WO2018028501A1 - 一种下行接收波束训练信号的传输方法及装置 - Google Patents

一种下行接收波束训练信号的传输方法及装置 Download PDF

Info

Publication number
WO2018028501A1
WO2018028501A1 PCT/CN2017/095838 CN2017095838W WO2018028501A1 WO 2018028501 A1 WO2018028501 A1 WO 2018028501A1 CN 2017095838 W CN2017095838 W CN 2017095838W WO 2018028501 A1 WO2018028501 A1 WO 2018028501A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
beam training
receive beam
downlink receive
training signal
Prior art date
Application number
PCT/CN2017/095838
Other languages
English (en)
French (fr)
Inventor
黄秋萍
高秋彬
陈润华
李辉
塔玛拉卡·拉盖施
宋扬
苏昕
杨宇
王蒙军
李传军
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to JP2019505526A priority Critical patent/JP7060575B2/ja
Priority to US16/324,880 priority patent/US11664876B2/en
Priority to KR1020197007105A priority patent/KR102193119B1/ko
Priority to EP17838631.4A priority patent/EP3499743B1/en
Publication of WO2018028501A1 publication Critical patent/WO2018028501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0851Joint weighting using training sequences or error signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a downlink receive beam training signal.
  • wireless access technology standards such as LTE (Long Term Evolution)/LTE-A (LTE-Advanced) They are all built on the basis of MIMO+OFDM (Orthogonal Frequency Division Multiplexing) technology.
  • the performance gain of MIMO technology comes from the spatial freedom that multi-antenna systems can obtain. Therefore, one of the most important evolution directions of MIMO technology in the development of standardization is the expansion of dimensions.
  • Rel-9 focuses on MU-MIMO technology enhancement, and TM (Transmission Mode)-8 MU-MIMO (Multi-User MIMO, multi-user multiple input multiple output) transmission can support up to 4 downlink data layers. .
  • Rel-10 introduces support for 8 antenna ports, further improving the spatial resolution of channel state information, and further extending the transmission capability of SU-MIMO (Single-User MIMO, single-user multiple input multiple output) to up to 8 data layers. .
  • SU-MIMO Single-User MIMO, single-user multiple input multiple output
  • Rel-13 and Rel-14 introduce FD-MIMO technology to support 32 ports for beamforming in both full and vertical directions.
  • Beamforming is a signal preprocessing technique based on an antenna array. Beamforming produces a directional beam by adjusting the weighting coefficients of each element in the antenna array, so that a significant array gain can be obtained. Therefore, beamforming technology is expanding coverage, improving edge throughput, and suppressing interference. There are great advantages in terms of aspects.
  • fully digital large-scale antennas can have up to 128/256/512 antenna elements and up to 128/256/512 transceivers, each connected to a transceiver.
  • the antenna vibrator is a component on the antenna that has the function of guiding and amplifying electromagnetic waves, so that the electromagnetic signal received by the antenna is stronger.
  • the antenna element is made of a metal having good conductivity.
  • the vibrator has a rod shape, and some of the structures are more complicated. Generally, a plurality of vibrators are arranged in parallel on the antenna.
  • the terminal measures channel state information and feeds back by transmitting pilot signals up to 128/256/512 antenna ports.
  • an antenna array of up to 32/64 antenna elements can also be configured.
  • the path loss makes the coverage of wireless signals extremely limited. With large-scale antenna technology, the coverage of wireless signals can be extended to an applicable range.
  • All-digital antenna arrays each with an independent transceiver, will greatly increase the size, cost and power consumption of the device.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • analog beamforming In order to reduce the size, cost and power consumption of the device, a technical solution based on analog beamforming is proposed, as shown in FIGS. 1 and 2.
  • the main feature of analog beamforming is the weighted shaping of the intermediate frequency (Figure 1) or the RF signal ( Figure 2) by a phase shifter.
  • the S0 signal (baseband signal, ie, the intermediate frequency signal) passes through a digital-to-analog converter (DAC), is weighted and shaped by a phase shifter, and is amplified by a power amplifier (PA) and then transmitted.
  • DAC digital-to-analog converter
  • PA power amplifier
  • the receiving antenna After receiving the signal, the receiving antenna is amplified by a Low Noise Amplifier (LNA), and then weighted by a phase shifter, and then sent to an analog-to-digital converter (ADC) to output a received signal r0.
  • LNA Low Noise Amplifier
  • ADC analog-to-digital converter
  • the advantage is that all transmit (receive) antennas have only one transceiver, which is simple to implement, reducing cost, size and power consumption.
  • the sender and the receiver respectively have with Transceiver (antenna), number of antennas at the transmitting end Receiver antenna number
  • Transceiver Antenna
  • Receiver antenna number The maximum number of parallel transport streams supported by beamforming is
  • the hybrid beamforming structure of Figure 3 balances the flexibility of digital beamforming and the low complexity of analog beamforming, with the ability to support multiple data streams and simultaneous shaping of multiple users, while also complexity. Control is within reasonable limits.
  • Both analog beamforming and digital-to-analog hybrid beamforming require adjustment of the analog beamforming weights at both ends of the transceiver so that the resulting beam can be aligned with the opposite end of the communication.
  • the beam shaping weights sent by the base station side and the beam shaping weights received by the terminal side need to be adjusted.
  • the beam shaping weights sent by the terminal side and received by the base station side need to be adjusted.
  • the technical problem to be solved by the present disclosure is to provide a method and a device for transmitting a downlink receive beam training signal, so that the terminal can perform downlink receive beam training based on the manner triggered by the base station.
  • an embodiment of the present disclosure provides a method for transmitting a downlink receive beam training signal, which may include:
  • Training of the downlink receive beam is performed according to the downlink receive beam training signal.
  • the receiving the downlink receive beam training trigger notification message sent by the first device may further include: sending a downlink receive beam training request message to the first device.
  • the step of receiving the downlink receive beam training signal sent by the first device may further include:
  • the step of receiving the downlink receive beam training trigger notification message sent by the first device to the second device may include:
  • the downlink receiving beam training trigger notification message sent by the first device is received by the downlink control information DCI or dedicated trigger signaling.
  • the downlink receive beam training trigger notification message may include: whether there is indication information of the downlink receive beam training signal and/or a time-frequency location of the downlink receive beam training signal.
  • the step of receiving the downlink receive beam training signal sent by the first device according to the downlink receive beam training trigger notification message may include:
  • the method before receiving the downlink receive beam training signal sent by the first device by using the downlink transmit beam determined by the first device, the method may further include:
  • the training result information may include: an identifier of a downlink transmission beam of the first device recommended by the second device or a downlink transmission beam training signal strength information of the first device measured by the second device.
  • the step of receiving the downlink receive beam training signal sent by the first device according to the downlink receive beam training trigger notification message may include:
  • the time domain location of the downlink receive beam training signal in the subframe is determined by the second device with the first device or determined by the first device.
  • the step of performing training of the downlink receiving beam according to the downlink receiving beam training signal may include:
  • the downlink receive beam training triggering message After the downlink receive beam training triggering message is valid, the downlink receive beam is trained, and the downlink receive beam for receiving the downlink data sent by the first device is determined.
  • the time point of the downlink receiving beam training trigger notification message is: a time point at which the downlink receiving beam training trigger notification message is received, and a time interval.
  • the time interval is determined by the second device with the first device or determined by the first device.
  • the step of determining a downlink receiving beam for receiving downlink data sent by the first device may include:
  • the downlink receiving beam training signal is received by using different downlink receiving beams, and the downlink receiving beam with the strongest received signal power is selected as the downlink receiving beam for receiving the downlink data sent by the first device; or
  • the downlink receiving beam training signal is received by using different downlink receiving beams, and channel estimation is performed. According to the channel estimation result, the downlink receiving beam with the strongest received signal power is selected as the downlink data for receiving the first device. Downstream receive beam; or
  • a wide downlink receiving beam is used for training, and then a narrow downlink receiving beam is used for training, and an optimal narrow downlink receiving beam is determined as a downlink receiving beam for receiving downlink data sent by the first device.
  • the method further includes:
  • An embodiment of the present disclosure further provides a transmission apparatus for a downlink receive beam training signal, which may include:
  • a receiving module configured to receive a downlink receiving beam training trigger notification message sent by the first device
  • the training module is configured to receive, according to the downlink receive beam training trigger notification message, a downlink receive beam training signal sent by the first device, and perform downlink receive beam training according to the downlink receive beam training signal.
  • the transmitting device of the downlink receiving beam training signal may further include: a first sending module, configured to send a downlink receiving beam training request message to the first device.
  • the transmitting device of the downlink receiving beam training signal may further include: a second sending module, configured to send, to the first device, the number of downlink receiving beams of the second device or the number of downlink receiving beams that need to be trained.
  • An embodiment of the present disclosure further provides a method for transmitting a downlink receive beam training signal, which may include:
  • the sending the downlink receiving beam training trigger notification message to the second device may further include:
  • Receiving a downlink receive beam training request message sent by the second device Receiving a downlink receive beam training request message sent by the second device.
  • the sending the downlink receive beam training signal to the second device may further include:
  • the step of sending a downlink receive beam training trigger notification message to the second device may include:
  • the downlink receiving beam training trigger notification message is sent to the second device by using downlink control information DCI or dedicated signaling.
  • the downlink receive beam training trigger notification message may include: whether there is indication information of the downlink receive beam training signal and/or a time-frequency location of the downlink receive beam training signal.
  • the step of sending the downlink receive beam training signal to the second device may include:
  • the downlink receive beam training signal is shaped by using a beamforming weight of the downlink transmit beam
  • the downlink receive beam training signal is sent to the second device.
  • the step of determining a downlink transmit beam used by the downlink receive beam training signal may include:
  • the training result information may include: an identifier of a downlink transmission beam of the first device recommended by the second device or a downlink transmission beam training signal strength information of the first device measured by the second device.
  • the downlink transmit beam used by the downlink receive beam training signal is the same as the downlink transmit beam that the first device sends downlink data to the second device.
  • the time domain location of the downlink receive beam training signal sent to the second device in the subframe is determined by the second device and the first device or determined by the first device.
  • the first device sends the time domain location notification message to the second device when the time domain location of the downlink receive beam training signal sent to the second device is determined by the first device.
  • the time point of sending the downlink receive beam training signal to the second device is: sending downlink receiving
  • the time point at which the beam training triggers the notification message is added to the time interval, which is determined by the second device with the first device or determined by the first device.
  • the time interval is determined by the first device, and the first device sends the time interval notification message to the second device.
  • An embodiment of the present disclosure further provides a transmission apparatus for a downlink receive beam training signal, which may include:
  • a first sending module configured to send a downlink receiving beam training trigger notification message to the second device
  • a second sending module configured to send a downlink receive beam training signal to the second device, where the downlink receive beam training trigger notification message is used to trigger the second device to receive the downlink receive beam training signal to perform a downlink receive beam Training.
  • the transmitting device of the downlink receiving beam training signal may further include: a first receiving module, configured to receive a downlink receiving beam training request message sent by the second device.
  • the transmitting device of the downlink receiving beam training signal may further include: a second receiving module, configured to receive the number of downlink receiving beams sent by the second device or the number of downlink receiving beams that need to be trained.
  • Embodiments of the present disclosure also provide a transmission apparatus for a downlink receive beam training signal, including a receiver, a processor, and a memory, where:
  • the receiver is configured to receive a downlink receive beam training trigger notification message sent by the first device
  • the processor by executing the program and data stored in the memory, is configured to trigger the receiver to receive a downlink receive beam training signal sent by the first device according to the downlink receive beam training trigger notification message, And performing training of the downlink receive beam according to the downlink receive beam training signal received by the receiver.
  • the downlink receiving beam training signal transmission device further includes a transmitter, wherein: the transmitter is configured to send a downlink receiving beam training request message to the first device.
  • Embodiments of the present disclosure also provide a transmission apparatus for downlink receive beam training signals, including a transmitter, a processor, and a memory, where:
  • the processor is configured to generate a downlink receive beam training trigger notification message and a downlink receive beam training signal by executing the program and data stored in the memory;
  • the transmitter is configured to send a downlink receive beam training trigger notification message to the second device, and And the downlink receiving beam training triggering notification message is used to trigger the second device to receive the downlink receiving beam training signal to perform training of the downlink receiving beam.
  • the downlink receiving beam training signal transmission device further includes a receiver, wherein: the receiver is configured to receive a downlink receiving beam training request message sent by the second device.
  • the embodiment of the present disclosure receives the downlink receive beam training trigger notification message sent by the first device, and receives the downlink receive beam training signal sent by the first device according to the downlink receive beam training trigger notification message, and performs downlink receiving Beam training.
  • the first device may be a base station
  • the second device may be a terminal, so as to implement a base station-based trigger mechanism, and the terminal performs downlink beam training.
  • 1 is a schematic diagram of weighted shaping of an intermediate frequency (baseband) signal by analog beamforming
  • 2 is a schematic diagram of weighted shaping of a radio frequency signal by analog beamforming
  • 3 is a schematic diagram of digital-to-analog hybrid beamforming
  • FIG. 4 is a flowchart of a method for transmitting a downlink receive beam training signal according to a first embodiment of the terminal of the present disclosure
  • FIG. 5 is a flowchart of a method for transmitting a downlink receive beam training signal according to a second embodiment of the terminal of the present disclosure
  • FIG. 6 is a flowchart of a method for transmitting a downlink receive beam training signal according to a third embodiment of the terminal of the present disclosure
  • FIG. 7 is a schematic diagram of a typical terminal receiving a downlink receive beam training trigger notification message and a downlink receive beam training signal
  • FIG. 8 is a schematic diagram of another exemplary terminal receiving a downlink receive beam training trigger notification message and a downlink receive beam training signal
  • FIG. 9 is a schematic structural diagram of a terminal according to the present disclosure.
  • FIG. 10 is a flowchart of a method for transmitting a downlink receive beam training signal on a base station side according to the present disclosure.
  • the first device may be a base station or other type of transmission point device
  • the second device may be a user equipment (or terminal).
  • the sending device (such as the first device) may also be a terminal that can perform configuration operations on other terminals.
  • the base station may be an evolved base station (Evolved Node B, referred to as an eNB or an e-NodeB), a macro base station, a micro base station (also referred to as a "small base station"), a pico base station, and an access in an LTE system or an evolved system thereof.
  • Point Access Point, AP for short
  • TRP Transmit or Receive Point
  • the terminal may also be referred to as a user equipment (User Equipment, UE for short), or may be called a Terminal, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc., and the terminal may be connected to the wireless access network (
  • the Radio Access Network (referred to as RAN) communicates with one or more core networks.
  • the terminal may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal may also be portable. Pocket, handheld, computer built-in or in-vehicle mobile devices that exchange voice and/or data with a wireless access network.
  • the downlink data is not limited to the downlink data carried by the channel such as the PDSCH in the communication system. It may be all possible downlink signals sent by the base station, including downlink data signals or downlink control signals.
