WO2018028540A1 - 信道质量信息计算方法、装置及系统 - Google Patents

信道质量信息计算方法、装置及系统 Download PDF

Info

Publication number
WO2018028540A1
WO2018028540A1 PCT/CN2017/096196 CN2017096196W WO2018028540A1 WO 2018028540 A1 WO2018028540 A1 WO 2018028540A1 CN 2017096196 W CN2017096196 W CN 2017096196W WO 2018028540 A1 WO2018028540 A1 WO 2018028540A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
quality information
srs
information
resource
Prior art date
Application number
PCT/CN2017/096196
Other languages
English (en)
French (fr)
Inventor
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17838670.2A priority Critical patent/EP3493438B1/en
Publication of WO2018028540A1 publication Critical patent/WO2018028540A1/zh
Priority to US16/264,333 priority patent/US10893426B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a channel quality information calculation method, apparatus, and system.
  • an evolved base station (eNB) or an e-NodeB needs to know the channel quality information of the user equipment (User Equipment) on the downlink channel, and according to the channel quality information of the downlink channel.
  • Downlink refers to the link or direction in which the eNB sends data to the UE.
  • a channel quality information calculation method including: the UE sends a Sounding Reference Signal (SRS) to the eNB; and the eNB calculates the uplink channel according to the SRS.
  • SRS Sounding Reference Signal
  • Channel estimation information which converts channel estimation information of the uplink channel into channel estimation information of the downlink channel according to channel reciprocity
  • CQI channel quality indicator
  • the CQI calculates the channel quality information of the UE on the downlink channel.
  • the CQI sent by the UE to the eNB is the SNR of each subcarrier to combine the equivalent wideband CQI, and the beamforming gain on each subcarrier is different, the above CQI cannot accurately represent the interference of the downlink channel, resulting in The channel quality information of the downlink channel finally calculated by the eNB is not accurate enough.
  • the embodiment of the present application provides a channel quality information calculation method, device, and system.
  • the technical solution is as follows:
  • a channel quality information calculation method includes:
  • the terminal measures the first channel quality information on the reference signal resource indicated by the downlink configuration command, and sends the first channel quality information to the access network device;
  • the first channel quality information is used for feedback Derived signal information or interference information measured on a reference signal resource;
  • the first channel quality information and the SRS are used to calculate second channel quality information.
  • the terminal sends the first channel quality information to the access network device by using the terminal, where the first channel quality information is information obtained by the terminal measuring the downlink channel, and the first channel quality is obtained.
  • the information can accurately represent the interference situation of the downlink channel, so the problem that the channel quality information of the downlink channel calculated by the eNB in the prior art is not accurate is solved; and the access network device calculates the channel quality information and the SRS according to the first channel quality information.
  • the second channel quality information, the second channel quality information can accurately characterize the effect of the channel quality of the downlink channel.
  • the first channel quality information includes:
  • the quantization interval of the first channel quality information can be made smaller, and the number of quantized bits is smaller, thereby reducing the amount of data that the terminal needs to feed back to the access network device.
  • the reference signal resource corresponds to a plurality of reference signal ports; and the received signal information includes:
  • the terminal only feeds back the partial matrix elements in the covariance matrix to the access network device, which can reduce the amount of data when the terminal feeds back the first channel quality information, and reduce the transmission resources required for the first channel quality information.
  • the first channel quality information includes:
  • the interference information is the interference information
  • the quantization interval of the first channel quality information can be made smaller, and the number of quantized bits is smaller, thereby reducing the amount of data that the terminal needs to feed back to the access network device.
  • the interference information includes:
  • the terminal only feeds back the partial matrix elements in the covariance matrix to the access network device, which can reduce the amount of data when the terminal feeds back the first channel quality information, and reduce the transmission resources required for the first channel quality information.
  • the RSRP is the last reported RSRP; or,
  • the RSRP is the most recently reported RSRP, and the RSRP has the same beam index as the downlink reference signal transmitted on the reference signal resource.
  • the signal measured on the reference signal resource is a non-zero power reference signal.
  • the non-zero power reference signals between the cells belonging to one cell group occupy the same time-frequency resource in one physical resource block PRB; or the non-zero between all cells
  • the power reference signal occupies the same time-frequency resource in one physical resource block PRB.
  • the measured signal on the reference signal resource is a zero power reference signal.
  • the zero-power CSI-RS does not require the access network device to transmit the CSI-RS, which not only reduces the transmission resources required by the access network device, but also reduces the calculation amount of the terminal and reduces the computational burden of the terminal.
  • the first channel quality information further includes: transmit power information when the terminal sends the SRS.
  • the first channel quality information further includes: a receiver type of the terminal or a receiver processing gain.
  • the terminal since the receiver type of the terminal is of many types, in order to calculate a more accurate SNR of the downlink channel, the terminal also carries the receiver type or the receiver processing gain in the first channel quality information, and the access network The device selects a reasonable calculation formula to calculate the second channel quality information according to the receiver type or the receiver processing gain.
  • the reference frequency resource corresponding to the frequency domain bandwidth includes n sub-bands, each sub-band corresponding to the respective first channel quality information, where n is a positive integer;
  • the broadband in the frequency domain bandwidth corresponding to the reference signal resource corresponds to the same first channel quality information.
  • the time domain resource occupied by the reference signal resource, the time domain resource occupied by the SRS, and the time domain resource occupied by the first channel quality information belong to the same time domain unit;
  • the time domain unit is a time slot, a subframe, or a transmission time interval.
  • the time domain unit includes n symbols, and n is a positive integer
  • the first channel quality information occupies an X5th to X6th OFDM symbol of the time domain unit, and X5 ⁇ X6 ⁇ n-1.
  • the time domain unit includes n symbols, and n is a positive integer
  • the first channel quality information occupies an X5th to X6th OFDM symbol of the time domain unit, and X4 ⁇ X5 ⁇ X6 ⁇ n-1.
  • the SRS occupies several OFDM symbols in the time domain, and occupies several frequency domain units in the frequency domain;
  • the SRS is transmitted in a frequency hopping manner in the plurality of frequency domain units, and the sounding reference signals in different OFDM symbols occupy different frequency domain units;
  • Different of the frequency domain units belong to a discontinuous frequency domain bandwidth or a continuous frequency domain bandwidth
  • the frequency domain unit occupied by the first channel quality information is the same as the corresponding frequency domain unit in the last OFDM symbol occupied by the SRS;
  • the SRS within the last OFDM symbol is a demodulation pilot signal of the first channel quality information.
  • the time domain unit includes n symbols, and n is a positive integer
  • the SRS and the first channel quality information occupy different OFDM symbols in a manner of sequentially interleaving in a Z3 OFDM symbol to a Z4th OFDM symbol of the time domain unit, where X2 ⁇ X3 ⁇ X4 ⁇ n-1 .
  • the time domain unit includes n symbols, and n is a positive integer
  • the SRS and the first channel quality information occupy the same Z3 OFDM symbol to the Z4th OFDM symbol in the time domain unit, and X2 ⁇ X3 ⁇ X4 ⁇ n-1.
  • the SRS and the first channel quality information respectively occupy two sets of subcarriers in the same frequency domain bandwidth in the frequency domain, and the two sets of subcarriers respectively correspond to odd subcarriers and even subnumbers Carrier.
  • the SRS in each of the OFDM symbols employs a sequence resource and a different cyclic shift value, the cyclic shift value being used to indicate the first channel quality information.
  • the downlink configuration command is further configured to configure a first time-frequency resource, where the first time-frequency resource is a time-frequency resource used for transmitting the SRS.
  • the downlink configuration command is further configured to configure a sequence resource of the SRS, or the sequence resource and code resource of the SRS.
  • the downlink configuration command is further configured to configure a second time-frequency resource, where the second time-frequency resource is a time-frequency resource used for transmitting the first channel quality information.
  • the downlink configuration command further includes signaling for triggering the terminal to report the first channel quality information.
  • the downlink configuration instruction is used to configure an OFDM symbol position and/or a physical resource block PRB location corresponding to the reference signal resource;
  • the OFDM symbol position includes: a start symbol index and a total symbol number occupied by the reference signal resource, or the start symbol index and the end symbol index;
  • the PRB location includes: a PRB index in all transmission bandwidths occupied by the reference signal resource, and the plurality of PRBs are non-contiguous PRBs or consecutive PRBs.
  • the downlink configuration command is used to configure an OFDM symbol position and/or a physical resource block PRB position corresponding to the first time-frequency resource;
  • the OFDM symbol position includes: a start symbol index and a total symbol number occupied by the SRS, or the start symbol index and the end symbol index;
  • the PRB location includes: a PRB index in the total transmission bandwidth occupied by the SRS, the SRS is hopped and transmitted in the transmission bandwidth, and the plurality of PRBs are non-contiguous PRBs or consecutive PRBs;
  • the transmission bandwidth occupied by the SRS in each of the OFDM symbols is the same or different.
  • the downlink configuration command is used to configure an OFDM symbol position and/or a physical resource block PRB location corresponding to the second time-frequency resource;
  • the OFDM symbol position includes: a start symbol index and a total symbol number occupied by the first channel quality information, or the start symbol index and the end symbol index;
  • the PRB location includes: a PRB index in all transmission bandwidths occupied by the first channel quality information, and the plurality of PRBs are non-contiguous PRBs or consecutive PRBs.
  • the downlink configuration command is a UE specific instruction, or a UE group specific instruction.
  • a channel quality information calculation method includes:
  • the access network device sends a downlink configuration command to the terminal
  • the access network device receives the first channel quality information that is sent by the terminal, where the first channel quality information is measured by the terminal according to the reference signal resource indicated by the downlink configuration instruction;
  • the access network device receives a sounding reference signal SRS sent by the terminal according to the downlink configuration command;
  • the first channel quality information and the SRS are used to calculate second channel quality information.
  • the method further includes:
  • the access network device calculates channel estimation information of the downlink channel of the terminal according to the SRS;
  • the access network device calculates interference information according to the received signal information and channel estimation information of the downlink channel
  • the access network device calculates a signal-to-noise ratio (SNR) of the downlink channel according to the interference information and channel estimation information of the downlink channel, and determines the SNR as the Second channel quality information.
  • SNR signal-to-noise ratio
  • the method further includes:
  • the access network device calculates channel estimation information of the downlink channel of the terminal according to the SRS;
  • the access network device calculates a signal to noise ratio SNR of the downlink channel according to the interference information and channel estimation information of the downlink channel, and determines the SNR as the second channel quality information.
  • the first channel quality information includes:
  • the reference signal resource corresponds to a plurality of reference signal ports; and the received signal information includes:
  • the first channel quality information includes:
  • the interference information is the interference information
  • the interference information includes:
  • the RSRP is the last reported RSRP; or,
  • the RSRP is the most recently reported RSRP, and the RSRP has the same beam index as the downlink reference signal transmitted on the reference signal resource.
  • the signal measured on the reference signal resource is a non-zero power reference signal.
  • the non-zero power reference signals between the cells belonging to one cell group occupy the same time-frequency resource in one physical resource block PRB; or the non-zero between all cells
  • the power reference signal occupies the same time-frequency resource in one physical resource block PRB.
  • the measured signal on the reference signal resource is a zero power reference signal.
  • the first channel quality information further includes: transmit power information when the terminal sends the SRS.
  • the first channel quality information further includes: a receiver type of the terminal or a receiver processing gain.
  • the reference frequency resource corresponding to the frequency domain bandwidth includes n sub-bands, each sub-band corresponding to the respective first channel quality information, where n is a positive integer;
  • the broadband in the frequency domain bandwidth corresponding to the reference signal resource corresponds to the same first channel quality information.
  • the time domain resource occupied by the reference signal resource, the time domain resource occupied by the SRS, and the time domain resource occupied by the first channel quality information belong to the same time domain unit;
  • the time domain unit is a time slot, a subframe, or a transmission time interval.
  • the time domain unit includes n symbols, and n is a positive integer
  • the first channel quality information occupies an X5th to X6th OFDM symbol of the time domain unit, and X5 ⁇ X6 ⁇ n-1.
  • the time domain unit includes n symbols, and n is a positive integer
  • the first channel quality information occupies an X5th to X6th OFDM symbol of the time domain unit, and X4 ⁇ X5 ⁇ X6 ⁇ n-1.
  • the SRS occupies several OFDM symbols in the time domain, and occupies several frequency domain units in the frequency domain;
  • the SRS is transmitted in a frequency hopping manner in the plurality of frequency domain units, and the sounding reference signals in different OFDM symbols occupy different frequency domain units;
  • Different of the frequency domain units belong to a discontinuous frequency domain bandwidth or a continuous frequency domain bandwidth
  • the frequency domain unit occupied by the first channel quality information is the same as the corresponding frequency domain unit in the last OFDM symbol occupied by the SRS;
  • the SRS within the last OFDM symbol is a demodulation pilot signal of the first channel quality information.
  • the time domain unit includes n symbols, and n is a positive integer
  • the SRS and the first channel quality information occupy different OFDM symbols in a manner of sequentially interleaving in a Z3 OFDM symbol to a Z4th OFDM symbol of the time domain unit, where X2 ⁇ X3 ⁇ X4 ⁇ n-1 .
  • the time domain unit includes n symbols, and n is a positive integer
  • the SRS and the first channel quality information occupy the same Z3 OFDM symbol to the Z4th OFDM symbol in the time domain unit, and X2 ⁇ X3 ⁇ X4 ⁇ n-1.
  • the SRS and the first channel quality information respectively occupy two sets of subcarriers in the same frequency domain bandwidth in the frequency domain, and the two sets of subcarriers respectively correspond to odd subcarriers and even subnumbers Carrier.
  • the SRS in each of the OFDM symbols employs a sequence resource and a different cyclic shift value, the cyclic shift value being used to indicate the first channel quality information.
  • the downlink configuration command is further configured to configure a first time-frequency resource, where the first time-frequency resource is a time-frequency resource used for transmitting the SRS.
  • the downlink configuration command is further configured to configure a sequence resource of the SRS, or the sequence resource and code resource of the SRS.
  • the downlink configuration command is further configured to configure a second time-frequency resource, where the second time-frequency resource is a time-frequency resource used for transmitting the first channel quality information.
  • the downlink configuration command further includes signaling for triggering the terminal to report the first channel quality information.
  • the downlink configuration instruction is used to configure an OFDM symbol position and/or a physical resource block PRB location corresponding to the reference signal resource;
  • the OFDM symbol position includes: a start symbol index and a total symbol number occupied by the reference signal resource, or the start symbol index and the end symbol index;
  • the PRB location includes: a PRB index in all transmission bandwidths occupied by the reference signal resource, and the plurality of PRBs are non-contiguous PRBs or consecutive PRBs.
  • the downlink configuration command is used to configure an OFDM symbol position and/or a physical resource block PRB position corresponding to the first time-frequency resource;
  • the OFDM symbol position includes: a start symbol index and a total symbol number occupied by the reference signal resource, or the start symbol index and the end symbol index;
  • the PRB location includes: a PRB index in the total transmission bandwidth occupied by the SRS, the SRS is hopped and transmitted in the transmission bandwidth, and the plurality of PRBs are non-contiguous PRBs or consecutive PRBs;
  • the transmission bandwidth occupied by the SRS in each of the OFDM symbols is the same or different.
  • the downlink configuration command is used to configure an OFDM symbol position and/or a physical resource block PRB location corresponding to the second time-frequency resource;
  • the OFDM symbol position includes: a start symbol index and a total symbol number occupied by the first channel quality information, or the start symbol index and the end symbol index;
  • the PRB location includes: a PRB index in all transmission bandwidths occupied by the first channel quality information, and the plurality of PRBs are non-contiguous PRBs or consecutive PRBs.
  • the embodiment of the present application provides a channel quality information calculation apparatus, where the channel quality information calculation includes at least one unit, where the at least one unit is used to implement any one of the foregoing first aspect or the first aspect.
  • the channel quality information calculation method provided by the mode provided by the mode.
  • the embodiment of the present application provides a channel quality information computing device, where the channel quality information computing device includes at least one unit, and the at least one unit is configured to implement any one of the foregoing second aspect or the second aspect.
  • the channel quality information calculation method provided by the implementation.
  • an embodiment of the present application provides a terminal, where the terminal includes a processor and a memory, where the memory is used to store one or more instructions, where the instruction is indicated as being executed by the processor,
  • the processor is configured to execute the instructions to implement the channel quality information calculation method provided by any one of the foregoing first aspect or the first aspect.
  • an embodiment of the present application provides an access network device, where the access network device includes a processor and a memory, where the memory is configured to store one or more instructions, where the instruction is indicated by the Executing by the processor, the processor is configured to execute the instruction to implement a channel quality information calculation method provided by any one of the foregoing second aspect or the second aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the channel quality information provided by the foregoing first aspect or any one of the first aspects may be stored.
  • An executable program for the calculation method is stored.
  • the embodiment of the present application provides a computer readable storage medium, where the channel quality information calculation provided by the foregoing second aspect or the second aspect is implemented.
  • the executable program of the method is implemented.
  • the embodiment of the present application provides a channel quality information calculation system, where the channel quality information calculation system includes: a terminal and an access network device, where the terminal includes any one of the foregoing third aspect or the third aspect.
  • the channel quality information computing device provided by the design; the access network device comprising the channel quality information computing device provided by any of the possible aspects of the fourth aspect or the fourth aspect above.
  • the embodiment of the present application provides a channel quality information calculation system, where the channel quality information calculation system includes: a terminal and an access network device, where the terminal includes any one of the fifth aspect or the fifth aspect, The channel quality information computing device provided by the design; the access network device comprising the channel quality information computing device provided by any of the possible aspects of the sixth aspect or the sixth aspect.
  • FIG. 1 is a schematic structural diagram of a channel quality information calculation system according to an embodiment of the present application.
  • FIG. 2 is a structural block diagram of a terminal provided by an embodiment of the present application.
  • FIG. 3 is a structural block diagram of an access network device according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for calculating channel quality information provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for calculating channel quality information according to another embodiment of the present application.
  • FIG. 6 is a flowchart of a channel quality information calculation method according to another embodiment of the present application.
  • FIG. 7 is a flowchart of a method for calculating channel quality information provided by another embodiment of the present application.
  • FIG. 8 is a schematic diagram of C resource occupancy of an SRS in a time domain unit according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of resource occupation of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of resource occupation of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of resource occupation of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to an embodiment of the present disclosure
  • 12A is a schematic diagram of resource occupation of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to an embodiment of the present disclosure
  • 12B is a schematic diagram of resource occupation of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of resource occupation of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of resource occupancy of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to an embodiment of the present disclosure
  • 15 is a schematic diagram of resource occupation of a downlink configuration command, a reference signal resource, a first time-frequency resource, and a second time-frequency resource on a time-frequency resource according to another embodiment of the present disclosure
  • 16 is a schematic diagram of resource occupation of a downlink configuration command, a reference signal resource, a first time-frequency resource, and a second time-frequency resource on a time-frequency resource according to another embodiment of the present disclosure
  • FIG. 17 is a block diagram of a channel quality information computing apparatus according to another embodiment of the present application.
  • FIG. 18 is a block diagram of a channel quality information computing apparatus according to another embodiment of the present application.
  • a “module” as referred to herein refers to a program or instruction stored in a memory that is capable of implementing certain functions;
  • "unit” as referred to herein refers to a functional structure that is logically divided, the “unit” may be Pure hardware implementation, or a combination of hardware and software.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic structural diagram of a channel quality information calculation system 100 provided by an embodiment of the present application.
  • the channel quality information computing system 100 can be an LTE system or a 5G system.
  • the channel quality information computing system 100 includes at least one terminal 120 and at least one access network device 140.
  • the terminal 120 may be a Personal Communication Service (PCS) telephone, a cordless telephone, a Session Initiation Protocol (SIP) telephone, a Wireless Local Loop (WLL) station, or a Personal Digital Assistant (PDA). And other equipment.
  • the terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, and a remote. Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the terminal 120 communicates with one or more access network devices 140 via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the access network device 140 can be a base station as a router between the terminal 120 and the rest of the access network, and the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • eNB evolved base station
  • gNB in the 5G New Radio (NR) system, which is not limited in this application.
  • the following embodiments are exemplified by the access network device 140 being an eNB.
  • FIG. 2 is a block diagram showing the structure of a terminal 120 provided by an embodiment of the present application.
  • the terminal 120 includes a processor 21, a transceiver 22, and a memory 23.
  • the processor 21 includes one or more processing cores, and the processor 21 executes various functional applications and information processing by running software programs and modules.
  • the transceiver 22 includes a receiver Rx and a transmitter Tx.
  • the transceiver 22 can also be implemented as a communication chip.
  • the communication chip can include a receiving module, a transmitting module, a modem module, and the like, for modulating and demodulating information. The information is received or transmitted via a wireless signal.
  • the memory 23 is connected to the processor 21.
  • the memory 23 can be used to store software programs as well as modules.
  • the memory can store an operating system 24, at least one of the functions described by the application module 25.
  • the application module 25 includes at least a receiving module 251 for receiving information, a processing module 252 for processing information, and a transmitting module 253 for transmitting information.
