WO2018028423A1 - 无线链路管理方法及装置 - Google Patents

无线链路管理方法及装置 Download PDF

Info

Publication number
WO2018028423A1
WO2018028423A1 PCT/CN2017/094147 CN2017094147W WO2018028423A1 WO 2018028423 A1 WO2018028423 A1 WO 2018028423A1 CN 2017094147 W CN2017094147 W CN 2017094147W WO 2018028423 A1 WO2018028423 A1 WO 2018028423A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrm measurement
evaluation
trp
base station
result
Prior art date
Application number
PCT/CN2017/094147
Other languages
English (en)
French (fr)
Inventor
杨立
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17838553.0A priority Critical patent/EP3522603B1/en
Publication of WO2018028423A1 publication Critical patent/WO2018028423A1/zh
Priority to US16/273,049 priority patent/US10959149B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to, but is not limited to, the field of communications, and more particularly to a wireless link management method and apparatus.
  • the beamforming (Beamforming, BF for short) high-frequency communication base station small cell deployment mode in FIG. 1 can be mapped to the high-low frequency communication base station shown in FIG. 2 to perform a tightly coupled multi-connection data transmission architecture.
  • the air interface thin arrow line of the base station and the user equipment (User Equipment, UE for short) in FIG. 2 indicates the Uu interface control plane signaling, and the thick arrow line indicates the user plane data.
  • the low frequency macro base station serving cell provides basic wireless coverage, and the BF mode high frequency small base station provides data offloading. When the UE moves in the same macro base station serving cell, high frequency micro base station switching or more connected data may occur. transmission.
  • the Universal Mobile Telecommunications System Long Term Evolution (UMTS/LTE) system
  • UMT Universal Mobile Telecommunications System
  • TRP Transmission Receive
  • the corresponding downlink common channel/signal has a wider coverage area, that is, when the terminal device UE enters a specific radius with the transmission and reception point TRP as the center of the circle, it can be in any
  • the downlink common channel/signal is received in time/location/direction to implement basic operations such as downlink time-frequency synchronization, cell discovery camping, system message reading, uplink random access, and pilot measurement.
  • the NR high-frequency base station TRP usually adopts a beamforming Beamforming transmission mode. Therefore, the corresponding downlink common channel/signal has a narrow coverage area (the corresponding serving cell is relatively narrow), that is, when the UE enters a specific radius centered on the TRP, it can only be at a specific time/location/direction.
  • the downlink common channel/signal can be received through Spatial Search to achieve the above basic functions.
  • the UE As the UE moves in the horizontal and vertical directions, the UE is easily separated from the coverage of Beams, which is called spatial/time-frequency out-of-synchronization (assuming that TRP/UE cannot achieve fast mutual Beam tracking), and the space/time-frequency is out of step after equivalent
  • the UE performs the weak coverage area and cannot effectively maintain the uplink and downlink time-frequency synchronization/uplink random access/efficient data transmission. Therefore, the UE must re-search and measure the appropriate cell/Beam, etc. as soon as possible to restore the space/time-frequency synchronization state.
  • the TRP transmits any downstream channel/signal in a periodic ring sweep.
  • the UE successfully tracks and resides in a high-frequency beamforming Beamforming service cell, if there is a need for data transmission, the UE needs to establish a radio link (Radio Link, RL for short) with the TRP to enter the radio resource control connection ( Radio Resource Control_CONNECTED, referred to as RRC_CONNECTED mode.
  • RRC_CONNECTED Radio Resource Control_CONNECTED
  • the TRP allocates a dedicated time-frequency resource to the UE, and performs uplink and downlink data block transmission based on the scheduling manner.
  • the UE In the downlink direction, the UE needs to maintain the best tracking state of the space/time/time/frequency by the downlink common synchronization signal transmitted by the TRP. On the other hand, the UE needs to measure and feed back the channel state through the downlink proprietary reference signal transmitted by the TRP.
  • Information Channel State Information, referred to as CSI).
  • the TRP In the uplink direction, on the one hand, the TRP needs to maintain the best tracking state of the space/time/time/frequency through the uplink common synchronization signal transmitted by the UE. On the other hand, the TRP needs to transmit the uplink proprietary through the UE.
  • the reference signal is used to measure the CSI.
  • the uplink and downlink proprietary reference signals are used for measurement and/or demodulation of dedicated channels, but can also serve the purpose of beam Beam tracking, that is, whether the UE can only listen to receive TRP transmissions in the downlink direction.
  • Downlink proprietary reference signal to maintain the best tracking state of downlink space/time/time/frequency; in the uplink direction, whether TRP can only listen to the uplink proprietary reference signal transmitted by the receiving UE to maintain uplink space/time/time The best tracking state of the frequency.
  • RLF Radio Link Failure
  • the UE automatically enters the space/time/time-frequency out-of-synchronization state (but still in RRC_CONNECTED mode).
  • the UE still needs to continue to monitor the downlink proprietary reference signal of the source service TRP in the vicinity of the space/time-frequency out-of-synchronization point, and the source TRP still needs to continue to monitor the uplink proprietary reference signal near the space/time-frequency out-of-synchronization point, so that the UE Efforts to quickly recover the beam synchronization substate between the source and service TRPs. If the UE cannot recover the beam synchronization sub-state in a certain time, the UE needs to exit the RRC_CONNECTED state and re-listen the downlink common channel/signal of the receiving source service TRP and other neighboring TRPs, and the UE can camp on other neighboring TRPs. In the service cell, the private RL is re-established.
  • the following row direction is taken as an example.
  • the TRP transmits the BF synchronous training signal, it starts to sweep according to a certain discrete angle (such as the horizontal 0, 30, 60, 90, 120, .... 360 degrees), and the UE also It is possible to receive reception at a specific discrete angle.
  • the TRP and the UE can roughly determine the best discrete angle of the other party, and then can further enter the "fine synchronization training" phase, so that the TRP and the UE can more accurately determine the continuous angle of the other party ("fine The horizontal angle adjustment granularity of the "synchronous training" is smaller than the discrete angle of the previous ring sweep emission), and the fine synchronization training minimizes the path loss Pathloss.
  • the TRP and the UE need to continuously fine-tune the transmission and reception angles according to the BF synchronization training signal transmitted by the other party.
  • the above process is shown in Figure 3.
  • the "fine synchronization training" is an optional optimization function based on the local implementation of the communication node hardware. After the “fine synchronization training" is completed, the TRP and the UE side can guarantee the best wireless of the Beam Interference Signal (Bam Reference Signal., BRS for short).
  • BRS Beam Reference Signal
  • Radio Resource Management Radio Resource Management, RRM for short
  • RRM Radio Resource Management
  • Radio Link Radio Link, referred to as RL proprietary signal for optimal reception demodulation performance results
  • the TX signal transmission efficiency and the signal-to-noise ratio received by the RX terminal are maximum at this time; otherwise, according to the simulation, if the accuracy result of the space/time-frequency synchronization training is insufficient, the reception signal-to-noise ratio will be Decrease, the TRP and the UE cannot be in the optimal RRM measurement mode and data transmission mode. Even worse, the space/time-frequency out-of-synchronization occurs between the TRP and the UE. They can only be in the worst RRM measurement mode and data.
  • the UE in order to ensure the quality and accuracy of the RRM measurement of the downlink reference signal of the beamforming communication base station by the UE, the UE establishes and maintains a “coarse (fine) synchronization substate” for the Beams under the target BF communication base station, otherwise the RRM measurement result obtained by the measurement is obtained. Inaccurate and unreliable.
  • the anchor communication base station in the non-BF mode usually needs to select and configure the best target BF mode offload base station TRP or TRP for the UE based on the RRM measurement report result of the UE. Inter-mobile switching, or increase the configuration of more TRP, for more connected data transmission.
  • the LTE RRM measurement evaluation model as shown in FIG.
  • A is a preliminary measurement sample value measured by the UE according to an internal implementation
  • B is an intermediate measurement sample value obtained by the UE filtering through the Layer 1 Filtering module layer 1 in a certain sampling period
  • C is the UE passing through the layer 3 filter in a certain sampling period (Layer) 3Filtering)
  • the dynamic analysis evaluation value obtained after the filter processing of the module layer 3 is the comparative analysis evaluation value (the same measurement evaluation dimension as C)
  • D is the measurement report of the UE in the Measurement Report measurement report (Measurement Report, The content result value reported in the MR).
  • the behavior of the Layer 3 filter processing module and the Evaluation and reporting Criteria module and the parameter usage are standardized by the LTE protocol.
  • the relevant configuration parameters are from the configuration signaling of the RRC air interface message.
  • Event A1 indicates that the UE is a pilot of the current LTE serving cell (which may be one or more).
  • Reference Signal Receiving Power (RSRP) or Measurement Signal Receiving Quality (RSRQ) measurement dynamic analysis evaluation result has been processed by layer 3 filtering
  • the eNB has already compared the threshold value (Thresh) configured by RRC air interface signaling (there is also a neural buffer offset value Hys:) and continues The trigger time TTT (time to trigger) is exceeded, so that the UE triggers the local generation of the A1 event and triggers the MR report; otherwise, the A1 event cannot be generated.
  • TTT time to trigger
  • the meaning of other various Event events can be referred to the LTE protocol.
  • the above-mentioned old RRM measurement model and definition has the following characteristics: for a certain RRM measurement event, it is only associated with a certain source serving cell and/or a certain Neighbour Cell, forming a 1-to-1 cell. The measurement comparison evaluates the pair Pair.
  • the multiple Beams working modes of the internal control are very different from the multiple LTE serving cells in the traditional LTE base station, as described in the above background art.
  • the UE may trigger a corresponding mobile event when the RRM measurement result corresponding to the target service Tam of a target TRP 2 is significantly better than the source service Beam under the jurisdiction of a certain source TRP 1.
  • the macro base station is controlled by the MR message reported to the anchor point.
  • the anchor control macro base station will let the UE establish a wireless connection RL with the target service BEA of the target TRP 2 through the RRC reconfiguration message (because the target service BEA link quality is better), and delete the UE before and the source TRP.
  • the source RL of the source service serves the RL of the Beam (because the quality of the source service Beam link deteriorates), the process is shown in Figure 5.
  • the UE is originally in the dual-connection data transmission state of the primary base station macro serving cell MeNB and the TRP 1 source service Beam. Later, due to the UE mobility, the anchor point is re-allocated to the dual-connection data transmission state of the MeNB and the TRP 2 Beam.
  • each of the shunt base stations TRP is usually configured and activated with multiple service Beams (sweeping coverage in different physical directions in a specific manner)
  • the UE performs the above-mentioned coarse (fine) spatial time-frequency tracking synchronization attempt on different Beams and
  • the accompanying RRM measurement is established and maintained in the "coarse (fine) sync sub-state", so as to obtain more accurate and reliable RRM measurement results, so the UE will frequently perform beam switching (Beam Switch) operation in the TRP, that is, from the same Beam1, which has a bad signal under TRP, automatically switches to another signal, BetterBeam2.
  • Beam Switch beam switching
  • the synchronization and pilot signals are transmitted to different downlink azimuths.
  • the UE can easily synchronize tracking and enter one of the Beam3s, it is coarse.
  • TRP2 may not be a good target TRP mobile switching object, because once Beam3 is occluded by space/time-frequency temporary obstacles such as: Blockage occurs, then UE has to try local Beam Switch to other On the poor Beam1/2/4, or triggering air interface signaling, the master anchor base station reconfigures the target TRP, so it may not be able to obtain a better data offload transmission service.
  • the embodiments of the present invention provide a radio link management method and apparatus, which avoids the situation that the radio resource control measurement and evaluation by using the beam as the granularity and the mobile end performance of the beamforming between the base stations is poor.
  • a method for managing a radio link including: receiving radio resource management RRM measurement parameters sent by a base station by using radio resource control RRC signaling; and forming a target beam according to the RRM measurement parameter
  • the BF split base station sends multiple or all beams under the control point TRP to perform RRM measurement, obtains RRM measurement results, and jointly evaluates the RRM measurement result based on multiple or all beams, and switches from the source BF split base station TRP according to the evaluation result.
  • the target BF offloads the base station TRP or additionally adds the target BF offload base station TRP.
  • jointly evaluating the RRM measurement result based on multiple or all beams includes: acquiring RRM measurement results corresponding to each of multiple or all beams under the target BF offload base station TRP; and evaluating according to the predetermined RRM measurement result.
  • the model performs a joint evaluation operation on the obtained RRM measurement results.
  • performing a joint evaluation operation on the obtained RRM measurement result according to the predetermined RRM measurement result evaluation model includes: using RRM measurement results corresponding to multiple or all beams of the target BF shunt base station TRP as Preliminary measurement sample values in parallel; filtering the preliminary measurement sample values in parallel according to a predetermined sampling period to obtain parallel intermediate measurement sample values; performing weighted averaging processing on the parallel intermediate measurement sample values in a predefined manner to obtain a single serial And outputting the joint evaluation value, and comparing the joint evaluation value and the comparative analysis evaluation value according to a preset inequality rule to obtain a comparison evaluation result, wherein the The joint evaluation value and the comparative analysis evaluation value have the same measurement evaluation dimension.
  • the method further includes: reporting the joint evaluation value and the comparison evaluation result according to the RRM measurement result evaluation criterion.
  • reporting the joint evaluation value and the comparison evaluation result according to the RRM measurement result evaluation criterion includes: determining whether the joint evaluation value and the comparison evaluation result meet a predefined RRM measurement event, where The RRM measurement event is an event defined by the new radio access system NR air interface protocol; if the judgment result is yes or the preset condition set is met, the air interface measurement report MR between the terminal and the master anchor base station is performed. Report the evaluation results.
  • the RRM measurement event is associated with one or all of the beams that are determined by the TRP, or the RRM measurement event is associated with one or all of the beams and another determined TRP that is determined by the TRP.
  • Multiple or all beam associations are governed to produce multiple parallel RRM measurement samples after RRM measurements.
  • a method for managing a radio link includes: performing RRM measurement on multiple or all beams transmitted by a terminal to obtain an RRM measurement result; and jointly evaluating the RRM based on multiple or all beams
  • the measurement result indicates that the terminal instructs the terminal to switch from the source beamforming BF offload base station transmission and reception point TRP to the target BF offload base station TRP or additionally add the target BF offload base station TRP according to the evaluation result; or, according to the evaluation result, add and activate a new BF offload base station TRP Performing data offloading on the new radio link RL; or deleting and deactivating the already configured BF offload base station TRP according to the evaluation result to remove and stop data offloading on the old RL.
  • jointly evaluating the RRM measurement result based on multiple or all beams includes: acquiring RRM measurement results corresponding to each of multiple or all beams sent by the terminal; and evaluating the RRM obtained by the model pair according to the predetermined RRM measurement result.
  • the measurement results are subjected to a joint evaluation operation.
  • performing a joint evaluation operation on the obtained RRM measurement result according to the predetermined RRM measurement result evaluation model includes: using RRM measurement results corresponding to each of the multiple or all beams sent by the terminal as parallel preliminary measurement samples Value; according to the scheduled sampling week Parallel filtering the preliminary measurement sample values to obtain parallel intermediate measurement sample values; performing weighted averaging processing on the parallel intermediate measurement sample values in a predefined manner to obtain a joint evaluation value of a single serial output, and The joint evaluation value and the comparative analysis evaluation value are compared and evaluated according to a predetermined inequality rule to obtain a comparative evaluation result, wherein the joint evaluation value and the comparative analysis evaluation value have the same measurement evaluation dimension.
  • the method further includes: reporting the joint evaluation value and the comparison evaluation result according to the RRM measurement result evaluation criterion.
  • reporting the joint evaluation value and the comparison evaluation result according to the RRM measurement result evaluation criterion includes: determining whether the joint evaluation value and the comparison evaluation result meet a predefined RRM measurement event, where The RRM measurement event is an event defined by the new radio access system NR air interface protocol; if the judgment result is yes or the preset condition set is met, the ground interface measurement report between the shunt base station and the master anchor base station is adopted. The MR reports the evaluation results.
  • the RRM measurement event is associated with one or all of the beams that are determined by the TRP, or the RRM measurement event is associated with one or all of the beams and another determined TRP that is determined by the TRP.