  • the terminal in the embodiment of the present disclosure may also be a D2D (Device to Device) terminal or an M2M (Machine to Machine) terminal.
  • D2D Device to Device
  • M2M Machine to Machine
  • the following embodiments take a base station as a first device and a terminal as a second device as an example.
  • a first embodiment of the present disclosure provides a method for transmitting a downlink receive beam training signal, including:
  • Step 41 Receive a downlink receive beam training trigger notification message sent by the base station.
  • the downlink receiving beam training trigger notification message sent by the base station may be received by using downlink control information (DCI) or dedicated trigger signaling or other information block.
  • DCI downlink control information
  • the DCI may be an uplink access grant DCI or a downlink access grant DCI.
  • the downlink receive beam trigger notification message includes but is not limited to the following content:
  • the time-frequency position of the downlink received training signal for example, the occupied OFDM symbol, the start time, and the like.
  • the downlink receiving beam training trigger notification message may be sent according to the downlink receiving beam training trigger notification message, and the downlink receiving beam training signal sent by the base station by using the downlink transmitting beam determined by the base station. Further, the downlink receive beam training signal is sent after the beamforming weight of the downlink transmit beam is shaped.
  • the downlink transmission beam of the base station may be determined according to the following manner: the base station determines, according to the training result information of the downlink transmission beam of the base station reported by the terminal to the base station, where the training result information may include: the base station recommended by the terminal The identifier of the downlink transmit beam and/or the downlink transmit beam training signal strength information of the base station measured by the terminal.
  • the base station determines that the downlink transmission beam is all or part of the downlink transmission beam recommended by the terminal reported by the terminal.
  • the base station determines one or more beams facing the terminal based on the downlink transmit beam training result information reported by the terminal.
  • the downlink transmission beam includes an angular coverage of the downlink transmission beam recommended by the terminal, or an angle coverage of the downlink transmission beam recommended by the terminal, and the like.
  • the training result information of the downlink transmit beam of the base station that is reported by the terminal may include: a identifier of the recommended downlink transmit beam, such as a number of the downlink transmit beam, and may further include downlink transmit beam training signal strength information received by the terminal, for example, Receive signal power level, etc.
  • the step of performing training of the downlink receiving beam may further include: performing, by the second device, the AGC (Automatic Gain Control) adjustment by using the trained downlink receiving beam.
  • AGC Automatic Gain Control
  • the embodiment of the present disclosure receives the downlink receive beam training trigger notification message sent by the base station, and receives the downlink receive beam training signal sent by the base station according to the downlink receive beam training trigger notification message, and performs training of the downlink receive beam.
  • the trigger mechanism based on the base station is implemented, and the terminal performs downlink beam training.
  • a second embodiment of the present disclosure provides a method for transmitting a downlink receive beam training signal, including:
  • Step 51 Send a downlink receive beam training request message to the base station; the terminal may also send the number of downlink receive beams of the terminal or the number of downlink receive beams that need to be trained to the base station, and the base station according to the number of the downlink receive beams or The number of downlink receive beams that need to be trained determines the number of downlink receive beam training signals.
  • the terminal may send the downlink receive beam training request message to the base station, and send the number of downlink receive beams of the terminal or the number of downlink receive beams to be trained to the base station; or may only send downlink receive beam training to the base station.
  • the request message may also be sent to the base station only for the number of downlink receive beams of the terminal or the number of downlink receive beams that need to be trained.
  • Step 52 Receive a downlink receive beam training trigger notification message sent by the base station according to the downlink receive beam training request message.
  • the downlink receiving beam training trigger notification message sent by the base station to the terminal may be received by using downlink control information (DCI) or dedicated trigger signaling or other information block.
  • DCI downlink control information
  • the DCI may be an uplink access grant DCI or a downlink access grant DCI.
  • the downlink receive beam trigger notification message includes but is not limited to the following:
  • Step 53 Receive a downlink receive beam training signal sent by the base station according to the downlink receive beam training trigger notification message, and perform downlink receive beam training.
  • the step of performing training of the downlink receiving beam may further include: performing, by the second device, the AGC (Automatic Gain Control) adjustment by using the trained downlink receiving beam.
  • AGC Automatic Gain Control
  • the downlink receive beam training trigger notification message is sent according to the downlink receive beam training trigger notification message, and the downlink receive beam training signal sent by the base station by using the downlink transmit beam determined by the base station is received; further, the downlink receive beam training signal uses a downlink transmit beam beam assignment. After the shape weight is shaped, it is sent;
  • the downlink transmission beam of the base station may be determined according to the following manner: the base station determines, according to the training result information of the downlink transmission beam of the base station reported by the terminal to the base station, where the training result information may include: the base station recommended by the terminal The identifier of the downlink transmit beam and/or the downlink transmit beam training signal strength information of the base station measured by the terminal;
  • the base station determines one or more beams facing the terminal or a group of terminals based on downlink transmission beam training result information reported by one or more terminals;
  • the downlink transmission beam includes an angular coverage of the downlink transmission beam recommended by the terminal, or an angle coverage of the downlink transmission beam recommended by the terminal, and the like.
  • the information about the downlink transmit beam reported by the terminal may include: the identifier of the recommended downlink transmit beam, such as the number of the downlink transmit beam, and may further include the downlink transmit beam training signal strength information received by the terminal, such as the received signal power level, and the like. .
  • the terminal may receive the downlink receive beam training sent by the base station according to the downlink receive beam training trigger notification message and the downlink receive beam training signal in a time domain position within the subframe. signal.
  • the subframes here may be subframes in the LTE system, or may be frames in the LTE system or other time units, or may be time units in other systems, which are not limited herein.
  • the time domain position of the downlink receive beam training signal in the subframe may be agreed by the terminal with the base station or determined by the base station.
  • the transmission of the downlink receive beam training signal can be in the first M OFDM symbols of each subframe.
  • the value of M may be determined by the terminal or the base station or determined by the base station.
  • the embodiment of the present disclosure sends a downlink receive beam training request message to the base station, and receives a downlink receive beam training trigger notification message sent by the base station to the terminal, and receives the downlink receive beam training trigger notification message, and receives the sent by the base station.
  • the downlink receives the beam training signal.
  • the trigger mechanism based on the base station is implemented, and the terminal performs downlink beam training.
  • a third embodiment of the present disclosure provides a method for transmitting a downlink receive beam training signal, including:
  • Step 61 Send a downlink receive beam training request message to the base station; where the step is optional; the terminal may also send the number of downlink receive beams of the terminal or the number of downlink receive beams that need to be trained to the base station, and the base station
  • the number of downlink receive beam training signals is determined according to the number of downlink receive beams or the number of downlink receive beams that need to be trained.
  • the terminal may send the downlink receive beam training request message to the base station, and send the number of downlink receive beams of the terminal or the number of downlink receive beams to be trained to the base station; or may only send downlink receive beam training to the base station.
  • the request message may also be sent to the base station only for the number of downlink receive beams of the terminal or the number of downlink receive beams that need to be trained.
  • Step 62 Receive a downlink receive beam training trigger notification message sent by the base station according to the downlink receive beam training request message.
  • Step 63 Receive a downlink receive beam training signal sent by the base station according to the downlink receive beam training trigger notification message.
  • Step 64 Perform training on the downlink receive beam according to the downlink receive beam training signal, thereby determining a downlink receive beam.
  • the downlink receiving beam of the downlink data sent by the receiving base station is determined.
  • Step 65 Receive downlink data sent by the base station by using the determined downlink receiving beam.
  • step 64 after the downlink receive beam training trigger notification message is valid, the downlink receive beam training is performed according to the downlink receive beam training signal, and the downlink receive beam is determined;
  • the effective time of the downlink receive beam training trigger notification message is: the time + time interval of receiving the downlink receive beam training trigger notification message; in other words, the effective time point is the receive downlink receive beam training trigger notification message. Time point plus time interval. The time interval can be zero or greater than zero.
  • the time interval may be agreed by the protocol, or agreed by the terminal and the base station in advance, or determined by the base station.
  • the base station may send the information to the terminal by using the time interval notification signaling; or the time interval may also be obtained from the downlink receiving beam training trigger notification message; of course, the embodiment does not limit the time interval. Carryed by other downlink information blocks.
  • the time interval notification signaling includes information about the time interval. The terminal obtains the time interval according to the information or signaling.
  • the terminal may obtain a start time of downlink receive beam training according to the time interval.
  • the terminal assumes that the downlink receive beam training trigger notification message is valid at the time + time interval of receiving the downlink receive beam training trigger notification message, and the time interval is fixed or is notified by the base station (for example, carried in the downlink receive beam trigger notification message) Or, the time-frequency position of the downlink receiving training signal in the downlink receiving beam triggering notification message may be obtained.
  • the base station may also be carried by the DCI, or carried by dedicated time domain location notification signaling, or by other downlink signaling. Carrying, etc.).
  • the terminal receives the downlink receive beam trigger signaling in the nth subframe
  • the downlink receive beam training signal is in the n+mth subframe
  • m is in the trigger notification.
  • the message or other message carrying the information about the time interval or the downlink receive beam training sequence position notification signaling, m 0, means that the training signal and the trigger message are in the same subframe.
  • the subframes here may be subframes in the LTE system, or may be frames in the LTE system or other time units, or may be time units in other systems, which are not limited herein.
  • step 64 the downlink receive beam is trained after the downlink receive beam training trigger notification message is valid.
  • the terminal uses different downlink receiving beams to receive the downlink receiving beam training signal, and selects the downlink receiving beam with the strongest receiving signal power as the downlink receiving beam for receiving the downlink data sent by the base station;
  • the terminal uses different downlink receiving beams to receive the downlink receiving beam training signals, and performs channel estimation. According to the channel estimation result, the downlink receiving beam with the strongest received signal power is selected as the receiving base station for transmitting. Downlink receive beam of downlink data;
  • the training of the downlink receiving beam by the terminal does not limit the reception of several downlink receiving beams in one time.
  • the terminal may receive the training sequence by using only one receiving beam at a time, or may simultaneously receive the training sequence by using multiple receiving beams at the same time, which is not limited in the disclosure.
  • the terminal can also train the downlink receive beam by using a wide downlink receive beam for training.
  • the narrow downlink receiving beam is used for training, and the optimal narrow downlink receiving beam is determined as the downlink receiving beam of the downlink data sent by the receiving base station;
  • the narrow receive beam can cover the coverage of the wide receive beam, or the coverage of the narrow receive beam is slightly higher than the coverage of the wide receive beam.
  • the training of the downlink receive beam can be performed simultaneously with the training of the downlink transmit beam.
  • the training of the downlink receive beam training and the downlink transmit beam alternates.
  • a typical terminal receives a downlink receive beam training trigger notification message and a downlink receive beam training signal.
  • the trigger message of the downlink receive beam and the downlink receive beam training signal are in the same subframe.
  • the base station may send downlink data to the terminal, and the terminal receives the downlink data sent by the base station.
  • the subframes here may be subframes in the LTE system, or may be frames in the LTE system or other time units, or may be time units in other systems, which are not limited herein.
  • the downlink data and the downlink receive beam training signal can be transmitted by using the same downlink transmit beam, so that the terminal can receive the data after receiving the downlink receive beam training signal to obtain the best downlink receive beam.
  • another typical terminal receives a downlink receive beam training trigger notification message and a downlink receive beam training signal.
  • the subframes here may be subframes in the LTE system, or may be frames in the LTE system or other time units, or may be time units in other systems, which are not limited herein.
  • the terminal After receiving the downlink receive beam training signal, the terminal obtains the best downlink receive beam, and saves the beam weight for subsequent downlink data reception.
  • the transmission method of the downlink receiving beam training signal of the present disclosure is applicable to analog and digital-analog hybrid beamforming, and is also applicable to digital beamforming, and can implement trigger-based downlink receiving beam training.
  • the fourth embodiment of the present disclosure further provides a transmission apparatus for a downlink receive beam training signal, which may include:
  • a receiving module configured to receive a downlink receiving beam training trigger notification message sent by the base station
  • the training module is configured to receive a downlink receive beam training signal sent by the base station according to the downlink receive beam training trigger notification message, and perform downlink receive beam training.
  • the transmitting device of the downlink receiving beam training signal may further include: a first sending module, configured to send a downlink receiving beam training request message to the base station.
  • the transmitting device of the downlink receiving beam training signal may further include: a second sending module, configured to send, to the base station, the number of downlink receiving beams of the terminal or the number of downlink receiving beams that need to be trained.
  • the receiving module is specifically configured to: receive, by using downlink control information DCI or dedicated trigger signaling or other downlink information block, a downlink receiving beam training trigger notification message sent by the base station to the terminal.
  • the downlink receive beam training trigger notification message includes, but is not limited to, whether there is indication information of the downlink receive beam training signal and/or a time-frequency location of the downlink receive beam training signal.
  • the training module is specifically configured to: receive, according to the downlink receive beam training trigger notification message, a downlink receive beam training signal sent by a base station by using a downlink transmit beam determined by the base station.
  • the transmitting device of the downlink receiving beam training signal may further include: a third sending module, configured to report, to the base station, training result information of a downlink sending beam of the base station.
  • the training result information includes, but is not limited to, an identifier of a downlink transmission beam of the base station recommended by the terminal and/or a downlink transmission beam training signal strength information of the base station measured by the terminal.
  • the training module is specifically configured to: according to the downlink receive beam training trigger notification message, and the downlink receive beam training signal receives a downlink receive beam training signal sent by the base station in a time domain position in the subframe.
  • the subframes here may be subframes in the LTE system, or may be frames in the LTE system or other time units, or may be time units in other systems, which are not limited herein;
  • the time domain position of the downlink receive beam training signal in the subframe is determined by the terminal and the base station or determined by the base station.
  • the training module is specifically configured to: after the downlink receive beam training trigger notification message takes effect, perform downlink receive beam training according to the downlink receive beam training signal, and determine a downlink receive beam.
