subframe. The situation has no gaps between the remaining sub-frames, forming the subset.
  • Fig. 17 shows a ninth example of the lossy indication mode obtained by combining the lossless indication mode and the lossy indication mode.
  • the PUSCH start position is considered to be the 0th symbol and the 1st symbol for the fourth type LBT, and the inclusion of the LBT type as the second type is excluded.
  • the PUSCH start position is a combination of the first symbols
  • the second type LBT is used for each gap
  • the fourth type LBT is used for the first subframe by using the second type LBT for the first subframe.
  • the gap configuration in the multi-subframe scheduling case is ⁇ all none, all, only in the first sub-frame, in the first sub-frame and the third sub-frame ⁇ , forming a Describe the subset.
  • FIG. 18 is a schematic diagram showing a summary and comparison of first to ninth examples of a subset formed by a method of indicating LBT parameters, according to an embodiment of the present disclosure.
  • the base station 1900 includes a parameter value determining unit 1910, an index determining unit 1920, a generating unit 1930, and a transmitting unit 1940. It should be noted that FIG. 19 only shows the units in the base station 1900 that are closely related to the embodiments of the present disclosure, and this is merely illustrative, and the base station 1900 may include other units as needed.
  • the parameter value determining unit 1910 is configured to determine a parameter value of an LBT parameter including an LBT type, an LBT priority, and a physical uplink shared channel PUSCH start position.
  • the index determination unit 1920 is configured to determine an index for a joint indication of the LBT parameters based on a subset of the ensemble formed by a combination of possible parameter values for respective LBT parameters.
  • the generating unit 1930 is configured to generate downlink control information including the index.
  • the transmitting unit 1940 is configured to transmit the downlink control information to a user equipment.
  • the subset may be formed by excluding conflicting combinations between the LBT type, the LBT priority, and possible parameter values of the PUSCH start position from the ensemble.
  • the subset may be formed based on a usage probability of a combination between the LBT type, the LBT priority, and possible parameter values of the PUSCH start location.
  • the LBT parameters may further include a multi-subframe scheduling gap, the multi-subframe scheduling gap including an LBT type for each gap.
  • the subset may be formed based on a usage probability of a combination between the LBT type, the LBT priority, the PUSCH start location, and possible parameter values of the LBT type of each gap.
  • 20 is a flow chart showing the main steps of a method for determining parameter values of LBT parameters in a user equipment, in accordance with an embodiment of the disclosure.
  • step S2010 downlink control information is received.
  • the downlink control information includes an index for jointly indicating the LBT parameters.
  • the LBT parameters include an LBT type, an LBT priority, and a physical uplink shared channel PUSCH start position.
  • a parameter value of the LBT parameter is determined according to the index based on a subset of the ensemble formed by a combination of possible parameter values of the respective LBT parameters.
  • the index is an index for the subset, which may be a lossless indication for the LBT parameter, or may be a lossy indication for the LBT parameter.
  • the subset described above may be pre-stored in the user equipment and the base station in various forms such as a table. For example, it can be placed in the user equipment and the base station by means such as hard coding. Alternatively, the subset may also be communicated between the user equipment and the base station in a manner such as higher layer signaling during operation. Thus, there is no ambiguity in understanding between the user equipment and the base station.
  • the user equipment may determine the parameter value of the corresponding LBT parameter from a subset such as a tabular form by means such as lookup table based on the index.
  • a subset such as a tabular form
  • lookup table based on the index.
  • the user equipment 2100 includes a receiving unit 2110 and a determining unit 2120. It should be noted that FIG. 21 only shows the units in the user device 2100 that are closely related to the embodiments of the present disclosure, and this is merely illustrative, and the user equipment 2100 may include other units as needed.
  • the receiving unit 2110 is configured to receive downlink control information.
  • the downlink control information includes an index for joint indication of LBT parameters.
  • the LBT parameters include an LBT type, an LBT priority, and a physical uplink shared channel PUSCH start position.
  • the determining unit 2120 is configured to determine a parameter value of the LBT parameter based on the index based on a subset of the ensemble formed by a combination of possible parameter values of respective LBT parameters.
  • a subset is formed by selecting a part of a combination of possible parameter values of the LBT parameter in advance And indicating the parameter value based on the subset, and therefore, the signaling overhead for the indication of the LBT parameter can be effectively reduced.

Abstract

提供了一种用于指示和确定对话前监听LBT参数的参数值的方法、基站和用户设备,所述方法包括:确定LBT参数的参数值,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置;基于由各个LBT参数的可能参数值的组合形成的全集中的子集,确定用于对所述LBT参数进行联合指示的索引;生成包含所述索引的下行链路控制信息;以及将所述下行链路控制信息发送至用户设备。