  • Multiple or all beam associations are governed to produce multiple parallel RRM measurement samples after RRM measurements.
  • a radio link management apparatus which is applied to a terminal, and includes: a receiving module, configured to receive a radio resource management RRM measurement parameter sent by a base station by using radio resource control RRC signaling
  • the first obtaining module is configured to perform RRM measurement on the target beamforming BF split base station to send multiple or all beams under the receiving point TRP according to the RRM measurement parameter, to obtain an RRM measurement result;
  • the first management module is set to The RRM measurement result is jointly evaluated based on multiple or all beams, and is switched from the source BF offload base station TRP to the target BF offload base station TRP or additionally the target BF offload base station TRP according to the evaluation result.
  • the first management module includes: a first acquiring unit, configured to acquire RRM measurement results corresponding to each of multiple or all beams of the target BF offload base station TRP; first evaluation unit, setting In order to evaluate the model based on the predetermined RRM measurement results The RRM measurement results are subjected to a joint evaluation operation.
  • the first evaluation unit includes: a first setting subunit, configured to use RRM measurement results corresponding to multiple or all beams of the target BF shunt base station TRP as parallel preliminary measurement samples.
  • a first acquisition subunit configured to filter the preliminary measurement sample values in parallel according to a predetermined sampling period to obtain parallel intermediate measurement sample values; and the first processing subunit is configured to perform the parallel intermediate measurement in a predefined manner.
  • the sampled values are subjected to a weighted average process to obtain a joint evaluation value of a single serial output, and the combined evaluation value and the comparative analysis evaluation value are compared and evaluated according to a preset inequality rule to obtain a comparative evaluation result, wherein the joint evaluation value is obtained.
  • the comparative analysis evaluation value has the same measurement evaluation dimension.
  • the first evaluation unit further includes: a first reporting subunit, configured to report the joint evaluation according to the RRM measurement result evaluation criterion after obtaining the joint evaluation value and the comparison evaluation result The value and the comparison are evaluated.
  • the first reporting subunit includes: a first determining sub-subunit, configured to determine whether the joint evaluation value and the comparison evaluation result meet a predefined RRM measurement event, wherein the RRM The measurement event is an event defined by the new radio access system NR air interface protocol; the first reporting sub-unit is set to pass between the terminal and the anchor anchor base station if the judgment result is yes or the preset condition set is satisfied.
  • the air interface measurement report MR reports the evaluation result.
  • the RRM measurement event is associated with one or all of the beams that are determined by the TRP, or the RRM measurement event is associated with one or all of the beams and another determined TRP that is determined by the TRP.
  • Multiple or all beam associations are governed to produce multiple parallel RRM measurement samples after RRM measurements.
  • a radio link management apparatus which is applied to a shunt base station, and includes: a second acquiring module, configured to perform RRM measurement on multiple or all beams sent by the terminal, to obtain an RRM a second management module, configured to jointly evaluate the RRM measurement result based on the multiple or all beams, and instruct the terminal to switch from the source beamforming BF offload base station transmission and reception point TRP to the target BF offload base station TRP according to the evaluation result.
  • the deactivated and configured beamforming BF offload base station transmits the reception point TRP.
  • the second management module includes: a second acquiring unit, configured to acquire RRM measurement results corresponding to each of multiple or all beams sent by the terminal; and a second evaluation unit configured to be evaluated according to the predetermined RRM measurement result The model performs a joint evaluation operation on the obtained RRM measurement results.
  • the second evaluation unit includes: a second setting subunit, configured to use the RRM measurement result corresponding to each of the multiple or all beams sent by the terminal as a parallel preliminary measurement sample value; a subunit, configured to filter the preliminary measurement sample values in parallel according to a predetermined sampling period to obtain parallel intermediate measurement sample values; and the second processing subunit is configured to perform weighted averaging on the parallel intermediate measurement sample values in a predefined manner Processing, obtaining a joint evaluation value of a single serial output, and comparing the combined evaluation value and the comparative analysis evaluation value according to a preset inequality rule to obtain a comparative evaluation result, wherein the joint evaluation value and the comparative analysis The evaluation values have the same measurement evaluation dimension.
  • the second evaluation unit further includes: a second reporting subunit, configured to report the joint evaluation value and the location according to the RRM measurement result after obtaining the joint evaluation value and the comparison evaluation result Compare the results of the assessment.
  • the second reporting subunit includes: a second determining sub-unit, configured to determine whether the joint evaluation value and the comparison evaluation result meet a predefined RRM measurement event, wherein the RRM The measurement event is an event defined by the new radio access system NR air interface protocol; the second reporting sub-unit is set to pass the shunt base station and the master anchor base station if the judgment result is yes or the preset condition set is satisfied.
  • the ground interface measurement report MR reports the evaluation result.
  • the RRM measurement event is associated with one or all of the beams that are determined by the TRP, or the RRM measurement event is associated with one or all of the beams and another determined TRP that is determined by the TRP.
  • Multiple or all beam associations are governed to produce multiple parallel RRM measurement samples after RRM measurements.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • Radio resource management RRM measurement parameters sent by the base station by using the radio resource control RRC signaling and performing RRM measurement on the target beamforming BF shunt base station to transmit multiple or all beams under the control point TRP according to the RRM measurement parameter, and obtaining RRM measurement result; jointly evaluating the RRM measurement result based on multiple or all beams, and switching from the source BF offload base station TRP to the target BF offload base station TRP or additionally adding the target BF offload base station TRP according to the evaluation result.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the TRP switches to the target BF offload base station TRP or additionally adds the target BF offload base station TRP; or, according to the evaluation result, adds a new BF offload base station TRP to perform data offloading on the new radio link RL; or, according to the evaluation result, the deactivation has been deleted.
  • the configured BF offload base station TRP performs removal to stop data offloading on the old RL.
  • the receiving base station transmits the radio resource management RRM measurement parameter delivered by the RRC signaling by the radio resource; and according to the RRM measurement parameter, transmitting, by the target beamforming BF offload base station, multiple or all beams under the control point TRP Perform RRM measurement to obtain RRM measurement result; jointly evaluate the RRM measurement result based on multiple or all beams, and switch from the source BF offload base station TRP to the target BF offload base station TRP or additionally add the target BF offload base station TRP according to the evaluation result.
  • multiple or all beams under the jurisdiction of each TRP are used as RRM measurement granularity, so that radio resource control measurement evaluation and beamforming inter-base station mobility can be avoided with a single beam granularity.
  • the situation that the terminal's mobile performance is poor due to the handover achieves the effect of improving the mobile performance of the terminal.
  • 1 is a schematic diagram of a beamforming operation of a high frequency small base station
  • 2 is a data transmission architecture diagram of a high-low frequency communication base station that performs multiple connections through tight coupling
  • Figure 3 is a schematic diagram of "rough synchronization training" to "fine synchronization training”
  • Figure 4 is an LTE RRM measurement evaluation model
  • FIG. 5 is a schematic diagram of handover between a source/target TRP in a dual connectivity data transmission by a UE;
  • FIG. 6 is a flowchart of a radio link management method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an RRM measurement evaluation model according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of handover between a source/target TRP in a dual connectivity data transmission according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of switching between source/target TRPs in dual connectivity data transmission by another UE according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of switching between source/target TRPs in another dual-connection data transmission according to an embodiment of the present invention.
  • FIG. 11 is a block diagram showing the structure of a radio link management apparatus according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram (1) of a radio link management apparatus according to an embodiment of the present invention.
  • FIG. 13 is a structural block diagram (2) of a radio link management apparatus according to an embodiment of the present invention.
  • FIG. 14 is a structural block diagram (3) of a radio link management apparatus according to an embodiment of the present invention.
  • FIG. 15 is a structural block diagram (4) of a radio link management apparatus according to an embodiment of the present invention.
  • FIG. 17 is a structural block diagram of another radio link management apparatus according to an embodiment of the present invention.
  • FIG. 18 is a structural block diagram (1) of another radio link management apparatus according to an embodiment of the present invention.
  • FIG. 19 is a structural block diagram (2) of another radio link management apparatus according to an embodiment of the present invention.
  • 20 is a structural block diagram (3) of another radio link management apparatus according to an embodiment of the present invention.
  • 21 is a structural block diagram (4) of another radio link management apparatus according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a radio link management method according to an embodiment of the present invention. As shown in FIG. 6, the process includes the following steps:
  • Step S602 the radio resource management RRM measurement parameter delivered by the base station by using the radio resource control RRC signaling is received;
  • Step S604 according to the RRM measurement parameter, performing RRM measurement on the target beamforming BF split base station to send multiple or all beams under the receiving point TRP to obtain the RRM measurement result;
  • Step S606 jointly evaluating the RRM measurement result based on the multiple or all beams, and switching from the source BF offload base station TRP to the target BF offload base station TRP or additionally adding the target BF offload base station TRP according to the evaluation result.
  • the application scenario of the foregoing radio link management method includes, but is not limited to, beamforming inter-base station radio resource control (Radio Resource Management for RRM) measurement and evaluation switching.
  • the terminal UE receives the radio resource management RRM measurement parameter sent by the base station through the radio resource control RRC signaling; according to the RRM measurement parameter, the target beamforming BF offload base station sends multiple points of the receiving point TRP or All the beams perform RRM measurement, obtain RRM measurement results; jointly evaluate the RRM measurement results based on multiple or all beams, and switch from the source BF offload base station TRP to the target BF offload base station TRP or additionally add the target BF offload base station TRP according to the evaluation result.
  • Radio Resource Management for RRM Radio Resource Management for RRM
  • multiple or all beams under the jurisdiction of each TRP are used as RRM measurement granularity. Therefore, radio resource control measurement evaluation with single beam granularity and beamforming inter-base station mobile switching can be avoided. The result that the terminal's mobile performance is poor, and the effect of improving the mobile performance of the terminal is achieved.
  • the main scenario of this embodiment is as shown in FIG. 2: the UE and the non-BF mode master anchor base station (which may be a MeNB or an NR base station node) have established an RRC signaling connection SRB and several uses.
  • the client data carries DRB(s).
  • the master anchor base station and several TRP nodes in the BF mode (mainly high-frequency deployment, but not excluding the case where the low-frequency base station applies BF operation) are connected to each other through a standardized interface between communication base stations (may be LTE X2) Or NR Xnew interface), so the DRB(s) user data can be used for uplink and downlink bypass user data offloading and parallel multi-connection data transmission.
  • the master anchor base station configures the UE-related measurement parameters through RRC signaling, and the UE is based on these parameters.
  • Synchronous attempt through the process of downlink beam training, try to find the optimal transmission angle of the common downlink channel/signal (including downlink space/time-frequency synchronization training signal, BRS pilot signal, system broadcast message signal, etc.) of the target TRP and the UE itself.
  • the optimal receiving angle and then the downlink RRM measurement, obtains the accurate RRM measurement results corresponding to each target service Beams.
  • the UE records the RRM measurement result (such as the signal strength or quality of the BRS pilot) corresponding to each target service Beams, and then performs an evaluation operation according to the new RRM measurement evaluation model of the embodiment of the present invention according to FIG. 7, including:
  • A1...An is the preliminary measured sample value measured by the UE for multiple Beam1...Beam ns under the same target TRP (these values may be the UE in the "BF out of sync substate" and/or "BF coarse/fine sync substate” The measurement is obtained, so some are reliable and accurate, some are unreliable and inaccurate.
  • B1...Bn is the intermediate measurement sample value obtained by the UE after filtering through Layer 1 Filtering module layer 1 in a certain sampling period. Some unreliable and inaccurate sample values can be filtered out.
  • C1...Cf is the dynamic analysis evaluation value obtained by the UE through the Layer 3 Filtering module layer 3 filtering process in a certain sampling period.
  • the layer 3 filtering processing algorithm may perform various algorithm weighting processing on the input B1...Bn values in different predefined manners to reflect the overall comprehensive evaluation value corresponding to Beam1...Beam n (such as sampling the BRS pilot signal).
  • the weighted average intensity or quality value of the results), C1...Cf corresponds to the overall integrated RRM evaluation results obtained with different layer 3 filtering algorithms.
  • C1'...Cf' is the comparative analysis evaluation value (the same measurement evaluation dimension as C)
  • D1...Df is the UE measurement report (MR) in the Measurement Report.
  • the RRM evaluation result values reported in the middle such as various predefined RRM events.
  • the behavior of the layer 3 filter processing module and the evaluation of reporting Criteria module and the use of related parameters can be standardized by the NR new air interface protocol, and the relevant configuration parameters are from Configuration signaling within the RRC air interface message.
  • the future NR new protocol can define multiple RRM measurement event types for different mobile switching purposes.
  • the Event NR-A1 event indicates that the UE performs all or more Beams (>1) arithmetic operations under the target BF shunt base station TRP.
  • the average pilot signal strength RSRP or quality RSRQ measurement result (which has been processed by layer 3 filtering) is compared with the threshold threshold Thresh of the RRC air interface signaling configured by the master anchor point base station, and the result is better than a neural buffer.
  • the offset value is the value of the Hys and continues for more than one event trigger time TTT: time to trigger, such that the UE triggers the local generation of the NR-A1 event, and the MR reports to the master anchor base station; otherwise, the NR-A1 event cannot be generated.
  • the Event NR-A2 event indicates that the UE measures the average pilot signal strength RSRP or quality RSRQ of all or more Beams (>1) under the target BF shunt base station TRP (has been filtered by layer 3).
  • the NR-A2 event is not generated because the UE triggers the local generation of the NR-A2 event, and the triggering of the MR is reported to the master anchor point base station.
  • the meaning of various other Event event types can be predefined by the NR new protocol as needed.
  • the above new RRM measurement model and definition has the following characteristics: for a certain type of RRM measurement event, it can be associated with all or all of the services of the TRP to determine the Beams (> 1) and / or another one to determine the TRP All or more services Beams (>1), forming n to m Beams RRM measurement, filtering processing, comparison evaluation pairing Pair, and filtering processing algorithms according to different layers 3, simultaneously generating multiple parallel RRM event results, For the master control anchor base station mobility decision comprehensive reference use, so that the UE multi-connection data transmission operation can be opened, updated, stopped more reasonably, and the wireless of the TRP side of the BF offload base station that is closely coupled with the served UE and the cooperation is learned in real time. Overall coverage of signal coverage strength/quality.
  • jointly evaluating the RRM measurement based on multiple or all beams includes the following steps:
  • Step S11 acquiring RRM measurement results corresponding to each of multiple or all beams under the target BF offload base station TRP;
  • Step S12 Perform a joint evaluation operation on the obtained RRM measurement result according to the predetermined RRM measurement result evaluation model.
  • the evaluation evaluation model performs a joint evaluation operation on the RRM measurement results corresponding to each of the acquired multiple or all beams according to the predetermined RRM measurement result evaluation model, so that the UE can be added or switched to the overall coverage of the wireless coverage service quality. Better target TRP.
  • the joint evaluation operation of the obtained RRM measurement result according to the predetermined RRM measurement result evaluation model includes the following steps:
  • Step S21 the RRM measurement results corresponding to the plurality of or all the beams of the target BF shunt base station TRP are taken as parallel preliminary measurement sample values;