  • the effective time of the downlink receive beam training trigger notification message is: receiving the next The time + time interval of the line receiving beam training trigger notification message; the time interval is determined by the terminal with the base station or determined by the base station.
  • the training module is specifically configured to: receive downlink receive beam training signals by using different downlink receive beams, and select a downlink receive beam with the strongest received signal power as a downlink for receiving downlink data sent by the base station. Receiving beam; or
  • the downlink receiving beam training signal is received by using different downlink receiving beams, and channel estimation is performed. According to the channel estimation result, the downlink receiving beam with the strongest received signal power is selected as the downlink receiving for receiving the downlink data sent by the base station. Beam; or
  • the training module may also use a wide downlink receive beam for training, and then use a narrow downlink receive beam for training, and determine an optimal narrow downlink receive beam as a downlink receive beam for receiving downlink data sent by the base station.
  • the receiving module is further configured to receive the downlink data sent by the base station by using the determined downlink receiving beam.
  • the downlink receiving beam that receives the downlink data is the same as the receiving beam that receives the downlink receiving beam training signal.
  • the embodiment of the transmission apparatus for the downlink receive beam training signal is the apparatus corresponding to the foregoing method, and all implementation examples in the foregoing methods are applicable to the embodiment of the apparatus, and the same technical effects can be achieved.
  • the fifth embodiment of the present disclosure further provides a terminal, including:
  • a receiver configured to receive a downlink receive beam training trigger notification message sent by the base station
  • the processor is used to implement the functions implemented by the following functional modules:
  • the training module is configured to receive a downlink receive beam training signal sent by the base station according to the downlink receive beam training trigger notification message, and perform downlink receive beam training.
  • the terminal may further include: a transmitter, configured to send a downlink receive beam training request message to the base station.
  • the transmitter is further configured to send, to the base station, the number of downlink receiving beams of the terminal or the number of downlink receiving beams that need to be trained.
  • the receiver is specifically configured to: use downlink control information DCI or dedicated trigger signaling, Receiving a downlink receive beam training trigger notification message sent by the base station to the terminal.
  • the downlink receive beam training trigger notification message includes, but is not limited to, whether there is indication information of the downlink receive beam training signal and/or a time-frequency location of the downlink receive beam training signal.
  • the training module is specifically configured to: receive, according to the downlink receive beam training trigger notification message, a downlink receive beam training signal sent by a base station by using a downlink transmit beam determined by the base station.
  • the transmitter is further configured to report, to the base station, training result information of a downlink transmit beam of the base station.
  • the training result information includes, but is not limited to, an identifier of a downlink transmission beam of the base station recommended by the terminal and/or a downlink transmission beam training signal strength information of the base station measured by the terminal.
  • the training module is specifically configured to: according to the downlink receive beam training trigger notification message, and the downlink receive beam training signal receives a downlink receive beam training signal sent by the base station in a time domain position in the subframe.
  • the subframes here may be subframes in the LTE system, or may be frames in the LTE system or other time units, or may be time units in other systems, which are not limited herein.
  • the time domain position of the downlink receive beam training signal in the subframe is determined by the terminal and the base station or determined by the base station.
  • the training module is specifically configured to: after the downlink receive beam training trigger notification message takes effect, perform downlink receive beam training according to the downlink receive beam training signal, and determine a downlink receive beam.
  • the time of the downlink receive beam training trigger notification message is: the time + time interval of receiving the downlink receive beam training trigger notification message; the time interval is determined by the terminal and the base station or determined by the base station.
  • the training module is specifically configured to: receive downlink receive beam training signals by using different downlink receive beams, and select a downlink receive beam with the strongest received signal power as a downlink for receiving downlink data sent by the base station. Receiving beam; or
  • the downlink receiving beam training signal is received by using different downlink receiving beams, and channel estimation is performed. According to the channel estimation result, the downlink receiving beam with the strongest received signal power is selected as the downlink receiving for receiving the downlink data sent by the base station. Beam; or
  • the training module may also first use a wide downlink receive beam for training, and then adopt narrow downlink reception.
  • the beam is trained to determine an optimal narrow downlink receive beam as a downlink receive beam for receiving downlink data transmitted by the base station.
  • the terminal may further include: the receiving module is further configured to receive the downlink data sent by the base station by using the determined downlink receiving beam.
  • the downlink receiving beam that receives the downlink data is the same as the receiving beam that receives the downlink receiving beam training signal.
  • the processor is coupled to the memory via a bus interface, and the processor is coupled through a bus interface receiver or transmitter; the memory is configured to store programs and data used by the processor in performing operations ;
  • a bus interface is an interface of any number of interconnected buses and bridges that may be included in a bus architecture, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the receiver or transmitter can be a plurality of components that provide means for communicating with various other devices on a transmission medium.
  • This embodiment of the present disclosure can also implement trigger-based downlink receive beam training.
  • a sixth embodiment of the present disclosure further provides a method for transmitting a downlink receive beam training signal, including:
  • Step 71 Send a downlink receive beam training trigger notification message to the terminal.
  • the step may further include: receiving a downlink receive beam training request message sent by the terminal.
  • the base station may perform downlink receiving beam training on the terminal according to the downlink receiving beam training request message sent by the terminal.
  • the step may also include: receiving the number of downlink receiving beams sent by the terminal or the number of downlink receiving beams that need to be trained, so that the number of downlink receiving beams that are sent by the terminal or the number of downlink receiving beams that need to be trained may be used. Number, determining the number of downlink receive beam training signals.
  • the downlink receiving beam training trigger notification message is sent to the terminal by using downlink control information DCI or dedicated signaling or other downlink information block;
  • the downlink receive beam training trigger notification message includes but is not limited to: whether there is a downlink The indication information of the beam training signal and/or the time-frequency position of the downlink reception beam training signal are received.
  • Step 72 Send a downlink receive beam training signal to the terminal.
  • the base station determines the downlink transmit beam, and uses the beam shaping weight of the downlink transmit beam to shape the downlink transmit beam training signal and then send the signal to the terminal.
  • the step may further include: the base station receiving the training result information of the downlink transmit beam of the base station reported by the terminal; the training result information includes, but is not limited to, the identifier of the downlink transmit beam of the base station recommended by the terminal, and/or the terminal measurement Power intensity information of the downlink transmit beam for training of the base station.
  • the base station may determine the downlink transmit beam according to the training result information.
  • the time domain location of the downlink receive beam training signal sent to the terminal in the subframe may be protocol-scheduled, or the terminal or the base station agrees, or is determined by the base station.
  • the subframes here may be subframes in the LTE system, or may be frames in the LTE system or other time units, or may be time units in other systems, which are not limited herein.
  • the time domain location of the downlink receive beam training signal in the subframe is protocol-defined, or when the terminal and the base station agree, the agreed time domain location may include: the first M orthogonalities of each subframe agreed with the terminal. Frequency division multiplexed OFDM symbols, where M is a positive integer.
  • the base station sends the time domain location notification message to the terminal when the time domain location of the downlink receive beam training signal sent to the terminal is determined by the base station.
  • the time domain location notification message may be carried by the DCI, or may be carried by a downlink receiving beam training trigger notification message, or carried by other downlink information blocks.
  • the base station determines that the downlink receive beam training signal is in the first M orthogonal frequency division multiplexing OFDM symbols in the subframe, and the time domain location notification message sent by the base station to the terminal is the value of M.
  • time for transmitting the downlink receive beam training signal to the terminal is: time + time interval for transmitting the downlink receive beam training trigger notification message, where the time interval is determined by the terminal and the base station or determined by the base station.
  • the base station When the time interval is determined by the base station, the base station sends the time interval notification message to the terminal.
  • the message or other message carrying the time interval or downlink receive beam training sequence location notification signaling is carried.
  • the method further includes:
  • Step 73 Send downlink data to the terminal by using a downlink transmission beam for transmitting downlink data.
  • This embodiment of the present disclosure is applicable to both analog and digital-to-analog hybrid beamforming, to digital beamforming, and to trigger-based downlink receive beam training.
  • the seventh embodiment of the present disclosure further provides a transmission apparatus for a downlink receive beam training signal, which may include:
  • a first sending module configured to send a downlink receiving beam training trigger notification message to the terminal
  • the second sending module is configured to send a downlink receive beam training signal to the terminal.
  • the method for transmitting the downlink receive beam training signal may further include: a first receiving module, configured to receive a downlink receive beam training request message sent by the terminal.
  • the transmitting device of the downlink receiving beam training signal may further include: a second receiving module, configured to receive the number of downlink receiving beams sent by the terminal or the number of downlink receiving beams that need to be trained.
  • the first sending module is specifically configured to send a downlink receiving beam training trigger notification message to the terminal by using downlink control information DCI or dedicated signaling or other downlink information block.
  • the downlink receive beam training trigger notification message includes, but is not limited to, whether there is indication information of the downlink receive beam training signal and/or a time-frequency location of the downlink receive beam training signal.
  • the second sending module is specifically configured to: determine a downlink transmit beam used by the downlink receive beam training signal, and use the beam shaping weight of the downlink transmit beam to shape the downlink receive beam training signal, and then The terminal sends.
  • the second sending module is configured to: receive training result information of a downlink transmitting beam of the base station reported by the terminal, and determine, according to the training result information, use, to send the downlink receiving beam training signal, when determining the downlink transmitting beam. Downstream transmit beam.
  • the training result information includes, but is not limited to, an identifier of a downlink transmission beam of the base station recommended by the terminal and/or a downlink transmission beam training signal strength information of the base station measured by the terminal.
  • the downlink transmit beam used by the downlink receive beam training signal is the same as the downlink transmit beam that the base station sends downlink data to the terminal.
  • the time domain location of the downlink receive beam training signal sent to the terminal in the subframe is a protocol approximation.
  • the terminal is agreed with the base station, or determined by the base station.
  • the subframes here may be subframes in the LTE system, or may be frames in the LTE system or other time units, or may be time units in other systems, which are not limited herein.
  • the base station sends the time domain location notification message to the terminal when the time domain location of the downlink receive beam training signal sent to the terminal is determined by the base station.
  • the time for transmitting the downlink receive beam training signal to the terminal is: time + time interval for transmitting the downlink receive beam training trigger notification message, where the time interval is determined by the terminal and the base station or determined by the base station.
  • the time interval is determined by the base station, and the base station sends the time interval notification message to the terminal.
  • the time interval notification message may be carried by the DCI, or carried by the downlink receiving beam training trigger notification message, or carried by other downlink information blocks.
  • this embodiment is a device corresponding to the foregoing method for transmitting a downlink receive beam training signal on the base station side, and all implementation manners in the foregoing method embodiments are applicable to the embodiment of the device, and the same technology can be achieved. effect.
  • An eighth embodiment of the present disclosure further provides a base station, which may include:
  • the transmitter is configured to send a downlink receive beam training trigger notification message to the terminal, and send a downlink receive beam training signal to the terminal.
  • the base station may further include: a receiver, configured to receive a downlink receive beam training request message sent by the terminal.
  • the receiver is further configured to receive the number of downlink receiving beams sent by the terminal or the number of downlink receiving beams that need to be trained.
  • the transmitter sends a downlink receive beam training trigger notification message to the terminal by using downlink control information DCI or dedicated signaling or other downlink information block.
  • the downlink receive beam training trigger notification message includes, but is not limited to, whether there is indication information of the downlink receive beam training signal and/or a time-frequency location of the downlink receive beam training signal.
  • the transmitter is specifically configured to: determine a downlink transmit beam used by the downlink receive beam training signal, and use the beamforming weight of the downlink transmit beam to shape the downlink receive beam training signal, and then send the signal to the terminal. .
  • the transmitter is specifically configured to: when the downlink transmission beam is determined, the base station reported by the receiving terminal
  • the training result information of the downlink transmission beam is determined according to the training result information, and the downlink transmission beam used for transmitting the downlink reception beam training signal is determined.
  • the training result information includes, but is not limited to, an identifier of a downlink transmission beam of the base station recommended by the terminal and/or a downlink transmission beam training signal strength information of the base station measured by the terminal.
  • the downlink transmit beam used by the downlink receive beam training signal is the same as the downlink transmit beam that the base station sends downlink data to the terminal.
  • the time domain location of the downlink receive beam training signal sent to the terminal in the subframe is protocol-defined, or is agreed between the terminal and the base station, or determined by the base station.
  • the subframes here may be subframes in the LTE system, or may be frames in the LTE system or other time units, or may be time units in other systems, which are not limited herein.
  • the base station sends the time domain location notification message to the terminal when the time domain location of the downlink receive beam training signal sent to the terminal is determined by the base station.
  • the time for transmitting the downlink receive beam training signal to the terminal is: time + time interval for transmitting the downlink receive beam training trigger notification message, where the time interval is determined by the terminal and the base station or determined by the base station.
  • the time interval is determined by the base station, and the base station sends the time interval notification message to the terminal.
  • the time interval notification message may be carried by the DCI, or carried by the downlink receiving beam training trigger notification message, or carried by other downlink information blocks.
  • a processor may be further included; a memory connected to the processor through a bus interface; the transmitter and the receiver are both connected to the processor through a bus interface; and the memory is configured to store the The program and data that the processor uses when performing operations.
  • a bus interface is an interface of any number of interconnected buses and bridges included in a bus architecture, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the receiver or transmitter can be a plurality of components that provide means for communicating with various other devices on a transmission medium.
  • This embodiment of the present disclosure can also implement trigger-based downlink receive beam training.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种下行接收波束训练信号的传输方法及装置,第二设备侧的传输方法包括:接收第一设备发送的下行接收波束训练触发通知消息;根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号,进行下行接收波束的训练。第一设备侧的发送方法包括:确定要对第二设备进行下行接收波束训练后,向第二设备发送下行接收波束训练触发通知消息;向第二设备发送下行接收波束训练触发通知消息后,向第二设备发送下行接收波束训练信号。

