WO2018028153A1 - 一种单极天线和移动终端 - Google Patents

一种单极天线和移动终端 Download PDF

Info

Publication number
WO2018028153A1
WO2018028153A1 PCT/CN2017/071326 CN2017071326W WO2018028153A1 WO 2018028153 A1 WO2018028153 A1 WO 2018028153A1 CN 2017071326 W CN2017071326 W CN 2017071326W WO 2018028153 A1 WO2018028153 A1 WO 2018028153A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
circuit board
printed circuit
gap
unit
Prior art date
Application number
PCT/CN2017/071326
Other languages
English (en)
French (fr)
Inventor
郑小飞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018028153A1 publication Critical patent/WO2018028153A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a monopole antenna and a mobile terminal.
  • the expansion of the antenna design low-frequency antenna bandwidth is as shown in FIG. 1 , and mainly relies on the antenna tuning switch 100 to achieve antenna bandwidth switching.
  • the domestic operators China Mobile and China Unicom's low-frequency working frequency band is GSM900, bandwidth 880-960MHz; China Telecom's low-frequency working frequency band is GSM850, and the bandwidth is 824-894MHz.
  • the mobile terminal requires a low-frequency antenna bandwidth of 824-960MHz.
  • the antenna's own resonant low-frequency bandwidth only covers 824-894MHz.
  • GSM900 (880-960MHz) needs to work, it uses the antenna tuning switch to change.
  • the antenna point length or antenna matching value is used to switch the low frequency resonance to GSM900.
  • the antenna tuning switch has corresponding requirements on the antenna space (such as antenna headroom) and the antenna form. It not only utilizes the limitations of the scene, but also the antenna tuning switch needs to occupy the PCB layout space, occupying the antenna clearance area, and increasing Manufacturing costs.
  • the object of the embodiments of the present invention is to provide a monopole antenna and a mobile terminal.
  • the layout design of the antenna structure satisfies the requirement of communication for the low frequency bandwidth of the antenna, and the antenna tuning switch is not needed, which is limited by the scene and does not occupy the antenna clearance area. Reduced manufacturing costs.
  • an embodiment of the present invention provides a monopole antenna, including:
  • An antenna body comprising an antenna radiating element of a non-closed loop structure and a coupled parasitic unit of a non-closed loop structure, wherein the antenna radiating unit and the coupling parasitic unit are respectively disposed at the same end of the printed circuit board a two sides of the area, and a first gap between the antenna radiating unit and the coupling parasitic unit;
  • the non-closed loopback structure of the antenna radiating unit includes at least a second gap and a third gap, and the high frequency W-type antenna is generated by the frequency multiplication of the antenna radiating unit.
  • the second gap and the third gap are gaps between adjacent portions of the non-closed loop structure parallel to the width direction of the printed circuit board.
  • the non-closed loop structure of the coupled parasitic element is mirrored to the non-closed loop structure of the antenna radiating element.
  • the length of the antenna radiating unit is 1/4 wavelength of a low frequency bandwidth center frequency point, and the antenna radiating unit generates a low frequency V antenna resonating and frequency doubling through a non-closed loop structure. A high frequency resonance is produced.
  • the length of the coupled parasitic element is taken as a quarter wavelength of a low frequency bandwidth center frequency point, and the coupled parasitic element and the antenna radiating element are coupled by the first gap to generate a low frequency W. Antenna resonance.
  • the first end of the printed circuit board connecting the feeding point and the second end of the printed circuit board connected to the feed point are located at the width of the printed circuit board. Both sides of the direction.
  • the feeding point is connected to the receiving and transmitting circuit of the printed circuit board; the feeding point is connected to the main ground of the printed circuit board.
  • an embodiment of the present invention further provides a mobile terminal, including:
  • a monopole antenna disposed in a vacant area at the same end of the printed circuit board, wherein the printed circuit board is disposed in the built-in space;
  • the monopole antenna includes:
  • An antenna body the antenna body includes an antenna radiating unit of a non-closed loop structure and a coupled parasitic unit of a non-closed loop structure, and the antenna radiating unit and the coupling parasitic unit are respectively disposed in the vacant area a side, and a first gap between the antenna radiating unit and the coupled parasitic unit;
  • the non-closed loopback structure of the antenna radiating unit includes at least a second gap and a third gap, and the high frequency W-type antenna is generated by the frequency multiplication of the antenna radiating unit.
  • the second gap and the third gap are gaps between adjacent portions of the non-closed loop structure parallel to the width direction of the printed circuit board.
  • the non-closed loop structure of the coupled parasitic element is mirrored to the non-closed loop structure of the antenna radiating element.
  • the length of the antenna radiating unit is 1/4 wavelength of a low frequency bandwidth center frequency point, and the antenna radiating unit generates a low frequency V antenna resonating and frequency doubling through a non-closed loop structure. A high frequency resonance is produced.
  • the length of the coupled parasitic element is taken as a quarter wavelength of a low frequency bandwidth center frequency point, and the coupled parasitic element and the antenna radiating element are coupled by the first gap to generate a low frequency W. Antenna resonance.
  • the printed circuit board is connected to the first of the feeding points.
  • the second end of the terminal and the printed circuit board connected to the feed point is located on both sides of the width direction of the printed circuit board.
  • the feeding point is connected to the receiving and transmitting circuit of the printed circuit board; the feeding point is connected to the main ground of the printed circuit board.