  • Step S22 filtering the preliminary measurement sample values in parallel according to a predetermined sampling period to obtain parallel intermediate measurement sample values
  • Step S23 performing weighted averaging processing on the parallel intermediate measurement sample values in a predefined manner, obtaining a joint evaluation value of a single serial output, and comparing and evaluating the joint evaluation value and the comparative analysis evaluation value according to a preset inequality rule.
  • a comparative evaluation result is obtained, wherein the joint evaluation value and the comparative analysis evaluation value have the same measurement evaluation dimension.
  • Step S31 reporting the joint evaluation value and the comparison evaluation result according to the evaluation criterion reported by the RRM measurement result.
  • reporting the joint evaluation value and the comparison evaluation result according to the RRM measurement result evaluation criteria includes the following steps:
  • Step S41 determining whether the joint evaluation value and the comparison evaluation result satisfy a predefined The RRM measurement event, wherein the RRM measurement event is an event defined by a standardization of a new radio access system NR air interface protocol;
  • step S42 if the result of the determination is yes or the preset condition set is met, the evaluation result is reported by the air interface measurement report between the terminal and the master anchor base station.
  • the air interface measurement report between the terminal and the master anchor base station reports the evaluation result, so that the base station can perform some pre-preparation. Configure the operation.
  • the RRM measurement event is associated with a plurality or all of the plurality of or all of the determined TRPs and/or another determined TRP to generate multiple parallel RRM measurements after the RRM measurement. Sampling results.
  • the UE is originally in a single-connection data transmission mode with the MeNB. Later, since the UE moves into the coverage of the TRP1, the TRP1 is added and configured to the UE, and enters the dual-connection data with the MeNB and the TRP 1. Transmission status.
  • FIG. 8 will be described in detail.
  • An operator deploys and utilizes high-low frequency tight coupling for dual-connection DC operation.
  • On the authorized carrier where the low-frequency master anchor base station MeNB is located there is a Pcell service macro cell coverage, and the remote end connects to the SeNB high-frequency through the X2 interface.
  • the TRP node is set up on the high-frequency authorized carrier where the SeNB node is located.
  • the TRP1 and the four service Beams are deployed on the high-frequency authorized carrier.
  • the UE is only under the coverage of the Pcell, and thus only forms a single connection operation with the MeNB.
  • the UE As the UE moves, the UE gradually approaches the common coverage area of the Pcell+TRP-Beams, so that the MeNB decides to configure the measurement parameters of the relevant high-frequency target serving TRP1 node for the UE, and allows the UE to perform downlink RRM measurement on the target TRP1-Beams, by default.
  • the UE needs to perform downlink/time-frequency tracking synchronization attempt on the target TRP1-Beams first.
  • Both the non-BF low frequency MeNB node and the BF high frequency SeNB-TRP1 node and the UE support the content capabilities of the embodiments of the present invention.
  • the implementation steps of the example are as follows:
  • Step 101 The master anchor station base station MeNB configures, by means of the RRC message RRC Connection Reconfiguration, the UE to perform Beams search, training and tracking of the high frequency target TRP 1 node and downlink RRM measurement of multiple Beams in the manner of the embodiment of the present invention.
  • Predefined Event NR-A1 event Measurement result of the arithmetic average pilot signal strength RSRP or quality RSRQ of all or more Beams (>1) administered by the UE to the target BF shunt base station TRP (has been filtered by layer 3) The processing is compared with the threshold Thresh of the RRC air interface signaling configured by the master anchor base station, and the result is better than a neural buffer offset value Hys value, and continues for more than an event trigger time TTT: time to trigger, The UE triggers the local generation of the NR-A1 event, and the MR reports to the master anchor base station.
  • TTT time to trigger
  • Step 102 The UE performs Beams tracking synchronization and measurement based on the RRM measurement parameters configured by the MeNB, and performs downlink training tracking through the downlink common synchronization signals transmitted by the four Beams under the jurisdiction of the TRP1. After a period of synchronization training, the UE obtains and most The downlink "BF fine synchronization sub-state" of the best Beam1; the UE simultaneously performs the downlink RRM measurement through the downlink common pilot signal transmitted by the Beams under the jurisdiction of the TRP1. After the measurement in the window for a period of time, the UE obtains the best Beam1 that has been synchronized. And the downstream RRM measurement results of other Beam2/3/4 under the jurisdiction of TRP1.
  • Step 103 the UE obtains the intermediate measurement sample value after the layer 1 filtering process is performed on the RRM preliminary measurement sample value that can track the service Beam 1/2/3/4 on the synchronization.
  • the dynamic analysis evaluation value is obtained, and the dynamic analysis evaluation value corresponding to Beam1/2/3/4 is arithmetically averaged to obtain the overall comprehensive evaluation value of TRP1, and in the TTT observation window, if the whole TRP1 is obtained,
  • the comprehensive evaluation value> contrast analysis evaluation value Thresh + nerve buffer offset value Hys value triggers the NR-A1 event.
  • the UE reports the MeNB NR-A1 event to the MeNB through the RRC message Measurement Report.
  • the content may further include: the UE and the best Beam1 downlink "BF fine synchronization sub-state", and the best Beam1 downlink RRM measurement result governed by the TRP1.
  • Step 104 The MeNB learns that the UE has implemented the downlink “BF fine synchronization sub-state” with the TRP1-Beam1 based on the result reported by the UE, and the overall integrated quality of the TRP1 meets the preset condition requirement, and is determined to be established for the served UE and the SeNB-TRP1. High and low frequency DC dual connection operation, from The RL is established on the TRP1-Beam1 to perform the offloading of the uplink and downlink data blocks according to the dual-connection operation establishment process similar to that of the LTE.
  • Step 105 The SeNB receives the high and low frequency DC dual connectivity operation addition request message SeNB Addition Request sent by the MeNB through the X2 interface, and establishes configuration information related to the target RL, and the SeNB can determine that the TRP1 has also been implemented in the Beam1 with the served UE.
  • the uplink BF fine synchronization sub-state and the uplink RRM measurement result are good. Therefore, the SeNB feeds back to the MeNB message SeNB Addition Request Ack through the X2 interface, agrees to perform the high-low frequency DC dual-connection establishment operation, and agrees to establish the RL on TRP1-Beam1.
  • Step 106 The MeNB performs high-low frequency tight-coupling DC dual-connection operation to the UE through the RRC message RRC Connection Reconfiguration, and then the UE can simultaneously perform uplink and downlink user service transmission from the two radio links of the MeNB-RL and the SeNB-TRP1-RL. data.
  • the UE is mainly in the dual-connection data transmission state of the MeNB and the TMP 1 source Beam, and is later switched to the dual-connection data transmission state of the MeNB and the TRP 2 Beam due to the UE mobility.
  • FIG. 9 will be described in detail.
  • An operator deploys and utilizes high-low frequency tight coupling for dual-connection DC operation.
  • On the authorized carrier where the low-frequency master anchor base station MeNB is located there is a Pcell service macro cell coverage, and the remote end connects to the SeNB high-frequency through the X2 interface.
  • the two base stations, TRP1 and TRP2, are split.
  • the SeNB node has one TRP1 and one TRP2 on the high-frequency authorized carrier.
  • the four service Beams are deployed to enhance the capacity of the hotspot.
  • the UE is already under the joint coverage of Pcell and TRP1, and thus has formed a dual connectivity operation with the MeNB and TRP1.
  • the UE gradually leaves the coverage area of the TRP1-Beams and approaches the common coverage area of the Pcell+TRP2-Beams, so that the MeNB decides to configure the measurement parameters of the relevant high-frequency target serving TRP2 node for the UE, and let the UE target the target TRP2.
  • -Beams also performs downlink RRM measurement at the same time.
  • the UE needs to perform downlink/time-frequency tracking synchronization attempt on the target TRP2-Beams.
  • Non-BF low frequency MeNB node and BF high frequency SeNB-TRP 1/2 node and UE The content capabilities of the embodiments of the present invention are supported.
  • the implementation steps of the embodiment of the present invention are as follows:
  • Step 201 The master anchor point base station MeNB configures the UE to perform the Beams search, the training and tracking of the high frequency target TRP 1/2 node, and the downlink RRM measurement of the multiple Beams through the RRC message RRC Connection Reconfiguration configuration to the UE according to the embodiment of the present invention. .
  • Predefined Event NR-A2 event The measurement result of the average pilot signal strength RSRP or quality RSRQ of all or more Beams (>1) administered by the UE to the target BF shunt base station TRP (has been processed by layer 3 filtering) ), compared with the measurement results of the average pilot signal strength RSRP or quality RSRQ of all or more Beams (>1) under the jurisdiction of the source BF offload base station TRP, the result is better and greater than a configured neural buffer offset
  • the value is Hys and continues for more than one event trigger time TTT: time to trigger, such that the UE triggers the local generation of the NR-A2 event, and the MR reports to the master anchor base station.
  • Step 202 The UE performs Beams tracking synchronization and measurement based on the RRM measurement parameters configured by the MeNB, and performs downlink training tracking through the downlink common synchronization signals transmitted by the four Beams under the jurisdiction of the TRP2. After a period of synchronization training, the UE obtains and most The downlink "BF fine synchronization sub-state" of the best TRP2-Beam2; the UE simultaneously performs the downlink RRM measurement by the downlink common pilot signal transmitted by the Beams under the jurisdiction of the TRP2, and after the measurement in the window for a period of time, the UE obtains the most synchronized Downstream RRM measurements of other Beam1/3/4 under the jurisdiction of TRP2-Beam2 and TRP2.
  • Step 203 the UE can track the result of the RRM preliminary measurement sample value of the service Beam1/2/3/4 of the TRP1/2 on the synchronization, and after filtering by the respective layer 1 Obtain the respective intermediate measurement sample values, and then obtain the respective dynamic analysis evaluation values after the layer 3 filtering process, and then perform the arithmetic average of the dynamic analysis evaluation values corresponding to Beam1/2/3/4 to obtain the respective TRP1 and TRP2.
  • the overall comprehensive evaluation value within the TTT observation window, triggers the NR-A2 event if the overall comprehensive evaluation value of TRP2 > TRP1 overall comprehensive evaluation value + nerve buffer offset value Hys value.
  • the UE then reports the MeNB NR-A2 event to the MeNB through the RRC message Measurement Report.
  • the content may further include: the downlink "BF fine synchronization sub-state" of the UE and the target best TRP2-Beam2, and the best Beam2 downlink RRM measurement result governed by the TRP2.
  • Step 204 The MeNB learns that the UE has been and the target based on the result reported by the UE.
  • the TRP2-Beam2 implements the downlink "BF fine synchronization sub-state", and the overall integrated quality of the TRP2 meets the preset condition requirements, and determines that the high-low frequency DC dual-connection operation is established for the served UE and the SeNB-TRP2, and the source TRP1 is deleted and deleted.
  • the old RL is configured to perform a dual-connection operation modification process similar to that of the LTE, and a new RL is established on the TRP2-Beam2, and the offloading of the uplink and downlink data blocks is continued.
  • Step 205 The SeNB receives the high and low frequency DC dual connectivity operation modification request message SeNB Modification Request sent by the MeNB through the X2 interface, and establishes configuration information related to the target new RL, and the SeNB can determine that the TRP2 has also been implemented by the served UE in Beam2.
  • the uplink "BF fine synchronization sub-state" and the uplink RRM measurement result are good, so the SeNB feeds back to the MeNB message SeNB Modification Request Ack through the X2 interface, agrees to perform high and low frequency DC dual connection modification operation, and agrees to establish a new on TRP2-Beam2. RL.
  • Step 206 The MeNB performs high-low frequency tight-coupling DC dual-connection operation to the UE through the RRC message RRC Connection Reconfiguration, and then the UE can continue to perform uplink and downlink user service transmission from the two radio links of the MeNB-RL and the SeNB-TRP2-RL. Data, the original SeNB-TRP1-RL is deleted, and can no longer contribute to data offload transmission.
  • the UE is originally in the dual-connection data transmission state of the NR (m) BS and the TRP 1 source Beam, and is later switched to the NR (m) BS and the TRP 2 Beam dual-connection data transmission state due to the UE mobility. .
  • FIG. 10 will be described in detail below.
  • An operator deploys and utilizes high-low frequency tight coupling for dual-connection DC operation.
  • the NR(s)BS high-frequency shunt base station is connected to two nodes, TRP1 and TRP2.
  • the NR(s) BS node is located on a high-frequency authorized carrier with one TRP1 and one TRP2, which respectively administer the deployment of four service Beams. Increased capacity in hotspot areas.
  • the UE is already under the joint coverage of Pcell and TRP1, and thus has formed a dual connectivity operation with NR(m)BS and TRP1.
  • the UE gradually leaves the coverage area of TRP1-Beams, and is close to the common coverage area of Pcell+TRP2-Beams, thus NR(m)BS
  • the UE maintains downlink/time-frequency tracking synchronization for the source TRP1-Beams.
  • Both the non-BF low frequency NR (m) BS node and the BF high frequency NR (s) BS-TRP 1/2 node and the UE support the content capabilities of the embodiments of the present invention.
  • the implementation steps of the embodiment of the present invention are as follows:
  • Step 301 The master anchor point base station NR(m)BS configures the UE to perform the Beams search, training and tracking of the high frequency target TRP1/2 node, and the training and tracking of the multiple Beams by the RRC message RRC Connection Reconfiguration to the UE according to the embodiment of the present invention.
  • Downstream RRM measurement The master anchor point base station NR(m)BS configures the UE to perform the Beams search, training and tracking of the high frequency target TRP1/2 node, and the training and tracking of the multiple Beams by the RRC message RRC Connection Reconfiguration to the UE according to the embodiment of the present invention.
  • Predefined Event NR-A3 event The measurement result of the average pilot signal strength RSRP or quality RSRQ of all or more Beams (>1) administered by the UE to the target BF shunt base station TRP (has been processed by layer 3 filtering) ) is better than a certain configuration threshold Thresh1 and greater than the configured neural buffer offset value Hys1, while the source BF splits the average pilot signal strength RSRP or quality of all or more Beams (>1) under the jurisdiction of the base station TRP.
  • the RSRQ measurement result is worse than another configuration threshold Thresh2 and is greater than the configured neural buffer offset value Hys2, and each of them continuously exceeds an event trigger time TTT:time to trigger, so that the UE triggers the local generation of the NR-A3 event. And the MR is reported to the master anchor base station.
  • Step 302 The UE performs the Beams tracking synchronization and measurement based on the RRM measurement parameters of the NR(m)BS configuration, and performs the Beam training tracking through the downlink common synchronization signals transmitted by the four Beams under the control of the TRP1/2, and synchronizes after a period of time.
  • the UE obtains the downlink "BF fine synchronization sub-state" of the best TRP2-Beam3; the UE simultaneously performs downlink RRM measurement through the downlink common pilot signal transmitted by the respective Beams of the TRP1/2, after a period of time window After the measurement, the UE obtains the downlink RRM measurement results of the other Beam 1/2/4 under the jurisdiction of the best TRP2-Beam3 and TRP2.
  • Step 303 the UE can track the result of the RRM preliminary measurement sample value of the service Beam1/2/3/4 of the TRP1/2 on the synchronization, and after filtering by the respective layer 1 Obtain the respective intermediate measurement sample values, and then obtain the respective dynamic analysis evaluation values through the layer 3 filtering process, and then perform the weighted average of the dynamic analysis evaluation values corresponding to Beam1/2/3/4 (different Beam different weights) ) to obtain the whole of TRP1 and TRP2
  • the comprehensive evaluation value in the TTT observation window, if the overall comprehensive evaluation value of TRP2> threshold Thresh1+ nerve buffer offset value Hys1 value, and TRP1 overall comprehensive evaluation value ⁇ threshold Thresh2-neuron buffer offset value Hys2 value, trigger NR -A3 event.
  • the UE then reports the NR(m)BS NR-A3 event to the NR(m)BS NR-A3 event through the RRC message.
  • the content may also include: the downlink "BF fine synchronization sub-state" of the UE and the target best TRP2-Beam3, and the best Beam3 downlink under the jurisdiction of TRP2. RRM measurement results.
  • Step 304 The NR(m) BS learns that the UE has implemented the downlink “BF fine synchronization substate” with the target TRP2-Beam3 based on the result reported by the UE, and the overall integrated quality of the TRP1/2 meets the preset condition requirement, and is determined to be
  • the served UE and the NR(s) BS-TRP2 establish a high-low frequency DC dual-connection operation, and delete the old RL established with the source TRP1, thereby modifying the flow according to the NR dual-connection operation, establishing a new RL on the TRP2-Beam3, and continuing to go up and down. Split transmission of row data blocks.
  • Step 305 The NR(s) BS receives the high and low frequency DC dual connectivity operation modification request message NR BS Modification Request sent by the NR (m) BS through the Xnew interface, and establishes configuration information related to the target new RL, NR(s)
  • the BS can judge that the TRP2 has also implemented the uplink "BF fine synchronization substate" with the served UE in Beam3 and the uplink RRM measurement result is good, so the NR(s) BS feeds back to the NR(m)BS message NR BS Modification through the Xnew interface.
  • Request Ack agrees to perform high and low frequency DC dual connection modification operations, and agrees to establish a new RL on TRP2-Beam3.