Description

一种下行接收波束训练信号的传输方法及装置
相关申请的交叉引用
本申请主张于2016年8月12日提交中国专利局、申请号为201610665954.3的优先权,其全部内容据此通过引用并入本申请。
技术领域
本公开涉及通信技术领域,特别涉及一种下行接收波束训练信号的传输方法及装置。
背景技术
鉴于MIMO(多输入多输出)技术对于提高峰值速率与系统频谱利用率的重要作用,LTE(Long Term Evolution,长期演进)/LTE-A(LTE-Advanced,升级的LTE)等无线接入技术标准都是以MIMO+OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术为基础构建起来的。
MIMO技术的性能增益来自于多天线系统所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。
在LTE Rel-8中,最多可以支持4层的MIMO传输。
Rel-9重点对MU-MIMO技术进行了增强,TM(Transmission Mode,传输模式)-8的MU-MIMO(Multi-User MIMO,多用户多输入多输出)传输中最多可以支持4个下行数据层。
Rel-10则引入支持8天线端口,进一步提高了信道状态信息的空间分辨率,并进一步将SU-MIMO(Single-User MIMO,单用户多输入多输出)的传输能力扩展至最多8个数据层。
Rel-13和Rel-14引入了FD-MIMO技术支持到32端口,实现全维度以及垂直方向的波束赋形。
波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。因此,波束赋形技术在扩大覆盖范围、改善边缘吞吐量以及干扰抑止等 方面都有很大的优势。
为了进一步提升MIMO技术,移动通信系统中引入大规模天线技术。对于基站,全数字化的大规模天线可以有高达128/256/512个天线振子,以及高达128/256/512个收发信机,每个天线振子连接一个收发信机。
天线振子是天线上的元器件,具有导向和放大电磁波的作用,使天线接收到的电磁信号更强。天线振子是用导电性较好的金属制造的。振子有的是杆状的形状,也有的结构较复杂,一般是很多个振子平行排列在天线上。
通过发送高达128/256/512个天线端口的导频信号,使得终端测量信道状态信息并反馈。
对于终端,也可以配置高达32/64个天线振子的天线阵列。
通过基站和终端两侧的波束赋形,获得巨大的波束赋形增益,以弥补路径损耗带来的信号衰减。尤其是在高频段通信,例如30GHz频点上,路径损耗使得无线信号的覆盖范围极其有限。通过大规模天线技术,可以将无线信号的覆盖范围扩大到可以适用的范围内。
全数字天线阵列,每个天线振子都有独立的收发信机,将会使得设备的尺寸、成本和功耗大幅度上升。特别是对于收发信机的模数转换器(ADC)和数模转换器(DAC),近十年来,其功耗只降低了1/10左右,性能提升也比较有限。
为了降低设备的尺寸、成本和功耗,基于模拟波束赋形的技术方案被提出,如图1和图2所示。模拟波束赋形的主要特点是通过移相器对中频(图1)或射频信号(图2)进行加权赋形。
S0信号(基带信号,即中频信号)经过数模转换器(DAC)后,通过移相器进行加权赋形,并经过功率放大器(PA)进行功率放大后发送出去。
接收端天线接收到信号之后,利用低噪声放大器(LNA,Low Noise Amplifier)进行放大后,经过移相器,进行加权赋形,再传入模数转换器(ADC),输出接收信号r0。
优点在于所有发射(接收)天线只有一个收发信机,实现简单,降低了成本、尺寸和功耗。
为了进一步提升模拟波束赋形性能,一种数字模拟混合波束赋形收发架构 方案被提出,如图3所示。
在图3中,发送端和接收端分别有
Figure PCTCN2017095838-appb-000001
Figure PCTCN2017095838-appb-000002
个收发信机(天线),发送端天线振子数
Figure PCTCN2017095838-appb-000003
接收端天线振子数
Figure PCTCN2017095838-appb-000004
波束赋形支持的最大并行传输流数量为
Figure PCTCN2017095838-appb-000005
图3的混合波束赋形结构在数字波束赋形灵活性和模拟波束赋形的低复杂度间做了平衡,具有支撑多个数据流和多个用户同时赋形的能力,同时,复杂度也控制在合理范围内。
模拟波束赋形和数模混合波束赋形都需要调整收发两端的模拟波束赋形权值,以使得其所形成的波束能对准通信的对端。
对于下行传输,需要调整基站侧发送的波束赋形权值和终端侧接收的波束赋形权值,而对于上行传输,需要调整终端侧发送的和基站侧接收的波束赋形权值。
在相关技术的通信系统中,没有有效的波束训练方法,降低了性能。
发明内容
本公开要解决的技术问题是提供一种下行接收波束训练信号的传输方法及装置,从而可以基于基站触发的方式,使终端进行下行接收波束训练。
为解决上述技术问题,本公开的实施例提供一种下行接收波束训练信号的传输方法,可以包括:
接收第一设备发送的下行接收波束训练触发通知消息;
根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号;以及
根据所述下行接收波束训练信号进行下行接收波束的训练。
其中,接收第一设备发送的下行接收波束训练触发通知消息之前还可以包括:向第一设备发送下行接收波束训练请求消息。
其中,根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号的步骤前还可包括:
向所述第一设备发送第二设备的下行接收波束的个数或者需要训练的下行接收波束的个数。
其中,接收第一设备向第二设备发送的下行接收波束训练触发通知消息的步骤可以包括:
通过下行控制信息DCI或者专用触发信令,接收第一设备发送的下行接收波束训练触发通知消息。
其中,所述下行接收波束训练触发通知消息可以包括:是否存在下行接收波束训练信号的指示信息和/或下行接收波束训练信号的时频位置。
其中,根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号的步骤可以包括:
根据所述下行接收波束训练触发通知消息,接收第一设备通过所述第一设备确定的下行发送波束发送的下行接收波束训练信号。
其中,根据所述下行接收波束训练触发通知消息,接收第一设备通过所述第一设备确定的下行发送波束发送的下行接收波束训练信号前还可包括:
向所述第一设备上报所述第一设备的下行发送波束的训练结果信息。
其中,所述训练结果信息可以包括:第二设备推荐的所述第一设备的下行发送波束的标识或者第二设备测量的所述第一设备的下行发送波束训练信号强度信息。
其中,根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号的步骤可以包括:
根据所述下行接收波束训练触发通知消息,以及所述下行接收波束训练信号在子帧内的时域位置,接收第一设备发送的下行接收波束训练信号。
其中,下行接收波束训练信号在子帧内的时域位置是第二设备与第一设备约定的或者第一设备确定的。其中,所述根据所述下行接收波束训练信号进行下行接收波束的训练的步骤可以包括:
根据所述下行接收波束训练信号,在下行接收波束训练触发通知消息生效后进行下行接收波束的训练,确定出用于接收第一设备发送的下行数据的下行接收波束。
其中,所述下行接收波束训练触发通知消息的生效时间点为可以为:接收所述下行接收波束训练触发通知消息的时间点加上时间间隔,
所述时间间隔是第二设备与第一设备约定的或者是第一设备确定的。
其中,确定出用于接收第一设备发送的下行数据的下行接收波束的步骤可以包括:
采用不同的下行接收波束进行下行接收波束训练信号的接收,并选出接收信号功率最强的下行接收波束作为用于接收所述第一设备发送的下行数据的下行接收波束;或者
采用不同的下行接收波束进行下行接收波束训练信号的接收,并进行信道估计,根据信道估计结果,选出接收信号功率最强的下行接收波束作为用于接收所述第一设备发送的下行数据的下行接收波束;或者
先采用宽下行接收波束进行训练,再采用窄下行接收波束进行训练,确定出最优的窄下行接收波束作为接收第一设备发送的下行数据的下行接收波束。
其中,确定出用于接收第一设备发送的下行数据的下行接收波束后还可包括:
利用确定出的所述下行接收波束,接收所述第一设备发送的下行数据。
本公开的实施例还提供一种下行接收波束训练信号的传输装置,可以包括:
接收模块,用于接收第一设备发送的下行接收波束训练触发通知消息;
训练模块,用于根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号,以及根据所述下行接收波束训练信号进行下行接收波束的训练。
其中,下行接收波束训练信号的传输装置还可以包括:第一发送模块,用于向第一设备发送下行接收波束训练请求消息。
其中,下行接收波束训练信号的传输装置还可以包括:第二发送模块,用于向所述第一设备发送第二设备的下行接收波束的个数或者需要训练的下行接收波束的个数。
本公开的实施例还提供一种下行接收波束训练信号的传输方法,可以包括:
向第二设备发送下行接收波束训练触发通知消息;
向所述第二设备发送下行接收波束训练信号,所述下行接收波束训练触发通知消息用于触发所述第二设备接收所述下行接收波束训练信号以进行下行 接收波束的训练。
其中,向第二设备发送下行接收波束训练触发通知消息之前还可以包括:
接收第二设备发送的下行接收波束训练请求消息。
其中,向第二设备发送下行接收波束训练信号之前还可以包括:
接收第二设备发送的下行接收波束的个数或者需要训练的下行接收波束的个数。
其中,向第二设备发送下行接收波束训练触发通知消息的步骤可以包括:
通过下行控制信息DCI或者专用信令,向第二设备发送下行接收波束训练触发通知消息。
其中,所述下行接收波束训练触发通知消息可以包括:是否存在下行接收波束训练信号的指示信息和/或下行接收波束训练信号的时频位置。
其中,向第二设备发送下行接收波束训练信号的步骤可以包括:
确定下行接收波束训练信号使用的下行发送波束;
利用所述下行发送波束的波束赋形权值,对所述下行接收波束训练信号赋形后,向第二设备发送所述下行接收波束训练信号。
其中,确定下行接收波束训练信号使用的下行发送波束的步骤可以包括:
接收第二设备上报的第一设备的下行发送波束的训练结果信息;
根据所述训练结果信息,确定发送所述下行接收波束训练信号使用的下行发送波束。
其中,所述训练结果信息可以包括:第二设备推荐的所述第一设备的下行发送波束的标识或者第二设备测量的所述第一设备的下行发送波束训练信号强度信息。
其中,所述下行接收波束训练信号使用的下行发送波束与第一设备向第二设备发送下行数据的下行发送波束相同。
其中,向第二设备发送的下行接收波束训练信号在子帧内的时域位置是第二设备与第一设备约定的或第一设备确定的。
其中,向第二设备发送的下行接收波束训练信号在子帧内的时域位置是第一设备确定时,第一设备向第二设备发送所述时域位置通知消息。
其中,向第二设备发送下行接收波束训练信号的时间点为:发送下行接收 波束训练触发通知消息的时间点加上时间间隔,所述时间间隔是第二设备与第一设备约定的或者是第一设备确定的。
其中,所述时间间隔是第一设备确定时,第一设备向第二设备发送所述时间间隔通知消息。
本公开的实施例还提供一种下行接收波束训练信号的传输装置,可以包括:
第一发送模块,用于向第二设备发送下行接收波束训练触发通知消息;
第二发送模块,用于向所述第二设备发送下行接收波束训练信号,所述下行接收波束训练触发通知消息用于触发所述第二设备接收所述下行接收波束训练信号以进行下行接收波束的训练。
其中,下行接收波束训练信号的传输装置还可以包括:第一接收模块,用于接收第二设备发送的下行接收波束训练请求消息。
其中,下行接收波束训练信号的传输装置还可以包括:第二接收模块,用于接收第二设备发送的下行接收波束的个数或者需要训练的下行接收波束的个数。
本公开的实施例还提供一种下行接收波束训练信号的传输装置,包括接收机、处理器和存储器,其中:
所述接收机,用于接收第一设备发送的下行接收波束训练触发通知消息;
所述处理器,通过执行所述存储器中所存储的程序和数据,用于根据所述下行接收波束训练触发通知消息,触发所述接收机接收所述第一设备发送的下行接收波束训练信号,以及根据所述接收机接收的所述下行接收波束训练信号进行下行接收波束的训练。
可选地,该下行接收波束训练信号的传输装置还包括发射机,其中:所述发射机,用于向所述第一设备发送下行接收波束训练请求消息。
本公开的实施例还提供一种下行接收波束训练信号的传输装置,包括发射机、处理器和存储器,其中:
所述处理器,通过执行所述存储器中所存储的程序和数据,用于生成下行接收波束训练触发通知消息和下行接收波束训练信号;
所述发射机,用于向第二设备发送下行接收波束训练触发通知消息,以及 用于向所述第二设备发送下行接收波束训练信号,其中所述下行接收波束训练触发通知消息用于触发所述第二设备接收所述下行接收波束训练信号以进行下行接收波束的训练。
可选地,下行接收波束训练信号的传输装置,还包括接收机,其中:所述接收机,用于接收所述第二设备发送的下行接收波束训练请求消息。
本公开的上述技术方案的有益效果如下:
本公开的实施例通过接收第一设备发送的下行接收波束训练触发通知消息,并根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号,并进行下行接收波束训练。该第一设备可以为基站,第二设备可以为终端,从而实现基于基站的触发机制,终端进行下行波束训练。
附图说明
图1为模拟波束赋形,对中频(基带)信号加权赋形示意图;
图2为模拟波束赋形,对射频信号加权赋形示意图;
图3为数模混合波束赋形示意图;
图4为本公开的终端侧的第一实施例下行接收波束训练信号的传输方法的流程图;
图5为本公开的终端侧的第二实施例下行接收波束训练信号的传输方法的流程图;
图6为本公开的终端侧的第三实施例下行接收波束训练信号的传输方法的流程图;