  • the monopole antenna of the embodiment of the present invention integrates the antenna radiating unit and the coupled parasitic unit with the non-closed loop structure, and the coupled parasitic unit and the antenna radiating unit are coupled to each other to generate a W-type resonance to expand the low-frequency bandwidth, which satisfies the low-bandwidth bandwidth of the communication for the antenna.
  • the requirements are simple in structure and easy to debug.
  • the antenna tuning switch is not needed, the limitation of the scene is small, and the antenna clearance area is not occupied, thereby reducing the manufacturing cost.
  • 1 is a schematic diagram of a conventional tuned switch antenna
  • FIG. 2 is a schematic diagram of a monopole antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an application of a monopole antenna in a mobile terminal according to an embodiment of the present invention.
  • 100-antenna tuning switch 1-antenna radiating element; 101-first part; 102-second part; 103-third part; 2-coupled parasitic element; 3-first gap; 4-feed point; 5-feed Location; 6-second gap; 7-third gap; 8-printed circuit board; 9-vacant area.
  • the embodiment of the present invention provides a monopole antenna for the existing antenna to be affected by the characteristics of the antenna tuning switch, utilizing the limitations of the scene, occupying the antenna clearance area, and increasing the manufacturing cost, and satisfying the communication through the layout design of the antenna structure.
  • the need for low frequency bandwidth of the antenna does not need to be
  • the antenna tuning switch is limited by the scene and does not occupy the antenna clearance area, which reduces the manufacturing cost.
  • a monopole antenna includes: an antenna body including an antenna radiating element 1 of a non-closed loop structure and a coupled parasitic structure of a non-closed loop structure.
  • the unit 2, the antenna radiating unit 1 and the coupled parasitic unit 2 are respectively disposed on both sides of the same end vacant area 9 of the printed circuit board 8, and between the antenna radiating unit 1 and the coupled parasitic unit 2 There is a first gap 3; a feeding point 4 connecting the antenna radiating unit 1 and the first end of the printed circuit board 8; a feeding point 5 connecting the coupling parasitic unit 2 and the second end of the printed circuit board 8 .
  • the antenna body is disposed in the vacant area 9 at one end of the printed circuit board (PCB board) 8, and includes an antenna radiating unit 1 and a coupled parasitic unit 2.
  • the antenna radiating unit 1 and the coupled parasitic unit 2 are both non-closed loop structures, and are respectively disposed on both sides of the empty area 9 with a first gap 3 therebetween.
  • the antenna radiating element 1 is connected to the first end of the printed circuit board 8 via a feed point 4
  • the coupled parasitic unit 2 is connected to the second end of the printed circuit board 8 via a feed point 5.
  • the length of the antenna radiating unit 1 and the coupled parasitic unit 2, and the length and width of the first gap 3 can be adjusted, so that the coupled parasitic unit 2 and the antenna radiating unit 1 are coupled to each other to generate a W-type resonance.
  • the low-frequency bandwidth satisfies the communication requirements for the low-frequency bandwidth of the antenna, and the structure is simple and easy to debug.
  • the antenna tuning switch is not needed, the limitation of the scene is small, and the antenna clearance area is not occupied, thereby reducing the manufacturing cost.
  • the length of the antenna radiating unit 1 is taken as 1/4 wavelength of the center frequency of the low frequency bandwidth, and the antenna radiating unit 1 generates a low frequency V antenna resonance through the non-closed loop structure. And multiply a high frequency resonance.
  • the length of the antenna radiating unit 1 is set to 1/4 wavelength of the central frequency point of the low frequency bandwidth, so that the antenna radiating unit 1 generates a low frequency V antenna resonance by its own non-closed loop structure. Multiply a high frequency resonance.
  • the length of the coupled parasitic element 2 is taken as 1/4 wavelength of the center frequency of the low frequency bandwidth, and the coupled parasitic element 2 and the antenna radiating element are coupled by the first gap 3 to generate a low frequency W antenna resonance. .
  • the length of the coupled parasitic element 2 is also set to 1/4 wavelength of the central frequency point of the low frequency bandwidth. Finally, the antenna radiating element 1 and the coupled parasitic element 2 are coupled to generate a low frequency W-type antenna resonance through the first gap 3 therebetween. .
  • the length of the antenna radiating unit 1 and the coupled parasitic unit 2 the width and length of the first gap, and the resonance of the low-frequency W-type antenna can be further optimized.
  • both the length of the antenna radiating element 1 and the coupled parasitic element 2 are 1/4 wavelength close to the center frequency of the low frequency bandwidth.
  • the non-closed loopback structure of the antenna radiating unit 1 includes at least a second gap 6 and a third gap 7, and a high frequency W-type antenna is generated by a frequency multiplication between the gap and the antenna radiating unit 1 resonance.
  • the non-closed loop structure formed as shown in FIG. 2 includes at least the second gap 6 and the third gap 7, so that the two gaps located in the antenna radiating unit 1 can be radiated with the antenna.
  • the frequency multiplication of unit 1 produces high frequency W-type antenna resonance.
  • the second gap 6 and the third gap 7 are gaps between adjacent portions of the non-closed loop structure parallel to the width direction of the printed circuit board 8. .
  • the antenna radiating unit 1 performs the non-closed loop setting in parallel to the width direction of the printed circuit board 8 (first direction) and perpendicular to the width direction of the printed circuit board 8 (second direction) when the antenna wiring is debugged, and
  • the second gap 6 and the third gap 7 are gaps between adjacent portions of the antenna radiating unit 1 disposed in the first direction.
  • the second gap 6 is a gap between the third portion 103 and the second portion 102 of the antenna radiating unit 1 disposed in the first direction;