  • the receiving module 251 is configured to receive a downlink configuration command sent by the access network device.
  • the processing module 252 is configured to: first channel quality information is measured on the reference signal resource indicated by the downlink configuration command, and first channel quality information is sent to the access network device; the first channel quality information is used for feedback on the reference signal resource. Measured received signal information or interference information;
  • a sending module 253, configured to send a sounding reference signal SRS to the access network device;
  • the first channel quality information and the SRS are used to calculate second channel quality information.
  • the second channel quality information is used to characterize the channel quality of the downlink channel of the terminal.
  • the second channel quality information is SNR.
  • the processor 21 is configured to execute each module in the application module 25 to implement the steps required by the terminal in FIG. 5, FIG. 6, and FIG.
  • the memory 23 is a computer readable storage medium that can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable and programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable and programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • the structure of the terminal 120 shown in FIG. 2 does not constitute a limitation on the access network device, and may include more or less components or combinations of components, or different components. Assembly of parts.
  • FIG. 3 is a block diagram showing the structure of an access network device 140 according to an embodiment of the present application.
  • the access network device includes a processor 31, a transceiver 32, and a memory 33.
  • the processor 31 includes one or more processing cores, and the processor 31 executes various functional applications and information processing by running software programs and modules.
  • the transceiver 32 includes a receiver Rx and a transmitter Tx.
  • the transceiver 32 can also be implemented as a communication chip.
  • the communication chip can include a receiving module, a transmitting module, a modem module, etc., for modulating and demodulating information. The information is received or transmitted via a wireless signal.
  • the memory 33 is connected to the processor 31.
  • Memory 33 can be used to store software programs as well as modules.
  • the memory can store an operating system 34, at least one of the functions described by the application module 35.
  • the application module 35 includes at least a receiving module 351 for receiving information, a processing module 352 for processing information, and a transmitting module 353 for transmitting information.
  • the sending module 353 is configured to send a downlink configuration command to the terminal, where the receiving module 351 is configured to receive the first channel quality information that is sent by the terminal, where the first channel quality information is that the terminal is instructed according to the downlink configuration command.
  • the receiving module 351 is configured to receive the sounding reference signal SRS sent by the terminal according to the downlink configuration command, and the processing module 352 is configured to calculate the second data according to the first channel quality information and the SRS.
  • Channel quality information is used to characterize the channel quality of the downlink channel of the terminal.
  • the second channel quality information is SNR.
  • the processor 31 is configured to execute each module in the application module 35 to implement the steps required by the access network device in FIG. 5, FIG. 6, and FIG.
  • memory 33 is a computer readable medium that can be implemented by any type of volatile or nonvolatile memory device, or a combination thereof, such as static random access memory (SRAM), electrically erasable and programmable only Read memory (EEPROM), erasable programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable and programmable only Read memory
  • EPROM erasable programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory magnetic memory
  • flash memory magnetic or optical disk.
  • the structure of the access network device 140 illustrated in FIG. 3 does not constitute a limitation on the access network device, and may include more or less components or combinations of certain components than illustrated. Or different parts arrangement.
  • FIG. 4 is a flowchart of a channel quality information calculation method provided by an embodiment of the present application. This embodiment is exemplified by applying the channel quality information calculation method to the channel quality information calculation system shown in FIG. 1. The method includes:
  • Step 401 The access network device sends a downlink configuration command to the terminal.
  • the downlink configuration instruction is used to configure a reference signal resource.
  • the reference signal resource is a time-frequency resource occupied by the downlink reference signal.
  • Step 402 The terminal receives a downlink configuration command sent by the access network device.
  • Step 403 The terminal measures the first channel quality information on the reference signal resource indicated by the downlink configuration command.
  • the first channel quality information includes: received signal information measured on the reference signal resource, or interference information measured on the reference signal resource.
  • the received signal information is: sum information of the signal information and the interference information sent by the access network device.
  • the interference information is information for describing the sum of interference and noise.
  • the characterization form of the first channel quality information is: Channel-Slate Information (CSI).
  • CSI Channel-Slate Information
  • Step 404 The terminal sends the first channel quality information to the access network device.
  • Step 405 The access network device receives the first channel quality information sent by the terminal.
  • Step 406 The terminal sends an SRS to the access network device.
  • Step 407 The access network device receives the SRS sent by the terminal.
  • Step 408 The access network device calculates second channel quality information according to the first channel quality information and the SRS.
  • the second channel quality information is used to characterize the channel quality of the downlink channel of the terminal.
  • the second channel quality information is characterized by: an SNR of the downlink channel.
  • step 406 may be performed before the step 404, or may be performed simultaneously with the step 404, which is not limited in this embodiment.
  • the channel quality information calculation method provided by the embodiment sends the first channel quality information to the access network device by using the terminal, where the first channel quality information is information obtained by the terminal measuring the downlink channel, and the first channel quality is obtained.
  • the information can accurately represent the interference situation of the downlink channel, so the problem that the channel quality information of the downlink channel calculated by the eNB in the prior art is not accurate is solved; and the access network device calculates the channel quality information and the SRS according to the first channel quality information.
  • the second channel quality information, the second channel quality information can accurately characterize the effect of the channel quality of the downlink channel.
  • the downlink reference signal transmitted on the reference signal resource is a Channel-Slate Information Reference Signals (CSI-RS).
  • CSI-RS Channel-Slate Information Reference Signals
  • NZP Non-Zero-Power
  • ZP Zero-Power
  • the NZP CSI-RS is a CSI-RS transmitted by the access network device to the terminal; the ZP CSI-RS is a CSI-RS transmitted by the neighboring access network device of the access network device to the terminal.
  • the embodiment of the present application provides a parallel implementation of the FIG. 5 embodiment and the FIG. 6 embodiment.
  • the embodiment of the present application provides the embodiment of FIG. 7.
  • FIG. 5 is a flowchart of a channel quality information calculation method provided by another embodiment of the present application. This embodiment is exemplified by applying the channel quality information calculation method to the channel quality information calculation system shown in FIG. 1. The method includes:
  • Step 501 The access network device sends a downlink configuration command to the terminal.
  • the downlink configuration instruction is used to configure a reference signal resource.
  • the reference signal resource is a time-frequency resource occupied by the NZP CSI-RS.
  • the time domain resources include: Orthogonal Frequency-Division Multiplexing (OFDM) symbol index occupied by CSI-RS, and the frequency domain resources occupied by CSI-RS include: physical resource blocks (English) : Physical Resource Block, referred to as: PRB) index.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • PRB Physical Resource Block index
  • the NZP CSI-RS is simply referred to as CSI-RS.
  • the downlink configuration command is further configured to configure a first time-frequency resource, where the first time-frequency resource is a resource used for transmitting the SRS.
  • the time domain resource includes: an OFDM symbol index occupied by the SRS
  • the frequency domain resource includes: a PRB index occupied by the SRS.
  • the downlink configuration instruction is further configured to: configure a sequence resource, or a sequence resource and a code resource, required to generate the SRS.
  • the sequence resource is a base sequence number of the Zadoff-Chu sequence;
  • the code resource is a cyclic shift number of the Zadoff-Chu sequence, and/or the code resource is an index of the orthogonal spreading code of the Zadoff-Chu sequence.
  • the downlink configuration command is further configured to configure a second time-frequency resource, where the second time-frequency resource is a resource used for transmitting the first channel quality information.
  • the time domain resource includes: an OFDM symbol index occupied by the first channel quality information, where the frequency domain resource includes: a PRB index occupied by the first channel quality information.
  • the downlink configuration command further includes signaling for triggering the terminal to report the first channel quality information.
  • the downlink configuration command is dynamic information, or UE-specific signaling, or UE group-specific signaling.
  • Step 502 The terminal receives a downlink configuration instruction sent by the access network device.
  • the terminal acquires reference signal resources from the downlink configuration command.
  • the terminal further acquires time-frequency resources for transmitting the SRS from the downlink configuration command.
  • the terminal further acquires a sequence resource used to generate the SRS, or a sequence resource and a code resource, from the downlink configuration command.
  • Step 503 The access network device sends a downlink reference signal to the terminal by using a reference signal resource.
  • the CSI-RS is a non-zero power CSI-RS.
  • the access network device sends the CSI-RS to the terminal according to the first transmit power on the reference signal resource.
  • Step 504 The terminal measures the first signal quality information on the reference signal resource.
  • the first signal quality information carries received signal information.
  • the terminal measures the received signal information on the reference signal resource.
  • the reference signal resource corresponds to multiple reference signal ports.
  • One form of representation of the received signal information is: information of the received signal on each of the reference signal ports measured by the terminal on each of the receiving antennas, that is, the received signal matrix.
  • the received signal matrix of the CSI-RS is YN*M
  • the dimension of YN*M is N rows and M columns
  • N is the number of receiving antennas of the terminal
  • M is the number of transmitting antennas of the access network equipment
  • H is the downlink channel of the access network device to the terminal
  • S is the signal information sent by the access network device to the terminal
  • I is the interference information.
  • S is represented by a signal whose power is normalized to one.
  • the terminal receives the signal matrix YN*M as received signal information.
  • Step 505 The terminal sends an SRS to the access network device.
  • the terminal generates an SRS according to the sequence resources configured in the downlink configuration signaling.
  • the terminal generates an SRS according to the sequence resource and the code resource configured in the downlink configuration signaling.
  • the terminal sends the SRS to the access network device by using the time-frequency resource configured in the downlink configuration information.
  • the terminal sends the SRS to the access network device according to the second transmit power.
  • Step 506 The access network device receives the SRS sent by the terminal.
  • the access network device receives the SRS sent by the terminal according to the time-frequency resource configured in the downlink configuration command.
  • Step 507 The terminal generates first channel quality information that carries received signal information, where the first channel quality information carries received signal information.
  • the first channel quality information is represented by CSI.
  • the CSI carries: receiving signal information.
  • the received signal information is a received signal matrix YN*M that characterizes information of the received signals measured by the terminal on the respective reference signal ports on the respective receive antennas.
  • the received signal information can be considered as the sum information of the signal information HS and the interference information I.
  • the first channel quality information further includes: sending power information when the terminal sends the SRS.
  • the transmission power information is represented by any one of absolute transmission power (ie, second transmission power), closed loop power control parameters, and power headroom information.
  • the Power Headroom is the maximum transmit power of the terminal - the second transmit power.
  • the maximum transmit power of the terminal refers to the maximum transmit power of the terminal configured by the access network device, and is not the actual maximum transmit power of the terminal.
  • Step 508 The terminal sends the first channel quality information to the access network device.
  • the terminal sends the first channel quality information, that is, CSI, to the access network device according to the second time-frequency resource configured by the downlink configuration command.
  • Step 510 The access network device receives the first channel quality information sent by the terminal.
  • the access network device receives the first channel quality information, that is, CSI, sent by the terminal according to the second time-frequency resource configured by the downlink configuration command.
  • Step 511 The access network device calculates second channel quality information according to the first channel quality information and the SRS.
  • the second channel quality information is an SNR of the downlink channel.
  • the step includes the following steps:
  • the access network device calculates the channel estimation information H_U of the uplink channel according to the SRS;
  • the access network device calculates a power ratio ⁇ according to the first transmit power of the CSI-RS and the second transmit power of the SRS;
  • the access network device obtains the received signal information YN*M from the first channel quality information
  • the access network device calculates the interference information I.
  • the access network device calculates the interference information I by the following formula:
  • YN*M is the received signal information
  • H_D is the channel estimation information of the downlink channel
  • S is the signal information sent by the access network device in the CSI-RS.
  • the access network device calculates the SNR of the downlink channel according to the interference information I and the channel estimation information H_D.
  • the access network device uses the SNR of the downlink channel as the second channel quality information, and the second channel quality information is used to characterize the channel quality of the downlink channel.
  • the channel quality information calculation method provided by the embodiment sends the first channel quality information to the access network device by using the terminal, where the first channel quality information is received signal information obtained by the terminal measuring the downlink channel, and the receiving The signal information is the sum information of the interference information and the signal information. Since the first channel quality information can accurately represent the interference situation of the downlink channel, the channel quality information of the downlink channel calculated by the eNB in the prior art is not accurate enough.
  • the problem is that the access network device calculates the second channel quality information according to the first channel quality information and the SRS, and the second channel quality information can accurately represent the channel quality of the downlink channel.
  • the received signal information can be characterized in other forms.
  • the received signal information includes respective elements of a covariance matrix of received signals on respective reference signal ports measured on respective receive antennas. That is, the received signal information includes a covariance matrix of the received signal.
  • Y is the received signal matrix and YH is the conjugate transposed matrix of the received signal matrix.
  • the dimension of the covariance matrix R(Y) is N rows and N columns, and N is the number of receiving antennas of the terminal.
  • the access network device calculates the channel estimation information H_U of the uplink channel according to the SRS;
  • the access network device calculates a power ratio ⁇ according to the first transmit power of the CSI-RS and the second transmit power of the SRS;
  • the access network device calculates a covariance matrix R(H) of the channel estimation information H_D of the downlink channel;
  • H is a matrix of channel estimation information H_D and HH is a conjugate transposed matrix of H.
  • the access network device obtains a covariance matrix R(Y) from the first channel quality information
  • the access network device calculates the interference information I.
  • the access network device calculates the covariance matrix R(I) of the interference information I by the following formula:
  • R(I) R(Y)-R(H).
  • the access network device calculates the SNR of the downlink channel according to the covariance matrix R(I) of the interference information and the channel estimation information R(H) of the downlink channel.
  • the terminal in order to reduce the amount of data when the terminal feeds back the covariance matrix R(Y) to the access network device, the terminal only feeds back part of the covariance matrix R(Y) to the access network device. element.
  • the received signal information includes any one of the following five types of information:
  • each main diagonal element of the covariance matrix of the received signal is a matrix element located on a diagonal line from the upper left to the lower right of the covariance matrix;
  • a fourth type a main diagonal element of each of the main diagonal elements of the covariance matrix of the received signal, and a difference value of the other main diagonal elements with respect to the main diagonal element;
  • the access network device After receiving the main diagonal elements of the covariance matrix R(Y), the access network device sets the non-primary diagonal elements in the covariance matrix R(Y) to zero.
  • the access network device receives one of the main diagonal elements of the main diagonal elements of the covariance matrix R(Y)
  • the other main diagonal elements in the covariance matrix R(Y) are set to receive the main diagonal elements, and the non-primary diagonal elements in the covariance matrix R(Y) are all set to zero.
  • the access network device After receiving the average value of each main diagonal element of the covariance matrix R(Y), the access network device sets each main diagonal element in the covariance matrix R(Y) to The received average value sets the non-primary diagonal elements in the covariance matrix R(Y) to zero.
  • the access network device receives one of the main diagonal elements of the main diagonal elements of the covariance matrix R(Y), and the difference value of the other main diagonal elements with respect to the main diagonal elements. , restoring the other main diagonal elements of the covariance matrix R(Y) according to the known main diagonal elements and the respective difference values; setting the non-primary diagonal elements in the covariance matrix R(Y) to 0 .
  • the access network device receives the average value of each main diagonal element of the covariance matrix R(Y), and the difference value of each main diagonal element with respect to the average value, according to the known The average value and each difference value restore each main diagonal element of the covariance matrix R(Y); the non-primary diagonal elements in the covariance matrix R(Y) are all set to zero.
  • the terminal only feeds back the partial matrix elements in the covariance matrix to the access network device, which can reduce the amount of data when the terminal feeds back the first channel quality information, and reduce the transmission resources required for the first channel quality information.
  • the reference signal received power (English: Reference Signal Received Power, RSRP for short) is also used.
  • the received signal information is quantized. That is, the terminal uses the ratio of the received signal information to the RSRP as the first channel quality information.
  • the ratio of each matrix element in the received signal information to the RSRP is used as the first channel quality information, or The ratio of RSPP to each matrix element in the received signal information is used as the first channel quality information.
  • the RSRP is the RSRP reported by the terminal last time. Or, the RSRP is the last reported RSRP, and the RSRP has the same beam index as the downlink reference signal transmitted on the reference signal resource.
  • the first channel quality information is obtained.
  • the received signal information is represented by a received signal matrix, and the ratio of each matrix element to the RSRP in the access signal matrix is quantized by the quantization interval in Table 1 below to obtain a corresponding quantized bit.
  • the quantization bit is 0.
  • the quantization process is performed separately.
  • the received signal matrix may also be quantized by the quantization interval in Table 1 to obtain first channel quality information.
  • the range of each matrix element can be limited to a smaller range, the quantization interval is smaller, and the number of bits finally quantized is also less, thereby reducing the terminal.
  • FIG. 6 is a flowchart of a channel quality information calculation method provided by another embodiment of the present application. This embodiment is exemplified by applying the channel quality information calculation method to the channel quality information calculation system shown in FIG. 1. The method includes:
  • Step 601 The access network device sends a downlink configuration command to the terminal.
  • the downlink configuration instruction is used to configure a reference signal resource.
  • the reference signal resource is a time-frequency resource occupied by the NZP CSI-RS.
  • the time domain resource includes: an OFDM symbol index occupied by the CSI-RS, and the frequency domain resources occupied by the CSI-RS include: a PRB index.
  • the NZP CSI-RS is simply referred to as CSI-RS.
  • the downlink configuration command is further configured to configure a first time-frequency resource, where the first time-frequency resource is a resource used for transmitting the SRS.
  • the time domain resource includes: an OFDM symbol index occupied by the SRS
  • the frequency domain resource includes: a PRB index occupied by the SRS.
  • the downlink configuration instruction is further configured to: configure a sequence resource, or a sequence resource and a code resource, required to generate the SRS.
  • the sequence resource is a base sequence number of the Zadoff-Chu sequence;
  • the code resource is a cyclic shift number of the Zadoff-Chu sequence, and/or the code resource is an index of the orthogonal spreading code of the Zadoff-Chu sequence.
  • the downlink configuration command is further configured to configure a second time-frequency resource, where the second time-frequency resource is a resource used for transmitting the first channel quality information.
  • the time domain resource includes: an OFDM symbol index occupied by the first channel quality information, where the frequency domain resource includes: a PRB index occupied by the first channel quality information.
  • the downlink configuration command further includes signaling for triggering the terminal to report the first channel quality information.
  • the downlink configuration command is dynamic information, or UE-specific signaling, or UE group-specific signaling.
  • Step 602 The terminal receives a downlink configuration command sent by the access network device.
  • the terminal acquires reference signal resources from the downlink configuration command.
  • the terminal further acquires time-frequency resources for transmitting the SRS from the downlink configuration command.
  • the terminal further acquires a sequence resource used to generate the SRS, or a sequence resource and a code resource, from the downlink configuration command.
  • Step 603 The access network device sends a downlink reference signal to the terminal by using a reference signal resource.
  • the CSI-RS is a non-zero power CSI-RS.
  • the access network device sends the CSI-RS to the terminal according to the first transmit power on the reference signal resource.
  • Step 604 The terminal measures first signal quality information on the reference signal resource, where the first signal quality information carries interference information.
  • the first signal quality information carries interference information.
  • the step includes the following substeps:
  • the terminal measures the received signal information on the reference signal resource.
  • the reference signal resource corresponds to multiple reference signal ports.
  • One form of representation of the received signal information is: information of the received signal on each of the reference signal ports measured by the terminal on each of the receiving antennas, that is, the received signal matrix.
  • the received signal matrix of the CSI-RS is YN*M
  • the dimension of YN*M is N rows and M columns
  • N is the number of receiving antennas of the terminal
  • M is the number of transmitting antennas of the access network equipment
  • H is the downlink channel of the access network device to the terminal
  • S is the signal information sent by the access network device to the terminal
  • I is the interference information
  • the terminal calculates channel estimation information of the downlink channel according to a preset channel estimation algorithm
  • the terminal performs channel estimation on the CSI-RS according to a predetermined channel estimation algorithm, and calculates a channel estimation matrix H_D of the downlink channel.
  • the predetermined channel estimation algorithm includes, but is not limited to, at least one of Least-Square channel estimation, Minimum Mean Square Error (MMSE) channel estimation, and Wiener channel estimation.
  • MMSE Minimum Mean Square Error
  • the terminal obtains the interference information I by the following formula.
  • the interference information I is an interference signal matrix IN*M
  • the dimension of the interference signal matrix IN*M is N rows and M columns
  • N is the number of receiving antennas of the terminal
  • M is the number of transmitting antennas of the access network device.
  • Step 605 The terminal sends an SRS to the access network device.
  • the terminal generates an SRS according to the sequence resources configured in the downlink configuration signaling.
  • the terminal generates an SRS according to the sequence resource and the code resource configured in the downlink configuration signaling.
  • the terminal sends the SRS to the access network device by using the time-frequency resource configured in the downlink configuration information.
  • the terminal sends the SRS to the access network device according to the second transmit power.
  • Step 606 The access network device receives the SRS sent by the terminal.
  • the access network device receives the SRS sent by the terminal according to the time-frequency resource configured in the downlink configuration command.
  • Step 607 The terminal generates first channel quality information that carries interference information.
  • the first channel quality information is represented by CSI.