Description

指示和确定对话前监听参数的方法、基站和用户设备 技术领域
本公开涉及移动通信领域,更具体地涉及一种用于在基站中指示对话前监听参数的参数值的方法、用于在用户设备中指示对话前监听参数的参数值的方法、以及基站和用户设备。
背景技术
在近年来研究的非授权频谱传输技术中,对话前监听(Listen-Before-Talk,LBT)是一种重要的信道接入机制。在LBT过程中,基站将所述LBT参数的参数值包含在下行链路控制信息中,并发送至用户设备。所述用户设备接收并检测所述下行链路控制信息,从而根据所述下行链路控制信息中包含的LBT参数的参数值进行LBT过程。
所述下行链路控制信息中包含的LBT参数包括诸如LBT类型、物理上行链路共享信道(PUSCH)起始位置、LBT优先级、竞争窗口尺寸(CWS)、多子帧调度情况下的多子帧调度间隙等等的多种参数。
如果对所述多种参数分别使用单独的比特来指示,则需要相当大的信令开销。因此,需要一种能够减少信令开销的指示和确定对话前监听参数的方法、基站和用户设备。
发明内容
根据本公开的一个实施例,提供了一种用于在基站中指示对话前监听LBT参数的参数值的方法,包括:确定LBT参数的参数值,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置;基于由各个LBT参数的可能参数值的组合形成的全集中的子集,确定用于对所述LBT参数进行联合指示的索引;生成包含所述索引的下行链路控制信息;以及将所述下行链路控制信息发送至用户设备。
在该实施例的方法中,通过从所述全集中排除所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的相冲突的组合,形成所述子集。
在该实施例的方法中,所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;并且通过对于所述LBT类型为第二类型LBT的情况不考虑所述LBT优先级而形成所述子集。
在该实施例的方法中,所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;所述PUSCH起始位置的可能参数值包括第0符号、第1符号、第0符号之后经过预定值的定时、以及第0符号之后经过所述预定值和定时提前值的定时;并且通过从所述全集中排除包含所述LBT类型为第四类型LBT、所述PUSCH起始位置为第0符号之后经过所述预定值的定时的组合,并排除包含所述LBT类型为第四类型LBT、所述PUSCH起始位置为第0符号之后经过所述预定值和定时提前值的定时的组合,形成所述子集。
在该实施例的方法中,所述LBT参数还包括竞争窗口尺寸CWS;所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;并且通过对于所述LBT类型为第二类型LBT的情况不考虑所述LBT优先级和所述CWS而形成所述子集。
在该实施例的方法中,基于所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的组合的使用概率,形成所述子集。
在该实施例的方法中,所述LBT参数还包括多子帧调度间隙,所述多子帧调度间隙包括每个间隙的LBT类型;并且基于所述LBT类型、所述LBT优先级、所述PUSCH起始位置、以及每个间隙的LBT类型的可能参数值之间的组合的使用概率,形成所述子集。
在该实施例的方法中,每个间隙的LBT类型的可能参数值包括第二类型LBT和第四类型LBT;并且通过对于每个间隙使用第二类型LBT而形成所述子集。
在该实施例的方法中,所述多子帧调度间隙还包括多个子帧中除第一子帧以外的剩余子帧的PUSCH起始位置,所述剩余子帧的PUSCH起始位置的可能参数值包括第0符号、第1符号、第0符号之后经过预定值的定时、以及第0符号之后经过所述预定值和定时提前值的定时;并且通过对于所述剩余子帧使用第0符号之后经过预定值的定时而形成所述子集。
在该实施例的方法中,所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;并且对于所述LBT类型为第四类型LBT的情况,通过对 于多个子帧的相邻子帧之间不使用间隙而形成所述子集。
在该实施例的方法中,所述LBT优先级的可能参数值包括1、2、3和4;并且通过从所述全集中排除包含所述LBT优先级为3的组合,形成所述子集。
在该实施例的方法中,所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;所述PUSCH起始位置的可能参数值包括第0符号、第1符号、第0符号之后经过预定值的定时、以及第0符号之后经过所述预定值和定时提前值的定时;并且通过从所述全集中排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,形成所述子集。
根据本公开另一实施例,提供了一种基站,用于指示对话前监听LBT参数的参数值,所述基站包括:参数值确定单元,被配置为确定LBT参数的参数值,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置;索引确定单元,被配置为基于由各个LBT参数的可能参数值的组合形成的全集中的子集,确定用于对所述LBT参数进行联合指示的索引;生成单元,被配置为生成包含所述索引的下行链路控制信息;以及发送单元,被配置为将所述下行链路控制信息发送至用户设备。
在该实施例的基站中,通过从所述全集中排除所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的相冲突的组合,形成所述子集。
在该实施例的基站中,基于所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的组合的使用概率,形成所述子集。
在该实施例的基站中,所述LBT参数还包括多子帧调度间隙,所述多子帧调度间隙包括每个间隙的LBT类型;并且基于所述LBT类型、所述LBT优先级、所述PUSCH起始位置、以及每个间隙的LBT类型的可能参数值之间的组合的使用概率,形成所述子集。
根据本公开另一实施例,提供了一种用于在用户设备中确定对话前监听LBT参数的参数值的方法,包括:接收下行链路控制信息,所述下行链路控制信息包含用于对LBT参数进行联合指示的索引,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置;以及基于由各个LBT参数的可能参数值的组合形成的全集中的子集,根据所述索引确定所述LBT参数的参数值。
根据本公开另一实施例,提供了一种用户设备,用于确定对话前监听LBT参数的参数值,所述用户设备包括:接收单元,被配置为接收下行链路控制信息,所述下行链路控制信息包含用于对LBT参数进行联合指示的索引,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置;以及确定单元,被配置为基于由各个LBT参数的可能参数值的组合形成的全集中的子集,根据所述索引确定所述LBT参数的参数值。
在根据本公开实施例的指示和确定对话前监听参数的参数值的方法、基站和用户设备中,能够有效地减少用于LBT参数的指示的信令开销。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是应用根据本公开实施例的指示和确定对话前监听参数的参数值的方法的系统的示意图;
