WO2018028463A1 - 一种导频发送方法及装置 - Google Patents

一种导频发送方法及装置 Download PDF

Info

Publication number
WO2018028463A1
WO2018028463A1 PCT/CN2017/095390 CN2017095390W WO2018028463A1 WO 2018028463 A1 WO2018028463 A1 WO 2018028463A1 CN 2017095390 W CN2017095390 W CN 2017095390W WO 2018028463 A1 WO2018028463 A1 WO 2018028463A1
Authority
WO
WIPO (PCT)
Prior art keywords
vectors
precoding
weight
vector
pilot
Prior art date
Application number
PCT/CN2017/095390
Other languages
English (en)
French (fr)
Inventor
高波
袁弋非
王欣晖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17838593.6A priority Critical patent/EP3499776A4/en
Publication of WO2018028463A1 publication Critical patent/WO2018028463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present invention relates to the field of communications, and in particular to a pilot transmission method and apparatus.
  • 5G New Radio Access Technology 5G New RAT
  • High-band communication systems can utilize high-band wavelengths and easy antenna integration, and high-band wireless standards such as 3GPP New RAT and IEEE 802.11ay, precoding techniques (especially phase-shifter-based analog precoding) ) is widely used to generate directional beams with high antenna gain.
  • High antenna gain and signal transmission loss are obtained by multi-antenna array and precoding techniques (beamforming scheme) to ensure link margin and improve communication robustness.
  • the related art In order to implement precoding training for generating directional beams under multiple users, which is also called beam training, the related art generates pilots based on the deterministic directional precoding codebook, performs full space scanning, and enumerates all possible transmission and reception. Beam combination. Therefore, under the consideration of a large-scale antenna array, the data of the optional beam at the transceiver end is greatly increased, and the number of beam combinations at the transceiver end will be sharp. The increase has led to a surge in pilot overhead.
  • the embodiment of the present invention provides a method and a device for transmitting a pilot, so as to at least solve the problem that the data of the optional beam at the transceiver end is greatly increased under the large-scale antenna array in the related art, and the number of beam combinations at the transceiver end is also increased sharply. This in turn leads to a problem of a surge in pilot overhead.
  • a method for transmitting a pilot including:
  • the transmitting end determines N precoding vectors; the transmitting end generates pilots according to the N precoding vectors; the transmitting end sends the pilots to the receiving end on M time-frequency resources, where the M and the N are integers greater than or equal to 1.
  • the method further includes: the sending end notifying the receiving end of a correspondence between the M time-frequency resources and the N pre-coding vectors.
  • the determining, by the sending end, the N precoding vectors comprises: determining each precoding vector of the N precoding vectors by: the transmitting end is in a codebook including Q1 vectors Selecting Q2 vectors, wherein the Q1 and the Q2 are integers greater than or equal to 1, and the Q1 is greater than or equal to the Q2; the sending end generates E weights according to a random function or a pseudo-random function An element, wherein the E is an integer greater than or equal to 1; the transmitting end generates a vector according to the Q2 vectors and the E weight elements; and the sending end is based on a value of a preset precoding vector
  • the range constraint is to perform numerical mapping on the generated vector to map each element in the vector to the nearest legal value; the transmitting end composes one of the precoding vectors according to the mapped value.
  • the random function comprises one of: a random complex Gaussian distribution function; a random complex Bernoulli distribution function.
  • the pseudo-random function comprises one of: a pseudo-random m-sequence; a pseudo-random M-sequence; a Golay sequence.
  • the sending end generates one according to the Q2 vectors and the E weight elements.
  • the vector includes one of the following: the transmitting end multiplies the Q2 vectors by any two of the E weight elements and then superimposes to generate one of the vectors; when the transmitting end determines that the Q2 is less than or When the E is equal to the E, the Q2 vectors are multiplied by the Q2 weight elements selected from the E weight elements, and then superimposed to generate one of the vectors; when the transmitting end determines that the E is less than or When the Q2 is equal to, the E weight elements are multiplied by the E vectors selected from the Q2 vectors, and then superimposed to generate one vector.
  • the generating, by the sending end, the generating the pilot according to the N precoding vectors comprises: the transmitting end multiplying a predetermined reference signal by the precoding vector to generate the pilot.
  • the correspondence between the M time-frequency resources and the N pre-coding vectors includes one of: when any one of the N pre-coding vectors is mapped to the M At least one time-frequency resource in the frequency resource; the N pre-coding vectors are grouped in units of K, and each group of pre-coding vectors is mapped to at least one of the M time-frequency resources, where The K is an integer greater than or equal to 1.
  • the mapping comprises one of: a random mapping; a mapping based on a specific function.
  • the precoding vector includes one of: a precoding vector configured or selected by the transmitting end according to predetermined information, including one of: a constant amplitude and a finite phase allowing a selected precoding vector, a finite amplitude allowing selection And the finite phase allows the selected precoding vector, the amplitude and the phase unconstrained precoding vector;
  • the precoding vector obtained by the transmitting end precoding the reference signal includes one of the following: a digital precoding vector, a simulation pre A precoding vector that encodes a mixture of vectors, analogs, and numbers.
  • the transmit beam pattern corresponding to the pilot includes at least one of the following characteristics: the strength of the beam pattern in any direction or the distance from the origin is less than a specific threshold; any two of the beam patterns The cross-correlation value of the type response in the airspace is less than a certain threshold.
  • a pilot transmission method includes: a transmitting end determines X weight vectors; and the transmitting end generates a guide according to the X weight vectors and precoding codebooks.
  • the transmitting end sends the pilot to the receiving end at Y time-frequency resources, wherein the X and the Y are integers greater than or equal to 1.
  • the method further includes: the sending end notifying the receiving end of the correspondence between the X time-frequency resources and the Y weight vectors.
  • the determining, by the sending end, the X weight vectors includes: determining each weight vector of the X weight vectors by: the sending end, according to the configuration information, each of the weight vectors
  • the K elements are set to zero, wherein the K is an integer greater than or equal to 0; the transmitting end regenerates the value of the element set to non-zero in each of the weight vectors according to a random function or a pseudo-random function.
  • the random function comprises one of: a random complex Gaussian distribution function; a random complex Bernoulli distribution function.
  • the pseudo-random function comprises one of: a pseudo-random m-sequence; a pseudo-random M-sequence; a Golay sequence.
  • the generating, by the sending end, generating the pilot according to the X weight vector and the precoding codebook comprising: the transmitting end multiplying a reference signal by the X weight vectors to generate a vector S; The transmitting end multiplies the element in the vector S and each precoding vector in the precoding codebook and superimposes to obtain the pilot.
  • the precoding vector comprises one of: a precoding vector with constant amplitude and limited phase allowing selection; a precoding vector with limited amplitude optional and limited phase allowing selection; and a precoding vector with amplitude and phase unconstrained .
  • the correspondence between the X time-frequency resources and the Y weight vectors includes one of: one of the Y weight vectors is mapped to the X time-frequency resources. At least one time-frequency resource; the Y weight vectors are grouped in units of L, and each group of weight vectors is mapped to at least one of the X time-frequency resources, wherein L is greater than or equal to An integer of 1.
  • the mapping comprises one of: a random mapping; a mapping based on a specific function.
  • the transmit beam pattern corresponding to the pilot includes at least one of the following characteristics: the strength of the beam pattern in any direction or the distance from the origin is less than a specific threshold; any two of the beam patterns The cross-correlation value of the type response in the airspace is less than a certain threshold.
  • determining, by the transmitting end, the X weight vectors includes: determining each weight vector of the X weight vectors by: generating E weight elements according to a random function or a pseudo random function, and in the preset vector set R vectors are selected; a weight vector is generated according to the E weight elements and the R vectors, wherein the E and the R are integers greater than or equal to 1.
  • generating the weight vector according to the E weight elements and the R vectors includes one of: multiplying the R vectors and the E weight elements by two and two to generate the weights a vector; when it is determined that the R is less than or equal to the E, multiplying the R vectors by R correspondingly selected from the E weight elements to generate the weight vector; When the E is less than or equal to the R, the E weight elements are multiplied by the E vectors selected from the R vectors, and then the weight vectors are superimposed.
  • the random function comprises one of: a random complex Gaussian distribution function; a random complex Bernoulli distribution function.
  • the pseudo-random function comprises one of: a pseudo-random m-sequence; a pseudo-random M-sequence; a Golay sequence.
  • a pilot transmitting apparatus which is applied to a transmitting end, the apparatus comprising: a first determining module, configured to determine N precoding vectors; and a first generating module, configured to Generating a pilot according to the N precoding vectors; the second sending module is configured to send the pilot to the receiving end on the M time-frequency resources, where the M and the N are greater than or equal to An integer of 1.
  • the apparatus further includes: a first notification module, configured to notify the receiving end of a correspondence between the M time-frequency resources and the N pre-coding vectors.
  • a first notification module configured to notify the receiving end of a correspondence between the M time-frequency resources and the N pre-coding vectors.
  • the apparatus further includes: a first determining module, configured to determine each of the N precoding vectors by: selecting Q2 vectors in a codebook including Q1 vectors Wherein the Q1 and the Q2 are integers greater than or equal to 1, and the Q1 is greater than or equal to the Q2; E weight elements are generated according to a random function or a pseudo-random function, wherein the E is greater than Or an integer equal to 1; according to the Q2 vectors And generating a vector with the E weight elements; performing numerical mapping on the generated vector according to a limitation condition of a value range of the preset precoding vector, and mapping each element in the vector to the nearest one Legal value; according to the mapped value into one of the precoding vectors.
  • a first determining module configured to determine each of the N precoding vectors by: selecting Q2 vectors in a codebook including Q1 vectors Wherein the Q1 and the Q2 are integers greater than or equal to 1, and the Q1 is greater than or equal to the Q2; E weight elements are generated according
  • a pilot transmitting apparatus is further provided, where the apparatus is applied to a transmitting end, and includes: a second determining module, configured to determine X weight vectors; and a second generating module, configured to Generating a pilot according to the X weight vectors and the precoding codebook; the second sending module is configured to send the pilot to the receiving end at Y time-frequency resources, where the X and the Y are both An integer greater than or equal to 1.
  • the device further includes: a second notification module, configured to notify the receiving end of the correspondence between the X time-frequency resources and the Y weight vectors.
  • a second notification module configured to notify the receiving end of the correspondence between the X time-frequency resources and the Y weight vectors.
  • the determining module includes: a setting unit, configured to set, according to the configuration information, K elements in each weight vector to be zero, wherein the K is an integer greater than or equal to 0; And a generating unit configured to regenerate a value of the element set to be non-zero in each of the weight vectors according to a random function or a pseudo-random function.
  • the second determining module includes: a second generating unit, configured to generate E weight elements according to a random function or a pseudo random function, and select R vectors in the preset vector set; and the third generating unit is set to Generating a weight vector according to the E weight elements and the R vectors, wherein the E and the R are integers greater than or equal to 1.
  • the third generating unit includes one of: a first generating subunit, configured to multiply the R vectors and the E weight elements by two to two to generate the weight vector; Generating a subunit, configured to, when determining that the R is less than or equal to the E, multiplying the R vectors by R correspondingly selected from the E weight elements, and superimposing to generate the weight a third generation subunit, configured to, when determining that the E is less than or equal to the R, multiply the E weight elements by E corresponding to the E vectors selected from the R vectors The weight vector.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the above steps.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the pilot is generated according to the N precoding vectors, and the pilot is transmitted to the receiving end on the M time-frequency resources, and both M and N are greater than or equal to 1.
  • the integer Therefore, the deterministic-based directional precoding codebook can be used to generate the pilot in the related art.
  • the data of the optional beam at the transceiver end is greatly increased, and the number of beam combinations at the transmitting end is sharply increased. The problem of a surge in pilot overhead has been achieved to reduce the cost of training.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal according to a pilot transmission method according to an embodiment of the present invention
  • FIG. 2 is a flow chart (1) of a method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart (2) of a method according to an embodiment of the present invention.
  • hybrid precoding also referred to as hybrid beamforming
  • FIG. 5 is a schematic diagram of a pilot generation method in the specific embodiment
  • FIG. 6 is a schematic diagram of another pilot generation method in the specific embodiment.
  • FIG. 7 is a schematic diagram of a mapping relationship between a time-frequency resource and a precoding vector in the specific embodiment
  • FIG. 8 is a schematic diagram of another mapping relationship between a time-frequency resource and a precoding vector in the specific embodiment
  • FIG. 10 is a flow chart of a feasible hybrid precoding (beam) training in the specific embodiment
  • FIG. 11 is a structural block diagram (1) of a pilot transmitting apparatus according to an embodiment of the present invention.
  • FIG. 12 is a block diagram (1) of a preferred structure of a pilot transmitting apparatus according to an embodiment of the present invention.
  • FIG. 13 is a structural block diagram (2) of a pilot transmitting apparatus according to an embodiment of the present invention.