  • Step 306 The NR (m) BS configures the UE to perform high and low frequency tight coupled DC dual connectivity operation through the RRC message RRC Connection Reconfiguration, after which the UE may continue to perform from NR(m)BS-RL and NR(s)BS-TRP2-RL.
  • embodiments of the present invention may be embodied in the form of a software product stored in a storage medium (eg, ROM/RAM, disk, optical disk) including a number of instructions for causing a terminal device (can be a mobile phone, computer, server, or network device, etc.)
  • a storage medium eg, ROM/RAM, disk, optical disk
  • a terminal device can be a mobile phone, computer, server, or network device, etc.
  • a wireless link management device is provided, which is used to implement the foregoing embodiments and implementation manners, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 11 is a structural block diagram of a radio link management apparatus according to an embodiment of the present invention. As shown in FIG. 11, the apparatus includes:
  • the receiving module 112 is configured to receive, by the base station, a radio resource management RRM measurement parameter that is sent by the radio resource control RRC signaling;
  • the first obtaining module 114 is configured to perform RRM measurement on the target beamforming BF split base station to send multiple or all beams under the receiving point TRP according to the RRM measurement parameter, to obtain an RRM measurement result;
  • the first management module 116 is configured to jointly evaluate the RRM measurement result based on the multiple or all beams, and switch from the source BF offload base station TRP to the target BF offload base station TRP or additionally add the target BF offload base station TRP according to the evaluation result.
  • the application scenario of the foregoing radio link management apparatus includes, but is not limited to, a beamforming inter-base station radio resource control (Radio Resource Management abbreviation RRM) measurement evaluation handover.
  • the terminal UE receives the radio resource management RRM measurement parameter sent by the base station through the radio resource control RRC signaling; according to the RRM measurement parameter, the target beamforming BF offload base station sends multiple points of the receiving point TRP or All the beams perform RRM measurement, obtain RRM measurement results; jointly evaluate the RRM measurement results based on multiple or all beams, and switch from the source BF offload base station TRP to the target BF offload base station TRP or additionally add the target BF offload base station TRP according to the evaluation result.
  • RRM Radio Resource Management abbreviation
  • multiple or all beams under the jurisdiction of each TRP are used as RRM measurement granularity. Therefore, radio resource control measurement evaluation with single beam granularity and beamforming inter-base station mobile switching can be avoided. The result that the terminal's mobile performance is poor, and the effect of improving the mobile performance of the terminal is achieved.
  • FIG. 12 is a structural block diagram (1) of a radio link management apparatus according to an embodiment of the present invention.
  • the first management module 116 includes:
  • the first obtaining unit 122 is configured to acquire RRM measurement results corresponding to each of multiple or all beams of the target BF offload base station TRP;
  • the first evaluation unit 124 is configured to perform a joint evaluation operation on the obtained RRM measurement result according to the predetermined RRM measurement result evaluation model.
  • the RRM measurement result corresponding to each of the acquired multiple or all beams is jointly evaluated according to the predetermined RRM measurement result evaluation model, so that the UE can be added or switched to the overall coverage of the wireless coverage service quality. Good target on TRP.
  • FIG. 13 is a structural block diagram (2) of a radio link management apparatus according to an embodiment of the present invention.
  • the first evaluation unit 124 includes:
  • the first setting sub-unit 132 is configured to use the RRM measurement results corresponding to the plurality of or all the beams of the target BF shunt base station TRP as parallel preliminary measurement sample values;
  • the first obtaining sub-unit 134 is configured to filter the preliminary measured sample values in parallel according to a predetermined sampling period to obtain parallel intermediate measured sample values;
  • the first processing sub-unit 136 is configured to perform weighted averaging processing on the parallel intermediate measurement sample values in a predefined manner to obtain a joint evaluation value of the single serial output, and the joint evaluation value and the comparative analysis evaluation value are The preset inequality rule is compared and evaluated to obtain a comparative evaluation result, wherein the joint evaluation value and the comparative analysis evaluation value have the same measurement evaluation dimension.
  • FIG. 14 is a structural block diagram (3) of a radio link management apparatus according to an embodiment of the present invention.
  • the first evaluation unit 124 further includes:
  • the first reporting sub-unit 142 is configured to report the joint evaluation value and the comparison evaluation result according to the RRM measurement result evaluation criterion after obtaining the joint evaluation value and the comparison evaluation result.
  • the first reporting subunit 142 includes:
  • the first determining sub-subunit 152 is configured to determine whether the joint evaluation value and the comparison evaluation result satisfy a predefined RRM measurement event, wherein the RRM measurement event is an event defined by the new wireless access system NR air interface protocol. ;
  • the first report sub-sub-unit 154 is configured to report the evaluation result by the air interface measurement report between the terminal and the master anchor base station in the case that the judgment result is yes or the preset condition set is satisfied.
  • the air interface measurement report between the terminal and the master anchor base station reports the evaluation result, so that the base station can perform some pre-preparation. Configure the operation.
  • the RRM measurement event is associated with a plurality or all of the plurality of or all of the determined TRPs and/or another determined TRP to generate multiple parallel RRM measurements after the RRM measurement. Sampling results.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 16 is a flowchart of another radio link management method according to an embodiment of the present invention. As shown in FIG. 16, the process includes the following steps:
  • Step S1602 Perform RRM measurement on multiple or all beams sent by the terminal to obtain an RRM measurement result.
  • Step S1604 jointly evaluating the RRM measurement result based on multiple or all beams, and instructing the terminal to switch from the source beamforming BF offload base station transmission and reception point TRP to the target BF offload base station TRP or additionally adding the target BF offload base station TRP according to the evaluation result; or,
  • the application scenarios of the foregoing radio link management method include, but are not limited to, beamforming inter-base station radio resource control (Radio Resource Management for RRM) measurement evaluation switching.
  • the offloading base station performs RRM measurement on multiple or all beams sent by the terminal to obtain an RRM measurement result; jointly evaluates the RRM measurement result based on multiple or all beams, and instructs the terminal to form from the source beam according to the evaluation result.
  • the deactivated and configured beamforming BF offload base station transmits the reception point TRP. That is to say, in this embodiment, multiple or all beams under the jurisdiction of each TRP are used as RRM measurement granularity. Therefore, radio resource control measurement evaluation with single beam granularity and beamforming inter-base station mobile switching can be avoided. The result that the terminal's mobile performance is poor, and the effect of improving the mobile performance of the terminal is achieved.
  • jointly evaluating the RRM measurement based on multiple or all beams includes the following steps:
  • Step S51 acquiring RRM measurement results corresponding to each of multiple or all beams sent by the terminal;
  • Step S52 Perform a joint evaluation operation on the obtained RRM measurement result according to the predetermined RRM measurement result evaluation model.
  • the joint RRM measurement result corresponding to each of the acquired multiple or all beams is jointly evaluated according to the predetermined RRM measurement result evaluation model, so that the UE can be added or switched to the overall coverage of the wireless coverage service quality. Good target on TRP.
  • the joint evaluation operation of the obtained RRM measurement result according to the predetermined RRM measurement result evaluation model includes the following steps:
  • Step S61 the RRM measurement result corresponding to each of the multiple or all beams sent by the terminal is taken as a parallel preliminary measurement sample value
  • Step S62 filtering the preliminary measurement sample values in parallel according to a predetermined sampling period to obtain parallel intermediate measurement sample values
  • Step S63 performing weighted average of the parallel intermediate measurement sample values in a predefined manner Processing, obtaining a joint evaluation value of a single serial output, and comparing the joint evaluation value and the comparative analysis evaluation value according to a preset inequality rule to obtain a comparative evaluation result, wherein the joint evaluation value and the comparative analysis evaluation value are provided The same measurement evaluates the dimension.
  • the method further includes step S71, reporting the joint evaluation value and the comparison evaluation result according to the RRM measurement result.
  • reporting the joint evaluation value and the comparison evaluation result according to the RRM measurement result evaluation criteria includes the following steps:
  • Step S81 determining whether the joint evaluation value and the comparison evaluation result satisfy a predefined RRM measurement event, wherein the RRM measurement event is an event defined by a standardization of a new wireless access system NR air interface protocol;
  • step S82 if the result of the determination is yes or the preset condition set is met, the evaluation result is reported by the ground interface measurement report MR between the offloading base station and the master anchor base station.
  • the ground interface measurement report between the shunt base station and the master anchor base station reports the evaluation result, so that the base station can perform some Preconfigured operation.
  • the RRM measurement event is associated with one or more of the plurality or all of the beams under which the TRP is determined and/or another determined TRP, to generate a plurality of parallel RRM measurement samples after the RRM measurement. result.
  • embodiments of the present invention may be embodied in the form of a software product stored in a storage medium (eg, ROM/RAM, disk, optical disk) including a number of instructions for causing a terminal device (may be a cell phone, computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • a storage medium eg, ROM/RAM, disk, optical disk
  • a terminal device may be a cell phone, computer, server, or network device, etc.
  • a wireless link management device is provided, which is used to implement the foregoing embodiments and implementation manners, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 17 is a structural block diagram of another radio link management apparatus according to an embodiment of the present invention. As shown in FIG. 17, the apparatus includes:
  • the second obtaining module 172 is configured to perform RRM measurement on multiple or all beams sent by the terminal, to obtain an RRM measurement result;
  • the second management module 174 is configured to jointly evaluate the RRM measurement result based on the multiple or all beams, and instruct the terminal to switch from the source beamforming BF offload base station transmission and reception point TRP to the target BF offload base station TRP or the additional according to the evaluation result. Adding a target BF offload base station TRP; or adding a beamforming BF offload base station according to the evaluation result to transmit the receiving point TRP and activating the added TRP; or deleting the deactivated and configured beamforming BF offloading base station transmitting and receiving point according to the evaluation result TRP.
  • the application scenario of the foregoing radio link management apparatus includes, but is not limited to, a beamforming inter-base station radio resource control (Radio Resource Management abbreviation RRM) measurement evaluation handover.
  • the offloading base station performs RRM measurement on multiple or all beams sent by the terminal to obtain an RRM measurement result; jointly evaluates the RRM measurement result based on multiple or all beams, and instructs the terminal to form from the source beam according to the evaluation result.
  • RRM Radio Resource Management abbreviation
  • the BF offloading base station transmits and receives a TRP handover to the target BF offload base station TRP or additionally adds the target BF offload base station TRP; or, according to the evaluation result, adds a new BF offload base station TRP to perform data offloading on the new radio link RL; or, according to The result of the evaluation is deleted to deactivate the already configured BF offload base station TRP to remove the data offload on the old RL. That is to say, in this embodiment, multiple or all beams under the jurisdiction of each TRP are used as RRM measurement granularity. Therefore, radio resource control measurement evaluation with single beam granularity and beamforming inter-base station mobile switching can be avoided. The result that the terminal's mobile performance is poor, and the effect of improving the mobile performance of the terminal is achieved.
  • FIG. 18 is a structural block diagram (1) of another radio link management apparatus according to an embodiment of the present invention, As shown in FIG. 18, the second management module 174 includes:
  • the second obtaining unit 182 is configured to acquire RRM measurement results corresponding to each of the multiple or all beams sent by the terminal;
  • the second evaluation unit 184 is configured to perform a joint evaluation operation on the obtained RRM measurement result according to the predetermined RRM measurement result evaluation model.
  • the RRM measurement result corresponding to each of the acquired multiple or all beams is jointly evaluated according to the predetermined RRM measurement result evaluation model, so that the UE can be added or switched to the overall coverage of the wireless coverage service quality. Better target TRP.
  • FIG. 19 is a structural block diagram (2) of another radio link management apparatus according to an embodiment of the present invention.
  • the second evaluation unit 184 includes:
  • the second setting subunit 192 is configured to use the RRM measurement result corresponding to each of the multiple or all beams sent by the terminal as parallel preliminary measurement sample values;
  • the second obtaining subunit 194 is configured to filter the preliminary measured sample values in parallel according to a predetermined sampling period to obtain parallel intermediate measured sample values
  • the second processing sub-unit 196 is configured to perform weighted averaging processing on the parallel intermediate measurement sample values in a predefined manner to obtain a joint evaluation value of the single serial output, and the joint evaluation value and the comparative analysis evaluation value are The preset inequality rule is compared and evaluated to obtain a comparative evaluation result, wherein the joint evaluation value and the comparative analysis evaluation value have the same measurement evaluation dimension.
  • FIG. 20 is a structural block diagram (3) of another radio link management apparatus according to an embodiment of the present invention. As shown in FIG. 20, the second evaluation unit 184 further includes:
  • the second reporting sub-unit 202 is configured to report the joint evaluation value and the comparison evaluation result according to the RRM measurement result evaluation criterion after obtaining the joint evaluation value and the comparison evaluation result.
  • the second reporting sub-unit 202 includes:
  • the second judging sub-subunit 212 is configured to determine whether the joint evaluation value and the comparison evaluation result satisfy a predefined RRM measurement event, wherein the RRM measurement event is an event defined by a standard defined by the new radio access system NR air interface protocol. ;
  • the second reporting sub-sub-unit 214 is configured to report the evaluation result by the ground interface measurement report between the shunt base station and the master anchor base station in the case that the judgment result is yes or the preset condition set is satisfied.
  • the ground interface measurement report between the shunt base station and the master anchor base station reports the evaluation result, so that the base station can perform the base station.
  • the RRM measurement event is associated with a plurality or all of the plurality of or all of the determined TRPs and/or another determined TRP to generate multiple parallel RRM measurements after the RRM measurement. Sampling results.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • the radio resource management RRM measurement parameter delivered by the base station by using the radio resource control RRC signaling is received;
  • RRM measurement parameter perform RRM measurement on the target beamforming BF split base station to send multiple or all beams under the receiving point TRP, to obtain an RRM measurement result
  • the storage medium is further arranged to store program code for performing the following steps:
  • the result indicates that the terminal switches from the source beamforming BF offload base station transmission and reception point TRP to the target BF offload base station TRP or additionally adds the target BF offload base station TRP; adds a beamforming BF offload base station to send and receive a point TRP according to the evaluation result, and activates the added The TRP; or, according to the evaluation result, delete the deactivated and configured beamforming BF offload base station to send the receiving point TRP.
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • magnetic disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor executes the above-described steps S1, S2, and S3 in accordance with the program code stored in the storage medium.
  • the processor executes the above steps S4, S5 in accordance with the program code stored in the storage medium.
  • the modules or steps of the above embodiments of the present invention may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices, which may be implemented by computing devices.
  • the executed program code is implemented such that they can be stored in a storage device by a computing device, and in some cases, the steps shown or described can be performed in a different order than here, or they can be
  • Each of the integrated circuit modules is fabricated separately, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • multiple or all beams under the jurisdiction of each TRP are used as the RRM measurement granularity. Therefore, it is possible to avoid the measurement and evaluation of the radio resource control with a single beam as the granularity.
  • the situation that the terminal mobility performance is poor due to the mobile beam switching between the line beamforming base stations achieves the effect of improving the mobile performance of the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线链路管理方法及装置,其中,该方法包括:接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;根据该RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。