  • the CSI carries: interference information.
  • the interference information I is an interference signal matrix IN*M which characterizes the information of the interference signals on the respective reference signal ports measured by the terminal on the respective receiving antennas.
  • the first channel quality information further includes: sending power information when the terminal sends the SRS.
  • the transmission power information is represented by any one of absolute transmission power (ie, second transmission power), closed loop power control parameters, and power headroom information.
  • the Power Headroom is the maximum transmit power of the terminal - the second transmit power.
  • the maximum transmit power of the terminal refers to the maximum transmit power of the terminal configured by the access network device, and is not the actual maximum transmit power of the terminal.
  • Step 608 The terminal sends the first channel quality information to the access network device.
  • the terminal sends the first channel quality information, that is, CSI, to the access network device according to the second time-frequency resource configured by the downlink configuration command.
  • Step 609 The access network device receives the first channel quality information sent by the terminal.
  • the access network device receives the first channel quality information, that is, CSI, sent by the terminal according to the second time-frequency resource configured by the downlink configuration command.
  • Step 610 The access network device calculates second channel quality information according to the first channel quality information and the SRS.
  • the second channel quality information is a signal-to-noise ratio (SNR) of the downlink channel (English: Signal-to-Noise Ratio, SNR for short).
  • SNR signal-to-noise ratio
  • the step includes the following steps:
  • the access network device calculates the channel estimation information H_U of the uplink channel according to the SRS;
  • the access network device calculates a power ratio ⁇ according to the first transmit power of the CSI-RS and the second transmit power of the SRS;
  • the access network device obtains interference information YN*M from the first channel quality information
  • the access network device calculates the SNR of the downlink channel according to the interference information I and the channel estimation information H_D.
  • the access network device uses the SNR of the downlink channel as the second channel quality information, and the second channel quality information is used to characterize the channel quality of the downlink channel.
  • the channel quality information calculation method provided by the embodiment sends the first channel quality information to the access network device by using the terminal, where the first channel quality information is interference information obtained by the terminal measuring the downlink channel, because the first The channel quality information can accurately represent the interference situation of the downlink channel, so that the problem that the channel quality information of the downlink channel calculated by the eNB in the prior art is not accurate is solved; and the access network device is configured according to the first channel quality information and The SRS calculates the second channel quality information, and the second channel quality information can accurately characterize the channel quality of the downlink channel.
  • the calculation amount of the access network device when calculating the second channel quality information is small, which can reduce the computational burden of the access network device.
  • FIG. 7 is a flowchart of a channel quality information calculation method provided by another embodiment of the present application. This embodiment is exemplified by applying the channel quality information calculation method to the channel quality information calculation system shown in FIG. 1. The method includes:
  • Step 701 The access network device sends a downlink configuration command to the terminal.
  • the downlink configuration instruction is used to configure a reference signal resource.
  • the reference signal resource is a time-frequency resource occupied by the NZP CSI-RS.
  • the time domain resource includes: an OFDM symbol index occupied by the CSI-RS, and the frequency domain resources occupied by the CSI-RS include: a PRB index.
  • the NZP CSI-RS is simply referred to as CSI-RS.
  • the downlink configuration command is further configured to configure a first time-frequency resource, where the first time-frequency resource is a resource used for transmitting the SRS.
  • the time domain resource includes: an OFDM symbol index occupied by the SRS
  • the frequency domain resource includes: a PRB index occupied by the SRS.
  • the downlink configuration instruction is further configured to: configure a sequence resource, or a sequence resource and a code resource, required to generate the SRS.
  • the sequence resource is the base sequence number of the Zadoff-Chu sequence
  • the code resource is for the Zadoff-Chu sequence
  • the cyclic shift number, and/or, the code resource is an index to the orthogonal spreading code of the Zadoff-Chu sequence.
  • the downlink configuration command is further configured to configure a second time-frequency resource, where the second time-frequency resource is a resource used for transmitting the first channel quality information.
  • the time domain resource includes: an OFDM symbol index occupied by the first channel quality information, where the frequency domain resource includes: a PRB index occupied by the first channel quality information.
  • the downlink configuration command further includes signaling for triggering the terminal to report the first channel quality information.
  • the downlink configuration command is dynamic information, or UE-specific signaling, or UE group-specific signaling.
  • Step 702 The terminal receives a downlink configuration instruction sent by the access network device.
  • the terminal acquires reference signal resources from the downlink configuration command.
  • the terminal further acquires time-frequency resources for transmitting the SRS from the downlink configuration command.
  • the terminal further acquires a sequence resource used to generate the SRS, or a sequence resource and a code resource, from the downlink configuration command.
  • Step 703 The other access network device sends the downlink reference signal to the terminal by using the reference signal resource.
  • the CSI-RS is a zero power CSI-RS.
  • the CSI-RS is sent by the other access network device to the terminal according to the first transmit power on the reference signal resource.
  • Step 704 The terminal measures first signal quality information on the reference signal resource, where the first signal quality information carries interference information.
  • the terminal directly measures the interference information on the reference signal resources.
  • the reference signal resource corresponds to multiple reference signal ports, and one form of the interference information is: information of the interference signal on each reference signal port measured by the terminal on each receiving antenna, that is, the interference signal matrix IN*M .
  • N is the number of receiving antennas of the terminal, and M is the number of transmitting antennas of the access network device.
  • the first signal quality information carries interference information.
  • Step 705 The terminal sends an SRS to the access network device.
  • the terminal generates an SRS according to the sequence resources configured in the downlink configuration signaling.
  • the terminal generates an SRS according to the sequence resource and the code resource configured in the downlink configuration signaling.
  • the terminal sends the SRS to the access network device by using the time-frequency resource configured in the downlink configuration information.
  • the terminal sends the SRS to the access network device according to the second transmit power.
  • Step 706 The access network device receives the SRS sent by the terminal.
  • the access network device receives the SRS sent by the terminal according to the time-frequency resource configured in the downlink configuration command.
  • Step 707 The terminal generates first channel quality information that carries interference information.
  • the first channel quality information is represented by CSI.
  • the CSI carries: interference information.
  • the interference information I is an interference signal matrix IN*M which characterizes the information of the interference signals on the respective reference signal ports measured by the terminal on the respective receiving antennas.
  • the first channel quality information further includes: sending power information when the terminal sends the SRS.
  • the transmission power information is represented by any one of absolute transmission power (ie, second transmission power), closed loop power control parameters, and power headroom information.
  • the Power Headroom is the maximum transmit power of the terminal - the second transmit power.
  • the maximum transmit power of the terminal refers to the maximum transmit power of the terminal configured by the access network device, and is not the actual maximum transmit power of the terminal.
  • Step 708 The terminal sends the first channel quality information to the access network device.
  • the terminal sends the first channel quality information, that is, CSI, to the access network device according to the second time-frequency resource configured by the downlink configuration command.
  • Step 709 The access network device receives the first channel quality information sent by the terminal.
  • the access network device receives the first channel quality information, that is, CSI, sent by the terminal according to the second time-frequency resource configured by the downlink configuration command.
  • Step 710 The access network device calculates second channel quality information according to the first channel quality information and the SRS.
  • the second channel quality information is a signal-to-noise ratio (SNR) of the downlink channel (English: Signal-to-Noise Ratio, SNR for short).
  • SNR signal-to-noise ratio
  • the step includes the following steps:
  • the access network device calculates the channel estimation information H_U of the uplink channel according to the SRS;
  • the access network device calculates a power ratio ⁇ according to the first transmit power of the CSI-RS and the second transmit power of the SRS;
  • the first transmit power may be equivalently replaced by the access network device using other transmit power.
  • the access network device uses the transmit power when transmitting data to the terminal itself as the first transmit power.
  • the access network device obtains interference information YN*M from the first channel quality information
  • the access network device calculates the SNR of the downlink channel according to the interference information I and the channel estimation information H_D.
  • the access network device uses the SNR of the downlink channel as the second channel quality information, and the second channel quality information is used to characterize the channel quality of the downlink channel.
  • the channel quality information calculation method provided by the embodiment sends the first channel quality information to the access network device by using the terminal, where the first channel quality information is interference information obtained by the terminal measuring the downlink channel, because the first The channel quality information can accurately represent the interference situation of the downlink channel, so that the problem that the channel quality information of the downlink channel calculated by the eNB in the prior art is not accurate is solved; and the access network device is configured according to the first channel quality information and The SRS calculates the second channel quality information, and the second channel quality information can accurately characterize the channel quality of the downlink channel.
  • the zero-power CSI-RS does not require the access network device to transmit the CSI-RS, which not only reduces the transmission resources required by the access network device, but also reduces the calculation amount of the terminal and reduces the computational burden of the terminal.
  • the interference information may be characterized in other forms.
  • the interference information comprises: respective elements of a covariance matrix of interference signals on respective reference signal ports measured on respective receive antennas. That is, the interference information includes a covariance matrix of the interference signal.
  • I is the interference signal matrix and IH is the conjugate transposed matrix of the interference signal matrix I.
  • the dimension of the covariance matrix R(I) is N rows and N columns, and N is the number of receiving antennas of the terminal.
  • step 610 or step 710 are instead implemented as follows:
  • the access network device calculates the channel estimation information H_U of the uplink channel according to the SRS;
  • the access network device calculates a power ratio ⁇ according to the first transmit power of the CSI-RS and the second transmit power of the SRS;
  • the access network device calculates a covariance matrix R(H) of the channel estimation information H_D of the downlink channel;
  • H is a matrix of channel estimation information H_D and HH is a conjugate transposed matrix of H.
  • the access network device obtains a covariance matrix R(I) from the first channel quality information
  • the access network device calculates the SNR of the downlink channel according to the covariance matrix R(I) of the interference information and the channel estimation information R(H) of the downlink channel.
  • the terminal in order to reduce the amount of data when the terminal feeds back the covariance matrix R(I) to the access network device, the terminal only feeds back the covariance matrix R(I) to the access network device. Part of the element.
  • the interference information includes any one of the following five types of information:
  • each main diagonal element of the covariance matrix of the interference signal is a matrix element located on the diagonal line from the upper left to the lower right of the covariance matrix;
  • a fourth type a main diagonal element of each of the main diagonal elements of the covariance matrix of the interference signal, and a difference value of the other main diagonal elements with respect to the main diagonal element;
  • the fifth type the average value of each main diagonal element of the covariance matrix of the interference signal, and the difference value of each main diagonal element with respect to the average value.
  • the access network device After receiving the main diagonal elements of the covariance matrix R(I), the access network device sets the non-primary diagonal elements in the covariance matrix R(I) to zero.
  • the access network device receives one of the main diagonal elements of the main diagonal elements of the covariance matrix R(I)
  • the other main diagonal elements in the covariance matrix R(I) are obtained. Both are set to receive the main diagonal elements, and the non-primary diagonal elements in the covariance matrix R(I) are all set to zero.
  • the access network device After receiving the average value among the main diagonal elements of the covariance matrix R(I), the access network device sets each main diagonal element in the covariance matrix R(I) to The received average value sets the non-primary diagonal elements in the covariance matrix R(I) to zero.
  • the access network device receives one of the main diagonal elements of the main diagonal elements of the covariance matrix R(I), and the difference value of the other main diagonal elements with respect to the main diagonal elements. Recovering the other main diagonal elements of the covariance matrix R(I) according to the known main diagonal elements and the respective difference values; setting the non-primary diagonal elements in the covariance matrix R(I) to 0 .
  • the access network device receives the average value of each of the main diagonal elements of the covariance matrix R(I), and the difference value of each main diagonal element with respect to the average value, according to the known The average value and each difference value restore each main diagonal element of the covariance matrix R(I); the non-primary diagonal elements in the covariance matrix R(I) are all set to zero.
  • the terminal only feeds back the partial matrix elements in the covariance matrix to the access network device, which can reduce the amount of data when the terminal feeds back the first channel quality information, and reduce the transmission resources required for the first channel quality information.
  • reference signal received power in order to reduce the amount of data when the terminal feeds back interference information to the access network device, reference signal received power (RSRP) is also used for interference. Information is quantified. That is, the terminal uses the ratio of the interference information to the RSRP as the first channel quality information.
  • the ratio of each matrix element in the interference information to the RDRP is used as the first channel quality information, or the RSPP is The ratio of each matrix element in the interference information is used as the first channel quality information.
  • the RSRP is the RSRP reported by the terminal last time. Or, the RSRP is the last reported RSRP, and the RSRP has the same beam index as the downlink reference signal transmitted on the reference signal resource.
  • the first channel quality information is obtained.
  • the interference information is represented by a received signal matrix, and the ratio of each matrix element to the RSRP in the interference information matrix is quantized by the quantization interval in Table 1 above to obtain a corresponding quantization bit.
  • the quantization bit is 0.
  • the quantization process is performed separately.
  • the interference information matrix may also be quantized using the quantization interval in Table 1 to obtain first channel quality information.
  • the range of each matrix element can be limited to a smaller range, the quantization interval is smaller, and the number of bits finally quantized is also less, thereby reducing the terminal feedback.
  • the amount of data in the first channel quality information reduces the transmission resources required for the first channel quality information.
  • the second channel quality information is calculated according to a predetermined formula.
  • the access network device calculates the second channel quality information according to the following formula:
  • H is the channel estimation matrix of the downlink channel
  • HH is the conjugate transposed matrix of H
  • Es is the transmitted signal power, usually Es is assumed to be 1
  • hi is the channel estimation vector corresponding to the i-th layer data
  • hi is H
  • the i-th column data is the SNR of the i-th layer data.
  • the terminal in order to calculate a more accurate SNR of the downlink channel, the terminal further carries a receiver type or a receiver processing gain in the first channel quality information, by the access network device. According to the receiver type or the receiver processing gain, a reasonable calculation formula is selected to calculate the second channel quality information.
  • the time domain resources configured by the downlink configuration command are divided according to symbol granularity.
  • the downlink configuration command is used to configure an OFDM symbol position and/or a PRB position corresponding to the reference signal resource;
  • the OFDM symbol position includes: a start symbol index and a total symbol number occupied by the reference signal resource, or an initial symbol index and a termination symbol index;
  • the PRB location includes: a PRB index in the total transmission bandwidth occupied by the reference signal resource, and the plurality of PRBs are non-contiguous PRBs or consecutive PRBs.
  • the downlink configuration command is used to configure an OFDM symbol position and/or a PRB location corresponding to the first time-frequency resource
  • the OFDM symbol position includes: a start symbol index and a total symbol number occupied by the reference signal resource, or an initial symbol index and a termination symbol index;
  • the PRB location includes: a PRB index in the entire transmission bandwidth occupied by the SRS, the SRS is frequency hopped and transmitted in the transmission bandwidth, and the plurality of PRBs are non-contiguous PRBs or consecutive PRBs;
  • the SRS occupies the same or different transmission bandwidth in each OFDM symbol.
  • the SRS flexibly configures the PRB within the transmission bandwidth occupied by each OFDM symbol.
  • the SRS occupies a second OFDM symbol, a third OFDM symbol, a fourth OFDM symbol, and a fifth OFDM symbol in the time domain T.
  • the SRS occupies PRB 7 in the frequency domain F;
  • the SRS occupies PRB 4 and PRB 5 in the frequency domain;
  • the SRS is in the frequency domain
  • the upper part occupies PRB 1, PRB 2 and PRB 3; in the 5th symbol, the SRS occupies PRB 0 in the frequency domain.
  • the downlink configuration command is used to configure an OFDM symbol position and/or a PRB location corresponding to the second time-frequency resource
  • the OFDM symbol position includes: a start symbol index and a total symbol number occupied by the first channel quality information, or an initial symbol index and a termination symbol index;
  • the PRB location includes: a PRB index in all transmission bandwidths occupied by the first channel quality information, and the plurality of PRBs are non-contiguous PRBs or consecutive PRBs.
  • the terminal needs to send the first channel quality information and the SRS information to the access network device.
  • the order of sending the first channel quality information and the SRS is not limited in this embodiment of the present application.
  • the first channel quality information is sent before the SRS, or the SRS is sent before the first channel quality information, or the SRS and the first channel quality information are sent alternately, or the SRS and the first channel quality information are sent simultaneously.
  • the time domain resource occupied by the reference signal resource, the time domain resource occupied by the SRS, and the time domain resource occupied by the first channel quality information belong to the same time domain unit.
  • the time domain resource occupied by the downlink configuration command, the time domain resource occupied by the reference signal resource, the time domain resource occupied by the SRS, and the time domain resource occupied by the first channel quality information belong to the same time domain unit.
  • the access network device can obtain the SNR of the downlink channel of the terminal quickly and accurately in a time domain unit.
  • the reference signal resource is a time-frequency resource occupied by the CSI-RS
  • the first time-frequency resource is a time-frequency resource occupied by the SRS
  • the second time-frequency resource is a time-frequency resource occupied by the CSI.
  • the transmission timing between each information or reference signal is explained.
  • the time domain unit is a slot, a subframe, or a Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • a slot includes 7 OFDM symbols
  • a subframe includes 14 OFDM symbols
  • a TTI includes 14 OFDM symbols.
  • FIG. 9 is a schematic diagram of resource occupancy of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of resource occupancy of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to another embodiment of the present application.
  • the SRS and CSI in FIG. 10 and FIG. 11 occupy different OFDM symbols in a manner of sequentially interleaving from the Z3 OFDM symbol to the Z4th OFDM symbol.
  • SRS and CSI may occupy different frequency bands; SRS and CSI may also occupy the same frequency band, as shown in FIG. 12A or FIG. 12B.
  • CSI uses SRS as a demodulation pilot signal. .
  • FIG. 13 is a schematic diagram of resource occupancy of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to another embodiment of the present application.
  • the CSI occupies each of the X3 to X4 symbols of the time domain unit, and the SRS and the CSI occupy different subcarriers.
  • FIG. 14 is a schematic diagram of resource occupancy of a reference signal resource, a first time-frequency resource, and a second time-frequency resource in a time domain unit according to another embodiment of the present application.
  • the SRS is sent before the CSI-RS, and after receiving the SRS, the access network device measures the uplink channel of the terminal, and determines, according to the measurement result, a suitable precoding matrix to perform CSI-RS in the same frequency domain bandwidth. Precoding, transmitting the precoded CSI-RS to the terminal, the terminal obtains the CSI based on the precoded CSI-RS measurement, and feeds back the CSI to the access network device.
  • the abscissa in FIGS. 9 to 14 is the time domain T, and the ordinate is the frequency domain F.
  • the time domain resource occupied by the downlink configuration command may also be a symbol in an earlier time domain unit.
  • FIG. 15 is a schematic diagram of resource occupation of a downlink configuration command, a reference signal resource, a first time-frequency resource, and a second time-frequency resource on a time-frequency resource according to another embodiment of the present application.
  • the downlink configuration signaling occupies the 0th symbol in the time domain and the PRB 0 in the frequency domain.
  • the CSI-RS occupies the 0th symbol in the time domain and occupies PRB n, PRB n+1, PRB n+2, and PRB n+3 in the frequency domain.
  • the SRS occupies the 2nd symbol, the 3rd symbol, the 4th symbol, and the 5th symbol in the time domain, and occupies PRB n, PRB n+1, PRB n+2, and PRB n+3 in the frequency domain.
  • the CSI occupies the sixth symbol in the time domain and occupies the PRB n in the frequency domain.
  • the SRS is transmitted in a frequency hopping manner in multiple frequency domain units, and the SRS is occupied by different symbols.
  • the frequency domain unit is different.
  • the multiple frequency domain units occupied by the SRS belong to a non-contiguous frequency domain bandwidth or a continuous frequency domain bandwidth.
  • the frequency domain unit PRB n occupied by the CSI is the same as the frequency domain unit PRB n corresponding to the last symbol occupied by the SRS.
  • the access network device uses the SRS as a demodulation pilot signal of the CSI.
  • FIG. 16 is a schematic diagram of resource occupation of a downlink configuration command, a reference signal resource, a first time-frequency resource, and a second time-frequency resource on a time-frequency resource according to another embodiment of the present application.
  • the downlink configuration signaling occupies the 0th symbol in the time domain and the PRB 0 in the frequency domain.
  • the CSI-RS occupies the 0th symbol in the time domain and occupies PRB n, PRB n+1, PRB n+2, and PRB n+3 in the frequency domain.
  • the SRS occupies the 2nd symbol, the 3rd symbol, the 4th symbol, and the 5th symbol in the time domain, and occupies the PRB n, PRB n+1, PRB n+2, and PRB n+3 in the frequency domain.
  • the first set of subcarriers occupies the 2nd symbol, the 3rd symbol, the 4th symbol, and the 5th symbol in the time domain, and occupies the PRB n, PRB n+1, PRB n+2, and PRB n+3 in the frequency domain.
  • the CSI occupies the 2nd symbol, the 3rd symbol, the 4th symbol, and the 5th symbol in the time domain, and occupies the PRB n, PRB n+1, PRB n+2, and PRB n+3 in the frequency domain.
  • the second set of subcarriers occupies the 2nd symbol, the 3rd symbol, the 4th symbol, and the 5th symbol in the time domain, and occupies the PRB n, PRB n+1, PRB n+2, and PRB n+3 in the frequency domain.
