WO2021219120A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021219120A1
WO2021219120A1 PCT/CN2021/091343 CN2021091343W WO2021219120A1 WO 2021219120 A1 WO2021219120 A1 WO 2021219120A1 CN 2021091343 W CN2021091343 W CN 2021091343W WO 2021219120 A1 WO2021219120 A1 WO 2021219120A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
measurement
network device
information
Prior art date
Application number
PCT/CN2021/091343
Other languages
English (en)
French (fr)
Inventor
吴烨丹
耿婷婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21797716.4A priority Critical patent/EP4135216A4/en
Publication of WO2021219120A1 publication Critical patent/WO2021219120A1/zh
Priority to US17/975,862 priority patent/US20230049063A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the coverage of the cell is generally relatively large, for example, the cell diameter ranges from 50KM to 1000KM. Since the satellite is far from the earth, the antenna pointing angle of the satellite is very important. A slight deviation will cause the location of the cell projected on the ground to shift from tens of kilometers to hundreds of kilometers. Therefore, how to ensure the antenna pointing angle of the satellite It is very important not to shift.
  • the orbital height of low-earth (LEO) satellites is 160-2 000 km.
  • LEO satellites fly around the earth at high speed, with a speed close to 7km/s.
  • the cells projected by LEO satellites onto the ground include two modes: moving cell and fixed cell.
  • Moving cell means that the cell projected by the LEO satellite onto the ground moves with the satellite.
  • the cell projected by the LEO satellite onto the ground is the Moving cell.
  • the Moving cell moves with the LEO satellite, and the relative distance between the LEO satellite and the terminal equipment has been changing. After a period of time, the LEO satellite signal may not be able to cover the terminal equipment. If the network deployment is relatively complete, there will be the next LEO satellite to cover the terminal equipment. Since the satellite system is spherical, the next LEO satellite may come from all angles.
  • the embodiments of the present application provide a communication method and device, which are used to correct the problem of errors in the cell coverage area.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device or a chip with terminal device functions, which is not limited in this application.
  • the method includes: receiving measurement configuration information from a first network device, the measurement configuration information instructing a terminal device to measure a first cell; and sending a measurement result to a second network device, the measurement result being the terminal device according to the
  • the measurement configuration information is obtained by measuring the first cell, and the measurement result indicates that the terminal device has measured the signal of the first cell or has not measured the signal of the first cell.
  • the above method by configuring the terminal equipment to measure the first cell, and reporting the measured or unmeasured signal of the first cell according to the terminal equipment indicated by the measurement result, it can be further judged whether the coverage area of the first cell is required correct. Therefore, the above method can be used as an effective means to correct the error problem of the cell coverage area, and the cost of the method is low, and it can also be applied to scenarios where the coverage satellite self-correction mechanism fails.
  • the measurement configuration information may also instruct the terminal device to report the signal elevation angle of the first cell; then the measurement result further includes the signal elevation angle of the first cell.
  • the terminal device can be instructed to report the signal elevation angle of the first cell through the measurement configuration information, and it can be determined whether the antenna pointing angle corresponding to the first cell needs to be adjusted according to the signal elevation angle of the first cell in the measurement result.
  • the measurement configuration information may also instruct the terminal device to report the location information of the terminal device; then the measurement result also includes the location information of the terminal device.
  • the terminal device can be instructed to report the location information of the terminal device through the measurement configuration information, and the location information of the terminal device in the measurement result can be combined with other information in the measurement result to determine whether the antenna pointing angle corresponding to the first cell needs to be adjusted. And/or whether it is necessary to adjust the flight trajectory of the network device covering the first cell or whether it is necessary to adjust the flight trajectory of the network device for forwarding the signal of the first cell.
  • the measurement configuration information may also indicate the time at which the terminal device measures the first cell; the measurement result further includes time information at which the terminal device measures the first cell.
  • the measurement configuration information can instruct the terminal device to measure the time of the first cell, and the time information of the terminal device to measure the first cell in the measurement result can be combined with other information in the measurement result to determine whether it is necessary to adjust the time corresponding to the first cell.
  • the method further includes: sending capability information of the terminal device to the first network device, where the capability information of the terminal device includes a cell that the terminal device supports measurement, and the terminal device supports measurement The terminal device supports at least one of the signal elevation angle measurement errors corresponding to the measured measurement frequency band.
  • the terminal device can report its own capability information to the first network device, and the first network device can configure measurement configuration information for the terminal device based on the capability information of the terminal device, for example, configure the terminal device according to the capability information of the terminal device The measured cell.
  • the first cell may be the serving cell of the terminal device or a neighboring cell of the serving cell of the terminal device.
  • the terminal device can measure the serving cell of the terminal device or the neighboring cells of the serving cell of the terminal device.
  • the first cell may also be a satellite cell.
  • the terminal equipment can measure satellite cells.
  • the measurement configuration information includes an identifier of the first cell, and the identifier includes at least one of CGI, PCI, frequency point, network device identifier, and satellite type of the cell.
  • the identity of the first cell can take many forms.
  • the implementation of this application provides a communication method, which may be executed by a network device or a chip with the function of a network device, which is not limited in this application.
  • the method includes: determining measurement configuration information, the measurement configuration information instructing a terminal device to measure a first cell and reporting that the terminal device measures a signal of the first cell or does not measure a signal of the first cell;
  • the terminal device sends the measurement configuration information.
  • the above method by configuring the terminal device to measure the first cell and report the signal measured or not measured in the first cell, it is possible to realize whether the first cell is measured or not measured by the terminal device. To determine whether the coverage area of the first cell needs to be corrected. Therefore, the above method can be used as an effective means to correct the error problem of the cell coverage area, and the cost of the method is low, and it can also be applied to scenarios where the coverage satellite self-correction mechanism fails.
  • the measurement configuration information may also instruct the terminal device to report the signal elevation angle of the first cell.
  • the terminal device can be instructed to report the signal elevation angle of the first cell by measuring the configuration information, so as to determine whether the antenna pointing angle corresponding to the first cell needs to be adjusted according to the signal elevation angle of the first cell.
  • the measurement configuration information may also instruct the terminal device to report the location information of the terminal device.
  • the terminal device can be instructed to report the location information of the terminal device through the measurement configuration information, so as to determine whether the antenna pointing angle corresponding to the first cell needs to be adjusted according to the location information of the terminal device and other reported information, and/or whether The flight trajectory of the network device covering the first cell needs to be adjusted or whether the flight trajectory of the network device for forwarding the signal of the first cell needs to be adjusted.
  • the measurement configuration information may also indicate the time for the terminal device to measure the first cell.
  • the terminal device can be instructed to measure the time of the first cell through the measurement configuration information, so as to realize whether the antenna pointing angle corresponding to the first cell needs to be adjusted according to the time information of the first cell measured by the terminal device and combined with other reported information. And/or whether it is necessary to adjust the flight trajectory of the network device covering the first cell or whether it is necessary to adjust the flight trajectory of the network device for forwarding the signal of the first cell.
  • the method further includes: receiving capability information of the terminal device from the terminal device, where the capability information of the terminal device includes a cell that the terminal device supports measurement, and the terminal device supports measurement The terminal device supports at least one of the signal elevation angle measurement errors corresponding to the measured measurement frequency band.
  • the terminal device can report its own capability information to the first network device, and the first network device can configure measurement configuration information for the terminal device based on the capability information of the terminal device, for example, configure the terminal device according to the capability information of the terminal device The measured cell.
  • the first cell may be the serving cell of the terminal device or a neighboring cell of the serving cell of the terminal device.
  • the measurement configuration information can instruct the terminal device to measure the serving cell of the terminal device or the neighboring cell of the serving cell of the terminal device.
  • the first cell may also be a satellite cell.
  • the measurement configuration information can instruct the terminal equipment to measure the satellite cell.
  • the measurement configuration information includes an identifier of the first cell, and the identifier includes at least one of CGI, PCI, frequency point, network device identifier, and satellite type of the cell.
  • the identity of the first cell can take many forms.
  • the embodiments of the present application provide a communication method, and the method may be executed by a network device or a chip with the function of a network device, which is not limited in this application.
  • the method includes: receiving a measurement result from a terminal device, the measurement result indicating that the terminal device has measured a signal of the first cell or has not measured a signal of the first cell; and sending the first cell to a third network device Information, the first information is associated with the measurement result, the third network device may cover the first cell or the third network device may be used to forward the signal of the first cell.
  • the above method by receiving the measurement result and sending the first information to the third network device, the antenna pointing angle corresponding to the first cell or the flight trajectory corresponding to the third network device can be adjusted. Therefore, the above method can be used as an effective means to correct the error problem of the cell coverage area, and the cost of the method is low, and it can also be applied to scenarios where the coverage satellite self-correction mechanism fails.
  • the measurement result may also include the signal elevation angle of the first cell.
  • the measurement result may also include location information of the terminal device.
  • the location information of the terminal device in the measurement result can be combined with other information in the measurement result to determine whether the antenna pointing angle corresponding to the first cell needs to be adjusted, and/or whether the flight of the network equipment covering the first cell needs to be adjusted Trajectory or whether it is necessary to adjust the flight trajectory of the network device used to forward the signal of the first cell.
  • the measurement result may further include time information of the terminal device measuring the first cell.
  • the antenna pointing angle corresponding to the first cell needs to be adjusted, and/or whether the antenna pointing angle corresponding to the first cell needs to be adjusted.
  • the flight trajectory of the network device or whether the flight trajectory of the network device for forwarding the signal of the first cell needs to be adjusted.
  • the first information includes the measurement result, the information used to indicate the pointing angle of the antenna corresponding to the first cell, or the information used to indicate the flight trajectory of the third network device. At least one.
  • the second network device can send the first information to the third network device in different ways.
  • an embodiment of the present application provides a communication device, which includes: a transceiving unit and a processing unit, the processing unit invokes the transceiving unit to execute: receiving measurement configuration information from a first network device, the measurement The configuration information instructs the terminal device to measure the first cell; sends a measurement result to the second network device, where the measurement result is obtained by the terminal device measuring the first cell according to the measurement configuration information, and the measurement result indicates The terminal device measures the signal of the first cell or does not measure the signal of the first cell.
  • the measurement configuration information further instructs the terminal device to report the signal elevation angle of the first cell; the measurement result further includes the signal elevation angle of the first cell.
  • the measurement configuration information further instructs the terminal device to report the location information of the terminal device; the measurement result further includes the location information of the terminal device.
  • the measurement configuration information further indicates the time at which the terminal device measures the first cell; the measurement result further includes time information at which the terminal device measures the first cell.
  • the method further includes: sending capability information of the terminal device to the first network device, where the capability information of the terminal device includes a cell that the terminal device supports measurement, and the terminal device supports measurement The terminal device supports at least one of the signal elevation angle measurement errors corresponding to the measured measurement frequency band.
  • the first cell is the serving cell of the terminal device or a neighboring cell of the serving cell of the terminal device.
  • the first cell is a satellite cell.
  • the measurement configuration information includes the identity of the first cell, and the identity includes at least one of the cell global identity CGI, the physical cell identity PCI, the frequency point, the network device identity, and the satellite type of the cell. A sort of.
  • a communication device includes: a transceiver unit and a processing unit; the processing unit is used to determine measurement configuration information, and the measurement configuration information instructs a terminal device to measure a first cell and report the terminal device measurement A signal to the first cell or a signal that is not measured in the first cell; the transceiver unit sends the measurement configuration information to the terminal device.
  • the measurement configuration information further instructs the terminal device to report the signal elevation angle of the first cell.
  • the measurement configuration information further instructs the terminal device to report the location information of the terminal device.
  • the measurement configuration information further indicates the time for the terminal device to measure the first cell.
  • the method further includes: receiving capability information of the terminal device from the terminal device, where the capability information of the terminal device includes a cell that the terminal device supports measurement, and the terminal device supports measurement The terminal device supports at least one of the signal elevation angle measurement errors corresponding to the measured measurement frequency band.
  • the first cell is the serving cell of the terminal device or a neighboring cell of the serving cell of the terminal device.
  • the first cell is a satellite cell.
  • the measurement configuration information includes an identifier of the first cell, and the identifier includes at least one of CGI, PCI, frequency point, network device identifier, and satellite type of the cell.
  • a communication device includes: a transceiver unit and a processing unit;
  • the processing unit invokes the transceiver unit to perform: receiving a measurement result from a terminal device, the measurement result indicating that the terminal device has measured a signal of the first cell or has not measured a signal of the first cell; Sending first information to a third network device, where the first information is associated with the measurement result, and the third network device includes the first cell or the third network device forwards the signal of the first cell.
  • the measurement result further includes the signal elevation angle of the first cell.
  • the measurement result further includes location information of the terminal device.
  • the measurement result further includes time information for the terminal device to measure the first cell.
  • the first information includes the measurement result, and is used to indicate information about the pointing angle of the antenna corresponding to the first cell, or is used to indicate information about the flight trajectory of the third network device. At least one.
  • an embodiment of the present application provides a communication device, which may include a processing unit, a sending unit, and a receiving unit. It should be understood that the sending unit and the receiving unit here may also be a transceiving unit.
  • the processing unit may be a processor, the sending unit and the receiving unit may be transceivers; the device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, The processing unit executes the instructions stored in the storage unit, so that the terminal device executes any one of the possible design methods in the first aspect.
  • the processing unit may be a processor, and the sending unit and receiving unit may be input/output interfaces, pins or circuits, etc.; the processing unit executes the instructions stored in the storage unit to
  • the chip is made to execute the method in the first aspect or any one of the possible designs in the first aspect.
  • the storage unit is used to store instructions.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the terminal device located outside the chip (for example, a read-only memory, Random access memory, etc.).
  • an embodiment of the present application provides a communication device, which may include a processing unit, a sending unit, and a receiving unit.
  • the sending unit and the receiving unit here may also be a transceiving unit.
  • the processing unit may be a processor, the sending unit and the receiving unit may be transceivers; the device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, The processing unit executes the instructions stored in the storage unit, so that the network device executes any one of the possible design methods in the second aspect or the third aspect.
  • the processing unit may be a processor, and the sending unit and receiving unit may be input/output interfaces, pins or circuits, etc.; the processing unit executes the instructions stored in the storage unit to Make the chip execute any one of the possible design methods in the second aspect or the third aspect.
  • the storage unit is used to store instructions.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the network device located outside the chip (for example, read-only memory, Random access memory, etc.).
  • this application also provides a computer-readable storage medium that stores a computer program, and when the computer program runs on a computer, the computer can execute any of the first to third aspects above.
  • a computer-readable storage medium that stores a computer program, and when the computer program runs on a computer, the computer can execute any of the first to third aspects above.
  • the present application also provides a computer program product containing a program, which when it runs on a computer, causes the computer to execute the method of any one of the above-mentioned first aspect to the third aspect.
  • the present application also provides a communication device including a processor and a memory; the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory, so that the The communication device executes the method of any one of the first aspect to the third aspect described above.
  • the present application also provides a communication device, including a processor and an interface circuit; the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions to execute The method of any one of the above-mentioned first aspect to the third aspect.
  • Figure 1 is a schematic diagram of staring at a cell in the background art of this application.
  • FIG. 2 is a schematic diagram of RRC state transition of terminal equipment in an embodiment of this application.
  • FIG. 3 is a schematic diagram of a measurement process of logged MDT in an embodiment of the application.
  • FIG. 4 is a schematic diagram of a QoE measurement process in an embodiment of this application.
  • FIG. 5 is a schematic diagram of the structure of a network device in an embodiment of the application.
  • 6(a) to 6(d) are schematic diagrams of the RAN architecture of NTN in an embodiment of the application;
  • FIG. 7 is a schematic diagram of the elevation angle of the signal in an embodiment of the application.
  • FIG. 8 is one of the overview flowcharts of a communication method in an embodiment of this application.
  • FIG. 9 is the second overview flowchart of a communication method in an embodiment of this application.
  • FIG. 10 is one of the schematic structural diagrams of a device in an embodiment of this application.
  • FIG. 11 is the second structural diagram of a device in an embodiment of this application.
  • RRC Radio Resource Control
  • the RRC state of the terminal device includes the connected state (RRC_CONNECTED), the deactivated state or the third state (RRC_INACTIVE), and the idle state (RRC_IDLE).
  • RRC_CONNECTED the terminal device has established links with the network device and the core network.
  • data arrives at the core network it can be directly transmitted to the terminal device;
  • the terminal device is in the RRC_INACTIVE state it means that the terminal device has established a link with the network device and the core network before.