Description

无线链路管理方法及装置 技术领域
本申请涉及但不限于通信领域,尤指一种无线链路管理方法及装置。
背景技术
在未来的第三代合作伙伴计划的第五代(3rd Generation Partnership Project fifth Generation,简称为3GPP 5G)全新设计的新无线接入(New RAT/Radio,简称为NR)系统中,高频段无线载波资源利用和操作将扮演着越来越重要的角色,通过载波聚合和紧耦合多连接等方式,可以将更宽阔的高频载波资源充分地聚合利用,以提高NR系统容量和吞吐率性能。如图1所示,在低频宏基站小区的广覆盖下,运营商可以对部分热点Hotspot区域Hotspot通过高频(mmWave)小基站小小区进行容量增强。和传统全向式(Omni-Directional)或者扇区式(Sector)小区覆盖不同,高频小小区为了增加上下行无线覆盖和信道性能,通常TX/RX侧需要进行波束成形(Beamforming)操作,即通过多天线相位技术,将波束定向发射/定向接收,这样可以汇聚发射功率/减少干扰。图1中的发送接收节点簇TRP Cluster就是以多个Beams(波束)形式来发射信号的。
在图1中的波束成形(Beamforming,简称为BF)高频通信基站小小区的部署方式,可以映射到图2所示的高低频通信基站做紧耦合多连接的数据传输架构。图2中基站和用户设备(User Equipment,简称为UE)的空中接口细箭头线表示Uu口控制面信令,粗箭头线表示用户面数据。低频宏基站服务小区提供基本的无线覆盖,BF模式的高频小基站提供数据分流,当UE在同一宏基站服务小区内移动的时候,会发生高频微基站间的切换或者更多连接的数据传输。
以过去通用移动通信系统/长期演进(Universal Mobile Telecommunications System/Long Term Evolution,简称为UMTS/LTE)系统为例,由于主要工作在低频段(<6GHz),因此对应基站的发送接收点(Transmit Receive Point,简称为TRP)通常采取全向(Omni-Directional)和 扇区(Sector)方式发收模式,因此对应的下行公共信道/信号有着较广阔的覆盖区域,即当终端设备UE进入到以发送接收点TRP为圆心的特定半径之内,就可以在任意的时间/地点/方向上接收到下行公共信道/信号,实现下行时频同步,小区发现驻留,系统消息读取,上行随机接入,导频测量等基本操作。
由于高频段信道的路损(Path loss)和衰减相当严重,为了以小发射功率来实现远距离覆盖和空间/时频信号干扰隔离,NR高频基站TRP通常采取波束成形Beamforming的发收模式,因此对应的下行公共信道/信号有着较狭窄的覆盖区域(对应着的服务小区比较狭长状),即当UE进入到以TRP为圆心的特定半径之内,只能在特定的时间/地点/方向上通过空间搜索(Spatial Search)才能接收到下行公共信道/信号,以实现上述基本功能。随着UE在水平和垂直方向上的移动,UE容易脱离Beams的覆盖,称为空间/时频失步(假设TRP/UE不能实现快速的彼此Beam跟踪),空间/时频失步之后相当于UE进行到弱覆盖区域,不能有效维持上下行时频同步/上行随机接入/高效数据传输,因此UE必须尽快重新搜索测量到合适的小区/Beam等,恢复空间/时频同步状态。
假设TRP节点内只有一个波束成形链(RF chain),TRP采取周期环形扫射的方式发射任何下行信道/信号。当UE成功跟踪并且驻留在高频波束成形Beamforming某服务小区中,如果有数据传输的需求,UE需要先和TRP建立无线链路(Radio Link,简称为RL),进入到无线资源控制连接(Radio Resource Control_CONNECTED,简称为RRC_CONNECTED)模式。随后TRP会为UE分配专有的时频资源,基于调度方式的进行上下行数据块传输。
下行方向,UE一方面需要通过TRP发射的下行公共同步信号来保持空间/时频/时频的最佳跟踪状态,另一方面UE需要通过TRP发射的下行专有参考信号来测量和反馈信道状态信息(Channel State Information,简称为CSI)。
上行方向,TRP一方面需要通过UE发射的上行公共同步信号来保持空间/时频/时频的最佳跟踪状态,另一方面TRP需要通过UE发射的上行专有 参考信号来测量CSI。
从本意上,上下行专有参考信号是用来进行专有信道的测量和/或解调的,但是否也可以服务于波束Beam跟踪的目的,即下行方向,UE是否可以只监听接收TRP发射的下行专有参考信号,来保持下行空间/时频/时频的最佳跟踪状态;上行方向,TRP是否可以只监听接收UE发射的上行专有参考信号,来保持上行空间/时频/时频的最佳跟踪状态。当发生无线链路失败(Radio Link Failure,简称为RLF)的时候(比如遭遇阻塞Blockage或者遮蔽Deafness),UE上下行自动进入空间/时频/时频失步子状态(但仍然是RRC_CONNECTED模式),此时UE仍然需要在空间/时频失步点附近继续监听源服务TRP的下行专有参考信号,而源TRP仍然需要在空间/时频失步点附近继续监听上行专有参考信号,从而UE努力快速恢复和源服务TRP之间的波束同步子状态。如果UE无法在特定时间内恢复波束同步子状态,那么UE需要先退出RRC_CONNECTED状态,重新监听接收源服务TRP和其它相邻TRP的下行公共信道/信号,此时UE可以驻留到其它相邻TRP的服务小区中,再重新建立专有RL。
以下行方向为例,当TRP发射BF同步训练信号的时候,开始是按照特定离散的角度环扫发射的(比如水平0,30,60,90,120,….360度这样的规律),而UE也可能按照特定离散的角度定向接收。经过初步的“粗同步训练”之后,TRP和UE大致能够确定对方的最佳离散角度,之后可以进一步进入“细同步训练”阶段,使得TRP和UE能够更加精准地确定对方的连续角度(“细同步训练”的水平角度调整粒度比之前环扫发射的离散角度要小),细同步训练使得路损Pathloss最小。之后随着UE的移动,TRP和UE需要根据对方发射的BF同步训练信号,继续不断微调发射和接收的角度。上述过程如图3所示。
“细同步训练”是基于通信节点硬件本地实现的可选优化功能,在“细同步训练”完成之后,TRP和UE侧才能保证波束干扰信号(Beam Reference Signal.,简称为BRS)的最佳无线资源管理(Radio Resource Management,简称为RRM)测量结果和最可靠的测量精度,和无线链路(Radio Link,简称为RL专有信号的最佳接收解调性能结果,因此可以处 于最佳RRM测量模式和数据传输模式,此时TX端信号发射效率和RX端接收的信噪比最大;否则根据仿真显示,如果空间/时频同步训练的精度结果不够,接收信噪比将减小,TRP和UE之间不能处于最佳RRM测量模式和数据传输模式,甚至更坏的情况TRP和UE之间发生空间/时频失步,它们只能处于最差的RRM测量模式和数据传输模式。因此为了保证UE对做波束成形通信基站下行参考信号的RRM测量质量和精度,UE对目标BF通信基站所辖的Beams建立并且维持“粗(细)同步子状态”,否则测量获得的RRM测量结果不准确和不可靠。
在做多连接数据传输模式的UE移动过程中,非BF模式的锚点通信基站,通常需要基于UE的RRM测量上报结果,为UE选择和配置最好的目标BF模式分流基站TRP,或做TRP间的移动切换,或者增加配置更多的TRP,进行更多连接的数据传输。按照LTE RRM测量评估模型,如图4所示:针对某个特定的测量对象(LTE目标小区或者TRP下的Beam)和测量评估量,A为UE根据内部实现而测量得到的初步测量采样值,B为UE在一定的采样周期内,通过层1过滤器(Layer 1Filtering)模块层1过滤处理后而获得的中间测量采样值,C为UE在一定的采样周期内,通过层3过滤器(Layer 3Filtering)模块层3过滤处理后而获得的动态分析评估值,C’为对比分析评估值(和C有相同的测量评估量纲),D为UE在Measurement Report测量上报消息测量报告(Measurement Report,简称为MR)中上报的内容结果值。旧RRM测量模型中,层3过滤处理模块和评估和上报准则(Evaluation of reporting Criteria)模块的行为和参数使用方式都是被LTE协议标准化的,相关的配置参数来自RRC空口消息的配置信令。
当前LTE协议已经为不同的移动切换和多连接配置操作目的,定义了多种RRM测量事件类型,比如事件A1(Event A1)表示:UE对当前LTE服务小区(可以是一个或多个)导频信号的强度(Reference Signal Receiving Power,简称为RSRP)或者质量参考信号接收质量(Reference Signal Receiving Quality,简称为RSRQ)的测量动态分析评估值结果(已经经过了层3过滤的处理),和源基站eNB已经通过RRC空口信令配置的门限值(Thresh)相比较结果更好(中间还有一个神经缓冲偏移值Hys:)且持续 超过一段事件的触发时间TTT(time to trigger),这样UE触发本地产生A1事件,触发MR上报;否则不能产生A1事件。其他各种Event事件的含义可以参考LTE协议。上述旧RRM测量模型和定义有如下特点:对于某种RRM测量事件,只是关联到某一个确定的源服务小区和/或某一个确定的相邻服务小区(Neighbour Cell),形成1对1的小区测量对比评估配对Pair。
对于处于波束成形工作模式下的分流微基站TRP,其内部所辖的多个Beams工作特点方式和传统LTE基站内所辖的多个LTE服务小区有很大不同,如上面的背景技术中所述。如果沿用LTE RRM测量评估机制,当某个目标TRP 2所辖目标服务Beam对应的RRM测量结果明显好于某个源TRP 1所辖的源服务Beam,UE很可能会触发对应的某移动事件,并且通过MR消息上报给锚点控制宏基站。此后锚点控制宏基站会通过RRC重配消息,让UE建立和该目标TRP 2所辖目标服务Beam的无线连接RL(因为此目标服务Beam链路质量更好),而删除UE之前和源TRP 1所辖源服务Beam的RL(因为此源服务Beam链路质量变差了),该过程如图5所示。UE原本处于主基站宏服务小区MeNB和TRP 1某源服务Beam的双连接数据传输状态,后来由于UE移动,被锚点切换重配到MeNB和TRP 2某Beam的双连接数据传输状态。
由于每个分流基站TRP内通常配置且激活有多个服务Beams(以特定方式朝着不同物理方位扫射覆盖),而UE会对不同的Beams进行上述的粗(细)空间时频跟踪同步尝试和相伴的RRM测量,以建立和维持在“粗(细)同步子状态”,从而获得较精准可靠的RRM测量结果,因此UE会频繁地在TRP内发生波束切换(Beam Switch)操作,即从同一TRP下的某个信号不好的Beam1,自动切换到另外的信号更好的Beam2上,这种特点使得单个Beam并不能完全反映出分流基站TRP的整体综合的无线覆盖服务质量好坏。举个例子,如果图5中TRP 2下有4个下行服务Beams,分别朝着不同的下行方位角发射同步和导频信号,UE虽然很容易对其中一个Beam3实现同步跟踪和进入“粗(细)同步子状态”,从而测得很好的RRM测量结果,但是如果TRP2下的其他Beam1/2/4相对都很差,从而UE不容易对它们实现跟踪同步上,从而不容易进入到“粗(细)同步子状态”,或者测得的 RRM测量结果也较差,那么TRP2其实可能并不是一个很好的目标TRP移动切换对象,因为一旦Beam3被空间/时频临时障碍物遮挡比如:发生Blockage,那么UE不得不尝试本地Beam Switch到其他较差的Beam1/2/4上,或者触发空口信令让主控锚点基站重配目标TRP,因此可能并不能获得较好的数据分流传输服务。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种无线链路管理方法及装置,以避免以波束为粒度进行无线资源控制测量评估并进行波束成形基站间移动切换所导致终端移动性能较差的情况。
根据本发明的一个实施例,提供了一种无线链路管理方法,包括:接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;根据所述RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估所述RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。
在一实施方式中,基于多个或者全部波束联合评估所述RRM测量结果包括:获取所述目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果;根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作。
在一实施方式中,根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作包括:将所述目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;按照预定采样周期并行过滤所述初步测量采样值,得到并行的中间测量采样值;采用预定义方式对所述并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将所述联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,所述 联合评估值和所述对比分析评估值具备相同的测量评估量纲。
在一实施方式中,在得到所述联合评估值和所述对比评估结果之后,还包括:按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果。
在一实施方式中,按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果包括:判断所述联合评估值和所述对比评估结果是否满足预定义的RRM测量事件,其中,所述RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;在判断结果为是或者满足预设条件集合的情况下,通过终端和主控锚点基站间的空中接口测量报告MR上报所述评估结果。
在一实施方式中,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束关联,或者,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束和另一确定TRP所辖的多个或者全部波束关联,以在RRM测量后产生多个并行的RRM测量采样结果。
根据本发明的另一个实施例,提供了一种无线链路管理方法,包括:对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估所述RRM测量结果;根据评估结果指示所述终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;或者,根据评估结果添加激活新的BF分流基站TRP进行新无线链路RL上的数据分流;或者,根据评估结果删除去激活已经配置的BF分流基站TRP进行去除停止旧RL上的数据分流。
在一实施方式中,基于多个或者全部波束联合评估所述RRM测量结果包括:获取终端发送的多个或者全部波束各自对应的RRM测量结果;根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作。
在一实施方式中,根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作包括:将所述终端发送的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;按照预定采样周 期并行过滤所述初步测量采样值,得到并行的中间测量采样值;采用预定义方式对所述并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将所述联合评估值和对比分析评估值按照预定不等式规则进行对比评估以得到对比评估结果,其中,所述联合评估值和所述对比分析评估值具备相同的测量评估量纲。
在一实施方式中,在得到所述联合评估值和所述对比评估结果之后,还包括:按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果。
在一实施方式中,按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果包括:判断所述联合评估值和所述对比评估结果是否满足预定义的RRM测量事件,其中,所述RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;在判断结果为是或者满足预设条件集合的情况下,通过分流基站和主控锚点基站间的地面接口测量报告MR上报所述评估结果。
在一实施方式中,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束关联,或者,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束和另一确定TRP所辖的多个或者全部波束关联,以在RRM测量后产生多个并行的RRM测量采样结果。
根据本发明的又一个实施例,提供了一种无线链路管理装置,应用于终端,其中,包括:接收模块,设置为接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;第一获取模块,设置为根据所述RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;第一管理模块,设置为基于多个或者全部波束联合评估所述RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。
在一实施方式中,所述第一管理模块包括:第一获取单元,设置为获取所述目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果;第一评估单元,设置为根据预定RRM测量结果评估模型对获取的 所述RRM测量结果进行联合评估操作。
在一实施方式中,所述第一评估单元包括:第一设置子单元,设置为将所述目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;第一获取子单元,设置为按照预定采样周期并行过滤所述初步测量采样值,得到并行的中间测量采样值;第一处理子单元,设置为采用预定义方式对所述并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将所述联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,所述联合评估值和所述对比分析评估值具备相同的测量评估量纲。
在一实施方式中,所述第一评估单元还包括:第一上报子单元,设置为在得到所述联合评估值和所述对比评估结果之后,按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果。
在一实施方式中,所述第一上报子单元包括:第一判断次子单元,设置为判断所述联合评估值和所述对比评估结果是否满足预定义的RRM测量事件,其中,所述RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;第一上报次子单元,设置为在判断结果为是或者满足预设条件集合的情况下,通过终端和主控锚点基站间的空中接口测量报告MR上报所述评估结果。
在一实施方式中,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束关联,或者,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束和另一确定TRP所辖的多个或者全部波束关联,以在RRM测量后产生多个并行的RRM测量采样结果。
根据本发明的再一个实施例,提供了一种无线链路管理装置,应用于分流基站,其中,包括:第二获取模块,设置为对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;第二管理模块,设置为基于多个或者全部波束联合评估所述RRM测量结果,并根据评估结果指示所述终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;或者,根据评估结果添加波束成形BF分流基站发送接收点TRP,并激活添加的所述TRP;或者,根据评估 结果删除去激活且已配置的波束成形BF分流基站发送接收点TRP。
在一实施方式中,所述第二管理模块包括:第二获取单元,设置为获取终端发送的多个或者全部波束各自对应的RRM测量结果;第二评估单元,设置为根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作。
在一实施方式中,所述第二评估单元包括:第二设置子单元,设置为将所述终端发送的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;第二获取子单元,设置为按照预定采样周期并行过滤所述初步测量采样值,得到并行的中间测量采样值;第二处理子单元,设置为采用预定义方式对所述并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将所述联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,所述联合评估值和所述对比分析评估值具备相同的测量评估量纲。