  • the first group of subcarriers are odd subcarriers
  • the second group of subcarriers are even subcarriers
  • the first group of subcarriers are even subcarriers
  • the second group of subcarriers are odd subcarriers.
  • the SRS and the CSI occupy the same symbol in the time domain, and respectively occupy two sets of subcarriers in the same frequency domain bandwidth in the frequency domain, and the two sets of subcarriers respectively correspond to the odd and even subcarriers;
  • the SRS and the CSI occupy the same symbol in the time domain, occupy the same frequency domain bandwidth in the frequency domain, and the SRS in an OFDM symbol is transmitted by using a Zadoff-Chu sequence and different cyclic shift values, and the cyclic shift is performed.
  • the bit value is used to indicate the first channel quality information.
  • the quantization interval of CSI in Table 1 is 8 intervals, which correspond to 8 cyclic shifts respectively.
  • the Zadoff-Chu sequence is cyclically shifted 5 to generate an SRS, and the SRS is sent to the access network device. Since the cyclic shift 5 of the SRS can indicate the quantization interval of the CSI, it is not necessary to explicitly indicate the CSI at this time, and the cyclic shift 5 is directly used to implicitly indicate the CSI.
  • the first channel quality information corresponds to at least one sub-band. That is, the terminal feeds back the first channel quality information corresponding to different subbands.
  • the reference signal resource (the resource occupied by the CSI-RS) is divided into at least two sub-bands, each sub-band includes a plurality of PRBs, and the terminal feeds back the first channel quality information corresponding to the sub-band on each sub-band.
  • the first channel quality information corresponds to a broadband corresponding to the reference signal resource. Even in some optional embodiments, the first channel quality information corresponds to a broadband corresponding to the entire downlink bandwidth.
  • the CSI-RSs of non-zero power between the cells belonging to one cell group occupy the same time-frequency resources in one PRB; or The zero-power CSI-RS occupies the same time-frequency resources in one PRB.
  • FIG. 17 is a block diagram showing a channel quality information computing apparatus provided by an embodiment of the present application.
  • the message transmitting device can be implemented as a whole or a part of the terminal through a dedicated hardware circuit or a combination of hardware and software.
  • the message transmitting apparatus includes a receiving unit 1720, a processing unit 1720, and a transmitting unit 1740.
  • the receiving unit 1720 is configured to implement the receiving functions of the foregoing steps 402, 502, 602, and 702, and other implicit steps of receiving information by the terminal.
  • the processing unit 1720 is configured to implement the functions of the foregoing steps 403, 504, 507, 604, 607, 704, and 707, and other implicit steps or data for processing information by the terminal.
  • the sending unit 1740 is configured to implement the sending functions of the foregoing steps 404, 406, 505, 508, 605, 608, 705, and 708, and other implicit steps of transmitting information by the terminal.
  • the receiving unit 1720 may be implemented by a receiver, or may be matched by a processor.
  • the processing unit 1740 can be implemented by a processor, or the processor can execute the program instructions in the memory.
  • the sending unit 1760 can be implemented by a transmitter, or the processor can be implemented by using a transmitter.
  • FIG. 18 is a block diagram of a channel quality information computing apparatus according to another embodiment of the present application.
  • the message sending device may be implemented as a whole or part of the access network terminal or the first access network device by a dedicated hardware circuit or a combination of hardware and software.
  • the message transmitting apparatus includes a transmitting unit 1820, a processing unit 1840, and a receiving unit 1840.
  • the sending unit 1820 is configured to implement the sending functions in the foregoing steps 401, 501, 503, 601, 603, and 701, and other implicit steps of sending information by the access network terminal.
  • the processing unit 1840 is configured to implement the foregoing steps 408, 510, 610, and step 710, and other implicit steps of processing information by the access network device.
  • the receiving unit 1840 is configured to implement the receiving functions in the foregoing steps 405, 407, 506, 509, 606, 609, 706, and 709, and other implicit steps of receiving information by the access network device.
  • the foregoing sending unit 1820 may be implemented by a transmitter, or the processor may be implemented by using a transmitter; the processing unit 1840 may be implemented by a processor, or the processor may execute a program instruction in a memory; the receiving Unit 1860 can be implemented by receiver Rx or by a processor in conjunction with a receiver.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本申请公开了一种信道质量信息计算方法、装置及系统,属于通信领域。所述方法包括:终端接收接入网设备发送的下行配置指令;终端在所述下行配置指令所指示的参考信号资源上测量得到第一信道质量信息,向所述接入网设备发送所述第一信道质量信息;终端向所述接入网设备发送SRS;接入网设备根据所述第一信道质量信息和所述SRS计算第二信道质量信息。由于第一信道质量信息能够较为准确地表征下行信道的干扰情况,所以解决了现有技术中eNB计算得到的下行信道的信道质量信息不够准确的问题;达到了接入网设备计算到的第二信道质量信息,能够准确表征下行信道的信道质量的效果。

Description

信道质量信息计算方法、装置及系统
本申请要求于2016年08月10日提交中国专利局、申请号为201610658300.8、发明名称为“信道质量信息计算方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,特别涉及一种信道质量信息计算方法、装置及系统。
背景技术
在长期演进(Long Term Evolution,LTE)技术中,演进型基站(evolutional Node B,eNB或e-NodeB)需要获知用户设备(User Equipment)在下行信道的信道质量信息,根据下行信道的信道质量信息向UE发送下行数据。下行是指eNB向UE发送数据的链路或方向。
在采用时分双工(Time Division Duplexing,TDD)的LTE中,提供有一种信道质量信息计算方法,包括:UE向eNB发送探测参考信号(Sounding Reference Signal,SRS);eNB根据SRS计算得到上行信道的信道估计信息,根据信道互易性将上行信道的信道估计信息换算为下行信道的信道估计信息;UE向eNB发送信道质量指示(Channel-Quality Indicator,CQI),eNB根据下行信道的信道估计结果和CQI计算得到UE在下行信道的信道质量信息。
由于UE向eNB发送的CQI是每个子载波的SNR进行合并等效后的宽带CQI,而每个子载波上的波束赋形增益是不同的,所以上述CQI无法准确地代表下行信道的干扰情况,导致eNB最终计算得到的下行信道的信道质量信息不够准确。
发明内容
为了解决现有技术中eNB所计算得到的下行信道的信道质量信息不够准确的问题,本申请实施例提供了一种信道质量信息计算方法、装置及系统。所述技术方案如下:
根据本申请实施例的第一方面,提供了一种信道质量信息计算方法,所述方法包括:
终端接收接入网设备发送的下行配置指令;
终端在所述下行配置指令所指示的参考信号资源上测量得到第一信道质量信息,向所述接入网设备发送所述第一信道质量信息;所述第一信道质量信息用于反馈在所述参考信号资源上测量得到的接收信号信息或者干扰信息;
终端向所述接入网设备发送探测参考信号SRS;
其中,所述第一信道质量信息和所述SRS用于计算第二信道质量信息。
综上所述,本实现方式中的信道质量信息计算方法,通过终端向接入网设备发送第一信道质量信息,第一信道质量信息是终端对下行信道进行测量得到的信息,第一信道质量信息能够较为准确地表征下行信道的干扰情况,所以解决了现有技术中eNB计算得到的下行信道的信道质量信息不够准确的问题;达到了接入网设备根据第一信道质量信息和SRS计算得到第二信道质量信息,第二信道质量信息能够准确表征下行信道的信道质量的效果。
在一种可能的设计中,所述第一信道质量信息包括:
所述接收信号信息;
或,所述接收信号信息与所述终端上报的参考信号接收功率(英文:Reference Signal Received Power,简称:RSRP)的比值。
综上所述,当采用接收信号信息与RSRP的比值时,能够使得第一信道质量信息的量化区间更小,量化后的比特数更少,从而减少终端需要向接入网设备反馈的数据量。
在一种可能的设计中,所述参考信号资源对应若干个参考信号端口;所述接收信号信息包括:
在各个接收天线上测量的各个所述参考信号端口上的接收信号的信息;
或,所述接收信号的协方差矩阵的各个元素;
或,所述接收信号的协方差矩阵的各个主对角元素;
或,所述接收信号的协方差矩阵的各个主对角元素中的一个主对角元素;
或,所述接收信号的协方差矩阵的各个主对角元素的平均值;
或,所述接收信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于所述主对角元素的差分值;
或,所述接收信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对于所述平均值的差分值。
综上所述,通过终端仅向接入网设备反馈协方差矩阵中的部分矩阵元素,能够减少终端在反馈第一信道质量信息时的数据量,减少第一信道质量信息所需要的传输资源。
在一种可能的设计中,所述第一信道质量信息包括:
所述干扰信息;
或,所述干扰信息与所述终端上报的参考信号接收功率RSRP的比值。
当采用干扰信息与RSRP的比值时,能够使得第一信道质量信息的量化区间更小,量化后的比特数更少,从而减少终端需要向接入网设备反馈的数据量。
在一种可能的设计中,所述干扰信息包括:
在各个接收天线上测量的各个所述参考信号端口上的所述干扰信号;
或,所述干扰信号的协方差矩阵;
或,所述干扰信号的协方差矩阵的各个主对角元素;
或,所述干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素;
或,所述干扰信号的协方差矩阵的各个主对角元素的平均值;
或,所述干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于所述主对角元素的差分值;
或,所述干扰信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对于所述平均值的差分值。
综上所述,通过终端仅向接入网设备反馈协方差矩阵中的部分矩阵元素,能够减少终端在反馈第一信道质量信息时的数据量,减少第一信道质量信息所需要的传输资源。
在一种可能的设计中,所述RSRP是最近一次上报的RSRP;或者,
所述RSRP是最近一次上报的RSRP,且所述RSRP与所述参考信号资源上传输的下行参考信号具有相同的波束索引。
在一种可能的设计中,在所述参考信号资源上所测量到的信号为非零功率参考信号。
在一种可能的设计中,属于一个小区组的各个小区之间的所述非零功率参考信号在一个物理资源块PRB中占用的时频资源相同;或,所有小区之间的所述非零功率参考信号在一个物理资源块PRB中占用的时频资源相同。
在一种可能的设计中,在所述参考信号资源上所测量到的信号为零功率参考信号。
由于零功率的CSI-RS不需要接入网设备发送CSI-RS,不仅减少了接入网设备所需要耗费的发射资源,还能够降低终端的计算量,减轻终端的计算负担。
在一种可能的设计中,所述第一信道质量信息还包括:所述终端在发送所述SRS时的发送功率信息。
在一种可能的设计中,所述第一信道质量信息还包括:所述终端的接收机类型或接收机处理增益。
综上所述,由于终端的接收机类型为很多种类型,为了计算更为准确的下行信道的SNR,终端在第一信道质量信息中还携带接收机类型或接收机处理增益,由接入网设备根据接收机类型或接收机处理增益,选择合理的计算公式计算第二信道质量信息。
在一种可能的设计中,所述参考信号资源对应的频域带宽内包括n个子带,每个子带对应各自的所述第一信道质量信息,n为正整数;
或,所述参考信号资源对应的频域带宽内的宽带对应同一个所述第一信道质量信息。
在一种可能的设计中,所述参考信号资源所占用的时域资源、所述SRS所占用的时域资源和所述第一信道质量信息所占用的时域资源属于同一时域单元;
其中,所述时域单元是时隙、子帧或传输时间间隔。
在一种可能的设计中,所述时域单元包括n个符号,n为正整数;
所述参考信号资源占用一个时域单元中的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
所述SRS占用所述时域单元的第X3至X4个OFDM符号,X3=X2+m2,m2为大于等于1的整数,X3≤X4;
所述第一信道质量信息占用所述时域单元的第X5个至第X6个OFDM符号,X5≤X6≤n-1。
在一种可能的设计中,所述时域单元包括n个符号,n为正整数;
所述探测参考信号占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
所述SRS占用所述时域单元的第X3个至第X4个OFDM符号,X3=X2+m2,m2为大于等于1的整数,X4=X3或X3+1;
所述第一信道质量信息占用所述时域单元的第X5个至第X6个OFDM符号,X4<X5≤X6≤n-1。
在一种可能的设计中,所述SRS在时域上占用若干个OFDM符号,在频域上占用若干个频域单元;
所述SRS在所述若干个频域单元内采用跳频的方式传输,不同的所述OFDM符号内的所述探测参考信号占用不同的所述频域单元;
不同的所述频域单元属于非连续的频域带宽或连续的频域带宽;
在一种可能的设计中,在同一个所述时域单元中,所述第一信道质量信息占用的频域单元与所述SRS占用的最后一个OFDM符号内对应的频域单元相同;
在所述最后一个OFDM符号内的所述SRS是所述第一信道质量信息的解调导频信号。
在一种可能的设计中,所述时域单元包括n个符号,n为正整数;
所述参考信号资源占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
所述SRS和所述第一信道质量信息在所述时域单元的第Z3个OFDM符号至第Z4个OFDM符号中采用依次交错的方式占用不同的OFDM符号,X2≤X3≤X4≤n-1。
在一种可能的设计中,所述时域单元包括n个符号,n为正整数;
所述参考信号资源占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
所述SRS和所述第一信道质量信息在所述时域单元占用相同的第Z3个OFDM符号至第Z4个OFDM符号,X2<X3≤X4≤n-1。
在一种可能的设计中,所述SRS和第一信道质量信息在频域上分别占用相同的频域带宽内的两组子载波,所述两组子载波分别对应于奇数子载波和偶数子载波。
在一种可能的设计中,在各个所述OFDM符号中的所述SRS采用序列资源和不同的循环移位值,所述循环移位值用于指示所述第一信道质量信息。
在一种可能的设计中,所述下行配置指令占用所述时域单元的前k个OFDM符号,k=1或2或3或4。
在一种可能的设计中,所述下行配置指令还用于配置第一时频资源,所述第一时频资源是用于传输所述SRS的时频资源。
在一种可能的设计中,所述下行配置指令还用于配置所述SRS的序列资源,或者,所述SRS的所述序列资源和码资源。
在一种可能的设计中,所述下行配置指令还用于配置第二时频资源,所述第二时频资源是用于传输所述第一信道质量信息的时频资源。
在一种可能的设计中,所述下行配置指令还包括用于触发终端上报第一信道质量信息的信令。
在一种可能的设计中,所述下行配置指令用于配置所述参考信号资源对应的OFDM符号位置和/或物理资源块PRB位置;
所述OFDM符号位置包括:所述参考信号资源占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
所述PRB位置包括:所述参考信号资源占用的全部传输带宽中的PRB索引,所述若干个PRB是非连续的PRB或者连续的PRB。
在一种可能的设计中,所述下行配置指令用于配置所述第一时频资源对应的OFDM符号位置和/或物理资源块PRB位置;
所述OFDM符号位置包括:所述SRS占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
所述PRB位置包括:所述SRS占用的全部传输带宽中的PRB索引,所述SRS在所述传输带宽中跳频传输,所述若干个PRB是非连续的PRB或者连续的PRB;
其中,所述SRS在每个所述OFDM符号中所占用的所述传输带宽相同或不同。
在一种可能的设计中,所述下行配置指令用于配置所述第二时频资源对应的OFDM符号位置和/或物理资源块PRB位置;
所述OFDM符号位置包括:所述第一信道质量信息占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
所述PRB位置包括:所述第一信道质量信息占用的全部传输带宽中的PRB索引,所述若干个PRB是非连续的PRB或者连续的PRB。
在一种可能的设计中,所述下行配置指令是UE特定的指令,或UE组特定的指令。
根据本申请实施例的第二方面,提供了一种信道质量信息计算方法,所述方法包括:
接入网设备向终端发送下行配置指令;
所述接入网设备接收所述终端发送的第一信道质量信息,所述第一信道质量信息是所述终端根据所述下行配置指令所指示的参考信号资源上所测量得到的;
所述接入网设备接收所述终端根据所述下行配置指令发送的探测参考信号SRS;
其中,所述第一信道质量信息和所述SRS用于计算第二信道质量信息。
在一种可能的设计中,所述方法还包括:
所述接入网设备从所述第一信道质量信息中获取所述终端的接收信号信息;
所述接入网设备根据所述SRS计算得到所述终端的下行信道的信道估计信息;
所述接入网设备根据所述接收信号信息和所述下行信道的信道估计信息计算得到干扰信息;
所述接入网设备根据所述干扰信息和所述下行信道的信道估计信息,计算得到所述下行信道的信噪比(Signal-to-Noise Ratio,SNR),将所述SNR确定为所述第二信道质量信息。
在一种可能的设计中,所述方法还包括:
所述接入网设备从所述第一信道质量信息中获取所述终端的干扰信息;
所述接入网设备根据所述SRS计算得到所述终端的下行信道的信道估计信息;
所述接入网设备根据所述干扰信息和所述下行信道的信道估计信息,计算得到所述下行信道的信噪比SNR,将所述SNR确定为所述第二信道质量信息。