图7为一个典型的终端接收下行接收波束训练触发通知消息和下行接收波束训练信号的示意图;
图8为另一个典型的终端接收下行接收波束训练触发通知消息和下行接收波束训练信号的示意图;
图9为本公开的终端的架构示意图;
图10为本公开的基站侧的下行接收波束训练信号的传输方法的流程图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
在本公开实施例中,第一设备可以是基站或其他类型传输点设备,第二设备可以是用户设备(或终端)。当然不也限于上述两种设备,比如发送设备(如第一设备)也可以是能够实现对其他终端进行配置操作的终端。
其中,基站可以是LTE系统或其演进系统中的演进型基站(Evolutional Node B,简称为eNB或e-NodeB)、宏基站、微基站(也称为“小基站”)、微微基站、接入点(Access Point,简称为AP)或传输点(Transmit or receive point,简称TRP)等,也可以是未来网络中的基站,如5G网络中的基站。
终端也可称为用户设备(User Equipment,简称为UE),或者可称之为Terminal、移动台(Mobile Station,简称MS)、移动终端(Mobile Terminal)等,该终端可以经无线接入网(Radio Access Network,简称为RAN)与一个或多个核心网进行通信,例如,终端可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
需要说明的是,本公开实施例中,下行数据并不限定于通信系统中的PDSCH等信道携带的下行数据。可以是基站发送的所有可能的下行信号,包括下行数据信号或下行控制信号等。
本公开实施例中的终端还可以是D2D(Device to Device,设备与设备)终端或者M2M(Machine to Machine,机器与机器)终端。
为描述方便,下述实施例以基站作为第一设备,以终端作为第二设备为例进行说明。
第一实施例
如图4所示,本公开的第一实施例提供一种下行接收波束训练信号的传输方法,包括:
步骤41,接收基站发送的下行接收波束训练触发通知消息。
具体可以通过下行控制信息(DCI)或者专用触发信令或者其他信息块,接收基站发送的下行接收波束训练触发通知消息。其中,该DCI可以是一个上行接入准许DCI,也可以是一个下行接入准许DCI。
另外,下行接收波束触发通知消息包括但不限于如下内容:
A)是否存在下行接收波束训练信号的指示信息;和/或
B)下行接收训练信号的时频位置,例如,占用的OFDM符号,开始的时间等。
步骤42,根据所述下行接收波束训练触发通知消息,接收所述基站发送的下行接收波束训练信号,并进行下行接收波束训练。
具体的,可以是根据所述下行接收波束训练触发通知消息,接收基站通过所述基站确定的下行发送波束,发送的下行接收波束训练信号。进一步的,下行接收波束训练信号采用下行发送波束的波束赋形权值赋形之后发出。
该基站的下行发送波束可以依据以下方式确定:基站依据终端向所述基站上报的所述基站的下行发送波束的训练结果信息进行确定,所述训练结果信息可以包括:终端推荐的所述基站的下行发送波束的标识和/或终端测量的所述基站的下行发送波束训练信号强度信息。
例如,基站确定下行发送波束为:终端上报的终端推荐的全部或部分下行发送波束。
又如,基站基于终端上报的下行发送波束训练结果信息,确定面向该终端的一个或多个波束。
下行发送波束包含终端推荐的下行发送波束的角度覆盖范围,或是略低于终端推荐的下行发送波束的角度覆盖范围等等。
终端上报的所述基站的下行发送波束的训练结果信息可以包括:推荐的下行发送波束的标识,例如下行发送波束的编号;还可以进一步可以包括终端收到的下行发送波束训练信号强度信息,例如接收信号功率水平等。
其中,进行下行接收波束的训练的步骤还可以包括:第二设备利用进行训练的下行接收波束进行AGC(自动增益控制)的调整。
本公开的实施例通过接收基站发送的下行接收波束训练触发通知消息,并根据所述下行接收波束训练触发通知消息,接收所述基站发送的下行接收波束训练信号,并进行下行接收波束的训练。从而实现基于基站的触发机制,终端进行下行波束训练。
第二实施例
如图5所示,本公开的第二实施例提供一种下行接收波束训练信号的传输方法,包括:
步骤51,向基站发送下行接收波束训练请求消息;终端也可以向所述基站发送终端的下行接收波束的个数或者需要训练的下行接收波束的个数,基站根据该下行接收波束的个数或者需要训练的下行接收波束的个数,确定下行接收波束训练信号的个数。这里,终端可以既向基站发送下行接收波束训练请求消息,又向所述基站发送终端的下行接收波束的个数或者需要训练的下行接收波束的个数;也可以只向基站发送下行接收波束训练请求消息;也可以只向基站发送终端的下行接收波束的个数或者需要训练的下行接收波束的个数。
步骤52,接收所述基站根据所述下行接收波束训练请求消息,发送的下行接收波束训练触发通知消息;
具体可以通过下行控制信息(DCI)或者专用触发信令或者其他信息块,接收基站向终端发送的下行接收波束训练触发通知消息。其中,该DCI可以是一个上行接入准许DCI,也可以是一个下行接入准许DCI。
另外,下行接收波束触发通知消息包括但不限于以下内容:
A)是否存在下行接收波束训练信号的指示信息;和/或
B)下行接收训练信号的时频位置,例如,占用的OFDM符号,开始的时间等;
步骤53,根据所述下行接收波束训练触发通知消息,接收所述基站发送的下行接收波束训练信号;并进行下行接收波束训练。
其中,进行下行接收波束的训练的步骤还可以包括:第二设备利用进行训练的下行接收波束进行AGC(自动增益控制)的调整。
具体的,可以是根据所述下行接收波束训练触发通知消息,接收基站通过所述基站确定的下行发送波束发送的下行接收波束训练信号;进一步的,下行接收波束训练信号采用下行发送波束的波束赋形权值赋形之后发出;
该基站的下行发送波束可以依据以下方式确定:基站依据终端向所述基站上报的所述基站的下行发送波束的训练结果信息进行确定,所述训练结果信息可以包括:终端推荐的所述基站的下行发送波束的标识和/或终端测量的所述基站的下行发送波束训练信号强度信息;
例如,基站确定下行发送波束为:终端上报的终端推荐的全部或部分下行发送波束;
又如,基站基于1个或多个终端上报的下行发送波束训练结果信息,确定面向该终端或一组终端的一个或多个波束;
下行发送波束包含终端推荐的下行发送波束的角度覆盖范围,或是略低于终端推荐的下行发送波束的角度覆盖范围等等。
终端上报的下行发送波束相关的信息可以包括:推荐的下行发送波束的标识,例如下行发送波束的编号;还可以进一步可以包括终端收到的下行发送波束训练信号强度信息,例如接收信号功率水平等。
在上述第一实施例和第二实施例中,终端可以根据所述下行接收波束训练触发通知消息以及所述下行接收波束训练信号在子帧内的时域位置,接收基站发送的下行接收波束训练信号。
这里的子帧可以是LTE系统中的子帧,也可以是LTE系统中的帧或其他的时间单元,也可以是其它系统中的时间单元,此处不做限定。
这里的下行接收波束训练信号在子帧内的时域位置,可以是终端与基站约定的或者是基站确定的。
一个实施方式为:在以OFDM为基础的系统中,下行接收波束训练信号的传输可以在每个子帧的前M个OFDM符号。M的数值可以是终端与基站约定的或基站确定的。
下行接收波束训练信号在子帧内的时域位置是基站确定的时候,基站向终端发送所述时域位置通知消息。例如基站可以通过DCI携带,或通过下行接收波束训练触发消息携带,或通过专门的时域位置通知信令携带,或通过其他的下行信令携带等。终端通过所述消息或者信令获取下行接收波束训练信号在子帧内的时频位置。
本公开的该实施例通过向基站发送下行接收波束训练请求消息,并接收基站向终端发送的下行接收波束训练触发通知消息,并根据所述下行接收波束训练触发通知消息,接收所述基站发送的下行接收波束训练信号。从而实现基于基站的触发机制,终端进行下行波束训练。
第三实施例
如图6所示,本公开的第三实施例提供一种下行接收波束训练信号的传输方法,包括:
步骤61,向基站发送下行接收波束训练请求消息;其中,该步骤是可选的;终端也可以向所述基站发送终端的下行接收波束的个数或者需要训练的下行接收波束的个数,基站根据该下行接收波束的个数或者需要训练的下行接收波束的个数,确定下行接收波束训练信号的个数。这里,终端可以既向基站发送下行接收波束训练请求消息,又向所述基站发送终端的下行接收波束的个数或者需要训练的下行接收波束的个数;也可以只向基站发送下行接收波束训练请求消息;也可以只向基站发送终端的下行接收波束的个数或者需要训练的下行接收波束的个数。
步骤62,接收所述基站根据所述下行接收波束训练请求消息,发送的下行接收波束训练触发通知消息。
步骤63,根据所述下行接收波束训练触发通知消息,接收所述基站发送的下行接收波束训练信号。
步骤64,根据所述下行接收波束训练信号,进行下行接收波束的训练,从而确定出下行接收波束。优选为,确定出接收基站发送的下行数据的下行接收波束。
其中,进行下行接收波束的训练的步骤还可以包括:第二设备利用进行训练的下行接收波束进行AGC(自动增益控制)的调整。
进一步的,该步骤64还可以包括:
步骤65,利用确定出的所述下行接收波束,接收基站发送的下行数据。
其中,步骤64中,根据所述下行接收波束训练信号,在下行接收波束训练触发通知消息生效后进行下行接收波束的训练,确定出下行接收波束;
其中,所述下行接收波束训练触发通知消息的生效时间为:接收到所述下行接收波束训练触发通知消息的时间+时间间隔;换句话说,生效时间点为接收到下行接收波束训练触发通知消息的时间点加上时间间隔。所述时间间隔可以为零或大于零。
所述时间间隔可以是协议约定的,或者是终端和基站事先约定的,或者是基站确定的。
当是基站确定的时候,可以是基站通过时间间隔通知信令,发送给终端;或者时间间隔也可以是从所述下行接收波束训练触发通知消息中获得的;当然本实施例并不限制时间间隔通过其他下行信息块携带。所述时间间隔通知信令包含关于时间间隔的信息。终端根据所述信息或者信令获得所述时间间隔。
终端可以根据所述时间间隔获得下行接收波束训练的开始时刻。
终端假设下行接收波束训练触发通知消息生效时间为接收到下行接收波束训练触发通知消息的时间+时间间隔,该时间间隔是固定的,或者是基站通知的(例如在下行接收波束触发通知消息中携带,或者可以通过下行接收波束触发通知消息中的下行接收训练信号的时频位置获得。例如,基站也可以通过DCI携带,或通过专门的时域位置通知信令携带,或通过其它的下行信令携带等)。
例如,终端在第n个子帧中收到下行接收波束触发信令,则下行接收波束训练信号在第n+m个子帧中,m是固定值(例如,m=4),或者m在触发通知消息或其他携带关于时间间隔或下行接收波束训练序列位置通知信令的消息中携带,m=0,则意味着训练信号和触发消息在同一个子帧中。
这里的子帧可以是LTE系统中的子帧,也可以是LTE系统中的帧或其他的时间单元,也可以是其它系统中的时间单元,此处不做限定。
另外,步骤64中,在下行接收波束训练触发通知消息生效后进行下行接收波束的训练。
第一种情况:终端采用不同的下行接收波束进行下行接收波束训练信号的接收,并选出接收信号功率最强的下行接收波束作为用于接收所述基站发送的下行数据的下行接收波束;
第二种情况:终端采用不同的下行接收波束进行下行接收波束训练信号的接收,并进行信道估计,根据信道估计结果,选出接收信号功率最强的下行接收波束作为用于接收所述基站发送的下行数据的下行接收波束;
终端进行下行接收波束的训练并不限定一个时刻内进行几个下行接收波束的接收。例如终端可以在一个时刻只用一个接收波束接收训练序列,也可以在同一时刻使用多个接收波束同时接收训练序列,本公开中不作限制。
终端进行下行接收波束的训练也可以先采用宽下行接收波束进行训练,再 采用窄下行接收波束进行训练,确定出最优的窄下行接收波束作为接收基站发送的下行数据的下行接收波束;。其中,窄接收波束可以覆盖宽接收波束的覆盖范围,或窄接收波束的覆盖范围略高于宽接收波束的覆盖范围。
可选地,下行接收波束的训练可以和下行发送波束的训练同时进行。
可选地,下行接收波束训练和下行发送波束的训练交替进行。
如图7所示,一个典型的终端接收下行接收波束训练触发通知消息和下行接收波束训练信号的示意图。
图7中下行接收波束的触发消息和下行接收波束训练信号在同一个子帧内,在下行接收波束训练信号之后,基站可以向终端发送下行数据,终端接收该基站发送的下行数据。这里的子帧可以是LTE系统中的子帧,也可以是LTE系统中的帧或其他的时间单元,也可以是其它系统中的时间单元,此处不做限定。
下行数据和下行接收波束训练信号可以采用相同的下行发送波束传输,这样终端通过接收下行接收波束训练信号获得最佳的下行接收波束之后,即可以用该波束进行数据的接收。
如图8所示,另一个典型的终端接收下行接收波束训练触发通知消息和下行接收波束训练信号的示意图。
一个子帧内没有数据传输(针对该终端),在下行控制信令之后全部为下行接收波束训练信号。这里的子帧可以是LTE系统中的子帧,也可以是LTE系统中的帧或其他的时间单元,也可以是其它系统中的时间单元,此处不做限定。
终端通过接收下行接收波束训练信号,获得最佳的下行接收波束之后,保存该波束权值,用于后续的下行数据接收。
本公开的上述下行接收波束训练信号的传输方法,适用于模拟和数模混合波束赋形,也适用于数字波束赋形,并可实现基于触发的下行接收波束训练。
第四实施例
本公开的第四实施例还提供一种下行接收波束训练信号的传输装置,可以包括:
接收模块,用于接收基站发送的下行接收波束训练触发通知消息;
训练模块,用于根据所述下行接收波束训练触发通知消息,接收所述基站发送的下行接收波束训练信号,进行下行接收波束的训练。
其中,下行接收波束训练信号的传输装置还可以包括:第一发送模块,用于向基站发送下行接收波束训练请求消息。
其中,下行接收波束训练信号的传输装置还可以包括:第二发送模块,用于向所述基站发送终端的下行接收波束的个数或者需要训练的下行接收波束的个数。
其中,所述接收模块具体用于:通过下行控制信息DCI或者专用触发信令或者其他下行信息块,接收基站向终端发送的下行接收波束训练触发通知消息。