  • the link from the terminal device to the network device is released.
  • the network device stores the context of the terminal device.
  • the network device can quickly restore this link;
  • the device is in the RRC_IDLE state, there is no link between the terminal device and the network device and the core network.
  • a link between the terminal device and the network device and the core network needs to be established.
  • Satellite communication that is, non-terrestrial network (NTN)
  • NTN non-terrestrial network
  • LEO The orbit height is 160 ⁇ 2000km;
  • Geostationary orbit (geostationary earth orbit, GEO): The orbit height is 35786km, and the relative position of the satellite and the earth in this orbit is not affected by the rotation of the earth.
  • LEO satellites are close to the ground, have short communication delays, and have high data transmission rates. Their weight and volume are almost the same as those of personal mobile devices. They are more suitable for popularization in the mass market and have become a hot spot for current industrial development. Since 1990, several low-orbit satellite communication networks and medium-orbit satellite communication networks have officially provided commercial services, among which the more famous ones include the low-orbit Iridium network and the medium-orbit O3b network.
  • Mobility management is an important part of wireless mobile communication. Mobility management is a general term for related content involved to ensure that the communication link between network equipment and terminal equipment is not interrupted due to the movement of the terminal equipment. According to the state of the terminal device, it can be roughly divided into two parts: idle state mobility management and connected state mobility management. In the idle state/deactivated state, the mobility management mainly refers to the cell selection/reselection process, and in the connected state, the mobility management mainly refers to the cell handover (handover) process. Whether it is cell selection/reselection or handover, it is all based on the measurement results. Therefore, mobility measurement is the basis of mobility management.
  • the measurement is divided into two parts: physical layer measurement (layer 1 measurement) and RRC layer measurement (layer 3 measurement).
  • layer 1 measurement physical layer measurement
  • RRC layer measurement layer 3 measurement
  • the terminal device performs a specified type of measurement on the configured measurement resource. All measurement types supported by NR are defined in 38.215.
  • the terminal equipment For measurement based on synchronization signal block (synchronization signal block, SSB), the terminal equipment combines the measurement results obtained on multiple SSBs with the same SSB index (index) and physical cell identifier (physical cell identifier, PCI) , Obtain the beam level layer 1 measurement result of the SSB corresponding to the SSB index of the cell corresponding to the PCI, and report it to the layer 3.
  • synchronization signal block synchronization signal block
  • the terminal equipment For the measurement based on the channel state information-reference signal (CSI-RS), the terminal equipment obtains the result from multiple CSI-RS resources with the same CSI-RS resource identifier (resource identifier) and PCI The measurement results of the PCI are combined to obtain the beam layer 1 measurement result of the CSI-RS resource corresponding to the CSI-RS resource identifier of the cell corresponding to the PCI, and report to the layer 3.
  • CSI-RS resource identifier resource identifier
  • the foregoing process of merging measurement results on multiple measurement resources is the so-called layer 1 filtering.
  • the specific merging method is the specific realization of the terminal equipment, which is not specified in the standard. However, the terminal equipment needs to ensure that the measurement meets a series of indicators in terms of delay and accuracy defined in 38.133.
  • the terminal device After layer 3 receives the beam-level measurement result reported by layer 1, the terminal device needs to select/combine the layer 1 measurement results of each beam in the same cell to derive the cell-level layer 3 measurement result.
  • the specific selection/merging method is defined in 38.331.
  • the terminal device also needs to perform layer 3 filtering on the obtained cell-level layer 3 measurement results. Note that only the measurement results after layer 3 filtering will be used to verify whether the reporting trigger conditions are met, and be reported as the final measurement results.
  • the terminal device may also need to report the beam-level layer 3 measurement results.
  • the terminal device directly performs layer 3 filtering on the layer 1 measurement results of each beam, and then selects the measurement results to be reported from the filtered measurement results for reporting.
  • the specific selection method is defined in 38.331.
  • 38.300 requires terminal equipment to verify the reporting trigger condition at least when a new cell-level measurement result is generated.
  • the reporting trigger condition is met, the terminal device needs to send a measurement report to the network device.
  • MDT The basic idea of MDT technology is that operators use commercial terminal equipment of contracted users to perform measurement and report to partially replace traditional drive test work, and realize automatic collection of measurement data of terminal equipment to detect and optimize problems and failures in the wireless network.
  • the application scenarios of this technology are: Operators generally do routine network coverage drive tests every month, and also do some call quality drive tests for specific areas in response to user complaints. MDT can be used for drive tests in these scenarios. replace.
  • the measurement types of the existing MDT technology can be divided into the following types:
  • Signal level measurement the signal level of the wireless signal is measured by the terminal device, and the measurement result is reported to the network device or network device controller;
  • Qos measurement is usually performed by network equipment (for example: service flow, service throughput, service delay, etc.), and measurement can also be performed by terminal equipment, such as uplink processing It can also be the joint processing of network equipment and terminal equipment, such as air interface delay measurement (that is, measurement data packets passing through the service data adaptation protocol (SDAP) of the network equipment)/packet data convergence protocol (packet data convergence protocol, SDAP) protocol, PDCP) layer to the time the data packet reaches the SDAP/PDCP layer of the terminal device).
  • SDAP service data adaptation protocol
  • SDAP packet data convergence protocol
  • PDCP packet data convergence protocol
  • the terminal device records the information about the failure of the RRC connection establishment and reports it to the network device or network device controller.
  • MDT includes logged MDT (logged MDT) and immediate MDT (immediate MDT).
  • Immediate MDT is mainly for the measurement of terminal equipment in the RRC connected state
  • logged MDT is mainly for the measurement of the terminal equipment in the idle state or the terminal equipment in the inactive state (such as: the terminal equipment in the idle state or the terminal in the inactive state)
  • the device measures the cell of the frequency corresponding to the cell currently camped on and the cell reselection corresponding to the neighboring cell of the inter-frequency/different system in the cell where the cell currently resides).
  • Immediate MDT is generally used to measure the data volume of terminal equipment, Internet protocol (IP) throughput rate, packet transmission delay, packet loss rate, processing delay, etc.
  • IP Internet protocol
  • Logged MDT generally refers to the measurement of the received signal strength by the terminal equipment.
  • L2 measurements are also defined for the network side to count some network performance, so as to perform functions such as wireless link management, wireless resource management, and network maintenance.
  • some of the above-mentioned L2 measurements are statistics for a terminal device, such as service throughput, service flow, terminal device processing delay, terminal device air interface delay, and so on.
  • the network device will initiate the MDT measurement collection task.
  • One is to initiate signaling-based MDT (signalling based MDT), and the other is to initiate management-based MDT (management based MDT).
  • the signaling-based MDT refers to the MDT for a specific terminal device, and the network device receives a message from the core network to perform MDT on a certain terminal device.
  • the management-based MDT is not an MDT for a specific terminal device.
  • the network device receives a message for MDT from operation administration and maintenance (OAM).
  • OAM operation administration and maintenance
  • the network device selects the terminal device from the terminal devices under the network device to perform MDT measurement based on a certain strategy.
  • the core network will not initiate a signaling MDT for the terminal device.
  • the core network For signaling-based MDT, unless the terminal device has agreed to perform MDT, the core network will not initiate a signaling MDT for the terminal device.
  • management-based MDT when network equipment selects terminal equipment, it can consider whether the terminal equipment agrees to perform MDT. For example, only select those terminal equipment that have agreed to perform MDT for MDT measurement (for example, the core network will notify the base station, a certain Whether the terminal device agrees to perform MDT, for example, the core network informs the network device of the user's management-based MDT allowed indication (management-based MDT allowed indication), and optionally, it also informs the public land mobile network based on the management of MDT (public land mobile network). , PLMN) list).
  • management-based MDT allowed indication management-based MDT allowed indication
  • PLMN public land mobile network
  • Both types of MDT can include logged MDT and immediated MDT.
  • the core network will notify the base station of some MDT configuration information and the IP address of the trace collection entity (TCE).
  • the MDT configuration information includes: MDT activation type (such as: Immediate MDT (Immediate MDT only), MDT (Logged MDT only), Immediate MDT and trace (Immediate MDT and Trace), etc.), MDT area range, MDT Mode and configuration parameters of the corresponding mode (such as immediate MDT measurement event, logged MDT recording interval and duration, etc.), based on the PLMN list of the signaling MDT.
  • the network device configures the terminal device with configuration information related to logged MDT measurement, such as notifying logged MDT related configuration through an RRC message.
  • configuration information related to logged MDT measurement such as notifying logged MDT related configuration through an RRC message.
  • the terminal device enters the idle state or the inactive state, the terminal device records the corresponding measurement result according to the corresponding configuration.
  • an indication information is carried in the RRC message, indicating that the current terminal device has recorded the logged MDT measurement result.
  • the network device may send a request for the logged MDT measurement result to the terminal device, and the terminal device then reports the logged MDT measurement result to the network device.
  • the indication information is carried in an RRC setup complete (RRC setup complete) message.
  • the network device requests the terminal device to transmit the logged MDT measurement result in the information request (UE information request) of the terminal device (the request carries a request indication information that instructs the terminal device to upload the logged MDT measurement result). After that, the terminal device uploads the MDT record to the network side in the information response (UE Information Response) of the terminal device.
  • UE information request the information request
  • the terminal device uploads the MDT record to the network side in the information response (UE Information Response) of the terminal device.
  • the details are shown in Figure 3.
  • the network device that performs logged MDT measurement-related configuration for the terminal device may not be the same network device that the terminal device reports the logged MDT measurement result.
  • the signal quality alone cannot reflect the user experience when using these services.
  • Operators want to know the user's experience, so as to better optimize the network to improve the user's experience.
  • This type of measurement collection is called quality of experience (QoE) measurement collection, and can also be called application layer measurement collection.
  • QoE quality of experience
  • This type of measurement is also initiated using signaling-based MDT and management-based MDT.
  • the network device receives these measured configuration information from the core network or OAM (for example, the configuration information is sent to the network device in a transparent container), and the network device sends these configurations to the terminal device through an RRC message.
  • the RRC layer of the terminal device After the RRC layer of the terminal device receives the measurement results of the application layer from the upper layer of the UE, it sends these measurement results to the network device (for example, the measurement results are provided to the network device in a transparent container encapsulation form).
  • the information received by the network equipment from the core network or OAM may also include other information of QoE measurement (such as the area range of QoE measurement, the type of service of QoE measurement), such as 9.2.1.128 in 36.413 Chapter description.
  • the method for network equipment to select terminal equipment for QoE measurement is basically the same as that of ordinary MDT measurement.
  • the network side configures a signaling bearer (such as a signaling radio bearer (SRB) 4) for the terminal device to transmit the QoE measurement result.
  • a signaling bearer such as a signaling radio bearer (SRB)
  • the measurement report of the terminal equipment can be reported through the signaling bearer.
  • the network device that configures the QoE measurement-related configuration for the terminal device may not be the same network device that the terminal device reports the QoE measurement result.
  • SON refers to a network that does not need to increase network equipment, and can maximize the use of existing equipment to reduce operations.
  • load balancing and coverage capacity optimization can be used to achieve coverage optimization without adding new equipment, and mobility optimization, random access optimization, etc. can also be used to achieve the use of existing equipment to improve performance.
  • the cost requirements can be achieved by reducing the number of operation and maintenance personnel and the requirements for skills.
  • MDT technology to reduce the cost of artificial roadsides
  • ES energy saving
  • the ultimate goal of SON technology is to achieve complete automation of network planning and optimization, thereby realizing a true self-organizing network.
  • 3GPP has defined some specific use cases to study SON. Specifically, the use cases defined by 3GPP Long Term Evolution (LTE): automatic neighbor relation (ANR), physical cell identity selection (PCI selection), mobile robustness optimization ( Mobility robustness optimisation (MRO), mobility load balancing (MLB), ES, MDT, coverage and capacity optimization (CCO), etc.
  • LTE Long Term Evolution
  • ANR automatic neighbor relation
  • PCI selection physical cell identity selection
  • MRO mobility robustness optimization
  • MLB mobility load balancing
  • ES mobility load balancing
  • MDT coverage and capacity optimization
  • CCO coverage and capacity optimization
  • NR SON also discussed some use cases, including MRO, PCI allocation, MLB, ES, MDT, CCO, etc.
  • NR SON also discussed the introduction of some new functions, such as V2X SON. For details, please refer to TR 37.816.
  • the terminal equipment can obtain the PCI of the cell through the cell synchronization signal found in the cell measurement process.
  • PCI consists of a primary synchronization signal (primary synchronization signal, PSS) and a secondary synchronization signal (secondary synchronization signal, SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PCI is one of the cell identifiers and is a local identifier. Different cells use different network frequencies, so different cells can be distinguished based on frequency plus PCI, that is, as long as the frequency and PCI are different, the terminal device can distinguish that these are two different cells. When deploying networks, operators should avoid the situation where the frequency and PCI are the same when deploying adjacent cells.
  • the network equipment involved in the embodiment of the present application may be a base station (such as a gNB) in the RAN.
  • the base station may have a centralized unit (centralized unit, CU) and distributed unit (distributed unit, DU) separated architecture.
  • the RAN can be connected to a core network (for example, it can be an LTE core network, or a 5G core network, etc.).
  • CU and DU can be understood as the division of the base station from the perspective of logical functions.
  • CU and DU can be physically separated or deployed together. Multiple DUs can share one CU.
  • One DU can also be connected to multiple CUs (not shown in the figure).
  • the CU and the DU can be connected through an interface, for example, an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • CU is used to implement the radio resource control (radio resource control, RRC) layer, the service data adaptation protocol (service data adaptation protocol, SDAP) layer, and the packet data convergence layer protocol (packet data convergence) layer.
  • Protocol, PDCP radio link control
  • DU is used to perform radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer, physical (physical) layer and other functions.
  • RRC radio resource control
  • RLC radio link control
  • MAC media access control
  • MAC physical (physical) layer and other functions.
  • the division of CU and DU processing functions according to this protocol layer is only an example, and it can also be divided in other ways.
  • the CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into part of the processing functions with the protocol layer.
  • part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU.
  • the functions of the CU or DU can also be divided according to service types or other system requirements. For example, it is divided by time delay, and the functions whose processing time needs to meet the delay requirement are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the CU 5 can be applied to a 5G communication system, and it can also share one or more components or resources with an LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio frequency functions, or the radio frequency functions can be set remotely.
  • the functions of the CU can be implemented by one entity or by different entities.
  • the functions of the CU can be further divided, for example, the control panel (CP) and the user panel (UP) are separated, that is, the control plane (CU-CP) of the CU and the user plane (CU) are separated.
  • CP control panel
  • UP user panel
  • CU-CP control plane
  • CU-UP user plane
  • the CU-CP and CU-UP may be implemented by different functional entities, and the CU-CP and CU-UP may be coupled with the DU to jointly complete the function of the base station.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (English: Radio Access Network; abbreviation: RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or “cellular” phone) and
  • the computer of the mobile terminal for example, may be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device, which exchanges language and/or data with the wireless access network.
  • the wireless terminal can also be called system, subscriber unit (SU), subscriber station (SS), mobile station (MB), mobile station (mobile), remote station (remote station, RS), Access point (access point, AP), remote terminal (remote terminal, RT), access terminal (access terminal, AT), user terminal (user terminal, UT), user agent (user agent, UA), terminal equipment ( user device (UD), or user equipment (UE).
  • SU subscriber unit
  • SS subscriber station
  • MB mobile station
  • mobile mobile station
  • remote station remote station
  • Access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • AT user terminal
  • user terminal user terminal
  • UT user agent
  • UD terminal equipment
  • UE user equipment
  • the embodiments of the present application can be applied to the fourth generation mobile communication system (the fourth generation, 4G) system, 5G system, NTN system, or future mobile communication system.
  • NTN-based radio access network (RAN) architectures (NTN-based NG-RAN architectures):
  • NTN-based NG-RAN architectures NTN-based radio access network (RAN) architectures:
  • the first architecture satellites mainly As an L1 relay (relay), the role of the satellite is radio frequency filtering, radio frequency conversion and amplification;
  • the second and third architectures the satellite It can be used as a network device, such as a base station.
  • the difference between the second architecture and the third architecture is that the second architecture does not include inter-satellite link (ISL), and the third architecture includes ISL.
  • the satellite can be used as a distributed unit (DU).
  • satellites can be used as integrated access and backhaul (IAB) nodes.
  • IAB integrated access and backhaul
  • LEO satellites or GEO satellites are used as independent base stations and connected to the core network.