  • FIG. 14 is a block diagram showing a preferred structure of a pilot transmitting apparatus according to an embodiment of the present invention.
  • FIG. 15 is a structural block diagram (1) of a second determining module 132 of a pilot transmitting apparatus according to an embodiment of the present invention.
  • FIG. 16 is a structural block diagram (2) of a second determining module 132 of a pilot transmitting apparatus according to an embodiment of the present invention.
  • FIG. 17 is a block diagram showing the structure of a third generating unit 164 of a pilot transmitting apparatus according to an embodiment of the present invention.
  • FIG. 1 is a hardware block diagram of a mobile terminal of a pilot transmitting method according to an embodiment of the present invention.
  • mobile terminal 10 may include one or more (only one shown in FIG. 1) processor 102 (processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA.
  • FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the pilot transmission method in the embodiment of the present invention, and the processor 102 executes each by executing a software program and a module stored in the memory 104.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart (1) of a method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the transmitting end determines N precoding vectors
  • Step S204 the transmitting end generates a pilot according to the N precoding vectors
  • Step S206 the transmitting end sends the pilot to the receiving end on the M time-frequency resources, where the M and the N are integers greater than or equal to 1.
  • the pilot After the N-precoding vector is determined by the transmitting end, the pilot generates the pilot according to the N precoding vectors, and sends the pilot to the receiving end on the M time-frequency resources, where M and N are both greater than or equal to 1.
  • M and N are both greater than or equal to 1.
  • the integer Therefore, the deterministic-based directional precoding codebook generating pilot is solved in the related art, and in the large-scale antenna array, the data of the optional beam of the transceiver end is greatly increased, and the number of beam combinations of the transmitting and receiving ends increases sharply. Pilot overhead surge The problem is to reduce the cost of training.
  • the method may further include: the sending end notifying the receiving end of the correspondence between the M time-frequency resources and the N pre-coding vectors.
  • the transmitting end is a pilot transmitting end.
  • the determining, by the sending end, the N precoding vectors may include: determining each precoding vector in the N precoding vectors by: the sending end is in a code including Q1 vectors The Q2 vectors are selected, wherein the Q1 and the Q2 are both integers greater than or equal to 1, and the Q1 is greater than or equal to the Q2; the sending end generates E weight elements according to a random function or a pseudo-random function, wherein And the E is an integer greater than or equal to 1; the transmitting end generates a vector according to the Q2 vectors and the E weight elements; and the sending end generates the generated according to a limitation condition of a value range of the preset precoding vector.
  • the vector performs numerical mapping to map each element in the vector to the nearest legal value; the transmitting end composes one of the precoding vectors according to the mapped value.
  • the known information that is, the configuration information
  • the configuration information includes: the system A provides the system B with an initial set of transmit and receive beam directions or a set of potential optimal precoding vectors, and the system B uses the initial value as the initial value.
  • the random function may include one of the following: a random complex Gaussian distribution function; a random complex Bernoulli distribution function.
  • the pseudorandom function includes one of the following: a pseudo-random m sequence; a pseudo-random M sequence; a Golay sequence.
  • the sending end may generate one of the following vectors according to the Q2 vectors and the E weight elements: the sending end randomly selects the Q2 vectors and the E weight elements. Multiplying and multiplying to generate one of the above vectors; when the transmitting end determines that the Q2 is less than or equal to the E, multiplying the Q2 vectors by the Q2 weighting elements selected from the E weighting elements, and superimposing to generate one The above vector; when the transmitting end determines that the E is less than or equal to the Q2, the E weight elements are Multiplying the E vectors selected from the above Q2 vectors to superimpose and generate one vector.
  • the generating, by the sending end, the generating the pilot according to the N precoding vectors may include: the transmitting end multiplying the predetermined reference signal by the precoding vector to generate the pilot.
  • the transmit radio frequency beams corresponding to the pilots have at least one of the following characteristics: for each radio frequency beam, there is no obvious spatial directionality; for the two radio frequency beams, low spatial domain correlation.
  • the correspondence between the M time-frequency resources and the N pre-coding vectors may include one of the following: any one of the N pre-coding vectors is mapped to the M At least one time-frequency resource in the time-frequency resources; the N pre-coding vectors are grouped in units of K, and each group of pre-coding vectors is mapped to at least one of the M time-frequency resources, wherein The above K is an integer greater than or equal to 1.
  • the time-frequency resource refers to a unit that can be independently distinguished in the time domain or the frequency domain.
  • the above mapping may include one of the following: a random mapping; a mapping based on a specific function.
  • the foregoing precoding vector may include one of the following: the precoding vector configured or selected by the transmitting end according to the predetermined information, including one of the following: a constant amplitude and a finite phase allowing the selected precoding vector, The finite amplitude allows selection and finite phase allows for selection of precoding vectors, amplitude and phase unconstrained precoding vectors; the precoding vector obtained by precoding the reference signal by the transmitting end may include one of the following: digital precoding Vector, analog precoding vector, analog and digital mixed precoding vectors.
  • the transmit beam pattern corresponding to the pilot includes at least one of the following characteristics: the intensity of the beam pattern in any direction or the distance from the origin is less than a specific threshold; any two of the above The cross-correlation value of the beam pattern in the spatial response is less than a certain threshold.
  • FIG. 3 is a diagram according to an embodiment of the present invention.
  • Method flow chart (2) as shown in Figure 3, the process includes the following steps:
  • Step S302 the transmitting end determines X weight vectors; the transmitting end generates pilots according to the X weight vectors and the precoding codebook;
  • Step S304 the transmitting end sends the pilot to the receiving end in Y time-frequency resources, wherein the X and the Y are both integers greater than or equal to 1.
  • the transmitting end determines the X weight vectors
  • the pilot is generated according to the X weight vectors and the precoding codebook; and the Y time-frequency resources send the pilot to the receiving end, where X and Y are both greater than or equal to 1.
  • the integer is the integer.
  • the data of the optional beam of the transceiver end is greatly increased, and the number of beam combinations at the transceiver end is also sharply increased, thereby causing a problem of a surge in pilot overhead;
  • the probability of distinguishing the success of the different physical paths by the transmitting end facilitating the configuration of the optimal transmitting precoding weight and the receiving antenna weight by the transmitting end and the receiving end, so as to achieve an effective improvement of the overall wireless communication spectrum efficiency.
  • the execution body of the foregoing step may be a sending end, but is not limited thereto.
  • the method may further include: the sending end notifying the receiving end of the correspondence between the X time-frequency resources and the Y weight vectors.
  • the determining, by the sending end, the X weight vectors may include: determining each of the X weight vectors by: sending, by the sending end, each of the weight vectors according to the configuration information.
  • the K elements in the setting are set to zero, wherein the above K is an integer greater than or equal to 0; the transmitting end regenerates the value of the element set to non-zero in each of the weight vectors described above according to a random function or a pseudo-random function.
  • the random function may include one of the following: a random complex Gaussian distribution function; a random complex Bernoulli distribution function.
  • the pseudo-random function may include one of the following: a pseudo-random m-sequence; a pseudo-random M-sequence; a Golay sequence.
  • the sending by the sending end, the generating the pilot according to the X weight vector and the precoding code, comprises: the transmitting end, the reference signal, and the X weight vector After multiplication, a vector S is generated; the transmitting end multiplies the element in the vector S by each precoding vector in the precoding codebook and superimposes it to obtain the pilot.
  • the precoding vector may include one of: a constant amplitude and finite phase allowing selection of a precoding vector; a finite amplitude selectable and finite phase allowing selection of a precoding vector; amplitude and phase unconstrained Precoding vector below.
  • the correspondence between the X time-frequency resources and the Y weight vectors includes one of the following: any one of the Y weight vectors is mapped to the X time-frequency resources. At least one of the time-frequency resources; the Y weight vectors are grouped by L, and each set of weight vectors is mapped to at least one of the X time-frequency resources, wherein L is greater than or equal to 1 The integer.
  • the above mapping may include one of the following: a random mapping; a mapping based on a specific function.
  • the transmit beam pattern corresponding to the pilot may include at least one of the following characteristics: the intensity of the beam pattern in any direction or the distance from the origin is less than a specific threshold; any two The cross-correlation value of the above beam pattern in the spatial response is less than a certain threshold.
  • the determining, by the transmitting end, the X weight vectors comprises: determining each of the X weight vectors by: generating E weight elements according to a random function or a pseudo-random function, and presetting R vectors are selected from the vector set; a weight vector is generated according to the E weight elements and the R vectors, wherein the E and the R are integers greater than or equal to 1.
  • generating the weight vector according to the E weight element and the R vector may include one of the following: multiplying the R vectors and the E weight elements by two and two to generate the weight. a vector; when it is determined that the R is less than or equal to the E, multiplying the R vectors and the R weight elements selected from the E weight elements to generate the weight vector; and determining that the E is less than or equal to In the above R, the E weight elements are multiplied by the E vectors selected from the R vectors, and then superimposed to generate The above weight vector.
  • the random function may include one of the following: a random complex Gaussian distribution function; a random complex Bernoulli distribution function.
  • the pseudo-random function may include one of the following: a pseudo-random m-sequence; a pseudo-random M-sequence; a Golay sequence.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • FIG. 4 is a schematic structural diagram of a hybrid precoding (also referred to as hybrid beamforming) transceiver for the present invention.
  • the system transmitting end and the receiving end configure multiple antenna units and multiple radio frequency links.
  • each RF link is interconnected with the antenna array unit (not including part of the connection scenario), and each antenna unit has a digital keyed phase shifter.
  • the high-band system implements beamforming on the analog side by applying different phase shift amounts to the signals on the respective antenna elements.
  • Each signal stream is loaded with an antenna weight vector (Antenna Weigh Vector, abbreviated as AWV) through a digitally keyed phase shifter, and transmitted from the multi-antenna unit to the high-band physical propagation channel; at the receiving end, the radio frequency received by the multi-antenna unit
  • AWV antenna weight vector
  • the signal streams are weighted and combined into a single signal stream.
  • the receiver After receiving the radio frequency demodulation at the receiving end, the receiver finally obtains multiple received signal streams and is sampled and received by the digital baseband.
  • FIG. 5 is a schematic diagram of a pilot generation method in the specific embodiment.
  • the random/pseudo-random parameter generator generates a corresponding parameter weight scalar, the scalar and the selected pre-coding.
  • Vector multiplication selection principle, according to configuration information
  • a total of x vector results are added, and each added element is mapped to the nearest legal value by the mapping module to obtain a precoding vector; finally, precoding
  • the vector is multiplied by the reference signal to generate a pilot.
  • the hybrid precoding also referred to as hybrid beamforming
  • the precoding vector can be processed by a digital transmitting baseband, an analog digital keyed phase shifter, or a digital transmission. A method of mixing the reference baseband and the analog-end digital-keyed phase shifter to achieve multiplication with the reference signal.
  • FIG. 6 is a schematic diagram of another pilot generation method in the specific embodiment.
  • the random/pseudo-random parameter vector generator and the zero vector combine to generate a weight vector according to the configuration information; then, the weight vector is multiplied by the reference signal; finally, the multiplied result and the pre-multiplier
  • the precoding codebook is multiplied to obtain a pilot.
  • the operation of multiplying the preset codebook in the hybrid precoding (also referred to as hybrid beamforming) transceiver structure described in FIG. 4 can be performed by the digital transmitting end baseband processing and the analog terminal digital key shifting.
  • a phaser, or a combination of a digital transmitter baseband processing and an analog terminal digital keyed phase shifter, is implemented to multiply the reference signal.
  • FIG. 7 is a schematic diagram of a mapping relationship between a time-frequency resource and a precoding vector in the specific embodiment.
  • the control channel carries training information including "time-frequency resource and precoding vector mapping relationship”.
  • the precoding is randomly mapped to the time-frequency resource.
  • FIG. 8 is a schematic diagram of another mapping relationship between a time-frequency resource and a precoding vector in the specific embodiment.
  • the control channel carries training information including "time-frequency resource and precoding vector mapping relationship".
  • precoding 1, 3 and precoding 2, 4 are grouped into group A and group B, respectively.
  • FIG. 9 is a flowchart of implementing an algorithm for multipath precoding (beam) combined detection in the specific embodiment, as shown in FIG.
  • S902 Perform MIMO channel time domain estimation. If the pilot transmission is in the frequency domain, the result of the frequency domain channel estimation needs to be switched to the time domain by inverse Fourier transform;
  • S906 Perform optimal transmit and receive beam selection according to the selected strongest S time domain critical paths in sequence.
  • Each responder independently estimates the MIMO channel correspondence under different precoding (beam) groups before the multipath precoding (beam) combined detection algorithm is executed.
