WO2018028466A1 - 小区间切换的方法和控制器 - Google Patents

小区间切换的方法和控制器 Download PDF

Info

Publication number
WO2018028466A1
WO2018028466A1 PCT/CN2017/095394 CN2017095394W WO2018028466A1 WO 2018028466 A1 WO2018028466 A1 WO 2018028466A1 CN 2017095394 W CN2017095394 W CN 2017095394W WO 2018028466 A1 WO2018028466 A1 WO 2018028466A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
cell
handover
terminal device
indication information
Prior art date
Application number
PCT/CN2017/095394
Other languages
English (en)
French (fr)
Inventor
杨阳
晋英豪
谭巍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17838596.9A priority Critical patent/EP3487218B1/en
Publication of WO2018028466A1 publication Critical patent/WO2018028466A1/zh
Priority to US16/271,884 priority patent/US10917821B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00838Resource reservation for handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and controller for inter-cell handover.
  • LTE Long Term Evolution
  • a user equipment needs to perform a cell handover procedure when moving in a network to ensure continuity of service quality and communication.
  • the handover procedure of LTE is a handover mechanism based on downlink measurement. That is, each cell on the network side sends a reference signal, and the UE measures the reference signal. The measurement results are reported to the network side in the form of a measurement report. The network side performs a measurement decision according to the measurement report.
  • the source cell negotiates with the target cell to perform resource preparation for handover. After the handover preparation is completed, the network side controls the UE to perform handover.
  • the network side can start to prepare for the handover resource after receiving the measurement report reported by the UE.
  • Switching preparation is bound to bring a certain delay to the actual handover.
  • some services have higher requirements for delay and reliability than the LTE network. Therefore, the UE needs to be more timely when switching, otherwise it is easy to cause the handover to fail.
  • the handover process based on the uplink measurement mainly includes the following steps:
  • the source cell monitors the reference signal sent by the UE, and when the UE is found to be close to the edge of the range covered by the source cell, initiates a measurement request message to the neighboring cell.
  • the measurement request message carries the conditions required for measuring the UE, for example, the identifier of the UE, the threshold for reporting the report, and the reporting period.
  • the neighboring cell performs measurement on the UE according to the measurement request message, and sends the measurement result to the source cell in the form of a measurement report.
  • the source cell compares the measurement results of each neighboring cell according to the measurement report, and determines the target cell. And when the UE triggers the handover condition, the handover request is initiated to the target cell.
  • the target cell performs handover preparation, and sends an acknowledgement (ACK) message to the source cell after the preparation is completed, to indicate that the handover preparation work has been completed.
  • ACK acknowledgement
  • the source cell instructs the terminal device to perform handover.
  • the network side does not need to wait for the UE to report the measurement report, which saves the handover time to some extent.
  • the network side still needs to perform the handover preparation process. Therefore, it may still result in untimely switching.
  • the present application provides a method and network device for inter-cell handover, which can shorten handover delay.
  • the application provides a method for inter-cell handover, where the method includes: a first controller determines a target cell, the first controller is a controller of a source cell; and the first controller sends the second controller to the second controller a pre-switching request, the second controller is a controller of the target cell, where the pre-handover request is used to instruct the second controller to allocate, to the terminal device, a first resource required for performing cell handover; the first controller determines the terminal device When the handover condition is met, the handover instruction is sent to the terminal device, where the handover instruction is used to instruct the terminal device to perform handover from the source cell to the target cell based on the first resource.
  • the terminal device sends an uplink reference signal, and the network side measures the reference signal, and feeds the measurement result to the controller of the source cell in the form of a measurement report.
  • the controller of the source cell selects a neighboring cell as the target cell according to the measurement report, and negotiates with the target cell to prepare resources required for the terminal device to switch.
  • the acknowledgement information is sent to the source cell.
  • the terminal device can enter the handover execution phase and perform cell handover.
  • the first controller ie, the controller of the source cell
  • the second controller ie, the controller of the target cell
  • the second controller allocates (or reserves) resources for performing cell handover for the terminal device. Therefore, when the terminal device triggers the handover condition, the cell handover can be directly performed based on the allocated resource, and the handover delay can be shortened compared with the prior art.
  • the first controller determines the target cell, where the first controller sends a measurement request message to the neighboring cell of the source cell, where the measurement request message carries the first indication information, where The first indication information is used to indicate a second resource required to satisfy the quality of service of the terminal device; the first controller receives at least one measurement report sent by the at least one first cell, the at least one measurement report and the at least one first Each of the measurement reports includes a second indication information, where the second indication information is used to indicate that the corresponding first cell can provide the second resource for the terminal device, where the at least one first cell is Part or all of the neighboring cell of the source cell; the first controller determines the target cell from the at least one first cell according to the second indication information in the at least one measurement report.
  • the source cell may have only one neighboring cell, and there may be multiple neighboring cells.
  • the terminal device can directly perform the handover.
  • the source cell and the target cell start negotiating the resources required for the handover, and need to complete the preparation in the target cell, and send an acknowledgement to the source cell. After the message, the terminal device can perform the handover under the control of the controller of the source cell. Therefore, the switching delay can be shortened.
  • the source cell is indicated to the source cell by means of the measurement report.
  • the resource ie, corresponding to the role of the second indication information. Therefore, for the source cell, when determining the target cell, the neighboring cell that is better in signal quality of the receiving terminal device or capable of providing more sufficient resources for the terminal device may be selected according to the measurement report fed back by the multiple neighboring cells. Therefore, the target cell can be selected more accurately, thereby improving the success rate of the terminal device performing inter-cell handover.
  • some neighboring cells cannot provide the terminal equipment.
  • no measurement report is sent to the source cell. In this way, the number of measurement reports on the X2 interface is reduced, and the system overhead of the X2 interface is reduced.
  • the neighboring cell of the source cell further includes a second cell, where the second cell does not send a measurement to the first controller when determining that the second resource required by the terminal device cannot be provided. Reported community.
  • the part of the measurement report of the at least one measurement report further includes third indication information, where the third indication information is used to indicate that the first cell corresponding to the part of the measurement report cannot completely provide the terminal device The second resource needed.
  • the part of the measurement report further includes fourth indication information, where the fourth indication information is used to indicate at least one of the following information: congestion information, speed reduction information, optional characteristic information, and functions. information.
  • the source cell When the neighboring cell cannot completely provide the second resource required by the terminal device, the source cell indicates the resource or load condition of the neighboring cell.
  • the target cell For the source cell, the target cell may be determined according to the resource or load condition of the neighboring cell, so that the selected target cell is more accurate. In particular, when a plurality of neighboring cells cannot completely provide the second resources required by the terminal device, the failure rate of the cell handover is reduced in this manner.
  • the present application provides a method for inter-cell handover, where the method includes: receiving, by a second controller, a pre-handover request sent by a first controller, where the first controller is a source cell in which the terminal device is located
  • the second controller is a controller of the first cell, where the first cell is a neighboring cell of the source cell, and the pre-handover request is that the first controller determines the first cell as a target cell, and then sends the
  • the second controller allocates, according to the pre-handover request, the first resource required for cell handover to the terminal device, so that the first controller determines that the terminal device meets the handover condition to the terminal
  • the device sends a handover instruction to instruct the terminal device to perform handover from the source cell to the target cell based on the first resource.
  • the method before the second controller receives the pre-handover request sent by the first controller, the method further includes: receiving, by the second controller, the measurement request message sent by the first controller, where The measurement request message carries first indication information, where the first indication information is used to indicate a second resource that is required for the quality of service of the terminal device; and the second controller determines that the first cell can provide the terminal device The second controller sends a measurement report to the first controller, where the measurement report includes second indication information, where the second indication information is used to indicate that the first cell can provide the second resource for the terminal device. .
  • the measurement report further includes third indication information, where the third indication information is used to indicate that the first cell cannot completely provide the second resource required by the terminal device.
  • the measurement report further includes fourth indication information, where the fourth indication information is used to indicate at least one of the following information: congestion information, speed reduction information, optional characteristic information, and function information. .
  • the present application provides a controller for performing the method of the first aspect or any possible implementation of the first aspect.
  • the controller comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides a controller for performing the method in any of the possible implementations of the second aspect or the second aspect.
  • the controller comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the present application provides a controller including: a receiver, a transmitter, a processor, and a memory.
  • the memory is used to store instructions
  • the processor is configured to execute instructions stored in the memory to control the receiver to receive signals or to control the transmitter to transmit signals.
  • the processor executes the first party when the instructions stored in the memory are executed A method in any of the possible implementations of the first aspect.
  • the application provides a controller including: a receiver, a transmitter, a processor, and a memory.
  • the memory is used to store instructions
  • the processor is configured to execute instructions stored in the memory to control the receiver to receive signals or to control the transmitter to transmit signals.
  • the processor performs the method of any of the possible implementations of the second aspect or the second aspect when the instructions stored in the memory are executed.
  • the memories in the above fifth and sixth aspects may be independent or integrated with the processor.
  • the processor When the processor is implemented by hardware, for example, it may be a logic circuit or an integrated circuit, and is connected to other hardware through an interface, and no memory may be needed at this time.
  • the application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the first controller ie, the controller of the source cell
  • the second controller ie, the controller of the target cell
  • the second controller allocates (or reserves) a resource for performing cell handover for the terminal device. Therefore, when the terminal device triggers the handover condition, the cell handover can be directly performed based on the allocated resource, and the handover delay can be shortened.
  • FIG. 1 shows a schematic interaction diagram of a handover procedure based on downlink measurement in the prior art.
  • FIG. 2 shows a schematic interaction diagram of a handover procedure based on an uplink measurement in the prior art.
  • FIG. 3 shows a schematic diagram of a system architecture of an embodiment of the present application.
  • FIG. 4 shows a schematic diagram of another system architecture of an embodiment of the present application.
  • FIG. 5 is a schematic interaction diagram of a method for inter-cell handover in an embodiment of the present application in a system architecture.
  • FIG. 6 is a schematic interaction diagram of another method architecture of the method for inter-cell handover in the embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a controller 500 in accordance with an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a controller 600 in accordance with another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a controller 700 according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a controller 800 according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System, UMTS
  • 5G etc.
  • a user equipment includes but is not limited to a mobile station. (Mobile Station, MS), mobile terminal (Mobile Terminal), mobile telephone (Mobile Telephone), mobile phone (handset) and portable equipment (portable equipment), etc.
  • the user equipment can pass through the Radio Access Network (RAN) Communicating with one or more core networks, for example, the user equipment may be a mobile phone (or "cellular" phone), a computer with wireless communication capabilities, etc., and the user device may also be portable, pocket, handheld, computer Built-in or in-vehicle mobile device.
  • RAN Radio Access Network
  • FIG. 1 shows a schematic flow chart of a handover procedure based on downlink measurement in LTE.