  • the third gap 7 is the antenna radiating unit 1 along the first The first part 101 and the first set in one direction The gap between the two parts 102.
  • the high-frequency W-type antenna resonance can also be optimized, thereby obtaining an antenna trace that satisfies the requirements.
  • the non-closed loopback structure of the coupled parasitic element 2 is mirrored to the non-closed loopback structure of the antenna radiating element 1 in order to obtain better antenna resonance to meet communication requirements.
  • the length and width of the antenna radiating unit 1 and/or the coupled parasitic unit 2, the gap width in the non-closed loop structure, or the antenna radiating unit 1 and the coupled parasitic unit 2 are adaptively adjusted.
  • the gap length, width, and therefore, the non-closed loop structure of the coupled parasitic element 2 and the non-closed loop structure of the antenna radiating element 1 are not limited to being completely mirrored, and there may be some deviation.
  • the antenna radiating unit 1 and the coupled parasitic unit 2 have a trace width of not less than 0.6 mm and a gap width of not less than 0.3 mm.
  • the antenna body is often disposed in the vacant area 9 on the top side of the printed circuit board 8.
  • the first end of the printed circuit board 8 connected to the feeding point 4 and the second end of the printed circuit board 8 connected to the feed point 5 are located in the printed circuit Both sides of the plate 8 in the width direction.
  • the feed point 4 and the feed point 5 are located on both sides in the width direction of the printed circuit board 8, facilitating the mirror structure of the antenna radiating unit 1 and the coupled parasitic unit 2.
  • the feed point 4 is connected to the receiving and transmitting circuit of the printed circuit board 8; the feed point 5 is connected to the main ground of the printed circuit board 8.
  • the monopole antenna of the embodiment of the present invention adopts the antenna radiating unit 1 and the coupled parasitic unit 2 which are both non-closed loop structures, and the coupled parasitic unit 2 and the antenna radiating unit 1 are adopted.
  • the mutual coupling produces a W-type resonance to extend the low-frequency bandwidth, which satisfies the requirement of communication for the low-frequency bandwidth of the antenna, and has a simple structure and is easy to debug.
  • the antenna tuning switch is not needed, the limitation of the scene is small, and the antenna clearance area is not occupied, thereby reducing the manufacturing cost.
  • an embodiment of the present invention further provides a mobile terminal, including: a printed circuit board 8 disposed in a built-in space; and disposed in a built-in space, the printed circuit board 8 has a vacant area 9 at the same end a monopole antenna; wherein the monopole antenna comprises: an antenna body, the antenna body comprises an antenna radiating unit 1 of a non-closed loop structure and a coupled parasitic unit 2 of a non-closed loop structure, the antenna radiating The unit 1 and the coupled parasitic unit 2 are respectively disposed on both sides of the vacant area 9, and the antenna radiating unit 1 and the coupled parasitic unit 2 have a first gap 3 therebetween; The radiation unit 1 and the feeding point 4 of the first end of the printed circuit board 8; a feeding point 5 connecting the coupling parasitic unit 2 and the second end of the printed circuit board 8.
  • the non-closed loopback structure of the antenna radiating unit 1 includes at least a second gap 6 and a third gap 7, and a high frequency W type is generated by a frequency multiplication between the gap and the antenna radiating unit 1 Antenna resonance.
  • the second gap 6 and the third gap 7 are gaps between adjacent portions of the non-closed loop structure parallel to the width direction of the printed circuit board 8.
  • the non-closed loopback structure of the coupled parasitic element 2 is mirrored to the non-closed loopback structure of the antenna radiating element 1.
  • the length of the antenna radiating unit 1 is taken as 1/4 wavelength of the center frequency of the low frequency bandwidth, and the antenna radiating unit 1 generates a low frequency V antenna resonating through the non-closed loop structure. Multiply a high frequency resonance.
  • the length of the coupled parasitic element 2 is taken as a low frequency.
  • the coupled parasitic element 2 and the antenna radiating element 1 are coupled by the first gap 3 to generate a low frequency W-type antenna resonance.
  • the printed circuit board 8 is connected to the first end of the feeding point 4 and the second end of the printed circuit board 8 connected to the feeding point 5 is located at the printing The two sides of the circuit board 8 in the width direction.
  • the feed point 4 is connected to the receiving and transmitting circuit of the printed circuit board 8; the feed point 5 is connected to the main ground of the printed circuit board 8.
  • the monopole antenna of the above embodiment is disposed in the vacant area 9 at the same end of the printed circuit board 8, including the antenna radiating unit 1 and the coupled parasitic unit 2, both of which are non-closed loop structures, and coupled.
  • the parasitic unit 2 and the antenna radiating unit 1 are coupled to each other to generate a W-type resonance to expand the low-frequency bandwidth, which satisfies the requirement of communication for the low-frequency bandwidth of the antenna, and has a simple structure and is easy to debug.
  • the antenna tuning switch is not needed, the limitation of the scene is small, and the antenna clearance area is not occupied, thereby reducing the manufacturing cost.
  • the mobile terminal is a mobile terminal to which the above-described monopole antenna is applied, and the implementation manner of the above-described monopole antenna embodiment is applicable to the mobile terminal, and the same technical effect can be achieved.
  • the antenna radiating unit and the coupled parasitic unit are both non-closed loop structures, and the coupled parasitic unit and the antenna radiating unit are coupled to each other to generate a W-type resonance to extend the low-frequency bandwidth, which satisfies the communication for the low-frequency bandwidth of the antenna.
  • the antenna tuning switch is not needed, the limitation of the scene is small, and the antenna clearance area is not occupied, thereby reducing the manufacturing cost.