  • LEO satellites or GEO satellites are used as relay base stations and are connected to ground base stations.
  • the LEO satellite serves as a DU and is connected to the ground CU.
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies.
  • the network architecture and business scenarios described in this application are intended to explain the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. Those of ordinary skill in the art will know that with the evolution of the network architecture and new business scenarios The technical solutions provided in this application are equally applicable to similar technical problems.
  • the signal elevation angle refers to the angle between the signal and the horizontal plane when the signal is projected, as shown in FIG. 7.
  • the signal here may be a signal transmitted by a satellite, a signal transmitted by a ground base station, or a signal transmitted by a device in another communication system.
  • the signal may be a synchronization signal block (SSB), Or channel state information reference signal (channel state information-reference signal, CSI-RS), which is not limited in the embodiment of the present application.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the elevation angle of sending a signal with a fixed antenna pointing angle at a fixed position at each time is determined. Therefore, the signal elevation angle can also be used to help the satellite to correct a certain time. Is the antenna pointing angle correct?
  • an embodiment of the present application provides a communication method for correcting the problem of an error in a cell coverage area, and the method includes:
  • Step 801 The first network device sends measurement configuration information to the terminal device, and the measurement configuration information instructs the terminal device to measure the first cell.
  • the first network device may carry measurement configuration information in system information (SI) or dedicated signaling.
  • SI system information
  • dedicated signaling may be an RRC reconfiguration message or other signaling.
  • the application embodiment does not limit this.
  • the first cell may be a serving cell of the terminal device or a neighboring cell of the serving cell of the terminal device, where the first cell may be a satellite cell.
  • the serving cell of the terminal device may be a satellite cell, or a neighboring cell of the serving cell of the terminal device may be a satellite cell.
  • the measurement configuration information may include the identity of the first cell.
  • the identifier here includes but is not limited to at least one of cell global identifier (CGI), PCI, frequency point, network device identifier, and satellite type of the cell.
  • CGI cell global identifier
  • the measurement configuration information may include the CGI corresponding to the first cell, or the frequency and PCI corresponding to the first cell, or the frequency and PCI corresponding to the first cell, and the satellite type corresponding to the first cell.
  • the measurement configuration information may also indicate multiple cells, that is, the measurement configuration information may include the identities of multiple cells, which is not limited in the embodiment of the present application.
  • the measurement configuration information may carry a measurement object, and the measurement object may include an identifier of at least one cell, for example, an identifier of a serving cell of a terminal device and/or an identifier of a neighboring cell of a serving cell of the terminal device.
  • the measurement configuration information may also specifically include but is not limited to at least one of the following:
  • the measurement configuration information also instructs the terminal equipment to report the signal elevation angle of the first cell. Accordingly, the terminal equipment measures the signal elevation angle of the first cell according to the measurement configuration information, and the measurement result sent by the terminal equipment also includes the signal elevation angle of the first cell Elevation angle. Exemplarily, when the terminal device measures the cell A, it further measures the signal elevation angle of the cell A.
  • the measurement configuration information also instructs the terminal device to report the location information of the terminal device.
  • the measurement result also includes the location information of the terminal device.
  • the location information of the terminal device may refer to the absolute location information of the terminal device, for example, the global positioning system (GPS) information of the terminal device.
  • the position information of the terminal device may also be the relative position information of the terminal device, for example, the position information of the terminal device relative to a certain reference point.
  • the relative position information may include direction and distance.
  • the relative position information of the terminal device may be the relative direction and distance of the terminal device from the cell center.
  • the cell center may be specified by a communication protocol, or the terminal device may be notified through the first network device.
  • the position information of the cell center may be It is sent through system broadcast or dedicated signaling.
  • the measurement configuration information also indicates the time for the terminal device to measure the first cell, and the measurement result sent by the terminal device may include the time information for the terminal device to measure the first cell.
  • the measurement configuration information may indicate the start time for the terminal device to measure the first cell, where the start time may be an absolute value or a relative value, which is not limited in the embodiment of the present application.
  • the measurement configuration information indicates the start time of the terminal device to measure the first cell, such as absolute time, or the measurement configuration information indicates that the terminal device starts measuring the first cell N seconds after receiving the measurement configuration information, and N is a positive integer.
  • the time information in the measurement result may also be an absolute value or a relative value of the start time when the terminal device starts to measure the first cell.
  • the measurement configuration information may also instruct the terminal device to periodically measure the first cell, or the number of times to measure the first cell, for example, the number of times here may be one or more times.
  • the measurement configuration information also indicates the measurement mode used by the terminal device to measure the first cell, where the measurement mode includes MDT or measurement for mobility.
  • the MDT here may be logged MDT or immediate MDT.
  • the method provided in the embodiment of the present application may also be applicable to the measurement of an ad hoc network.
  • the measurement configuration information also instructs the terminal device to measure the trigger condition of the first cell.
  • the terminal device determines that the trigger condition is satisfied and measures the first cell according to the measurement configuration information.
  • the trigger condition is that the terminal device starts to measure the first cell after receiving the measurement configuration information from the network device.
  • the terminal device measures the above-mentioned first cell immediately after receiving the measurement configuration information from the network device.
  • the trigger condition is that after receiving the measurement configuration information from the network device, the terminal device starts to measure the first cell when it is determined that the preset condition is satisfied.
  • the measurement configuration information further includes a preset value corresponding to the signal quality parameter.
  • the terminal device monitors the signal quality parameter after receiving the measurement configuration information from the network device, and determines that the signal quality parameter of the first cell is lower than the preset value. Start measuring the first cell when the value is reached.
  • the signal quality parameter may be RSRP or RSRQ, etc., which is not limited in the embodiment of the present application.
  • the preset value corresponding to the aforementioned signal quality parameter may be configured by the first network device, or may be specified through a communication protocol.
  • the preset value corresponding to the signal quality parameter may be carried by measurement configuration information, or may be carried by other signaling, which is not limited in the embodiment of the present application.
  • Step 802 The terminal device sends a measurement result to the second network device, and the measurement result indicates that the terminal device has measured the signal of the first cell or has not measured the signal of the first cell.
  • the measurement result is obtained by the terminal device measuring the first cell according to the measurement configuration information.
  • the fact that the terminal device does not measure the signal of the first cell means that the signal quality parameter corresponding to the first cell is lower than the first value.
  • the signal quality parameter may be reference signal receiving power, RSRP) or reference signal receiving quality (RSRQ), etc.
  • the measurement result can be sent as one piece of information, or as multiple pieces of information.
  • the information used to instruct the terminal equipment to measure the signal of the first cell is sent as one piece of information, and the signal elevation angle of the first cell, the position information of the terminal equipment, and the time information of the terminal equipment measuring the first cell are sent as another piece of information.
  • the information used to instruct the terminal equipment to measure the signal of the first cell, the signal elevation angle of the first cell, the position information of the terminal equipment, and the time information of the terminal equipment measuring the first cell are sent as one piece of information.
  • the terminal device may actively send the measurement result to the second network device.
  • the terminal device may send the measurement result to the second network device after completing the measurement for the first cell.
  • the terminal device sends notification information to the second network device, and the notification message is used to notify the second network device that the terminal device saves the measurement result, or the notification message is used to inquire the second network device Whether the terminal device is required to report the measurement result.
  • the second network device After the second network device receives the notification information from the terminal device, the second network device sends a request message to the terminal device.
  • the request message is used to request the terminal device to send the measurement result to the second network device.
  • the terminal device is configured to perform logged MDT, when the terminal device enters an idle state or an inactive state, the terminal device records the logged MDT measurement result according to the measurement configuration information.
  • an indication information is carried in the RRC message, and the indication information indicates that the terminal device has recorded the logged MDT measurement result.
  • the network device may send a request message to the terminal device, and the request message is used to request the logged MDT measurement result.
  • the terminal device reports the logged MDT measurement result to the network device.
  • the first network device and the second network device may be the same network device or different network devices.
  • the terminal device may not be able to send the measurement result to the network device that sent the measurement configuration. At this time, the terminal device may send the measurement result to the currently newly connected network device.
  • the second network device determines whether adjustment is needed according to the measurement result The pointing angle of the antenna corresponding to the first cell or the flight trajectory of the second network device.
  • the measurement result indicates that the terminal device has measured the first cell
  • the second network device determines that the antenna pointing angle corresponding to the first cell and/or the flight trajectory of the second network device needs to be corrected.
  • the terminal device can measure the first cell.
  • the second network device determines the antenna pointing angle and/or the first cell corresponding to the first cell. 2.
  • the flight trajectory of the network equipment needs to be corrected.
  • the second network device may determine whether the antenna pointing angle corresponding to the first cell needs to be adjusted according to the signal elevation angle of the first cell. If it is determined that the current antenna pointing angle is incorrect, the second network device may determine the adjustment range of the antenna pointing angle and other parameters according to the signal elevation angle of the first cell. If it is determined that the pointing angle of the antenna is correct, the problem of the pointing angle of the antenna is ruled out, and further investigation is made whether the flight trajectory of the second network device has a problem.
  • the second network device may adjust the speed of the satellite corresponding to the second network device, such as increasing the speed of the satellite or reducing the speed of the satellite, or the second network device may also adjust parameters such as the orbit deflection angle of the satellite corresponding to the second network device This embodiment of the application does not limit this.
  • Step 803 The second network device sends the first information to the third network device, and the first information is associated with the measurement result.
  • the third network device may cover the first cell, or the third network device may be used to forward the signal of the first cell.
  • the coverage of the first cell by the third network device may be understood as meaning that the third network device includes the first cell or the first cell belongs to a cell of the third network device.
  • the first information may include at least one of a measurement result, information used to indicate the pointing angle of the antenna corresponding to the first cell, and information used to indicate the flight trajectory of the third network device.
  • the information used to indicate the antenna pointing angle corresponding to the first cell may include the correct antenna pointing angle corresponding to the first cell.
  • the correct antenna pointing angle corresponding to the first cell may be an absolute angle.
  • the information used to indicate the antenna pointing angle corresponding to the first cell may include the deviation angle of the current antenna pointing angle corresponding to the first cell relative to the correct antenna pointing angle corresponding to the first cell. In this case, the deviation angle is a relative angle. .
  • the third network device may adjust the adjusted antenna pointing angle corresponding to the first cell according to the information used to indicate the antenna pointing angle corresponding to the first cell.
  • the third network device may send a response message to the second network device, the response message indicating that the third device has adjusted the antenna pointing angle corresponding to the first cell.
  • the third network device may adjust the flight trajectory corresponding to the third network device according to the measurement result or the information used to indicate the flight trajectory of the third network device.
  • the third network device may adjust the speed of the satellite corresponding to the third network device, for example, increase or decrease the speed of the satellite, or adjust parameters such as the orbit deflection angle of the satellite corresponding to the third network device.
  • the third network device may send a response message to the second network device, the response message indicating that the third device has adjusted the flight trajectory.
  • the second network device may send the first information to the network devices to which the multiple cells with the same PCI belong respectively.
  • the network device may send response information to the second network device. The response information is used to notify the second network device that the current network device does not need to adjust the antenna pointing angle or flight trajectory.
  • the second network device may also send the measurement result to the core network, and the core network forwards the measurement result to other network devices, that is, the core network forwards the measurement result To the network device to which the first cell belongs or the network device used to forward the signal of the first cell indicated by the measurement result.
  • the terminal device can send the capability information of the terminal device to the network device.
  • the capability information of the terminal device includes the cell supported by the terminal device for measurement, the measurement frequency band supported by the terminal device, and the signal elevation angle corresponding to the measurement frequency band supported by the terminal device. At least one of measurement errors.
  • the capabilities of the terminal device can also be divided into multiple levels, such as level 1, level 2, level 3...
  • Each level represents the measurement error or accuracy of the signal elevation angle corresponding to the measurement frequency band supported by the terminal device.
  • the grading standard can be specified in the protocol, or sent by the first network device to the terminal device.
  • the capabilities of the terminal equipment may be specific to different objects, for example, the capabilities of the terminal equipment for measuring different types of cells are different.
  • the cells here can be GEO cells, LEO cells, ground cells, etc.
  • the capabilities of the terminal device may be for different frequency bands, for example, the capabilities of the terminal device for measuring different frequency bands are different.
  • the frequency band here can be FR1, FR2, etc.
  • the capabilities of the terminal device may be combined for different frequency bands, for example, supporting frequency band 1 and frequency band 2, or supporting frequency band 1 and frequency band 2, or supporting frequency band 2 and frequency band 3, or supporting frequency band 1 and frequency band 2 and frequency band 3.
  • Each frequency band combination may correspond to an identifier, and the terminal device may report the identifier corresponding to the frequency band combination supported by itself to the first network device.
  • the terminal device can report its own capability information to the first network device, and the first network device can configure measurement configuration information for the terminal device based on the capability information of the terminal device, for example, configure the terminal device according to the capability information of the terminal device The measured cell.
  • the second network device can forward the first information to the third network device, which includes the first cell or forwards the signal of the first cell, thereby adjusting the pointing angle of the antenna corresponding to the first cell Or adjust the flight trajectory corresponding to the third network device. Therefore, the above method can be used as an effective means to correct the error problem of the cell coverage area, and the cost of the method is low, and it can also be applied to scenarios where the coverage satellite self-correction mechanism fails.
  • an embodiment of the present application also provides a communication method for correcting the problem of an error in a cell coverage area, and the method includes:
  • Step 901 The first network device sends measurement configuration information to the terminal device, and the measurement configuration information instructs the terminal device to report the signal elevation angle corresponding to the signal of the first cell and the location information of the terminal device.
  • the first network device may carry measurement configuration information in SI or dedicated signaling.
  • the dedicated signaling may be an RRC reconfiguration message or other signaling, which is not limited in this embodiment of the application. .
  • the first network device may instruct the terminal device to measure the first cell.
  • the first cell may be a serving cell of the terminal device or a neighboring cell of the serving cell of the terminal device, and the first cell may be a satellite cell.
  • the serving cell of the terminal device may be a satellite cell, or a neighboring cell of the serving cell of the terminal device may be a satellite cell.
  • the measurement configuration information may include the identifier of the above-mentioned first cell.
  • the identifier here includes but is not limited to at least one of CGI, PCI, frequency point, network device identifier, and satellite type of the cell.
  • the measurement configuration information may include the CGI corresponding to the first cell, or the frequency and PCI corresponding to the first cell, or the frequency and PCI corresponding to the first cell, and the satellite type corresponding to the first cell.
  • the measurement configuration information may also indicate multiple cells, that is, the measurement configuration information may include the identities of multiple cells, which is not limited in the embodiment of the present application.
  • the measurement configuration information may carry a measurement object, and the measurement object may include an identifier of at least one cell, for example, an identifier of a serving cell of a terminal device and/or an identifier of a neighboring cell of a serving cell of the terminal device.
  • the location information of the terminal device may refer to the absolute location information of the terminal device, for example, GPS information of the terminal device.
  • the position information of the terminal device may also be the relative position information of the terminal device, for example, the position information of the terminal device relative to a certain reference point.
  • the relative position information may include direction and distance.
  • the relative position information of the terminal device may be the relative direction and distance of the terminal device from the cell center.
  • the cell center may be specified by the communication protocol, or the terminal device may be notified through the first network device.
  • the position information of the cell center may be System broadcast or dedicated signaling transmission.
  • the measurement configuration information may specifically include but not limited to at least one of the following:
  • the measurement configuration information also indicates the time for the terminal device to measure the first cell, and the measurement result sent by the terminal device may include the time information for the terminal device to measure the first cell.
  • the measurement configuration information may indicate the start time for the terminal device to measure the first cell, where the start time may be an absolute value or a relative value, which is not limited in the embodiment of the present application.
  • the measurement configuration information indicates the start time of the terminal device to measure the first cell, such as absolute time, or the measurement configuration information indicates that the terminal device starts measuring the first cell N seconds after receiving the measurement configuration information, and N is a positive integer.
  • the time information in the measurement result may also be an absolute value or a relative value of the start time when the terminal device starts to measure the first cell.
  • the measurement configuration information may also instruct the terminal device to periodically measure the first cell, or the number of times to measure the first cell, for example, the number of times here may be one or more times.
  • the measurement configuration information also indicates the measurement mode used by the terminal device to measure the first cell, where the measurement mode includes MDT or measurement for mobility.
  • the MDT here may be logged MDT or immediate MDT.
  • the method provided in the embodiment of the present application may also be applicable to the measurement of an ad hoc network.