  • the handover process includes three phases, namely, handover preparation, handover execution, and handover completion.
  • the UE sends a measurement report to the source cell based on the trigger event.
  • the UE performs related measurement according to the measurement configuration message sent by the eNB, and reports the measurement result to the eNB.
  • the UE transmitting the measurement report to the source cell means that the UE sends a measurement report to the eNB of the source cell.
  • the source cell sends a handover request to the target cell.
  • the handover request carries the context information of the UE.
  • the target cell establishes an S1 bearer according to the context information of the UE and the core network.
  • the target cell sends a handover request ACK to the source cell.
  • the source cell sends a Radio Resource Control (RRC) connection configuration to the UE.
  • RRC Radio Resource Control
  • the source cell sends a sequence number state transition to the target cell.
  • the source cell releases the information of the UE, and the UE performs a random access procedure on the target cell to establish a connection. At this point, the switch is complete.
  • the mobility management of the UE in LTE is based on downlink measurement. That is, in order to implement mobility management for the UE, each cell in the network transmits a downlink reference signal for measurement by the UE (hence, this handover mode is also referred to as downlink measurement based handover).
  • the UE reports the measurement result to the network side in the form of a measurement report based on the triggering event, and the network side performs a handover decision based on the measurement report to switch the UE to a cell with better quality of service.
  • the network side needs to wait until the UE reports the measurement report before starting the handover preparation process.
  • the measurement report is sent on the air interface, which brings a certain overhead on the air interface. Especially in the case where the signal quality of the switching area fluctuates drastically, the overhead is large.
  • the network side does not know the handover requirement of the UE before receiving the measurement report of the UE. After the handover decision, the handover preparation is performed, so that the handover preparation time brings a handover delay to the actual handover execution.
  • the UE needs to report the measurement report in advance to obtain the change of the signal quality in advance, so as to perform the handover decision in advance.
  • this will increase the number of measurement reports sent by the UE. More, the overhead on the air interface increases. For example, if the resource of the target cell is insufficient and the handover cannot be satisfied, the source cell needs to receive a handover failure command (Handover configuration failure) of the target cell and perform subsequent processing, and the handover delay is relatively large.
  • a handover failure command Handover configuration failure
  • a handover mechanism based on uplink measurement is proposed in the prior art to perform mobility management on a UE.
  • a hyper cell may be configured with a hyper cell ID, and may include multiple transmission points (TPs) of the same frequency and/or different frequency.
  • TPs transmission points
  • the hyper cell may include multiple cells (optionally, as an embodiment, only one cell may be included in the hyper cell).
  • the ID of the TP (or cell) in the hyper cell can be consistent with the ID of the hyper cell, or can be configured separately.
  • the UE moves in the hyper cell. If the mobility management mode of the prior art is still used, the UE will frequently perform cell handover because each TP corresponds to one or more cells (or small cells).
  • the TP may also be referred to as a Transmit Reception Point (TRP).
  • TRP Transmit Reception Point
  • the report reporting and handover operations will inevitably generate a large amount of air interface signaling, and consume a large amount of air interface resources and network processing resources. For example, the requirements for network capacity and number of connections are higher, and air interface resources are more scarce.
  • the above features cause the UE to be more timely when switching, otherwise it is more likely to cause handover failure.
  • the switching process based on the uplink measurement is introduced below with reference to FIG. 2 .
  • the information interaction between the source cell and the target cell is transmitted by the respective controllers of the source cell and the target cell.
  • cell transmission information (or message) and cell reception information (or message) described below mean that a cell receives or transmits information (or a message) through a controller of a cell.
  • FIG. 2 shows a schematic interaction diagram of a handover procedure based on an uplink measurement in the prior art. As shown in FIG. 2, the method mainly includes steps 201 to 210.
  • the source cell performs a measurement decision.
  • the source cell monitors the reference signal of the UE.
  • the UE satisfies the measurement condition, for example, the UE has approached the edge of the coverage of the source cell, or the signal quality of the reference signal of the UE is below a preset threshold, the source cell performs a measurement decision.
  • the source cell sends a measurement request message to the neighboring cell.
  • the measurement request message carries information required for measuring the UE, for example, a UE identifier, a measurement reporting threshold, a reporting period, and the like.
  • the neighboring cell sends a measurement report to the source cell.
  • the source cell sends a handover request to the target cell.
  • the target cell performs handover preparation.
  • the source cell and the target cell establish an X2 transport bearer.
  • the source cell sends a handover execution instruction to the UE.
  • the source cell initiates release to the UE, and the UE performs a random access procedure on the target cell to establish a connection. At this point, the switch is complete.
  • the reference signal is sent by the UE, and the network side measures the uplink reference signal sent by the UE, and is based on the measurement.
  • the UE selects one or more suitable TPs for data transmission. That is to say, in the process of the UE moving inside the hyper, the task of measuring the reference signal and the TP handover can be completed by the network side, and the UE is not aware of the change of the TP as much as possible. In this way, the continuity of the service can be ensured, and the UE does not need to carry the heavy reporting task and the frequent reporting of the measurement report, thereby saving the air interface overhead.
  • the switching mechanism based on the uplink measurement still has the following problems:
  • the network side needs to perform the measurement preparation process, which may cause the handover to be untimely.
  • the measurement report needs to be sent to the source cell through the X2 interface, which brings a certain air interface overhead.
  • FIG. 3 shows a schematic diagram of a system architecture of an embodiment of the present application.
  • the architecture of the hyper cell is only one layer, that is, only controllers are deployed.
  • all TRPs in the hyper cell are connected to the controller, and RRC, Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC), and The functions of Radio Link Control (MAC) are deployed on the controller.
  • RRC Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Radio Link Control
  • FIG. 4 shows a schematic diagram of another system architecture of an embodiment of the present application.
  • the architecture of the hyper cell is two layers, that is, a central unit (CU) and a distributed unit (DU) are deployed at the same time, and one DU can connect to one or more TRPs. .
  • RRC and PDCP will be deployed on the CU and the MAC will be deployed on the DU.
  • the measurement of the uplink reference signal transmitted by the UE is performed by the DU.
  • the DU needs to report the measurement result to the CU.
  • the measurement control information is sent to the DU by the CU and sent by the DU to the TRP.
  • CU1 may also have multiple adjacent CUs, which is not specifically limited in this embodiment of the present application.
  • Radio Access Network Radio Access Network
  • cell 1 and the cell 2 shown in FIG. 3 and FIG. 4 may be the super cell described above.
  • FIG. 5 shows a schematic interaction diagram of a method 300 of inter-cell handover according to an embodiment of the present application under a system architecture. As shown in FIG. 5, the method 300 mainly includes steps 301 to 310.
  • the controller 1 is used as an example of the first controller
  • the controller 2 is used as an example of the second controller to switch between cells according to the embodiment of the present application. The method is described in detail.
  • the controller 1 performs a measurement decision.
  • step 301 the process of the controller 1 performing the measurement decision when the UE transmits the uplink reference signal is the same as the process of performing the handover decision based on the uplink measurement in the prior art.
  • Step 301 can be referred to the description of the measurement decision in step 201 described above.
  • the uplink reference signal sent by the UE herein may be a beacon signal.
  • the controller 1 performs a measurement decision, that is, determines whether to initiate a handover procedure of the UE. If switching, the target cell is determined.
  • the controller 1 sends a measurement request message to the controller 2 and the controller 3.
  • the measurement request message carries the first indication information, where the first indication information is used to indicate a second resource that is required to satisfy the quality of service of the UE.
  • the measurement request message may also carry the UE identification ID, the measurement object, the measurement reporting threshold, the measurement reporting period, and the quality of service (QoS) related information of the UE.
  • the information about the QoS of the UE may include an Aggregated Maximum Bit Rate (AMBR), a delay requirement, and a service type of the UE.
  • AMBR Aggregated Maximum Bit Rate
  • controller 3 serves as an example of a controller of a neighboring cell of the source cell.
  • the measurement request message carries first indication information, where the first indication information is used to indicate a second resource that is required to meet the quality of service of the UE.
  • the second resource refers to a time domain resource, a frequency domain resource, a delay requirement, a service type of the UE, and a UE, which are required to satisfy the quality of service of the UE.
  • the controller 2 and the controller 3 send a measurement report to the controller 1.
  • the controller 2 and the controller 3 measure the reference signal sent by the UE according to the measurement request message sent by the controller 1, and feed back the measurement result to the controller 1 in the form of a measurement report.
  • the measurement report may include Reference Signal Receiving Power (RSRP), signal quality of the reference signal, ID of the UE, and the like.
  • RSRP Reference Signal Receiving Power
  • controller 2 and the controller 3 send the measurement report to the controller 1 , and may report the report based on the period, or may be reported based on the preset threshold.
  • the neighboring cell carries the second indication information in the measurement report sent to the source cell, where the second indication information is used to indicate to the source cell, the second resource that the neighboring cell can provide for the UE. .
  • the controller 1 performs a pre-handover decision.
  • the controller 1 performs a pre-handover decision according to multiple measurement reports sent by the neighboring cell to determine the target cell. After determining the target cell, the controller 1 performs step 305.
  • performing the pre-handover decision means that the controller determines whether the terminal device needs to perform cell handover. Such as If handover is required, the controller 1 needs to select a target cell from the neighboring cells.
  • the controller 1 sends a pre-switching request to the controller 2.
  • the pre-handover request is used to indicate that the target cell allocates (or reserves) the first resource required for performing cell handover for the terminal device.
  • the first resource includes a radio resource and a physical layer resource required for the UE to perform cell handover.
  • a radio resource for example, an RRC resource, a Data Radio Bearer (DRB) resource, a Cell Radio Network Temporary Identifier (C-RNTI), a dedicated random access sequence, and the like.
  • RRC resource a Radio Resource Control (PRB) resource
  • DRB Data Radio Bearer
  • C-RNTI Cell Radio Network Temporary Identifier
  • the controller 1 sends a Pre Handover Request (Pre HO Request) to the controller of the target cell (ie, the controller 2).
  • the information related to the handover preparation in the pre-handover request For example, the UE's X2 and S1 signaling context reference (UE Context), UE security capability (UE Security Capability), Evolved Radio Access Bearer Identifier (E-RAB ID), access layer security
  • UE Context UE Context
  • UE security capability UE Security Capability
  • E-RAB ID Evolved Radio Access Bearer Identifier
  • the access security base key the physical layer identifier of the source cell, the message authentication verification code, the identifier of the target cell, and the like.
  • the S1 bearer is established between the controller 2 and the core network.
  • the controller 2 receives the pre-handover request sent by the controller 1, and establishes an S1 bearer with the core network according to the information for handover preparation carried in the pre-handover request. In addition, the controller 2 calculates an access security key according to the UE context information, reserves an RRC, a Data Radio Bearer (DRB) resource, allocates a dedicated random access sequence, and the like.
  • RRC Radio Resource Control
  • DRB Data Radio Bearer
  • the controller 2 After completing the resource preparation, the controller 2 sends an ACK of the pre-handover request to the controller 1.
  • the controller 2 sends a pre-call request ACK (Pre HO Request ACK) to the controller 1, and the resource for notifying the controller 1 to perform cell handover is ready.
  • the Pre HO Request ACK carries an E-RAB ID, a Tunnel Endpoint Identifier (TEID), a target UE identifier, a target DRB ID, and an AS Security Algorithm.
  • An X2 transmission bearer is established between the controller 1 and the controller 2.
  • the X2 transport bearer is a data plane bearer between cells. After the X2 transport bearer is established, packets are forwarded between the source cell and the target cell.
  • the terminal device triggers a handover condition.
  • the controller 1 determines that the terminal device satisfies the handover condition (for example, the controller 1 detects that the UE is at the edge of the network, or the quality of the UE reference signal received by the controller 1 minus When the quality of the UE reference signal received by the controller 2 is lower than a preset threshold, etc., the handover procedure is triggered.
  • the controller 1 sends a handover command to the UE to control the UE to enter the handover execution flow.