在一种可能的设计中,所述第一信道质量信息包括:
所述接收信号信息;
或,所述接收信号信息与所述终端上报的RSRP的比值。
在一种可能的设计中,所述参考信号资源对应若干个参考信号端口;所述接收信号信息包括:
在各个接收天线上测量的各个所述参考信号端口上的接收信号的信息;
或,所述接收信号的协方差矩阵的各个元素;
或,所述接收信号的协方差矩阵的各个主对角元素;
或,所述接收信号的协方差矩阵的各个主对角元素中的一个主对角元素;
或,所述接收信号的协方差矩阵的各个主对角元素的平均值;
或,所述接收信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于所述主对角元素的差分值;
或,所述接收信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对 于所述平均值的差分值。
在一种可能的设计中,所述第一信道质量信息包括:
所述干扰信息;
或,所述干扰信息与所述终端上报的RSRP的比值。
在一种可能的设计中,所述干扰信息包括:
在各个接收天线上测量的各个所述参考信号端口上的所述干扰信号;
或,所述干扰信号的协方差矩阵;
或,所述干扰信号的协方差矩阵的各个主对角元素;
或,所述干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素;
或,所述干扰信号的协方差矩阵的各个主对角元素的平均值;
或,所述干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于所述主对角元素的差分值;
或,所述干扰信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对于所述平均值的差分值。
在一种可能的设计中,所述RSRP是最近一次上报的RSRP;或者,
所述RSRP是最近一次上报的RSRP,且所述RSRP与所述参考信号资源上传输的下行参考信号具有相同的波束索引。
在一种可能的设计中,在所述参考信号资源上所测量到的信号为非零功率参考信号。
在一种可能的设计中,属于一个小区组的各个小区之间的所述非零功率参考信号在一个物理资源块PRB中占用的时频资源相同;或,所有小区之间的所述非零功率参考信号在一个物理资源块PRB中占用的时频资源相同。
在一种可能的设计中,在所述参考信号资源上所测量到的信号为零功率参考信号。
在一种可能的设计中,所述第一信道质量信息还包括:所述终端在发送所述SRS时的发送功率信息。
在一种可能的设计中,所述第一信道质量信息还包括:所述终端的接收机类型或接收机处理增益。
在一种可能的设计中,所述参考信号资源对应的频域带宽内包括n个子带,每个子带对应各自的所述第一信道质量信息,n为正整数;
或,所述参考信号资源对应的频域带宽内的宽带对应同一个所述第一信道质量信息。
在一种可能的设计中,所述参考信号资源所占用的时域资源、所述SRS所占用的时域资源和所述第一信道质量信息所占用的时域资源属于同一时域单元;
其中,所述时域单元是时隙、子帧或传输时间间隔。
在一种可能的设计中,所述时域单元包括n个符号,n为正整数;
所述参考信号资源占用一个时域单元中的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
所述SRS占用所述时域单元的第X3至X4个OFDM符号,X3=X2+m2,m2为大于等于1的整数,X3≤X4;
所述第一信道质量信息占用所述时域单元的第X5个至第X6个OFDM符号,X5≤X6≤n-1。
在一种可能的设计中,所述时域单元包括n个符号,n为正整数;
所述探测参考信号占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
所述SRS占用所述时域单元的第X3个至第X4个OFDM符号,X3=X2+m2,m2为大于等于1的整数,X4=X3或X3+1;
所述第一信道质量信息占用所述时域单元的第X5个至第X6个OFDM符号,X4<X5≤X6≤n-1。
在一种可能的设计中,所述SRS在时域上占用若干个OFDM符号,在频域上占用若干个频域单元;
所述SRS在所述若干个频域单元内采用跳频的方式传输,不同的所述OFDM符号内的所述探测参考信号占用不同的所述频域单元;
不同的所述频域单元属于非连续的频域带宽或连续的频域带宽;
在一种可能的设计中,在同一个所述时域单元中,所述第一信道质量信息占用的频域单元与所述SRS占用的最后一个OFDM符号内对应的频域单元相同;
在所述最后一个OFDM符号内的所述SRS是所述第一信道质量信息的解调导频信号。
在一种可能的设计中,所述时域单元包括n个符号,n为正整数;
所述参考信号资源占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
所述SRS和所述第一信道质量信息在所述时域单元的第Z3个OFDM符号至第Z4个OFDM符号中采用依次交错的方式占用不同的OFDM符号,X2≤X3≤X4≤n-1。
在一种可能的设计中,所述时域单元包括n个符号,n为正整数;
所述参考信号资源占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
所述SRS和所述第一信道质量信息在所述时域单元占用相同的第Z3个OFDM符号至第Z4个OFDM符号,X2<X3≤X4≤n-1。
在一种可能的设计中,所述SRS和第一信道质量信息在频域上分别占用相同的频域带宽内的两组子载波,所述两组子载波分别对应于奇数子载波和偶数子载波。
在一种可能的设计中,在各个所述OFDM符号中的所述SRS采用序列资源和不同的循环移位值,所述循环移位值用于指示所述第一信道质量信息。
在一种可能的设计中,所述下行配置指令占用所述时域单元的前k个OFDM符号,k=1或2或3或4。
在一种可能的设计中,所述下行配置指令还用于配置第一时频资源,所述第一时频资源是用于传输所述SRS的时频资源。
在一种可能的设计中,所述下行配置指令还用于配置所述SRS的序列资源,或者,所述SRS的所述序列资源和码资源。
在一种可能的设计中,所述下行配置指令还用于配置第二时频资源,所述第二时频资源是用于传输所述第一信道质量信息的时频资源。
在一种可能的设计中,所述下行配置指令还包括用于触发终端上报第一信道质量信息的信令。
在一种可能的设计中,所述下行配置指令用于配置所述参考信号资源对应的OFDM符号位置和/或物理资源块PRB位置;
所述OFDM符号位置包括:所述参考信号资源占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
所述PRB位置包括:所述参考信号资源占用的全部传输带宽中的PRB索引,所述若干个PRB是非连续的PRB或者连续的PRB。
在一种可能的设计中,所述下行配置指令用于配置所述第一时频资源对应的OFDM符号位置和/或物理资源块PRB位置;
所述OFDM符号位置包括:所述参考信号资源占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
所述PRB位置包括:所述SRS占用的全部传输带宽中的PRB索引,所述SRS在所述传输带宽中跳频传输,所述若干个PRB是非连续的PRB或者连续的PRB;
其中,所述SRS在每个所述OFDM符号中所占用的所述传输带宽相同或不同。
在一种可能的设计中,所述下行配置指令用于配置所述第二时频资源对应的OFDM符号位置和/或物理资源块PRB位置;
所述OFDM符号位置包括:所述第一信道质量信息占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
所述PRB位置包括:所述第一信道质量信息占用的全部传输带宽中的PRB索引,所述若干个PRB是非连续的PRB或者连续的PRB。
第三方面,本申请实施例提供了一种信道质量信息计算装置,该信道质量信息计算包括至少一个单元,该至少一个单元用于实现上述第一方面或第一方面中任意一种可能的实现方式所提供的信道质量信息计算方法。
第四方面,本申请实施例提供了一种信道质量信息计算装置,该信道质量信息计算装置包括至少一个单元,该至少一个单元用于实现上述第二方面或第二方面中任意一种可能的实现方式所提供的信道质量信息计算方法。
第五方面,本申请实施例提供了一种终端,该终端包括处理器和存储器;所述存储器用于存储一个或一个以上的指令,所述指令被指示为由所述处理器执行,所述处理器用于执行所述指令以实现上述第一方面或第一方面中任意一种可能的实现方式所提供的信道质量信息计算方法。
第六方面,本申请实施例提供了一种接入网设备,该接入网设备包括处理器和存储器;所述存储器用于存储一个或一个以上的指令,所述指令被指示为由所述处理器执行,所述处理器用于执行所述指令以实现上述第二方面或第二方面中任意一种可能的实现方式所提供的信道质量信息计算方法。
第七方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有用于实现上述第一方面或第一方面中任意一种可能的设计所提供的信道质量信息计算方法的可执行程序。
第八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有用于实现上述第二方面或第二方面中任意一种可能的设计所提供的信道质量信息计算方法的可执行程序。
第九方面,本申请实施例提供一种信道质量信息计算系统,该信道质量信息计算系统包括:终端和接入网设备,所述终端包括如上述第三方面或第三方面中任意一种可能的设计所提供的信道质量信息计算装置;所述接入网设备包括如上述第四方面或第四方面中任意一种可能的设计所提供的信道质量信息计算装置。
第十方面,本申请实施例提供一种信道质量信息计算系统,该信道质量信息计算系统包括:终端和接入网设备,所述终端包括如上述第五方面或第五方面中任意一种可能的设计所提供的信道质量信息计算装置;所述接入网设备包括如上述第六方面或第六方面中任意一种可能的设计所提供的信道质量信息计算装置。
附图说明
图1是本申请一个实施例提供的信道质量信息计算系统的结构示意图;
图2是本申请一个实施例提供的终端的结构方框图;
图3是本申请一个实施例提供的接入网设备的结构方框图;
图4是本申请一个实施例提供的信道质量信息计算方法的流程图;
图5是本申请另一个实施例提供的信道质量信息计算方法的流程图;
图6是本申请另一个实施例提供的信道质量信息计算方法的流程图;
图7是本申请另一个实施例提供的信道质量信息计算方法的流程图;
图8是本申请一个实施例提供的SRS在一个时域单元中的资源占用示意图;
图9是本申请一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图;
图10是本申请一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图;
图11是本申请一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图;
图12A是本申请一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图;
图12B是本申请一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图;
图13是本申请一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图;
图14是本申请一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图;
图15是本申请另一个实施例提供的下行配置指令、参考信号资源、第一时频资源和第二时频资源在一段时频资源上的资源占用示意图;
图16是本申请另一个实施例提供的下行配置指令、参考信号资源、第一时频资源和第二时频资源在一段时频资源上的资源占用示意图;
图17是本申请另一个实施例提供的信道质量信息计算装置的框图;
图18是本申请另一个实施例提供的信道质量信息计算装置的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在本文提及的“模块”是指存储在存储器中的能够实现某些功能的程序或指令;在本文中提及的“单元”是指按照逻辑划分的功能性结构,该“单元”可以由纯硬件实现,或者,软硬件的结合实现。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
图1示出了本申请一个实施例提供的信道质量信息计算系统100的结构示意图。该信道质量信息计算系统100可以是LTE系统或5G系统。该信道质量信息计算系统100包括:至少一个终端120和至少一个接入网设备140。
终端120可以是个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
终端120经无线接入网(Radio Access Network,RAN)与一个或多个接入网设备140进行通信。
接入网设备140可以是基站,作为终端120与接入网的其余部分之间的路由器,接入网的其余部分可包括网际协议(Internet Protocol,IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),5G新空口(New Radio,NR)系统中的gNB,本申请对此不作限定。下面实施例以接入网设备140是eNB来举例说明。
图2示出了本申请一个实施例提供的终端120的结构方框图。该终端120包括:处理器21、收发器22、存储器23。
处理器21包括一个或者一个以上处理核心,处理器21通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器22包括接收机Rx和发射机Tx,收发器22还可以实现成为一通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制解调,并通过无线信号接收或发送该信息。
存储器23与处理器21相连。
存储器23可用于存储软件程序以及模块。存储器可存储操作系统24、至少一个功能所述的应用程序模块25。
应用程序模块25至少包括:用于接收信息的接收模块251,用于处理信息的处理模块252和用于发送信息的发送模块253。
接收模块251,用于接收接入网设备发送的下行配置指令;
处理模块252,用于在下行配置指令所指示的参考信号资源上测量得到第一信道质量信息,向接入网设备发送第一信道质量信息;第一信道质量信息用于反馈在参考信号资源上测量得到的接收信号信息或者干扰信息;
发送模块253,用于向接入网设备发送探测参考信号SRS;
其中,第一信道质量信息和SRS用于计算第二信道质量信息。其中,第二信道质量信息用于表征终端的下行信道的信道质量。可选地,第二信道质量信息是SNR。
可选地,处理器21用于执行应用程序模块25中的各个模块,实现如下图5、图6和图7中由终端所需要执行的步骤。
此外,存储器23是一种计算机可读存储介质,可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员可以理解,图2中所示出的终端120的结构并不构成对接入网设备的限定,可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
图3示出了本申请一个实施例提供的接入网设备140的结构方框图。该接入网设备包括:处理器31、收发器32、存储器33。
处理器31包括一个或者一个以上处理核心,处理器31通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器32包括接收机Rx和发射机Tx,收发器32还可以实现成为一通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制解调,并通过无线信号接收或发送该信息。
存储器33与处理器31相连。
存储器33可用于存储软件程序以及模块。存储器可存储操作系统34、至少一个功能所述的应用程序模块35。
应用程序模块35至少包括:用于接收信息的接收模块351,用于处理信息的处理模块352和用于发送信息的发送模块353。发送模块353,用于向终端发送下行配置指令;接收模块351,用于接收所述终端发送的第一信道质量信息,所述第一信道质量信息是所述终端根据所述下行配置指令所指示的参考信号资源上所测量得到的;接收模块351,用于接收所述终端根据所述下行配置指令发送的探测参考信号SRS;处理模块352,用于根据第一信道质量信息和SRS计算第二信道质量信息。其中,第二信道质量信息用于表征终端的下行信道的信道质量。可选地,第二信道质量信息是SNR。
可选地,处理器31用于执行应用程序模块35中的各个模块,实现如下图5、图6和图7中由接入网设备所需要执行的步骤。
此外,存储器33是一种计算机可读介质,可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器 (EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员可以理解,图3中所示出的接入网设备140的结构并不构成对接入网设备的限定,可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
图4示出了本申请一个实施例提供的信道质量信息计算方法的流程图。本实施例以该信道质量信息计算方法应用于图1所示的信道质量信息计算系统中来举例说明。该方法包括:
步骤401,接入网设备向终端发送下行配置指令;
可选地,该下行配置指令用于配置参考信号资源。该参考信号资源是下行参考信号所占用的时频资源。
步骤402,终端接收接入网设备发送的下行配置指令;
步骤403,终端在下行配置指令所指示的参考信号资源上测量得到第一信道质量信息;
可选地,第一信道质量信息包括:在参考信号资源上测量得到的接收信号信息,或,在参考信号资源上测量得到的干扰信息。其中,接收信号信息是:接入网设备发送的信号信息和干扰信息的和信息。在本申请实施例中,干扰信息是用于描述干扰和噪声的总和的信息。
可选地,第一信道质量信息的表征形式为:信道状态信息(英文:Channel-Slate Information,简称:CSI)。
步骤404,终端向接入网设备发送第一信道质量信息;
步骤405,接入网设备接收终端发送的第一信道质量信息;
步骤406,终端向接入网设备发送SRS;
步骤407,接入网设备接收终端发送的SRS;
步骤408,接入网设备根据第一信道质量信息和SRS计算得到第二信道质量信息。
可选地,第二信道质量信息用于表征终端的下行信道的信道质量。可选地,第二信道质量信息的表征形式为:下行信道的SNR。
需要说明的是,步骤406可在步骤404之前执行,或者,与步骤404同时执行,本实施例对此不加以限定。
综上所述,本实施例提供的信道质量信息计算方法,通过终端向接入网设备发送第一信道质量信息,第一信道质量信息是终端对下行信道进行测量得到的信息,第一信道质量信息能够较为准确地表征下行信道的干扰情况,所以解决了现有技术中eNB计算得到的下行信道的信道质量信息不够准确的问题;达到了接入网设备根据第一信道质量信息和SRS计算得到第二信道质量信息,第二信道质量信息能够准确表征下行信道的信道质量的效果。
可选地,参考信号资源上传输的下行参考信号是信道状态信息参考信号(Channel-Slate Information Reference Signals,CSI-RS)。CSI-RS分为两种:非零功率(Non-Zero-Power,NZP)CSI-RS和零功率(Zero-Power,ZP)CSI-RS。
NZP CSI-RS是由接入网设备发送给终端的CSI-RS;ZP CSI-RS是由接入网设备的相邻接入网设备发送给终端的CSI-RS。
针对NZP CSI-RS的实施场景,本申请实施例提供有并列的图5实施例和图6实施例。
针对ZP CSI-RS的实施场景,本申请实施例提供有图7实施例。
图5示出了本申请另一个实施例提供的信道质量信息计算方法的流程图。本实施例以该信道质量信息计算方法应用于图1所示的信道质量信息计算系统中来举例说明。该方法包括:
步骤501,接入网设备向终端发送下行配置指令;
可选地,该下行配置指令用于配置参考信号资源。该参考信号资源是NZP CSI-RS所占用的时频资源。时域资源包括:CSI-RS所占用的正交频分复用技术(英文:Orthogonal Frequency-Division Multiplexing,简称:OFDM)符号索引,CSI-RS所占用的频域资源包括:物理资源块(英文:Physical Resource Block,简称:PRB)索引。下文中,将NZP CSI-RS简称为CSI-RS。
可选地,该下行配置指令还用于配置第一时频资源,第一时频资源是用于传输SRS的资源。在第一时频资源中,时域资源包括:SRS所占用的OFDM符号索引,频域资源包括:SRS所占用的PRB索引。
可选地,该下行配置指令还用于配置生成SRS所需的:序列资源,或者,序列资源和码资源。其中,序列资源是Zadoff-Chu序列的基序列编号;码资源是对Zadoff-Chu序列的循环移位数,和/或,码资源是对Zadoff-Chu序列的正交扩频码的索引。
可选地,该下行配置指令还用于配置第二时频资源,第二时频资源是用于传输第一信道质量信息的资源。其中,时域资源包括:第一信道质量信息所占用的OFDM符号索引,频域资源包括:第一信道质量信息所占用的PRB索引。
可选地,该下行配置指令还包括用于触发终端上报第一信道质量信息的信令。
可选地,下行配置指令是动态信息,或UE特定的信令,或UE组(group)特定的信令。
步骤502,终端接收接入网设备发送的下行配置指令。
终端从下行配置指令中获取参考信号资源。
可选地,终端还从下行配置指令中获取用于传输SRS的时频资源。
可选地,终端还从下行配置指令中获取用于生成SRS的序列资源,或者,序列资源和码资源。
步骤503,接入网设备通过参考信号资源向终端发送下行参考信号;
可选地,该CSI-RS是非零功率的CSI-RS。接入网设备在参考信号资源上按照第一发射功率向终端发送CSI-RS。
步骤504,终端在参考信号资源上测量得到第一信号质量信息;
可选地,第一信号质量信息携带有接收信号信息。
终端在参考信号资源上测量得到接收信号信息。可选地,参考信号资源对应多个参考信号端口。接收信号信息的一种表现形式为:终端在各个接收天线上测量的各个参考信号端口上的接收信号的信息,也即接收信号矩阵。
假设CSI-RS的接收信号矩阵为YN*M,YN*M的维度是N行M列,N为终端的接收天线数,M为接入网设备的发射天线数,则:
YN*M=HS+I;
其中,H为接入网设备到终端的下行信道,S为接入网设备发送给终端的信号信息,I为干扰信息。可选地,S采用功率归一化为1的信号来表示。
可选地,终端将接收信号矩阵YN*M作为接收信号信息。
步骤505,终端向接入网设备发送SRS;
可选地,终端根据下行配置信令中所配置的序列资源生成SRS。
可选地,终端根据下行配置信令中所配置的序列资源和码资源生成SRS。
可选地,终端使用下行配置信息中所配置的时频资源,向接入网设备发送SRS。
可选地,终端按照第二发射功率向接入网设备发送SRS。
步骤506,接入网设备接收终端发送的SRS。
接入网设备根据下行配置指令中所配置的时频资源,接收终端发送的SRS。
步骤507,终端生成携带有接收信号信息的第一信道质量信息,该第一信道质量信息携带有接收信号信息;
可选地,第一信道质量信息采用CSI来表示。该CSI携带有:接收信号信息。
可选地,接收信号信息是接收信号矩阵YN*M,该接收信号矩阵YN*M表征了终端在各个接收天线上测量到各个参考信号端口上的接收信号的信息。接收信号信息可认为是:信号信息HS和干扰信息I的和信息。
可选地,第一信道质量信息还包括:终端在发送SRS时的发送功率信息。该发送功率信息采用绝对发射功率(即第二发射功率)、闭环功控参数和功率余量信息中的任意一种表示。其中,功率余量信息(Power Headroom)是终端的最大发射功率-第二发射功率。其中,终端的最大发射功率是指接入网设备所配置的终端的最大发射功率,并非终端实际的最大发射功率。
步骤508,终端向接入网设备发送第一信道质量信息;
可选地,终端根据下行配置指令所配置的第二时频资源,向接入网设备发送第一信道质量信息,也即CSI。
步骤510,接入网设备接收终端发送的第一信道质量信息;
可选地,接入网设备根据下行配置指令所配置的第二时频资源,接收终端发送的第一信道质量信息,也即CSI。
步骤511,接入网设备根据第一信道质量信息和SRS计算得到第二信道质量信息。
可选地,第二信道质量信息是下行信道的SNR。
可选地,本步骤包括如下步骤:
1、接入网设备根据SRS计算得到上行信道的信道估计信息H_U;
2、接入网设备根据CSI-RS的第一发射功率和SRS的第二发射功率计算出功率比值γ;
3、接入网设备对上行信道的信道估计矩阵H_U进行功率缩放,得到下行信道的信道估计信息H_D=H_U*γ;
4、接入网设备从第一信道质量信息中获取接收信号信息YN*M;
5、接入网设备计算得到干扰信息I。
接入网设备通过如下公式计算得到干扰信息I:
I=YN*M-H_D*S。
其中,YN*M是接收信号信息,H_D是下行信道的信道估计信息,S为接入网设备在CSI-RS中发送的信号信息。
6、接入网设备根据干扰信息I和信道估计信息H_D计算得到下行信道的SNR。
接入网设备将下行信道的SNR作为第二信道质量信息,第二信道质量信息用于表征下行信道的信道质量。
综上所述,本实施例提供的信道质量信息计算方法,通过终端向接入网设备发送第一信道质量信息,第一信道质量信息是终端对下行信道进行测量得到的接收信号信息,该接收信号信息是干扰信息和信号信息的和信息,由于该第一信道质量信息能够较为准确地表征下行信道的干扰情况,所以解决了现有技术中eNB计算得到的下行信道的信道质量信息不够准确的问题;达到了接入网设备根据第一信道质量信息和SRS计算得到第二信道质量信息,第二信道质量信息能够准确表征下行信道的信道质量的效果。