  • the measurement configuration information also instructs the terminal device to measure the trigger condition of the first cell.
  • the terminal device determines that the trigger condition is satisfied and measures the first cell according to the measurement configuration information.
  • the trigger condition is that the terminal device starts to measure the first cell after receiving the measurement configuration information from the network device.
  • the terminal device measures the above-mentioned first cell immediately after receiving the measurement configuration information from the network device.
  • the trigger condition is that after receiving the measurement configuration information from the network device, the terminal device starts to measure the first cell when it is determined that the preset condition is satisfied.
  • the measurement configuration information further includes a preset value corresponding to the signal quality parameter.
  • the terminal device monitors the signal quality parameter after receiving the measurement configuration information from the network device, and determines that the signal quality parameter of the first cell is lower than the preset value. Start measuring the first cell when the value is reached.
  • the signal quality parameter may be RSRP or RSRQ, etc., which is not limited in the embodiment of the present application.
  • the preset value corresponding to the aforementioned signal quality parameter may be configured by the first network device, or may be specified through a communication protocol.
  • the preset value corresponding to the signal quality parameter may be carried by measurement configuration information, or may be carried by other signaling, which is not limited in the embodiment of the present application.
  • Step 902 The terminal device sends a measurement result to the second network device.
  • the measurement result includes the signal elevation angle of the first cell and the location information of the terminal device.
  • the measurement result is obtained by the terminal device measuring the first cell according to the measurement configuration information.
  • the measurement result can be sent as one piece of information, or as multiple pieces of information.
  • the signal elevation angle of the first cell is sent as one piece of information
  • the position information of the terminal equipment and the time information of the terminal equipment measuring the first cell are sent as another piece of information.
  • the information used to instruct the terminal equipment to measure the signal of the first cell, the signal elevation angle of the first cell, the position information of the terminal equipment, and the time information of the terminal equipment measuring the first cell are sent as one piece of information.
  • the terminal device may actively send the measurement result to the second network device.
  • the terminal device may immediately send the measurement result to the second network device after completing the measurement on the first cell.
  • the terminal device sends notification information to the second network device, and the notification message is used to notify the second network device that the terminal device saves the measurement result, or the notification message is used to inquire the second network device Whether the terminal device is required to report the measurement result.
  • the second network device After the second network device receives the notification information from the terminal device, the second network device sends a request message to the terminal device.
  • the request message is used to request the terminal device to send the measurement result to the second network device.
  • the terminal device is configured to perform logged MDT, when the terminal device enters an idle state or an inactive state, the terminal device records the logged MDT measurement result according to the measurement configuration information.
  • an indication information is carried in the RRC message, and the indication information indicates that the terminal device has recorded the logged MDT measurement result.
  • the network device may send a request message to the terminal device, and the request message is used to request the logged MDT measurement result.
  • the terminal device reports the logged MDT measurement result to the network device.
  • the first network device and the second network device may be the same network device or different network devices.
  • the terminal device may not be able to send the measurement result to the network device that sent the measurement configuration. At this time, the terminal device may send the measurement result to the currently newly connected network device.
  • the second network device determines whether adjustment is needed according to the measurement result The pointing angle of the antenna corresponding to the first cell or the flight trajectory of the second network device.
  • the second network device may determine whether the antenna pointing angle corresponding to the first cell needs to be adjusted according to the signal elevation angle of the first cell. If it is determined that the current antenna pointing angle is incorrect, the second network device may determine the adjustment range of the antenna pointing angle and other parameters according to the signal elevation angle of the first cell. If it is determined that the pointing angle of the antenna is correct, the problem of the pointing angle of the antenna is ruled out, and further investigation is made whether the flight trajectory of the second network device has a problem.
  • the second network device may adjust the speed of the satellite corresponding to the second network device, such as increasing or reducing the speed of the satellite, or the second network device may also adjust parameters such as the orbit deflection angle of the satellite corresponding to the second network device This embodiment of the application does not limit this.
  • Step 903 The second network device sends the first information to the third network device, and the first information is associated with the measurement result.
  • the third network device may cover the first cell, or the third network device may be used to forward the signal of the first cell.
  • the coverage of the first cell by the third network device may be understood as meaning that the third network device includes the first cell or the first cell belongs to a cell of the third network device.
  • the first information may include at least one of a measurement result, information used to indicate the pointing angle of the antenna corresponding to the first cell, and information used to indicate the flight trajectory of the third network device.
  • the information used to indicate the antenna pointing angle corresponding to the first cell may include the correct antenna pointing angle corresponding to the first cell.
  • the correct antenna pointing angle corresponding to the first cell may be an absolute angle.
  • the information used to indicate the antenna pointing angle corresponding to the first cell may include the deviation angle of the current antenna pointing angle corresponding to the first cell relative to the correct antenna pointing angle corresponding to the first cell. In this case, the deviation angle is a relative angle. .
  • the third network device may adjust the adjusted antenna pointing angle corresponding to the first cell according to the information used to indicate the antenna pointing angle corresponding to the first cell.
  • the third network device may send a response message to the second network device, the response message indicating that the third device has adjusted the antenna pointing angle corresponding to the first cell.
  • the third network device may adjust the flight trajectory corresponding to the third network device according to the measurement result or the information used to indicate the flight trajectory of the third network device.
  • the third network device may adjust the speed of the satellite corresponding to the third network device, for example, increase or decrease the speed of the satellite, or adjust parameters such as the orbit deflection angle of the satellite corresponding to the third network device.
  • the third network device may send a response message to the second network device, the response message indicating that the third device has adjusted the flight trajectory.
  • the second network device may send the first information to the network devices to which the multiple cells with the same PCI belong respectively.
  • the network device may send response information to the second network device. The response information is used to notify the second network device that the current network device does not need to adjust the antenna pointing angle or flight trajectory.
  • the second network device may also send the measurement result to the core network, and the core network forwards the measurement result to other network devices, that is, the core network forwards the measurement result To the network device to which the first cell belongs or the network device used to forward the signal of the first cell indicated by the measurement result.
  • the terminal device can send the capability information of the terminal device to the network device.
  • the capability information of the terminal device includes the cell that the terminal device supports measurement, the measurement frequency band supported by the terminal device, and the signal elevation angle corresponding to the measurement frequency band supported by the terminal device. At least one of measurement errors.
  • the capabilities of the terminal device can also be divided into multiple levels, such as level 1, level 2, level 3...
  • Each level represents the measurement error or accuracy of the signal elevation angle corresponding to the measurement frequency band supported by the terminal device.
  • the grading standard can be specified in the protocol, or sent by the first network device to the terminal device.
  • the capabilities of the terminal equipment may be specific to different objects, for example, the capabilities of the terminal equipment for measuring different types of cells are different.
  • the cells here can be GEO cells, LEO cells, ground cells, etc.
  • the capabilities of the terminal device may be for different frequency bands, for example, the capabilities of the terminal device for measuring different frequency bands are different.
  • the frequency band here can be FR1, FR2, etc.