  • the UE receives the handover instruction of the controller 1 and performs handover from the source cell to the target cell. Specifically, after receiving the handover instruction sent by the controller 1, the UE performs synchronization with the target cell, calculates a key to be used in the target cell, and configures a security algorithm selected by the network side for use in the target cell.
  • the controller 2 After the UE accesses the target cell, the controller 2 sends release indication information to the controller 1, instructing the controller 1 to release the context information of the UE. At this point, the switch is complete.
  • the controller of the source cell when determining that the terminal device meets the measurement condition, the controller of the source cell sends a pre-handover instruction to the controller of the target cell, indicating that the controller of the target cell is the terminal device. Perform cell handover preparation resources. Therefore, when the terminal device meets the handover condition, the controller of the source cell can directly control the terminal device to perform cell handover, which shortens the handover delay.
  • the method for inter-cell handover in the embodiment of the present application is based on an uplink measurement mechanism.
  • the network side for example, the controller 1
  • the network side can timely monitor the change of the signal quality of the terminal device, in particular, the historical information of the terminal device (for example, the trajectory of the terminal device, the service type, the moving speed, the signal fluctuation law, etc.) It is a good predictor that the switch is about to happen. Therefore, before the terminal device triggers the handover condition, the controller of the source cell negotiates the reservation of the resource with the controller of the target cell (ie, may correspond to the pre-handover process of the embodiment of the present application). Therefore, when the terminal device satisfies the handover condition, the handover procedure can be directly executed.
  • the above switching process is described by taking the system architecture shown in FIG. 3 as an example.
  • the system architecture of the embodiment of the present application may also be a two-layer architecture (as shown in FIG. 4).
  • the method for switching between cells in the embodiment of the present application is described below with reference to FIG.
  • FIG. 6 shows a schematic interaction diagram of a method 300 for inter-cell handover in an embodiment of the present application under another system architecture. As shown in FIG. 6, the method 300 mainly includes steps 401 to 414.
  • CU1 performs a measurement decision.
  • CU1 sends a measurement request message to CU2.
  • CU2 sends a measurement request to DU1 and DU2 in CU2.
  • DU1 and DU2 respectively send measurement reports to CU2.
  • the measurement report sent by DU1 is recorded as measurement report 1 and the measurement report sent by DU2 is recorded as measurement report 2.
  • CU2 compares the measurement results in the measurement reports of DU1 and DU2, and selects a measurement report to feed back to CU1.
  • CU2 may report a measurement report of a cell with better signal quality and more resources to CU1.
  • the measurement report 1 is fed back to CU1 as an example, and the subsequent steps are described.
  • CU1 performs a pre-handover decision.
  • CU1 sends a pre-handover request to CU2.
  • the CU2 instructs the DU1 to perform resource pre-allocation for the UE handover.
  • the S1 bearer is established between the CU2 and the core network.
  • CU2 sends a pre-handover request ACK to CU1.
  • CU1 and CU2 establish an X2 transmission bearer.
  • an S1 bearer refers to a bearer between a base station and a core network.
  • the X2 transport bearer refers to the bearer between the base station and the base station.
  • the S1 bearer and the X2 transport bearer are only described by taking an LTE scenario as an example. Therefore, in the embodiment of the present application, it is not excluded that other names are adopted in a future communication system (for example, 5G).
  • step 413 is performed.
  • step 412 can be referred to the description in step 309 above.
  • the CU1 controls the UE to perform handover, and the UE switches to the target cell.
  • the neighboring cell of the source cell further includes a second cell, where the second cell is a cell that does not send a measurement report to the controller of the source cell when determining that the second resource required by the terminal device cannot be provided.
  • the measurement report is not sent to the source cell.
  • the source cell may select a target cell from a neighboring area with sufficient resources. In this way, compared with the prior art, on the one hand, the measurement report on the X2 interface is reduced, thereby reducing the signaling overhead on the X2 interface.
  • the source cell determines the neighboring cell as the target cell, there are enough resources to accept the UE, so that the probability of handover failure can be reduced.
  • the indication information (that is, the third indication information) may be carried in the measurement report sent to the source cell.
  • the neighboring cell may carry the fourth indication information in the measurement report, where the fourth indication information is used to indicate at least one of the following information:
  • Congestion information For Congestion information, speed reduction information, optional feature information, and feature information.
  • the neighboring cell may be measured in addition to indicating to the source cell that there is not enough resources to receive the UE in the measurement report.
  • the report indicates its own resources to the source cell.
  • the congestion information is used to indicate the congestion of the air interface resource of the neighboring cell, for example, a Sounding Reference Signal (SRS) resource, a Physical Uplink Control Channel (PUCCH) resource, a number of users, and the like.
  • the deceleration information is used to indicate whether the neighboring cell supports the guaranteed bit rate (GBR) and the maximum bit rate (MBR) of the user.
  • the optional feature information is used to indicate the feature support capability of the neighboring cell, for example, dual-carrier (DC), multiple-input multiple-output (MIMO), and joint processing (JP). .
  • the function information refers to slice information, for example, whether it supports Machine Type Communication (MTC) slice, Ultra-reliable and Low Latency Communications (URLLC) slice.
  • the neighboring cell may not support the protocol stack configuration of the source cell. In this case, the neighboring cell may indicate the special protocol stack configuration information supported by itself.
  • FIG. 7 is a schematic block diagram of a controller 500 in accordance with an embodiment of the present application. As shown in FIG. 7, the controller 500 includes
  • the processing unit 510 is configured to determine a target cell.
  • the sending unit 520 is configured to send a pre-handover request to the second controller, where the second controller is a controller of the target cell, and the pre-handover request is used to instruct the second controller to allocate, to the terminal device, the first resource required for performing cell handover. ;
  • the sending unit 520 is further configured to: when the processing unit 510 determines that the terminal device meets the handover condition, send a handover instruction to the terminal device, where the handover instruction is used to instruct the terminal device to perform the from the source cell to the target cell based on the first resource. Switch.
  • the units in the controller 500 and the other operations or functions described above in accordance with embodiments of the present application are respectively configured to implement respective processes performed by the first controller in the method 300. For the sake of brevity, it will not be repeated here.
  • the first controller ie, the controller of the source cell
  • the second controller ie, the controller of the target cell
  • the first controller sends a pre-handover instruction to the second controller (ie, the controller of the target cell) when determining that the terminal device meets the measurement condition, indicating the second
  • the controller prepares resources for cell handover for the terminal device. Therefore, when the terminal device meets the handover condition, the first controller can directly control the terminal device to perform cell handover, which saves time for resource preparation, thereby shortening the handover delay.
  • FIG. 8 is a schematic block diagram of a controller 600 in accordance with another embodiment of the present application. As shown in FIG. 8, the controller 600 includes
  • the receiving unit 610 is configured to receive a pre-handover request sent by the first controller, where the first controller is a controller of the source cell;
  • the processing unit 620 is configured to allocate a first resource required for performing cell handover to the terminal device according to the pre-handover request, so that the first controller sends a handover instruction to the terminal device to determine the terminal when determining that the terminal device meets the handover condition.
  • the device performs handover from the source cell to the target cell based on the first resource.
  • the units in the controller 600 and the other operations or functions described above in accordance with embodiments of the present application are respectively configured to implement respective processes performed by the second controller in the method 300. For the sake of brevity, it will not be repeated here.
  • the first controller ie, the controller of the source cell
  • the second controller ie, the controller of the target cell
  • the second controller allocates (or reserves) resources for performing cell handover for the terminal device. Therefore, when the terminal device triggers the handover condition, the cell handover can be directly performed based on the allocated resource, and the handover delay can be shortened.
  • FIG. 9 is a schematic structural diagram of a controller 700 according to an embodiment of the present application. As shown in FIG. 9, the controller 700 includes:
  • the transceiver 710 is configured to communicate with other devices by receiving or transmitting data;
  • a memory 720 configured to store an instruction
  • the processor 730 is configured to execute an instruction in the memory 720.
  • the transceiver 710 is configured to send a pre-handover request to the second controller, where the second controller is a controller of the target cell, and the pre-handover request is used for Instructing the second controller to allocate, to the terminal device, a first resource required for performing cell handover;
  • the transceiver 710 is further configured to: when the processor 730 determines that the terminal device meets the handover condition, send a handover instruction to the terminal device, where the handover instruction is used to instruct the terminal device to perform handover from the source cell to the target cell based on the first resource.
  • the processor 730 may be a central processing unit (CPU), and the processor 730 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits ( ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 720 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 720 can also include a non-volatile random access memory. For example, the memory 720 can also store information of the device type.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the steps of the method for inter-cell handover disclosed in the embodiments of the present application may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 720, and processor 730 reads the information in memory 720 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • controller 700 or the above operations according to embodiments of the present application are respectively implemented to implement respective processes executed by the first controller in the method 300. For the sake of brevity, it will not be repeated here.
  • the first controller ie, the controller of the source cell
  • the second controller ie, the controller of the target cell
  • the second controller allocates (or reserves) resources for performing cell handover for the terminal device. Therefore, when the terminal device triggers the handover condition, the cell handover can be directly performed based on the allocated resource, and the handover delay can be shortened.
  • FIG. 10 is a schematic structural diagram of a controller 800 according to another embodiment of the present application. As shown in FIG. 10, the controller 800 includes:
  • the transceiver 810 is configured to communicate with other devices by receiving or transmitting data;
  • a memory 820 configured to store an instruction
  • the processor 830 is configured to execute an instruction in the memory 820.
  • the transceiver 810 is configured to receive a pre-handover request sent by the first controller, where the first controller is a controller of the source cell where the terminal device is located.
  • the controller 800 is a controller of the target cell;
  • the processor 830 is further configured to: allocate, according to the pre-handover request, the first resource required for the cell handover to the terminal device, so that the first controller determines that the terminal device meets the handover condition, and sends a handover instruction to the terminal device, to indicate that the terminal device is based on the The first resource performs handover from the source cell to the target cell.
  • the processor 830 may be a central processing unit (CPU), and the processor 830 may also be another general-purpose processor, a digital signal processor (DSP), Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 820 can include read only memory and random access memory and provides instructions and data to the processor 830. A portion of the memory 820 may also include a non-volatile random access memory. For example, the memory 820 can also store information of the device type.
  • the memories in the above embodiments may be independent or integrated with the processor.
  • the processor When the processor is implemented by hardware, for example, it may be a logic circuit or an integrated circuit, and is connected to other hardware through an interface, and no memory may be needed at this time.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 830 or an instruction in the form of software.
  • the steps of the method for inter-cell handover disclosed in the embodiments of the present application may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 820, and the processor 830 reads the memory 820.
  • controller 800 or the operations described above according to embodiments of the present application are respectively implemented to implement respective processes executed by the second controller in the method 300. For the sake of brevity, it will not be repeated here.
  • the first controller ie, the controller of the source cell
  • the second controller ie, the controller of the target cell
  • the second controller allocates (or reserves) resources for performing cell handover for the terminal device. Therefore, when the terminal device triggers the handover condition, the cell handover can be directly performed based on the allocated resource, and the handover delay can be shortened.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种小区间切换的方法和控制器,能够缩短切换时延。该方法包括:第一控制器确定目标小区,第一控制器为源小区的控制器;第一控制器向第二控制器发送预切换请求,第二控制器为目标小区的控制器,预切换请求用于指示第二控制器为终端设备分配进行小区切换所需的第一资源;第一控制器确定终端设备满足切换条件时,向终端设备发送切换指令,切换指令用于指示终端设备基于第一资源执行从源小区至目标小区的切换。