在一实施方式中,所述第二评估单元还包括:第二上报子单元,设置为在得到所述联合评估值和所述对比评估结果之后,按照RRM测量结果上报所述联合评估值和所述对比评估结果。
在一实施方式中,所述第二上报子单元包括:第二判断次子单元,设置为判断所述联合评估值和所述对比评估结果是否满足预定义的RRM测量事件,其中,所述RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;第二上报次子单元,设置为在判断结果为是或者满足预设条件集合的情况下,通过分流基站和主控锚点基站间的地面接口测量报告MR上报所述评估结果。
在一实施方式中,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束关联,或者,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束和另一确定TRP所辖的多个或者全部波束关联,以在RRM测量后产生多个并行的RRM测量采样结果。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;根据所述RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估所述RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。
在一实施方式中,存储介质还设置为存储用于执行以下步骤的程序代码:
对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估所述RRM测量结果,并根据评估结果指示所述终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;或者,根据评估结果添加激活新的BF分流基站TRP进行新无线链路RL上的数据分流;或者,根据评估结果删除去激活已经配置的BF分流基站TRP进行去除停止旧RL上的数据分流。
通过本发明实施例,接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;根据该RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。也就是说,在本发明实施例中,以每一TRP所辖的多个或者全部波束作为RRM测量粒度,因此,可以避免以单个波束为粒度进行无线资源控制测量评估并进行波束成形基站间移动切换所导致终端移动性能较差的情况,达到提高终端移动性能的效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是高频小基站波束成形操作示意图;
图2是高低频通信基站通过紧耦合做多连接的数据传输架构图;
图3是从“粗同步训练”到“细同步训练”的示意图;
图4是LTE RRM测量评估模型;
图5是UE在双连接数据传输中源/目标TRP间的切换示意图;
图6是根据本发明实施例的无线链路管理方法的流程图;
图7是根据本发明实施例的RRM测量评估模型示意图;
图8是根据本发明实施例的UE在双连接数据传输中源/目标TRP间的切换示意图;
图9是根据本发明实施例的另一UE在双连接数据传输中源/目标TRP间的切换示意图;
图10是根据本发明实施例的又一UE在双连接数据传输中源/目标TRP间的切换示意图;
图11是根据本发明实施例的无线链路管理装置的结构框图;
图12是根据本发明实施例的无线链路管理装置的结构框图(一);
图13是根据本发明实施例的无线链路管理装置的结构框图(二);
图14是根据本发明实施例的无线链路管理装置的结构框图(三);
图15是根据本发明实施例的无线链路管理装置的结构框图(四);
图16是根据本发明实施例的另一无线链路管理方法的流程图;
图17是根据本发明实施例的另一无线链路管理装置的结构框图;
图18是根据本发明实施例的另一无线链路管理装置的结构框图(一);
图19是根据本发明实施例的另一无线链路管理装置的结构框图(二);
图20是根据本发明实施例的另一无线链路管理装置的结构框图(三);
图21是根据本发明实施例的另一无线链路管理装置的结构框图(四)。
详述
下文中将参考附图并结合实施例来详细说明本申请。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第 一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种无线链路管理方法,图6是根据本发明实施例的无线链路管理方法的流程图,如图6所示,该流程包括如下步骤:
步骤S602,接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;
步骤S604,根据该RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;
步骤S606,基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。
在一实施方式中,在本实施例中,上述无线链路管理方法的应用场景包括但并不限于:波束成形基站间无线资源控制(Radio Resource Management简称为RRM)测量评估切换。在该应用场景下,终端UE接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;根据该RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。也就是说,在本实施例中,以每一TRP所辖的多个或者全部波束作为RRM测量粒度,因此,可以避免以单个波束为粒度进行无线资源控制测量评估并进行波束成形基站间移动切换所导致终端移动性能较差的情况,达到提高终端移动性能的效果。
下面结合示例,对本实施例进行举例说明。
本实施例的主要场景如图2所示:UE和非BF模式的主控锚点基站(可以是MeNB或者NR基站节点)已经建立了RRC信令连接SRB和若干个用 户面数据承载DRB(s)。主控锚点基站和若干个处于BF模式的分流基站TRP节点(主要是高频部署,但也不排除中低频基站施加BF操作的情况)通过通信基站间的标准化接口相互连接(可以是LTE X2或者NR Xnew接口),因此可以将DRB(s)用户数据进行上下行的旁路用户数据分流和并行的多连接数据传输。
在UE和任何BF模式分流基站TRP建立无线链路RL之前(即还没有进入到多连接数据传输模式),主控锚点基站通过RRC信令配置给UE相关的测量参数,UE基于这些参数,对目标BF分流基站TRP所辖的全部所有或者多个Beams(>1)进行下行空间/时频跟踪和同步和下行RRM测量,即UE先对Beams进行下行空间/时频同步训练和下行时频同步尝试,通过下行波束训练的过程,尝试找到目标TRP的公共下行信道/信号(包括下行空间/时频同步训练信号,BRS导频信号,系统广播消息信号等)的最佳发射角度和UE自己的最佳接收角度,继而进行下行RRM测量,获得各条目标服务Beams对应的精准RRM测量结果。
UE将各条目标服务Beams对应的RRM测量结果(如BRS导频的信号强度或者质量)采样记录下来,然后按照图7本发明实施例新的RRM测量评估模型进行评估操作,包括:
A1…An为UE针对同一目标TRP所辖的多个Beam1…Beam n测量得到的初步测量采样值(这些值可能是UE在“BF失步子状态”和/或“BF粗/细同步子状态”下测量得到的,因此有的可靠精准,有的不可靠不精准),B1…Bn为UE在一定的采样周期内,通过Layer 1Filtering模块层1过滤处理后而获得的中间测量采样值(此时可以过滤掉一些不可靠不精准的采样值),C1…Cf为UE在一定的采样周期内,通过Layer 3Filtering模块层3过滤处理后而获得的动态分析评估值。该层3过滤处理算法可以采取不同预定义的方式对输入的B1…Bn值进行各种算法加权处理,以体现反映出对应于Beam1…Beam n的整体综合评估值(如对BRS导频信号采样结果的加权平均强度或者质量值),C1…Cf对应于采取不同层3过滤处理算法获得的整体综合RRM评估结果。C1’…Cf’为对比分析评估值(和C有相同的测量评估量纲),D1…Df为UE在Measurement Report测量上报消息(MR) 中上报的RRM评估结果值,例如各种预定义的RRM事件等。本发明实施例的新RRM测量模型中,层3过滤处理模块和评估上报准则(Evaluation of reporting Criteria)模块的行为和相关参数使用方式都可以被NR新空口协议所标准化的,相关的配置参数来自RRC空口消息内的配置信令。
未来NR新协议可以为不同的移动切换目的,定义多种RRM测量事件类型,比如Event NR-A1事件表示:UE对目标BF分流基站TRP所辖的全部所有或者多个Beams(>1)的算术平均导频信号强度RSRP或者质量RSRQ的测量结果(已经经过了层3过滤的处理),和主控锚点基站通过RRC空口信令配置的门限值Thresh相比较,结果更好于一个神经缓冲偏移值Hys值,且持续超过一段事件触发时间TTT:time to trigger,这样UE触发本地产生NR-A1事件,并且MR上报给主控锚点基站;否则不能产生NR-A1事件。再比如Event NR-A2事件表示:UE对目标BF分流基站TRP所辖的全部所有或者多个Beams(>1)的平均导频信号强度RSRP或者质量RSRQ的测量结果(已经经过了层3过滤的处理),和源BF分流基站TRP所辖的全部所有或者多个Beams(>1)的平均导频信号强度RSRP或者质量RSRQ的测量结果相比较,结果更好且大于一个被配置的神经缓冲偏移值Hys,且持续超过一段事件触发时间TTT:time to trigger,这样UE触发本地产生NR-A2事件,触发MR上报给主控锚点基站;否则不能产生NR-A2事件。其他各种Event事件类型的含义可以根据需要,由NR新协议预定义。
上述新RRM测量模型和定义有如下特点:对于某种类型RRM测量事件,能关联到某一个确定TRP所辖的全部所有或者多个服务Beams(>1)和/或另外一个确定TRP所辖的全部所有或者多个服务Beams(>1),形成n对m的Beams RRM测量,滤波处理,对比评估配对Pair,并且能够按照不同的层3过滤处理算法,同时产生多个并行的RRM事件结果,以供主控锚点基站移动性判决综合参考使用,从而能更合理地开启,更新,停止UE多连接数据传输操作,并且实时获悉被服务UE和协作做紧耦合的BF分流基站TRP侧的无线信号覆盖强度/质量等整体综合情况。
在一个实施方式中,基于多个或者全部波束联合评估该RRM测量结果包括以下步骤:
步骤S11,获取该目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果;
步骤S12,根据预定RRM测量结果评估模型对获取的该RRM测量结果进行联合评估操作。
通过上述步骤S11~步骤S12,根据预定RRM测量结果评估模型对获取的多个或者全部波束各自对应的RRM测量结果进行联合评估操作,使得UE能够被添加或者切换到无线覆盖服务质量整体综合面上更好的目标TRP上。
在一个实施方式中,根据预定RRM测量结果评估模型对获取的该RRM测量结果进行联合评估操作包括以下步骤:
步骤S21,将该目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;
步骤S22,按照预定采样周期并行过滤该初步测量采样值,得到并行的中间测量采样值;
步骤S23,采用预定义方式对该并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将该联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,该联合评估值和该对比分析评估值具备相同的测量评估量纲。
通过上述步骤S21~步骤S23,得到单一串行输出的联合评估值,进一步使得UE能够被添加或者切换到无线覆盖服务质量整体综合面上更好的目标TRP上。
在一个实施方式中,在得到联合评估值和对比评估结果之后,还包括以下步骤:
步骤S31,按照RRM测量结果上报评估准则上报联合评估值和对比评估结果。
在一实施方式中,按照RRM测量结果上报评估准则上报联合评估值和对比评估结果包括以下步骤:
步骤S41,判断该联合评估值和该对比评估结果是否满足预定义的 RRM测量事件,其中,该RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;
步骤S42,在判断结果为是或者满足预设条件集合的情况下,通过终端和主控锚点基站间的空中接口测量报告MR上报该评估结果。
通过上述步骤S41~S42,在联合评估值和对比评估结果满足预定义的RRM测量事件时,通过终端和主控锚点基站间的空中接口测量报告MR上报该评估结果,使得基站能够进行一些预配置操作。
在一实施方式中,上述RRM测量事件与一个确定TRP所辖的多个或者全部波束和/或另一确定TRP所辖的多个或者全部关联,以在RRM测量后产生多个并行的RRM测量采样结果。
下面结合示例,对本实施例进行举例说明。
实施例1
如图8所示,主要是UE原本处于和MeNB的单连接数据传输模式,后来由于UE移动进入到TRP1的覆盖之内,TRP1被添加配置给UE,进入到和MeNB和TRP 1的双连接数据传输状态。
下面对图8进行详细说明。
某运营商部署和利用了高低频紧耦合做双连接DC操作,在低频主控锚点基站MeNB所在的某授权载波上有Pcell的服务宏小区覆盖,在远端通过X2接口,连接SeNB高频分流基站TRP节点,SeNB节点所在某高频授权载波上有1个TRP1和所辖的4个服务Beams的部署,用于热点区域容量增强。
起始,UE仅仅处于Pcell的覆盖之下,因此仅仅和MeNB形成单连接操作。
随着UE移动,UE逐渐靠近Pcell+TRP-Beams的公共覆盖区域,从而MeNB决定为UE配置相关的高频目标服务TRP1节点的测量参数,让UE对目标TRP1-Beams进行下行RRM测量,默认地UE需要先对目标TRP1-Beams进行下行空间/时频跟踪同步尝试。非BF低频MeNB节点和BF高频SeNB-TRP1节点和UE都支持本发明实施例的内容能力。本发明实 施例的实施步骤如下:
步骤101:主控锚点基站MeNB通过RRC消息RRC Connection Reconfiguration配置给UE按照本发明实施例的方式,进行高频目标TRP 1节点的Beams搜索,训练和跟踪和多个Beams的下行RRM测量。预定义Event NR-A1事件:UE对目标BF分流基站TRP所辖的全部所有或者多个Beams(>1)的算术平均导频信号强度RSRP或者质量RSRQ的测量结果(已经经过了层3过滤的处理),和主控锚点基站通过RRC空口信令配置的门限值Thresh相比较,结果更好于一个神经缓冲偏移值Hys值,且持续超过一段事件触发时间TTT:time to trigger,这样UE触发本地产生NR-A1事件,并且MR上报给主控锚点基站。
步骤102:UE基于MeNB配置的RRM测量参数进行Beams跟踪同步和测量,通过TRP1所辖的4个Beams发射的下行公共同步信号,进行Beam训练跟踪,经过一段时间的同步训练之后,UE获得和最佳Beam1的下行“BF细同步子状态”;UE同时通过TRP1所辖Beams发射的下行公共导频信号,进行下行RRM测量,经过一段时间窗内的测量之后,UE获得已经同步上的最佳Beam1和TRP1所辖其他的Beam2/3/4的下行RRM测量结果。
步骤103:UE按照本发明实施例的新RRM评估模型,对能够跟踪同步上的服务Beam1/2/3/4的RRM初步测量采样值结果,经过层1过滤处理后而获得中间测量采样值,再经过层3过滤处理后而获得动态分析评估值,再对Beam1/2/3/4对应的动态分析评估值进行算术平均获得TRP1的整体综合评估值,在TTT观测窗内,如果TRP1的整体综合评估值>对比分析评估值Thresh+神经缓冲偏移值Hys值,则触发NR-A1事件。UE随后通过RRC消息Measurement Report上报给MeNB NR-A1事件,内容还可以包括:UE和最佳Beam1下行“BF细同步子状态”,TRP1所辖最佳的Beam1下行RRM测量结果。
步骤104:MeNB基于UE上报的结果,获悉UE已经和TRP1-Beam1实现下行“BF细同步子状态”,并且TRP1的整体综合质量满足预设的条件要求,决定为被服务UE和SeNB-TRP1建立高低频DC双连接操作,从 而按照类似LTE已有的双连接操作建立流程,在TRP1-Beam1上建立RL,进行上下行数据块的分流传输。
步骤105:SeNB通过X2接口,接收到MeNB发来的高低频DC双连接操作添加请求消息SeNB Addition Request,和目标RL建立相关的配置信息,SeNB能够判断TRP1也已经和被服务UE在Beam1实现了上行“BF细同步子状态”并且上行RRM测量结果良好,因此SeNB通过X2接口,反馈给MeNB消息SeNB Addition Request Ack,同意进行高低频DC双连接建立操作,并且同意在TRP1-Beam1上建立RL。
步骤106:MeNB通过RRC消息RRC Connection Reconfiguration配置给UE进行高低频紧耦合DC双连接操作,此后UE可以同时从MeNB-RL和SeNB-TRP1-RL两条无线链路上进行上下行的用户业务传输数据。
实施例2
如图9所示,主要是UE原本处于MeNB和TRP 1某源Beam的双连接数据传输状态,后来由于UE移动,被切换到MeNB和TRP 2某Beam的双连接数据传输状态。
下面对图9进行详细说明。
某运营商部署和利用了高低频紧耦合做双连接DC操作,在低频主控锚点基站MeNB所在的某授权载波上有Pcell的服务宏小区覆盖,在远端通过X2接口,连接SeNB高频分流基站TRP1和TRP2两个节点,SeNB节点所在某高频授权载波上有1个TRP1和1个TRP2,分别辖有4个服务Beams的部署,用于热点区域容量增强。
起始,UE已经处于Pcell和TRP1的联合覆盖之下,因此已经和MeNB和TRP1形成双连接操作。随着UE移动,UE逐渐离开TRP1-Beams的覆盖区域,而靠近Pcell+TRP2-Beams的公共覆盖区域,从而MeNB决定为UE配置相关的高频目标服务TRP2节点的测量参数,让UE对目标TRP2-Beams也同时进行下行RRM测量,默认地UE除了对源TRP1-Beams维持下行空间/时频跟踪同步之外,还需要先对目标TRP2-Beams进行下行空间/时频跟踪同步尝试。非BF低频MeNB节点和BF高频SeNB-TRP1/2节点和UE都 支持本发明实施例的内容能力。本发明实施例的实施步骤如下:
步骤201:主控锚点基站MeNB通过RRC消息RRC Connection Reconfiguration配置给UE按照本发明实施例的方式,进行高频目标TRP 1/2节点的Beams搜索,训练和跟踪和多个Beams的下行RRM测量。预定义Event NR-A2事件:UE对目标BF分流基站TRP所辖的全部所有或者多个Beams(>1)的平均导频信号强度RSRP或者质量RSRQ的测量结果(已经经过了层3过滤的处理),和源BF分流基站TRP所辖的全部所有或者多个Beams(>1)的平均导频信号强度RSRP或者质量RSRQ的测量结果相比较,结果更好且大于一个被配置的神经缓冲偏移值Hys,且持续超过一段事件触发时间TTT:time to trigger,这样UE触发本地产生NR-A2事件,并且MR上报给主控锚点基站。
步骤202:UE基于MeNB配置的RRM测量参数进行Beams跟踪同步和测量,通过TRP2所辖的4个Beams发射的下行公共同步信号,进行Beam训练跟踪,经过一段时间的同步训练之后,UE获得和最佳TRP2-Beam2的下行“BF细同步子状态”;UE同时通过TRP2所辖Beams发射的下行公共导频信号,进行下行RRM测量,经过一段时间窗内的测量之后,UE获得已经同步上的最佳TRP2-Beam2和TRP2所辖其他的Beam1/3/4的下行RRM测量结果。
步骤203:UE按照本发明实施例的新RRM评估模型,对能够跟踪同步上的TRP1/2各自的服务Beam1/2/3/4的RRM初步测量采样值结果,经过各自层1过滤处理后而获得各自的中间测量采样值,再经过层3过滤处理后而获得各自的动态分析评估值,再对Beam1/2/3/4对应的动态分析评估值进行各自的算术平均获得TRP1和TRP2各自的整体综合评估值,在TTT观测窗内,如果TRP2的整体综合评估值>TRP1的整体综合评估值+神经缓冲偏移值Hys值,则触发NR-A2事件。UE随后通过RRC消息Measurement Report上报给MeNB NR-A2事件,内容还可以包括:UE和目标最佳TRP2-Beam2的下行“BF细同步子状态”,TRP2所辖最佳的Beam2下行RRM测量结果。
步骤204:MeNB基于UE上报的结果,获悉UE已经和目标 TRP2-Beam2实现下行“BF细同步子状态”,并且TRP2的整体综合质量满足预设的条件要求,决定为被服务UE和SeNB-TRP2建立高低频DC双连接操作,同时删除和源TRP1建立的旧RL,从而按照类似LTE已有的双连接操作修改流程,在TRP2-Beam2上建立新RL,继续进行上下行数据块的分流传输。