在基于图5的可选实施例中,接收信号信息可采用其它形式进行表征。
可选地,接收信号信息包括:在各个接收天线上测量的各个参考信号端口上的接收信号的协方差矩阵的各个元素。也即,接收信号信息包括:接收信号的协方差矩阵。
对接收信号矩阵YN*M求解协方差矩阵R(Y),得到:
其中,Y是接收信号矩阵,YH是接收信号矩阵的共轭转置矩阵。协方差矩阵R(Y)的维度是N行N列,N为终端的接收天线数。
此时,上述步骤510包括的子步骤替代实现如下:
1、接入网设备根据SRS计算得到上行信道的信道估计信息H_U;
2、接入网设备根据CSI-RS的第一发射功率和SRS的第二发射功率计算出功率比值γ;
3、接入网设备对上行信道的信道估计矩阵H_U进行功率缩放,得到下行信道的信道估计信息H_D=H_U*γ;
4、接入网设备计算下行信道的信道估计信息H_D的协方差矩阵R(H);;
其中,H是信道估计信息H_D的矩阵,HH是H的共轭转置矩阵。
5、接入网设备从第一信道质量信息中获取协方差矩阵R(Y);
6、接入网设备计算得到干扰信息I。
接入网设备通过如下公式计算得到干扰信息I的协方差矩阵R(I):
R(I)=R(Y)-R(H)。
7、接入网设备根据干扰信息的协方差矩阵R(I)和下行信道的信道估计信息R(H)计算得到下行信道的SNR。
在基于图5的可选实施例中,为了减少终端向接入网设备反馈协方差矩阵R(Y)时的数据量,终端仅向接入网设备反馈协方差矩阵R(Y)中的一部分元素。此时,接收信号信息包括如下所示五种信息中的任意一种:
第一种,接收信号的协方差矩阵的各个主对角元素;主对角元素是位于协方差矩阵从左上到右下的对角线上的矩阵元素;
第二种,接收信号的协方差矩阵的各个主对角元素中的一个主对角元素。
第三种,接收信号的协方差矩阵的各个主对角元素的平均值;
第四种,接收信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于主对角元素的差分值;
第五种,接收信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对于平均值的差分值。
针对第一种信息,接入网设备在接收到协方差矩阵R(Y)的各个主对角元素后,将协方差矩阵R(Y)中的非主对角元素设置为0。
针对第二种信息,接入网设备在接收到协方差矩阵R(Y)的各个主对角元素中的一个主对角元素后,将协方差矩阵R(Y)中的其它主对角元素均设置为接收到的主对角元素,将协方差矩阵R(Y)中的非主对角元素均设置为0。
针对第三种信息,接入网设备在接收到协方差矩阵R(Y)的各个主对角元素中的平均值后,将协方差矩阵R(Y)中的各个主对角元素均设置为接收到的平均值,将协方差矩阵R(Y)中的非主对角元素均设置为0。
针对第四种信息,接入网设备在接收到协方差矩阵R(Y)的各个主对角元素中的一个主对角元素,和其它主对角元素相对于主对角元素的差分值后,根据已知的主对角元素和各个差分值,复原出协方差矩阵R(Y)的其它的主对角元素;将协方差矩阵R(Y)中的非主对角元素均设置为0。
针对第五种信息,接入网设备在接收到协方差矩阵R(Y)的各个主对角元素中的平均值,和各个主对角元素相对于平均值的差分值后,根据已知的平均值和各个差分值,复原出协方差矩阵R(Y)的各个主对角元素;将协方差矩阵R(Y)中的非主对角元素均设置为0。
综上所述,通过终端仅向接入网设备反馈协方差矩阵中的部分矩阵元素,能够减少终端在反馈第一信道质量信息时的数据量,减少第一信道质量信息所需要的传输资源。
在基于图5的另一种可选的实施例中,为了减少终端向接入网设备反馈接收信号信息时的数据量,还使用参考信号接收功率(英文:Reference Signal Received Power,简称:RSRP)对接收信号信息进行量化。也即,终端采用接收信号信息与RSRP的比值,作为第一信道质量信息。
具体地,在接收信号信息采用接收信号矩阵或者协方差矩阵或者协方差矩阵的部分矩阵元素表示时,将接收信号信息中的各个矩阵元素与RSRP的比值,作为第一信道质量信息,或者,将RSPP与接收信号信息中的各个矩阵元素的比值,作为第一信道质量信息。
其中,RSRP是终端最近一次上报的RSRP。或者,RSRP是最近一次上报的RSRP,且RSRP与参考信号资源上传输的下行参考信号具有相同的波束索引。
可选地,接收信号信息与RSRP的比值经过量化后,得到第一信道质量信息。比如,接收信号信息使用接收信号矩阵来表示,对于接入信号矩阵中的每个矩阵元素与RSRP的比值,通过如下表一中的量化区间进行量化,得到对应的量化比特。
第一信道质量信息量化区间[dBm]
0 [-138,-126]
1 [-126,-114]
2 [-114,-102]
3 [-102,-90]
4 [-90,-78]
5 [-78,-66]
6 [-66,-54]
7 [-54,-42]
表一
比如,一个矩阵元素与RSRP的比值对应-120dBm,则量化比特为0。当存在多个矩阵元素与RSRP的比值时,分别执行该量化过程。
可选地,接收信号矩阵也可通过表一中的量化区间进行量化,得到第一信道质量信息。
综上所述,通过使用RSRP对接收信号信息进行量化,可以将各个矩阵元素的范围限制在较小的一个范围内,量化区间更小,最终量化得到的比特数也更少,从而减少终端在反馈第一信道质量信息时的数据量,减少第一信道质量信息所需要的传输资源。
图6示出了本申请另一个实施例提供的信道质量信息计算方法的流程图。本实施例以该信道质量信息计算方法应用于图1所示的信道质量信息计算系统中来举例说明。该方法包括:
步骤601,接入网设备向终端发送下行配置指令;
可选地,该下行配置指令用于配置参考信号资源。该参考信号资源是NZP CSI-RS所占用的时频资源。时域资源包括:CSI-RS所占用的OFDM符号索引,CSI-RS所占用的频域资源包括:PRB索引。下文中,将NZP CSI-RS简称为CSI-RS。
可选地,该下行配置指令还用于配置第一时频资源,第一时频资源是用于传输SRS的资源。在第一时频资源中,时域资源包括:SRS所占用的OFDM符号索引,频域资源包括:SRS所占用的PRB索引。
可选地,该下行配置指令还用于配置生成SRS所需的:序列资源,或者,序列资源和码资源。其中,序列资源是Zadoff-Chu序列的基序列编号;码资源是对Zadoff-Chu序列的循环移位数,和/或,码资源是对Zadoff-Chu序列的正交扩频码的索引。
可选地,该下行配置指令还用于配置第二时频资源,第二时频资源是用于传输第一信道质量信息的资源。其中,时域资源包括:第一信道质量信息所占用的OFDM符号索引,频域资源包括:第一信道质量信息所占用的PRB索引。
可选地,该下行配置指令还包括用于触发终端上报第一信道质量信息的信令。
可选地,下行配置指令是动态信息,或UE特定的信令,或UE组(group)特定的信令。
步骤602,终端接收接入网设备发送的下行配置指令。
终端从下行配置指令中获取参考信号资源。
可选地,终端还从下行配置指令中获取用于传输SRS的时频资源。
可选地,终端还从下行配置指令中获取用于生成SRS的序列资源,或者,序列资源和码资源。
步骤603,接入网设备通过参考信号资源向终端发送下行参考信号;
可选地,该CSI-RS是非零功率的CSI-RS。接入网设备在参考信号资源上按照第一发射功率向终端发送CSI-RS。
步骤604,终端在参考信号资源上测量得到第一信号质量信息,第一信号质量信息携带有干扰信息;
可选地,第一信号质量信息携带有干扰信息。
可选地,本步骤包括如下子步骤:
1、终端在参考信号资源上测量得到接收信号信息。可选地,参考信号资源对应多个参考信号端口。接收信号信息的一种表现形式为:终端在各个接收天线上测量的各个参考信号端口上的接收信号的信息,也即接收信号矩阵。
假设CSI-RS的接收信号矩阵为YN*M,YN*M的维度是N行M列,N为终端的接收天线数,M为接入网设备的发射天线数,则:
Y=HS+I;
其中,H为接入网设备到终端的下行信道,S为接入网设备发送给终端的信号信息,I为干扰信息。
2、终端根据预设信道估计算法,计算得到下行信道的信道估计信息;
终端按照预定信道估计算法对CSI-RS进行信道估计,计算得到下行信道的信道估计矩阵H_D。预定信道估计算法包括但不限于:最小二乘(Least-Square)信道估计、最小均方误差(Minimum Mean Square Error,MMSE)信道估计、维纳信道估计中的至少一种。
3、终端通过如下公式得到干扰信息I。
I=Y-H_D*S;
可选地,干扰信息I是干扰信号矩阵IN*M,该干扰信号矩阵IN*M的维度为N行M列,N为终端的接收天线数,M为接入网设备的发射天线数。
步骤605,终端向接入网设备发送SRS;
可选地,终端根据下行配置信令中所配置的序列资源生成SRS。
可选地,终端根据下行配置信令中所配置的序列资源和码资源生成SRS。
可选地,终端使用下行配置信息中所配置的时频资源,向接入网设备发送SRS。
可选地,终端按照第二发射功率向接入网设备发送SRS。
步骤606,接入网设备接收终端发送的SRS。
接入网设备根据下行配置指令中所配置的时频资源,接收终端发送的SRS。
步骤607,终端生成携带有干扰信息的第一信道质量信息;
可选地,第一信道质量信息采用CSI来表示。该CSI携带有:干扰信息。
可选地,干扰信息I是干扰信号矩阵IN*M,该干扰信号矩阵IN*M表征了终端在各个接收天线上所测量的各个参考信号端口上的干扰信号的信息。
可选地,第一信道质量信息还包括:终端在发送SRS时的发送功率信息。该发送功率信息采用绝对发射功率(即第二发射功率)、闭环功控参数和功率余量信息中的任意一种表示。其中,功率余量信息(Power Headroom)是终端的最大发射功率-第二发射功率。其中,终端的最大发射功率是指接入网设备所配置的终端的最大发射功率,并非终端实际的最大发射功率。
步骤608,终端向接入网设备发送第一信道质量信息;
可选地,终端根据下行配置指令所配置的第二时频资源,向接入网设备发送第一信道质量信息,也即CSI。
步骤609,接入网设备接收终端发送的第一信道质量信息;
可选地,接入网设备根据下行配置指令所配置的第二时频资源,接收终端发送的第一信道质量信息,也即CSI。
步骤610,接入网设备根据第一信道质量信息和SRS计算得到第二信道质量信息。
可选地,第二信道质量信息是下行信道的信噪比(英文:Signal-to-Noise Ratio,简称:SNR)。
可选地,本步骤包括如下步骤:
1、接入网设备根据SRS计算得到上行信道的信道估计信息H_U;
2、接入网设备根据CSI-RS的第一发射功率和SRS的第二发射功率计算出功率比值γ;
3、接入网设备对上行信道的信道估计矩阵H_U进行功率缩放,得到下行信道的信道估计信息H_D=H_U*γ;
4、接入网设备从第一信道质量信息中获取干扰信息YN*M;
5、接入网设备根据干扰信息I和信道估计信息H_D计算得到下行信道的SNR。
接入网设备将下行信道的SNR作为第二信道质量信息,第二信道质量信息用于表征下行信道的信道质量。
综上所述,本实施例提供的信道质量信息计算方法,通过终端向接入网设备发送第一信道质量信息,第一信道质量信息是终端对下行信道进行测量得到的干扰信息,由于该第一信道质量信息能够较为准确地表征下行信道的干扰情况,所以解决了现有技术中eNB计算得到的下行信道的信道质量信息不够准确的问题;达到了接入网设备根据第一信道质量信息和SRS计算得到第二信道质量信息,第二信道质量信息能够准确表征下行信道的信道质量的效果。
同时,由于终端向接入网设备反馈的第一信道质量信息携带有干扰信息,接入网设备在计算第二信道质量信息时的计算量较小,能够减轻接入网设备的计算负担。
图7示出了本申请另一个实施例提供的信道质量信息计算方法的流程图。本实施例以该信道质量信息计算方法应用于图1所示的信道质量信息计算系统中来举例说明。该方法包括:
步骤701,接入网设备向终端发送下行配置指令;
可选地,该下行配置指令用于配置参考信号资源。该参考信号资源是NZP CSI-RS所占用的时频资源。时域资源包括:CSI-RS所占用的OFDM符号索引,CSI-RS所占用的频域资源包括:PRB索引。下文中,将NZP CSI-RS简称为CSI-RS。
可选地,该下行配置指令还用于配置第一时频资源,第一时频资源是用于传输SRS的资源。在第一时频资源中,时域资源包括:SRS所占用的OFDM符号索引,频域资源包括:SRS所占用的PRB索引。
可选地,该下行配置指令还用于配置生成SRS所需的:序列资源,或者,序列资源和码资源。其中,序列资源是Zadoff-Chu序列的基序列编号;码资源是对Zadoff-Chu序列的 循环移位数,和/或,码资源是对Zadoff-Chu序列的正交扩频码的索引。
可选地,该下行配置指令还用于配置第二时频资源,第二时频资源是用于传输第一信道质量信息的资源。其中,时域资源包括:第一信道质量信息所占用的OFDM符号索引,频域资源包括:第一信道质量信息所占用的PRB索引。
可选地,该下行配置指令还包括用于触发终端上报第一信道质量信息的信令。
可选地,下行配置指令是动态信息,或UE特定的信令,或UE组(group)特定的信令。
步骤702,终端接收接入网设备发送的下行配置指令。
终端从下行配置指令中获取参考信号资源。
可选地,终端还从下行配置指令中获取用于传输SRS的时频资源。
可选地,终端还从下行配置指令中获取用于生成SRS的序列资源,或者,序列资源和码资源。
步骤703,其它接入网设备通过参考信号资源向终端发送下行参考信号;
可选地,该CSI-RS是零功率的CSI-RS。该CSI-RS由其它接入网设备在参考信号资源上按照第一发射功率向终端发送CSI-RS。
步骤704,终端在参考信号资源上测量得到第一信号质量信息,第一信号质量信息携带有干扰信息;
由于零功率的CSI-RS全部是由其它接入网设备所带来的干扰信号,终端直接在参考信号资源上测量得到干扰信息。可选地,参考信号资源对应多个参考信号端口,干扰信息的一种表现形式为:终端在各个接收天线上测量的各个参考信号端口上的干扰信号的信息,也即干扰信号矩阵IN*M。
其中,N为终端的接收天线数,M为接入网设备的发射天线数。
可选地,第一信号质量信息携带有干扰信息。
步骤705,终端向接入网设备发送SRS;
可选地,终端根据下行配置信令中所配置的序列资源生成SRS。
可选地,终端根据下行配置信令中所配置的序列资源和码资源生成SRS。
可选地,终端使用下行配置信息中所配置的时频资源,向接入网设备发送SRS。
可选地,终端按照第二发射功率向接入网设备发送SRS。
步骤706,接入网设备接收终端发送的SRS。
接入网设备根据下行配置指令中所配置的时频资源,接收终端发送的SRS。
步骤707,终端生成携带有干扰信息的第一信道质量信息;
可选地,第一信道质量信息采用CSI来表示。该CSI携带有:干扰信息。
可选地,干扰信息I是干扰信号矩阵IN*M,该干扰信号矩阵IN*M表征了终端在各个接收天线上所测量的各个参考信号端口上的干扰信号的信息。
可选地,第一信道质量信息还包括:终端在发送SRS时的发送功率信息。该发送功率信息采用绝对发射功率(即第二发射功率)、闭环功控参数和功率余量信息中的任意一种表示。其中,功率余量信息(Power Headroom)是终端的最大发射功率-第二发射功率。其中,终端的最大发射功率是指接入网设备所配置的终端的最大发射功率,并非终端实际的最大发射功率。
步骤708,终端向接入网设备发送第一信道质量信息;
可选地,终端根据下行配置指令所配置的第二时频资源,向接入网设备发送第一信道质量信息,也即CSI。
步骤709,接入网设备接收终端发送的第一信道质量信息;
可选地,接入网设备根据下行配置指令所配置的第二时频资源,接收终端发送的第一信道质量信息,也即CSI。
步骤710,接入网设备根据第一信道质量信息和SRS计算得到第二信道质量信息。
可选地,第二信道质量信息是下行信道的信噪比(英文:Signal-to-Noise Ratio,简称:SNR)。
可选地,本步骤包括如下步骤:
1、接入网设备根据SRS计算得到上行信道的信道估计信息H_U;
2、接入网设备根据CSI-RS的第一发射功率和SRS的第二发射功率计算出功率比值γ;
其中,由于CSI-RS是由其它接入网设备所发送的CSI-RS,第一发射功率可由接入网设备使用其它发射功率进行等同替代。比如,接入网设备使用自身向终端发送数据时的发射功率作为第一发射功率。
3、接入网设备对上行信道的信道估计矩阵H_U进行功率缩放,得到下行信道的信道估计信息H_D=H_U*γ;
4、接入网设备从第一信道质量信息中获取干扰信息YN*M;
5、接入网设备根据干扰信息I和信道估计信息H_D计算得到下行信道的SNR。
接入网设备将下行信道的SNR作为第二信道质量信息,第二信道质量信息用于表征下行信道的信道质量。
综上所述,本实施例提供的信道质量信息计算方法,通过终端向接入网设备发送第一信道质量信息,第一信道质量信息是终端对下行信道进行测量得到的干扰信息,由于该第一信道质量信息能够较为准确地表征下行信道的干扰情况,所以解决了现有技术中eNB计算得到的下行信道的信道质量信息不够准确的问题;达到了接入网设备根据第一信道质量信息和SRS计算得到第二信道质量信息,第二信道质量信息能够准确表征下行信道的信道质量的效果。
同时,由于零功率的CSI-RS不需要接入网设备发送CSI-RS,不仅减少了接入网设备所需要耗费的发射资源,还能够降低终端的计算量,减轻终端的计算负担。
在基于图6或图7的可选实施例中,干扰信息可采用其它形式进行表征。
可选地,干扰信息包括:在各个接收天线上测量的各个参考信号端口上的干扰信号的协方差矩阵的各个元素。也即,干扰信息包括:干扰信号的协方差矩阵。
对干扰信号矩阵IN*M求解协方差矩阵R(I),得到:
其中,I是干扰信号矩阵,IH是干扰信号矩阵I的共轭转置矩阵。协方差矩阵R(I)的维度是N行N列,N为终端的接收天线数。
此时,上述步骤610或步骤710包括的子步骤替代实现如下:
1、接入网设备根据SRS计算得到上行信道的信道估计信息H_U;
2、接入网设备根据CSI-RS的第一发射功率和SRS的第二发射功率计算出功率比值γ;
3、接入网设备对上行信道的信道估计矩阵H_U进行功率缩放,得到下行信道的信道估计信息H_D=H_U*γ;
4、接入网设备计算下行信道的信道估计信息H_D的协方差矩阵R(H);;
其中,H是信道估计信息H_D的矩阵,HH是H的共轭转置矩阵。
5、接入网设备从第一信道质量信息中获取协方差矩阵R(I);
6、接入网设备根据干扰信息的协方差矩阵R(I)和下行信道的信道估计信息R(H)计算得到下行信道的SNR。
在基于图6或图7的可选实施例中,为了减少终端向接入网设备反馈协方差矩阵R(I)时的数据量,终端仅向接入网设备反馈协方差矩阵R(I)中的一部分元素。此时,干扰信息包括如下所示五种信息中的任意一种:
第一种,干扰信号的协方差矩阵的各个主对角元素;主对角元素是位于协方差矩阵从左上到右下的对角线上的矩阵元素;
第二种,干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素。
第三种,干扰信号的协方差矩阵的各个主对角元素的平均值;
第四种,干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于主对角元素的差分值;
第五种,干扰信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对于平均值的差分值。
针对第一种信息,接入网设备在接收到协方差矩阵R(I)的各个主对角元素后,将协方差矩阵R(I)中的非主对角元素设置为0。
针对第二种信息,接入网设备在接收到协方差矩阵R(I)的各个主对角元素中的一个主对角元素后,将协方差矩阵R(I)中的其它主对角元素均设置为接收到的主对角元素,将协方差矩阵R(I)中的非主对角元素均设置为0。
针对第三种信息,接入网设备在接收到协方差矩阵R(I)的各个主对角元素中的平均值后,将协方差矩阵R(I)中的各个主对角元素均设置为接收到的平均值,将协方差矩阵R(I)中的非主对角元素均设置为0。
针对第四种信息,接入网设备在接收到协方差矩阵R(I)的各个主对角元素中的一个主对角元素,和其它主对角元素相对于主对角元素的差分值后,根据已知的主对角元素和各个差分值,复原出协方差矩阵R(I)的其它的主对角元素;将协方差矩阵R(I)中的非主对角元素均设置为0。
针对第五种信息,接入网设备在接收到协方差矩阵R(I)的各个主对角元素中的平均值,和各个主对角元素相对于平均值的差分值后,根据已知的平均值和各个差分值,复原出协方差矩阵R(I)的各个主对角元素;将协方差矩阵R(I)中的非主对角元素均设置为0。
综上所述,通过终端仅向接入网设备反馈协方差矩阵中的部分矩阵元素,能够减少终端在反馈第一信道质量信息时的数据量,减少第一信道质量信息所需要的传输资源。
在基于图6或图7的另一种可选的实施例中,为了减少终端向接入网设备反馈干扰信息时的数据量,还使用参考信号接收功率(Reference Signal Received Power,RSRP)对干扰信息进行量化。也即,终端采用干扰信息与RSRP的比值,作为第一信道质量信息。
具体地,在干扰信息采用干扰信号矩阵或者协方差矩阵或者协方差矩阵的部分矩阵元素表示时,将干扰信息中的各个矩阵元素与RDRP的比值,作为第一信道质量信息,或者,将RSPP与干扰信息中的各个矩阵元素的比值,作为第一信道质量信息。
其中,RSRP是终端最近一次上报的RSRP。或者,RSRP是最近一次上报的RSRP,且RSRP与参考信号资源上传输的下行参考信号具有相同的波束索引。
可选地,干扰信息与RSRP的比值经过量化后,得到第一信道质量信息。比如,干扰信息使用接收信号矩阵来表示,对于干扰信息矩阵中的每个矩阵元素与RSRP的比值,通过如上表一中的量化区间进行量化,得到对应的量化比特。比如,一个矩阵元素与RSRP的比值对应-120dBm,则量化比特为0。当存在多个矩阵元素与RSRP的比值时,分别执行该量化过程。
可选地,干扰信息矩阵也可使用表一中的量化区间进行量化,得到第一信道质量信息。
综上所述,通过使用RSRP对干扰信息进行量化,可以将各个矩阵元素的范围限制在较小的一个范围内,量化区间更小,最终量化得到的比特数也更少,从而减少终端在反馈第一信道质量信息时的数据量,减少第一信道质量信息所需要的传输资源。
在基于图5或图6或图7的可选实施例中,接入网设备根据干扰信息和下行信道的信道估计信息计算第二信道质量信息时,按照预定公式计算第二信道质量信息。
以终端的接收机的类型为MMSE为例,接入网设备按照如下公式计算第二信道质量信息:
其中,H为下行信道的信道估计矩阵,HH是H的共轭转置矩阵,Es是发射信号功率,通常假设Es为1,hi是第i层数据对应的信道估计向量,hi是H中的第i列数据,是第i层数据的SNR。
可选地,由于终端的接收机类型为很多种类型,为了计算更为准确的下行信道的SNR,终端在第一信道质量信息中还携带接收机类型或接收机处理增益,由接入网设备根据接收机类型或接收机处理增益,选择合理的计算公式计算第二信道质量信息。
需要说明的是,基于图5或图6或图7的可选实施例中,下行配置指令所配置的时域资源是按照符号粒度划分的。
可选地,下行配置指令用于配置参考信号资源对应的OFDM符号位置和/或PRB位置;
OFDM符号位置包括:参考信号资源占用的起始符号索引和总符号数,或者,起始符号索引和终止符号索引;
PRB位置包括:参考信号资源占用的全部传输带宽中的PRB索引,若干个PRB是非连续的PRB或者连续的PRB。
可选地,下行配置指令用于配置第一时频资源对应的OFDM符号位置和/或PRB位置;
OFDM符号位置包括:参考信号资源占用的起始符号索引和总符号数,或者,起始符号索引和终止符号索引;
PRB位置包括:SRS占用的全部传输带宽中的PRB索引,SRS在传输带宽中跳频传输,若干个PRB是非连续的PRB或者连续的PRB;
其中,SRS在每个OFDM符号中所占用的传输带宽相同或不同。
需要说明的是,SRS在每个OFDM符号中所占用的传输带宽内的PRB灵活配置。示意性的,如图8所示,SRS在时域T上占用第2个OFDM符号、第3个OFDM符号、第4个OFDM符号和第5个OFDM符号。在第2个OFDM符号中,SRS在频域F上占用PRB 7;在第3个OFDM符号中,SRS在频域上占用PRB 4和PRB 5;在第4个OFDM符号中,SRS在频域上占用PRB 1、PRB 2和PRB 3;在第5个符号中,SRS在频域上占用PRB 0。
可选地,下行配置指令用于配置第二时频资源对应的OFDM符号位置和/或PRB位置;
OFDM符号位置包括:第一信道质量信息占用的起始符号索引和总符号数,或者,起始符号索引和终止符号索引;
PRB位置包括:第一信道质量信息占用的全部传输带宽中的PRB索引,若干个PRB是非连续的PRB或者连续的PRB。
需要说明的是,在上述各个实施例或者各个可选的实施例中,终端需要向接入网设备发送第一信道质量信息和SRS两种信息。本申请实施例对第一信道质量信息和SRS的发送先后顺序不加以限定。可选地,第一信道质量信息在SRS之前发送,或者,SRS在第一信道质量信息之前发送,或者,SRS和第一信道质量信息交替发送,或者,SRS和第一信道质量信息同时发送。
可选地,参考信号资源占用的时域资源、SRS占用的时域资源和第一信道质量信息所占用的时域资源属于同一时域单元。
可选地,下行配置指令所占用的时域资源、参考信号资源占用的时域资源、SRS占用的时域资源和第一信道质量信息所占用的时域资源属于同一时域单元。
也即,接入网设备在一个时域单元内,就能够获得快速和准确地获知终端的下行信道的SNR。