  • the capabilities of the terminal device may be combined for different frequency bands, for example, supporting frequency band 1 and frequency band 2, or supporting frequency band 1 and frequency band 2, or supporting frequency band 2 and frequency band 3, or supporting frequency band 1 and frequency band 2 and frequency band 3.
  • Each frequency band combination may correspond to an identifier, and the terminal device may report the identifier corresponding to the frequency band combination supported by itself to the first network device.
  • the terminal device can report its own capability information to the first network device, and the first network device can configure measurement configuration information for the terminal device based on the capability information of the terminal device, for example, configure the terminal device according to the capability information of the terminal device The measured cell.
  • the second network device can forward the first information to the third network device, which includes the first cell or forwards the signal of the first cell, thereby adjusting the pointing angle of the antenna corresponding to the first cell Or adjust the flight trajectory corresponding to the third network device. Therefore, the above method can be used as an effective means to correct cell coverage problems, and the cost of the method is low, and it can also be applied to scenarios where the coverage satellite self-correction mechanism fails.
  • each network element such as a network device and a terminal device
  • each network element includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • an embodiment of the present application further provides an apparatus 1000, which includes a transceiver unit 1002 and a processing unit 1001.
  • the apparatus 1000 is used to implement the function of the terminal device in the foregoing method.
  • the device can also be a chip system in a terminal device.
  • the processing unit 1001 calls the transceiver unit 1002 to execute:
  • the measurement configuration information instructs the terminal device to measure the first cell; sending the measurement result to the second network device, the measurement result is obtained by the terminal device measuring the first cell according to the measurement configuration information, The measurement result indicates that the terminal device has measured the signal of the first cell or has not measured the signal of the first cell.
  • the apparatus 1000 is used to implement the function of the first network device in the foregoing method.
  • the processing unit 1001 is configured to determine measurement configuration information, the measurement configuration information instructs the terminal device to measure the first cell and reports that the terminal device measures the signal of the first cell or does not measure the signal of the first cell;
  • the transceiver unit 1002 sends measurement configuration information to the terminal device.
  • the apparatus 1000 is used to implement the function of the second network device in the foregoing method.
  • the processing unit 1001 calls the transceiver unit 1002 to perform: receiving the measurement result from the terminal device, the measurement result indicating that the terminal device has measured the signal of the first cell or the signal of the first cell has not been measured; sending the first information to the third network device, The first information is associated with the measurement result, and the third network device includes the first cell or the third network device forwards the signal of the first cell.
  • the processing unit 1001 and the transceiver unit 1002 please refer to the record in the above method embodiment.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device includes a processor and an interface circuit, and the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions to execute the methods of the foregoing embodiments. Among them, the processor completes the function of the aforementioned processing unit 1001, and the interface circuit completes the function of the aforementioned transceiver unit 1002.
  • an embodiment of the present application further provides an apparatus 1100.
  • the apparatus 1100 includes: a communication interface 1101, at least one processor 1102, and at least one memory 1103.
  • the communication interface 1101 is used to communicate with other devices through a transmission medium, so that the device used in the apparatus 1100 can communicate with other devices.
  • the memory 1103 is used to store computer programs.
  • the processor 1102 calls the computer program stored in the memory 1103, and transmits and receives data through the communication interface 1101 to implement the method in the foregoing embodiment.
  • the memory 1103 is used to store a computer program; the processor 1102 calls the computer program stored in the memory 1103, and executes the method executed by the terminal device in the foregoing embodiment through the communication interface 1101.
  • the memory 1103 is used to store a computer program; the processor 1102 calls the computer program stored in the memory 1103, and executes the method executed by the first network device in the foregoing embodiment through the communication interface 1101.
  • the memory 1103 is used to store a computer program; the processor 1102 calls the computer program stored in the memory 1103, and executes the method executed by the second network device in the foregoing embodiment through the communication interface 1101.
  • the communication interface 1101 may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the processor 1102 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 1103 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory, such as random access memory (random access memory). -access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function.
  • the memory 1103 and the processor 1102 are coupled.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory 1103 may also be located outside the apparatus 1100.
  • the processor 1102 may cooperate with the memory 1103 to operate.
  • the processor 1102 can execute program instructions stored in the memory 1103.
  • At least one of the at least one memory 1103 may also be included in the processor 1102.
  • the embodiment of the present application does not limit the connection medium between the communication interface 1101, the processor 1102, and the memory 1103.
  • the memory 1103, the processor 1102, and the communication interface 1101 may be connected by a bus, and the bus may be divided into an address bus, a data bus, and a control bus.
  • the apparatus in the embodiment shown in FIG. 10 may be implemented by the apparatus 1100 shown in FIG. 11.
  • the processing unit 1001 may be implemented by the processor 1102, and the transceiver unit 1002 may be implemented by the communication interface 1101.
  • the embodiments of the present application also provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program runs on a computer, the computer executes the methods shown in each of the foregoing embodiments.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the embodiments of the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present application may adopt the form of computer program products implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing equipment are used to generate It is a device that realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:终端设备接收来自于第一网络设备的测量配置信息,测量配置信息指示终端设备测量第一小区,向第二网络设备发送测量结果,测量结果是终端设备根据测量配置信息对第一小区进行测量得到的,测量结果指示终端设备测量到第一小区的信号或未测量到第一小区的信号。通过配置终端设备测量第一小区,并根据测量结果指示的终端设备测量到第一小区的信号或未测量到第一小区的信号,可以进一步判断第一小区的覆盖区域是否需要纠正。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年04月30日提交中国专利局、申请号为202010367143.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在卫星通信中,小区的覆盖范围一般比较大,例如小区直径从50KM到1000KM不等。由于卫星距离地球很远,所以卫星的天线指向角度非常重要,稍有偏移就会导致投射到地面的小区位置偏移几十千米到上百千米,因此,如何保证卫星的天线指向角度不偏移非常重要。
其中,低轨(low-earth orbit,LEO)卫星的轨道高度为160~2 000km。LEO卫星绕着地球高速飞行,其速度接近7km/s。LEO卫星投射到地面的小区包括两种模式:移动小区(Moving cell)和凝视小区(Fixed cell)。
Moving cell是指LEO卫星投射到地面的小区跟着卫星一起移动,一般地,当LEO卫星的天线与地面垂直时,LEO卫星投射到地面的小区为Moving cell。其中,LEO卫星不论是作为独立基站还是中继基站,Moving cell都是跟着LEO卫星一起移动,而且LEO卫星与终端设备的相对距离一直在改变。一段时间之后,LEO卫星的信号可能无法覆盖该终端设备,如果网络部署比较完善,则会有下一个LEO卫星来覆盖终端设备,由于卫星系统是球状的,下一个LEO卫星可能来自各个角度。
Fixed cell,是指LEO卫星投射到地面的小区相对于地面静止,不同LEO卫星通过调整天线指向角度完成地面同一区域的覆盖,当某个LEO卫星无法覆盖到该区域时,由另一个LEO卫星接替,如图1所示。
因此,在以上两种模式下的小区中,卫星的天线指向角度一旦出现偏差,就会引起严重的小区偏移。特别是LEO小区采用Fixed cell的场景下,通过不断改变卫星的天线指向角度来保证投射到地面的小区的覆盖区域不变,实现难度较大,且容易出错。
发明内容
本申请实施例提供一种通信方法及装置,用于纠正小区覆盖区域出错的问题。
第一方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,或者由具有终端设备功能的芯片执行,本申请这里不做限定。该方法包括:接收来自于第一网络设备的测量配置信息,所述测量配置信息指示终端设备测量第一小区;向第二网络设备发送测量结果,所述测量结果是所述终端设备根据所述测量配置信息对所述第一小区进行测量得到的,所述测量结果指示所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号。
采用上述方法,通过配置终端设备测量第一小区,并根据测量结果指示的终端设备上报测量到第一小区的信号或未测量到第一小区的信号,可以进一步判断第一小区的覆盖区域是否需要纠正。因此,上述方法可以作为一种纠正小区覆盖区域出错问题的有效手段,且该方法成本较低,还可以适用于覆盖卫星自我纠正机制失灵的场景。
在一种可能的设计中,所述测量配置信息还可以指示所述终端设备上报所述第一小区的信号仰角;则所述测量结果还包括所述第一小区的信号仰角。
采用上述设计,通过测量配置信息可以指示终端设备上报第一小区的信号仰角,可以根据测量结果中第一小区的信号仰角判断是否需要调整第一小区对应的天线指向角度。
在一种可能的设计中,所述测量配置信息还可以指示所述终端设备上报所述终端设备的位置信息;则所述测量结果还包括所述终端设备的位置信息。
采用上述设计,通过测量配置信息可以指示终端设备上报终端设备的位置信息,可以根据测量结果中终端设备的位置信息结合测量结果中的其他信息共同判断是否需要调整第一小区对应的天线指向角度,和/或,是否需要调整覆盖第一小区的网络设备的飞行轨迹或是否需要调整用于转发第一小区的信号的网络设备的飞行轨迹。
在一种可能的设计中,所述测量配置信息还可以指示所述终端设备测量所述第一小区的时间;所述测量结果还包括所述终端设备测量所述第一小区的时间信息。
采用上述设计,通过测量配置信息可以指示终端设备测量第一小区的时间,可以根据测量结果中终端设备测量第一小区的时间信息结合测量结果中的其他信息共同判断是否需要调整第一小区对应的天线指向角度,和/或,是否需要调整覆盖第一小区的网络设备的飞行轨迹或是否需要调整用于转发第一小区的信号的网络设备的飞行轨迹。
在一种可能的设计中,还包括:向所述第一网络设备发送所述终端设备的能力信息,所述终端设备的能力信息包括所述终端设备支持测量的小区,所述终端设备支持测量的测量频段,所述终端设备支持测量的测量频段对应的信号仰角测量误差中的至少一种。
采用上述设计,终端设备可以将自身的能力信息上报至第一网络设备,第一网络设备可以基于终端设备的能力信息为终端设备配置测量配置信息,例如,根据终端设备的能力信息为终端设备配置测量的小区。
在一种可能的设计中,所述第一小区可以为所述终端设备的服务小区或所述终端设备的服务小区的邻区。采用上述设计,终端设备可以测量终端设备的服务小区或终端设备的服务小区的邻区。
在另一种可能的设计中,所述第一小区还可以为卫星小区。采用上述设计,终端设备可以测量卫星小区。
在一种可能的设计中,所述测量配置信息包括所述第一小区的标识,所述标识包括CGI,PCI,频点、网络设备标识,小区的卫星种类中的至少一种。
采用上述设计,第一小区的标识可以采用多种形式。
第二方面,本申请实施提供一种通信方法,该方法可以由网络设备执行,或者由具有网络设备功能的芯片执行,本申请这里不做限定。该方法包括:确定测量配置信息,所述测量配置信息指示终端设备测量第一小区并上报述所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号;向所述终端设备发送所述测量配置信息。
采用上述方法,通过配置终端设备测量第一小区并上报测量到第一小区的信号或未测量到第一小区的信号,可以实现根据终端设备测量到第一小区的信号或未测量到第一小区 的信号判断第一小区的覆盖区域是否需要纠正。因此,上述方法可以作为一种纠正小区覆盖区域出错问题的有效手段,且该方法成本较低,还可以适用于覆盖卫星自我纠正机制失灵的场景。
在一种可能的设计中,所述测量配置信息还可以指示所述终端设备上报所述第一小区的信号仰角。
采用上述设计,通过测量配置信息可以指示终端设备上报第一小区的信号仰角,以实现根据第一小区的信号仰角判断是否需要调整第一小区对应的天线指向角度。
在一种可能的设计中,所述测量配置信息还可以指示所述终端设备上报所述终端设备的位置信息。
采用上述设计,通过测量配置信息可以指示终端设备上报终端设备的位置信息,以实现根据终端设备的位置信息并结合其他上报信息共同判断是否需要调整第一小区对应的天线指向角度,和/或是否需要调整覆盖第一小区的网络设备的飞行轨迹或是否需要调整用于转发第一小区的信号的网络设备的飞行轨迹。
在一种可能的设计中,所述测量配置信息还可以指示所述终端设备测量所述第一小区的时间。
采用上述设计,通过测量配置信息可以指示终端设备测量第一小区的时间,以实现根据终端设备测量第一小区的时间信息并结合其他上报信息共同判断是否需要调整第一小区对应的天线指向角度,和/或是否需要调整覆盖第一小区的网络设备的飞行轨迹或是否需要调整用于转发第一小区的信号的网络设备的飞行轨迹。