步骤205:SeNB通过X2接口,接收到MeNB发来的高低频DC双连接操作修改请求消息SeNB Modification Request,和目标新RL建立相关的配置信息,SeNB能够判断TRP2也已经和被服务UE在Beam2实现了上行“BF细同步子状态”并且上行RRM测量结果良好,因此SeNB通过X2接口,反馈给MeNB消息SeNB Modification Request Ack,同意进行高低频DC双连接修改操作,并且同意在TRP2-Beam2上建立新RL。
步骤206:MeNB通过RRC消息RRC Connection Reconfiguration配置给UE进行高低频紧耦合DC双连接操作,此后UE可以继续从MeNB-RL和SeNB-TRP2-RL两条无线链路上进行上下行的用户业务传输数据,原来的SeNB-TRP1-RL被删除,不能再进行数据分流传输贡献。
实施例3
如图10所示,UE原本处于NR(m)BS和TRP 1某源Beam的双连接数据传输状态,后来由于UE移动,被切换到NR(m)BS和TRP 2某Beam双连接数据传输状态。
下面对图10进行详细说明。
某运营商部署和利用了高低频紧耦合做双连接DC操作,在低频主控锚点基站NR(m)BS所在的某授权载波上有Pcell的服务宏小区覆盖,在远端通过Xnew接口,连接NR(s)BS高频分流基站TRP1和TRP2两个节点,NR(s)BS节点所在某高频授权载波上有1个TRP1和1个TRP2,分别辖有4个服务Beams的部署,用于热点区域容量增强。
起始,UE已经处于Pcell和TRP1的联合覆盖之下,因此已经和NR(m)BS和TRP1形成双连接操作。随着UE移动,UE逐渐离开TRP1-Beams的覆盖区域,而靠近Pcell+TRP2-Beams的公共覆盖区域,从而NR(m)BS 决定为UE配置相关的高频目标服务TRP2节点的测量参数,让UE对目标TRP2-Beams也同时进行下行RRM测量,默认地UE除了对源TRP1-Beams维持下行空间/时频跟踪同步之外,还需要先对目标TRP2-Beams进行下行空间/时频跟踪同步尝试。非BF低频NR(m)BS节点和BF高频NR(s)BS-TRP1/2节点和UE都支持本发明实施例的内容能力。本发明实施例的实施步骤如下:
步骤301:主控锚点基站NR(m)BS通过RRC消息RRC Connection Reconfiguration配置给UE按照本发明实施例的方式,进行高频目标TRP1/2节点的Beams搜索,训练和跟踪和多个Beams的下行RRM测量。预定义Event NR-A3事件:UE对目标BF分流基站TRP所辖的全部所有或者多个Beams(>1)的平均导频信号强度RSRP或者质量RSRQ的测量结果(已经经过了层3过滤的处理)比某个配置门限Thresh1更好,且大于被配置的神经缓冲偏移值Hys1,同时源BF分流基站TRP所辖的全部所有或者多个Beams(>1)的平均导频信号强度RSRP或者质量RSRQ的测量结果比另外某个配置门限Thresh2更差,且大于被配置的神经缓冲偏移值Hys2,且都各自持续超过一段事件触发时间TTT:time to trigger,这样UE触发本地产生NR-A3事件,并且MR上报给主控锚点基站。
步骤302:UE基于NR(m)BS配置的RRM测量参数进行Beams跟踪同步和测量,通过TRP1/2各自所辖的4个Beams发射的下行公共同步信号,进行Beam训练跟踪,经过一段时间的同步训练之后,UE获得和最佳TRP2-Beam3的下行“BF细同步子状态”;UE同时通过TRP1/2各自所辖Beams发射的下行公共导频信号,进行下行RRM测量,经过一段时间窗内的测量之后,UE获得已经同步上的最佳TRP2-Beam3和TRP2所辖其他的Beam1/2/4的下行RRM测量结果。
步骤303:UE按照本发明实施例的新RRM评估模型,对能够跟踪同步上的TRP1/2各自的服务Beam1/2/3/4的RRM初步测量采样值结果,经过各自层1过滤处理后而获得各自的中间测量采样值,再经过层3过滤处理后而获得各自的动态分析评估值,再对Beam1/2/3/4对应的动态分析评估值进行各自的加权平均(不同Beam不同的权重)获得TRP1和TRP2各自的整体 综合评估值,在TTT观测窗内,如果TRP2的整体综合评估值>门限Thresh1+神经缓冲偏移值Hys1值,同时TRP1的整体综合评估值<门限Thresh2-神经缓冲偏移值Hys2值,则触发NR-A3事件。UE随后通过RRC消息Measurement Report上报给NR(m)BS NR-A3事件,内容还可以包括:UE和目标最佳TRP2-Beam3的下行“BF细同步子状态”,TRP2所辖最佳的Beam3下行RRM测量结果。
步骤304:NR(m)BS基于UE上报的结果,获悉UE已经和目标TRP2-Beam3实现下行“BF细同步子状态”,并且TRP1/2各自的整体综合质量满足预设的条件要求,决定为被服务UE和NR(s)BS-TRP2建立高低频DC双连接操作,同时删除和源TRP1建立的旧RL,从而按照NR双连接操作修改流程,在TRP2-Beam3上建立新RL,继续进行上下行数据块的分流传输。
步骤305:NR(s)BS通过Xnew接口,接收到NR(m)BS发来的高低频DC双连接操作修改请求消息NR BS Modification Request,和目标新RL建立相关的配置信息,NR(s)BS能够判断TRP2也已经和被服务UE在Beam3实现了上行“BF细同步子状态”并且上行RRM测量结果良好,因此NR(s)BS通过Xnew接口,反馈给NR(m)BS消息NR BS Modification Request Ack,同意进行高低频DC双连接修改操作,并且同意在TRP2-Beam3上建立新RL。
步骤306:NR(m)BS通过RRC消息RRC Connection Reconfiguration配置给UE进行高低频紧耦合DC双连接操作,此后UE可以继续从NR(m)BS-RL和NR(s)BS-TRP2-RL两条无线链路上进行上下行的用户业务传输数据,原来的NR(s)BS-TRP1-RL被删除,不能再进行数据分流传输贡献。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本 发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种无线链路管理装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图11是根据本发明实施例的无线链路管理装置的结构框图,如图11所示,该装置包括:
1)接收模块112,设置为接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;
2)第一获取模块114,设置为根据该RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;
3)第一管理模块116,设置为基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。
在本实施例中,上述无线链路管理装置的应用场景包括但并不限于:波束成形基站间无线资源控制(Radio Resource Management简称为RRM)测量评估切换。在该应用场景下,终端UE接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;根据该RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。也就是说,在本实施例中,以每一TRP所辖的多个或者全部波束作为RRM测量粒度,因此,可以避免以单个波束为粒度进行无线资源控制测量评估并进行波束成形基站间移动切换所导致终端移动性能较差的情况,达到提高终端移动性能的效果。
图12是根据本发明实施例的无线链路管理装置的结构框图(一),如图12所示,第一管理模块116包括:
1)第一获取单元122,设置为获取该目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果;
2)第一评估单元124,设置为根据预定RRM测量结果评估模型对获取的该RRM测量结果进行联合评估操作。
通过图12所示装置,根据预定RRM测量结果评估模型对获取的多个或者全部波束各自对应的RRM测量结果进行联合评估操作,使得UE能够被添加或者切换到无线覆盖服务质量整体综合面上更好的目标TRP上。
图13是根据本发明实施例的无线链路管理装置的结构框图(二),如图13所示,第一评估单元124包括:
1)第一设置子单元132,设置为将该目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;
2)第一获取子单元134,设置为按照预定采样周期并行过滤该初步测量采样值,得到并行的中间测量采样值;
3)第一处理子单元136,设置为采用预定义方式对该并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将该联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,该联合评估值和该对比分析评估值具备相同的测量评估量纲。
通过图13所示装置,得到单一串行输出的联合评估值,进一步使得UE能够被添加或者切换到无线覆盖服务质量整体综合面上更好的目标TRP上。
图14是根据本发明实施例的无线链路管理装置的结构框图(三),如图14所示,第一评估单元124还包括:
1)第一上报子单元142,设置为在得到该联合评估值和对比评估结果之后,按照RRM测量结果上报评估准则上报联合评估值和对比评估结果。
图15是根据本发明实施例的无线链路管理装置的结构框图(四),如 图15所示,第一上报子单元142包括:
1)第一判断次子单元152,设置为判断该联合评估值和对比评估结果是否满足预定义的RRM测量事件,其中,该RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;
2)第一上报次子单元154,设置为在判断结果为是或者满足预设条件集合的情况下,通过终端和主控锚点基站间的空中接口测量报告MR上报该评估结果。
通过图15所示装置,在联合评估值和对比评估结果满足预定义的RRM测量事件时,通过终端和主控锚点基站间的空中接口测量报告MR上报该评估结果,使得基站能够进行一些预配置操作。
在一实施方式中,上述RRM测量事件与一个确定TRP所辖的多个或者全部波束和/或另一确定TRP所辖的多个或者全部关联,以在RRM测量后产生多个并行的RRM测量采样结果。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
在本实施例中还提供了一种无线链路管理方法,图16是根据本发明实施例的另一无线链路管理方法流程图,如图16所示,该流程包括如下步骤:
步骤S1602,对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;
步骤S1604,基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果指示该终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;或者,
根据评估结果添加波束成形BF分流基站发送接收点TRP,并激活添加的该TRP;或者,根据评估结果删除去激活且已配置的波束成形BF分流基站发送接收点TRP。
在本实施例中,上述无线链路管理方法的应用场景包括但并不限于:波束成形基站间无线资源控制(Radio Resource Management简称为RRM)测量评估切换。在该应用场景下,分流基站对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果指示该终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;或者,根据评估结果添加波束成形BF分流基站发送接收点TRP,并激活添加的该TRP;或者,根据评估结果删除去激活且已配置的波束成形BF分流基站发送接收点TRP。也就是说,在本实施例中,以每一TRP所辖的多个或者全部波束作为RRM测量粒度,因此,可以避免以单个波束为粒度进行无线资源控制测量评估并进行波束成形基站间移动切换所导致终端移动性能较差的情况,达到提高终端移动性能的效果。
在一个实施方式中,基于多个或者全部波束联合评估该RRM测量结果包括以下步骤:
步骤S51,获取终端发送的多个或者全部波束各自对应的RRM测量结果;
步骤S52,根据预定RRM测量结果评估模型对获取的该RRM测量结果进行联合评估操作。
通过上述步骤S51~S52,根据预定RRM测量结果评估模型对获取的多个或者全部波束各自对应的RRM测量结果进行联合评估操作,使得UE能够被添加或者切换到无线覆盖服务质量整体综合面上更好的目标TRP上。
在一个实施方式中,根据预定RRM测量结果评估模型对获取的该RRM测量结果进行联合评估操作包括以下步骤:
步骤S61,将该终端发送的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;
步骤S62,按照预定采样周期并行过滤该初步测量采样值,得到并行的中间测量采样值;
步骤S63,采用预定义方式对该并行的中间测量采样值进行加权平均 处理,得到单一串行输出的联合评估值,并将该联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,该联合评估值和该对比分析评估值具备相同的测量评估量纲。
通过上述步骤S61~步骤S63,得到单一串行输出的联合评估值,进一步使得UE能够被添加或者切换到无线覆盖服务质量整体综合面上更好的目标TRP上。
在一个实施方式中,在得到该联合评估值和对比评估结果之后,还包括步骤S71,按照RRM测量结果上报联合评估值和对比评估结果。
在一个实施方式中,按照RRM测量结果上报评估准则上报联合评估值和对比评估结果包括以下步骤:
步骤S81,判断该联合评估值和对比评估结果是否满足预定义的RRM测量事件,其中,该RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;
步骤S82,在判断结果为是或者满足预设条件集合的情况下,通过分流基站和主控锚点基站间的地面接口测量报告MR上报该评估结果。
通过上述步骤S81~S82,在联合评估值和对比评估结果满足预定义的RRM测量事件时,通过分流基站和主控锚点基站间的地面接口测量报告MR上报该评估结果,使得基站能够进行一些预配置操作。
在一实施方式中,RRM测量事件与一个确定TRP所辖的多个或者全部波束和/或另一确定TRP所辖的多个或者全部关联,以在RRM测量后产生多个并行的RRM测量采样结果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例4
在本实施例中还提供了一种无线链路管理装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图17是根据本发明实施例的另一无线链路管理装置的结构框图,如图17所示,该装置包括:
1)第二获取模块172,设置为对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;
2)第二管理模块174,设置为基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果指示该终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;或者,根据评估结果添加波束成形BF分流基站发送接收点TRP,并激活添加的该TRP;或者,根据评估结果删除去激活且已配置的波束成形BF分流基站发送接收点TRP。
在本实施例中,上述无线链路管理装置的应用场景包括但并不限于:波束成形基站间无线资源控制(Radio Resource Management简称为RRM)测量评估切换。在该应用场景下,分流基站对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;基于多个或者全部波束联合评估该RRM测量结果,并根据评估结果指示该终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;或者,根据评估结果添加激活新的BF分流基站TRP进行新无线链路RL上的数据分流;或者,根据评估结果删除去激活已经配置的BF分流基站TRP进行去除停止旧RL上的数据分流。也就是说,在本实施例中,以每一TRP所辖的多个或者全部波束作为RRM测量粒度,因此,可以避免以单个波束为粒度进行无线资源控制测量评估并进行波束成形基站间移动切换所导致终端移动性能较差的情况,达到提高终端移动性能的效果。
图18是根据本发明实施例的另一无线链路管理装置的结构框图(一), 如图18所示,第二管理模块174包括:
1)第二获取单元182,设置为获取终端发送的多个或者全部波束各自对应的RRM测量结果;
2)第二评估单元184,设置为根据预定RRM测量结果评估模型对获取的该RRM测量结果进行联合评估操作。
通过图18所示的装置,根据预定RRM测量结果评估模型对获取的多个或者全部波束各自对应的RRM测量结果进行联合评估操作,使得UE能够被添加或者切换到无线覆盖服务质量整体综合面上更好的目标TRP上。
图19是根据本发明实施例的另一无线链路管理装置的结构框图(二),如图19所示,第二评估单元184包括:
1)第二设置子单元192,设置为将该终端发送的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;
2)第二获取子单元194,设置为按照预定采样周期并行过滤该初步测量采样值,得到并行的中间测量采样值;
3)第二处理子单元196,设置为采用预定义方式对该并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将该联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,该联合评估值和该对比分析评估值具备相同的测量评估量纲。
通过图19所示的装置,得到单一串行输出的联合评估值,进一步使得UE能够被添加或者切换到无线覆盖服务质量整体综合面上更好的目标TRP上。
图20是根据本发明实施例的另一无线链路管理装置的结构框图(三),如图20所示,第二评估单元184还包括:
1)第二上报子单元202,设置为在得到该联合评估值和该对比评估结果之后,按照RRM测量结果上报评估准则上报联合评估值和对比评估结果。
图21是根据本发明实施例的另一无线链路管理装置的结构框图(四), 如图21所示,第二上报子单元202包括:
1)第二判断次子单元212,设置为判断该联合评估值和对比评估结果是否满足预定义的RRM测量事件,其中,该RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;
2)第二上报次子单元214,设置为在判断结果为是或者满足预设条件集合的情况下,通过分流基站和主控锚点基站间的地面接口测量报告MR上报该评估结果。
通过图21所示的装置,在联合评估值和对比评估结果满足预定义的RRM测量事件时,通过分流基站和主控锚点基站间的地面接口测量报告MR上报该评估结果,使得基站能够进行一些预配置操作。
在一实施方式中,上述RRM测量事件与一个确定TRP所辖的多个或者全部波束和/或另一确定TRP所辖的多个或者全部关联,以在RRM测量后产生多个并行的RRM测量采样结果。
实施例5
本发明的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;
S2,根据所述RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;
S3,基于多个或者全部波束联合评估所述RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。
在一实施方式中,存储介质还被设置为存储用于执行以下步骤的程序代码:
S4,对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;
S5,基于多个或者全部波束联合评估所述RRM测量结果,并根据评估 结果指示所述终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;根据评估结果添加波束成形BF分流基站发送接收点TRP,并激活添加的所述TRP;或者,根据评估结果删除去激活且已配置的波束成形BF分流基站发送接收点TRP。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在本实施例中,处理器根据存储介质中已存储的程序代码执行上述步骤S1、S2以及S3。
在本实施例中,处理器根据存储介质中已存储的程序代码执行上述步骤S4、S5。
本实施例中的示例可以参考上述实施例及实施方式中所描述的示例,本实施例在此不再赘述。
上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
在本发明实施例中,以每一TRP所辖的多个或者全部波束作为RRM测量粒度,因此,可以避免以单个波束为粒度进行无线资源控制测量评估并进 行波束成形基站间移动切换所导致终端移动性能较差的情况,达到提高终端移动性能的效果。