Landscapes

  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开了一种单极天线和移动终端,涉及通信技术领域。该单极天线包括:一天线本体,所述天线本体包括一非封闭回环结构的天线辐射单元和一非封闭回环结构的耦合寄生单元,所述天线辐射单元和所述耦合寄生单元分别布置在印制电路板同一端空置区域内的两侧,且所述天线辐射单元和所述耦合寄生单元之间具有一第一间隙;一连接所述天线辐射单元与印制电路板第一端的馈电点;一连接所述耦合寄生单元与印制电路板第二端的馈地点。

Description

一种单极天线和移动终端 技术领域
本发明涉及通信技术领域,特别涉及一种单极天线和移动终端。
背景技术
随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第四代移动通信已经兴起,这种第四代移动通信技术丰富了人们的生活体验。但是另一方面,4G通信技术相比3G通信技术需要更宽的带宽。
目前天线设计低频天线带宽的拓展如图1所示,主要依靠天线调谐开关100对天线带宽切换来实现。例如:国内运营商中国移动和中国联通低频工作频段为GSM900,带宽880-960MHz;中国电信低频工作频段为GSM850,带宽为824-894MHz。移动终端要实现全网通,则要求低频天线带宽为824-960MHz,而实际天线设计时,天线自身谐振低频带宽只覆盖824-894MHz,当GSM900(880-960MHz)需要工作时,利用天线调谐开关改变天线点长度或天线匹配值大小,使低频谐振切换到GSM900。
但是,天线调谐开关因其自身特性,对天线空间(如天线净空等)和天线形式有着相应要求,不仅利用场景具有局限性,而且天线调谐开关需要占据PCB布局空间,占据天线净空区域,还增加了制造成本。
发明内容
本发明实施例的目的是提供一种单极天线和移动终端,通过天线结构的布局设计满足通信对于天线低频带宽的需求,无需使用天线调谐开关,受场景局限性小,不占据天线净空区域,降低了制造成本。
为达到上述目的,本发明的实施例提供一种单极天线,包括:
一天线本体,所述天线本体包括一非封闭回环结构的天线辐射单元和一非封闭回环结构的耦合寄生单元,所述天线辐射单元和所述耦合寄生单元分别布置在印制电路板同一端空置区域内的两侧,且所述天线辐射单元和所述耦合寄生单元之间具有一第一间隙;
一连接所述天线辐射单元与印制电路板第一端的馈电点;
一连接所述耦合寄生单元与印制电路板第二端的馈地点。
本发明实施例一实施方式中,所述天线辐射单元的非封闭回环结构中至少包括第二间隙和第三间隙,通过间隙与所述天线辐射单元的倍频产生高频W型天线谐振。
本发明实施例一实施方式中,所述第二间隙和第三间隙均为所述非封闭回环结构中平行于所述印制电路板宽度方向的相邻部分之间的间隙。
本发明实施例一实施方式中,所述耦合寄生单元的非封闭回环结构与所述天线辐射单元的非封闭回环结构呈镜像。
本发明实施例一实施方式中,所述天线辐射单元的长度取值为低频带宽中心频点的1/4波长,所述天线辐射单元通过非封闭回环结构产生一个低频V型天线谐振和倍频出一个高频谐振。
本发明实施例一实施方式中,所述耦合寄生单元的长度取值为低频带宽中心频点的1/4波长,所述耦合寄生单元和所述天线辐射单元通过第一间隙耦合产生一个低频W型天线谐振。
本发明实施例一实施方式中,所述印制电路板连接所述馈电点的第一端和所述印制电路板连接所述馈地点连接的第二端位于所述印制电路板宽度方向的两侧。
本发明实施例一实施方式中,所述馈电点与所述印制电路板的接收发射电路连接;所述馈地点与所述印制电路板的主地连接。
为达到上述目的,本发明的实施例还提供了一种移动终端,包括:
设置于内置空间内的印制电路板;
设置于内置空间内,所述印制电路板同一端空置区域内的单极天线;其中,
所述单极天线包括:
一天线本体,所述天线本体包括一非封闭回环结构的天线辐射单元和一非封闭回环结构的耦合寄生单元,所述天线辐射单元和所述耦合寄生单元分别布置在所述空置区域内的两侧,且所述天线辐射单元和所述耦合寄生单元之间具有一第一间隙;
一连接所述天线辐射单元与印制电路板第一端的馈电点;
一连接所述耦合寄生单元与印制电路板第二端的馈地点。
本发明实施例一实施方式中,所述天线辐射单元的非封闭回环结构中至少包括第二间隙和第三间隙,通过间隙与所述天线辐射单元的倍频产生高频W型天线谐振。
本发明实施例一实施方式中,所述第二间隙和第三间隙均为所述非封闭回环结构中平行于所述印制电路板宽度方向的相邻部分之间的间隙。
本发明实施例一实施方式中,所述耦合寄生单元的非封闭回环结构与所述天线辐射单元的非封闭回环结构呈镜像。
本发明实施例一实施方式中,所述天线辐射单元的长度取值为低频带宽中心频点的1/4波长,所述天线辐射单元通过非封闭回环结构产生一个低频V型天线谐振和倍频出一个高频谐振。
本发明实施例一实施方式中,所述耦合寄生单元的长度取值为低频带宽中心频点的1/4波长,所述耦合寄生单元和所述天线辐射单元通过第一间隙耦合产生一个低频W型天线谐振。
本发明实施例一实施方式中,所述印制电路板连接所述馈电点的第一 端和所述印制电路板连接所述馈地点连接的第二端位于所述印制电路板宽度方向的两侧。