在一种可能的设计中,还包括:接收来自于所述终端设备的所述终端设备的能力信息,所述终端设备的能力信息包括所述终端设备支持测量的小区,所述终端设备支持测量的测量频段,所述终端设备支持测量的测量频段对应的信号仰角测量误差中的至少一种。
采用上述设计,终端设备可以将自身的能力信息上报至第一网络设备,第一网络设备可以基于终端设备的能力信息为终端设备配置测量配置信息,例如,根据终端设备的能力信息为终端设备配置测量的小区。
在一种可能的设计中,所述第一小区可以为所述终端设备的服务小区或所述终端设备的服务小区的邻区。
采用上述设计,测量配置信息可以指示终端设备测量终端设备的服务小区或终端设备的服务小区的邻区。
在一种可能的设计中,所述第一小区还可以为卫星小区。采用上述设计,测量配置信息可以指示终端设备测量卫星小区。
在一种可能的设计中,所述测量配置信息包括所述第一小区的标识,所述标识包括CGI,PCI,频点、网络设备标识,小区的卫星种类中的至少一种。
采用上述设计,第一小区的标识可以采用多种形式。
第三方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,或者由具有网络设备功能的芯片执行,本申请这里不做限定。该方法包括:接收来自于终端设备的测量结果,所述测量结果指示所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号;向第三网络设备发送第一信息,所述第一信息与所述测量结果关联,所述第三网络设备可以覆盖所述第一小区或者所述第三网络设备可以用于转发所述第一小区的信号。
采用上述方法,通过接收测量结果,并向第三网络设备发送第一信息,进而实现调整第一小区对应的天线指向角度或调整第三网络设备对应的飞行轨迹。因此,上述方法可以作为一种纠正小区覆盖区域出错问题的有效手段,且该方法成本较低,还可以适用于覆盖卫星自我纠正机制失灵的场景。
在一种可能的设计中,所述测量结果还可以包括所述第一小区的信号仰角。采用上述设计,根据测量结果中第一小区的信号仰角可以判断是否需要调整第一小区对应的天线指向角度。
在一种可能的设计中,所述测量结果还可以包括所述终端设备的位置信息。
采用上述设计,根据测量结果中终端设备的位置信息可以结合测量结果中的其他信息共同判断是否需要调整第一小区对应的天线指向角度,和/或是否需要调整覆盖第一小区的网络设备的飞行轨迹或是否需要调整用于转发第一小区的信号的网络设备的飞行轨迹。
在一种可能的设计中,所述测量结果还可以包括所述终端设备测量所述第一小区的时间信息。
采用上述设计,根据测量结果中终端设备测量第一小区的时间信息和测量结果中的其他信息共同判断是否需要调整第一小区对应的天线指向角度,和/或,是否需要调整覆盖第一小区的网络设备的飞行轨迹或是否需要调整用于转发第一小区的信号的网络设备的飞行轨迹。
在一种可能的设计中,第一信息包括所述测量结果、用于指示所述第一小区对应的天线指向角度的信息、或者用于指示所述第三网络设备的飞行轨迹的信息中的至少一种。
采用上述设计,第二网络设备可以采用不同方式向第三网络设备发送第一信息。
第四方面,本申请实施例提供一种通信装置,该装置包括:收发单元和处理单元,所述处理单元调用所述收发单元执行:接收来自于第一网络设备的测量配置信息,所述测量配置信息指示终端设备测量第一小区;向第二网络设备发送测量结果,所述测量结果是所述终端设备根据所述测量配置信息对所述第一小区进行测量得到的,所述测量结果指示所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号。
在一种可能的设计中,所述测量配置信息还指示所述终端设备上报所述第一小区的信号仰角;所述测量结果还包括所述第一小区的信号仰角。
在一种可能的设计中,所述测量配置信息还指示所述终端设备上报所述终端设备的位置信息;所述测量结果还包括所述终端设备的位置信息。
在一种可能的设计中,所述测量配置信息还指示所述终端设备测量所述第一小区的时间;所述测量结果还包括所述终端设备测量所述第一小区的时间信息。
在一种可能的设计中,还包括:向所述第一网络设备发送所述终端设备的能力信息,所述终端设备的能力信息包括所述终端设备支持测量的小区,所述终端设备支持测量的测量频段,所述终端设备支持测量的测量频段对应的信号仰角测量误差中的至少一种。
在一种可能的设计中,所述第一小区为所述终端设备的服务小区或所述终端设备的服务小区的邻区。
在一种可能的设计中,所述第一小区为卫星小区。
在一种可能的设计中,所述测量配置信息包括所述第一小区的标识,所述标识包括小区全球标识CGI,物理小区标识PCI,频点、网络设备标识,小区的卫星种类中的至少一种。
第五方面,一种通信装置,该装置包括:收发单元和处理单元;所述处理单元用于确定测量配置信息,所述测量配置信息指示终端设备测量第一小区并上报述所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号;所述收发单元向所述终端设备发送所述测量配置信息。
在一种可能的设计中,所述测量配置信息还指示所述终端设备上报所述第一小区的信号仰角。
在一种可能的设计中,所述测量配置信息还指示所述终端设备上报所述终端设备的位置信息。
在一种可能的设计中,所述测量配置信息还指示所述终端设备测量所述第一小区的时间。
在一种可能的设计中,还包括:接收来自于所述终端设备的所述终端设备的能力信息,所述终端设备的能力信息包括所述终端设备支持测量的小区,所述终端设备支持测量的测量频段,所述终端设备支持测量的测量频段对应的信号仰角测量误差中的至少一种。
在一种可能的设计中,所述第一小区为所述终端设备的服务小区或所述终端设备的服务小区的邻区。
在一种可能的设计中,所述第一小区为卫星小区。
在一种可能的设计中,所述测量配置信息包括所述第一小区的标识,所述标识包括CGI,PCI,频点、网络设备标识,小区的卫星种类中的至少一种。
第六方面,一种通信装置,该装置包括:收发单元和处理单元;
所述处理单元调用所述收发单元执行:接收来自于终端设备的测量结果,所述测量结果指示所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号;向第三网络设备发送第一信息,所述第一信息与所述测量结果关联,所述第三网络设备包含所述第一小区或者所述第三网络设备转发所述第一小区的信号。
在一种可能的设计中,所述测量结果还包括所述第一小区的信号仰角。
在一种可能的设计中,所述测量结果还包括所述终端设备的位置信息。
在一种可能的设计中,所述测量结果还包括所述终端设备测量所述第一小区的时间信息。
在一种可能的设计中,第一信息包括所述测量结果,用于指示所述第一小区对应的天线指向角度的信息,或者用于指示所述第三网络设备的飞行轨迹的信息中的至少一种。
第七方面,本申请实施例提供一种通信装置,该装置可以包括处理单元、发送单元和接收单元。应理解的是,这里发送单元和接收单元还可以为收发单元。当该装置是终端设备时,该处理单元可以是处理器,该发送单元和接收单元可以是收发器;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行第一方面中任意一种可能的设计中的方法。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第一方面或第一方面中任意一种可能的设计中的方法。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第八方面,本申请实施例提供一种通信装置,该装置可以包括处理单元、发送单元和 接收单元。应理解的是,这里发送单元和接收单元还可以为收发单元。当该装置是网络设备时,该处理单元可以是处理器,该发送单元和接收单元可以是收发器;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该网络设备执行第二方面或第三方面中任意一种可能的设计中的方法。当该装置是网络设备内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第二方面或第三方面中任意一种可能的设计中的方法。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第九方面,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第一方面至第三方面中任一方面的方法。
第十方面,本申请还提供一种包含程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中任一方面的方法。
第十一方面,本申请还提供一种通信装置,包括处理器和存储器;所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行上述第一方面至第三方面中任一方面的方法。
第十二方面,本申请还提供一种通信装置,包括处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行上述第一方面至第三方面中任一方面的方法。
附图说明
图1为本申请背景技术中凝视小区的示意图;
图2为本申请实施例中终端设备RRC状态转换示意图;
图3为本申请实施例中logged MDT的测量流程示意图;
图4为本申请实施例中QoE测量流程示意图;
图5为本申请实施例中网络设备的结构示意图;
图6(a)至图6(d)为本申请实施例中NTN的RAN架构示意图;
图7为本申请实施例中信号仰角的示意图;
图8为本申请实施例中一种通信方法的概述流程图之一;
图9为本申请实施例中一种通信方法的概述流程图之二;
图10为本申请实施例中一种装置的结构示意图之一;
图11为本申请实施例中一种装置的结构示意图之二。
具体实施方式
下面结合附图,对本申请的实施例进行描述。
以下对与本申请实施例相关的现有技术概念进行简要介绍:
一、无线资源控制(radio resource control,RRC)状态
在新空口(new radio,NR)中,终端设备的RRC状态包括连接态(RRC_CONNECTED), 去激活态或者第三态(RRC_INACTIVE),空闲态(RRC_IDLE),其中,终端设备处于RRC_CONNECTED状态时,终端设备与网络设备以及核心网都已建立链路,当有数据到达核心网时可以直接传送到终端设备;当终端设备处于RRC_INACTIVE状态时,表示终端设备之前和网络设备以及核心网建立过链路,但是终端设备到网络设备这一段链路被释放了,虽然链路被释放了,但是网络设备会存储终端设备的上下文,当有数据需要传输时,网络设备可以快速恢复这段链路;当终端设备处于RRC_IDLE状态时,终端设备与网络设备以及核心网之间都没有链路,当有数据需要传输时,需要建立终端设备到网络设备及核心网的链路。三种状态的转换如图2所示:
二、卫星通信
卫星通信,即非地面通信(non-terrestrial network,NTN),该项研究从19世纪60年代至今一直是研究领域的热门。得益于现如今“任意时间、任意地点”通信的概念,卫星通信的地位在未来还将进一步的提升。通常来说,卫星的轨道越高其覆盖面积越大,但是通信时延也越长。一般说来,卫星的运行轨道根据高度可以分为:
(1)LEO:轨道高度为160~2000km;
(2)中轨道(medium earth orbit,MEO):轨道高度为2000~35786km;
(3)静止轨道(geostationary earth orbit,GEO):轨道高度为35786km,运行在此轨道上的卫星与地球的相对位置不受地球自转的影响。
其中,LEO卫星距离地面近、通信时延短、数据传输率高,其重量体积与个人移动设备相差无几,更适合大众市场普及,成为当前产业发展的热点。从1990年至今,数个低轨道卫星通信网络和中轨道卫星通信网络已正式提供商业服务,其中比较著名的包括低轨道的铱星网络和中轨道的O3b网络。
三、测量机制
移动性管理是无线移动通信中的重要组成部分。移动性管理是为了保证网络设备与终端设备之间的通信链路不因终端设备的移动而中断所涉及到的相关内容的统称。根据终端设备的状态大致上可以分为空闲态移动性管理和连接态移动性管理两部分。在空闲态/去激活态下,移动性管理主要指的是小区选择/重选(cell selection/reselection)的过程,在连接态下,移动性管理主要指的是小区切换(handover)过程。不论是小区选择/重选还是切换,都是基于测量结果进行的。因此移动性测量是移动性管理的基础。
在NR中,测量的整体流程如下:
根据所涉及到的层次将测量划分为物理层测量(层1测量)和RRC层测量(层3测量)两部分。在物理层,终端设备在配置的测量资源上进行指定类型的测量,NR支持的所有测量类型在38.215中定义。
对于基于同步信号块(synchronization signal block,SSB)的测量而言,终端设备对多个具有相同的SSB索引(index)和物理小区标识(physical cell identifier,PCI)的SSB上得到的测量结果进行合并,得到该PCI对应的小区的该SSB index对应的SSB的波束(beam)级层1测量结果,并上报给层3。
对于基于信道状态信息参考信号(channel state information-reference signal,CSI-RS)的测量而言,终端设备对多个具有相同的CSI-RS资源标识(resource identifier)和PCI的CSI-RS资源上得到的测量结果进行合并,得到该PCI对应的小区的该CSI-RS资源标识对应的CSI-RS资源的beam层1测量结果,并上报给层3。
上述对于多个测量资源上的测量结果进行合并的过程就是所谓的层1滤波。具体的合并方式是终端设备的具体实现,标准中不作规定。但是,终端设备需要保证测量满足38.133中定义的时延、精度方面的一系列指标。
层3在接收到了层1上报的beam级测量结果后,终端设备需要对同一个小区的各个beam的层1测量结果进行选择/合并以推导出该小区级的层3测量结果。具体的选择/合并方式在38.331中定义。以及终端设备还需要对得到的小区级层3测量结果进行层3滤波。注意只有层3滤波后的测量结果才会用于验证上报触发条件是否满足,以及作为最终的测量结果进行上报。
此外,根据配置,终端设备也可能需要上报beam级的层3测量结果。此时,终端设备直接对各个beam的层1测量结果进行层3滤波,再在滤波后的测量结果中选择出要上报的测量结果进行上报。具体选择的方式在38.331中定义。
38.300要求终端设备至少应该在有新的小区级测量结果产生的时候对上报触发条件进行验证。当上报触发条件满足时,终端设备需要向网络设备发送测量报告。
四、最小化路测(minimization of drive-tests,MDT)
MDT技术的基本思想是运营商通过签约用户的商用终端设备进行测量上报来部分替代传统的路测工作,实现自动收集终端设备的测量数据,以检测和优化无线网络中的问题和故障。该技术的应用场景为:运营商一般每一个月都要做例行的网络覆盖路测,针对用户投诉也会做一些针对特定区域的进行呼叫质量路测,这些场景的路测都可以用MDT代替。
现有的MDT技术的测量类型可分为以下几种:
1、信号水平测量:由终端设备测量无线信号的信号水平,将测量结果上报给网络设备或网络设备控制器;
2、服务质量(quality of service,Qos)测量:通常由网络设备执行Qos测量(比如:业务的流量、业务的吞吐量,业务时延等),也可以由终端设备执行测量,比如上行处理时延,也可以是网络设备和终端设备联合处理,比如空口时延测量(即测量数据包经过网络设备的业务数据适配协议栈(service data adaptation protocol,SDAP)/分组数据汇聚协议(packet data convergence protocol,PDCP)层到该数据包达到终端设备的SDAP/PDCP层的时间)。
3、可接入性测量:由终端设备记录RRC连接建立失败的信息,并上报给网络设备或网络设备控制器。
MDT包括记录MDT(logged MDT)和即时MDT(immediate MDT)。Immediate MDT主要针对处于RRC连接态的终端设备进行的测量,而logged MDT主要针对处于空闲态的终端设备或非激活态的终端设备进行的测量(比如:空闲态的终端设备或非激活态的终端设备对当前驻留的小区对应的频点的小区及当前驻留的小区中广播的小区重选对应的异频/异系统相邻小区进行测量)。Immediate MDT一般用于测量终端设备的数据量、网际互连协议(internet protocol,IP)吞吐率、包传输时延、丢包率、处理时延等。而logged MDT一般指终端设备对接收信号强度的测量。
此外,还定义了一些L2测量用于网络侧统计一些网络性能,以便进行无线链路管理、无线资源管理、网络维护等功能。其中,上述一些L2测量是针对一个终端设备进行统计的,比如业务的吞吐量、业务的流量、终端设备的处理时延、终端设备的空口时延等。
在两种场景下,网络设备会发起MDT测量收集任务。一种是发起基于信令的MDT(signalling based MDT),一种是发起基于管理的MDT(management based MDT)。基于信令的MDT是指针对某特定终端设备的MDT,网络设备从核心网收到对某个终端设备进行MDT的消息。基于管理的MDT并不是针对特定终端设备的MDT,网络设备是从操作维护管理(operation administration and maintenance,OAM)接收到进行MDT的消息。网络设备基于一定策略从该网络设备下的终端设备中选择终端设备进行MDT测量。对于基于信令的MDT而言,除非终端设备已经同意进行MDT,否则核心网并不会发起针对该终端设备的信令MDT。对于基于管理的MDT而言,网络设备在选择终端设备时,可以考虑终端设备是否同意进行MDT,比如,只选择那些已经同意进行MDT的终端设备进行MDT测量(比如核心网会通知基站,某个终端设备是否同意进行MDT,比如核心网通知网络设备该用户的基于管理的MDT允许指示(management based MDT allowed indication),可选地,也会通知基于管理MDT的公共陆地移动网络(public land mobile network,PLMN)列表)。这两种MDT都可以包括logged MDT和immediated MDT。对于基于信令的MDT而言,核心网会把一些MDT配置信息、跟踪采集实体(trace collection entity,TCE)IP地址通知给基站。其中MDT配置信息包括:MDT激活类型(比如:仅即时MDT(Immediate MDT only),仅记录MDT(Logged MDT only),即时MDT和跟踪(Immediate MDT and Trace)等),MDT的区域范围,MDT的模式及对应模式的配置参数(比如immediate MDT的测量事件,logged MDT的记录间隔和持续时间等),基于信令MDT的PLMN列表。
此外,对于logged MDT而言,当终端设备处于连接态时,网络设备会给终端设备配置logged MDT测量相关配置信息,比如通过RRC消息通知logged MDT相关配置。当终端设备进入到空闲态或非激活态时,终端设备会按照对应的配置记录对应的测量结果。当终端设备向网络设备发起RRC连接时,在RRC消息中携带一个指示信息,指示当前终端设备记录了logged MDT的测量结果。网络设备可以向终端设备发送请求logged MDT的测量结果,终端设备再向网络设备上报logged MDT的测量结果。比如在RRC建立完成(RRC setup complete)消息中携带该指示信息。之后,网络设备在终端设备的信息请求(UE information request)中向终端设备请求传输logged MDT的测量结果(该请求中携带一个请求指示信息,指示终端设备上传logged MDT的测量结果)。之后,终端设备在终端设备的信息响应(UE Information Response)中向网络侧上传MDT记录。具体如图3所示。此外,应理解的是,为终端设备进行logged MDT测量相关配置的网络设备可能和终端设备上报logged MDT的测量结果的网络设备并不是同一个网络设备。
对于一些流类业务或者语音业务而言,比如流媒体业务(streaming service),IMS多媒体电话业务(Multimedia Telephony Service for IMS,MTSI),单纯的信号质量并不能体现用户在使用这些业务时的用户体验,运营商想知道用户的体验,从而更好的优化网络以提高用户的体验。这类测量收集称为体验质量(quality of experience,QoE)测量收集,也可称为应用层测量收集。这类测量也利用基于信令的MDT和基于管理的MDT进行发起。网络设备从核心网或OAM收到这些测量的配置信息(比如这些配置信息是以一种透明的容器的方式发给网络设备),网络设备把这些配置通过RRC消息发送给终端设备。终端设备的RRC层从UE的上层接收到应用层的测量结果之后,把这些测量结果发送给网络设备(比如这些测量结果是以一种透明容器的封装形式给网络设备)。网络设备从核心网或OAM接收的信息除了以上的测量的配置信息之外,还可能包括QoE测量的其他信息(比 如QoE测量的区域范围,QoE测量的业务类型),如36.413中的9.2.1.128章节描述。网络设备选择终端设备进行QoE测量的方法基本同普通的MDT测量。具体如图4所示,对于QoE测量,网络侧会为终端设备配置一个信令承载(比如信令承载(signalling radio bearer,SRB)4)来传输QoE测量结果。终端设备的测量上报可通过该信令承载来上报。同理,为终端设备配置QoE测量相关配置的网络设备可能和终端设备上报QoE测量结果的网络设备并不是同一个网络设备。
五、自组织网络(self-organization network,SON)。
SON是指不需要增加网络设备的网络,可以最大化的利用现有的设备,以实现减小运营。
对于设备的利用可以利用负载平衡、覆盖容量优化实现不增加新设备来完成覆盖优化,还可以利用移动性优化,随机接入优化等来达到利用现有设备提升性能。
对于成本的要求可以通过减少操作维护人员的数目和技能的要求来实现。例如,利用MDT技术来达到减少人工路侧的成本,利用节能(energy saving,ES)技术达到节能的效果等,以实现通过这些自动维护过程达到提高系统的性能的效果。
SON技术的终极目标是实现网络规划、优化的完全自动化,从而实现真正意义上的自组织网络。
目前,3GPP都定义了一些具体的案例(use case)来研究SON。具体的,3GPP长期演进(long term evolution,LTE)定义的use cases:自动邻区关系(automatic neighbour relation,ANR)、物理小区标识分配(physical cell identity selection,PCI selection)、移动鲁棒性优化(mobility robustness optimisation,MRO)、移动负载平衡(mobility load balancing,MLB)、ES、MDT、覆盖和能力优化(coverage and capacity optimization,CCO)等。具体可以参见TS 36.300 22.4小节。
R16的NR SON里也讨论了一些use case,包括MRO、PCI分配、MLB、ES,MDT、CCO等。除此之外,NR SON里还讨论了要引入一些新的功能,比如V2X SON等。具体可以参见TR 37.816。
六、PCI
终端设备可以通过小区测量过程中搜到的小区同步信号等方式得到小区的PCI。
PCI由主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS)组成。终端设备在测量同步信号时,物理层会尝试用不同的PCI去解码,能正确解码的PCI就是该小区的PCI。终端设备根据不同的PCI来区分不同的无线信号。在LTE系统中共提供504个PCI,取值范围为0~503,在5G系统中共提供1008个PCI,取值范围为0~1007。
PCI是小区标识之一,是局部标识。不同的小区所用布网频点(frequency)不同,所以根据频点加上PCI可以区分不同的小区,即只要频点和PCI有一个不一样,终端设备就能区分这是两个不同的小区。运营商在布网的时候,应该避免在部署相邻小区使用频点和PCI都一样的情况。