Claims (24)

  1. 一种无线链路管理方法,包括:
    接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;
    根据所述RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;
    基于多个或者全部波束联合评估所述RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。
  2. 根据权利要求1所述的方法,其中,所述基于多个或者全部波束联合评估所述RRM测量结果包括:
    获取所述目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果;
    根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作。
  3. 根据权利要求2所述的方法,其中,所述根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作包括:
    将所述目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;
    按照预定采样周期并行过滤所述初步测量采样值,得到并行的中间测量采样值;
    采用预定义方式对所述并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将所述联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,所述联合评估值和所述对比分析评估值具备相同的测量评估量纲。
  4. 根据权利要求3所述的方法,其中,在得到所述联合评估值和所述对比评估结果之后,还包括:
    按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果。
  5. 根据权利要求4所述的方法,其中,所述按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果包括:
    判断所述联合评估值和所述对比评估结果是否满足预定义的RRM测量事件,其中,所述RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;
    在判断结果为是或者满足预设条件集合的情况下,通过终端和主控锚点基站间的空中接口测量报告MR上报所述评估结果。
  6. 根据权利要求5所述的方法,其中,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束关联,或者,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束和另一确定TRP所辖的多个或者全部波束关联,以在RRM测量后产生多个并行的RRM测量采样结果。
  7. 一种无线链路管理方法,包括:
    对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;
    基于多个或者全部波束联合评估所述RRM测量结果;
    根据评估结果指示所述终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;或者,
    根据评估结果添加波束成形BF分流基站发送接收点TRP,并激活添加的所述TRP;或者,
    根据评估结果删除去激活且已配置的波束成形BF分流基站发送接收点TRP。
  8. 根据权利要求7所述的方法,其中,所述基于多个或者全部波束联合评估所述RRM测量结果包括:
    获取终端发送的多个或者全部波束各自对应的RRM测量结果;
    根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作。
  9. 根据权利要求8所述的方法,其中,所述根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作包括:
    将所述终端发送的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;
    按照预定采样周期并行过滤所述初步测量采样值,得到并行的中间测量采样值;
    采用预定义方式对所述并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将所述联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,所述联合评估值和所述对比分析评估值具备相同的测量评估量纲。
  10. 根据权利要求9所述的方法,其中,在得到所述联合评估值和所述对比评估结果之后,还包括:
    按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果。
  11. 根据权利要求10所述的方法,其中,所述按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果包括:
    判断所述联合评估值和所述对比评估结果是否满足预定义的RRM测量事件,其中,所述RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;
    在判断结果为是或者满足预设条件集合的情况下,通过分流基站和主控锚点基站间的地面接口测量报告MR上报所述评估结果。
  12. 根据权利要求11所述的方法,其中,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束关联,或者,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束和另一确定TRP所辖的多个或者全部波束关联,以在RRM测量后产生多个并行的RRM测量采样结果。
  13. 一种无线链路管理装置,应用于终端,包括:
    接收模块,设置为接收基站通过无线资源控制RRC信令下发的无线资源管理RRM测量参数;
    第一获取模块,设置为根据所述RRM测量参数,对目标波束成形BF分流基站发送接收点TRP所辖的多个或者全部波束进行RRM测量,获得RRM测量结果;
    第一管理模块,设置为基于多个或者全部波束联合评估所述RRM测量结果,并根据评估结果从源BF分流基站TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP。
  14. 根据权利要求13所述的装置,其中,所述第一管理模块包括:
    第一获取单元,设置为获取所述目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果;
    第一评估单元,设置为根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作。
  15. 根据权利要求14所述的装置,其中,所述第一评估单元包括:
    第一设置子单元,设置为将所述目标BF分流基站TRP所辖的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;
    第一获取子单元,设置为按照预定采样周期并行过滤所述初步测量采样值,得到并行的中间测量采样值;
    第一处理子单元,设置为采用预定义方式对所述并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将所述联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,所述联合评估值和所述对比分析评估值具备相同的测量评估量纲。
  16. 根据权利要求15所述的装置,其中,所述第一评估单元还包括:
    第一上报子单元,设置为在得到所述联合评估值和所述对比评估结果之后,按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果。
  17. 根据权利要求16所述的装置,其中,所述第一上报子单元包括:
    第一判断次子单元,设置为判断所述联合评估值和所述对比评估结果是否满足预定义的RRM测量事件,其中,所述RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;
    第一上报次子单元,设置为在判断结果为是或者满足预设条件集合的情况下,通过终端和主控锚点基站间的空中接口测量报告MR上报所述评估结果。
  18. 根据权利要求17所述的装置,其中,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束关联,或者,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束和另一确定TRP所辖的多个或者全部波束关联,以在RRM测量后产生多个并行的RRM测量采样结果。
  19. 一种无线链路管理装置,应用于分流基站,包括:
    第二获取模块,设置为对终端发送的多个或者全部波束进行RRM测量,获得RRM测量结果;
    第二管理模块,设置为基于多个或者全部波束联合评估所述RRM测量结果;
    根据评估结果指示所述终端从源波束成形BF分流基站发送接收点TRP切换至目标BF分流基站TRP或者额外添加目标BF分流基站TRP;或者,
    根据评估结果添加波束成形BF分流基站发送接收点TRP,并激活添加的所述TRP;或者,
    根据评估结果删除去激活且已配置的波束成形BF分流基站发送接收点TRP。
  20. 根据权利要求19所述的装置,其中,所述第二管理模块包括:
    第二获取单元,设置为获取终端发送的多个或者全部波束各自对应的RRM测量结果;
    第二评估单元,设置为根据预定RRM测量结果评估模型对获取的所述RRM测量结果进行联合评估操作。
  21. 根据权利要求20所述的装置,其中,所述第二评估单元包括:
    第二设置子单元,设置为将所述终端发送的多个或者全部波束各自对应的RRM测量结果作为并行的初步测量采样值;
    第二获取子单元,设置为按照预定采样周期并行过滤所述初步测量采样 值,得到并行的中间测量采样值;
    第二处理子单元,设置为采用预定义方式对所述并行的中间测量采样值进行加权平均处理,得到单一串行输出的联合评估值,并将所述联合评估值和对比分析评估值按照预设不等式规则进行对比评估以得到对比评估结果,其中,所述联合评估值和所述对比分析评估值具备相同的测量评估量纲。
  22. 根据权利要求21所述的装置,其中,所述第二评估单元还包括:
    第二上报子单元,设置为在得到所述联合评估值和所述对比评估结果之后,按照RRM测量结果上报评估准则上报所述联合评估值和所述对比评估结果。
  23. 根据权利要求22所述的装置,其中,所述第二上报子单元包括:
    第二判断次子单元,设置为判断所述联合评估值和所述对比评估结果是否满足预定义的RRM测量事件,其中,所述RRM测量事件是新无线接入系统NR空口协议所标准化定义的事件;
    第二上报次子单元,设置为在判断结果为是或者满足预设条件集合的情况下,通过分流基站和主控锚点基站间的地面接口测量报告MR上报所述评估结果。
  24. 根据权利要求23所述的装置,其中,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束关联,或者,所述RRM测量事件与一个确定TRP所辖的多个或者全部波束和另一确定TRP所辖的多个或者全部波束关联,以在RRM测量后产生多个并行的RRM测量采样结果。
PCT/CN2017/094147 2016-08-10 2017-07-24 无线链路管理方法及装置 WO2018028423A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17838553.0A EP3522603B1 (en) 2016-08-10 2017-07-24 Method and apparatus for managing radio link
US16/273,049 US10959149B2 (en) 2016-08-10 2019-02-11 Method and apparatus for managing radio link

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610654549.1 2016-08-10
CN201610654549.1A CN107734535A (zh) 2016-08-10 2016-08-10 无线链路管理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/273,049 Continuation US10959149B2 (en) 2016-08-10 2019-02-11 Method and apparatus for managing radio link

Publications (1)

Publication Number Publication Date
WO2018028423A1 true WO2018028423A1 (zh) 2018-02-15

Family

ID=61162738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094147 WO2018028423A1 (zh) 2016-08-10 2017-07-24 无线链路管理方法及装置

Country Status (4)

Country Link
US (1) US10959149B2 (zh)
EP (1) EP3522603B1 (zh)
CN (2) CN107734535A (zh)
WO (1) WO2018028423A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970719A (zh) * 2020-08-03 2020-11-20 武汉绿色网络信息服务有限责任公司 一种5g nsa网络下锚点站质量评估的方法和装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018027936A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Uplink multiple-input multiple-output (mimo) scheduling using beamformed reference signals
US10736010B2 (en) * 2016-10-07 2020-08-04 Qualcomm Incorporated Reference beam for event trigger in mobility management
CN108616969B (zh) * 2016-12-20 2020-07-21 华为技术有限公司 数据发送方法、数据接收方法及设备
EP3557908B1 (en) * 2017-03-31 2023-05-24 CloudMinds (Shanghai) Robotics Co., Ltd. Cell handover method and apparatus
US11223967B2 (en) * 2017-04-18 2022-01-11 Qualcomm Incorporated Techniques to provide energy efficient radio resource management
CN109104227A (zh) * 2017-06-20 2018-12-28 索尼公司 用于无线通信系统的电子设备、方法和存储介质
WO2019035752A1 (en) * 2017-08-17 2019-02-21 Telefonaktiebolaget Lm Ericsson (Publ) RADIO LINK MANAGEMENT IN A DIVIDED RAN ARCHITECTURE
EP3783997A4 (en) * 2018-04-18 2022-01-05 Ntt Docomo, Inc. USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
WO2019242015A1 (en) * 2018-06-22 2019-12-26 Nokia Shanghai Bell Co., Ltd. Methods, devices and computer readable medium for allocating measurement resources
CN111200486B (zh) * 2018-11-19 2021-08-27 华为技术有限公司 无线通信的方法和装置
CN111417145B (zh) * 2019-01-04 2021-11-30 大唐移动通信设备有限公司 一种信息处理的方法及装置
EP3949183A1 (en) * 2019-03-28 2022-02-09 Nokia Technologies Oy Apparatus, method and computer program
CN111757336B (zh) * 2019-03-28 2022-08-09 华为技术有限公司 覆盖调整方法、装置及系统
KR20210119839A (ko) * 2020-03-25 2021-10-06 삼성전자주식회사 외부로부터의 통신 신호를 측정하는 전자 장치 및 그 동작 방법
US11689977B2 (en) 2020-04-20 2023-06-27 Samsung Electronics Co., Ltd. Method and system to handle handover procedure in multi TRP system
CN114071690B (zh) * 2020-08-06 2024-04-26 维沃移动通信有限公司 信息上报方法、信息接收方法及相关设备
US11690115B1 (en) * 2020-09-22 2023-06-27 Sprint Spectrum Llc Dual-connectivity anchor-carrier selection based on transmission-mode support
EP4374609A1 (en) * 2021-07-20 2024-05-29 LG Electronics Inc. Mobility enhancement in wireless communication system
CN113938964B (zh) * 2021-09-15 2023-06-06 中国联合网络通信集团有限公司 一种终端切换方法、装置、存储介质及电子设备
KR102517301B1 (ko) * 2021-12-06 2023-04-03 주식회사 블랙핀 비지상 네트워크에서 위치 기반으로 측정 결과 보고를 트리거하는 하는 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300760A (zh) * 2004-12-03 2008-11-05 美商内数位科技公司 多小区无线网络中改善无线效能方法
CN105052199A (zh) * 2012-08-28 2015-11-11 交互数字专利控股公司 用于使用主波束通信链路切换的方法
CN105830483A (zh) * 2014-09-23 2016-08-03 华为技术有限公司 波束配置方法、基站及用户设备
KR20160094337A (ko) * 2015-01-30 2016-08-09 한국전자통신연구원 무선 자원 관리의 측정을 위한 방법 및 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413626B1 (ko) * 2001-12-28 2004-01-03 에스케이 텔레콤주식회사 무선통신 시스템에서 단말국 속도와 셀 크기에 따른핸드오버 제어방법
ES2439468T3 (es) * 2005-03-31 2014-01-23 Telecom Italia S.P.A. Sistema de antenas distribuidas
CN102480756B (zh) * 2010-11-29 2016-08-03 中兴通讯股份有限公司 多点协作传输的配置方法和系统
KR101957783B1 (ko) * 2012-09-12 2019-03-13 삼성전자주식회사 무선 통신 시스템에서 핸드오버를 위한 장치 및 방법
EP3032872B1 (en) * 2013-08-08 2018-07-04 LG Electronics Inc. Method and apparatus for steering traffic in wireless communication system
US10512008B2 (en) * 2014-01-17 2019-12-17 Idac Holdings, Inc. 3GPP MMW access link system architecture
US9729219B2 (en) * 2014-02-06 2017-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Methods for signaling and using beam forming quality indicators
KR102169662B1 (ko) * 2014-03-10 2020-10-23 삼성전자주식회사 무선 통신 시스템에서 빔 결정 장치 및 방법
CN105101290B (zh) * 2014-05-15 2019-07-19 中兴通讯股份有限公司 评估结果上报方法、评估结果获取方法、装置及系统
JP2017535211A (ja) * 2014-09-23 2017-11-24 華為技術有限公司Huawei Technologies Co.,Ltd. 端末、基地局、基地局コントローラ、およびミリメートル波のセルラー通信方法
WO2016048214A1 (en) * 2014-09-26 2016-03-31 Telefonaktiebolaget L M Ericsson (Publ) Signaling for interference reduction
US10524150B2 (en) * 2016-01-14 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for generating cell measurement information in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300760A (zh) * 2004-12-03 2008-11-05 美商内数位科技公司 多小区无线网络中改善无线效能方法
CN105052199A (zh) * 2012-08-28 2015-11-11 交互数字专利控股公司 用于使用主波束通信链路切换的方法
CN105830483A (zh) * 2014-09-23 2016-08-03 华为技术有限公司 波束配置方法、基站及用户设备
KR20160094337A (ko) * 2015-01-30 2016-08-09 한국전자통신연구원 무선 자원 관리의 측정을 위한 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522603A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970719A (zh) * 2020-08-03 2020-11-20 武汉绿色网络信息服务有限责任公司 一种5g nsa网络下锚点站质量评估的方法和装置
CN111970719B (zh) * 2020-08-03 2024-01-30 武汉绿色网络信息服务有限责任公司 一种5g nsa网络下锚点站质量评估的方法和装置

Also Published As

Publication number Publication date
US20190313314A1 (en) 2019-10-10
CN111510981B (zh) 2021-10-22
US10959149B2 (en) 2021-03-23
EP3522603B1 (en) 2023-03-29
CN111510981A (zh) 2020-08-07
EP3522603A1 (en) 2019-08-07
CN107734535A (zh) 2018-02-23
EP3522603A4 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2018028423A1 (zh) 无线链路管理方法及装置
US9967801B2 (en) Method and apparatus for receiving authorization information on network slice
WO2018028426A1 (zh) 波束管理方法及装置
JP6710307B2 (ja) モバイル通信ネットワークにおけるハンドオーバを制御する方法並びに当該方法を実装した装置及びシステム
TWI653847B (zh) 支援移動性之方法以及使用者設備
US10104566B2 (en) Reporting WiFi channel measurements to a cellular radio network
US9883431B2 (en) High speed handovers in a wireless network
KR102020350B1 (ko) 무선이동통신시스템에서 d2d 통신을 지원/사용하는 단말기의 이동성을 지원하는 방안
US20160095004A1 (en) Rrc re-establishment on secondary enodeb for dual connectivity
KR101613419B1 (ko) 무선 링크 장애 동안 통화 중단 회피
EP3497972B1 (en) Telecommunications system, terminal device, infrastructure equipment and methods
US11653246B2 (en) Method and device for configuring and reporting measurement for LTE/NR interworking in wireless communication system
CN104956731A (zh) 用于在移动通信系统中针对具有小小区服务区域的小区控制移动性的方法和装置
KR20150119327A (ko) Lte 네트워크에서의 이동 단말 핸드오버
WO2021219120A1 (zh) 一种通信方法及装置
US20230308981A1 (en) Method for sending handover success report, terminal device, and network device
US20230035795A1 (en) Communication method and communication apparatus
US11381979B2 (en) Standalone unlicensed spectrum carrier aggregation combinations using dynamic frequency selection (DFS) spectrum
JP2021510965A (ja) セル品質決定を用いることによるセル(再)選択メカニズム
WO2013107213A1 (zh) 无线室内优化方法和设备
US10349339B2 (en) Multi-band cellular network with control plane decoupled from user plane
CN107769830B (zh) 协同工作子状态的方法、装置及系统
WO2022036528A1 (zh) 双连接架构下实现最小化路测的方法、终端设备和网络设备
CN107659947B (zh) 状态测量方法及装置、系统
RU2801310C2 (ru) Способ установления соединения в системе связи

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838553

Country of ref document: EP

Effective date: 20190311