其中,所述下行接收波束训练触发通知消息包括但不限于:是否存在下行接收波束训练信号的指示信息和/或下行接收波束训练信号的时频位置。
其中,所述训练模块具体用于:根据所述下行接收波束训练触发通知消息,接收基站通过所述基站确定的下行发送波束发送的下行接收波束训练信号。
其中,下行接收波束训练信号的传输装置还可以包括:第三发送模块,用于向所述基站上报所述基站的下行发送波束的训练结果信息。
其中,所述训练结果信息包括但不限于:终端推荐的所述基站的下行发送波束的标识和/或终端测量的所述基站的下行发送波束训练信号强度信息。
其中,所述训练模块具体用于:根据所述下行接收波束训练触发通知消息,以及所述下行接收波束训练信号在子帧内的时域位置接收基站发送的下行接收波束训练信号。
这里的子帧可以是LTE系统中的子帧,也可以是LTE系统中的帧或其他的时间单元,也可以是其它系统中的时间单元,此处不做限定;
其中,下行接收波束训练信号在子帧内的时域位置是终端与基站约定的或者是基站确定的。
其中,所述训练模块具体用于:根据所述下行接收波束训练信号,在下行接收波束训练触发通知消息生效后进行下行接收波束的训练,确定出下行接收波束。
其中,所述下行接收波束训练触发通知消息的生效时间为:接收到所述下 行接收波束训练触发通知消息的时间+时间间隔;所述时间间隔是终端与基站约定的或者是基站确定的。
其中,所述训练模块具体用于:采用不同的下行接收波束进行下行接收波束训练信号的接收,并选出接收信号功率最强的下行接收波束作为用于接收所述基站发送的下行数据的下行接收波束;或者
采用不同的下行接收波束进行下行接收波束训练信号的接收,并进行信道估计,根据信道估计结果,选出接收信号功率最强的下行接收波束作为用于接收所述基站发送的下行数据的下行接收波束;或者
所述训练模块也可以先采用宽下行接收波束进行训练,再采用窄下行接收波束进行训练,确定出最优的窄下行接收波束作为接收基站发送的下行数据的下行接收波束。
其中,所述接收模块还用于利用确定出的所述下行接收波束,接收基站发送的下行数据。
其中,接收下行数据的所述下行接收波束与接收所述下行接收波束训练信号的接收波束相同。
需要说明的是,该下行接收波束训练信号的传输装置的实施例是与上述方法对应的装置,上述方法中的所有实现实例均适用于该装置的实施例中,也能达到相同的技术效果。
第五实施例
如图9所示,本公开的第五实施例还提供一种终端,包括:
接收机,用于接收基站发送的下行接收波束训练触发通知消息;
处理器,用于实现如下功能模块所实现的功能:
训练模块,用于根据所述下行接收波束训练触发通知消息,接收所述基站发送的下行接收波束训练信号,进行下行接收波束的训练。
其中,终端还可以包括:发射机,用于向基站发送下行接收波束训练请求消息。
所述发射机还用于向所述基站发送终端的下行接收波束的个数或者需要训练的下行接收波束的个数。
其中,所述接收机具体用于:通过下行控制信息DCI或者专用触发信令, 接收基站向终端发送的下行接收波束训练触发通知消息。
其中,所述下行接收波束训练触发通知消息包括但不限于:是否存在下行接收波束训练信号的指示信息和/或下行接收波束训练信号的时频位置。
其中,所述训练模块具体用于:根据所述下行接收波束训练触发通知消息,接收基站通过所述基站确定的下行发送波束发送的下行接收波束训练信号。
所述发射机还用于向所述基站上报所述基站的下行发送波束的训练结果信息。
其中,所述训练结果信息包括但不限于:终端推荐的所述基站的下行发送波束的标识和/或终端测量的所述基站的下行发送波束训练信号强度信息。
其中,所述训练模块具体用于:根据所述下行接收波束训练触发通知消息,以及所述下行接收波束训练信号在子帧内的时域位置接收基站发送的下行接收波束训练信号。
这里的子帧可以是LTE系统中的子帧,也可以是LTE系统中的帧或其他的时间单元,也可以是其它系统中的时间单元,此处不做限定。
其中,下行接收波束训练信号在子帧内的时域位置是终端与基站约定的或者是基站确定的。
其中,所述训练模块具体用于:根据所述下行接收波束训练信号,在下行接收波束训练触发通知消息生效后进行下行接收波束的训练,确定出下行接收波束。
其中,所述下行接收波束训练触发通知消息的生效时间为:接收到所述下行接收波束训练触发通知消息的时间+时间间隔;所述时间间隔是终端与基站约定的或者是基站确定的。
其中,所述训练模块具体用于:采用不同的下行接收波束进行下行接收波束训练信号的接收,并选出接收信号功率最强的下行接收波束作为用于接收所述基站发送的下行数据的下行接收波束;或者
采用不同的下行接收波束进行下行接收波束训练信号的接收,并进行信道估计,根据信道估计结果,选出接收信号功率最强的下行接收波束作为用于接收所述基站发送的下行数据的下行接收波束;或者
所述训练模块也可以先采用宽下行接收波束进行训练,再采用窄下行接收 波束进行训练,确定出最优的窄下行接收波束作为接收基站发送的下行数据的下行接收波束。
其中,终端还可以包括:所述接收模块还用于利用确定出的所述下行接收波束,接收基站发送的下行数据。
其中,接收下行数据的所述下行接收波束与接收所述下行接收波束训练信号的接收波束相同。
本公开的该实施例中,处理器通过总线接口与存储器连接,且处理器通过总线接口接收机或者发射机连接;所述存储器用于存储所述处理器在执行操作时所使用的程序和数据;
总线接口是总线架构中可以包括的任意数量的互联的总线和桥的接口,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。接收机或者发射机可以是多个元件,提供用于在传输介质上与各种其他装置通信的单元。
本公开的该实施例同样可实现基于触发的下行接收波束训练。
第六实施例
如图10所示,本公开的第六实施例还提供一种下行接收波束训练信号的传输方法,包括:
步骤71,向终端发送下行接收波束训练触发通知消息;
进一步的,该步骤之前还可以包括:接收终端发送的下行接收波束训练请求消息。进一步地,基站可以根据终端发送的下行接收波束训练请求消息确定对终端进行下行接收波束训练。
该步骤之前也还可以包括:接收终端发送的下行接收波束的个数或者需要训练的下行接收波束的个数,从而可以基于终端发送的下行接收波束的个数或者需要训练的下行接收波束的个数,确定下行接收波束训练信号的个数。
具体可以通过下行控制信息DCI或者专用信令或者其他的下行信息块,向终端发送下行接收波束训练触发通知消息;
其中,所述下行接收波束训练触发通知消息包括但不限于:是否存在下行 接收波束训练信号的指示信息和/或下行接收波束训练信号的时频位置。
步骤72,向终端发送下行接收波束训练信号;
具体的,基站确定下行发送波束,利用下行发送波束的波束赋形权值,对下行发送波束训练信号进行赋形后,向终端发送。
该步骤之前还可以包括:基站接收终端上报的基站的下行发送波束的训练结果信息;所述训练结果信息包括但不限于:终端推荐的所述基站的下行发送波束的标识和/或终端测量的所述基站的用于训练的下行发送波束的功率强度信息。基站可以根据所述训练结果信息,确定所述下行发送波束。
向终端发送的下行接收波束训练信号在子帧内的时域位置可以是协议约定的,或者是终端与基站约定的,或者是基站确定的。
这里的子帧可以是LTE系统中的子帧,也可以是LTE系统中的帧或其他的时间单元,也可以是其它系统中的时间单元,此处不做限定。
其中,下行接收波束训练信号在子帧内的时域位置是协议约定的,或者是终端与基站约定的时候,约定的时域位置可以包括:与终端约定的每个子帧的前M个正交频分复用OFDM符号,其中,M为正整数。
其中,向终端发送的下行接收波束训练信号在子帧内的时域位置是基站确定时,基站向终端发送所述时域位置通知消息。所述时域位置通知消息可以通过DCI携带,或是通过下行接收波束训练触发通知消息携带,或是通过其他下行信息块携带。例如,基站确定下行接收波束训练信号在子帧内前M个正交频分复用OFDM符号,基站向终端发送的时域位置通知消息为M的取值。
进一步的,向终端发送下行接收波束训练信号的时间为:发送下行接收波束训练触发通知消息的时间+时间间隔,所述时间间隔是终端与基站约定的或者是基站确定的。
所述时间间隔是基站确定时,基站向终端发送所述时间间隔通知消息。所述时间间隔通知消息可以通过DCI携带,或是通过下行接收波束训练触发通知消息携带,或是通过其他下行信息块携带。例如,终端在第n个子帧中收到下行接收波束触发信令,则下行接收波束训练信号在第n+m个子帧中,m是固定值(例如,m=4),或者m在触发通知消息或其他携带关于时间间隔或下行接收波束训练序列位置通知信令的消息中携带。
本公开的该实施例中,在包括上述步骤71和72的基础上,还可以进一步包括:
步骤73,通过用于发送下行数据的下行发送波束向终端发送下行数据。
本公开的该实施例,适用于模拟和数模混合波束赋形,也适用于数字波束赋形,并可实现基于触发的下行接收波束训练。
第七实施例
本公开的第七实施例还提供一种下行接收波束训练信号的传输装置,可以包括:
第一发送模块,用于向终端发送下行接收波束训练触发通知消息;
第二发送模块,用于向终端发送下行接收波束训练信号。
其中,下行接收波束训练信号的传输方法还可以包括:第一接收模块,用于接收终端发送的下行接收波束训练请求消息。
其中,下行接收波束训练信号的传输装置还可以包括:第二接收模块,用于接收终端发送的下行接收波束的个数或者需要训练的下行接收波束的个数。
其中,所述第一发送模块具体用于:通过下行控制信息DCI或者专用信令或者其他下行信息块,向终端发送下行接收波束训练触发通知消息。
其中,所述下行接收波束训练触发通知消息包括但不限于:是否存在下行接收波束训练信号的指示信息和/或下行接收波束训练信号的时频位置。
其中,所述第二发送模块具体用于:确定下行接收波束训练信号使用的下行发送波束,利用所述下行发送波束的波束赋形权值,对所述下行接收波束训练信号赋形后,向终端发送。
其中,所述第二发送模块在确定下行发送波束时具体用于:接收终端上报的基站的下行发送波束的训练结果信息,根据所述训练结果信息,确定发送所述下行接收波束训练信号使用的下行发送波束。
其中,所述训练结果信息包括但不限于:终端推荐的所述基站的下行发送波束的标识和/或终端测量的所述基站的下行发送波束训练信号强度信息。
其中,所述下行接收波束训练信号使用的下行发送波束与基站向终端发送下行数据的下行发送波束相同。
其中,向终端发送的下行接收波束训练信号在子帧内的时域位置是协议约 定的,或者是终端与基站约定的,或者是基站确定的。
这里的子帧可以是LTE系统中的子帧,也可以是LTE系统中的帧或其他的时间单元,也可以是其它系统中的时间单元,此处不做限定。
其中,向终端发送的下行接收波束训练信号在子帧内的时域位置是基站确定时,基站向终端发送所述时域位置通知消息。
其中,向终端发送下行接收波束训练信号的时间为:发送下行接收波束训练触发通知消息的时间+时间间隔,所述时间间隔是终端与基站约定的或者是基站确定的。
其中,所述时间间隔是基站确定时,基站向终端发送所述时间间隔通知消息。所述时间间隔通知消息可以通过DCI携带,或是通过下行接收波束训练触发通知消息携带,或是通过其他下行信息块携带。
需要说明的是,该实施例是与上述基站侧下行接收波束训练信号的传输方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
第八实施例
本公开的第八实施例还提供一种基站,可以包括:
发射机用于向终端发送下行接收波束训练触发通知消息;向终端发送下行接收波束训练信号。
其中,基站还可以包括:接收机,用于接收终端发送的下行接收波束训练请求消息。所述接收机还用于接收终端发送的下行接收波束的个数或者需要训练的下行接收波束的个数。
其中,所述发射机通过下行控制信息DCI或者专用信令或者其他下行信息块,向终端发送下行接收波束训练触发通知消息。
其中,所述下行接收波束训练触发通知消息包括但不限于:是否存在下行接收波束训练信号的指示信息和/或下行接收波束训练信号的时频位置。
其中,所述发射机具体用于:确定下行接收波束训练信号使用的下行发送波束,利用所述下行发送波束的波束赋形权值,对所述下行接收波束训练信号赋形后,向终端发送。
其中,所述发射机在确定下行发送波束时具体用于:接收终端上报的基站 的下行发送波束的训练结果信息,根据所述训练结果信息,确定发送所述下行接收波束训练信号使用的下行发送波束。
其中,所述训练结果信息包括但不限于:终端推荐的所述基站的下行发送波束的标识和/或终端测量的所述基站的下行发送波束训练信号强度信息。
其中,所述下行接收波束训练信号使用的下行发送波束与基站向终端发送下行数据的下行发送波束相同。
其中,向终端发送的下行接收波束训练信号在子帧内的时域位置是协议约定的,或者是终端与基站约定的,或者是基站确定的。
这里的子帧可以是LTE系统中的子帧,也可以是LTE系统中的帧或其他的时间单元,也可以是其它系统中的时间单元,此处不做限定。
其中,向终端发送的下行接收波束训练信号在子帧内的时域位置是基站确定时,基站向终端发送所述时域位置通知消息。
其中,向终端发送下行接收波束训练信号的时间为:发送下行接收波束训练触发通知消息的时间+时间间隔,所述时间间隔是终端与基站约定的或者是基站确定的。
其中,所述时间间隔是基站确定时,基站向终端发送所述时间间隔通知消息。所述时间间隔通知消息可以通过DCI携带,或是通过下行接收波束训练触发通知消息携带,或是通过其他下行信息块携带。
本公开的该实施例中,还可以包括处理器;通过总线接口与所述处理器相连接的存储器;所述发射机和接收机均通过总线接口与处理器相连接;存储器用于存储所述处理器在执行操作时所使用的程序和数据。
总线接口是总线架构中包括的任意数量的互联的总线和桥的接口,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。接收机或者发射机可以是多个元件,提供用于在传输介质上与各种其他装置通信的单元。
本公开的该实施例同样可实现基于触发的下行接收波束训练。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技 术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (37)