图2是示出根据本公开实施例的指示对话前监听参数的参数值的方法的主要步骤的流程图;
图3是示出根据本公开实施例的指示对话前监听参数的参数值的方法的无损方式的第一实施例的示意图;
图4是示出根据本公开实施例的指示对话前监听参数的参数值的方法的无损方式的第二实施例的示意图;
图5是示出根据本公开实施例的指示对话前监听参数的参数值的方法的有损方式的第一实施例的示意图;
图6是示出根据本公开实施例的指示对话前监听参数的参数值的方法的有损方式的第二实施例的示意图;
图7是示出根据本公开实施例的指示对话前监听参数的参数值的方法的有损方式的第三实施例的示意图;
图8是示出根据本公开实施例的指示对话前监听参数的参数值的方法的 有损方式的第四实施例的示意图;
图9是示出应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第一示例的示意图;
图10是示出应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第二示例的示意图;
图11是示出应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第三示例的示意图;
图12是示出应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第四示例的示意图;
图13是示出了应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第五示例的示意图;
图14是示出应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第六示例的示意图;
图15是示出应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第七示例的示意图;
图16是示出应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第八示例的示意图;
图17是示出应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第九示例的示意图;
图18是示出应用根据本公开实施例的指示对话前监听参数的参数值的方法所形成的子集的第一示例至第九示例的总结和比较的示意图;
图19是示意性示出根据本公开实施例的基站的主要配置的框图;
图20是示出根据本公开实施例的确定对话前监听参数的参数值的方法的主要步骤的流程图;以及
图21是示意性示出根据本公开实施例的用户设备的主要配置的框图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是本公开的全部实施例,应理解,本公开不受这里描述的 示例实施例的限制。基于本公开中描述的本公开实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本公开的保护范围之内。
图1是应用根据本公开实施例的指示和确定对话前监听参数的参数值的方法的系统的示意图。如图1所示,该系统包括基站10和用户设备20,其可以应用于非授权频谱传输的场景中。在图1所示的系统中,基站10向用户设备20发送下行链路控制信息。用户设备20接收并检测该下行链路控制信息,从而根据下行链路控制信息中的与LBT参数有关的信息来进行LBT过程。
如上所述,LBT参数包括诸如LBT类型、PUSCH起始位置、LBT优先级、竞争窗口尺寸(CWS)、多子帧调度情况下的多子帧调度间隙等等的多种参数。如果对所述多种参数分别使用单独的比特来指示,则需要相当大的信令开销。
由此,发明人设计了根据本公开实施例的用于确定和指示对话前监听参数的参数值的方法、基站和用户设备。
下面,首先,将参照图2详细描述根据本公开实施例的用于在基站中指示对话前监听LBT参数的参数值的方法。
如图2所示,首先,在步骤S210,确定LBT参数的参数值。在本公开实施例的方法中,所述LBT参数至少包括LBT类型、LBT优先级、以及PUSCH起始位置。
具体地,所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT。所述第二类型LBT例如指基于25μs监听的LBT类型。所述第四类型LBT例如指基于可变尺寸竞争窗口的随机退避的LBT类型。由此,如果单独指示LBT类型的参数值,则至少需要1个单独的比特。
所述LBT优先级可用于传输业务的复用。LBT优先级的可能参数值包括1、2、3和4。由此,如果单独指示LBT优先级的参数值,则至少需要2个单独的比特。
所述PUSCH起始位置用于指示UE在成功的LBT之后开始PUSCH传输时的定时。更具体地,所述PUSCH起始位置可以指示起始PUSCH DFT-S-OFDM符号。所述PUSCH起始位置的可能参数值包括第0符号、第0 符号之后经过预定值的定时、第0符号之后经过预定值和定时提前(Timing Advance,TA)值的定时和第1符号。所述预定值例如为25μs等。由此,如果单独指示PUSCH起始位置的参数值,则至少需要2个单独的比特。
接下来,在步骤S220,基于由各个LBT参数的可能参数值的组合形成的全集中的子集,确定用于对所述LBT参数进行联合指示的索引。此后,在步骤S230,生成包含所述索引的下行链路控制信息。并且,在步骤S240,将所述下行链路控制信息发送至用户设备。
也就是说,在根据本公开实施例的方法中,并不是将如上所述的LBT参数分别进行指示,而是预先从由各个LBT参数的可能参数值的组合形成的全集中选择出预定的子集,根据各个LBT参数的参数值从所述子集中得出对应的索引,并指示所述索引。
具体地,在第一实施方式中,通过从所述全集中排除所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的相冲突的组合,形成所述子集。这里,表述“相冲突的组合”意味着在该组合中各个LBT参数的参数值的应用场景是相矛盾的。换句话说,该组合是不合理的。因此,通过从所述全集中排除所述相冲突的组合而形成的子集对于LBT参数指示的实际性能而言是没有影响的。因此,这种方式也被称为无损方式。
在第二实施方式中,基于各个LBT参数的可能参数值之间的组合的使用概率,形成所述子集。这里,表述“使用概率”意味着在实际应用场景中该组合存在的可能性。在实际应用场景中常见的组合的使用概率高,而在实际应用场景中不常见的组合的使用概率低。因此,通过从所述全集中排除不常见的组合而形成的子集能够满足常见的LBT参数指示的需求,但在不常见的LBT参数指示的情况下则不能够满足需求。也就是说,所述子集对于LBT参数指示的灵活性而言有稍许影响。这是在信令开销减少与指示灵活性下降之间作出的折中。因此,这种方式也被称为有损方式。
下面,将分别描述无损方式和有损方式下的处理。
首先,将描述无损方式下的处理。即,通过从所述全集中排除所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的相冲突的组合,形成所述子集。