Description

小区间切换的方法和控制器
本申请要求于2016年8月12提交中国专利局、申请号为201610666066.3、发明名称为“小区间切换的方法和控制器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种小区间切换的方法和控制器。
背景技术
在当前的长期演进(Long Term Evolution,LTE)技术中,用户设备(User Equipment,UE)在网络中移动时需要执行小区切换流程,以保证业务质量和通信的连续。LTE的切换流程是基于下行测量的切换机制。即,网络侧各小区下发参考信号,UE对参考信号进行测量。并将测量结果以测量报告的形式上报至网络侧。网络侧根据测量报告执行测量判决,当确定需要对UE执行切换时,源小区与目标小区协商进行切换资源准备。等切换准备完成以后,网络侧控制UE执行切换。
可见,在基于下行测量的切换机制中,网络侧在接收到UE上报的测量报告之后,才能开始进行切换资源的准备。切换准备势必会给实际的切换带来一定的延迟。但是,随着移动通信系统的后续演进,相对于LTE的网络,部分业务对时延和可靠性的要求更高。因此,UE在切换时需要更加及时,否则容易导致切换失败。
为此,业界提出了一种基于上行测量的切换机制。与基于下行测量的切换机制不同的是,在基于上行测量的切换机制下,参考信号是由UE发送的,而参考信号的测量在网络侧。基于上行测量的切换流程主要包括如下步骤:
1、源小区监测UE发送的参考信号,当发现UE已经接近源小区覆盖的范围边缘时,向邻小区发起测量请求消息。其中,测量请求消息中携带测量UE所需的条件,例如,UE的标识、测量上报的门限和上报周期等。
2、邻小区依据测量请求消息,对UE进行测量,并将测量结果以测量报告的形式发送给源小区。
3、源小区根据测量报告,对各邻小区的测量结果进行比较,确定目标小区。并在UE触发切换条件时,向目标小区发起切换请求。
4、目标小区进行切换准备,并在准备完成后向源小区发送确认(ACK)消息,以指示切换准备工作已完成。
5、源小区在接收到目标小区的确认消息后,指示终端设备执行切换。
从上述流程可以看出,在基于上行测量的切换机制下,网络侧无需等待UE上报测量报告,一定程度上节省了切换时间。但是,在UE满足切换触发条件后,网络侧仍然需要进行切换准备过程。因此,仍然可能会导致切换不及时。
发明内容
本申请提供一种小区间切换的方法和网络设备,能够缩短切换时延。
第一方面,本申请提供一种小区间切换的方法,该方法包括:第一控制器确定目标小区,该第一控制器为源小区的控制器;该第一控制器向第二控制器发送预切换请求,第二控制器为目标小区的控制器,该预切换请求用于指示该第二控制器为终端设备分配进行小区切换所需的第一资源;该第一控制器确定该终端设备满足切换条件时,向该终端设备发送切换指令,该切换指令用于指示该终端设备基于该第一资源执行从源小区至目标小区的切换。
在现有技术提出的基于上行测量的切换机制中,终端设备发送上行参考信号,网络侧测量该参考信号,并将测量结果以测量报告的形式反馈给源小区的控制器。在终端设备触发切换后,源小区的控制器根据测量报告,选择一个邻小区作为目标小区,并与该目标小区协商准备终端设备切换所需的资源。目标小区切换准备完成后向源小区发送确认信息。至此,终端设备才可以进入切换执行阶段,进行小区切换。
本申请实施例中,第一控制器(即,源小区的控制器)在确定终端设备满足测量条件时,向第二控制器(即,目标小区的控制器)发送预切换指令。第二控制器接收到预切换指令后,为该终端设备分配(或者说,预留)进行小区切换的资源。从而在终端设备触发切换条件时,可以直接基于该分配的资源执行小区切换,与现有技术相比,能够缩短切换时延。
在一种可能的实现方式中,所述第一控制器确定目标小区,包括:该第一控制器向该源小区的邻小区发送测量请求消息,该测量请求消息中携带第一指示信息,该第一指示信息用于指示满足该终端设备的服务质量所需的第二资源;该第一控制器接收至少一个第一小区发送的至少一个测量报告,该至少一个测量报告与该至少一个第一小区一一对应,每个测量报告中包括第二指示信息,该第二指示信息用于指示所对应的第一小区能够为该终端设备提供的第二资源,其中,该至少一个第一小区为该源小区的邻区中的部分或全部;该第一控制器根据该至少一个测量报告中的第二指示信息,从该至少一个第一小区中确定目标小区。
可以理解的是,源小区可能仅有一个邻小区,也可能存在多个邻小区。
在仅存在一个邻小区的情况下,如果该邻小区能够提供满足终端设备的服务质量所需的资源,在终端设备触发切换之前,该邻小区已经为该终端设备预分配好切换所需的资源,因而,在切换触发以后,终端设备可以直接执行切换。而在现有技术提出的基于上行测量的切换机制中,终端设备触发切换之后,源小区与目标小区才开始协商准备切换所需的资源,并需要在目标小区准备完成,并向源小区发送确认消息后,终端设备才能够在源小区的控制器的控制下执行切换。因此,能够缩短切换时延。
在源小区存在多个邻小区的情况下,一方面,一部分邻小区在能够提供满足终端设备的服务质量所需的资源的情况下,通过测量报告的形式,向源小区指示了自身能够提供的资源(即,对应第二指示信息的作用)。因此,对于源小区而言,在确定目标小区时,可以根据该多个邻小区反馈的测量报告,从中选择接收终端设备的信号质量更好,或者能够为终端设备提供更充足的资源的邻小区,从而可以更加准确地选择出目标小区,进而提高终端设备进行小区间切换的成功率。另一方面,一部分邻小区在不能提供满足终端设备的 服务质量的资源的情况下,不向源小区发送测量报告。通过这样的方式,减少了X2接口上的测量报告的数量,减少了X2接口的系统开销。
在一种可能的实现方式中,该源小区的邻区中还包括第二小区,该第二小区为确定不能提供该终端设备所需的第二资源时,未向该第一控制器发送测量报告的小区。
在一种可能的实现方式中,该至少一个测量报告中的部分测量报告还包括第三指示信息,该第三指示信息用于指示该部分测量报告对应的第一小区不能完全提供该终端设备所需的第二资源。
在一种可能的实现方式中,该部分测量报告中还包括第四指示信息,该第四指示信息用于指示以下信息中的至少一项:拥塞信息、降速信息、可选特性信息和功能信息。
在邻小区不能完全提供终端设备所需的第二资源时,向源小区指示该邻小区的资源或负载情况。对于源小区而言,可以结合邻小区的资源或负载情况确定目标小区,使得选择的目标小区更准确。尤其在多个邻小区都不能完全提供终端设备所需的第二资源时,通过这样的方式,降低了小区切换的失败率。
第二方面,本申请提供了一种小区间切换的方法,该方法包括:第二控制器接收第一控制器发送的预切换请求,该第一控制器为终端设备所处于的源小区的控制器,该第二控制器为第一小区的控制器,该第一小区为该源小区的邻小区,该预切换请求是该第一控制器将该第一小区确定为目标小区后发送给该第二控制器的;该第二控制器根据该预切换请求,为该终端设备分配进行小区切换所需的第一资源,以便于该第一控制器确定该终端设备满足切换条件时向该终端设备发送切换指令,以指示该终端设备基于该第一资源执行从该源小区至该目标小区的切换。
在一种可能的实现方式中,该第二控制器接收该第一控制器发送的预切换请求之前,该方法还包括:该第二控制器接收该第一控制器发送的测量请求消息,该测量请求消息中携带第一指示信息,该第一指示信息用于指示满足该终端设备的服务质量所需的第二资源;该第二控制器确定该第一小区能够为该终端设备提供的第二资源;该第二控制器向该第一控制器发送测量报告,该测量报告中包括第二指示信息,该第二指示信息用于指示该第一小区能够为该终端设备提供的第二资源。
在一种可能的实现方式中,该测量报告中还包括第三指示信息,该第三指示信息用于指示该第一小区不能完全提供该终端设备所需的第二资源。
在一种可能的实现方式中,该测量报告中还包括第四指示信息,该第四指示信息用于指示以下信息中的至少一项:拥塞信息、降速信息、可选特性信息和功能信息。
第三方面,本申请提供一种控制器,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该控制器包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,本申请提供一种控制器,用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,该控制器包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,本申请提供了一种控制器,该控制器包括:接收器、发送器、处理器和存储器。其中,存储器用于存储指令,处理器用于执行存储器中存储的指令,以控制接收器接收信号,或控制发送器发送信号。当存储器中存储的指令被执行时,处理器执行第一方 面或第一方面的任意可能的实现方式中的方法。
第六方面,本申请提供了一种控制器,该控制器包括:接收器、发送器、处理器和存储器。其中,存储器用于存储指令,处理器用于执行存储器中存储的指令,以控制接收器接收信号,或控制发送器发送信号。当存储器中存储的指令被执行时,处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
可选地,上述第五方面和第六方面中的存储器可以是独立的,也可以跟处理器集成在一起。当处理器由硬件实现时,例如,可以是逻辑电路或者集成电路,通过接口与其他硬件相连,此时可以不需要存储器。
第七方面,本申请提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
本申请提供的小区间切换的方法,第一控制器(即,源小区的控制器)在确定终端设备满足测量条件时,向第二控制器(即,目标小区的控制器)发送预切换指令。第二控制器接收到该预切换指令后,为该终端设备分配(或者说,预留)进行小区切换的资源。从而在终端设备触发切换条件时,可以直接基于该分配的资源执行小区切换,能够缩短切换时延。
附图说明
图1示出了现有技术中基于下行测量的切换流程的示意性交互图。
图2示出了现有技术中基于上行测量的切换流程的示意性交互图。
图3示出了本申请实施例的一种系统架构的示意图。
图4示出了本申请实施例的另一种系统架构的示意图。
图5示出了本申请实施例的小区间切换的方法在一种系统架构下的示意性交互图。
图6示出了本申请实施例的小区间切换的方法在另一种系统架构下的示意性交互图。
图7是根据本申请一实施例的控制器500的示意性框图。
图8是根据本申请另一实施例的控制器600的示意性框图。
图9是根据本申请一实施例的控制器700的示意性结构图。
图10是根据本申请另一实施例的控制器800的示意性结构图。
具体实施方式
下面结合附图,对本申请提供的技术方案进行说明。
本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G等。
应理解,在本申请实施例中,用户设备(User Equipment,UE)包括但不限于移动台 (Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
需要说明的是,在本申请实施例中,编号“第一”、“第二”仅仅为了区分不同的对象,例如,为了区分不同的资源或信息等,不应对本申请实施例的保护范围构成任何限定。
图1示出了LTE中基于下行测量的切换流程的示意性流程图。如图1所示,该切换流程包括三个阶段,即切换准备、切换执行和切换完成。
101、UE基于触发事件向源小区发送测量报告。
应理解,在LTE中,UE根据eNB下发的测量配置消息进行相关测量,并将测量结果上报给eNB。这里,UE向源小区发送测量报告是指UE向源小区的eNB发送测量报告。
102、源小区向目标小区发送切换请求。
其中,切换请求中携带UE的上下文信息。
103、目标小区根据UE的上下文信息与核心网之间建立S1承载。