下面采用一个时域单元、参考信号资源是CSI-RS占用的时频资源、第一时频资源是SRS占用的时频资源、第二时频资源是CSI占用的时频资源为例,对上述各个信息或参考信号之间的发送时序进行阐述。在本申请实施例中,时域单元是时隙(solt)、子帧(subframe)或传输时间间隔(Transmission Time Interval,TTI)。通常,时隙包括7个OFDM符号,子帧包括14个OFDM符号,TTI包括14个OFDM符号。
图9示出了本申请一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图。在一个时域单元中包括n个OFDM符号(以下简称符号),图9中以n=7来举例说明。其中:
CSI-RS占用该时域单元的第X1至X2个符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数。例如在图9中,X1=X2=0。
SRS占用该时域单元的第X3至X4个符号,X3=X2+m2,m2为大于等于1的整数, X3≤X4。例如在图9中,X3=2,X4=5;
CSI占用该时域单元的第X5个至第X6个符号,X5≤X6≤n-1。例如在图9中,X5=X6=6。
图10示出了本申请另一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图。在一个时域单元中包括n个符号,图10中以n=7来举例说明。其中:
CSI-RS占用该时域单元的第X1至X2个符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数。例如在图10中,X1=X2=0。
SRS占用该时域单元的第X3至X4个符号中的奇数符号。例如在图10中,X3=1,X4=6,SRS占用第1个符号、第3个符号和第5个符号。
CSI占用该时域单元的第X3至X4个符号中的偶数符号。例如在图10中,X3=1,X4=6,CSI占用第2个符号、第4个符号和第6个符号。
其中,X3大于等于X2,X3≤X4≤n-1。
图11示出了本申请另一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图。在一个时域单元中包括n个符号,图11中以n=7来举例说明。其中:
CSI-RS占用该时域单元的第X1至X2个符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数。例如在图11中,X1=X2=0。
SRS占用该时域单元的第X3至X4个符号中的偶数符号。例如在图10中,X3=1,X4=6,SRS占用第2个符号、第4个符号和第6个符号。
CSI占用该时域单元的第X3至X4个符号中的奇数符号。例如在图10中,X3=1,X4=6,CSI占用第1个符号、第3个符号和第5个符号。
其中,X2≤X3≤X4≤n-1。
可选地,图10和图11中的SRS和CSI在第Z3个OFDM符号至第Z4个OFDM符号中采用依次交错的方式占用不同的OFDM符号。对于相邻的两个OFDM符号中,SRS和CSI可以占用不同的频带;SRS和CSI也可以占用相同的频带,如图12A或图12B所示,此时,CSI使用SRS作为解调导频信号。
图13示出了本申请另一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图。在一个时域单元中包括n个符号,图13中以n=7(不限定于7,还可以是14)来举例说明。其中:
CSI-RS占用该时域单元的第X1至X2个符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数。例如在图13中,X1=X2=0。
SRS占用该时域单元的第X3至X4个符号中的每个符号。例如在图12中,X3=2,X4=5,SRS占用第2个符号、第3个符号、第4个符号和第5个符号。
CSI占用该时域单元的第X3至X4个符号中的每个符号,且SRS和CSI占用不同的子载波。
其中,X2≤X3≤X4≤n-1。
图14示出了本申请另一个实施例提供的参考信号资源、第一时频资源和第二时频资源在一个时域单元中的资源占用示意图。在一个时域单元中包括n个符号(以下简称符号),图14中以n=7来举例说明。其中:
SRS占用该时域单元的第X1至X2个符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数。例如在图12中,X1=1,X2=4。
CSI-RS占用该时域单元的第X3至X4个符号,X3=X2+m2,m2为大于等于1的整数,X4=X3或X3+1。例如在图12中,X3=X4=5;
CSI占用该时域单元的第X5个至第X6个符号,X4<X5≤X6≤n-1。例如在图12中,X5=X6=6。
可选地,由于SRS在CSI-RS之前发送,接入网设备在接收到SRS后,对终端的上行信道进行测量,根据测量结果确定合适的预编码矩阵对同一频域带宽的CSI-RS进行预编码,向终端发送经过预编码的CSI-RS,终端基于预编码的CSI-RS测量得到CSI,并向接入网设备反馈CSI。
图9至图14中的横坐标为时域T,纵坐标为频域F。
可选地,结合图9至图14示出的资源占用示意图,下行配置信令可以占用一个时域单元中的前k个符号,k=1或2或3或4。也即,下行配置指令所占用的时域资源、参考信号资源占用的时域资源、SRS占用的时域资源和第一信道质量信息所占用的时域资源属于同一时域单元。
需要说明的是,当下行配置信令占用多个符号时,上述图8至图14中的0≤X1≤k-1,或者,X1=k-1,或者,X1=k,或者,X1>k-1均可,本申请实施例对此不加以限定。
作为可替代的实现方式,下行配置指令所占用的时域资源也可以是更早的一个时域单元中的符号。
图15示出了本申请另一个实施例提供的下行配置指令、参考信号资源、第一时频资源和第二时频资源在一段时频资源上的资源占用示意图。该段时频资源在时域上占用n个符号(以下简称符号),图15中以n=7来举例说明,在频域上占用5个PRB。其中:
下行配置信令在时域上占用第0个符号,在频域上占用PRB 0。
CSI-RS在时域上占用第0个符号,在频域上占用PRB n、PRB n+1、PRB n+2、PRB n+3。
SRS在时域上占用第2个符号、第3个符号、第4个符号和第5个符号,在频域上占用PRB n、PRB n+1、PRB n+2、PRB n+3。
CSI在时域上占用第6个符号,在频域上占用PRB n。
从图15中可知,若SRS所占用的多个频域单元(通常是多个PRB),则SRS在多个频域单元中采用跳频的方式传输,且SRS在不同的符号内所占用的频域单元不同。可选地,SRS所占用的多个频域单元是属于非连续的频域带宽或连续的频域带宽。
从图15可知,在同一个时域单元中,CSI占用的频域单元PRB n与SRS占用的最后一个符号对应的频域单元PRB n相同。此时,接入网设备将SRS作为CSI的解调导频信号。
图16示出了本申请另一个实施例提供的下行配置指令、参考信号资源、第一时频资源和第二时频资源在一段时频资源上的资源占用示意图。该段时频资源在时域上占用n个符号(以下简称符号),图16中以n=7来举例说明,在频域上占用5个PRB。其中:
下行配置信令在时域上占用第0个符号,在频域上占用PRB 0。
CSI-RS在时域上占用第0个符号,在频域上占用PRB n、PRB n+1、PRB n+2、PRB n+3。
SRS在时域上占用第2个符号、第3个符号、第4个符号和第5个符号,在频域上占用PRB n、PRB n+1、PRB n+2、PRB n+3中的第一组子载波。
CSI在时域上占用第2个符号、第3个符号、第4个符号和第5个符号,在频域上占用PRB n、PRB n+1、PRB n+2、PRB n+3中的第二组子载波。
其中,第一组子载波是奇数子载波,第二组子载波是偶数子载波;第一组子载波是偶数子载波,第二组子载波是奇数子载波。
从图16中可知,SRS和CSI在时域上占用相同的符号,在频域上分别占用相同的频域带宽内的两组子载波,两组子载波分别对应于奇数和偶数子载波;
或者,SRS和CSI在时域上占用相同的符号,在频域上占用相同的频域带宽,在某个OFDM符号内的SRS采用Zadoff-Chu序列和不同的循环移位值发送,该循环移位值用于指示第一信道质量信息。例如:表一中的CSI的量化区间为8个区间,分别对应于8个循环移位,在某一个符号中,CSI对应的量化区间是第5个区间,则对应的循环移位CS=5,则对Zadoff-Chu序列进行循环移位5生成SRS,向接入网设备发送该SRS。由于SRS的循环移位5能够指示CSI的量化区间,此时不需要显式地对CSI进行指示,直接使用循环移位5来隐式地指示CSI即可。
需要说明的是,在一些可选的实施例中,第一信道质量信息对应至少一个子带。也即,终端会反馈不同子带所对应的第一信道质量信息。例如,将参考信号资源(CSI-RS所占用的资源)划分为至少两个子带,每个子带包括若干个PRB,则终端在每个子带上反馈与该子带所对应的第一信道质量信息。在另一些可选的实施例中,第一信道质量信息对应参考信号资源所对应的宽带。甚至,在一些可选的实施例中,第一信道质量信息对应整个下行带宽所对应的宽带。
还需要说明的是,在可选的实施例中,属于一个小区组的各个小区之间的非零功率的CSI-RS在一个PRB中占用的时频资源相同;或,所有小区之间的非零功率的CSI-RS在一个PRB中占用的时频资源相同。
以下为本申请实施例的装置实施例,对于装置实施例中未详细描述的细节,请参考上述对应的方法实施例。
图17示出了本申请一个实施例提供的信道质量信息计算装置的框图。该消息发送装置可以通过专用硬件电路,或者,软硬件的结合实现成为终端的全部或一部分。该消息发送装置包括:接收单元1720、处理单元1720和发送单元1740。
接收单元1720,用于实现上述步骤402、步骤502、步骤602、步骤702的接收功能,以及由终端接收信息的其它隐含步骤。
处理单元1720,用于实现上述步骤403、步骤504、步骤507、步骤604、步骤607、步骤704、步骤707的功能,以及由终端处理信息的其它隐含步骤或数据。
发送单元1740,用于实现上述步骤404、步骤406、步骤505、步骤508、步骤605、步骤608、步骤705、步骤708的发送功能,以及由终端发送信息的其它隐含步骤。
相关细节可结合参考图4或图5或图6或图7所述的方法实施例。
需要说明的是,上述接收单元1720可以由接收机实现,或者,由处理器配合接收机来 实现;上述处理单元1740可以由处理器来实现,或者,处理器执行存储器中的程序指令来实现;上述发送单元1760可以由发射机实现,或者处理器配合发射机来实现。
图18是本申请另一个实施例提供的信道质量信息计算装置的框图。该消息发送装置可以通过专用硬件电路,或者,软硬件的结合实现成为接入网终端或第一接入网设备的全部或一部分。该消息发送装置包括:发送单元1820、处理单元1840和接收单元1840。
发送单元1820,用于实现上述步骤401、步骤501、步骤503、步骤601、步骤603、步骤701中的发送功能,以及由接入网终端发送信息的其它隐含步骤。
处理单元1840,用于实现上述步骤408、步骤510、步骤610、步骤710,以及由接入网设备处理信息的其它隐含步骤。
接收单元1840,用于实现上述步骤405、步骤407、步骤506、步骤509、步骤606、步骤609、步骤706、步骤709中的接收功能,以及由接入网设备接收信息的其它隐含步骤。
相关细节可结合参考图4或图5或图6或图7所述的方法实施例。
需要说明的是,上述发送单元1820可以由发射机实现,或者处理器配合发射机来实现;上述处理单元1840可以由处理器来实现,或者,处理器执行存储器中的程序指令来实现;上述接收单元1860可以由接收机Rx实现,或者处理器配合接收机来实现。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (61)

  1. 一种信道质量信息计算方法,其特征在于,所述方法包括:
    终端接收接入网设备发送的下行配置指令;
    终端在所述下行配置指令所指示的参考信号资源上测量得到第一信道质量信息,向所述接入网设备发送所述第一信道质量信息;所述第一信道质量信息用于反馈在所述参考信号资源上测量得到的接收信号信息或者干扰信息;
    终端向所述接入网设备发送探测参考信号SRS;
    其中,所述第一信道质量信息和所述SRS用于计算第二信道质量信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信道质量信息包括:
    所述接收信号信息;
    或,所述接收信号信息与所述终端上报的参考信号接收功率RSRP的比值。
  3. 根据权利要求2所述的方法,其特征在于,所述参考信号资源对应若干个参考信号端口;所述接收信号信息包括:
    在各个接收天线上测量的各个所述参考信号端口上的接收信号的信息;
    或,所述接收信号的协方差矩阵的各个元素;
    或,所述接收信号的协方差矩阵的各个主对角元素;
    或,所述接收信号的协方差矩阵的各个主对角元素中的一个主对角元素;
    或,所述接收信号的协方差矩阵的各个主对角元素的平均值;
    或,所述接收信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于所述主对角元素的差分值;
    或,所述接收信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对于所述平均值的差分值。
  4. 根据权利要求1所述的方法,其特征在于,所述第一信道质量信息包括:
    所述干扰信息;
    或,所述干扰信息与所述终端上报的参考信号接收功率RSRP的比值。
  5. 根据权利要求4所述的方法,其特征在于,所述干扰信息包括:
    在各个接收天线上测量的各个所述参考信号端口上的所述干扰信号;
    或,所述干扰信号的协方差矩阵;
    或,所述干扰信号的协方差矩阵的各个主对角元素;
    或,所述干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素;
    或,所述干扰信号的协方差矩阵的各个主对角元素的平均值;
    或,所述干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于所述主对角元素的差分值;
    或,所述干扰信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对于 所述平均值的差分值。
  6. 根据权利要求2至5任一所述的方法,其特征在于,
    所述RSRP是最近一次上报的RSRP;
    或者,
    所述RSRP是最近一次上报的RSRP,且所述RSRP与所述参考信号资源上传输的下行参考信号具有相同的波束索引。
  7. 根据权利要求1所述的方法,其特征在于,在所述参考信号资源上所测量到的信号为非零功率参考信号。
  8. 根据权利要求7所述的方法,其特征在于,
    属于一个小区组的各个小区之间的所述非零功率参考信号在一个物理资源块PRB中占用的时频资源相同;
    或,
    所有小区之间的所述非零功率参考信号在一个物理资源块PRB中占用的时频资源相同。
  9. 根据权利要求4或5所述的方法,其特征在于,在所述参考信号资源上所测量到的信号为零功率参考信号。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述第一信道质量信息还包括:所述终端在发送所述SRS时的发送功率信息。
  11. 根据权利要求1至9任一所述的方法,其特征在于,所述第一信道质量信息还包括:所述终端的接收机类型或接收机处理增益。
  12. 根据权利要求1至11任一所述的方法,其特征在于,
    所述参考信号资源对应的频域带宽内包括n个子带,每个子带对应各自的所述第一信道质量信息,n为正整数;
    或,
    所述参考信号资源对应的频域带宽内的宽带对应同一个所述第一信道质量信息。
  13. 根据权利要求1至11任一所述的方法,其特征在于,
    所述参考信号资源所占用的时域资源、所述SRS所占用的时域资源和所述第一信道质量信息所占用的时域资源属于同一时域单元;
    其中,所述时域单元是时隙、子帧或传输时间间隔。
  14. 根据权利要求13所述的方法,其特征在于,所述时域单元包括n个符号,n为正整数;
    所述参考信号资源占用一个时域单元中的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
    所述SRS占用所述时域单元的第X3至X4个OFDM符号,X3=X2+m2,m2为大于等于1的整数,X3≤X4;
    所述第一信道质量信息占用所述时域单元的第X5个至第X6个OFDM符号,X5≤X6≤n-1。
  15. 根据权利要求13所述的方法,其特征在于,所述时域单元包括n个符号,n为正整数;
    所述探测参考信号占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
    所述SRS占用所述时域单元的第X3个至第X4个OFDM符号,X3=X2+m2,m2为大于等于1的整数,X4=X3或X3+1;
    所述第一信道质量信息占用所述时域单元的第X5个至第X6个OFDM符号,X4<X5≤X6≤n-1。
  16. 根据权利要求14或15所述的方法,其特征在于,所述SRS在时域上占用若干个OFDM符号,在频域上占用若干个频域单元;
    所述SRS在所述若干个频域单元内采用跳频的方式传输,不同的所述OFDM符号内的所述SRS占用不同的所述频域单元;
    不同的所述频域单元属于非连续的频域带宽或连续的频域带宽;
  17. 根据权利要求14或15所述的方法,其特征在于,在同一个所述时域单元中,所述第一信道质量信息占用的频域单元与所述SRS占用的最后一个OFDM符号所对应的所述频域单元相同;
    在所述最后一个OFDM符号内的所述SRS是所述第一信道质量信息的解调导频信号。
  18. 根据权利要求13所述的方法,其特征在于,所述时域单元包括n个符号,n为正整数;
    所述参考信号资源占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
    所述SRS和所述第一信道质量信息在所述时域单元的第Z3个OFDM符号至第Z4个OFDM符号中采用依次交错的方式占用不同的所述OFDM符号,X2≤X3≤X4≤n-1。
  19. 根据权利要求13所述的方法,其特征在于,所述时域单元包括n个符号,n为正整数;
    所述参考信号资源占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
    所述SRS和所述第一信道质量信息在所述时域单元占用相同的第Z3个OFDM符号至第Z4个OFDM符号,X2<X3≤X4≤n-1。
  20. 根据权利要求19所述的方法,其特征在于,所述SRS和第一信道质量信息在频域上分别占用相同的频域带宽内的两组子载波,所述两组子载波分别对应于奇数子载波和偶数子载波。
  21. 根据权利要求19所述的方法,其特征在于,在各个OFDM符号中的所述SRS采用序列资源和不同的循环移位值,所述循环移位值用于指示所述第一信道质量信息。
  22. 根据权利要求14或15或18或19所述的方法,其特征在于,所述下行配置指令占用所述时域单元的前k个OFDM符号,k=1或2或3或4。
  23. 根据权利要求1至22任一所述的方法,其特征在于,
    所述下行配置指令还用于配置第一时频资源,所述第一时频资源是用于传输所述SRS的时频资源;
    和/或,所述下行配置指令还用于配置所述SRS的序列资源,或者,所述SRS的所述序列资源和码资源;
    和/或,所述下行配置指令还用于配置第二时频资源,所述第二时频资源是用于传输所述第一信道质量信息的时频资源。
  24. 根据权利要求23所述的方法,其特征在于,所述下行配置指令用于配置所述参考信号资源对应的正交频分复用技术OFDM符号位置和/或物理资源块PRB位置;
    所述OFDM符号位置包括:所述参考信号资源占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
    所述PRB位置包括:所述参考信号资源占用的全部传输带宽中的PRB索引,所述若干个PRB是非连续的PRB或者连续的PRB。
  25. 根据权利要求23所述的方法,其特征在于,所述下行配置指令用于配置所述第一时频资源对应的正交频分复用技术OFDM符号位置和/或物理资源块PRB位置;
    所述OFDM符号位置包括:所述SRS占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
    所述PRB位置包括:所述SRS占用的全部传输带宽中的PRB索引,所述SRS在所述传输带宽中跳频传输,所述若干个PRB是非连续的PRB或者连续的PRB;
    其中,所述SRS在每个所述OFDM符号中所占用的所述传输带宽相同或不同。
  26. 根据权利要求23所述的方法,其特征在于,所述下行配置指令用于配置所述第二时频资源对应的正交频分复用技术OFDM符号位置和/或物理资源块PRB位置;
    所述OFDM符号位置包括:所述第一信道质量信息占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
    所述PRB位置包括:所述第一信道质量信息占用的全部传输带宽中的PRB索引,所述 若干个PRB是非连续的PRB或者连续的PRB。
  27. 根据权利要求23所述的方法,其特征在于,所述下行配置指令是用户设备UE特定的指令,或UE组特定的指令。
  28. 一种信道质量信息计算方法,其特征在于,所述方法包括:
    接入网设备向终端发送下行配置指令;
    所述接入网设备接收所述终端发送的第一信道质量信息,所述第一信道质量信息是所述终端根据所述下行配置指令所指示的参考信号资源上所测量得到的;
    所述接入网设备接收所述终端根据所述下行配置指令发送的探测参考信号SRS;
    其中,所述第一信道质量信息和所述SRS用于计算第二信道质量信息。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    所述接入网设备从所述第一信道质量信息中获取所述终端的接收信号信息;
    所述接入网设备根据所述SRS计算得到所述终端的下行信道的信道估计信息;
    所述接入网设备根据所述接收信号信息和所述下行信道的信道估计信息计算得到干扰信息;
    所述接入网设备根据所述干扰信息和所述下行信道的信道估计信息,计算得到所述下行信道的信噪比SNR,将所述SNR确定为所述第二信道质量信息。
  30. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    所述接入网设备从所述第一信道质量信息中获取所述终端的干扰信息;
    所述接入网设备根据所述SRS计算得到所述终端的下行信道的信道估计信息;
    所述接入网设备根据所述干扰信息和所述下行信道的信道估计信息,计算得到所述下行信道的信噪比SNR,将所述SNR确定为所述第二信道质量信息。
  31. 一种信道质量信息计算装置,其特征在于,所述装置包括:
    接收单元,用于接收接入网设备发送的下行配置指令;
    处理单元,用于在所述下行配置指令所指示的参考信号资源上测量得到第一信道质量信息,向所述接入网设备发送所述第一信道质量信息;所述第一信道质量信息用于反馈在所述参考信号资源上测量得到的接收信号信息或者干扰信息;
    发送单元,用于向所述接入网设备发送探测参考信号SRS;
    其中,所述第一信道质量信息和所述SRS用于计算第二信道质量信息。
  32. 根据权利要求31所述的装置,其特征在于,所述第一信道质量信息包括:
    所述接收信号信息;
    或,所述接收信号信息与所述终端上报的参考信号接收功率RSRP的比值。
  33. 根据权利要求32所述的装置,其特征在于,所述参考信号资源对应若干个参考信号 端口;所述接收信号信息包括:
    在各个接收天线上测量的各个所述参考信号端口上的接收信号的信息;
    或,所述接收信号的协方差矩阵的各个元素;
    或,所述接收信号的协方差矩阵的各个主对角元素;
    或,所述接收信号的协方差矩阵的各个主对角元素中的一个主对角元素;
    或,所述接收信号的协方差矩阵的各个主对角元素的平均值;
    或,所述接收信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于所述主对角元素的差分值;
    或,所述接收信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对于所述平均值的差分值。
  34. 根据权利要求31所述的装置,其特征在于,所述第一信道质量信息包括:
    所述干扰信息;
    或,所述干扰信息与所述终端上报的参考信号接收功率RSRP的比值。
  35. 根据权利要求34所述的装置,其特征在于,所述干扰信息包括:
    在各个接收天线上测量的各个所述参考信号端口上的所述干扰信号;
    或,所述干扰信号的协方差矩阵;
    或,所述干扰信号的协方差矩阵的各个主对角元素;
    或,所述干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素;
    或,所述干扰信号的协方差矩阵的各个主对角元素的平均值;
    或,所述干扰信号的协方差矩阵的各个主对角元素中的一个主对角元素,和其它主对角元素相对于所述主对角元素的差分值;