在第一实施例中,考虑LBT优先级与LBT类型之间的关系。具体地, 由于仅在第四类型LBT的情况下需要LBT优先级,因此,包含第二类型LBT与LBT优先级的任一值的组合是没有必要的。由此,通过对于所述LBT类型为第二类型LBT的情况不考虑所述LBT优先级而形成所述子集。
在第二实施例中,考虑LBT类型与PUSCH起始位置之间的关系。具体地,并不是所有PUSCH起始位置都适用于各种LBT类型。更具体地,第0符号之后经过所述预定值的定时以及第0符号之后经过所述预定值和定时提前值的定时并不适用于第四类型LBT。因此,包含第四类型LBT与第0符号之后经过所述预定值的定时的组合、或第四类型LBT与第0符号之后经过所述预定值和定时提前值的定时的组合是没有必要的。由此,通过从所述全集中排除包含所述LBT类型为第四类型LBT、所述PUSCH起始位置为第0符号之后经过所述预定值的定时的组合,并排除包含所述LBT类型为第四类型LBT、所述PUSCH起始位置为第0符号之后经过所述预定值和定时提前值的定时的组合,形成所述子集。
在第三实施例中,所述LBT参数还包括如上所述的CWS。所述CWS用于表示UE生成随机退避计数器的窗口尺寸,其可能参数值包括{3,7,15,31,63,127,255,511,1023}。即,如果单独指示CWS,则至少需要4个单独的比特。在本实施例中,考虑CWS与LBT类型的关系。具体地,CWS仅适用于第四类型LBT。因此,包含第二类型LBT与CWS的组合是没有必要的。通过对于所述LBT类型为第二类型LBT的情况不考虑所述CWS而形成所述子集。进一步地,由于在目前的协定中CWS的参数值与LBT优先级的参数值是相关联的,由此,通过对于所述LBT类型为第二类型LBT的情况不考虑所述LBT优先级和所述CWS而形成所述子集。
需要指出的是,以上所述的子集可以以例如表格等的各种形式预先存储在所述用户设备和所述基站中。例如,可以通过诸如硬编码的方式将其设置于所述用户设备和所述基站中。替代地,也可以在操作过程中通过诸如高层信令的方式在所述用户设备和所述基站之间传递所述子集。由此,使得用户设备与基站之间不会存在理解上的歧义。
此外,需要指出的是,以上所述的无损指示方式仅为示例。本领域技术人员可以在本公开的教导基础之上,考虑各个LBT参数之间的其他关系来设计所述子集。
此外,需要指出的是,以上所述的各个示例不仅可以单独使用,还可以进行适当的组合等等。图3和图4示例性示出了以上所述的各个示例组合使用的情况。
图3示出了根据本公开实施例的指示LBT参数的参数值的方法的第一应用示例的示意图。在图3中,结合考虑了如上所述的第一实施例和第二实施例。从图3可见,由于对于第二类型LBT不考虑所述LBT优先级,并且对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号的情况,仅需指示最多16种情况(其中的索引12-15为预留)。因此,所需比特为4比特。与独立指示LBT类型(1比特)、LBT优先级(2比特)和PUSCH起始位置(2比特)的情况相比,信令开销减少了1比特。
图4示出了根据本公开实施例的指示LBT参数的参数值的方法的第二应用示例的示意图。在图4中,结合考虑了如上所述的第一实施例、第二实施例和第三实施例。从图4可见,由于对于第二类型LBT不考虑所述LBT优先级,对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号的情况,并且对于所述LBT类型为第二类型LBT的情况不考虑所述LBT优先级和相关联的CWS,仅需指示最多64种情况(其中的索引40-63为预留)。因此,所需比特为6比特。与独立指示LBT类型(1比特)、LBT优先级(2比特)、CWS(4比特)和PUSCH起始位置(2比特)的情况相比,信令开销减少了3比特。
以上,描述了第一实施方式中的无损方式下的处理。下面,将描述第二实施方式中的有损方式下的处理。在第二实施方式中,基于各个LBT参数的可能参数值之间的组合的使用概率,形成所述子集。更具体地,第二实施方式可以适用于多子帧调度的情况,也可以适用于单子帧调度的情况。
在多子帧调度的情况下,如上所述的LBT类型可以是多个子帧中的第一子帧的LBT类型,如上所述的LBT优先级可以是所述第一子帧的LBT优先级,如上所述的PUSCH起始位置可以是所述第一子帧的PUSCH起始位置。
另外,在多子帧调度的情况下,所述LBT参数还包括多子帧调度间隙。所述多子帧调度间隙可以包括每个间隙的LBT类型,或者称为多个被调度子帧中除第一子帧以外的剩余子帧的LBT类型。每个间隙的LBT类型的可能参数值包括如上所述的第二类型LBT和第四类型LBT。所述多子帧调度间隙 还可所述剩余子帧的PUSCH起始位置。所述剩余子帧的PUSCH起始位置的可能参数值包括第0符号、第1符号、第0符号之后经过预定值的定时、以及第0符号之后经过所述预定值和定时提前值的定时。此外,本领域技术人员能够理解,根据设计需要,多子帧调度间隙还可包括有关间隙处于哪些子帧的开始位置、所述剩余子帧的LBT优先级、所述剩余子帧的CWS等等的信息。
在此第二实施方式中,可以基于所述LBT类型、所述LBT优先级、以及所述PUSCH起始位置的可能参数值之间的组合的使用概率,形成所述子集。
此外,在多子帧调度的情况下,可以基于所述LBT类型、所述LBT优先级、所述PUSCH起始位置、以及每个间隙的LBT类型的可能参数值之间的组合的使用概率,形成所述子集。
更具体地,在第一实施例中,一方面,考虑到在多子帧调度的情况下,无论是最大信道占用时间(Maximum Channel Occupancy Time,MCOT)内还是MCOT外,各个子帧之间的间隙都是用于使得能够进行多用户复用的。另一方面,考虑到第四类型LBT中所使用的退避计数器在多个被调度的用户设备之间是不同步的,而且多个用户设备之间的干扰条件是不同的,所以,使用第四类型LBT来进行多用户复用并不高效。因此,在该第一实施例中,进行第一限制,即,对于多子帧调度情况下,如果存在间隙,则每个间隙使用第二类型LBT。也就是说,通过对于每个间隙使用第二类型LBT而形成所述子集。
此外,进一步地,考虑到在前一子帧为上行链路子帧、并且当前子帧的LBT类型(或前一子帧与当前子帧之间的间隙的LBT类型)为第二类型LBT的情况下,该当前子帧的PUSCH起始位置应该为第0符号之后经过预定值的定时。因此,该第一限制也意味着对于除第一子帧外的剩余子帧,PUSCH起始位置使用第0符号之后经过预定值的定时。也就是说,通过对于所述剩余子帧使用第0符号之后经过预定值的定时而形成所述子集。
图5是示出了根据本公开实施例的指示对话前监听参数的参数值的方法的有损方式的第一实施例的示意图。图5中,以总共包含4个子帧(即,所述剩余子帧为第2、3和4子帧)的多子帧调度的情况为例进行了图示。在此 情况下,如果每个间隙可以使用第二类型LBT或第四类型LBT,则总共需要4×4=16比特。与此相对,从图5可见,由于每个间隙仅使用第二类型LBT,从而仅需指示最多128种情况(其中的索引96-127为预留)。因此,所需比特为7比特。因此,虽然指示LBT参数的灵活性稍有降低,但显著降低了信令开销。