  • the responder obtains an optimal precoding (beam) combined sequence number set for each physical path by a multipath precoding (beam) combined detection algorithm. Relative delay And received signal power among them, Indicates that the precoding (beam) sequence number is transmitted. Can be provided to an initiator, such as a base station, Indicates the reception precoding (beam) sequence number, It can be provided to the responder, such as the UE, where S represents the number of paths that are expected to be resolved. Specifically, the processing method is the same for any responder.
  • Input MIMO time domain channel response Where i denotes the training pilot number, x r denotes the receiving antenna number, and x t denotes the transmitting antenna number, Indicates the relative delay; the number of paths to be resolved is S;
  • channel state information CSI including: optimal precoding (beam) combined sequence number set Relative delay And received signal power
  • Time domain channel response from MIMO In the S, the relative delays of the maximum energy are selected, that is, the S critical paths with the maximum energy are selected, wherein the relative delay is used as the indication of the critical path.
  • the result uses ⁇ to represent the relative delay corresponding to the critical path.
  • Channel state information CSI output optimal precoding (beam) combined sequence number set for different physical paths Relative delay And received signal power
  • the AWV group under the originating precoding group i is defined as Where u r,i,x represents the antenna weight vector of the xth transmitting RF path; for the jth transmitting end, the corresponding AWV group is represented as
  • the sender is not required to be specified, the default sender AWV is U t,i ;
  • the AWV group under the precoding group i is defined as Where u r,i,x represents the antenna weight vector of the xth receiving RF path; for the jth receiving end, the corresponding AWV group is represented as For the convenience of discussion, when the receiving end is not required to be specified, the default receiving end AWV is U t, i ;
  • the data transmission precoding (beam) antenna weight vector (AWV) set of the data transmission phase may be different from the detection precoding (beam) AWV set of the training phase. If the transmission precoding (beam) AWV in the data transmission phase is the same as the detection beam AWV in the hybrid precoding (beam) training phase, the solution proposed in this patent can still be supported. Accordingly, the transmission precoding (beam) AWV is indicated by the symbol "w”, and the precoding (beam) AWV is represented by the symbol "u”. In particular, the transmission precoding (beam) AWV is specified by a preset directional precoding (beam) codebook.
  • the transmission precoding (beam) codebook is an N ⁇ K matrix, ie N represents the number of antenna elements, and K represents the number of directional precoding (beams) specified by the transmission precoding (beam) codebook, and N ⁇ K.
  • the received transmission precoding (beam) codebook is a matrix of N r ⁇ K r , ie Where N r represents the number of antenna elements at the receiving end, and K r represents the number of directional precoding (beams) specified by the received codebook matrix.
  • the transmit transmission precoding (beam) codebook is a matrix of N t ⁇ K t , ie
  • N t represents the number of antenna elements at the transmitting end
  • K t represents the number of directional precoding (beams) specified by the transmission codebook matrix.
  • Each column of matrix W r and matrix W t represents a preset AWV that produces directional precoding (beams).
  • w r,k denotes the kth column of the received codebook matrix W r
  • w t,l denotes the first column of the transmitted codebook matrix W t .
  • the receiving end knows that all the transmitting end data transmission precoding (beam) AWV and all transmitting end detecting precoding (beam) AWV;
  • the transmission precoding (beam) codebook generation method needs to be described.
  • the patent is not limited to the generation method.
  • the AWV of the kth feedback codebook is:
  • w r,k Quant[e j2 ⁇ 0sin ⁇ cos ⁇ +j2 ⁇ 0cos ⁇ ,e j2 ⁇ 1sin ⁇ cos ⁇ +j2 ⁇ 1cos ⁇ ,...,e j2 ⁇ (N-1)sin ⁇ cos ⁇ +j2 ⁇ (N-1)1cos ⁇ ]
  • Quant is a quantization function, which means that the angle of each element is mapped to the closest available quantization angle, and ⁇ represents the weight coefficient, which is 1 at half wavelength spacing.
  • the AWV of the kth feedback codebook can be simplified as:
  • w r,k [e j2 ⁇ 0sin ⁇ cos ⁇ +j2 ⁇ 0cos ⁇ ,e j2 ⁇ 1sin ⁇ cos ⁇ +j2 ⁇ 1cos ⁇ ,...,e j2 ⁇ (N-1)sin ⁇ cos ⁇ +j2 ⁇ (N-1)1cos ⁇ ]
  • FIG. 10 is a flow chart of a feasible hybrid precoding (beam) training in the present embodiment. As shown in FIG. 10, the initiator initiates hybrid precoding (beam) training, and the responder responds to the hybrid precoding (beam) training; the initiator successfully receives the acknowledgement signal and then uniformly reports.
  • Phase 1 Synchronous hybrid precoding (beam) training phase.
  • the initiator notifies each responder by transmitting the codebook and pilot correspondence information, and the pilot broadcasts to each responder; (the receiver can use the hybrid precoding (beam) to receive the training pilot);
  • Phase 2 Beam detection phase. Each responder utilizes pilots under all precoding (beam) combinations for channel estimation, and then performs multipath beam combining detection to output the received and transmitted sequences and received signal power under multipath;
  • Phase 3 Results feedback phase. Each responder sequentially feeds the CSI information back to the initiator.
  • Stage 4 The result confirmation stage. After the initiator confirms the successful reception, the CSI information is sequentially returned to each responder to successfully receive the confirmation information.
  • a pilot transmitting apparatus is further provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 11 is a structural block diagram (1) of a pilot transmitting apparatus according to an embodiment of the present invention, which is applied to a transmitting end, as shown in FIG. 11, the apparatus includes: a first determining module 112, a first generating module 114, and a first sending module. 116, the device is described below:
  • the first determining module 112 is configured to determine N precoding vectors; the first generating module 114 is connected to the first determining module 112, and is configured to generate, by the sending end, the pilot according to the N precoding vectors; the first sending module 116.
  • the first generation module 114 is connected to the first generation module 114, and the transmitting end sends the pilot to the receiving end on the M time-frequency resources, where the M and the N are integers greater than or equal to 1.
  • FIG. 12 is a block diagram (1) of a preferred structure of a pilot transmitting apparatus according to an embodiment of the present invention. As shown in FIG. 12, the apparatus includes all the modes shown in FIG.
  • the first notification module 122 is further connected to the first sending module 116, and is configured to notify the receiving end of the correspondence between the M time-frequency resources and the N pre-coding vectors.
  • the first determining module 112 determines each of the N precoding vectors by selecting Q2 vectors in the codebook including the Q1 vectors, where Q1 and Q2 are both integers greater than or equal to 1, and Q1 is greater than or equal to Q2; E weight elements are generated according to a random function or a pseudo-random function, wherein E is an integer greater than or equal to 1; according to Q2 above Vectors and the above E weight elements generate a vector; according to the limit condition of the preset precoding vector, the generated vector is numerically mapped, and each element in the vector is mapped to the nearest legal value. ; based on the mapped values into one of the above precoding vectors.
  • the random function may include one of the following: a random complex Gaussian distribution function; a random complex Bernoulli distribution function.
  • the pseudo-random function may include one of the following: a pseudo-random m-sequence; a pseudo-random M-sequence; a Golay sequence.
  • the first generating module 124 generates a pilot according to the N precoding vectors by: the transmitting end multiplies the predetermined reference signal by the precoding vector to generate the pilot.
  • the correspondence between the M time-frequency resources and the N pre-coding vectors may include one of the following: any one of the N pre-coding vectors.
  • the coding vector is mapped to at least one of the M time-frequency resources; the N precoding vectors are grouped by K, and each group of precoding vectors is mapped to at least one of the M time-frequency resources.
  • K is an integer greater than or equal to 1.
  • the above mapping may include one of the following: a random mapping; a mapping based on a specific function.
  • the foregoing precoding vector may include one of the following: the precoding vector configured or selected by the transmitting end according to the predetermined information, including one of the following: a constant amplitude and a finite phase allowing the selected precoding vector, The finite amplitude allows selection and finite phase allows selection of precoding vectors, amplitude and phase unconstrained precoding vectors; the precoding vector obtained by precoding the reference signal by the transmitting end includes one of the following: digital precoding vector Precoding vectors that simulate precoding vectors, analog and digital mixing.
  • the transmit beam pattern corresponding to the pilot may include at least one of the following characteristics: the intensity of the beam pattern in any direction or the distance from the origin is less than a specific threshold; any two The cross-correlation value of the above beam pattern in the spatial response is less than a certain threshold.
  • FIG. 13 is a structural block diagram (2) of a pilot transmitting apparatus according to an embodiment of the present invention, applied to a transmitting end, as shown in FIG. 13, the apparatus includes: a second determining module 132, a second generating module 134, and a second Transmitting module 136, the device is described below:
  • the second determining module 132 is configured to determine X weight vectors; the second generating module 134 is connected to the second determining module 132, and configured to generate pilots according to the X weight vectors and the precoding codebook; the second sending module 136, connected to the second generation module 134, configured to send the pilot to the receiving end in Y time-frequency resources, wherein the X and the Y are both integers greater than or equal to 1.
  • FIG. 14 is a block diagram (2) of a preferred structure of a pilot transmitting apparatus according to an embodiment of the present invention, which is applied to a transmitting end, as shown in FIG.
  • the device further includes: a second notification module 142, configured to notify the receiving end of the correspondence between the X time-frequency resources and the Y weight vectors.
  • FIG. 15 is a structural block diagram of a second determining module 132 of a pilot transmitting apparatus according to an embodiment of the present invention.
  • the second determining module 132 includes: a setting unit 152 and The first generating unit 154 describes the second determining module 132 below:
  • the setting unit 152 is configured to set the K elements in each of the weight vectors to zero according to the configuration information, wherein the K is an integer greater than or equal to 0; the first generating unit 154 is connected to the setting unit 152, It is set to regenerate the value of the element set to non-zero in each of the above weight vectors according to a random function or a pseudo-random function.
  • the random function may include one of the following: a random complex Gaussian distribution function; a random complex Bernoulli distribution function.
  • the pseudo-random function may include one of the following: a pseudo-random m-sequence; a pseudo-random M-sequence; a Golay sequence.
  • the second generating module 134 generates the pilot according to the X weight vectors and the precoding codebook by: the transmitting end multiplies the reference signal by the X weight vectors. Generating a vector S; the transmitting end multiplies the element in the vector S and each precoding vector in the precoding codebook by a superposition to obtain the pilot.
  • the precoding vector may include one of: a constant amplitude and finite phase allowing selection of a precoding vector; a finite amplitude selectable and finite phase allowing selection of a precoding vector; amplitude and phase unconstrained Precoding vector below.
  • the correspondence between the X time-frequency resources and the Y weight vectors may include one of the following: any one of the Y weight vectors is mapped to the X time-frequency At least one time-frequency resource in the resource; the Y weight vectors are grouped in units of L, and each group of weight vectors is mapped to at least one of the X time-frequency resources, wherein L is greater than or equal to An integer of 1.
  • the above mapping may include one of the following: a random mapping; a mapping based on a specific function.
  • the transmit beam pattern corresponding to the pilot may include the following At least one of the characteristics: the intensity of the beam pattern in any direction or the distance from the origin is less than a specific threshold; the cross-correlation value of any two of the above beam patterns in the spatial response is less than a specific threshold.
  • FIG. 16 is a structural block diagram (2) of a second determining module 132 of a pilot transmitting apparatus according to an embodiment of the present invention.
  • the second determining module 132 includes: a second generating unit 162 and a third generating unit 164.
  • the device is described below:
  • the second generating unit 162 is configured to generate E weight elements according to a random function or a pseudo random function, and select R vectors in the preset vector set;
  • the third generating unit 164 is connected to the second generating unit 162, and is configured to A weight vector is generated according to the E weight elements and the R vectors, wherein the E and the R are integers greater than or equal to 1.
  • FIG. 17 is a structural block diagram of a third generating unit 164 of a pilot transmitting apparatus according to an embodiment of the present invention.
  • the third generating unit 164 may include one of the following: a first generating subunit 172, configured to Multiplying the R vectors and the E weight elements two by two to generate the weight vector; and the second generating subunit 174 is configured to: when the R is less than or equal to the E, the R vectors are The R weight elements selected from the E weight elements are multiplied and multiplied to generate the weight vector; and the third generation subunit 176 is configured to: when the E is determined to be less than or equal to the R, the E weight elements are The E vectors selected from the above R vectors are multiplied and multiplied to generate the weight vector.
  • the random function may include one of the following: a random complex Gaussian distribution function; a random complex Bernoulli distribution function.
  • the pseudo-random function may include one of the following: a pseudo-random m-sequence; a pseudo-random M-sequence; a Golay sequence.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the above steps.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor performs the above steps according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • a pilot transmission method and apparatus provided by an embodiment of the present invention have the following beneficial effects: a pilot is generated based on a deterministic directional precoding codebook, and an optional beam of a transceiver end is provided under a large-scale antenna array.
  • the data is greatly increased, and the number of beam combinations at the transmitting and receiving ends increases sharply, and the problem of a surge in pilot overhead increases the effect of reducing training costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供了一种导频发送方法及装置,该方法包括:发送端确定N个预编码矢量;发送端根据N个预编码矢量生成导频;发送端在M个时频资源上将导频发送给接收端,其中,M和N均为大于或者等于1的整数。通过本发明,解决了相关技术中基于确定性的方向性预编码码本产生导频,在大规模天线阵列下,收发端的可选波束的数据大幅度增加,而出现的收发端的波束组合的数目急剧增加,导频开销激增的问题,达到降低训练花销的效果。