    或,所述干扰信号的协方差矩阵的各个主对角元素的平均值,和各个主对角元素相对于所述平均值的差分值。
  36. 根据权利要求32至35任一所述的装置,其特征在于,
    所述RSRP是最近一次上报的RSRP;
    或者,
    所述RSRP是最近一次上报的RSRP,且所述RSRP与所述参考信号资源上传输的下行参考信号具有相同的波束索引。
  37. 根据权利要求31所述的装置,其特征在于,在所述参考信号资源上所测量到的信号为非零功率参考信号。
  38. 根据权利要求37所述的装置,其特征在于,
    属于一个小区组的各个小区之间的所述非零功率参考信号在一个物理资源块PRB中占用的时频资源相同;
    或,
    所有小区之间的所述非零功率参考信号在一个物理资源块PRB中占用的时频资源相同。
  39. 根据权利要求34或35所述的装置,其特征在于,在所述参考信号资源上所测量到的信号为零功率参考信号。
  40. 根据权利要求31至39任一所述的装置,其特征在于,所述第一信道质量信息还包括:所述终端在发送所述SRS时的发送功率信息。
  41. 根据权利要求31至39任一所述的装置,其特征在于,所述第一信道质量信息还包括:所述终端的接收机类型或接收机处理增益。
  42. 根据权利要求31至41任一所述的装置,其特征在于,
    所述参考信号资源对应的频域带宽内包括n个子带,每个子带对应各自的所述第一信道质量信息,n为正整数;
    或,
    所述参考信号资源对应的频域带宽内的宽带对应同一个所述第一信道质量信息。
  43. 根据权利要求31至41任一所述的装置,其特征在于,
    所述参考信号资源所占用的时域资源、所述SRS所占用的时域资源和所述第一信道质量信息所占用的时域资源属于同一时域单元;
    其中,所述时域单元是时隙、子帧或传输时间间隔。
  44. 根据权利要求43所述的装置,其特征在于,所述时域单元包括n个符号,n为正整数;
    所述参考信号资源占用一个时域单元中的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
    所述SRS占用所述时域单元的第X3至X4个OFDM符号,X3=X2+m2,m2为大于等于1的整数,X3≤X4;
    所述第一信道质量信息占用所述时域单元的第X5个至第X6个OFDM符号,X5≤X6≤n-1。
  45. 根据权利要求43所述的装置,其特征在于,所述时域单元包括n个符号,n为正整数;
    所述探测参考信号占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
    所述SRS占用所述时域单元的第X3个至第X4个OFDM符号,X3=X2+m2,m2为大于等于1的整数,X4=X3或X3+1;
    所述第一信道质量信息占用所述时域单元的第X5个至第X6个OFDM符号,X4<X5≤X6≤n-1。
  46. 根据权利要求44或45所述的装置,其特征在于,所述SRS在时域上占用若干个OFDM符号,在频域上占用若干个频域单元;
    所述SRS在所述若干个频域单元内采用跳频的方式传输,不同的所述OFDM符号内的所述SRS占用不同的所述频域单元;
    不同的所述频域单元属于非连续的频域带宽或连续的频域带宽;
  47. 根据权利要求44或45所述的装置,其特征在于,在同一个所述时域单元中,所述第一信道质量信息占用的频域单元与所述SRS占用的最后一个OFDM符号所对应的所述频域单元相同;
    在所述最后一个OFDM符号内的所述SRS是所述第一信道质量信息的解调导频信号。
  48. 根据权利要求43所述的装置,其特征在于,所述时域单元包括n个符号,n为正整数;
    所述参考信号资源占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
    所述SRS和所述第一信道质量信息在所述时域单元的第Z3个OFDM符号至第Z4个OFDM符号中采用依次交错的方式占用不同的OFDM符号,X2≤X3≤X4≤n-1。
  49. 根据权利要求43所述的装置,其特征在于,所述时域单元包括n个符号,n为正整数;
    所述参考信号资源占用所述时域单元的第X1至X2个OFDM符号,0≤X1,X2=X1或X1+m1,m1为大于等于1的整数;
    所述SRS和所述第一信道质量信息在所述时域单元占用相同的第Z3个OFDM符号至第Z4个OFDM符号,X2<X3≤X4≤n-1。
  50. 根据权利要求49所述的装置,其特征在于,所述SRS和第一信道质量信息在频域上分别占用相同的频域带宽内的两组子载波,所述两组子载波分别对应于奇数子载波和偶数子载波。
  51. 根据权利要求49所述的装置,其特征在于,在各个OFDM符号中的所述SRS采用序列资源和不同的循环移位值,所述循环移位值用于指示所述第一信道质量信息。
  52. 根据权利要求44或45或48或49所述的装置,其特征在于,所述下行配置指令占用所述时域单元的前k个OFDM符号,k=1或2或3或。
  53. 根据权利要求31至52任一所述的装置,其特征在于,
    所述下行配置指令还用于配置第一时频资源,所述第一时频资源是用于传输所述SRS的时频资源;
    和/或,所述下行配置指令还用于配置所述SRS的序列资源,或者,所述SRS的所述序 列资源和码资源。
    和/或,所述下行配置指令还用于配置第二时频资源,所述第二时频资源是用于传输所述第一信道质量信息的时频资源。
  54. 根据权利要求53所述的装置,其特征在于,所述下行配置指令用于配置所述参考信号资源对应的正交频分复用技术OFDM符号位置和/或物理资源块PRB位置;
    所述OFDM符号位置包括:所述参考信号资源占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
    所述PRB位置包括:所述参考信号资源占用的全部传输带宽中的PRB索引,所述若干个PRB是非连续的PRB或者连续的PRB。
  55. 根据权利要求53所述的装置,其特征在于,所述下行配置指令用于配置所述第一时频资源对应的正交频分复用技术OFDM符号位置和/或物理资源块PRB位置;
    所述OFDM符号位置包括:所述SRS占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
    所述PRB位置包括:所述SRS占用的全部传输带宽中的PRB索引,所述SRS在所述传输带宽中跳频传输,所述若干个PRB是非连续的PRB或者连续的PRB;
    其中,所述SRS在每个所述OFDM符号中所占用的所述传输带宽相同或不同。
  56. 根据权利要求53所述的装置,其特征在于,所述下行配置指令用于配置所述第二时频资源对应的正交频分复用技术OFDM符号位置和/或物理资源块PRB位置;
    所述OFDM符号位置包括:所述第一信道质量信息占用的起始符号索引和总符号数,或者,所述起始符号索引和终止符号索引;
    所述PRB位置包括:所述第一信道质量信息占用的全部传输带宽中的PRB索引,所述若干个PRB是非连续的PRB或者连续的PRB。
  57. 根据权利要求51所述的装置,其特征在于,所述下行配置指令是用户设备UE特定的指令,或UE组特定的指令。
  58. 一种信道质量信息计算装置,其特征在于,所述装置包括:
    发送单元,用于向终端发送下行配置指令;
    接收单元,用于接收所述终端发送的第一信道质量信息,所述第一信道质量信息是所述终端根据所述下行配置指令所指示的参考信号资源上所测量得到的;
    所述接收单元,还用于接收所述终端根据所述下行配置指令发送的探测参考信号SRS;
    其中,所述第一信道质量信息和所述SRS用于计算第二信道质量信息。
  59. 根据权利要求58所述的装置,其特征在于,所述装置还包括:
    处理单元,用于从所述第一信道质量信息中获取所述终端的接收信号信息;
    所述处理单元,用于根据所述SRS计算得到所述终端的下行信道的信道估计信息;
    所述处理单元,用于根据所述接收信号信息和所述下行信道的信道估计信息计算得到干扰信息;
    所述处理单元,用于根据所述干扰信息和所述下行信道的信道估计信息,计算得到所述下行信道的信噪比SNR,将所述SNR确定为所述第二信道质量信息。
  60. 根据权利要求58所述的装置,其特征在于,所述装置还包括:
    所述处理单元,用于从所述第一信道质量信息中获取所述终端的干扰信息;
    所述处理单元,用于根据所述SRS计算得到所述终端的下行信道的信道估计信息;
    所述处理单元,用于根据所述干扰信息和所述下行信道的信道估计信息,计算得到所述下行信道的信噪比SNR,将所述SNR确定为所述第二信道质量信息。
  61. 一种信道质量信息计算系统,其特征在于,所述系统包括:终端和接入网设备;
    所述终端包括如权利要求31至57任一所述的信息质量信息获取装置;
    所述接入网设备包括如权利要求58至60任一所述的信道质量信息计算装置。
PCT/CN2017/096196 2016-08-10 2017-08-07 信道质量信息计算方法、装置及系统 WO2018028540A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17838670.2A EP3493438B1 (en) 2016-08-10 2017-08-07 Channel quality information calculation method, apparatus and system
US16/264,333 US10893426B2 (en) 2016-08-10 2019-01-31 Channel quality information calculation method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610658300.8 2016-08-10
CN201610658300.8A CN107733549B (zh) 2016-08-10 2016-08-10 信道质量信息计算方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/264,333 Continuation US10893426B2 (en) 2016-08-10 2019-01-31 Channel quality information calculation method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018028540A1 true WO2018028540A1 (zh) 2018-02-15

Family

ID=61161629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096196 WO2018028540A1 (zh) 2016-08-10 2017-08-07 信道质量信息计算方法、装置及系统

Country Status (4)

Country Link
US (1) US10893426B2 (zh)
EP (1) EP3493438B1 (zh)
CN (1) CN107733549B (zh)
WO (1) WO2018028540A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586855A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输的方法与装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165607B2 (en) * 2017-01-17 2021-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting sounding reference signal, terminal device and network device
US10736074B2 (en) 2017-07-31 2020-08-04 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
US10630517B2 (en) * 2017-09-12 2020-04-21 Mediatek Inc. Method and apparatus for multi-TRP and multi-panel transmission in wireless communications
CN111092640B (zh) 2018-10-24 2021-03-09 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11777764B2 (en) 2019-03-28 2023-10-03 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications
US11239967B2 (en) 2019-05-02 2022-02-01 Qualcomm Incorporated Patterns for reference signals used for positioning in a wireless communications system
CN112217550B (zh) 2019-07-12 2022-03-29 华为技术有限公司 预编码处理方法和装置
US11082183B2 (en) 2019-09-16 2021-08-03 Qualcomm Incorporated Comb shift design
EP4070604A4 (en) 2020-01-03 2022-11-23 ZTE Corporation METHODS AND DEVICES FOR IMPROVING SOUNDING REFERENCE SIGNAL (SRS) TRANSMISSION SIGNALING
WO2022067523A1 (zh) * 2020-09-29 2022-04-07 华为技术有限公司 干扰上报的方法与装置
CN114531183A (zh) * 2020-11-23 2022-05-24 华为技术有限公司 信道矩阵的确定方法、装置及系统
KR20220116874A (ko) * 2021-02-16 2022-08-23 삼성전자주식회사 기준 신호에 의한 간섭을 줄이기 위한 전자 장치 및 그의 동작 방법
CN115701695A (zh) * 2021-08-02 2023-02-10 华为技术有限公司 一种确定信道统计协方差的方法及装置
CN115065430A (zh) * 2022-07-28 2022-09-16 Oppo广东移动通信有限公司 信道质量确定方法、装置、设备、存储介质和程序产品
CN117544452A (zh) * 2022-08-01 2024-02-09 华为技术有限公司 一种信道状态信息的确定方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674655A (zh) * 2009-10-14 2010-03-17 中兴通讯股份有限公司 一种上行及下行信道信息获取方法和系统
CN102684850A (zh) * 2011-03-11 2012-09-19 夏普株式会社 信道状态信息反馈方法、用户设备和基站
CN103190100A (zh) * 2010-10-28 2013-07-03 Lg电子株式会社 发送探测基准信号的方法和设备
CN105634658A (zh) * 2014-10-31 2016-06-01 中国移动通信集团公司 一种进行发送处理的方法、设备及系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750205B2 (en) * 2009-08-07 2014-06-10 Texas Instruments Incorporated Multiple rank CQI feedback for cellular networks
CN102088762B (zh) * 2009-12-04 2014-02-05 中兴通讯股份有限公司 一种利用信道对称性的频选调度方法及装置
WO2011078582A2 (ko) * 2009-12-22 2011-06-30 엘지전자 주식회사 다중 반송파 지원 무선 통신 시스템에서 효율적인 채널 측정 방법 및 장치
US8929230B2 (en) * 2010-04-15 2015-01-06 Qualcomm Incorporated Coordinated silent period with sounding reference signal (SRS) configuration
EP2793414B1 (en) * 2011-12-16 2016-09-14 LG Electronics Inc. Method for measuring channel state information in a wireless access system and apparatus for same
ES2793492T3 (es) * 2012-01-30 2020-11-16 Ericsson Telefon Ab L M Estación base, equipo de usuario y métodos en los mismos en un sistema de comunicaciones
JP5526165B2 (ja) * 2012-01-30 2014-06-18 株式会社Nttドコモ 無線通信システム、基地局装置、ユーザ端末、及びチャネル状態情報測定方法
KR20130101294A (ko) * 2012-03-05 2013-09-13 삼성전자주식회사 협력 통신 방법 및 장치
JP6073073B2 (ja) * 2012-05-10 2017-02-01 シャープ株式会社 端末装置、基地局装置および通信方法
US9398483B2 (en) * 2012-06-19 2016-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and controlling node for controlling measurements by a user equipment
WO2014010850A1 (ko) * 2012-07-12 2014-01-16 엘지전자 주식회사 매크로셀과 소규모셀이 공존하는 환경에서 단말이 소규모셀을 검출하는 방법
EP3809759A3 (en) * 2012-10-05 2021-05-12 Interdigital Patent Holdings, Inc. Method and apparatuses for transmitting feedback
KR20150010560A (ko) * 2013-07-19 2015-01-28 삼성전자주식회사 무선 통신 시스템의 협력 통신 방법 및 장치
US9806926B2 (en) * 2013-11-04 2017-10-31 Samsung Electronics Co., Ltd. Multistage beamforming of multiple-antenna communication system
US10021585B2 (en) * 2013-11-07 2018-07-10 Lg Electronics Inc. Method for measuring wireless communication state in wireless communication system and apparatus therefor
WO2015080140A1 (ja) * 2013-11-26 2015-06-04 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
KR102291457B1 (ko) * 2014-09-03 2021-08-19 삼성전자주식회사 셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치
EP4274372A3 (en) * 2014-11-14 2024-01-24 InterDigital Patent Holdings, Inc. Methods and apparatuses for channel measurements and reporting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674655A (zh) * 2009-10-14 2010-03-17 中兴通讯股份有限公司 一种上行及下行信道信息获取方法和系统
CN103190100A (zh) * 2010-10-28 2013-07-03 Lg电子株式会社 发送探测基准信号的方法和设备
CN102684850A (zh) * 2011-03-11 2012-09-19 夏普株式会社 信道状态信息反馈方法、用户设备和基站
CN105634658A (zh) * 2014-10-31 2016-06-01 中国移动通信集团公司 一种进行发送处理的方法、设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3493438A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586855A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输的方法与装置
CN111586855B (zh) * 2019-02-15 2024-02-09 华为技术有限公司 信号传输的方法与装置
US11937203B2 (en) 2019-02-15 2024-03-19 Huawei Technologies Co., Ltd. Signal transmission method and apparatus

Also Published As

Publication number Publication date
US20190166514A1 (en) 2019-05-30
EP3493438A1 (en) 2019-06-05
CN107733549A (zh) 2018-02-23
CN107733549B (zh) 2020-09-25
US10893426B2 (en) 2021-01-12
EP3493438B1 (en) 2022-06-15
EP3493438A4 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
WO2018028540A1 (zh) 信道质量信息计算方法、装置及系统
US11128510B2 (en) Data transmission method, user equipment, and network side device
US11979347B2 (en) Systems and methods for adaptive pilot allocation
US11736170B2 (en) Data transmission method, terminal device, and network device
CN113273251B (zh) 用于探测参考信号传输和接收的设备、网络和方法
US10390337B2 (en) Aperiodic channel state information (CSI) reporting for carrier aggregation
KR20150031242A (ko) Tdd 협력 다중-포인트 및 캐리어 집성 시나리오를 위한 공간 피드백(pmi/ri)없이 cqi 피드백하기 위한 방법
US11082179B2 (en) Reference signal sending method and communications device
US10826664B2 (en) Reference signal sending method, related device, and communications system
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
EP3363230A1 (en) Methods and apparatuses for configuration of measurement restrictions
EP3955658A1 (en) Data transmission method and device
WO2018033148A1 (en) A method to transmit channel state information reference signals in large mimo systems
WO2019072073A1 (zh) 一种信道测量方法及装置
EP3955659A1 (en) Data transmission method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838670

Country of ref document: EP

Effective date: 20190228