在第二实施例中,一方面,在MCOT内,通常,为了更高效地获得信道,对于每次新的上行链路传输(即,对于多子帧调度情况下的第一子帧)使用第二类型LBT。因此,可以认为在MCOT内对于多子帧调度情况的第一子帧不太使用第四类型LBT,而使用第二类型LBT。另一方面,在MCOT外,其他用户设备发起的新的上行链路传输(即,对于多子帧调度情况下的第一子帧)使用第四类型LBT以实现多用户复用。在此情况下,即便所述用户设备的所述剩余子帧之间使用第二类型LBT,所述用户设备与其他用户设备之间也很难实现复用,使得所述剩余子帧的第二类型LBT基本上没有存在的必要。因此,在该第二实施例中,进行第二限制,即,对于多子帧调度的情况,如果第一子帧使用第四类型LBT,则剩余子帧之间不存在间隙。换句话说,对于所述LBT类型为第四类型LBT的情况,通过对于所述多个子帧的相邻子帧之间不使用间隙而形成所述子集。
图6是示出了根据本公开实施例的指示对话前监听参数的参数值的方法的有损方式的第二实施例的示意图。图6中,同样,以总共包含4个子帧的多子帧调度的情况为例进行了图示。在图6中,由于在对于第一子帧使用第四类型LBT的情况下在剩余子帧之间不使用间隙,从而仅需指示最多64种情况(其中的索引40-63为预留)。因此,所需比特为5比特。与图5相比,进一步减少了2比特。因此,虽然指示LBT参数的灵活性稍有降低,但显著降低了信令开销。
在第三实施例中,考虑到与LBT优先级3和LBT优先级4关联的CWS都是{15,31,63,127,255,511,1023},为了降低信令开销,在该实施例中,进行第四限制,去除LBT优先级3和LBT优先级4中的一个,例如,去除LBT优先级3。也就是说,通过从所述全集中排除包含所述LBT优先级为3(以及其相关联的CWS)的组合,形成所述子集。
图7是示出了根据本公开实施例的指示对话前监听参数的参数值的方法 的有损方式的第三实施例的示意图。在图7中,由于排除了包含LBT优先级为3的组合,从而仅需指示最多31种情况(其中的索引26-31为预留)。因此,所需比特为5比特,显著降低了信令开销。
在第四实施例中,考虑到PUSCH起始位置为第1符号的情况主要适用于LBT类型4,因此,为了降低信令开销,在该实施例中,进行第四限制,即,排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合。也就是说,通过从所述全集中排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,形成所述子集。
图8是示出了根据本公开实施例的指示对话前监听参数的参数值的方法的有损方式的第四实施例的示意图。在图8中,由于排除了包括所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,从而仅需指示最多31种情况。因此,所需比特为5比特,显著降低了信令开销。
需要指出的是,图8所示的实施例为在多子帧调度的情况下应用限制4的情况。然而,本领域技术人员能够理解,限制4不限于此,而是可以应用于单子帧调度的情况。即,可以通过去除图8中的最右边一列并重新索引排序而形成新的表格。
此外,需要指出的是,在图5-图8的表格中,对于多子帧调度的情况以总共4个子帧为例进行了图示。然而,本公开实施例的方法不限于此,而是可以应用于调度更多或更少子帧的情况。
此外,需要指出的是,图3-图8仅仅示出了根据本公开实施例的指示LBT参数的参数值的方法中使用的一些示例性的子集。本领域技术人员可以在此基础之上设计其他各种子集。
此外,需要指出的是,图3-图8有可能并非单独应用如上所述的无损方式中的第一示例至第三示例中的一个,或有损方式中的第一示例至第四示例中的一个,而有可能应用其中的一个或多个示例的组合。例如,图8适用了有损方式中的限制2和限制4两者。此外,可以对图3-图8所例示的无损或有损方式的各种子集进行适当的组合、子组合、修改和替换。
下面,将参照图9至图17描述通过基于有损方式和无损方式而形成的子集的一些示例。
图9示出了通过无损指示方式而形成的子集的第一示例。具体地,通过 对于第二类型LBT不考虑所述LBT优先级,并且对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号而形成的子集,其与图3所示相同,在此不再详细描述。
图10示出了通过将无损指示方式和有损指示方式相结合而得到的有损指示方式的第二示例。具体地,通过对于第二类型LBT不考虑所述LBT优先级,对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号,从所述全集中排除包含所述LBT优先级为3的组合,并且从所述全集中排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,形成所述子集。
图11示出了作为无损指示方式的第三示例。具体地,通过对于第二类型LBT不考虑所述LBT优先级及CWS,对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号的情况,形成所述子集,其与图4所示相同,在此不再详细描述。
图12示出了通过将无损指示方式和有损指示方式相结合而得到的有损指示方式的第四示例。具体地,通过对于第二类型LBT不考虑所述LBT优先级,对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号,从所述全集中排除包含所述LBT优先级为3及CWS的组合、并排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,形成所述子集。需要指出的是,在图12中,仅排除了优先级为3的组合中的一部分而非全部,由此,使得能够恰好通过5比特来指示各LBT参数。
图13示出了通过将无损指示方式和有损指示方式相结合而得到的有损指示方式的第五示例。具体地,通过对于第二类型LBT不考虑所述LBT优先级,对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号,从所述全集中排除包含所述LBT优先级为3及CWS的组合、并排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,形成所述子集。需要指出的是,在图13中,仅排除了优先级为3的组合中的一部分而非全部,由此,使得能够恰好通过5比特来指示各LBT参数。
图14示出了通过将无损指示方式和有损指示方式相结合而得到的有损指示方式的第六示例。具体地,通过对于第二类型LBT不考虑所述LBT优先级,对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号, 并排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,并通过对于第一子帧使用第二类型LBT的情况对每个间隙使用第二类型LBT、对于第一子帧使用第四类型LBT的情况在剩余子帧之间没有间隙,形成所述子集,其与图8所示相同,在此不再详述。
图15示出了通过将无损指示方式和有损指示方式相结合而得到的有损指示方式的第七示例。具体地,通过对于第二类型LBT不考虑所述LBT优先级,对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号,排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,通过对于第一子帧使用第二类型LBT的情况对每个间隙使用第二类型LBT、对于第一子帧使用第四类型LBT的情况在剩余子帧之间没有间隙,并通过多子帧调度情况中的间隙配置{全无,全有,仅在第1子帧中,在第1子帧和第3子帧中}形成所述子集。