Description

一种导频发送方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种导频发送方法及装置。
背景技术
随着电气和电子工程师协会(Institute for Electrical and Electronic Engineers,简称为IEEE)和第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)标准组织持续在高频段(即毫米波通信)的持续发力,高频段通信凭借着其大带宽的显著优势将会成为5G新的无线接入技术(5G New Radio Access Technology,简称为5G New RAT)的重要创新点,致力于解决当下日益拥塞的频谱资源和物理网大量接入的难题,成为未来移动通信发展的重要方向。
但是,高频段通信在获得了非常丰富频谱资源的同时,其信道具有传播路径损失大、空气吸收(尤其是氧气)吸收更大、雨衰影响较重等缺陷。这必然给将会影响了高频段通信系统的有效覆盖范围、通信可靠性以及潜在的部署场景。
相关技术中高频段通信系统可以利用高频段波长较短和易于天线集成等特点,在3GPP New RAT和IEEE 802.11ay等高频段无线标准,预编码技术(特别是基于移相器的模拟端预编码)被广泛使用用于生成具有高天线增益的定向波束。通过多天线阵列和预编码技术(波束赋形方案)来获取高天线增益和对抗信号传输损耗,进而以确保链路余量和提升通信鲁棒性。
为了实现支持多个用户下的产生定向波束的预编码训练,即又称波束训练,相关技术中基于确定性的方向性预编码码本产生导频,进行全空间扫描,枚举所有可能的收发波束组合。因此,在考虑大规模天线阵列下,收发端的可选波束的数据大幅度增加,收发端的波束组合的数目将会急剧 的增加,进而带来了导频开销的激增。
针对上述问题,相关技术中并未提出有效的解决方案。
发明内容
本发明实施例提供了一种导频发送方法及装置,以至少解决相关技术中在大规模天线阵列下,收发端的可选波束的数据大幅度增加,收发端的波束组合的数目也会急剧增加,进而导致导频开销激增的问题。
根据本发明的一个实施例,提供了一种导频发送方法,包括:
发送端确定N个预编码矢量;所述发送端根据所述N个预编码矢量生成导频;所述发送端在M个时频资源上将所述导频发送给接收端,其中,所述M和所述N均为大于或者等于1的整数。
可选地,所述方法还包括:所述发送端将所述M个时频资源和所述N个预编码矢量之间的对应关系通知给所述接收端。
可选地,所述发送端确定所述N个预编码矢量包括:通过如下方式确定所述N个预编码矢量中的每一个预编码矢量:所述发送端在包括Q1个矢量的码本中选出Q2个矢量,其中,所述Q1和所述Q2均为大于或者等于1的整数,且所述Q1大于或者等于所述Q2;所述发送端根据随机函数或者伪随机函数生成E个权重元素,其中,所述E为大于或者等于1的整数;所述发送端根据所述Q2个矢量与所述E个权重元素生成一个矢量;所述发送端根据预设的预编码矢量的取值范围的限制条件,将生成的所述矢量进行数值映射,将所述矢量中的每个元素映射到最近的合法值;所述发送端根据将映射后的值组成一个所述预编码矢量。
可选地,所述随机函数包括以下之一:随机复高斯分布函数;随机复伯努利分布函数。
可选地,所述伪随机函数包括以下之一:伪随机m序列;伪随机M序列;Golay序列。
可选地,所述发送端根据所述Q2个矢量与所述E个权重元素生成一 个所述矢量包括以下之一:所述发送端将所述Q2个矢量与所述E个权重元素任意两两相乘后叠加生成一个所述矢量;当所述发送端确定所述Q2小于或者等于所述E时,将所述Q2个矢量与从所述E个权重元素中选出的Q2个权重元素对应相乘后叠加生成一个所述矢量;当所述发送端确定所述E小于或者等于所述Q2时,将所述E个权重元素与从所述Q2个所述矢量中选择出的E个矢量对应相乘后叠加生成一个所述矢量。
可选地,所述发送端根据所述N个预编码矢量生成所述导频包括:所述发送端将预先确定的参考信号与所述预编码矢量相乘生成所述导频。
可选地,所述M个时频资源和所述N个预编码矢量之间的对应关系包括以下之一:所述N个预编码矢量中的任意一个预编码矢量映射到所述M个时频资源中的至少一个时频资源上;所述N个预编码矢量以K为单位进行分组,每组预编码矢量映射到所述M个时频资源中的至少一个时频资源上,其中,所述K为大于或等于1的整数。
可选地,所述映射包括以下之一:随机映射;基于特定函数的映射。
可选地,所述预编码矢量包括以下之一:所述发送端根据预定信息配置或者选择的预编码矢量,包括以下之一:恒幅且有限相位允许选择的预编码矢量、有限幅度允许选择且有限相位允许选择的预编码矢量、幅度和相位无约束下的预编码矢量;所述发送端对参考信号进行预先编码后得到的预编码矢量,包括以下之一:数字预编码矢量、模拟预编码矢量、模拟和数字混合的预编码矢量。
可选地,所述导频对应的发送波束图型包括以下至少之一的特性:所述波束图型在任意方向下的强度或者距离原点的距离均小于特定门限;任意两个所述波束图型在空域响应的互相关数值小于特定门限。
在本发明的另一个实施例中,提供了一种导频发送方法,所述方法包括:发送端确定X个权重矢量;所述发送端根据所述X个权重矢量和预编码码本生成导频;所述发送端在Y个时频资源将所述导频发送给接收端,其中,所述X和所述Y均为大于或者等于1的整数。
可选地,所述方法还包括:所述发送端将所述X个时频资源与所述Y个权重矢量的对应关系通知给所述接收端。
可选地,所述发送端确定所述X个权重矢量包括:通过以下方式确定所述X个权重矢量中的每一个权重矢量:所述发送端根据配置信息,将所述每一个权重矢量中的K个元素设置为零,其中,所述K为大于或者等于0的整数;所述发送端根据随机函数或者伪随机函数重新生成所述每一个权重矢量中设置为非零的元素的值。
可选地,所述随机函数包括以下之一:随机复高斯分布函数;随机复伯努利分布函数。
可选地,所述伪随机函数包括以下之一:伪随机m序列;伪随机M序列;Golay序列。
可选地,所述发送端根据所述X个权重矢量和所述预编码码本生成所述导频包括:所述发送端将参考信号与所述X个权重矢量相乘后生成矢量S;所述发送端将所述矢量S中的元素和所述预编码码本中的每个预编码矢量相乘后叠加,得到所述导频。
可选地,所述预编码矢量包括以下之一:恒幅且有限相位允许选择的预编码矢量;有限幅度可选且有限相位允许选择的预编码矢量;幅度和相位无约束下的预编码矢量。
可选地,所述X个时频资源和所述Y个权重矢量之间的对应关系包括以下之一:所述Y个权重矢量中的任意一个权重矢量映射到所述X个时频资源中的至少一个时频资源上;所述Y个权重矢量以L为单位进行分组,每组权重矢量映射到所述X个时频资源中的至少一个时频资源上,其中,L为大于或者等于1的整数。
可选地,所述映射包括以下之一:随机映射;基于特定函数的映射。
可选地,所述导频对应的发送波束图型包括以下至少之一的特性:所述波束图型在任意方向下的强度或者距离原点的距离均小于特定门限;任意两个所述波束图型在空域响应的互相关数值小于特定门限。
可选地,发送端确定X个权重矢量包括:通过以下方式确定所述X个权重矢量中的每一个权重矢量:根据随机函数或者伪随机函数生成E个权重元素,并在预设矢量集合中选出R个矢量;根据所述E个权重元素和所述R个矢量生成权重矢量,其中所述E和所述R均为大于或等于1的整数。
可选地,根据所述E个权重元素和所述R个矢量生成所述权重矢量包括以下之一:将所述R个矢量与所述E个权重元素两两相乘后叠加生成所述权重矢量;当确定所述R小于或等于所述E时,将所述R个矢量与从所述E个权重元素中选出的R个权重元素对应相乘后叠加生成所述权重矢量;当确定所述E小于或等于所述R时,将所述E个权重元素与从所述R个矢量中选择出的E个矢量对应相乘后叠加生成所述权重矢量。
可选地,所述随机函数包括以下之一:随机复高斯分布函数;随机复伯努利分布函数。
可选地,所述伪随机函数包括以下之一:伪随机m序列;伪随机M序列;Golay序列。
根据本发明的另一个实施例,还提供了一种导频发送装置,应用于发送端,所述装置包括:第一确定模块,设置为确定N个预编码矢量;第一生成模块,设置为根据所述N个预编码矢量生成导频;第二发送模块,设置为在M个时频资源上将所述导频发送给接收端,其中,所述M和所述N均为大于或者等于1的整数。
可选地,所述装置还包括,第一通知模块,设置为将所述M个时频资源和所述N个预编码矢量之间的对应关系通知给所述接收端。
可选地,所述装置还包括:第一确定模块,设置为通过如下方式确定所述N个预编码矢量中的每一个预编码矢量:在包括Q1个矢量的码本中选出Q2个矢量,其中,所述Q1和所述Q2均为大于或者等于1的整数,且所述Q1大于或者等于所述Q2;根据随机函数或者伪随机函数生成E个权重元素,其中,所述E为大于或者等于1的整数;根据所述Q2个矢 量与所述E个权重元素生成一个矢量;根据预设的预编码矢量的取值范围的限制条件,将生成的所述矢量进行数值映射,将所述矢量中的每个元素映射到最近的合法值;根据将映射后的值组成一个所述预编码矢量。
在本发明的另一个实施例中,还提供一种导频发送装置,所述装置,应用于发送端,包括:第二确定模块,设置为确定X个权重矢量;第二生成模块,设置为根据所述X个权重矢量和预编码码本生成导频;第二发送模块,设置为在Y个时频资源将所述导频发送给接收端,其中,所述X和所述Y均为大于或者等于1的整数。
可选地,所述装置还包括:第二通知模块,设置为将所述X个时频资源与所述Y个权重矢量的对应关系通知给所述接收端。
可选地,所述确定模块包括:设置单元,设置为根据配置信息,将所述每一个权重矢量中的K个元素设置为零,其中,所述K为大于或者等于0的整数;第一生成单元,设置为根据随机函数或者伪随机函数重新生成所述每一个权重矢量中设置为非零的元素的值。
可选地,第二确定模块包括:第二生成单元,设置为根据随机函数或者伪随机函数生成E个权重元素,并在预设矢量集合中选出R个矢量;第三生成单元,设置为根据所述E个权重元素和所述R个矢量生成权重矢量,其中所述E和所述R均为大于或等于1的整数。
可选地,所述第三生成单元包括以下之一:第一生成子单元,设置为将所述R个矢量与所述E个权重元素两两相乘后叠加生成所述权重矢量;第二生成子单元,设置为当确定所述R小于或等于所述E时,将所述R个矢量与从所述E个权重元素中选出的R个权重元素对应相乘后叠加生成所述权重矢量;第三生成子单元,设置为当确定所述E小于或等于所述R时,将所述E个权重元素与从所述R个矢量中选择出的E个矢量对应相乘后叠加生成所述权重矢量。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以上各步骤的程序代码。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本发明,由于发送端确定N个预编码矢量后,根据N个预编码矢量生成导频,并在M个时频资源上将导频发送给接收端,M和N均为大于或者等于1的整数。因此,可以解决相关技术中基于确定性的方向性预编码码本产生导频,在大规模天线阵列下,收发端的可选波束的数据大幅度增加,而出现的收发端的波束组合的数目急剧增加,导频开销激增的问题,达到降低训练花销的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的导频发送方法的移动终端的硬件结构框图;
图2是根据本发明实施例的方法流程图(一);
图3是根据本发明实施例的方法流程图(二);
图4为本发明面向的混合预编码(也称,混合波束赋形)收发机结构示意图;
图5为本具体实施例中的导频生成方法的示意图;
图6为本具体实施例中了另一种导频生成方法的示意图;
图7为本具体实施例中的一种时频资源与预编码矢量映射关系的示意图;
图8为本具体实施例中的另外一种时频资源与预编码矢量的映射关系的示意图;
图9为本具体实施例中的多路径预编码(波束)组合检测的算法实现流程图;
图10为本具体实施例中的可行的混合预编码(波束)训练的流程图;
图11是根据本发明实施例的导频发送装置的结构框图(一);
图12是根据本发明实施例的导频发送装置的优选结构框图(一);
图13是根据本发明实施例的导频发送装置的结构框图(二);
图14是根据本发明实施例的导频发送装置的优选结构框图(二);
图15是根据本发明实施例的导频发送装置的第二确定模块132的结构框图(一);
图16是根据本发明实施例的导频发送装置的第二确定模块132的结构框图(二);
图17是根据本发明实施例的导频发送装置的第三生成单元164的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本发明实施例的导频发送方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本发明实施例中的导频发送方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的导频发送方法,图2是根据本发明实施例的方法流程图(一),如图2所示,该流程包括如下步骤:
步骤S202,发送端确定N个预编码矢量;
步骤S204,上述发送端根据上述N个预编码矢量生成导频;
步骤S206,上述发送端在M个时频资源上将上述导频发送给接收端,其中,上述M和上述N均为大于或者等于1的整数。