104、目标小区向源小区发送切换请求ACK。
105、源小区与目标小区之间建立X2传输承载。
106、源小区向UE发送无线资源控制(Radio Resource Control,RRC)连接配置。
107、源小区向目标小区发送序列号状态转移。
108、RRC连接配置完成。
109、目标小区与核心网之间路径切换或修改承载。
110、源小区与核心网之间进行路径切换或修改承载。
111、源小区释放UE上文信息,UE对目标小区执行随机接入过程,建立连接。至此,切换完成。
需要说明的是,上述各个步骤的具体实现,可以参见现有技术,此处不做详述。
现有技术中,UE在网络中移动时,为了保证UE业务的连续性,需要对UE进行移动性管理。例如,UE从源小区移动到目标小区时,需要及时地执行小区之间的切换。
但是,从上述切换流程中可以看出,LTE中对UE进行移动性管理是基于下行测量的。即,为了实现对UE的移动性管理,网络中的各小区会发送下行参考信号,供UE测量(因此,也将这种切换方式称为基于下行测量的切换)。UE基于触发事件将测量结果以测量报告的形式上报至网络侧,网络侧基于测量报告进行切换判决,以将UE切换至服务质量更好的小区。
在上述基于下行测量的切换流程中,网络侧需要等到UE上报测量报告之后,才开始进行切换准备流程。这样,会带来如下一些问题。例如,测量报告在空口上发送,在空口上带来一定的开销。尤其在切换区信号质量波动剧烈的情况下,开销较大。又例如,由于网络侧在接收到UE的测量报告之前,不能获知UE的切换需求。而在切换判决之后,才进行切换准备,使得切换准备的时间给实际的切换执行带来切换延迟。如果网络侧需要预测UE的切换需求,提前进行切换准备,就需要UE提前上报测量报告,以提前获取信号质量的变化情况,从而提前进行切换判决。但是,这样会造成UE发送测量报告的数量增 多,在空口上的开销增大。又例如,如果,目标小区的资源不足,无法满足切换,源小区需要接收到目标小区的切换失败指令(Handover preparation failure)再进行后续处理,切换延迟比较大。
为了解决上述问题,现有技术中提出了一种基于上行测量的切换机制,以对UE进行移动性管理。
为了便于说明,首先引入超级小区(hyper cell,也可称为小区簇)的概念。在超级小区的概念的基础上,说明为什么随着后续系统的演进,会引起UE的移动性管理难的问题。一个hyper cell可以配置有hyper cell ID,且可以包括同频和/或异频的多个传输点(Transmission Point,TP)可选地,作为一个实施例,hyper cell中也可仅包括1个TP。或者,hyper cell可以包括多个小区(可选地,作为一个实施例,hyper cell中也可仅包括1个小区)。可以理解的是,hyper cell内的TP(或者小区)的ID与hyper cell的ID可以保持一致,也可以分别配置。UE在hyper cell中移动,如果仍采用现有技术的移动性管理方式,由于每个TP均会对应一个或多个小区(或small cell),导致该UE会频繁的进行小区切换。
需要说明的是,在本申请实施例中,TP也可以称为发射接收节点(Transmit Reception Point,TRP)。
但是,在移动通信系统的后续演进过程中,相比于4G网络,可能会具有更多的特点。例如,部分业务对时延和可靠性的要求更高。为了满足巨量的数据通信需求,可能会在热点区域集中超密集部署大量的传输点TP,每个TP的覆盖范围变小。在这种改变下,如果继续采用基于下行测量的切换机制,会引起UE的移动性管理难的问题。例如,在热点区域,UE需要测量大量的TP,由于TP的覆盖范围小,UE可能会很快移动出一个TP的覆盖范围,可能造成切换不及时而导致切换失败。又例如,由于超密集的小区部署,势必会使得测量报告的上报以及切换的操作产生大量的空口信令,大量消耗空口资源和网络的处理资源。再例如,网络容量和连接数的要求更高,空口资源更加稀缺等。上述特点导致UE在切换时需要更加及时,否则更加容易导致切换失败。
下面结合图2,对基于上行测量的切换流程进行介绍。
应理解,在本申请实施例中,源小区与目标小区之间的信息交互,是通过源小区与目标小区各自的控制器传输的。为了简洁,以下所描述的“小区发送信息(或消息)以及小区接收信息(或消息)”,均是指小区通过小区的控制器接收或发送信息(或消息)。
图2示出了现有技术中基于上行测量的切换流程的示意性交互图。如图2所示,该方法主要包括步骤201至步骤210。
201、源小区执行测量判决。
UE在发送上行参考信号时,源小区监测UE的参考信号。当UE满足测量条件时,例如,UE已经接近源小区的覆盖范围的边缘,或UE的参考信号的信号质量低于预设阈值,源小区执行测量判决。
202、源小区向邻小区发送测量请求消息。
测量请求消息中携带测量UE所需的信息,例如,UE标识、测量上报门限、上报周期等。
203、邻小区向源小区发送测量报告。
204、切换触发。
205、源小区向目标小区发送切换请求。
206、目标小区与核心网之间建立S1承载。
目标小区进行切换准备。
207、目标小区资源准备完成后,向源小区发送切换请求ACK。
208、源小区与目标小区建立X2传输承载。
209、源小区向UE发送切换执行指令。
210、源小区对UE发起释放,UE对目标小区执行随机接入过程,建立连接。至此,切换完成。
从上述的步骤可以看出,相比于LTE中基于下行测量的切换流程,在基于上行测量的切换流程中,由UE发送参考信号,网络侧对UE发送的上行参考信号进行测量,并基于测量结果为UE选择一个或多个合适的TP进行数据的传输。也就是说,在当UE在hyper内部移动的过程中,测量参考信号、TP切换的任务可以由网络侧完成,尽量让UE感知不到TP的变化。这样不但能够保证业务的连续性,而且UE也无需承载繁重的测量任务和测量报告的频繁上报,节省了空口的开销。
但是,基于上行测量的切换机制仍然存在如下问题:
1、UE满足切换触发条件后,网络侧需要进行测量准备过程,可能造成切换不及时。
2、由于对UE的参考信号进行测量的节点有多个,并且在测量完成后需要通过X2接口向源小区发送测量报告,带来了一定的空口开销。
针对现有技术中基于上行测量的切换流程中存在的上述问题,下文结合图3至图6,详细说明本申请实施例的小区间切换的方法。
首先,对本申请实施例的系统架构进行介绍。
图3示出了本申请实施例的一种系统架构的示意图。在图3所示的架构中,hyper cell的架构仅为一层,即,仅部署有控制器(controller)。在这种架构下,hyper cell下的所有TRP均与控制器相连接,并且,RRC、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)、无线链路层控制(Radio Link Control,RLC)和(Radio Link Control,MAC)的功能均部署在控制器上。
图4示出了本申请实施例的另一种系统架构的示意图。在图4所示的架构中,hyper cell的架构为两层,即,同时部署有中心单元(Central Unit,CU)和分布式单元(Distributed Unit,DU),一个DU可以连接一个或多个TRP。在这种架构下,RRC和PDCP将部署在CU上,MAC将部署在DU上。对UE发送的上行参考信号的测量由DU执行完成。DU需要将测量结果上报给CU,测量控制信息的下发是由CU下发给DU,并由DU下发至TRP。
需要说明的是,在上述图3和图4所示的系统架构中,仅以CU1存在一个相邻的CU(即,CU2)作为示例。显然,CU1也可能存在多个相邻的CU,本申请实施例对此不作特别限定。
还需要说明的是,在本申请实施例中,进行切换的两个小区之间没有共同的无线接入网络控制器(Radio Access Network,RAN controller)。
另外,图3和图4中所示的小区1和小区2,可以为前文所描述的超级小区。
图5示出了根据本申请实施例的小区间切换的方法300在一种系统架构下的示意性交互图。如图5所示,该方法300主要包括步骤301至步骤310。
首先,为了便于理解和说明,以下实施例中,不失一般性地,将控制器1作为第一控制器的一例,将控制器2作为第二控制器的一例对本申请实施例的小区间切换的方法进行详细说明。
301、控制器1执行测量判决。
需要说明的是,本申请实施例的小区间切换的方法是基于上行测量机制。在步骤301中,控制器1在UE发送上行参考信号时进行测量判决的过程与现有技术中基于上行测量的时进行切换判决的过程相同。步骤301可参见前文所述的步骤201对于测量判决所作的说明。
可选地,这里UE发送的上行参考信号可以为beacon信号。
应理解,控制器1执行测量判决,即确定是否发起UE的切换流程。如果切换,确定目标小区。
302、控制器1向控制器2和控制器3发送测量请求消息。
其中,测量请求消息中携带第一指示信息,该第一指示信息用于指示满足UE的服务质量所需的第二资源。
应理解,测量请求消息中还可以携带UE标识ID、测量对象、测量上报门限、测量上报周期和UE的服务质量(Quality of Service,QoS)相关信息。UE的QoS的相关信息可以包括UE的最大联合速率(Aggregated Maximum Bit Rate,AMBR)、时延需求(delay requirement)和服务类型(service type)等。
还应理解,这里,控制器3作为源小区一个邻小区的控制器的一例。
可选地,作为一个实施例,测量请求消息中携带第一指示信息,该第一指示信息用于指示满足UE的服务质量所需的第二资源。
应理解,在本申请实施例中,第二资源是指满足UE的服务质量所需的时域资源、频域资源、时延要求(delay requirement)、UE的服务类型(service type)、UE的联合最大速率(Aggregated Maximum Bit Rate,AMBR)等。
303、控制器2和控制器3向控制器1发送测量报告。
具体地说,控制器2和控制器3根据控制器1发送的测量请求消息,对UE发送的参考信号进行测量,并将测量结果以测量报告的形式反馈给控制器1。
测量报告中可以包括参考信号接收功率((Reference Signal Receiving Power,RSRP)、参考信号的信号质量、UE的ID等。
需要说明的是,控制器2和控制器3向控制器1发送测量报告,可以基于周期进行上报,或者,也可以基于预设门限进行上报,本申请实施例对此不作任何限定。
可选地,在本申请实施例中,邻小区在发送给源小区的测量报告中携带第二指示信息,第二指示信息用于向源小区指示该邻小区能够为该UE提供的第二资源。
304、控制器1执行预切换判决。
控制器1根据邻小区发送的多个测量报告,进行预切换判决,确定目标小区。控制器1在确定目标小区后,执行步骤305。
可以理解的是,执行预切换判决是指控制器判断终端设备是否需要进行小区切换。如 果需要切换,控制器1需要从邻小区中选择目标小区。
此处,以将邻区1确定为目标小区为例,对后续步骤进行说明。
305、控制器1向控制器2发送预切换请求。
应理解,在本申请实施例中,预切换请求用于指示目标小区为终端设备分配(或者说,预留)进行小区切换所需的第一资源。
还应理解,在本申请实施例中,第一资源包括UE进行小区切换所需的无线资源和物理层资源。例如,RRC资源、数据无线承载(Data Radio Bearer,DRB)资源、小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)和专用随机接入序列等。