图16示出了通过将无损指示方式和有损指示方式相结合而得到的有损指示方式的第八示例。具体地,通过对于第二类型LBT不考虑所述LBT优先级及其CWS,对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号,排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,并通过对于第一子帧使用第二类型LBT的情况对每个间隙使用第二类型LBT、对于第一子帧使用第四类型LBT的情况在剩余子帧之间没有间隙,形成所述子集。
图17示出了通过将无损指示方式和有损指示方式相结合而得到的有损指示方式的第九示例。具体地,通过对于第二类型LBT不考虑所述LBT优先级及其CWS,对于第四类型LBT仅考虑PUSCH起始位置为第0符号和第1符号,排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,通过对于第一子帧使用第二类型LBT的情况对每个间隙使用第二类型LBT、对于第一子帧使用第四类型LBT的情况在剩余子帧之间没有间隙,并通过多子帧调度情况中的间隙配置{全无,全有,仅在第1子帧中,在第1子帧和第3子帧中},形成所述子集。
图18是示出根据本公开实施例的指示LBT参数的方法所形成的子集的第一示例至第九示例的总结和比较的示意图。
需要指出的是,以上参照图9-图18描述的仅仅为根据本公开实施例的 指示LBT参数的方法的一些示例。本公开实施例的用于指示LBT参数的方法不限于此。在根据本公开实施例的方法的教导的基础之上,本领域技术人员可以从由LBT参数的可能参数值的所有组合形成的全集中适当选择一部分而形成其他子集。
下面,将参照图19描述根据本公开实施例的基站,其可以执行参照图2描述的上述指示LBT参数的参数值的方法。
如图19所示,基站1900包括参数值确定单元1910、索引确定单元1920、生成单元1930和发送单元1940。应当注意,图19仅示出基站1900中与本公开实施例密切相关的单元,并且这只是说明性的,根据需要,基站1900可以包括其它单元。
所述参数值确定单元1910被配置为确定LBT参数的参数值,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置。
所述索引确定单元1920被配置为基于由各个LBT参数的可能参数值的组合形成的全集中的子集,确定用于对所述LBT参数进行联合指示的索引。
所述生成单元1930被配置为生成包含所述索引的下行链路控制信息。
所述发送单元1940被配置为将所述下行链路控制信息发送至用户设备。
在一实施例中,可以通过从所述全集中排除所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的相冲突的组合,形成所述子集。
在另一实施例中,可以基于所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的组合的使用概率,形成所述子集。
在另一实施例中,所述LBT参数还可包括多子帧调度间隙,所述多子帧调度间隙包括每个间隙的LBT类型。可以基于所述LBT类型、所述LBT优先级、所述PUSCH起始位置、以及每个间隙的LBT类型的可能参数值之间的组合的使用概率,形成所述子集。
所述基站1900的各个单元的配置和操作已经在参照图2-图18所述的方法中详细描述,在此不再重复。
下面,将参照图20描述用于在用户设备中确定LBT参数的参数值的方法。
图20是示出根据本公开实施例的用于在用户设备中确定LBT参数的参数值的方法的主要步骤的流程图。
如图20所示,首先,在步骤S2010,接收下行链路控制信息。具体地,所述下行链路控制信息包含用于对LBT参数进行联合指示的索引。所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置。
接下来,在步骤S2020,基于由各个LBT参数的可能参数值的组合形成的全集中的子集,根据所述索引确定所述LBT参数的参数值。
具体地,如上参照图2-图19所述,所述索引是用于所述子集的索引,可以是对于LBT参数的无损指示,也可以是对于LBT参数的有损指示。以上所述的子集可以以例如表格等的各种形式预先存储在所述用户设备和所述基站中。例如,可以通过诸如硬编码的方式将其设置于所述用户设备和所述基站中。替代地,也可以在操作过程中通过诸如高层信令的方式在所述用户设备和所述基站之间传递所述子集。由此,使得用户设备与基站之间不会存在理解上的歧义。
由此,在步骤S2020,所述用户设备可以基于索引,从诸如表格形式的子集中通过诸如查表等的方式确定出相应的LBT参数的参数值。所述子集的形成已经参照图2-图19在上面详细描述,在此不再重复。
下面,将参照图21描述根据本公开实施例的用户设备,其可以执行参照图20描述的确定LBT参数的参数值的方法。
如图21所示,用户设备2100包括接收单元2110和确定单元2120。应当注意,图21仅示出用户设备2100中与本公开实施例密切相关的单元,并且这只是说明性的,根据需要,用户设备2100可以包括其它单元。
所述接收单元2110被配置为接收下行链路控制信息。所述下行链路控制信息包含用于对LBT参数进行联合指示的索引。所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置。
所述确定单元2120被配置为基于由各个LBT参数的可能参数值的组合形成的全集中的子集,根据所述索引确定所述LBT参数的参数值。
所述用户设备2100的各个单元的配置和操作已经在参照图20所述的方法中详细描述,在此不再重复。
在根据本公开实施例的指示LBT参数的参数值的方法、确定LBT参数的参数值的方法、基站和用户设备中,由于预先从LBT参数的可能参数值的组合的全集中选择一部分形成子集,并基于所述子集来指示参数值,因此,能够有效地减少用于LBT参数的指示的信令开销。
需要说明的是,在本说明书中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
此外,需要说明的是,在本说明书中,类似“第一”、“第二”等的表述仅用于描述方便,而并不意味着所限定的单元必须实现为分开的多个单元,也不意味着所限定的步骤存在时间上的先后顺序等等。
最后,还需要说明的是,上述一系列处理不仅包括以这里所述的顺序按时间序列执行的处理,而且包括并行或分别地、而不是按时间顺序执行的处理。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本公开可借助软件加必需的硬件平台的方式来实现,当然也可以全部通过硬件来实施。基于这样的理解,本公开的技术方案对背景技术做出贡献的全部或者部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例或者实施例的某些部分所述的方法。
以上对本公开进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (18)