如图5所示,本申请实施例中所涉及到的网络设备可以是RAN中的基站(如gNB)等。基站可以是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离架构。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的 也可以部署在一起。多个DU可以共用一个CU。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如其中一种可能的划分方式是:CU用于执行无线资源控制(radio resource control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,而DU用于执行无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层,物理(physical)层等的功能。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。图5所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现也可以由不同的实体实现。例如,可以对CU的功能进行进一步切分,例如,将控制面(control panel,CP)和用户面(user panel,UP)分离,即CU的控制面(CU-CP)和CU用户面(CU-UP)。例如,CU-CP和CU-UP可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。
终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(英文:Radio Access Network;缩写:RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit,SU)、订户站(subscriber station,SS),移动站(mobile station,MB)、移动台(mobile)、远程站(remote station,RS)、接入点(access point,AP)、远程终端(remote terminal,RT)、接入终端(access terminal,AT)、用户终端(user terminal,UT)、用户代理(user agent,UA)、终端设备(user device,UD)、或用户装备(user equipment,UE)。
本申请实施例可以应用于第四代移动通信系统(the fourth generation,4G)系统,5G系统,NTN系统,或者将来的移动通信系统。
TR38.821定义了5种基于NTN的无线接入网(radio access network,RAN)架构(NTN-based NG-RAN architectures):如图6(a)所示,在第一种架构中,卫星主要是作为L1中继(relay),卫星的作用是射频过滤、射频转换和放大等;如图6(b)和图6(c)所示,在第二种架构和第三种架构中,卫星可以作为网络设备,例如基站,其中第二种架 构与第三种架构的区别在于,第二种架构中不包括卫星间链路(inter-satellite link,ISL),第三种架构中包括ISL。如图6(d)所示,在第四种架构中,卫星可以作为分布式单元(distributed unit,DU)。在第五种架构中,卫星可以作为接入回传一体化(integrated access and backhaul,IAB)节点。
作为一种可能的应用场景,LEO卫星或GEO卫星作为独立基站,与核心网相连。或者,LEO卫星或GEO卫星作为中继基站,与地面基站相连。又或者,LEO卫星作为DU,与地面CU相连。
此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
在本申请实施例中,信号仰角是指信号投射下来时与水平面的夹角,如图7所示。这里的信号可以是卫星发射的信号,也可以是地面基站发射的信号,或者其他通信系统中的设备发射的信号,示例性地,所述信号可以是同步信号块(synchronization signal block,SSB),或者信道状态信息参考信号(channel state information-reference signal,CSI-RS),本申请实施例对此不作限定。示例性地,当卫星按照运行轨道运行时,每个时刻在某个固定位置用固定的天线指向角度发送信号的仰角是确定的,因此,信号仰角也可以用于帮助卫星来纠正某个时刻的天线指向角度是否正确。
如图8所示,本申请实施例提供一种通信方法,用于纠正小区覆盖区域出错的问题,该方法包括:
步骤801:第一网络设备向终端设备发送测量配置信息,测量配置信息指示终端设备测量第一小区。
针对步骤801,第一网络设备可以在系统广播(system information,SI)或专用信令中携带测量配置信息,示例性地,专用信令可以是RRC重配置消息,也可以是其他信令,本申请实施例对此不作限定。
在一些实施例中,第一小区可以为终端设备的服务小区或终端设备的服务小区的邻区,其中,第一小区可以为卫星小区。示例性地,终端设备的服务小区可以为卫星小区,或者终端设备的服务小区的邻区为卫星小区。
测量配置信息可以包括第一小区的标识。其中,这里的标识包括但不限于小区全球标识(cell global identifier,CGI),PCI,频点、网络设备标识,小区的卫星种类中的至少一种。示例性地,测量配置信息可以包括第一小区对应的CGI,或者,第一小区对应的频点和PCI,或者,第一小区对应的频点和PCI以及第一小区对应的卫星种类。
此外,测量配置信息还可以指示多个小区,即测量配置信息可以包括多个小区的标识,本申请实施例对此不作限定。示例性地,测量配置信息中可以携带测量对象,该测量对象可以包括至少一个小区的标识,例如,终端设备的服务小区的标识和/或终端设备的服务小区的邻区的标识。
测量配置信息还可以具体包括但不限于以下内容中的至少一种:
1、测量配置信息还指示终端设备上报第一小区的信号仰角,相应的,终端设备根据测量配置信息测量第一小区的信号仰角,且终端设备发送的测量结果中还包括终第一小区的信号仰角。示例性地,终端设备在测量到小区A时,进一步测量小区A的信号仰角。
2、测量配置信息还指示终端设备上报终端设备的位置信息,相应的,测量结果还包括终端设备的位置信息。
应理解的是,终端设备的位置信息可以是指终端设备的绝对位置信息,例如,终端设备的全球定位系统(global positioning system,GPS)信息。终端设备的位置信息还可以是终端设备的相对位置信息,例如,终端设备相对于某个参考点的位置信息。其中,相对位置信息可以包括方向和距离。例如,终端设备的相对位置信息可以是终端设备距离小区中心的相对方向和距离,其中,小区中心可以通过通信协议规定,也可以通过第一网络设备通知终端设备,例如,小区中心的位置信息可以通过系统广播或者专用信令发送。
3、测量配置信息还指示终端设备测量第一小区的时间,终端设备发送的测量结果可以包括终端设备测量第一小区的时间信息。
其中,测量配置信息可以指示终端设备测量第一小区的开始时刻,这里开始时刻可以是绝对值或相对值,本申请实施例对此不作限定。例如,测量配置信息指示终端设备测量第一小区的开始时刻,例如绝对时间,或者,测量配置信息指示终端设备接收到测量配置信息的N秒后开始测量第一小区,N为正整数。可以理解的,测量结果中的时间信息也可以是终端设备开始测量第一小区的开始时刻的绝对值或相对值。
示例性地,测量配置信息还可以指示终端设备周期性测量第一小区,或者测量第一小区的次数,例如,这里的次数可以为一次或多次。
4、测量配置信息还指示终端设备测量第一小区所采用的测量方式,其中,测量方式包括MDT或用于移动性的测量。示例性地,这里的MDT可以为logged MDT或immediate MDT。此外,本申请实施例提供方法还可以适用于自组网的测量。
此外,测量配置信息还指示终端设备测量第一小区的触发条件,相应的,终端设备确定满足触发条件则根据测量配置信息测量第一小区。
在一些实施例中,触发条件为终端设备在接收到来自于网络设备的测量配置信息后开始测量第一小区。示例性地,终端设备在接收到来自于网络设备的测量配置信息后立即测量上述第一小区。
在另一些实施例中,触发条件为终端设备在接收到来自于网络设备的测量配置信息后,在确定满足预设条件时开始测量第一小区。示例性地,测量配置信息还包括信号质量参数对应的预设值,终端设备在接收到来自于网络设备的测量配置信息后监控信号质量参数,在确定第一小区的信号质量参数低于预设值时开始测量第一小区。其中,信号质量参数可以为RSRP或RSRQ等,本申请实施例对此不作限定。
应理解的是,上述信号质量参数对应的预设值可以是第一网络设备配置的,也可以是通过通信协议规定的。当上述信号质量参数对应的预设值通过第一网络设备配置时,信号质量参数对应的预设值可以通过测量配置信息携带,也可以通过其他信令携带,本申请实施例对此不作限定。
应理解的是,上述测量配置信息包括的具体内容仅为举例,不作为本申请实施例的限定。
步骤802:终端设备向第二网络设备发送测量结果,测量结果指示终端设备测量到第一小区的信号或未测量到第一小区的信号。
其中,测量结果是终端设备根据测量配置信息对第一小区进行测量得到的。
应理解的是,终端设备未测量到第一小区的信号是指第一小区对应的信号质量参数低 于第一数值,示例性地,信号质量参数可以为参考信号接收功率(reference signal receiving power,RSRP)或参考信号接收质量(reference signal receiving quality,RSRQ)等。当终端设备测得第一小区的RSRP小于-110dBm时,则判断终端设备未测量到第一小区的信号。
针对步骤802,测量结果可以作为一个信息发送,也可以作为多个信息分别发送。例如,用于指示终端设备测量到第一小区的信号的信息作为一个信息发送,第一小区的信号仰角、终端设备的位置信息和终端设备测量第一小区的时间信息作为另一个信息发送。或者,用于指示终端设备测量到第一小区的信号的信息、第一小区的信号仰角、终端设备的位置信息、终端设备测量第一小区的时间信息作为一个信息发送。
在一示例中,终端设备可以主动向第二网络设备发送测量结果。示例性地,当终端设备处于连接态时,终端设备可以在完成针对第一小区的测量后,向第二网络设备发送测量结果。
在另一示例中,终端设备向第二网络设备发送通知信息,该通知消息用于通知第二网络设备:所述终端设备保存有测量结果,又或者,该通知消息用于询问第二网络设备是否需要终端设备上报测量结果。第二网络设备在接收到来自于终端设备的通知信息后,第二网络设备向终端设备发送请求消息,该请求消息用于请求终端设备向第二网络设备发送测量结果。示例性地,若终端设备被配置执行logged MDT,当终端设备进入到空闲态或非激活态时,终端设备会根据测量配置信息记录logged MDT的测量结果。当终端设备向第二网络设备发起RRC连接时,在RRC消息中携带一个指示信息,该指示信息指示终端设备记录了logged MDT的测量结果。网络设备可以向终端设备发送请求消息,该请求消息用于请求logged MDT的测量结果。终端设备向网络设备上报logged MDT的测量结果。
应理解的是,第一网络设备和第二网络设备可以为相同的网络设备或不同的网络设备。示例性地,由于信号偏移或者卫星飞走了,终端设备可能无法向发送测量配置的网络设备发送测量结果,此时,终端设备可以向当前新接入的网络设备发送测量结果。
当第一网络设备与第二网络设备可以相同,且第二网络设备覆盖第一小区,或第二网络设备用于转发第一小区的信号时,则第二网络设备根据测量结果判断是否需要调整第一小区对应的天线指向角度或第二网络设备的飞行轨迹。
示例性地,若测量结果指示终端设备测量到第一小区,而基于终端设备测量第一小区的时间信息和终端设备的位置信息,当第一小区的天线指向角度正确、且第二网络设备飞行轨迹正确时,终端设备是无法测量到的第一小区的,此时,第二网络设备确定第一小区对应的天线指向角度和/或第二网络设备的飞行轨迹需要纠正。
示例性地,若测量结果指示终端设备未测量第一小区,即第一小区对应的信号质量参数低于第一数值,而基于终端设备测量第一小区的时间信息和终端设备的位置信息,当第一小区的天线指向角度正确和第二网络设备飞行轨迹正确时,终端设备是可以测量到的第一小区的,此时,第二网络设备确定第一小区对应的天线指向角度和/或第二网络设备的飞行轨迹需要纠正。
进一步地,第二网络设备可以根据第一小区的信号仰角确定是否需要调整第一小区对应的天线指向角度。若确定当前天线指向角度不正确,第二网络设备可以根据第一小区的信号仰角确定天线指向角度的调整幅度等参数。若确定天线指向角度正确,则排除天线指向角度问题,进一步排查是否是第二网络设备的飞行轨迹出现问题。示例性地,第二网络设备可以调整第二网络设备对应卫星的速度,例如提升卫星速度或降低卫星速度,或者, 第二网络设还可以调整第二网络设备对应的卫星的轨道偏向角等参数,本申请实施例对此不作限定。
步骤803:第二网络设备向第三网络设备发送第一信息,第一信息与测量结果关联。
其中,第三网络设备可以覆盖第一小区,或第三网络设备可以用于转发第一小区的信号。
第三网络设备覆盖第一小区可以理解为第三网络设备包含第一小区或者第一小区属于第三网络设备的一个小区。
第一信息可以包括测量结果、用于指示第一小区对应的天线指向角度的信息、用于指示第三网络设备的飞行轨迹的信息中的至少一种。
示例性地,用于指示第一小区对应的天线指向角度的信息可以包括第一小区对应的正确天线指向角度,此时,第一小区对应的正确天线指向角度可以为绝对角度。或者,用于指示第一小区对应的天线指向角度的信息可以包括第一小区对应的当前天线指向角度相对于第一小区对应的正确天线指向角度的偏离角度,此时,该偏离角度为相对角度。第三网络设备可以根据用于指示第一小区对应的天线指向角度的信息调整第一小区对应的调整天线指向角度。在第三网络设备完成第一小区对应的调整天线指向角度时,第三网络设备可以向第二网络设备发送响应消息,该响应消息指示第三设备已调整第一小区对应的天线指向角度。
示例性地,第三网络设备可以根据测量结果或用于指示第三网络设备的飞行轨迹的信息调整第三网络设备对应的飞行轨迹。例如,第三网络设备可以调整第三网络设备对应卫星的速度,例如提升卫星速度或降低卫星速度,或者,调整第三网络设备对应的卫星的轨道偏向角等参数。在第三网络设备完成调整第三网络设备对应的飞行轨迹时,第三网络设备可以向第二网络设备发送响应消息,该响应消息指示第三设备已调整飞行轨迹。
此外,由于多个小区的PCI可能相同,则第二网络设备可能向具有相同PCI的多个小区分别所属的网络设备发送第一信息。当接收到的网络设备确定第一信息与自身无关时,该网络设备可以向第二网络设备发送响应信息,响应信息用于通知第二网络设备当前网络设备无需调整天线指向角度或飞行轨迹。
在一些实施例中,当第一网络设备与第二网络设备不同时,第二网络设备还可以将测量结果发送至核心网,由核心网转发至其他网络设备,即由核心网将测量结果转发至测量结果指示的第一小区所属的网络设备或用于转发第一小区的信号的网络设备。
在步骤801之前,终端设备可以向网络设备发送终端设备的能力信息,终端设备的能力信息包括终端设备支持测量的小区,终端设备支持测量的测量频段,终端设备支持测量的测量频段对应的信号仰角测量误差中的至少一种。
示例性地,终端设备的能力也可以分为多个级别,如1级,2级,3级……各级分别代表终端设备支持测量的测量频段对应的信号仰角测量误差或精确度,其中,分级的标准可以在协议中规定,也可以由第一网络设备发送给终端设备。
示例性地,终端设备的能力可以是针对不同对象的,例如,针对测量不同类型的小区终端设备的能力不同。这里的小区可以为GEO小区,LEO小区,地面小区等。
示例性地,终端设备的能力可以是针对不同频段的,例如,针对测量不同的频段终端设备的能力不同。这里的频带可以为FR1,FR2等。
示例性地,终端设备的能力可以是针对不同频带组合的,例如,支持频段1和频段2, 或者支持频段1和频段2,或者支持频段2和频段3,或者支持频段1和频段2以及频段3,其中,每个频段组合可以对应一个标识,终端设备可以向第一网络设备上报自身支持的频带组合对应的标识。
采用上述设计,终端设备可以将自身的能力信息上报至第一网络设备,第一网络设备可以基于终端设备的能力信息为终端设备配置测量配置信息,例如,根据终端设备的能力信息为终端设备配置测量的小区。
通过终端设备上报测量结果,第二网络设备可以将第一信息转发至第三网络设备,第三网络设备包括第一小区或转发第一小区的信号,进而实现调整第一小区对应的天线指向角度或调整第三网络设备对应的飞行轨迹。因此上述方法可以作为一种有效的纠正小区覆盖区域出错问题的手段,且该方法成本较低,还可以适用于覆盖卫星自我纠正机制失灵的场景。
如图9所示,本申请实施例还提供一种通信方法,用于纠正小区覆盖区域出错的问题,该方法包括:
步骤901:第一网络设备向终端设备发送测量配置信息,测量配置信息指示终端设备上报测量第一小区的信号对应的信号仰角和终端设备的位置信息。
针对步骤901,第一网络设备可以在SI或专用信令中携带测量配置信息,示例性地,专用信令可以是RRC重配置消息,也可以是其他信令,本申请实施例对此不作限定。
在一些实施例中,第一网络设备可以指示终端设备测量第一小区。其中,第一小区可以为终端设备的服务小区或终端设备的服务小区的邻区,第一小区可以为卫星小区。示例性地,终端设备的服务小区可以为卫星小区,或者终端设备的服务小区的邻区为卫星小区。
测量配置信息可以包括上述第一小区的标识。其中,这里的标识包括但不限于CGI,PCI,频点、网络设备标识,小区的卫星种类中的至少一种。示例性地,测量配置信息可以包括第一小区对应的CGI,或者,第一小区对应的频点和PCI,或者,第一小区对应的频点和PCI以及第一小区对应的卫星种类。
此外,测量配置信息还可以指示多个小区,即测量配置信息可以包括多个小区的标识,本申请实施例对此不作限定。示例性地,测量配置信息中可以携带测量对象,该测量对象可以包括至少一个小区的标识,例如,终端设备的服务小区的标识和/或终端设备的服务小区的邻区的标识。
应理解的是,终端设备的位置信息可以是指终端设备的绝对位置信息,例如,终端设备的GPS信息。终端设备的位置信息还可以是终端设备的相对位置信息,例如,终端设备相对于某个参考点的位置信息。其中,相对位置信息可以包括方向和距离。例如,终端设备的相对位置信息可以是终端设备距离小区中心的相对方向和距离,该小区中心可以通过通信协议规定,也可以通过第一网络设备通知终端设备,例如,小区中心的位置信息可以通过系统广播或者专用信令发送。
此外,测量配置信息还可以具体包括但不限于以下内容中的至少一种:
测量配置信息还指示终端设备测量第一小区的时间,终端设备发送的测量结果可以包括终端设备测量第一小区的时间信息。
其中,测量配置信息可以指示终端设备测量第一小区的开始时刻,这里开始时刻可以是绝对值或相对值,本申请实施例对此不作限定。例如,测量配置信息指示终端设备测量第一小区的开始时刻,例如绝对时间,或者,测量配置信息指示终端设备接收到测量配置 信息的N秒后开始测量第一小区,N为正整数。可以理解的,测量结果中的时间信息也可以是终端设备开始测量第一小区的开始时刻的绝对值或相对值。
示例性地,测量配置信息还可以指示终端设备周期性测量第一小区,或者测量第一小区的次数,例如,这里的次数可以为一次或多次。
测量配置信息还指示终端设备测量第一小区所采用的测量方式,其中,测量方式包括MDT或用于移动性的测量。示例性地,这里的MDT可以为logged MDT或immediate MDT。此外,本申请实施例提供方法还可以适用于自组网的测量。
此外,测量配置信息还指示终端设备测量第一小区的触发条件,相应的,终端设备确定满足触发条件则根据测量配置信息测量第一小区。
在一些实施例中,触发条件为终端设备在接收到来自于网络设备的测量配置信息后开始测量第一小区。示例性地,终端设备在接收到来自于网络设备的测量配置信息后立即测量上述第一小区。
在另一些实施例中,触发条件为终端设备在接收到来自于网络设备的测量配置信息后,在确定满足预设条件时开始测量第一小区。示例性地,测量配置信息还包括信号质量参数对应的预设值,终端设备在接收到来自于网络设备的测量配置信息后监控信号质量参数,在确定第一小区的信号质量参数低于预设值时开始测量第一小区。其中,信号质量参数可以为RSRP或RSRQ等,本申请实施例对此不作限定。
应理解的是,上述信号质量参数对应的预设值可以是第一网络设备配置的,也可以是通过通信协议规定的。当上述信号质量参数对应的预设值通过第一网络设备配置时,信号质量参数对应的预设值可以通过测量配置信息携带,也可以通过其他信令携带,本申请实施例对此不作限定。
应理解的是,上述测量配置信息包括的具体内容仅为举例,不作为本申请实施例的限定。
步骤902:终端设备向第二网络设备发送测量结果,测量结果包括第一小区的信号仰角和终端设备的位置信息。
其中,测量结果是终端设备根据测量配置信息对第一小区进行测量得到的。
针对步骤902,测量结果可以作为一个信息发送,也可以作为多个信息分别发送。例如,第一小区的信号仰角作为一个信息发送,终端设备的位置信息和终端设备测量第一小区的时间信息作为另一个信息发送。或者,用于指示终端设备测量到第一小区的信号的信息、第一小区的信号仰角、终端设备的位置信息、终端设备测量第一小区的时间信息作为一个信息发送。
在一示例中,终端设备可以主动向第二网络设备发送测量结果。示例性地,当终端设备处于连接态时,终端设备可以在完成针对第一小区的测量后,立即向第二网络设备发送测量结果。
在另一示例中,终端设备向第二网络设备发送通知信息,该通知消息用于通知第二网络设备:所述终端设备保存有测量结果,又或者,该通知消息用于询问第二网络设备是否需要终端设备上报测量结果。第二网络设备在接收到来自于终端设备的通知信息后,第二网络设备向终端设备发送请求消息,该请求消息用于请求终端设备向第二网络设备发送测量结果。示例性地,若终端设备被配置执行logged MDT,当终端设备进入到空闲态或非激活态时,终端设备会根据测量配置信息记录logged MDT的测量结果。当终端设备向第二 网络设备发起RRC连接时,在RRC消息中携带一个指示信息,该指示信息指示终端设备记录了logged MDT的测量结果。网络设备可以向终端设备发送请求消息,该请求消息用于请求logged MDT的测量结果。终端设备向网络设备上报logged MDT的测量结果。
应理解的是,第一网络设备和第二网络设备可以为相同的网络设备或不同的网络设备。示例性地,由于信号偏移或者卫星飞走了,终端设备可能无法向发送测量配置的网络设备发送测量结果,此时,终端设备可以向当前新接入的网络设备发送测量结果。
当第一网络设备与第二网络设备开业相同,且第二网络设备覆盖第一小区,或第二网络设备用于转发第一小区的信号时,则第二网络设备根据测量结果判断是否需要调整第一小区对应的天线指向角度或第二网络设备的飞行轨迹。
第二网络设备可以根据第一小区的信号仰角确定是否需要调整第一小区对应的天线指向角度。若确定当前天线指向角度不正确,第二网络设备可以根据第一小区的信号仰角确定天线指向角度的调整幅度等参数。若确定天线指向角度正确,则排除天线指向角度问题,进一步排查是否是第二网络设备的飞行轨迹出现问题。示例性地,第二网络设备可以调整第二网络设备对应卫星的速度,例如提升卫星速度或降低卫星速度,或者,第二网络设还可以调整第二网络设备对应的卫星的轨道偏向角等参数,本申请实施例对此不作限定。
步骤903:第二网络设备向第三网络设备发送第一信息,第一信息与测量结果关联。
其中,第三网络设备可以覆盖第一小区,或第三网络设备可以用于转发第一小区的信号。
第三网络设备覆盖第一小区可以理解为第三网络设备包含第一小区或者第一小区属于第三网络设备的一个小区。
第一信息可以包括测量结果、用于指示第一小区对应的天线指向角度的信息、用于指示第三网络设备的飞行轨迹的信息中的至少一种。
示例性地,用于指示第一小区对应的天线指向角度的信息可以包括第一小区对应的正确天线指向角度,此时,第一小区对应的正确天线指向角度可以为绝对角度。或者,用于指示第一小区对应的天线指向角度的信息可以包括第一小区对应的当前天线指向角度相对于第一小区对应的正确天线指向角度的偏离角度,此时,该偏离角度为相对角度。第三网络设备可以根据用于指示第一小区对应的天线指向角度的信息调整第一小区对应的调整天线指向角度。在第三网络设备完成第一小区对应的调整天线指向角度时,第三网络设备可以向第二网络设备发送响应消息,该响应消息指示第三设备已调整第一小区对应的天线指向角度。
示例性地,第三网络设备可以根据测量结果或用于指示第三网络设备的飞行轨迹的信息调整第三网络设备对应的飞行轨迹。例如,第三网络设备可以调整第三网络设备对应卫星的速度,例如提升卫星速度或降低卫星速度,或者,调整第三网络设备对应的卫星的轨道偏向角等参数。在第三网络设备完成调整第三网络设备对应的飞行轨迹时,第三网络设备可以向第二网络设备发送响应消息,该响应消息指示第三设备已调整飞行轨迹。
此外,由于多个小区的PCI可能相同,则第二网络设备可能向具有相同PCI的多个小区分别所属的网络设备发送第一信息。当接收到的网络设备确定第一信息与自身无关时,该网络设备可以向第二网络设备发送响应信息,响应信息用于通知第二网络设备当前网络设备无需调整天线指向角度或飞行轨迹。
在一些实施例中,当第一网络设备与第二网络设备不同时,第二网络设备还可以将测 量结果发送至核心网,由核心网转发至其他网络设备,即由核心网将测量结果转发至测量结果指示的第一小区所属的网络设备或用于转发第一小区的信号的网络设备。
在步骤901之前,终端设备可以向网络设备发送终端设备的能力信息,终端设备的能力信息包括终端设备支持测量的小区,终端设备支持测量的测量频段,终端设备支持测量的测量频段对应的信号仰角测量误差中的至少一种。