通过上述步骤,由于发送端确定N个预编码矢量后,根据N个预编码矢量生成导频,并在M个时频资源上将导频发送给接收端,M和N均为大于或者等于1的整数。因此,解决了相关技术中基于确定性的方向性预编码码本产生导频,在大规模天线阵列下,收发端的可选波束的数据大幅度增加,而出现的收发端的波束组合的数目急剧增加,导频开销激增的 问题,达到降低训练花销的效果。
在一个可选的实施例中,上述方法还可以包括:上述发送端将上述M个时频资源和上述N个预编码矢量之间的对应关系通知给上述接收端。在本实施中,上述发送端为导频发送端。
在一个可选的实施例中,上述发送端确定上述N个预编码矢量可以包括:通过如下方式确定上述N个预编码矢量中的每一个预编码矢量:上述发送端在包括Q1个矢量的码本中选出Q2个矢量,其中,上述Q1和上述Q2均为大于或者等于1的整数,且上述Q1大于或者等于上述Q2;上述发送端根据随机函数或者伪随机函数生成E个权重元素,其中,上述E为大于或者等于1的整数;上述发送端根据上述Q2个矢量与上述E个权重元素生成一个矢量;上述发送端根据预设的预编码矢量的取值范围的限制条件,将生成的上述矢量进行数值映射,将上述矢量中的每个元素映射到最近的合法值;上述发送端根据将映射后的值组成一个上述预编码矢量。在本实施例中,上述已知信息即配置信息,配置信息包括:系统A为系统B提供初始的收发波束方向或者潜在最优预编码矢量的集合,系统B以此为初始值,进行在最优预编码矢量的集合中进行预编码(波束)训练的场景。
在一个可选的实施例中,上述随机函数可以包括以下之一:随机复高斯分布函数;随机复伯努利分布函数。
在一个可选的实施例中,上述伪随机函数包括以下之一:伪随机m序列;伪随机M序列;Golay序列。
在一个可选的实施例中,上述发送端根据上述Q2个矢量与上述E个权重元素生成一个上述矢量可以包括以下之一:上述发送端将上述Q2个矢量与上述E个权重元素任意两两相乘后叠加生成一个上述矢量;当上述发送端确定上述Q2小于或者等于上述E时,将上述Q2个矢量与从上述E个权重元素中选出的Q2个权重元素对应相乘后叠加生成一个上述矢量;当上述发送端确定上述E小于或者等于上述Q2时,将上述E个权重元素 与从上述Q2个上述矢量中选择出的E个矢量对应相乘后叠加生成一个上述矢量。
在一个可选的实施例中,上述发送端根据上述N个预编码矢量生成上述导频可以包括:上述发送端将预先确定的参考信号与上述预编码矢量相乘生成上述导频。在本实施例中,上述导频对应的发送射频波束均具有以下至少一个特性:对于每个射频波束,无明显空域方向性;对于两两射频波束,低空域相关性。
在一个可选的实施例中,上述M个时频资源和上述N个预编码矢量之间的对应关系可以包括以下之一:上述N个预编码矢量中的任意一个预编码矢量映射到上述M个时频资源中的至少一个时频资源上;上述N个预编码矢量以K为单位进行分组,每组预编码矢量映射到上述M个时频资源中的至少一个时频资源上,其中,上述K为大于或等于1的整数。在本实施例中,上述时频资源,是指在时间域或者频率域可以独立区分的单元。
在一个可选的实施例中,上述映射可以包括以下之一:随机映射;基于特定函数的映射。
在一个可选的实施例中,上述预编码矢量可以包括以下之一:上述发送端根据预定信息配置或者选择的预编码矢量,包括以下之一:恒幅且有限相位允许选择的预编码矢量、有限幅度允许选择且有限相位允许选择的预编码矢量、幅度和相位无约束下的预编码矢量;上述发送端对参考信号进行预先编码后得到的预编码矢量,可以包括以下之一:数字预编码矢量、模拟预编码矢量、模拟和数字混合的预编码矢量。
在一个可选的实施例中,上述导频对应的发送波束图型包括以下至少之一的特性:上述波束图型在任意方向下的强度或者距离原点的距离均小于特定门限;任意两个上述波束图型在空域响应的互相关数值小于特定门限。
在本实施例中提供了一种导频发送方法,图3是根据本发明实施例的 方法流程图(二),如图3所示,该流程包括如下步骤:
步骤S302,发送端确定X个权重矢量;上述发送端根据上述X个权重矢量和预编码码本生成导频;
步骤S304,上述发送端在Y个时频资源将上述导频发送给接收端,其中,上述X和上述Y均为大于或者等于1的整数。
通过上述步骤,由于发送端确定X个权重矢量后根据X个权重矢量和预编码码本生成导频;在Y个时频资源将导频发送给接收端,X和Y均为大于或者等于1的整数。因此,可以解决相关技术中的在大规模天线阵列下,收发端的可选波束的数据大幅度增加,收发端的波束组合的数目也会急剧增加,进而导致导频开销激增的问题;达到提高导频发送端对于不同物理路径的区分成功概率;利于导频发送端联合接收端配置最优的发送端预编码权重和接收端天线权重,实现对于整体无线通信频谱效率的有效提升的效果。
可选地,上述步骤的执行主体可以为发送端,但不限于此。
在一个可选的实施例中,上述方法还可以包括:上述发送端将上述X个时频资源与上述Y个权重矢量的对应关系通知给上述接收端。
在一个可选的实施例中,上述发送端确定上述X个权重矢量可以包括:通过以下方式确定上述X个权重矢量中的每一个权重矢量:上述发送端根据配置信息,将上述每一个权重矢量中的K个元素设置为零,其中,上述K为大于或者等于0的整数;上述发送端根据随机函数或者伪随机函数重新生成上述每一个权重矢量中设置为非零的元素的值。
在一个可选的实施例中,上述随机函数可以包括以下之一:随机复高斯分布函数;随机复伯努利分布函数。
在一个可选的实施例中,上述伪随机函数可以包括以下之一:伪随机m序列;伪随机M序列;Golay序列。
在一个可选的实施例中,上述发送端根据上述X个权重矢量和上述预编码码本生成上述导频包括:上述发送端将参考信号与上述X个权重矢量 相乘后生成矢量S;上述发送端将上述矢量S中的元素和上述预编码码本中的每个预编码矢量相乘后叠加,得到上述导频。
在一个可选的实施例中,上述预编码矢量可以包括以下之一:恒幅且有限相位允许选择的预编码矢量;有限幅度可选且有限相位允许选择的预编码矢量;幅度和相位无约束下的预编码矢量。
在一个可选的实施例中,上述X个时频资源和上述Y个权重矢量之间的对应关系包括以下之一:上述Y个权重矢量中的任意一个权重矢量映射到上述X个时频资源中的至少一个时频资源上;上述Y个权重矢量以L为单位进行分组,每组权重矢量映射到上述X个时频资源中的至少一个时频资源上,其中,L为大于或者等于1的整数。
在一个可选的实施例中,上述映射可以包括以下之一:随机映射;基于特定函数的映射。
在一个可选的实施例中,上述导频对应的发送波束图型可以包括以下至少之一的特性:上述波束图型在任意方向下的强度或者距离原点的距离均小于特定门限;任意两个上述波束图型在空域响应的互相关数值小于特定门限。
在一个可选的实施例中,发送端确定X个权重矢量包括:通过以下方式确定X个权重矢量中的每一个权重矢量:根据随机函数或者伪随机函数生成E个权重元素,并在预设矢量集合中选出R个矢量;根据上述E个权重元素和上述R个矢量生成权重矢量,其中上述E和上述R均为大于或等于1的整数。
在一个可选的实施例中,根据上述E个权重元素和上述R个矢量生成上述权重矢量可以包括以下之一:将上述R个矢量与上述E个权重元素两两相乘后叠加生成上述权重矢量;当确定上述R小于或等于上述E时,将上述R个矢量与从上述E个权重元素中选出的R个权重元素对应相乘后叠加生成上述权重矢量;当确定上述E小于或等于上述R时,将上述E个权重元素与从上述R个矢量中选择出的E个矢量对应相乘后叠加生成 上述权重矢量。
在一个可选的实施例中,上述随机函数可以包括以下之一:随机复高斯分布函数;随机复伯努利分布函数。
在一个可选的实施例中,上述伪随机函数可以包括以下之一:伪随机m序列;伪随机M序列;Golay序列。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
下面结合具体实施例对本发明进行说明:
图4为本发明面向的混合预编码(也称,混合波束赋形)收发机结构示意图。如图4所示,系统发送端和接收端配置多天线单元和多个射频链路。其中,每个射频链路与天线阵列单元的相互连接(不排斥部分连接场景),每个天线单元拥有一个数字键控移相器。通过各个天线单元上的信号加载不同相移量的办法,高频段系统实现模拟端的波束赋形(Beamforming)。具体而言,在混合波束赋形收发机中,存在多条射频信号流。每条信号流通过数字键控移相器加载天线权重矢量(Antenna Weigh Vector,简称为AWV),从多天线单元发送到高频段物理传播信道;在接收端,由多天线单元所接收到的射频信号流被加权合并成单一信号流,经过接收端射频解调,接收机最终获得多条接收信号流,并被数字基带采样和接收。
图5为本具体实施例中的导频生成方法的示意图。如图5所示,首先,随机/伪随机参数发生器产生对应的参数权重标量,该标量与所选的预编码 矢量相乘(选择原则,根据配置信息);然后,共计x个矢量结果相加,并通过映射模块将每个相加后的元素映射到最近的合法值,得到预编码矢量;最后,预编码矢量与参考信号相乘生成导频。需要说明的,在图4所述的混合预编码(也称,混合波束赋形)收发机结构中,预编码矢量可以通过数字发送端基带处理、模拟端数字键控移相器,或者数字发送端基带处理和模拟端数字键控移相器混合的办法来实现与参考信号相乘的操作。
图6为本具体实施例中了另一种导频生成方法的示意图。如图6所示,首先,随机/伪随机参数矢量发生器和0矢量根据配置信息进行矢量元素组合后生成权重矢量;然后,权重矢量与参考信号相乘;最后,相乘后的结果与预设的预编码码本相乘得到导频。需要说明,与预设码本相乘的操作,在图4所述的混合预编码(也称,混合波束赋形)收发机结构中,可以通过数字发送端基带处理、模拟端数字键控移相器,或者数字发送端基带处理和模拟端数字键控移相器混合的办法来实现与参考信号相乘的操作。
图7为本具体实施例中的一种时频资源与预编码矢量映射关系的示意图。如图7所示,首先,控制信道承载包含了“时频资源与预编码矢量映射关系”的训练信息。然后,在每个用于训练的时频资源下承载两个预编码限制下,预编码被随机映射到了时频资源上。
图8为本具体实施例中的另外一种时频资源与预编码矢量的映射关系的示意图。如图8所示,首先,控制信道承载包含了“时频资源与预编码矢量映射关系”的训练信息。然后,将预编码1、3和预编码2、4进行分组,分别成为组A和组B。组A和时频资源的对应关系为:频域序号=时域序号%4;组B和时频资源的对应关系为:频域序号=(时域序号+2)%4,其中%是取余操作。
图9为本具体实施例中的多路径预编码(波束)组合检测的算法实现流程图,如图9所示,
S902,执行MIMO信道时域估计,若导频发送在频域,需要将频域信道估计的结果逆傅里叶变换切换到时域;
S904,根据所需搜索的波束组合的数目S,选择能量最强的S个时域关键路径,完成时域关键路径集选择;
S906,依次根据所选的最强S个时域关键路径,执行最优收发波束选择。
多路径预编码(波束)组合检测的一种可行实现方法如下:
在多路径预编码(波束)组合检测算法执行前,每个响应方独立估计不同预编码(波束)组下的MIMO信道相应。响应方通过多路径预编码(波束)组合检测算法获得面向各个物理路径的最优预编码(波束)组合序号集合
Figure PCTCN2017095390-appb-000001
相对时延
Figure PCTCN2017095390-appb-000002
和接收信号功率
Figure PCTCN2017095390-appb-000003
其中,
Figure PCTCN2017095390-appb-000004
表示发送预编码(波束)序号,
Figure PCTCN2017095390-appb-000005
可以提供给发起方,例如基站,
Figure PCTCN2017095390-appb-000006
表示接收预编码(波束)序号,
Figure PCTCN2017095390-appb-000007
可以提供给响应方,例如UE,S表示期待分辨的路径数。具体地,对于任一响应方处理方法相同。
输入:MIMO时域信道响应
Figure PCTCN2017095390-appb-000008
其中i表示训练导频序号,xr表示接收天线序号,xt表示发送天线序号,
Figure PCTCN2017095390-appb-000009
表示相对时延;待分辨路径数为S;
输出:信道状态信息CSI,包括:最优预编码(波束)组合序号集合
Figure PCTCN2017095390-appb-000010
相对时延
Figure PCTCN2017095390-appb-000011
和接收信号功率
Figure PCTCN2017095390-appb-000012
关键路径选择:
从MIMO时域信道响应
Figure PCTCN2017095390-appb-000013
中,选择最大能量的S个相对时延,即选择具有最大能量的S个关键路径,其中相对时延作为关键路径的标示。结果用Ω代表关键路径对应的相对时延,则
Figure PCTCN2017095390-appb-000014
其中,
Figure PCTCN2017095390-appb-000015
最优预编码(波束)组合检测:
针对各个ωm相对时延下,搜索最优预编码(波束)组合的序号:
Figure PCTCN2017095390-appb-000016
其中,|·|表示绝对值,
Figure PCTCN2017095390-appb-000017
表示2范数的平方,Ξχ表示探测矩阵Ξ的第χ列向量;探测矩阵
Figure PCTCN2017095390-appb-000018
是已知的,