  1. 一种下行接收波束训练信号的传输方法,包括:
    接收第一设备发送的下行接收波束训练触发通知消息;
    根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号;以及
    根据所述下行接收波束训练信号进行下行接收波束的训练。
  2. 根据权利要求1所述的下行接收波束训练信号的传输方法,其中,在所述接收第一设备发送的下行接收波束训练触发通知消息之前,所述方法还包括:
    向所述第一设备发送下行接收波束训练请求消息。
  3. 根据权利要求1所述的下行接收波束训练信号的传输方法,其中,所述根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号的步骤前还包括:
    向所述第一设备发送第二设备的下行接收波束的个数或者需要训练的下行接收波束的个数。
  4. 根据权利要求1所述的下行接收波束训练信号的传输方法,其中,所述接收第一设备向第二设备发送的下行接收波束训练触发通知消息的步骤包括:
    通过下行控制信息DCI或者专用触发信令,接收所述第一设备发送的所述下行接收波束训练触发通知消息。
  5. 根据权利要求1所述的下行接收波束训练信号的传输方法,其中,所述下行接收波束训练触发通知消息包括:是否存在下行接收波束训练信号的指示信息和/或下行接收波束训练信号的时频位置。
  6. 根据权利要求1所述的下行接收波束训练信号的传输方法,其中,所述根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号的步骤包括:
    根据所述下行接收波束训练触发通知消息,接收所述第一设备通过所述第一设备确定的下行发送波束发送的下行接收波束训练信号。
  7. 根据权利要求6所述的下行接收波束训练信号的传输方法,其中,在所述根据所述下行接收波束训练触发通知消息,接收所述第一设备通过所述第一设备确定的下行发送波束发送的下行接收波束训练信号之前,所述方法还包括:
    向所述第一设备上报所述第一设备的下行发送波束的训练结果信息。
  8. 根据权利要求7所述的下行接收波束训练信号的传输方法,其中,所述训练结果信息包括:第二设备推荐的所述第一设备的下行发送波束的标识和/或第二设备测量的所述第一设备的下行发送波束训练信号强度信息。
  9. 根据权利要求1所述的下行接收波束训练信号的传输方法,其中,所述根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号的步骤包括:
    根据所述下行接收波束训练触发通知消息,以及所述下行接收波束训练信号在子帧内的时域位置,接收所述第一设备发送的下行接收波束训练信号。
  10. 根据权利要求9所述的下行接收波束训练信号的传输方法,其中,所述下行接收波束训练信号在子帧内的时域位置是第二设备与所述第一设备约定的或者由所述第一设备确定的。
  11. 根据权利要求1所述的下行接收波束训练信号的传输方法,其中,所述根据所述下行接收波束训练信号进行下行接收波束的训练的步骤包括:
    根据所述下行接收波束训练信号,在下行接收波束训练触发通知消息生效后进行下行接收波束的训练,确定出用于接收所述第一设备发送的下行数据的下行接收波束。
  12. 根据权利要求11所述的下行接收波束训练信号的传输方法,其中,所述下行接收波束训练触发通知消息的生效时间点为:接收所述下行接收波束训练触发通知消息的时间点加上时间间隔,所述时间间隔是第二设备与所述第一设备约定的或者是由所述第一设备确定的。
  13. 根据权利要求11所述的下行接收波束训练信号的传输方法,其中,所述确定出用于接收所述第一设备发送的下行数据的下行接收波束的步骤包括:
    采用不同的下行接收波束进行下行接收波束训练信号的接收,并选出接收 信号功率最强的下行接收波束作为用于接收所述第一设备发送的下行数据的下行接收波束;或者
    采用不同的下行接收波束进行下行接收波束训练信号的接收,并进行信道估计,根据信道估计结果,选出接收信号功率最强的下行接收波束作为用于接收所述第一设备发送的下行数据的下行接收波束。
  14. 根据权利要求11所述的下行接收波束训练信号的传输方法,其中,所述确定出用于接收所述第一设备发送的下行数据的下行接收波束后还包括:
    利用确定出的所述下行接收波束,接收所述第一设备发送的下行数据。
  15. 一种下行接收波束训练信号的传输装置,包括:
    接收模块,用于接收第一设备发送的下行接收波束训练触发通知消息;
    训练模块,用于根据所述下行接收波束训练触发通知消息,接收所述第一设备发送的下行接收波束训练信号,以及根据所述下行接收波束训练信号进行下行接收波束的训练。
  16. 根据权利要求15所述的下行接收波束训练信号的传输装置,还包括:
    第一发送模块,用于向所述第一设备发送下行接收波束训练请求消息。
  17. 根据权利要求15所述的下行接收波束训练信号的传输装置,还包括:
    第二发送模块,用于向所述第一设备发送第二设备的下行接收波束的个数或者需要训练的下行接收波束的个数。
  18. 一种下行接收波束训练信号的传输方法,包括:
    向第二设备发送下行接收波束训练触发通知消息;
    向所述第二设备发送下行接收波束训练信号,所述下行接收波束训练触发通知消息用于触发所述第二设备接收所述下行接收波束训练信号以进行下行接收波束的训练。
  19. 根据权利要求18所述的下行接收波束训练信号的传输方法,其中,在向第二设备发送下行接收波束训练触发通知消息之前,所述方法还包括:
    接收所述第二设备发送的下行接收波束训练请求消息。
  20. 根据权利要求18所述的下行接收波束训练信号的传输方法,其中,在向第二设备发送下行接收波束训练信号之前,所述方法还包括:
    接收所述第二设备发送的下行接收波束的个数或者需要训练的下行接收 波束的个数。
  21. 根据权利要求18所述的下行接收波束训练信号的传输方法,其中,所述向第二设备发送下行接收波束训练触发通知消息的步骤包括:
    通过下行控制信息DCI或者专用信令,向所述第二设备发送所述下行接收波束训练触发通知消息。
  22. 根据权利要求18所述的下行接收波束训练信号的传输方法,其中,所述下行接收波束训练触发通知消息包括:是否存在下行接收波束训练信号的指示信息和/或下行接收波束训练信号的时频位置。
  23. 根据权利要求18所述的下行接收波束训练信号的传输方法,其中,所述向第二设备发送下行接收波束训练信号的步骤包括:
    确定下行接收波束训练信号使用的下行发送波束;
    利用所述下行发送波束的波束赋形权值,对所述下行接收波束训练信号赋形后,向所述第二设备发送所述下行接收波束训练信号。
  24. 根据权利要求23所述的下行接收波束训练信号的传输方法,其中,所述确定下行接收波束训练信号使用的下行发送波束的步骤包括:
    接收所述第二设备上报的第一设备的下行发送波束的训练结果信息;
    根据所述训练结果信息,确定发送所述下行接收波束训练信号使用的所述下行发送波束。
  25. 根据权利要求24所述的下行接收波束训练信号的传输方法,其中,所述训练结果信息包括:所述第二设备推荐的所述第一设备的下行发送波束的标识或者所述第二设备测量的所述第一设备的下行发送波束训练信号强度信息。
  26. 根据权利要求23所述的下行接收波束训练信号的传输方法,其中,所述下行接收波束训练信号使用的下行发送波束与所述第一设备向所述第二设备发送下行数据的下行发送波束相同。
  27. 根据权利要求18所述的下行接收波束训练信号的传输方法,其中,向所述第二设备发送的下行接收波束训练信号在子帧内的时域位置是所述第二设备与第一设备约定的或由第一设备确定的。
  28. 根据权利要求27所述的下行接收波束训练信号的传输方法,其中, 向所述第二设备发送的下行接收波束训练信号在子帧内的时域位置是所述第一设备确定时,所述第一设备向第二设备发送所述时域位置通知消息。
  29. 根据权利要求18所述的下行接收波束训练信号的传输方法,其中,向所述第二设备发送下行接收波束训练信号的时间点为:发送下行接收波束训练触发通知消息的时间点加上时间间隔,所述时间间隔是所述第二设备与第一设备约定的或者是第一设备确定的。
  30. 根据权利要求29所述的下行接收波束训练信号的传输方法,其中,所述时间间隔是所述第一设备确定时,所述第一设备向所述第二设备发送所述时间间隔通知消息。
  31. 一种下行接收波束训练信号的传输装置,包括:
    第一发送模块,用于向第二设备发送下行接收波束训练触发通知消息;
    第二发送模块,用于向所述第二设备发送下行接收波束训练信号,所述下行接收波束训练触发通知消息用于触发所述第二设备接收所述下行接收波束训练信号以进行下行接收波束的训练。
  32. 根据权利要求31所述的下行接收波束训练信号的传输装置,还包括:
    第一接收模块,用于接收所述第二设备发送的下行接收波束训练请求消息。
  33. 根据权利要求31所述的下行接收波束训练信号的传输装置,还包括:
    第二接收模块,用于接收所述第二设备发送的下行接收波束的个数或者需要训练的下行接收波束的个数。
  34. 一种下行接收波束训练信号的传输装置,包括接收机、处理器和存储器,其中:
    所述接收机,用于接收第一设备发送的下行接收波束训练触发通知消息;
    所述处理器,通过执行所述存储器中所存储的程序和数据,用于根据所述下行接收波束训练触发通知消息,触发所述接收机接收所述第一设备发送的下行接收波束训练信号,以及根据所述接收机接收的所述下行接收波束训练信号进行下行接收波束的训练。
  35. 根据权利要求34所述的下行接收波束训练信号的传输装置,还包括发射机,其中:
    所述发射机,用于向所述第一设备发送下行接收波束训练请求消息。
  36. 一种下行接收波束训练信号的传输装置,包括:发射机、处理器和存储器,其中:
    所述处理器,通过执行所述存储器中所存储的程序和数据,用于生成下行接收波束训练触发通知消息和下行接收波束训练信号;
    所述发射机,用于向第二设备发送下行接收波束训练触发通知消息,以及用于向所述第二设备发送下行接收波束训练信号,其中所述下行接收波束训练触发通知消息用于触发所述第二设备接收所述下行接收波束训练信号以进行下行接收波束的训练。
  37. 根据权利要求36所述的下行接收波束训练信号的传输装置,还包括接收机,其中:
    所述接收机,用于接收所述第二设备发送的下行接收波束训练请求消息。
PCT/CN2017/095838 2016-08-12 2017-08-03 一种下行接收波束训练信号的传输方法及装置 WO2018028501A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019505526A JP7060575B2 (ja) 2016-08-12 2017-08-03 ダウンリンクビーム訓練方法および装置
US16/324,880 US11664876B2 (en) 2016-08-12 2017-08-03 Method and device for training downlink beams
KR1020197007105A KR102193119B1 (ko) 2016-08-12 2017-08-03 다운링크 빔 트레이닝 방법 및 장치
EP17838631.4A EP3499743B1 (en) 2016-08-12 2017-08-03 Transmission method and device for downlink receiving beam training signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610665954.3A CN107733513B (zh) 2016-08-12 2016-08-12 一种下行接收波束训练信号的传输方法及装置
CN201610665954.3 2016-08-12