具体地说,控制器1确定目标小区后,控制器1向目标小区的控制器,(即,控制器2)发送预切换请求(Pre Handover Request,Pre HO Request)。其中,预切换请求中进行切换准备的相关信息。例如,UE的X2和S1信令上下文参考(UE Context)、UE的安全性能(UE Security Capability)、演进的无线接入承载标识(Evolved Radio Access Bearer Identifier,E-RAB ID)、接入层安全性基础密钥(Access security base key)、源小区的物理层标识和消息鉴权验证码、目标小区的标识等。
306、控制器2与核心网之间建立S1承载。
控制器2接收控制器1发送的预切换请求,并根据预切换请求中携带的用于切换准备的信息,与核心网之间建立S1承载。另外,控制器2根据UE上下文信息,计算接入层安全性密钥(Access security key),预留RRC、数据无线承载(Data Radio Bearer,DRB)资源、分配专用随机接入序列等。
307、控制器2完成资源准备以后,向控制器1发送预切换请求的ACK。
应理解,步骤307中,控制器2向控制器1发送预切换请求ACK(Pre HO Request ACK),用于通知控制器1进行小区切换的资源已经准备好。其中,Pre HO Request ACK中携带E-RAB ID,隧道端点标识(Tunnel Endpoint Identifier,TEID)、target UE标识,target DRB ID,接入层安全性算法(AS Security Algorithm)等。
308、控制器1与控制器2之间建立X2传输承载。
应理解,X2传输承载为小区之间数据面承载。建立X2传输承载之后,源小区和目标小区之间准备转发分组(Packets)。
需要说明的是,建立X2传输承载可以参考现有技术,此处不作赘述。
309、终端设备触发切换条件。
应理解,在基于上行测量的切换机制中,控制器1确定终端设备满足切换条件(例如,控制器1检测到UE处于网络的边缘,或者,控制器1接收到的UE参考信号的质量减去控制器2接收到的UE参考信号的质量低于预设门限等)时,触发切换流程。
具体地,控制器1向UE发送切换指令(handover command),控制UE进入切换执行流程。
310、切换执行。
在步骤310中,UE接收到控制器1的切换指令,执行从源小区至目标小区的切换。具体地,UE接收到控制器1发送的切换指令后,执行与目标小区的同步、计算在目标小区所需使用的密钥,并配置网络侧选择好的在目标小区使用的安全算法等。
311、切换完成。
UE接入到目标小区后,控制器2向控制器1发送释放指示信息,指示控制器1释放UE的上下文信息。至此,切换完成。
从上述的切换流程可以看出,在本申请实施例中,源小区的控制器在确定终端设备满足测量条件时,向目标小区的控制器发送预切换指令,指示目标小区的控制器为终端设备进行小区切换准备资源。从而在终端设备满足切换条件时,源小区的控制器可以直接控制终端设备进行小区切换,缩短了切换时延。
可以理解的是,本申请实施例的小区间切换的方法是基于上行测量机制的。而在上行测量的机制中,由于进行信号质量测量是在网络侧。因此,网络侧(例如,控制器1)能够及时监测终端设备的信号质量的变化情况,尤其是结合终端设备的历史信息(例如,终端设备的轨迹、业务类型、移动速度、信号波动规律等),能够很好地预测切换即将发生。因此,在终端设备触发切换条件之前,源小区的控制器通过与目标小区的控制器协商资源的预留(即,可对应本申请实施例的预切换过程)。从而,在终端设备在满足切换条件时,可以直接执行切换流程。
需要说明的是,上述切换流程是以图3所示的系统架构作为示例所作的说明。如前文所述,本申请实施例的系统架构还可以为两层架构(如图4所示)。以下结合图6,对本申请实施例的小区间切换的方法在图4所示系统架构下的切换流程进行说明。
图6示出了本申请实施例的小区间切换的方法300在另一种系统架构下的示意性交互图。如图6所示,该方法300主要包括步骤401至步骤414。
401、CU1执行测量判决。
402、CU1向CU2发送测量请求消息。
403、CU2向CU2内的DU1和DU2发送测量请求。
404、DU1和DU2分别向CU2发送测量报告。
为了便于说明,这里将DU1发送的测量报告记作测量报告1,而将DU2发送的测量报告记作测量报告2。
405、CU2比较DU1和DU2的测量报告中的测量结果,选择一个测量报告反馈给CU1。
具体地,CU2可以选择信号质量更好、资源更充足的小区的测量报告上报给CU1。
以下,以CU2将测量报告1反馈给CU1为例,对后续步骤进行说明。
406、CU1执行预切换判决。
407、CU1向CU2发送预切换请求。
408、CU2指示DU1为UE切换进行资源预分配。
409、CU2与核心网之间建立S1承载。
410、CU2向CU1发送预切换请求ACK。
411、CU1与CU2建立X2传输承载。
需要说明的是,在LTE中,S1承载是指基站与核心网之间的承载。X2传输承载是指基站与基站之间的承载。这里的S1承载与X2传输承载仅以LTE场景作为示例进行说明。因此,在本申请实施例中,并不排除在未来的通信系统(例如,5G)中,采用其他的名称。
412、CU1判断UE满足切换条件时,执行步骤413。
具体地,步骤412中的切换条件可以参见前文步骤309中的说明。
413、CU1控制UE执行切换,UE切换至目标小区。
414、切换完成。
需要说明的是,上述切换流程400中的各步骤与前文所述的切换流程300中的相应步骤类似,具体的执行过程可参见前文的说明。为了简洁,此处不再赘述。
可选地,作为一个实施例,源小区的邻区中还包括第二小区,第二小区为确定不能提供终端设备所需的第二资源时,未向源小区的控制器发送测量报告的小区。
在本申请实施例中,源小区的邻区对UE的参考信号进行测量后,根据自身小区的资源和/或负载情况,如果确定没有足够的资源接纳该UE,不向源小区发送测量报告。对应地,源小区可以从资源充足的邻区中选择目标小区。采用这样的方式,与现有技术相比,一方面,减少了X2接口上的测量报告,进而可以减少X2接口上的信令开销。另一方面,由于源小区确定作为目标小区的邻区,有足够的资源可以接纳该UE,从而可以降低切换失败的概率。
可选地,作为一个实施例,源小区的邻区确定不能完全提供终端设备所需的第二资源时,可以在发送给源小区的测量报告中携带指示信息(即,第三指示信息),用于向源小区指示自身不能完全提供终端设备所需的第二资源。
进一步可选地,在邻小区不能完全提供终端设备所需的第二资源时,邻小区可以在测量报告中携带第四指示信息,该第四指示信息用于指示以下信息中的至少一项:
拥塞信息、降速信息、可选特性信息和功能信息。
应理解,在该实施例中,邻小区在不能完全提供终端设备所需的第二资源的情况下,除了在测量报告中向源小区指示自身没有足够资源接纳该UE之外,还可以在测量报告中向源小区指示自身的资源。
其中,拥塞信息用于指示邻小区空口资源的拥塞情况,例如,信道探测参考信号(Sounding Reference Signal,SRS)资源、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)资源、用户数等。降速信息用于指示邻小区是否支持用户的保证比特速率(Guaranteed Bit Rate,GBR)和最大比特速率(Maximum Bit Rate,MBR)。可选特性信息用于指示邻小区的特性支持能力,例如,双载波捆绑(Dual cell,DC)、多输入多输出(Multiple-Input Multiple-Output,MIMO)和联合处理(Joint Processing,JP)等。功能信息是指切片信息,例如,是否支持机器类通信(Machine Type Communication,MTC)切片、超可靠低时延(Ultra-reliable and Low Latency Communications,URLLC)切片。邻小区可能不支持源小区的协议栈配置,在这种情况下,邻小区可以指示自身所支持的特殊协议栈配置信息。
以上结合图3至图6,详细说明了根据本申请实施例的小区间切换的方法。以下结合图7和图8,对根据本申请实施例的控制器进行说明。
图7是根据本申请一实施例的控制器500的示意性框图。如图7所示,控制器500包括
处理单元510,用于确定目标小区;
发送单元520,用于向第二控制器发送预切换请求,第二控制器为目标小区的控制器,预切换请求用于指示第二控制器为终端设备分配进行小区切换所需的第一资源;
发送单元520还用于,在处理单元510确定该终端设备满足切换条件时,向终端设备发送切换指令,该切换指令用于指示终端设备基于该第一资源执行从源小区至目标小区的 切换。
根据本申请实施例的控制器500中的各单元和上述其它操作或功能分别为了实现方法300中由第一控制器执行的相应流程。为了简洁,此处不再赘述。
本申请实施例中,第一控制器(即,源小区的控制器)在确定终端设备满足测量条件时,向第二控制器(即,目标小区的控制器)发送预切换指令,指示第二控制器为终端设备进行小区切换准备资源。从而在终端设备满足切换条件时,第一控制器可以直接控制终端设备进行小区切换,节省了进行资源准备的时间,从而能够缩短切换时延。
图8是根据本申请另一实施例的控制器600的示意性框图。如图8所示,控制器600包括
接收单元610,用于接收第一控制器发送的预切换请求,该第一控制器为源小区的控制器;
处理单元620,用于根据预切换请求,为终端设备分配进行小区切换所需的第一资源,以便于该第一控制器在确定终端设备满足切换条件时向终端设备发送切换指令,以指示终端设备基于该第一资源执行从源小区至目标小区的切换。
根据本申请实施例的控制器600中的各单元和上述其它操作或功能分别为了实现方法300中由第二控制器执行的相应流程。为了简洁,此处不再赘述。
本申请实施例中,第一控制器(即,源小区的控制器)在确定终端设备满足测量条件时,向第二控制器(即,目标小区的控制器)发送预切换指令。第二控制器接收到预切换指令后,为该终端设备分配(或者说,预留)进行小区切换的资源。从而在终端设备触发切换条件时,可以直接基于该分配的资源执行小区切换,能够缩短切换时延。
以上结合图3至图6,对根据本申请实施例的小区间切换的方法进行了详细说明。以下,结合图9和图10,对本申请实施例的控制器进行说明。
图9是根据一本申请实施例的控制器700的示意性结构图。如图9所示,该控制器700包括:
收发器710,用于通过接收或发送数据与其他设备进行通信;
存储器720,用于存储指令;
处理器730,用于执行存储器720中的指令,当指令被执行时,收发器710用于向第二控制器发送预切换请求,第二控制器为目标小区的控制器,预切换请求用于指示第二控制器为终端设备分配进行小区切换所需的第一资源;
收发器710还用于,在处理器730确定终端设备满足切换条件时,向终端设备发送切换指令,该切换指令用于指示终端设备基于第一资源执行从源小区至目标小区的切换。
应理解,在本申请实施例中,处理器730可以是中央处理单元(Central Processing Unit,CPU),该处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器720可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器720的一部分还可以包括非易失性随机存取存储器。例如,存储器720还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的小区间切换的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器720,处理器730读取存储器720中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的控制器700的功能或上述操作分别为了实现方法300中由第一控制器执行的相应流程。为了简洁,此处不再赘述。