本发明实施例一实施方式中,所述馈电点与所述印制电路板的接收发射电路连接;所述馈地点与所述印制电路板的主地连接。
本发明实施例的上述技术方案的有益效果如下:
本发明实施例的单极天线,通过设置均为非封闭回环结构天线辐射单元和耦合寄生单元,采用耦合寄生单元与天线辐射单元相互耦合产生W型谐振拓展低频带宽,满足了通信对于天线低频带宽的需求,结构形式简单,易于调试。且由于不需使用天线调谐开关,受场景局限性小,不占据天线净空区域,降低了制造成本。
附图说明
图1为现有的调谐开关天线示意图;
图2为本发明实施例的单极天线示意图;
图3为本发明实施例的单极天线在移动终端内的应用示意图。
附图标记说明:
100-天线调谐开关;1-天线辐射单元;101-第一部分;102-第二部分;103-第三部分;2-耦合寄生单元;3-第一间隙;4-馈电点;5-馈地点;6-第二间隙;7-第三间隙;8-印制电路板;9-空置区域。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明实施例针对现有的天线受天线调谐开关特性影响,利用场景具有局限性、占据天线净空区域、增加制造成本等问题,提供了一种单极天线,通过天线结构的布局设计满足通信对于天线低频带宽的需求,无需使 用天线调谐开关,受场景局限性小,不占据天线净空区域,降低了制造成本。
如图2、图3所示,本发明实施例的一种单极天线,包括:一天线本体,所述天线本体包括一非封闭回环结构的天线辐射单元1和一非封闭回环结构的耦合寄生单元2,所述天线辐射单元1和所述耦合寄生单元2分别布置在印制电路板8同一端空置区域9内的两侧,且所述天线辐射单元1和所述耦合寄生单元2之间具有一第一间隙3;一连接所述天线辐射单元1与印制电路板8第一端的馈电点4;一连接所述耦合寄生单元2与印制电路板8第二端的馈地点5。
天线本体设置在印制电路板(PCB板)8一端的空置区域9内,包括天线辐射单元1和耦合寄生单元2。其中,天线辐射单元1和耦合寄生单元2均为非封闭回环结构,且分别布置在该空置区域9内的两侧,之间具有第一间隙3。天线辐射单元1通过馈电点4与印制电路板8的第一端连接,耦合寄生单元2通过馈地点5与印制电路板8的第二端连接。这样,在调试过程中,就能够通过调整天线辐射单元1和耦合寄生单元2的长度,以及第一间隙3的长度和宽度,使耦合寄生单元2和天线辐射单元1相互耦合产生W型谐振拓展低频带宽,满足通信对于天线低频带宽的需求,结构形式简单,易于调试。且由于不需使用天线调谐开关,受场景局限性小,不占据天线净空区域,降低了制造成本。
本发明实施例的单极天线中,所述天线辐射单元1的长度取值为低频带宽中心频点的1/4波长,所述天线辐射单元1通过非封闭回环结构产生一个低频V型天线谐振和倍频出一个高频谐振。
根据通信对于天线低频带宽的需求,将天线辐射单元1的长度设置为低频带宽中心频点的1/4波长,实现天线辐射单元1通过其自身的非封闭回环结构产生一个低频V型天线谐振和倍频出一个高频谐振。
同样的,所述耦合寄生单元2的长度取值为低频带宽中心频点的1/4波长,所述耦合寄生单元2和所述天线辐射单元通过第一间隙3耦合产生一个低频W型天线谐振。
该耦合寄生单元2的长度也设置为低频带宽中心频点的1/4波长,最终,实现该天线辐射单元1与该耦合寄生单元2通过两者间第一间隙3耦合产生低频W型天线谐振。
应该了解的是,在具体调试中,考虑到天线回波损耗,还可进一步调整天线辐射单元1与耦合寄生单元2的长度,第一间隙的宽度和长度,对低频W型天线谐振进行优化。但是,天线辐射单元1与耦合寄生单元2的长度皆是接近低频带宽中心频点的1/4波长。
此外,如图2所示,所述天线辐射单元1的非封闭回环结构中至少包括第二间隙6和第三间隙7,通过间隙与所述天线辐射单元1的倍频产生高频W型天线谐振。
该天线辐射单元1调试天线走线时,形成的非封闭回环结构如图2所示,至少包括第二间隙6和第三间隙7,从而位于天线辐射单元1中的两间隙就能够与天线辐射单元1的倍频产生高频W型天线谐振。
在本发明实施例的一实施方式中,所述第二间隙6和第三间隙7均为所述非封闭回环结构中平行于所述印制电路板8宽度方向的相邻部分之间的间隙。
该天线辐射单元1在调试天线走线时,是按照平行于印制电路板8宽度方向(第一方向)和垂直于印制电路板8宽度方向(第二方向)进行非封闭回环设置,而第二间隙6和第三间隙7则均为该天线辐射单元1沿第一方向设置的相邻部分之间的间隙。以如图2所示结构,第二间隙6是该天线辐射单元1沿第一方向设置的第三部分103和第二部分102之间的间隙;第三间隙7是该天线辐射单元1沿第一方向设置的第一部分101和第 二部分102之间的间隙。
而之后通过调整第二间隙6和第三间隙7的宽度,以及进一步调整辐射单元走线宽度、长度,也可以优化高频W型天线谐振,从而得到满足要求的天线走线。
为了得到更佳的天线谐振满足通信需求,本发明实施例一实施方式中,所述耦合寄生单元2的非封闭回环结构与所述天线辐射单元1的非封闭回环结构呈镜像。