Figure PCTCN2017095390-appb-000019
矩阵
Figure PCTCN2017095390-appb-000020
信道响应矢量
Figure PCTCN2017095390-appb-000021
因此,对于ωm相对时延下的最优接收和发送预编码(波束)序号如下:
Figure PCTCN2017095390-appb-000022
相应功率为:
Figure PCTCN2017095390-appb-000023
信道状态信息CSI输出:面向不同物理路径的最优预编码(波束)组合序号集合
Figure PCTCN2017095390-appb-000024
相对时延
Figure PCTCN2017095390-appb-000025
和接收信号功率
Figure PCTCN2017095390-appb-000026
特别说明:
其中,发端预编码组i下的AWV组定义为
Figure PCTCN2017095390-appb-000027
其中ur,i,x表示第x个发送射频通路的天线权重矢量;对于第j个发送端,相应的AWV组表示为
Figure PCTCN2017095390-appb-000028
为了便于讨论,在不需要特别指明发送端时,默认发送端AWV为Ut,i
其中,收端预编码组i下的AWV组定义为
Figure PCTCN2017095390-appb-000029
其中ur,i,x表示第x个接收射频通路的天线权重矢量;对于第j个接收端,相应的AWV组表示为
Figure PCTCN2017095390-appb-000030
为了便于讨论,在不需要特别指明接收端时,默认接收端AWV为Ut,i
数据传输阶段的数据传输预编码(波束)天线权重矢量(AWV)集合与训练阶段的探测预编码(波束)AWV集合可以不同。若数据传输阶段的传输预编码(波束)AWV与混合预编码(波束)训练阶段的探测波束AWV相同,本专利所提方案依然可以支持。相应地,用符号“w”表示传输预编码(波束)AWV,用符号“u”表示探测预编码(波束)AWV。具体而言,传输预编码(波束)AWV由预设的定向预编码(波束)码本指定。传输预编码(波束)码本是一个N×K的矩阵,即
Figure PCTCN2017095390-appb-000031
N表示天线单元数,K表示传输预编码(波束)码本指定的定向预编码(波束)数,并且N≤K。相应地,接收传输预编码(波束)码本是一个Nr×Kr的矩阵,即
Figure PCTCN2017095390-appb-000032
其中Nr表示接收端天线单元数,Kr表示接收码本矩阵指定的定向预编码(波束)数。发送传输预编码(波束)码本是一个Nt×Kt的矩阵,即
Figure PCTCN2017095390-appb-000033
其中Nt表示发送端天线单元数,Kt表示发送码本矩阵指定的定向预编码(波束)数。矩阵Wr和矩阵Wt的每一列都表示一个产生定向预编码(波束)的预设AWV。其中,wr,k表示接收码本矩阵Wr的第k列,wt,l表示发送码本矩阵Wt的第l列。
通过协议规定或者预先告知,接收端已知所有发送端数据传输预编码(波束)的AWV和所有发送端探测预编码(波束)的AWV;
传输预编码(波束)码本生成方法,需要说明本专利并不局限于该生成方法。
在天线数N=NθNφ,预编码(波束)数目为天线数目的倍数q时,第k个反馈码本的AWV为:
wr,k=Quant[ej2πα0sinθcosφ+j2πα0cosφ,ej2πα1sinθcosφ+j2πα1cosφ,...,ej2πα(N-1)sinθcosφ+j2πα(N-1)1cosφ]
其中,θ=π((kmodqNθ)-qNθ/2)/qNθ
Figure PCTCN2017095390-appb-000034
Quant为量化函数,表示将各个元素的角度映射到最接近的可用量化角度上,α表示权重系数,在半波长间距下为1。
在无量化精度限制下,第k个反馈码本的AWV可以简化表示为:
wr,k=[ej2πα0sinθcosφ+j2πα0cosφ,ej2πα1sinθcosφ+j2πα1cosφ,...,ej2πα(N-1)sinθcosφ+j2πα(N-1)1cosφ]
图10为本具体实施例中的可行的混合预编码(波束)训练的流程图。如图10所示,发起方启动混合预编码(波束)训练,响应方响应混合预编码(波束)训练;发起方的成功接收确认信号后统一反馈。
阶段一:同步混合预编码(波束)训练阶段。发起方将发送码本与导频对应关系信息通知各个响应者,导频广播给各个响应者;(接收者可以使用混合预编码(波束)来接收训练导频);
阶段二:波束检测阶段。各个响应方利用所有预编码(波束)组合下的导频进行信道估计,然后执行多路径波束组合检测,输出多路径下的接收和发送序列和接收信号功率;
阶段三:结果反馈阶段。各个响应方依次将CSI信息反馈给发起方。
阶段四:结果确认阶段。发起方确认成功接收后,向各个响应方依次反馈CSI信息成功接收确认信息。
在本实施例中还提供了一种导频发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图11是根据本发明实施例的导频发送装置的结构框图(一),应用于发送端如图11所示,该装置包括:第一确定模块112、第一生成模块114以及第一发送模块116,下面对该装置进行说明:
第一确定模块112,设置为确定N个预编码矢量;第一生成模块114,连接至上述第一确定模块112,设置为上述发送端根据上述N个预编码矢量生成导频;第一发送模块116,连接至上述第一生成模块114,设置为上述发送端在M个时频资源上将上述导频发送给接收端,其中,上述M和上述N均为大于或者等于1的整数。
在一个可选的实施例中,图12是根据本发明实施例的导频发送装置的优选结构框图(一),如图12所示,该装置除包括图11所示的所有模 块外,还可以包括:第一通知模块122,连接至上述第一发送模块116,设置为将上述M个时频资源和上述N个预编码矢量之间的对应关系通知给上述接收端。
在一个可选的实施例中,上述第一确定模块112通过如下方式确定N个预编码矢量中的每一个预编码矢量:在包括Q1个矢量的码本中选出Q2个矢量,其中,上述Q1和上述Q2均为大于或者等于1的整数,且上述Q1大于或者等于上述Q2;根据随机函数或者伪随机函数生成E个权重元素,其中,上述E为大于或者等于1的整数;根据上述Q2个矢量与上述E个权重元素生成一个矢量;根据预设的预编码矢量的取值范围的限制条件,将生成的上述矢量进行数值映射,将上述矢量中的每个元素映射到最近的合法值;根据将映射后的值组成一个上述预编码矢量。
在一个可选的实施例中,上述随机函数可以包括以下之一:随机复高斯分布函数;随机复伯努利分布函数。
在一个可选的实施例中,上述伪随机函数可以包括以下之一:伪随机m序列;伪随机M序列;Golay序列。
在一个可选的实施例中,通过以下方式之一根据上述Q2个矢量与上述E个权重元素生成一个上述矢量:上述发送端将上述Q2个矢量与上述E个权重元素任意两两相乘后叠加生成一个上述矢量;当上述发送端确定上述Q2小于或者等于上述E时,将上述Q2个矢量与从上述E个权重元素中选出的Q2个权重元素对应相乘后叠加生成一个上述矢量;当上述发送端确定上述E小于或者等于上述Q2时,将上述E个权重元素与从上述Q2个上述矢量中选择出的E个矢量对应相乘后叠加生成一个上述矢量。
在一个可选的实施例中,上述第一生成模块124通过以下方式根据上述N个预编码矢量生成导频:上述发送端将预先确定的参考信号与上述预编码矢量相乘生成上述导频。
在一个可选的实施例中,上述M个时频资源和上述N个预编码矢量之间的对应关系可以包括以下之一:上述N个预编码矢量中的任意一个预 编码矢量映射到上述M个时频资源中的至少一个时频资源上;上述N个预编码矢量以K为单位进行分组,每组预编码矢量映射到上述M个时频资源中的至少一个时频资源上,其中,上述K为大于或等于1的整数。
在一个可选的实施例中,上述映射可以包括以下之一:随机映射;基于特定函数的映射。
在一个可选的实施例中,上述预编码矢量可以包括以下之一:上述发送端根据预定信息配置或者选择的预编码矢量,包括以下之一:恒幅且有限相位允许选择的预编码矢量、有限幅度允许选择且有限相位允许选择的预编码矢量、幅度和相位无约束下的预编码矢量;上述发送端对参考信号进行预先编码后得到的预编码矢量,包括以下之一:数字预编码矢量、模拟预编码矢量、模拟和数字混合的预编码矢量。
在一个可选的实施例中,上述导频对应的发送波束图型可以包括以下至少之一的特性:上述波束图型在任意方向下的强度或者距离原点的距离均小于特定门限;任意两个上述波束图型在空域响应的互相关数值小于特定门限。
图13是根据本发明实施例的导频发送装置的结构框图(二),应用于发送端,如图13所示,该装置除包括:第二确定模块132、第二生成模块134以及第二发送模块136,下面对该装置进行说明:
第二确定模块132,设置为确定X个权重矢量;第二生成模块134,连接至上述第二确定模块132,设置为根据上述X个权重矢量和预编码码本生成导频;第二发送模块136,连接至上述第二生成模块134,设置为在Y个时频资源将上述导频发送给接收端,其中,上述X和上述Y均为大于或者等于1的整数。
在一个可选的实施例中,图14是根据本发明实施例的导频发送装置的优选结构框图(二),应用于发送端,如图14所示,该装置除包括如图13所示的装置外,上述装置还包括:第二通知模块142,设置为将上述X个时频资源与上述Y个权重矢量的对应关系通知给上述接收端。
在一个可选的实施例中,图15是根据本发明实施例的导频发送装置的第二确定模块132的结构框图,如图15所示,上述第二确定模块132包括:设置单元152和第一生成单元154,下面对第二确定模块132进行说明:
设置单元152,设置为根据配置信息,将上述每一个权重矢量中的K个元素设置为零,其中,上述K为大于或者等于0的整数;第一生成单元154,连接至上述设置单元152,设置为根据随机函数或者伪随机函数重新生成上述每一个权重矢量中设置为非零的元素的值。
在一个可选的实施例中,上述随机函数可以包括以下之一:随机复高斯分布函数;随机复伯努利分布函数。
在一个可选的实施例中,上述伪随机函数可以包括以下之一:伪随机m序列;伪随机M序列;Golay序列。
在一个可选的实施例中,上述第二生成模块134通过以下方式根据上述X个权重矢量和上述预编码码本生成上述导频:上述发送端将参考信号与上述X个权重矢量相乘后生成矢量S;上述发送端将上述矢量S中的元素和上述预编码码本中的每个预编码矢量相乘后叠加,得到上述导频。
在一个可选的实施例中,上述预编码矢量可以包括以下之一:恒幅且有限相位允许选择的预编码矢量;有限幅度可选且有限相位允许选择的预编码矢量;幅度和相位无约束下的预编码矢量。
在一个可选的实施例中,上述X个时频资源和上述Y个权重矢量之间的对应关系可以包括以下之一:上述Y个权重矢量中的任意一个权重矢量映射到上述X个时频资源中的至少一个时频资源上;上述Y个权重矢量以L为单位进行分组,每组权重矢量映射到上述X个时频资源中的至少一个时频资源上,其中,L为大于或者等于1的整数。
在一个可选的实施例中,上述映射可以包括以下之一:随机映射;基于特定函数的映射。
在一个可选的实施例中,上述导频对应的发送波束图型可以包括以下 至少之一的特性:上述波束图型在任意方向下的强度或者距离原点的距离均小于特定门限;任意两个上述波束图型在空域响应的互相关数值小于特定门限。
图16是根据本发明实施例的导频发送装置的第二确定模块132的结构框图(二),如图16所示,第二确定模块132包括:第二生成单元162和第三生成单元164,下面对该装置进行说明:
第二生成单元162,设置为根据随机函数或者伪随机函数生成E个权重元素,并在预设矢量集合中选出R个矢量;第三生成单元164,连接至上述第二生成单元162,设置为根据上述E个权重元素和上述R个矢量生成权重矢量,其中上述E和上述R均为大于或等于1的整数。
图17是根据本发明实施例的导频发送装置的第三生成单元164的结构框图,如图17所示,上述第三生成单元164可以包括以下之一:第一生成子单元172,设置为将上述R个矢量与上述E个权重元素两两相乘后叠加生成上述权重矢量;第二生成子单元174,设置为当确定上述R小于或等于上述E时,将上述R个矢量与从上述E个权重元素中选出的R个权重元素对应相乘后叠加生成上述权重矢量;第三生成子单元176,设置为当确定上述E小于或等于上述R时,将上述E个权重元素与从上述R个矢量中选择出的E个矢量对应相乘后叠加生成上述权重矢量。
在一个可选的实施例中,上述随机函数可以包括以下之一:随机复高斯分布函数;随机复伯努利分布函数。
在一个可选的实施例中,上述伪随机函数可以包括以下之一:伪随机m序列;伪随机M序列;Golay序列。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以上各步骤的程序代码。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行以上各步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种导频发送方法及装置具有以下有益效果:基于确定性的方向性预编码码本产生导频,在大规模天线阵列下,收发端的可选波束的数据大幅度增加,而出现的收发端的波束组合的数目急剧增加,导频开销激增的问题,达到降低训练花销的效果。