  1. 一种用于在基站中指示对话前监听LBT参数的参数值的方法,包括:
    确定LBT参数的参数值,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置;
    基于由各个LBT参数的可能参数值的组合形成的全集中的子集,确定用于对所述LBT参数进行联合指示的索引;
    生成包含所述索引的下行链路控制信息;以及
    将所述下行链路控制信息发送至用户设备。
  2. 如权利要求1所述的方法,其中,
    通过从所述全集中排除所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的相冲突的组合,形成所述子集。
  3. 如权利要求2所述的方法,其中,
    所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;并且
    通过对于所述LBT类型为第二类型LBT的情况不考虑所述LBT优先级而形成所述子集。
  4. 如权利要求2所述的方法,其中,
    所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;
    所述PUSCH起始位置的可能参数值包括第0符号、第1符号、第0符号之后经过预定值的定时、以及第0符号之后经过所述预定值和定时提前值的定时;并且
    通过从所述全集中排除包含所述LBT类型为第四类型LBT、所述PUSCH起始位置为第0符号之后经过所述预定值的定时的组合,并排除包含所述LBT类型为第四类型LBT、所述PUSCH起始位置为第0符号之后经过所述预定值和定时提前值的定时的组合,形成所述子集。
  5. 如权利要求2所述的方法,其中,
    所述LBT参数还包括竞争窗口尺寸CWS;
    所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;并且
    通过对于所述LBT类型为第二类型LBT的情况不考虑所述LBT优先级和所述CWS而形成所述子集。
  6. 如权利要求1所述的方法,其中,
    基于所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的组合的使用概率,形成所述子集。
  7. 如权利要求6所述的方法,其中,
    所述LBT参数还包括多子帧调度间隙,所述多子帧调度间隙包括每个间隙的LBT类型;并且
    基于所述LBT类型、所述LBT优先级、所述PUSCH起始位置、以及每个间隙的LBT类型的可能参数值之间的组合的使用概率,形成所述子集。
  8. 如权利要求7所述的方法,其中,
    每个间隙的LBT类型的可能参数值包括第二类型LBT和第四类型LBT;并且
    通过对于每个间隙使用第二类型LBT而形成所述子集。
  9. 如权利要求8所述的方法,其中,
    所述多子帧调度间隙还包括多个子帧中除第一子帧以外的剩余子帧的PUSCH起始位置,所述剩余子帧的PUSCH起始位置的可能参数值包括第0符号、第1符号、第0符号之后经过预定值的定时、以及第0符号之后经过所述预定值和定时提前值的定时;并且
    通过对于所述剩余子帧使用第0符号之后经过预定值的定时而形成所述子集。
  10. 如权利要求7所述的方法,其中,
    所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;并且
    对于所述LBT类型为第四类型LBT的情况,通过对于多个子帧的相邻子帧之间不使用间隙而形成所述子集。
  11. 如权利要求6所述的方法,其中,
    所述LBT优先级的可能参数值包括1、2、3和4;并且
    通过从所述全集中排除包含所述LBT优先级为3的组合,形成所述子集。
  12. 如权利要求6所述的方法,其中,
    所述LBT类型的可能参数值包括第二类型LBT和第四类型LBT;
    所述PUSCH起始位置的可能参数值包括第0符号、第1符号、第0符号之后经过预定值的定时、以及第0符号之后经过所述预定值和定时提前值 的定时;并且
    通过从所述全集中排除包含所述LBT类型为第二类型LBT、所述PUSCH起始位置为第1符号的组合,形成所述子集。
  13. 一种基站,用于指示对话前监听LBT参数的参数值,所述基站包括:
    参数值确定单元,被配置为确定LBT参数的参数值,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置;
    索引确定单元,被配置为基于由各个LBT参数的可能参数值的组合形成的全集中的子集,确定用于对所述LBT参数进行联合指示的索引;
    生成单元,被配置为生成包含所述索引的下行链路控制信息;以及
    发送单元,被配置为将所述下行链路控制信息发送至用户设备。
  14. 如权利要求13所述的基站,其中,
    通过从所述全集中排除所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的相冲突的组合,形成所述子集。
  15. 如权利要求13所述的基站,其中,基于所述LBT类型、所述LBT优先级以及所述PUSCH起始位置的可能参数值之间的组合的使用概率,形成所述子集。
  16. 如权利要求15所述的基站,其中,
    所述LBT参数还包括多子帧调度间隙,所述多子帧调度间隙包括每个间隙的LBT类型;并且
    基于所述LBT类型、所述LBT优先级、所述PUSCH起始位置、以及每个间隙的LBT类型的可能参数值之间的组合的使用概率,形成所述子集。
  17. 一种用于在用户设备中确定对话前监听LBT参数的参数值的方法,包括:
    接收下行链路控制信息,所述下行链路控制信息包含用于对LBT参数进行联合指示的索引,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置;以及
    基于由各个LBT参数的可能参数值的组合形成的全集中的子集,根据所述索引确定所述LBT参数的参数值。
  18. 一种用户设备,用于确定对话前监听LBT参数的参数值,所述用户设备包括:
    接收单元,被配置为接收下行链路控制信息,所述下行链路控制信息包含用于对LBT参数进行联合指示的索引,所述LBT参数包括LBT类型、LBT优先级、以及物理上行链路共享信道PUSCH起始位置;以及
    确定单元,被配置为基于由各个LBT参数的可能参数值的组合形成的全集中的子集,根据所述索引确定所述LBT参数的参数值。
PCT/CN2017/096544 2016-08-11 2017-08-09 指示和确定对话前监听参数的方法、基站和用户设备 WO2018028588A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/324,487 US10966250B2 (en) 2016-08-11 2017-08-09 Method for indicating and determining listen-before-talk parameters, base station and user equipment
CN201780044235.2A CN109479243B (zh) 2016-08-11 2017-08-09 指示和确定对话前监听参数的方法、基站和用户设备
EP17838718.9A EP3499976A4 (en) 2016-08-11 2017-08-09 METHOD FOR INDICATING AND DETERMINING LISTENING PARAMETERS BEFORE TRANSMISSION, BASE STATION AND USER EQUIPMENT
JP2019507127A JP6938619B2 (ja) 2016-08-11 2017-08-09 Lbtパラメータを指示・特定する方法、基地局およびユーザ端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610659375.8A CN107734711A (zh) 2016-08-11 2016-08-11 指示和确定对话前监听参数的方法、基站和用户设备
CN201610659375.8 2016-08-11