Publications (1)

Publication Number Publication Date
WO2018028501A1 true WO2018028501A1 (zh) 2018-02-15

Family

ID=61161569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095838 WO2018028501A1 (zh) 2016-08-12 2017-08-03 一种下行接收波束训练信号的传输方法及装置

Country Status (6)

Country Link
US (1) US11664876B2 (zh)
EP (1) EP3499743B1 (zh)
JP (1) JP7060575B2 (zh)
KR (1) KR102193119B1 (zh)
CN (1) CN107733513B (zh)
WO (1) WO2018028501A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3588805A1 (en) 2018-06-29 2020-01-01 Intel IP Corporation Method and apparatus for coherent receive beamforming
WO2020155150A1 (zh) * 2019-02-02 2020-08-06 北京小米移动软件有限公司 波束对应方法和装置、用户设备及基站
US11985647B2 (en) * 2019-10-24 2024-05-14 Qualcomm Incorporated Sidelink groupcast beam training
US11653349B2 (en) 2019-10-24 2023-05-16 Qualcomm Incorporated Sidelink groupcast reachability based scheduling
US11558880B2 (en) 2019-10-24 2023-01-17 Qualcomm Incorporated Sidelink groupcast scheduling
US11588533B2 (en) * 2021-01-12 2023-02-21 Qualcomm Incorporated System and method for improving beam management procedures
CN117979425A (zh) * 2022-10-24 2024-05-03 维沃移动通信有限公司 波束增益设定方法、装置、中继设备及网络侧设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931109A (zh) * 2011-09-14 2014-07-16 三星电子株式会社 在无线通信系统中形成虚拟小区的方法和装置
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN105340132A (zh) * 2014-05-15 2016-02-17 联发科技股份有限公司 高效波束训练的方法及使用相同网络控制设备
CN105721033A (zh) * 2016-02-23 2016-06-29 清华大学 一种多用户毫米波通信系统的波束赋形方法及系统
CN106953676A (zh) * 2016-01-07 2017-07-14 索尼公司 无线通信方法和无线通信设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048945B2 (en) * 2007-08-31 2015-06-02 Intel Corporation Antenna training and tracking protocol
JP5214033B2 (ja) 2008-10-29 2013-06-19 マーベル ワールド トレード リミテッド マルチアンテナ通信デバイスにおける高効率且つ高柔軟性の送信用ビームフォーミングセクタスイープ
US8116694B2 (en) * 2008-12-23 2012-02-14 Nokia Corporation System for facilitating beam training
US8422961B2 (en) * 2009-02-23 2013-04-16 Nokia Corporation Beamforming training for functionally-limited apparatuses
JP5278035B2 (ja) * 2009-02-25 2013-09-04 ソニー株式会社 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
KR101839386B1 (ko) 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
WO2013039352A2 (en) 2011-09-16 2013-03-21 Samsung Electronics Co., Ltd. Method and apparatus for beam allocation in wireless communication system
US20130089000A1 (en) * 2011-10-11 2013-04-11 Broadcom Corporation Beamforming training within a wireless communication system utilizing a directional antenna
US9048894B2 (en) * 2012-05-22 2015-06-02 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation
US9439096B2 (en) 2012-08-13 2016-09-06 Samsung Electronics Co., Ltd. Method and apparatus to support channel refinement and multi-stream transmission in millimeter wave systems
US10321484B2 (en) * 2013-03-15 2019-06-11 Interdigital Patent Holdings, Inc. Multi-band operation for wireless LAN systems
KR102043021B1 (ko) 2013-04-15 2019-11-12 삼성전자주식회사 이동 통신 시스템에서 빔포밍을 위한 스케쥴링 방법 및 장치
CN103718591B (zh) * 2013-09-09 2018-06-05 华为技术有限公司 一种波束追踪的方法、装置和系统
JP6381233B2 (ja) 2014-02-28 2018-08-29 パナソニック株式会社 無線通信方法及び無線通信システム
US9497785B2 (en) * 2014-06-02 2016-11-15 Intel Corporation Techniques for exchanging beamforming information for a dual connection to user equipment
KR101573342B1 (ko) * 2014-06-24 2015-12-03 중앙대학교 산학협력단 빔 트레이닝 장치 및 방법
EP4024939A1 (en) * 2014-08-18 2022-07-06 Panasonic Holdings Corporation Mimo training method and radio device
US10116483B2 (en) * 2016-04-18 2018-10-30 Qualcomm Incorporated Dynamically convey information of demodulation reference signal and phase noise compensation reference signal
US11191061B2 (en) * 2016-04-19 2021-11-30 Qualcomm Incorporated Beam reference signal based narrowband channel measurement and CQI reporting
US9866293B1 (en) * 2016-06-30 2018-01-09 Intel Corporation Apparatus, system and method of updating one or more beamforming settings of a beamformed link

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931109A (zh) * 2011-09-14 2014-07-16 三星电子株式会社 在无线通信系统中形成虚拟小区的方法和装置
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN105340132A (zh) * 2014-05-15 2016-02-17 联发科技股份有限公司 高效波束训练的方法及使用相同网络控制设备
CN106953676A (zh) * 2016-01-07 2017-07-14 索尼公司 无线通信方法和无线通信设备
CN105721033A (zh) * 2016-02-23 2016-06-29 清华大学 一种多用户毫米波通信系统的波束赋形方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499743A4 *

Also Published As

Publication number Publication date
US11664876B2 (en) 2023-05-30
CN107733513A (zh) 2018-02-23
EP3499743A4 (en) 2019-07-03
EP3499743A1 (en) 2019-06-19
EP3499743B1 (en) 2021-10-27
JP7060575B2 (ja) 2022-04-26
KR20190039236A (ko) 2019-04-10
JP2019525610A (ja) 2019-09-05
US20210344407A1 (en) 2021-11-04
KR102193119B1 (ko) 2020-12-18
CN107733513B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
EP3845014B1 (en) Timing advance in new radio
WO2018028501A1 (zh) 一种下行接收波束训练信号的传输方法及装置
US20190199406A1 (en) Communication method, communications apparatus, network device, and terminal
WO2018059154A1 (zh) 一种波束处理方法、基站及移动终端
CN110476364A (zh) 一种信号传输方法和装置
US11843554B2 (en) User equipment and transmission and reception point
CN109997313A (zh) 用于上行链路发送的方法
WO2018166345A1 (zh) 上行发送波束确定方法和装置
CN110268637B (zh) Srs发送的用户设备和方法
WO2018177183A1 (zh) 一种获取、反馈发送波束信息的方法及装置
US11102783B2 (en) System and method for supporting beamformed sounding reference signals
WO2018166401A1 (zh) 一种确定设备波束互易性的方法、装置和电子设备
EP3085141B1 (en) Beamforming for coordinated multipoint communications
US10178012B2 (en) Systems and methods for a sounding frame in an IEEE 802.11ax compliant network
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
KR102183646B1 (ko) 방법, 시스템 및 장치
US11528671B2 (en) Frame structure to support long distance transmission
CN110710128A (zh) 执行波束报告的方法和用户设备
CN107888243B (zh) 一种波束训练方法、终端及基站
JP7208154B2 (ja) ビーム制御方法、基地局および端末
CN107801216A (zh) 用于无线通信的方法和设备
CN117856839A (zh) 数据发送的方法和装置
WO2018109562A1 (zh) 多入多出系统中的波束成型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505526

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197007105

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017838631

Country of ref document: EP

Effective date: 20190312