本申请实施例中,第一控制器(即,源小区的控制器)在确定终端设备满足测量条件时,向第二控制器(即,目标小区的控制器)发送预切换指令。第二控制器接收到预切换指令后,为该终端设备分配(或者说,预留)进行小区切换的资源。从而在终端设备触发切换条件时,可以直接基于该分配的资源执行小区切换,能够缩短切换时延。
图10是根据本申请另一实施例的控制器800的示意性结构图。如图10所示,该控制器800包括:
收发器810,用于通过接收或发送数据与其他设备进行通信;
存储器820,用于存储指令;
处理器830,用于执行存储器820中的指令,当指令被执行时,收发器810用于接收第一控制器发送的预切换请求,第一控制器为终端设备所处于的源小区的控制器,该控制器800为目标小区的控制器;
处理器830还用于,根据预切换请求为终端设备分配进行小区切换所需的第一资源,以便于第一控制器确定终端设备满足切换条件时向终端设备发送切换指令,以指示终端设备基于第一资源执行从源小区至目标小区的切换。
应理解,在本申请实施例中,处理器830可以是中央处理单元(Central Processing Unit,CPU),该处理器830还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application-Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器820可以包括只读存储器和随机存取存储器,并向处理器830提供指令和数据。存储器820的一部分还可以包括非易失性随机存取存储器。例如,存储器820还可以存储设备类型的信息。
可选地,以上各实施例中的存储器可以是独立的,也可以跟处理器集成在一起。当处理器由硬件实现时,例如,可以是逻辑电路或者集成电路,通过接口与其他硬件相连,此时可以不需要存储器。
在实现过程中,上述方法的各步骤可以通过处理器830中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的小区间切换的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器820,处理器830读取存储器820 中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的控制器800的功能或上述操作分别为了实现方法300中由第二控制器执行的相应流程。为了简洁,此处不再赘述。
本申请实施例中,第一控制器(即,源小区的控制器)在确定终端设备满足测量条件时,向第二控制器(即,目标小区的控制器)发送预切换指令。第二控制器接收到预切换指令后,为该终端设备分配(或者说,预留)进行小区切换的资源。从而在终端设备触发切换条件时,可以直接基于该分配的资源执行小区切换,能够缩短切换时延。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种小区间切换的方法,其特征在于,所述方法包括:
    第一控制器确定目标小区,所述第一控制器为源小区的控制器;
    所述第一控制器向第二控制器发送预切换请求,所述第二控制器为所述目标小区的控制器,所述预切换请求用于指示所述第二控制器为终端设备分配进行小区切换所需的第一资源;
    所述第一控制器确定所述终端设备满足切换条件时,向所述终端设备发送切换指令,所述切换指令用于指示所述终端设备基于所述第一资源执行从所述源小区至所述目标小区的切换。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制器确定目标小区,包括:
    所述第一控制器向所述源小区的邻小区发送测量请求消息,所述测量请求消息中携带第一指示信息,所述第一指示信息用于指示满足所述终端设备的服务质量所需的第二资源;
    所述第一控制器接收至少一个第一小区发送的至少一个测量报告,所述至少一个测量报告与所述至少一个第一小区一一对应,每个测量报告中包括第二指示信息,所述第二指示信息用于指示所对应的第一小区能够为所述终端设备提供的第二资源,其中,所述至少一个第一小区为所述源小区的邻小区中的部分或全部;
    所述第一控制器根据所述至少一个测量报告中的第二指示信息,从所述至少一个第一小区中确定目标小区。
  3. 根据权利要求2所述的方法,其特征在于,所述源小区的邻小区中还包括第二小区,所述第二小区为确定不能提供所述终端设备所需的第二资源时,未向所述第一控制器发送测量报告的小区。
  4. 根据权利要求2或3所述的方法,其特征在于,所述至少一个测量报告中的部分测量报告还包括第三指示信息,所述第三指示信息用于指示所述部分测量报告对应的第一小区不能完全提供所述终端设备所需的第二资源。
  5. 根据权利要求4所述的方法,其特征在于,所述部分测量报告中还包括第四指示信息,所述第四指示信息用于指示以下信息中的至少一项:
    拥塞信息、降速信息、可选特性信息和功能信息。
  6. 一种小区间切换的方法,其特征在于,所述方法包括:
    第二控制器接收第一控制器发送的预切换请求,所述第一控制器为终端设备所处于的源小区的控制器,所述第二控制器为第一小区的控制器,所述第一小区为所述源小区的邻小区,所述预切换请求是所述第一控制器将所述第一小区确定为目标小区后发送给所述第二控制器的;
    所述第二控制器根据所述预切换请求,为所述终端设备分配进行小区切换所需的第一资源,以便于所述第一控制器确定所述终端设备满足切换条件时向所述终端设备发送切换指令,以指示所述终端设备基于所述第一资源执行从所述源小区至所述目标小区的切换。
  7. 根据权利要求6所述的方法,其特征在于,所述第二控制器接收所述第一控制器 发送的预切换请求之前,所述方法还包括:
    所述第二控制器接收所述第一控制器发送的测量请求消息,所述测量请求消息中携带第一指示信息,所述第一指示信息用于指示满足所述终端设备的服务质量所需的第二资源;
    所述第二控制器确定所述第一小区能够为所述终端设备提供的第二资源;
    所述第二控制器向所述第一控制器发送测量报告,所述测量报告中包括第二指示信息,所述第二指示信息用于指示所述第一小区能够为所述终端设备提供的第二资源。
  8. 根据权利要求7所述的方法,其特征在于,所述测量报告中还包括第三指示信息,所述第三指示信息用于指示所述第一小区不能完全提供所述终端设备所需的第二资源。
  9. 根据权利要求8所述的方法,其特征在于,所述测量报告中还包括第四指示信息,所述第四指示信息用于指示以下信息中的至少一项:
    拥塞信息、降速信息、可选特性信息和功能信息。
  10. 一种控制器,其特征在于,包括:
    收发器;
    存储器,用于存储指令;
    处理器,与所述收发器和所述存储器分别相连,用于执行所述存储器中存储的指令,以在执行所述指令时执行如下步骤:
    所述处理器确定目标小区,其中,所述控制器为源小区的控制器;
    所述收发器向第二控制器发送预切换请求,所述预切换请求用于指示所述第二控制器为终端设备分配进行小区切换所需的第一资源;
    所述收发器还用于在所述处理器确定所述终端设备满足切换条件时,向所述终端设备发送切换指令,所述切换指令用于指示所述终端设备基于所述第一资源执行从所述源小区至所述目标小区的切换。
  11. 根据权利要求10所述的控制器,其特征在于,所述收发器具体用于:
    向所述源小区的邻小区发送测量请求消息,所述测量请求消息中携带第一指示信息,所述第一指示信息用于指示满足所述终端设备的服务质量所需的第二资源;
    接收至少一个第一小区发送的至少一个测量报告,所述至少一个测量报告与所述至少一个第一小区一一对应,每个测量报告中包括第二指示信息,所述第二指示信息用于指示所对应的第一小区能够为所述终端设备提供的第二资源,其中,所述至少一个第一小区为所述源小区的邻小区中的部分或全部;
    以及,所述处理器具体用于:
    根据所述至少一个测量报告中的第二指示信息,从所述至少一个第一小区中确定目标小区。
  12. 根据权利要求11所述的控制器,其特征在于,所述源小区的邻小区中还包括第二小区,所述第二小区为确定不能提供所述终端设备所需的第二资源时,未向所述第一控制器发送测量报告的小区。
  13. 根据权利要求11或12所述的控制器,其特征在于,所述至少一个测量报告中的部分测量报告还包括第三指示信息,所述第三指示信息用于指示所述部分测量报告对应的第一小区不能完全提供所述终端设备所需的第二资源。
  14. 根据权利要求13所述的控制器,其特征在于,所述部分测量报告中还包括第四指示信息,所述第四指示信息用于指示以下信息中的至少一项:
    拥塞信息、降速信息、可选特性信息和功能信息。
  15. 一种控制器,其特征在于,包括:
    收发器;
    存储器,用于存储指令;
    处理器,与所述收发器和所述存储器分别相连,用于执行所述存储器中存储的指令,以在执行所述指令时执行如下步骤:
    所述收发器接收所述第一控制器发送的预切换请求,所述第一控制器为终端设备所处于的源小区的控制器,所述控制器为第一小区的控制器,所述第一小区为所述源小区的邻小区中的一个,所述预切换请求是所述第一控制器将所述第一小区确定为目标小区后发送给所述控制器的;
    所述处理器根据所述预切换请求,为所述终端设备分配进行小区切换所需的第一资源,以便于所述第一控制器确定所述终端设备满足切换条件时向所述终端设备发送切换指令,以指示所述终端设备基于所述第一资源执行从所述源小区至所述目标小区的切换。
  16. 根据权利要求15所述的控制器,其特征在于,所述收发器具体用于接收所述第一控制器发送的测量请求消息,所述测量请求消息中携带第一指示信息,所述第一指示信息用于指示满足所述终端设备的服务质量所需的第二资源;
    所述处理器具体用于确定所述第一小区能够为所述终端设备提供的第二资源;
    所述收发器还用于向所述第一控制器发送测量报告,所述测量报告中包括第二指示信息,所述第二指示信息用于指示所述第一小区能够为所述终端设备提供的第二资源。
  17. 根据权利要求16所述的控制器,其特征在于,所述测量报告中还包括第三指示信息,所述第三指示信息用于指示所述第一小区不能完全提供所述终端设备所需的第二资源。
  18. 根据权利要求17所述的控制器,其特征在于,所述测量报告中还包括第四指示信息,所述第四指示信息用于指示以下信息中的至少一项:
    拥塞信息、降速信息、可选特性信息和功能信息。
PCT/CN2017/095394 2016-08-12 2017-08-01 小区间切换的方法和控制器 WO2018028466A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17838596.9A EP3487218B1 (en) 2016-08-12 2017-08-01 Inter-cell handover method and controller
US16/271,884 US10917821B2 (en) 2016-08-12 2019-02-11 Inter-cell handover method and controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610666066.3A CN107734574B (zh) 2016-08-12 2016-08-12 小区间切换的方法和控制器
CN201610666066.3 2016-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/271,884 Continuation US10917821B2 (en) 2016-08-12 2019-02-11 Inter-cell handover method and controller