Claims (34)

  1. 一种导频发送方法,包括:
    发送端确定N个预编码矢量;
    所述发送端根据所述N个预编码矢量生成导频;
    所述发送端在M个时频资源上将所述导频发送给接收端,其中,所述M和所述N均为大于或者等于1的整数。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:所述发送端将所述M个时频资源和所述N个预编码矢量之间的对应关系通知给所述接收端。
  3. 根据权利要求1所述的方法,其中,所述发送端确定所述N个预编码矢量包括:通过如下方式确定所述N个预编码矢量中的每一个预编码矢量:
    所述发送端在包括Q1个矢量的码本中选出Q2个矢量,其中,所述Q1和所述Q2均为大于或者等于1的整数,且所述Q1大于或者等于所述Q2;
    所述发送端根据随机函数或者伪随机函数生成E个权重元素,其中,所述E为大于或者等于1的整数;
    所述发送端根据所述Q2个矢量与所述E个权重元素生成一个矢量;
    所述发送端根据预设的预编码矢量的取值范围的限制条件,将生成的所述矢量进行数值映射,将所述矢量中的每个元素映射到最近的合法值;
    所述发送端根据将映射后的值组成一个所述预编码矢量。
  4. 根据权利要求3所述的方法,其中,所述随机函数包括以下 之一:
    随机复高斯分布函数;
    随机复伯努利分布函数。
  5. 根据权利要求3所述的方法,其中,所述伪随机函数包括以下之一:
    伪随机m序列;
    伪随机M序列;
    Golay序列。
  6. 根据权利要求3所述的方法,其中,所述发送端根据所述Q2个矢量与所述E个权重元素生成一个所述矢量包括以下之一:
    所述发送端将所述Q2个矢量与所述E个权重元素任意两两相乘后叠加生成一个所述矢量;
    当所述发送端确定所述Q2小于或者等于所述E时,将所述Q2个矢量与从所述E个权重元素中选出的Q2个权重元素对应相乘后叠加生成一个所述矢量;
    当所述发送端确定所述E小于或者等于所述Q2时,将所述E个权重元素与从所述Q2个所述矢量中选择出的E个矢量对应相乘后叠加生成一个所述矢量。
  7. 根据权利要求1所述的方法,其中,所述发送端根据所述N个预编码矢量生成所述导频包括:
    所述发送端将预先确定的参考信号与所述预编码矢量相乘生成所述导频。
  8. 根据权利要求1所述的方法,其中,所述M个时频资源和所述N个预编码矢量之间的对应关系包括以下之一:
    所述N个预编码矢量中的任意一个预编码矢量映射到所述M
    个时频资源中的至少一个时频资源上;
    所述N个预编码矢量以K为单位进行分组,每组预编码矢量映射到所述M个时频资源中的至少一个时频资源上,其中,所述K为大于或等于1的整数。
  9. 根据权利要求8所述的方法,其中,所述映射包括以下之一:
    随机映射;
    基于特定函数的映射。
  10. 根据权利要求1所述的方法,其中,所述预编码矢量包括以下之一:
    所述发送端根据预定信息配置或者选择的预编码矢量,包括以下之一:恒幅且有限相位允许选择的预编码矢量、有限幅度允许选择且有限相位允许选择的预编码矢量、幅度和相位无约束下的预编码矢量;
    所述发送端对参考信号进行预先编码后得到的预编码矢量,包括以下之一:数字预编码矢量、模拟预编码矢量、模拟和数字混合的预编码矢量。
  11. 根据权利要求1所述的方法,其中,所述导频对应的发送波束图型包括以下至少之一的特性:
    所述波束图型在任意方向下的强度或者距离原点的距离均小于特定门限;
    任意两个所述波束图型在空域响应的互相关数值小于特定门限。
  12. 一种导频发送方法,包括:
    发送端确定X个权重矢量;
    所述发送端根据所述X个权重矢量和预编码码本生成导频;
    所述发送端在Y个时频资源将所述导频发送给接收端,其中,所述X和所述Y均为大于或者等于1的整数。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:
    所述发送端将所述X个时频资源与所述Y个权重矢量的对应关系通知给所述接收端。
  14. 根据权利要求12所述的方法,其中,所述发送端确定所述X个权重矢量包括:通过以下方式确定所述X个权重矢量中的每一个权重矢量:
    所述发送端根据配置信息,将所述每一个权重矢量中的K个元素设置为零,其中,所述K为大于或者等于0的整数;
    所述发送端根据随机函数或者伪随机函数重新生成所述每一个权重矢量中设置为非零的元素的值。
  15. 根据权利要求14所述的方法,其中,所述随机函数包括以下之一:
    随机复高斯分布函数;
    随机复伯努利分布函数。
  16. 根据权利要求14所述的方法,其中,所述伪随机函数包括以下之一:
    伪随机m序列;
    伪随机M序列;
    Golay序列。
  17. 根据权利要求12所述的方法,其中,所述发送端根据所述X个权重矢量和所述预编码码本生成所述导频包括:
    所述发送端将参考信号与所述X个权重矢量相乘后生成矢量S;
    所述发送端将所述矢量S中的元素和所述预编码码本中的每个预编码矢量相乘后叠加,得到所述导频。
  18. 根据权利要求17所述的方法,其中,所述预编码矢量包括 以下之一:
    恒幅且有限相位允许选择的预编码矢量;
    有限幅度可选且有限相位允许选择的预编码矢量;
    幅度和相位无约束下的预编码矢量。
  19. 根据权利要求12所述的方法,其中,所述X个时频资源和所述Y个权重矢量之间的对应关系包括以下之一:
    所述Y个权重矢量中的任意一个权重矢量映射到所述X个时频资源中的至少一个时频资源上;
    所述Y个权重矢量以L为单位进行分组,每组权重矢量映射到所述X个时频资源中的至少一个时频资源上,其中,L为大于或者等于1的整数。
  20. 根据权利要求19所述的方法,其中,所述映射包括以下之一:
    随机映射;
    基于特定函数的映射。
  21. 根据权利要求12所述的方法,其中,所述导频对应的发送波束图型包括以下至少之一的特性:
    所述波束图型在任意方向下的强度或者距离原点的距离均小于特定门限;
    任意两个所述波束图型在空域响应的互相关数值小于特定门限。
  22. 根据权利要求12所述的方法,其中,发送端确定X个权重矢量包括:通过以下方式确定所述X个权重矢量中的每一个权重矢量:
    根据随机函数或者伪随机函数生成E个权重元素,并在预设矢量集合中选出R个矢量;
    根据所述E个权重元素和所述R个矢量生成权重矢量,其中所述 E和所述R均为大于或等于1的整数。
  23. 根据权利要求22所述的方法,其中,根据所述E个权重元素和所述R个矢量生成所述权重矢量包括以下之一:
    将所述R个矢量与所述E个权重元素两两相乘后叠加生成所述权重矢量;
    当确定所述R小于或等于所述E时,将所述R个矢量与从所述E个权重元素中选出的R个权重元素对应相乘后叠加生成所述权重矢量;
    当确定所述E小于或等于所述R时,将所述E个权重元素与从所述R个矢量中选择出的E个矢量对应相乘后叠加生成所述权重矢量。
  24. 根据权利要求22所述的方法,其中,所述随机函数包括以下之一:
    随机复高斯分布函数;
    随机复伯努利分布函数。
  25. 根据权利要求22所述的方法,其中,所述伪随机函数包括以下之一:
    伪随机m序列;
    伪随机M序列;
    Golay序列。
  26. 一种导频发送装置,包括:
    第一确定模块,设置为确定N个预编码矢量;
    第一生成模块,设置为根据所述N个预编码矢量生成导频;
    第一发送模块,设置为在M个时频资源上将所述导频发送给接收端,其中,所述M和所述N均为大于或者等于1的整数。
  27. 根据权利要求26所述的装置,其中,还包括,第一通知模块,设置为将所述M个时频资源和所述N个预编码矢量之间的对应关系通知给所述接收端。
  28. 根据权利要求26所述的装置,其中,还包括:
    第一确定模块,设置为通过如下方式确定所述N个预编码矢量中的每一个预编码矢量:
    在包括Q1个矢量的码本中选出Q2个矢量,其中,所述Q1和所述Q2均为大于或者等于1的整数,且所述Q1大于或者等于所述Q2;
    根据随机函数或者伪随机函数生成E个权重元素,其中,所述E为大于或者等于1的整数;
    根据所述Q2个矢量与所述E个权重元素生成一个矢量;
    根据预设的预编码矢量的取值范围的限制条件,将生成的所述矢量进行数值映射,将所述矢量中的每个元素映射到最近的合法值;
    根据将映射后的值组成一个所述预编码矢量。
  29. 一种导频发送装置,应用于发送端,包括:
    第二确定模块,设置为确定X个权重矢量;
    第二生成模块,设置为根据所述X个权重矢量和预编码码本生成导频;
    第二发送模块,设置为在Y个时频资源将所述导频发送给接收端,其中,所述X和所述Y均为大于或者等于1的整数。
  30. 根据权利要求29所述的装置,其中,所述装置还包括:
    第二通知模块,设置为将所述X个时频资源与所述Y个权重矢量的对应关系通知给所述接收端。
  31. 根据权利要求29所述的装置,其中,所述第二确定模块包括:
    设置单元,设置为根据配置信息,将每一个权重矢量中的K个元素设置为零,其中,所述K为大于或者等于0的整数;
    第一生成单元,设置为根据随机函数或者伪随机函数重新生成所述每一个权重矢量中设置为非零的元素的值。
  32. 根据权利要求29所述的装置,其中,第二确定模块包括:
    第二生成单元,设置为根据随机函数或者伪随机函数生成E个权重元素,并在预设矢量集合中选出R个矢量;
    第三生成单元,设置为根据所述E个权重元素和所述R个矢量生成权重矢量,其中所述E和所述R均为大于或等于1的整数。
  33. 根据权利要求32所述的装置,其中,所述第三生成单元包括以下之一:
    第一生成子单元,设置为将所述R个矢量与所述E个权重元素两两相乘后叠加生成所述权重矢量;
    第二生成子单元,设置为当确定所述R小于或等于所述E时,将所述R个矢量与从所述E个权重元素中选出的R个权重元素对应相乘后叠加生成所述权重矢量;
    第三生成子单元,设置为当确定所述E小于或等于所述R时,将所述E个权重元素与从所述R个矢量中选择出的E个矢量对应相乘后叠加生成所述权重矢量。
  34. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至25中任一项所述的方法。
PCT/CN2017/095390 2016-08-12 2017-08-01 一种导频发送方法及装置 WO2018028463A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17838593.6A EP3499776A4 (en) 2016-08-12 2017-08-01 PILOT TRANSMISSION METHOD AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610664527.3A CN107733603B (zh) 2016-08-12 2016-08-12 导频发送方法及装置
CN201610664527.3 2016-08-12