Publications (1)

Publication Number Publication Date
WO2018028588A1 true WO2018028588A1 (zh) 2018-02-15

Family

ID=61162679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096544 WO2018028588A1 (zh) 2016-08-11 2017-08-09 指示和确定对话前监听参数的方法、基站和用户设备

Country Status (5)

Country Link
US (1) US10966250B2 (zh)
EP (1) EP3499976A4 (zh)
JP (1) JP6938619B2 (zh)
CN (2) CN107734711A (zh)
WO (1) WO2018028588A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3785483A1 (en) * 2018-04-26 2021-03-03 Convida Wireless, Llc Listen-before-talk in beam centric cells
US11411708B2 (en) 2019-01-23 2022-08-09 Lenovo (Singapore) Pte. Ltd. Autonomous bandwidth part switching
US20220330338A1 (en) * 2019-06-28 2022-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Signalling Channel Access Parameters for Uplink Transmissions
CN112655271A (zh) * 2019-07-31 2021-04-13 Oppo广东移动通信有限公司 一种信息传输方法、电子设备及存储介质
CN114557112A (zh) * 2019-08-14 2022-05-27 瑞典爱立信有限公司 发信号通知关于先听后讲参数
CN114503636A (zh) 2019-10-04 2022-05-13 Lg电子株式会社 在无线通信系统中发送/接收信号的方法和支持其的装置
EP3869889B1 (en) 2019-10-17 2023-07-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Indication channel access method and apparatus
WO2021092880A1 (en) * 2019-11-15 2021-05-20 Zte Corporation Listen-before-talk mode indication for wireless communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335550A (zh) * 2008-07-31 2008-12-31 中兴通讯股份有限公司 一种上行控制信道配置参数的配置及发送方法
CN102404854A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统
CN103945505A (zh) * 2013-01-23 2014-07-23 中国电信股份有限公司 长期演进系统非连续接收参数的配置方法与系统
WO2016071741A1 (en) * 2014-11-07 2016-05-12 Nokia Technologies Oy Listen-before-talk channel access

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122751A (ja) * 2007-11-12 2009-06-04 Brother Ind Ltd 無線タグ通信装置
CN104581908B (zh) * 2015-01-30 2018-10-26 深圳酷派技术有限公司 非连续接收模式的参数配置方法和装置
JP6557423B6 (ja) * 2016-01-20 2019-09-18 エルジー エレクトロニクス インコーポレイティド 非免許帯域を支援する無線通信システムにおいて上りリンク信号を送信する方法及びそれを支援する装置
KR102099181B1 (ko) * 2016-06-30 2020-04-09 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 이를 지원하는 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335550A (zh) * 2008-07-31 2008-12-31 中兴通讯股份有限公司 一种上行控制信道配置参数的配置及发送方法
CN102404854A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统
CN103945505A (zh) * 2013-01-23 2014-07-23 中国电信股份有限公司 长期演进系统非连续接收参数的配置方法与系统
WO2016071741A1 (en) * 2014-11-07 2016-05-12 Nokia Technologies Oy Listen-before-talk channel access

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499976A4 *

Also Published As

Publication number Publication date
US10966250B2 (en) 2021-03-30
JP6938619B2 (ja) 2021-09-22
US20190174548A1 (en) 2019-06-06
CN109479243B (zh) 2021-10-08
JP2019525636A (ja) 2019-09-05
CN109479243A (zh) 2019-03-15
CN107734711A (zh) 2018-02-23
EP3499976A1 (en) 2019-06-19
EP3499976A4 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
WO2018028588A1 (zh) 指示和确定对话前监听参数的方法、基站和用户设备
Yi et al. Performance analysis of LTE-LAA network
KR102011051B1 (ko) 무선랜을 위한 방법 및 장치
CN106686691B (zh) 一种随机接入响应rar传输方法及相关设备
EP2941076B1 (en) Method and device for obtaining corresponding relationship between random access parameter and resource
US10893507B2 (en) Method for notifying and determining repetitive pattern of uplink data, user equipment, and base station
EP3166364B1 (en) Physical downlink data channel transmission method, base station and user equipment
US11147033B2 (en) Timing advance determining method and device
US20220399978A1 (en) Method and apparatus for processing harq of sps pdsch and electronic device
JP2016527841A (ja) 無線通信システムにおけるリソース割り当て情報を送受信する方法及び装置
KR20180031002A (ko) 무선 통신 시스템에서의 업링크/다운링크 스케줄링
EP2995152B1 (en) Systems and methods for operation of wireless user devices with cellular and wi-fi interfaces
WO2016138841A1 (zh) 数据传输的方法、反馈信息传输方法及相关设备
CN106911398A (zh) 动态信道协商的水下传感器网络多信道介质访问控制通信方法
CN109565358B (zh) 指示和确定子帧的起始发送定时的方法、基站和用户设备
US20220131649A1 (en) Method and apparatus for determining harq-ack codebook and information
WO2020199822A1 (zh) 资源分配方法及装置、存储介质、用户设备
US20190029018A1 (en) Signal processing method and network device
WO2016154922A1 (zh) 一种时分双工系统中的通信方法及基站、用户设备
KR20180031000A (ko) 무선 통신 시스템에서의 유연한 업링크/다운링크 전송
WO2018171520A1 (zh) 一种数据传输方法、终端设备和接入网设备
WO2017190294A1 (zh) 一种基于授权辅助接入laa系统的上行传输方法及装置
CN112335321B (zh) 用于快速解决冲突的装置和方法
JP5002567B2 (ja) 重複信号を用いたコグニティブ無線通信装置およびその方法
US11172496B2 (en) Subframe scheduling method and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838718

Country of ref document: EP

Effective date: 20190311