Publications (1)

Publication Number Publication Date
WO2018028466A1 true WO2018028466A1 (zh) 2018-02-15

Family

ID=61161658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095394 WO2018028466A1 (zh) 2016-08-12 2017-08-01 小区间切换的方法和控制器

Country Status (4)

Country Link
US (1) US10917821B2 (zh)
EP (1) EP3487218B1 (zh)
CN (1) CN107734574B (zh)
WO (1) WO2018028466A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3566490A1 (en) * 2017-01-05 2019-11-13 Sony Mobile Communications Inc. Uplink signal based handover control, handover cancellation and handover expiration
JP6827971B2 (ja) * 2018-03-26 2021-02-10 Kddi株式会社 端末装置による自律的ハンドオーバのための端末装置、基地局装置、制御方法、及びプログラム
WO2020025121A1 (en) * 2018-08-01 2020-02-06 Nokia Technologies Oy Short stay handover with slice-unavailability
CN111263405B (zh) * 2018-11-30 2022-11-22 中国移动通信集团吉林有限公司 小区的负载均衡方法及装置
CN111615141B (zh) * 2019-04-09 2022-04-22 维沃移动通信有限公司 测量方法、测量配置方法、终端和网络设备
US11184820B2 (en) * 2019-05-30 2021-11-23 Qualcomm Incorporated Fast user equipment handover between base stations
CN112087755B (zh) * 2019-06-14 2022-06-14 华为技术有限公司 一种小区切换方法、通信装置及系统
CN112637920B (zh) * 2019-10-08 2022-10-21 中国移动通信有限公司研究院 资源协商方法、装置、相关设备及存储介质
US11711718B2 (en) * 2019-11-01 2023-07-25 Nokia Technologies Oy Communication efficiency
WO2021184217A1 (zh) * 2020-03-17 2021-09-23 北京小米移动软件有限公司 信道状态信息测量方法、装置及计算机存储介质
CN113498136B (zh) * 2020-04-08 2022-12-27 华为技术有限公司 测量方法及装置
KR20230152520A (ko) * 2022-04-27 2023-11-03 삼성전자주식회사 무선 액세스 네트워크에서 셀 관리를 위한 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064943A (zh) * 2006-04-30 2007-10-31 中兴通讯股份有限公司 移动通讯系统基站间上行随机信道或共享信道的切换方法
CN101310554A (zh) * 2006-08-22 2008-11-19 华为技术有限公司 切换时无线资源的再分配
CN101986751A (zh) * 2010-10-26 2011-03-16 新邮通信设备有限公司 一种切换失败后进行rrc连接重建立的方法和一种ue
WO2015195323A1 (en) * 2014-06-18 2015-12-23 Qualcomm Incorporated Preemptive mobile handover preparation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2407228C2 (ru) * 2006-06-20 2010-12-20 Интердиджитал Текнолоджи Корпорейшн Способы и система для выполнения передачи обслуживания в системе беспроводной связи
WO2008004914A1 (en) * 2006-07-03 2008-01-10 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for handover in a radio access network
GB0702169D0 (en) * 2007-02-05 2007-03-14 Nec Corp Resource Allocation
CN101426307A (zh) * 2007-10-29 2009-05-06 华为技术有限公司 一种设置小区邻区列表的方法、系统和装置
CN101472305B (zh) * 2007-12-26 2012-01-25 电信科学技术研究院 一种实现小区切换的方法、系统及装置
CN101835213B (zh) * 2009-03-13 2014-10-29 上海中兴软件有限责任公司 一种测量报告的上报方法和小区切换方法
CN102740386B (zh) * 2012-06-20 2018-08-14 南京中兴软件有限责任公司 一种小区切换方法和基站
WO2015065352A1 (en) * 2013-10-30 2015-05-07 Hitachi, Ltd. Mobility management for small cell deployment in long term evolution system
CN105307209A (zh) * 2014-05-27 2016-02-03 中国移动通信集团浙江有限公司 一种小区间的资源均衡方法及装置
CN105704769B (zh) * 2016-04-01 2019-03-19 京信通信系统(中国)有限公司 基站内小区间切换的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064943A (zh) * 2006-04-30 2007-10-31 中兴通讯股份有限公司 移动通讯系统基站间上行随机信道或共享信道的切换方法
CN101310554A (zh) * 2006-08-22 2008-11-19 华为技术有限公司 切换时无线资源的再分配
CN101986751A (zh) * 2010-10-26 2011-03-16 新邮通信设备有限公司 一种切换失败后进行rrc连接重建立的方法和一种ue
WO2015195323A1 (en) * 2014-06-18 2015-12-23 Qualcomm Incorporated Preemptive mobile handover preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3487218A4 *

Also Published As

Publication number Publication date
EP3487218A1 (en) 2019-05-22
US10917821B2 (en) 2021-02-09
EP3487218A4 (en) 2019-07-03
EP3487218B1 (en) 2021-06-30
CN107734574A (zh) 2018-02-23
CN107734574B (zh) 2020-12-01
US20190174362A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US10917821B2 (en) Inter-cell handover method and controller
US11076334B2 (en) Data forwarding method, device, and communications system
RU2767981C2 (ru) Способ обработки информации и соответствующее устройство
US10972945B2 (en) Method for handover between secondary base stations, network device, and user equipment
CN108924894B (zh) 一种移动性管理方法、接入网设备和终端设备
US10075888B2 (en) Service-specific air-interface selection
WO2017148399A1 (zh) 应用于超级小区的通信方法和装置
US9706461B2 (en) Method of handover in device to device communication, base station and communication system
WO2018000441A1 (zh) 传输数据的方法和装置
WO2021026747A1 (zh) 无线通信方法和终端设备
JP2023537509A (ja) サイドリンク通信の管理
WO2020199003A1 (zh) 一种切换方法及装置、终端、网络设备
WO2017148379A1 (zh) 应用于超级小区的通信方法和装置
CN112771926B (zh) 测量报告上报的方法及相关产品
WO2020061871A1 (zh) 通信方法和通信装置
KR20240036691A (ko) 조건부 세컨더리 노드 절차에 대한 다중 연결 조정 정보 관리
CN112868253A (zh) 条件触发的配置方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838596

Country of ref document: EP

Effective date: 20190213