Publications (1)

Publication Number Publication Date
WO2018028463A1 true WO2018028463A1 (zh) 2018-02-15

Family

ID=61162607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095390 WO2018028463A1 (zh) 2016-08-12 2017-08-01 一种导频发送方法及装置

Country Status (3)

Country Link
EP (1) EP3499776A4 (zh)
CN (1) CN107733603B (zh)
WO (1) WO2018028463A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886335A4 (en) * 2018-12-18 2022-01-05 Huawei Technologies Co., Ltd. CHANNEL MEASUREMENT METHOD AND COMMUNICATION DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394213A (zh) * 2007-09-19 2009-03-25 中兴通讯股份有限公司 一种时分双工方式频分复用系统的多天线通信方法
US20090232239A1 (en) * 2008-03-12 2009-09-17 Lg Electronics Inc. Method and apparatus for transmitting a pilot in multi-antenna system
CN102300299A (zh) * 2010-06-24 2011-12-28 华为技术有限公司 一种导频信号的发送方法和设备
CN105612707A (zh) * 2014-09-19 2016-05-25 华为技术有限公司 一种多用户的复用方法和基站以及用户终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8290079B2 (en) * 2007-04-19 2012-10-16 Interdigital Technology Corporation Method and apparatus for precoding validation in wireless communications
CN102388589B (zh) * 2009-06-23 2014-06-18 上海贝尔股份有限公司 Tdd系统中校准上下行互逆误差的方法及其装置
CN102237974B (zh) * 2010-05-07 2013-12-18 华为技术有限公司 预编码矩阵获取方法及装置
US9008222B2 (en) * 2012-08-14 2015-04-14 Samsung Electronics Co., Ltd. Multi-user and single user MIMO for communication systems using hybrid beam forming
CN104184561B (zh) * 2014-01-13 2019-04-30 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端
CN105515725B (zh) * 2014-09-26 2020-07-07 中兴通讯股份有限公司 导频发送方法、信道信息测量反馈方法、发送端及接收端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394213A (zh) * 2007-09-19 2009-03-25 中兴通讯股份有限公司 一种时分双工方式频分复用系统的多天线通信方法
US20090232239A1 (en) * 2008-03-12 2009-09-17 Lg Electronics Inc. Method and apparatus for transmitting a pilot in multi-antenna system
CN102300299A (zh) * 2010-06-24 2011-12-28 华为技术有限公司 一种导频信号的发送方法和设备
CN105612707A (zh) * 2014-09-19 2016-05-25 华为技术有限公司 一种多用户的复用方法和基站以及用户终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886335A4 (en) * 2018-12-18 2022-01-05 Huawei Technologies Co., Ltd. CHANNEL MEASUREMENT METHOD AND COMMUNICATION DEVICE
US11411623B2 (en) 2018-12-18 2022-08-09 Huawei Technologies Co., Ltd. Channel measurement method and communications apparatus

Also Published As

Publication number Publication date
CN107733603A (zh) 2018-02-23
CN107733603B (zh) 2022-03-01
EP3499776A4 (en) 2020-07-15
EP3499776A1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6681692B2 (ja) 混合ビームフォーミング技術における共通信号伝送方法および装置
Jiang et al. Channel reciprocity calibration in TDD hybrid beamforming massive MIMO systems
CN110401476B (zh) 一种基于码本的毫米波通信多用户并行波束训练方法
US8804796B2 (en) Wireless apparatus and wireless communication system
WO2017020688A1 (zh) 波束参考信号的发送方法、波束选择方法、基站及用户终端
US10447365B2 (en) Estimation of channel conditions
Noh et al. Multi-resolution codebook based beamforming sequence design in millimeter-wave systems
CN107733485B (zh) 信道状态信息的反馈方法及装置
KR20120109611A (ko) 빔형성 방법, 프레임 포맷 사용 방법, 빔형성 및 결합 가중치 선택 방법, 빔 형성 장치, 가입자 디바이스, 피코넷 컨트롤러 및 컴퓨터 판독 가능한 매체
CN103609043A (zh) 空中下载测试
CN105245310A (zh) 一种下行导频信号的处理方法及系统
CN106105065A (zh) 无线电频率波束成形基函数反馈
US10270500B2 (en) Channel information feedback method, base station and terminal
JP7378011B2 (ja) 情報フィードバック方法および装置、情報受信方法および装置、機器、並びに記憶媒体
US11464028B2 (en) Apparatuses and methods for multi-user transmissions
CN110603871A (zh) 传达波束信息的技术
US10804975B2 (en) Hybrid beamforming-based open-loop MIMO transmission method and apparatus therefor
CN108242943B (zh) 通信中用于预编码的方法和设备
WO2018028463A1 (zh) 一种导频发送方法及装置
JP2015504626A (ja) 位相シフト送信ダイバーシティを使用して仮想セクタ全体の静的ビームを生成する方法および装置
KR102158149B1 (ko) 매시브 mimo용 채널 시뮬레이터의 채널 생성 방법
KR102046033B1 (ko) 대규모 안테나 시스템의 하이브리드 빔포밍 방법 및 빔포밍 장치
TWI624159B (zh) 通道資訊的估測系統及其方法
KR20160080847A (ko) 다중 사용자 동시 전송을 위한 다중 편파 전송 시스템 및 방법
US10812157B2 (en) Wireless device and wireless communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838593

Country of ref document: EP

Effective date: 20190312