当然,在实际应用的调试过程中,会适应性调整天线辐射单元1和/或耦合寄生单元2的走线长度、宽度,非封闭回环结构中间隙宽度,或者天线辐射单元1和耦合寄生单元2之间间隙长度、宽度,因此,耦合寄生单元2的非封闭回环结构与天线辐射单元1的非封闭回环结构并不限于完全呈镜像设置,可能存在一些偏差。
还应该知道的是,受工艺限制,天线辐射单元1和耦合寄生单元2的走线宽度不小于0.6mm,间隙宽度不小于0.3mm。
另外,如图3所示,为了保证用户使用时的信号质量,往往天线本体设置在印制电路板8顶端侧的空置区域9内。
在本发明实施例中,所述印制电路板8连接所述馈电点4的第一端和所述印制电路板8连接所述馈地点5连接的第二端位于所述印制电路板8宽度方向的两侧。
这样,馈电点4与馈地点5位于印制电路板8宽度方向的两侧,便于天线辐射单元1和耦合寄生单元2的镜像结构设置。
本发明实施例一实施方式中,所述馈电点4与所述印制电路板8的接收发射电路连接;所述馈地点5与所述印制电路板8的主地连接。
综上所述,本发明实施例的单极天线,通过设置均为非封闭回环结构天线辐射单元1和耦合寄生单元2,采用耦合寄生单元2与天线辐射单元1 相互耦合产生W型谐振拓展低频带宽,满足了通信对于天线低频带宽的需求,结构形式简单,易于调试。且由于不需使用天线调谐开关,受场景局限性小,不占据天线净空区域,降低了制造成本。另一方面,还可以减小天线辐射因人体影响所造成的衰减量,增大了天线的抗干扰能力,使得人体对天线性能的影响的到改善。
如图3所示,本发明实施例还提供了一种移动终端,包括:设置于内置空间内的印制电路板8;设置于内置空间内,所述印制电路板8同一端空置区域9内的单极天线;其中,所述单极天线包括:一天线本体,所述天线本体包括一非封闭回环结构的天线辐射单元1和一非封闭回环结构的耦合寄生单元2,所述天线辐射单元1和所述耦合寄生单元2分别布置在所述空置区域9内的两侧,且所述天线辐射单元1和所述耦合寄生单元2之间具有一第一间隙3;一连接所述天线辐射单元1与印制电路板8第一端的馈电点4;一连接所述耦合寄生单元2与印制电路板8第二端的馈地点5。
本发明实施例一实施方式中,所述天线辐射单元1的非封闭回环结构中至少包括第二间隙6和第三间隙7,通过间隙与所述天线辐射单元1的倍频产生高频W型天线谐振。
本发明实施例一实施方式中,所述第二间隙6和第三间隙7均为所述非封闭回环结构中平行于所述印制电路板8宽度方向的相邻部分之间的间隙。
本发明实施例一实施方式中,所述耦合寄生单元2的非封闭回环结构与所述天线辐射单元1的非封闭回环结构呈镜像。
本发明实施例一实施方式中,所述天线辐射单元1的长度取值为低频带宽中心频点的1/4波长,所述天线辐射单元1通过非封闭回环结构产生一个低频V型天线谐振和倍频出一个高频谐振。
本发明实施例一实施方式中,所述耦合寄生单元2的长度取值为低频 带宽中心频点的1/4波长,所述耦合寄生单元2和所述天线辐射单元1通过第一间隙3耦合产生一个低频W型天线谐振。
本发明实施例一实施方式中,所述印制电路板8连接所述馈电点4的第一端和所述印制电路板8连接所述馈地点5连接的第二端位于所述印制电路板8宽度方向的两侧。
本发明实施例一实施方式中,所述馈电点4与所述印制电路板8的接收发射电路连接;所述馈地点5与所述印制电路板8的主地连接。
本发明实施例的移动终端,在印制电路板8的同一端的空置区域9内设置了上述实施例的单极天线,包括均为非封闭回环结构天线辐射单元1和耦合寄生单元2,采用耦合寄生单元2与天线辐射单元1相互耦合产生W型谐振拓展低频带宽,满足了通信对于天线低频带宽的需求,结构形式简单,易于调试。且由于不需使用天线调谐开关,受场景局限性小,不占据天线净空区域,降低了制造成本。另一方面,还可以减小天线辐射因人体影响所造成的衰减量,增大了天线的抗干扰能力,使得人体对天线性能的影响的到改善。
需要说明的是,该移动终端是应用了上述单极天线的移动终端,上述单极天线实施例的实现方式适用于该移动终端,也能达到相同的技术效果。
上述范例性实施例是参考附图来描述的,许多不同的形式和实施例是可行而不偏离本发明精神及教示,因此,本发明不应被建构成为在此所提出范例性实施例的限制。更确切地说,这些范例性实施例被提供以使得本发明会是完善又完整,且会将本发明范围传达给那些熟知此项技术的人士。在该些图式中,组件尺寸及相对尺寸也许基于清晰起见而被夸大。在此所使用的术语只是基于描述特定范例性实施例目的,并无意成为限制用。如在此所使用地,除非该内文清楚地另有所指,否则该单数形式“一”、“一个”和“该”是意欲将该些多个形式也纳入。会进一步了解到该些术语“包 含”及/或“包括”在使用于本说明书时,表示所述特征、整数、步骤、操作、构件及/或组件的存在,但不排除一或更多其它特征、整数、步骤、操作、构件、组件及/或其族群的存在或增加。除非另有所示,陈述时,一值范围包含该范围的上下限及其间的任何子范围。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本发明实施例的技术方案,通过设置均为非封闭回环结构天线辐射单元和耦合寄生单元,采用耦合寄生单元与天线辐射单元相互耦合产生W型谐振拓展低频带宽,满足了通信对于天线低频带宽的需求,结构形式简单,易于调试。且由于不需使用天线调谐开关,受场景局限性小,不占据天线净空区域,降低了制造成本。