示例性地,终端设备的能力也可以分为多个级别,如1级,2级,3级……各级分别代表终端设备支持测量的测量频段对应的信号仰角测量误差或精确度,其中,分级的标准可以在协议中规定,也可以由第一网络设备发送给终端设备。
示例性地,终端设备的能力可以是针对不同对象的,例如,针对测量不同类型的小区终端设备的能力不同。这里的小区可以为GEO小区,LEO小区,地面小区等。
示例性地,终端设备的能力可以是针对不同频段的,例如,针对测量不同的频段终端设备的能力不同。这里的频带可以为FR1,FR2等。
示例性地,终端设备的能力可以是针对不同频带组合的,例如,支持频段1和频段2,或者支持频段1和频段2,或者支持频段2和频段3,或者支持频段1和频段2以及频段3,其中,每个频段组合可以对应一个标识,终端设备可以向第一网络设备上报自身支持的频带组合对应的标识。
采用上述设计,终端设备可以将自身的能力信息上报至第一网络设备,第一网络设备可以基于终端设备的能力信息为终端设备配置测量配置信息,例如,根据终端设备的能力信息为终端设备配置测量的小区。
通过终端设备上报测量结果,第二网络设备可以将第一信息转发至第三网络设备,第三网络设备包括第一小区或转发第一小区的信号,进而实现调整第一小区对应的天线指向角度或调整第三网络设备对应的飞行轨迹。因此上述方法可以作为一种有效的纠正小区覆盖问题的手段,且该方法成本较低,还可以适用于覆盖卫星自我纠正机制失灵的场景。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的通信方法的各方案进行了介绍。可以理解的是,各个网元,例如网络设备和终端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
与上述构思相同,如图10所示,本申请实施例还提供一种装置1000,该装置1000包括收发单元1002和处理单元1001。
一示例中,装置1000用于实现上述方法中终端设备的功能。该装置还可以是终端设备中的芯片系统。
处理单元1001调用收发单元1002执行:
接收来自于第一网络设备的测量配置信息,测量配置信息指示终端设备测量第一小区;向第二网络设备发送测量结果,测量结果是终端设备根据测量配置信息对第一小区进行测量得到的,测量结果指示终端设备测量到第一小区的信号或未测量到第一小区的信号。
一示例中,装置1000用于实现上述方法中第一网络设备的功能。
处理单元1001用于确定测量配置信息,测量配置信息指示终端设备测量第一小区并上报述终端设备测量到第一小区的信号或未测量到第一小区的信号;
收发单元1002向终端设备发送测量配置信息。
一示例中,装置1000用于实现上述方法中第二网络设备的功能。
处理单元1001调用收发单元1002执行:接收来自于终端设备的测量结果,测量结果指示终端设备测量到第一小区的信号或未测量到第一小区的信号;向第三网络设备发送第一信息,第一信息与测量结果关联,第三网络设备包含第一小区或者第三网络设备转发第一小区的信号。
关于处理单元1001、收发单元1002的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
作为另一种可选的变形,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。示例性地,该装置包括处理器和接口电路,接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行上述各个实施例的方法。其中,处理器完成上述处理单元1001的功能,接口电路完成上述收发单元1002的功能。
与上述构思相同,如图11所示,本申请实施例还提供一种装置1100。该装置1100中包括:通信接口1101、至少一个处理器1102、至少一个存储器1103。通信接口1101,用于通过传输介质和其它设备进行通信,从而用于装置1100中的装置可以和其它设备进行通信。存储器1103,用于存储计算机程序。处理器1102调用存储器1103存储的计算机程序,通过通信接口1101收发数据实现上述实施例中的方法。
示例性地,当该装置为终端设备时,存储器1103用于存储计算机程序;处理器1102调用存储器1103存储的计算机程序,通过通信接口1101执行上述实施例中终端设备执行的方法。
示例性地,当该装置为第一网络设备时,存储器1103用于存储计算机程序;处理器1102调用存储器1103存储的计算机程序,通过通信接口1101执行上述实施例中第一网络设备执行的方法。
示例性地,当该装置为第二网络设备时,存储器1103用于存储计算机程序;处理器1102调用存储器1103存储的计算机程序,通过通信接口1101执行上述实施例中第二网络设备执行的方法。
在本申请实施例中,通信接口1101可以是收发器、电路、总线、模块或其它类型的通信接口。处理器1102可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。存储器1103可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory, RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置。存储器1103和处理器1102耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器1103还可以位于装置1100之外。处理器1102可以和存储器1103协同操作。处理器1102可以执行存储器1103中存储的程序指令。所述至少一个存储器1103中的至少一个也可以包括于处理器1102中。本申请实施例中不限定上述通信接口1101、处理器1102以及存储器1103之间的连接介质。例如,本申请实施例在图11中以存储器1103、处理器1102以及通信接口1101之间可以通过总线连接,所述总线可以分为地址总线、数据总线、控制总线等。
可以理解的,上述图10所示实施例中的装置可以以图11所示的装置1100实现。具体的,处理单元1001可以由处理器1102实现,收发单元1002可以由通信接口1101实现。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述各个实施例所示的方法。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种通信方法,其特征在于,该方法包括:
    接收来自于第一网络设备的测量配置信息,所述测量配置信息指示终端设备测量第一小区;
    向第二网络设备发送测量结果,所述测量结果是所述终端设备根据所述测量配置信息对所述第一小区进行测量得到的,所述测量结果指示所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号。
  2. 如权利要求1所述的方法,其特征在于,所述测量配置信息还指示所述终端设备上报所述第一小区的信号仰角;
    所述测量结果还包括所述第一小区的信号仰角。
  3. 如权利要求1或2所述的方法,其特征在于,所述测量配置信息还指示所述终端设备上报所述终端设备的位置信息;
    所述测量结果还包括所述终端设备的位置信息。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述测量配置信息还指示所述终端设备测量所述第一小区的时间;
    所述测量结果还包括所述终端设备测量所述第一小区的时间信息。
  5. 如权利要求1-4任一项所述的方法,其特征在于,还包括:
    向所述第一网络设备发送所述终端设备的能力信息,所述终端设备的能力信息包括所述终端设备支持测量的小区,所述终端设备支持测量的测量频段,所述终端设备支持测量的测量频段对应的信号仰角测量误差中的至少一种。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一小区为所述终端设备的服务小区或所述终端设备的服务小区的邻区。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一小区为卫星小区。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述测量配置信息包括所述第一小区的标识,所述标识包括小区全球标识CGI,物理小区标识PCI,频点、网络设备标识,小区的卫星种类中的至少一种。
  9. 一种通信方法,其特征在于,该方法包括:
    确定测量配置信息,所述测量配置信息指示终端设备测量第一小区并上报述所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号;
    向所述终端设备发送所述测量配置信息。
  10. 如权利要求9所述的方法,其特征在于,所述测量配置信息还指示所述终端设备上报所述第一小区的信号仰角。
  11. 如权利要求9或10所述的方法,其特征在于,所述测量配置信息还指示所述终端设备上报所述终端设备的位置信息。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述测量配置信息还指示所述终端设备测量所述第一小区的时间。
  13. 如权利要求9-12任一项所述的方法,其特征在于,还包括:
    接收来自于所述终端设备的所述终端设备的能力信息,所述终端设备的能力信息包括所述终端设备支持测量的小区,所述终端设备支持测量的测量频段,所述终端设备支持测 量的测量频段对应的信号仰角测量误差中的至少一种。
  14. 如权利要求9-13任一项所述的方法,其特征在于,所述第一小区为所述终端设备的服务小区或所述终端设备的服务小区的邻区。
  15. 如权利要求9-14任一项所述的方法,其特征在于,所述第一小区为卫星小区。
  16. 如权利要求9-15任一项所述的方法,其特征在于,所述测量配置信息包括所述第一小区的标识,所述标识包括小区全球标识CGI,物理小区标识PCI,频点、网络设备标识,小区的卫星种类中的至少一种。
  17. 一种通信方法,其特征在于,该方法包括:
    接收来自于终端设备的测量结果,所述测量结果指示所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号;
    向第三网络设备发送第一信息,所述第一信息与所述测量结果关联,所述第三网络设备覆盖所述第一小区,或者所述第三网络设备用于转发所述第一小区的信号。
  18. 如权利要求17所述的方法,其特征在于,所述测量结果还包括所述第一小区的信号仰角。
  19. 如权利要求17或18所述的方法,其特征在于,所述测量结果还包括所述终端设备的位置信息。
  20. 如权利要求17-19任一项所述的方法,其特征在于,所述测量结果还包括所述终端设备测量所述第一小区的时间信息。
  21. 如权利要求17所述的方法,其特征在于,所述第一信息包括所述测量结果、用于指示所述第一小区对应的天线指向角度的信息、或者用于指示所述第三网络设备的飞行轨迹的信息中的至少一种。
  22. 一种通信装置,其特征在于,该装置包括:收发单元和处理单元,所述处理单元调用所述收发单元执行:
    接收来自于第一网络设备的测量配置信息,所述测量配置信息指示终端设备测量第一小区;向第二网络设备发送测量结果,所述测量结果是所述终端设备根据所述测量配置信息对所述第一小区进行测量得到的,所述测量结果指示所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号。
  23. 一种通信装置,其特征在于,该装置包括:收发单元和处理单元;
    所述处理单元用于确定测量配置信息,所述测量配置信息指示终端设备测量第一小区并上报述所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号;
    所述收发单元用于向所述终端设备发送所述测量配置信息。
  24. 一种通信装置,其特征在于,该装置包括:收发单元和处理单元;
    所述处理单元调用所述收发单元执行:接收来自于终端设备的测量结果,所述测量结果指示所述终端设备测量到所述第一小区的信号或未测量到所述第一小区的信号;向第三网络设备发送第一信息,所述第一信息与所述测量结果关联,所述第三网络设备覆盖所述第一小区或者所述第三网络设备用于转发所述第一小区的信号。
  25. 一种设备,其特征在于,所述设备包括收发器、处理器和存储器;所述存储器中存储有程序指令;当所述程序指令被所述处理器执行时,使得所述设备通过所述收发器执行如权利要求1至21任一所述的方法。
  26. 一种芯片,其特征在于,所述芯片与电子设备中的存储器耦合,使得所述芯片在运 行时调用所述存储器中存储的程序指令,实现如权利要求1至21任一所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括程序指令,当所述程序指令在设备上运行时,使得所述设备执行如权利要求1至21任一项所述的方法。
PCT/CN2021/091343 2020-04-30 2021-04-30 一种通信方法及装置 WO2021219120A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21797716.4A EP4135216A4 (en) 2020-04-30 2021-04-30 COMMUNICATION METHOD AND APPARATUS
US17/975,862 US20230049063A1 (en) 2020-04-30 2022-10-28 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010367143.1A CN113595611A (zh) 2020-04-30 2020-04-30 一种通信方法及装置
CN202010367143.1 2020-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/975,862 Continuation US20230049063A1 (en) 2020-04-30 2022-10-28 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021219120A1 true WO2021219120A1 (zh) 2021-11-04

Family

ID=78237630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091343 WO2021219120A1 (zh) 2020-04-30 2021-04-30 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20230049063A1 (zh)
EP (1) EP4135216A4 (zh)
CN (1) CN113595611A (zh)
WO (1) WO2021219120A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023244392A1 (en) * 2022-06-13 2023-12-21 Qualcomm Incorporated Techniques for performing non‑terrestrial cell measurements

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102710A1 (zh) * 2021-12-07 2023-06-15 Oppo广东移动通信有限公司 通信方法、终端设备以及网络设备
CN114745733B (zh) * 2022-03-30 2023-02-03 中山大学 基于son和rrm联合优化的无线网络优化方法及系统
CN117354841A (zh) * 2022-06-28 2024-01-05 华为技术有限公司 测量方法及装置
WO2024011385A1 (en) * 2022-07-11 2024-01-18 Nec Corporation Method, device and computer storage medium of communication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131207A (zh) * 2010-01-15 2011-07-20 华为技术有限公司 测量上报方法、装置及系统
US20140022120A1 (en) * 2012-07-18 2014-01-23 Viasat, Inc. Ground assisted satellite antenna pointing system
CN108738034A (zh) * 2017-04-21 2018-11-02 华为技术有限公司 测量载频的方法和设备
WO2019052168A1 (zh) * 2017-09-13 2019-03-21 Oppo广东移动通信有限公司 配置anr的方法、终端设备、基站和核心网设备
WO2019170866A1 (en) * 2018-03-09 2019-09-12 Ipcom Gmbh & Co. Kg Predictive measurement for non-terrestrial communication
CN111010708A (zh) * 2018-10-08 2020-04-14 电信科学技术研究院有限公司 移动性管理的方法、无线接入网、终端及计算机存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746588B1 (ko) * 2010-10-08 2017-06-27 삼성전자주식회사 단말기 및 그 단말기에서 셀 정보 관리 방법
US9848340B2 (en) * 2012-05-18 2017-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Technique for performing cell measurement on at least two cells
EP3361772B1 (en) * 2015-11-16 2022-01-05 Huawei Technologies Co., Ltd. Method for cell measurement report and user equipment
KR20200128388A (ko) * 2018-03-09 2020-11-12 아이피컴 게엠베하 앤 코. 카게 비지상 네트워크들에 대한 베어러 구성

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131207A (zh) * 2010-01-15 2011-07-20 华为技术有限公司 测量上报方法、装置及系统
US20140022120A1 (en) * 2012-07-18 2014-01-23 Viasat, Inc. Ground assisted satellite antenna pointing system
CN108738034A (zh) * 2017-04-21 2018-11-02 华为技术有限公司 测量载频的方法和设备
WO2019052168A1 (zh) * 2017-09-13 2019-03-21 Oppo广东移动通信有限公司 配置anr的方法、终端设备、基站和核心网设备
WO2019170866A1 (en) * 2018-03-09 2019-09-12 Ipcom Gmbh & Co. Kg Predictive measurement for non-terrestrial communication
CN111010708A (zh) * 2018-10-08 2020-04-14 电信科学技术研究院有限公司 移动性管理的方法、无线接入网、终端及计算机存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023244392A1 (en) * 2022-06-13 2023-12-21 Qualcomm Incorporated Techniques for performing non‑terrestrial cell measurements

Also Published As

Publication number Publication date
EP4135216A1 (en) 2023-02-15
US20230049063A1 (en) 2023-02-16
EP4135216A4 (en) 2023-10-04
CN113595611A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2021219120A1 (zh) 一种通信方法及装置
CN111510981B (zh) 无线链路管理方法及装置
US8891396B2 (en) Communication device, mobile terminal, method for requesting information and method for providing information
US11653246B2 (en) Method and device for configuring and reporting measurement for LTE/NR interworking in wireless communication system
RU2719288C1 (ru) Условное завершение rstd-измерений
WO2021218672A1 (zh) 一种通信方法、装置及计算机可读存储介质
US9860778B2 (en) Method and system for optimization of measurement reporting in wireless networks
US20190159097A1 (en) Method and apparatus for transmitting data
CN114745755B (zh) 一种通信方法、基站、终端及存储介质
US20140171085A1 (en) Method and apparatus for handover processing
US20230171664A1 (en) Voice signal handover during voice over new radio sessions
CN114788351A (zh) 辅助小区的替换
US20190208446A1 (en) Handover Method and Apparatus
US20130183984A1 (en) Neighbouring Cell Optimization Method and Mobile Communication System
US11672042B2 (en) Endpoint device radio link failure information reporting
US11979765B2 (en) Minimization drive test for wireless devices with multiple radio access technologies (RATs)
KR20230091138A (ko) Mro 크리티컬 시나리오의 판정 방법, 장치 및 기기
TW202014029A (zh) 一種無線通訊方法、終端設備和網路設備
US20230388859A1 (en) Methods and mechanisms for slice coverage enhancement
WO2023221773A1 (zh) 激活小区部分资源的方法及装置
US20240040638A1 (en) Method and apparatus for measurement mode selection procedure in communication system including multiple transmission and reception points
WO2023225877A1 (zh) 位置信息获取方法和装置
US20240022988A1 (en) Method and apparatus for conditional reconfiguration
WO2023138570A1 (zh) 通信方法以及通信装置
WO2022032687A1 (zh) 通信的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021797716

Country of ref document: EP

Effective date: 20221108

NENP Non-entry into the national phase

Ref country code: DE