Claims (12)

  1. 一种单极天线,包括:
    一天线本体,所述天线本体包括一非封闭回环结构的天线辐射单元和一非封闭回环结构的耦合寄生单元,所述天线辐射单元和所述耦合寄生单元分别布置在印制电路板同一端空置区域内的两侧,且所述天线辐射单元和所述耦合寄生单元之间具有一第一间隙;
    一连接所述天线辐射单元与印制电路板第一端的馈电点;
    一连接所述耦合寄生单元与印制电路板第二端的馈地点。
  2. 根据权利要求1所述的单极天线,其中,所述天线辐射单元的非封闭回环结构中至少包括第二间隙和第三间隙,通过间隙与所述天线辐射单元的倍频产生高频W型天线谐振。
  3. 根据权利要求2所述的单极天线,其中,所述第二间隙和第三间隙均为所述非封闭回环结构中平行于所述印制电路板宽度方向的相邻部分之间的间隙。
  4. 根据权利要求1所述的单极天线,其中,所述耦合寄生单元的非封闭回环结构与所述天线辐射单元的非封闭回环结构呈镜像。
  5. 根据权利要求1所述的单极天线,其中,所述天线辐射单元的长度取值为低频带宽中心频点的1/4波长,所述天线辐射单元通过非封闭回环结构产生一个低频V型天线谐振和倍频出一个高频谐振。
  6. 根据权利要求5所述的单极天线,其中,所述耦合寄生单元的长度取值为低频带宽中心频点的1/4波长,所述耦合寄生单元和所述天线辐射单元通过第一间隙耦合产生一个低频W型天线谐振。
  7. 根据权利要求1所述的单极天线,其中,所述印制电路板连接所述馈电点的第一端和所述印制电路板连接所述馈地点连接的第二端位于所述印制电路板宽度方向的两侧。
  8. 根据权利要求1所述的单极天线,其中,所述馈电点与所述印制电路板的接收发射电路连接;所述馈地点与所述印制电路板的主地连接。
  9. 一种移动终端,包括:
    设置于内置空间内的印制电路板;
    设置于内置空间内,所述印制电路板同一端空置区域内的单极天线;其中,
    所述单极天线包括:
    一天线本体,所述天线本体包括一非封闭回环结构的天线辐射单元和一非封闭回环结构的耦合寄生单元,所述天线辐射单元和所述耦合寄生单元分别布置在所述空置区域内的两侧,且所述天线辐射单元和所述耦合寄生单元之间具有一第一间隙;
    一连接所述天线辐射单元与印制电路板第一端的馈电点;
    一连接所述耦合寄生单元与印制电路板第二端的馈地点。
  10. 根据权利要求9所述的移动终端,其中,所述天线辐射单元的非封闭回环结构中至少包括第二间隙和第三间隙,通过间隙与所述天线辐射单元的倍频产生高频W型天线谐振。
  11. 根据权利要求10所述的移动终端,其中,所述第二间隙和第三间隙均为所述非封闭回环结构中平行于所述印制电路板宽度方向的相邻部分之间的间隙。
  12. 根据权利要求9所述的移动终端,其中,所述耦合寄生单元的非封闭回环结构与所述天线辐射单元的非封闭回环结构呈镜像。
PCT/CN2017/071326 2016-08-09 2017-01-16 一种单极天线和移动终端 WO2018028153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610651242.6 2016-08-09
CN201610651242.6A CN107706532A (zh) 2016-08-09 2016-08-09 一种单极天线和移动终端

Publications (1)

Publication Number Publication Date
WO2018028153A1 true WO2018028153A1 (zh) 2018-02-15

Family

ID=61161468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071326 WO2018028153A1 (zh) 2016-08-09 2017-01-16 一种单极天线和移动终端

Country Status (2)

Country Link
CN (1) CN107706532A (zh)
WO (1) WO2018028153A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108683781A (zh) * 2018-05-02 2018-10-19 Oppo广东移动通信有限公司 壳体组件、天线组件及电子设备
CN112134002A (zh) * 2020-09-23 2020-12-25 深圳市锐尔觅移动通信有限公司 5g天线、电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581351A (zh) * 2018-06-08 2019-12-17 中兴通讯股份有限公司 一种天线及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050057400A1 (en) * 2003-09-01 2005-03-17 Alps Electric Co., Ltd. Dual-band antenna having small size and low height
JP4285409B2 (ja) * 2005-01-19 2009-06-24 株式会社村田製作所 アンテナおよびそれを備えた無線通信機
CN101926044A (zh) * 2008-01-29 2010-12-22 株式会社村田制作所 天线结构以及具有该天线结构的无线通信装置
CN101103488B (zh) * 2005-01-18 2012-07-25 株式会社村田制作所 天线构造以及备有此的无线通信机
US20130135150A1 (en) * 2011-11-29 2013-05-30 Robert Kenoun Antenna assembly that is operable in multiple frequencies for a computing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130321212A1 (en) * 2012-06-04 2013-12-05 Taoglas Group Holdings Limited Volumetrically configurable monopole antennas and related methods
CN202817178U (zh) * 2012-08-07 2013-03-20 基信康信息技术(上海)有限公司 双频单级天线及其移动终端
US8890753B1 (en) * 2012-09-25 2014-11-18 Amazon Technologies, Inc. Antenna structure with split-feed antenna element and coupled parasitic grounding element
CN203103508U (zh) * 2013-02-19 2013-07-31 常熟泓淋电子有限公司 双单极手机天线
CN203839506U (zh) * 2014-05-28 2014-09-17 惠州硕贝德无线科技股份有限公司 一种地板激励的lte分布天线
CN204614944U (zh) * 2015-02-16 2015-09-02 苏州国质信网络通讯有限公司 设置在pcb板上的手机天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050057400A1 (en) * 2003-09-01 2005-03-17 Alps Electric Co., Ltd. Dual-band antenna having small size and low height
CN101103488B (zh) * 2005-01-18 2012-07-25 株式会社村田制作所 天线构造以及备有此的无线通信机
JP4285409B2 (ja) * 2005-01-19 2009-06-24 株式会社村田製作所 アンテナおよびそれを備えた無線通信機
CN101926044A (zh) * 2008-01-29 2010-12-22 株式会社村田制作所 天线结构以及具有该天线结构的无线通信装置
US20130135150A1 (en) * 2011-11-29 2013-05-30 Robert Kenoun Antenna assembly that is operable in multiple frequencies for a computing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108683781A (zh) * 2018-05-02 2018-10-19 Oppo广东移动通信有限公司 壳体组件、天线组件及电子设备
CN112134002A (zh) * 2020-09-23 2020-12-25 深圳市锐尔觅移动通信有限公司 5g天线、电子设备
CN112134002B (zh) * 2020-09-23 2023-05-26 深圳市锐尔觅移动通信有限公司 5g天线、电子设备

Also Published As

Publication number Publication date
CN107706532A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2022206237A1 (zh) 天线组件及电子设备
TWI630759B (zh) 天線結構及應用該天線結構的無線通訊裝置
JP6122503B2 (ja) 無線端末
TWI656691B (zh) 天線結構及具有該天線結構的無線通訊裝置
TWI656690B (zh) 天線結構及具有該天線結構的無線通訊裝置
TWI599095B (zh) 天線結構及應用該天線結構的無線通訊裝置
CN204668452U (zh) 一种组合利用手机边框的手机天线
TW201813187A (zh) 天線結構及具有該天線結構之無線通訊裝置
TW201524008A (zh) 天線結構及具有該天線結構的無線通訊裝置
WO2006081704A1 (fr) Antenne cadre multi-signaux a large bande utilisee dans un terminal mobile
US20140111386A1 (en) Multimode Broadband Antenna Module and Wireless Terminal
TWI619314B (zh) 多頻天線
WO2018028153A1 (zh) 一种单极天线和移动终端
TWI569513B (zh) 天線模組
TWI608655B (zh) 天線結構及應用該天線結構的無線通訊裝置
TW201513466A (zh) 天線結構及具有該天線結構的無線通訊裝置
CN105576370A (zh) 一种便携式电子设备的宽频天线结构
WO2021244115A1 (zh) 一种天线装置、电子设备
CN104466372A (zh) 一种多频天线及终端
CN205050981U (zh) 全金属结构终端通讯设备的天线装置及其电子设备
CN106972257B (zh) 天线系统及平板电脑
CN105161845B (zh) 一种地电位金属壳体辐射天线
US9780439B2 (en) Antenna structure and wireless communication device using the same
WO2017054278A1 (zh) 一种移动终端
WO2022262822A1 (zh) 一种无人机外置三频天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838290

Country of ref document: EP

Kind code of ref document: A1