WO2018028095A1 - 一种碳化硅颗粒与铜铝复合的材料及其制备方法 - Google Patents

一种碳化硅颗粒与铜铝复合的材料及其制备方法 Download PDF

Info

Publication number
WO2018028095A1
WO2018028095A1 PCT/CN2016/108100 CN2016108100W WO2018028095A1 WO 2018028095 A1 WO2018028095 A1 WO 2018028095A1 CN 2016108100 W CN2016108100 W CN 2016108100W WO 2018028095 A1 WO2018028095 A1 WO 2018028095A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
copper
carbide particles
treated
aluminum
Prior art date
Application number
PCT/CN2016/108100
Other languages
English (en)
French (fr)
Inventor
孙飞
赵勇
埃里克斯⋅高登
Original Assignee
苏州金仓合金新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州金仓合金新材料有限公司 filed Critical 苏州金仓合金新材料有限公司
Publication of WO2018028095A1 publication Critical patent/WO2018028095A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent

Definitions

  • the invention relates to the field of composite materials, in particular to a material in which silicon carbide particles are combined with copper and aluminum and a preparation method thereof.
  • Silicon carbide has high purity, small particle size, uniform distribution, large specific surface area, high surface activity, low bulk density, excellent mechanical, thermal, electrical and chemical properties, ie high hardness, high wear resistance and good Self-lubricating, high thermal conductivity, low coefficient of thermal expansion and high temperature strength.
  • the object of the present invention is to provide a new material in which silicon carbide particles are combined with copper and aluminum and a preparation method thereof, which can make the material have higher strength, hardness, wear resistance and corrosion resistance.
  • a method for preparing a material in which silicon carbide particles are combined with copper and aluminum comprising the following steps:
  • volume fraction of the potassium fluorozirconate-treated silicon carbide particles is 1%.
  • volume fraction of the potassium fluorozirconate-treated silicon carbide particles is 3%.
  • volume fraction of the potassium fluorozirconate-treated silicon carbide particles is 5%.
  • the present invention also provides a material in which silicon carbide particles are combined with copper aluminum, which are prepared by the above method.
  • the invention has the beneficial effects that: the silicon carbide particles treated by potassium fluorozirconate are uniformly distributed in the existing alloy material by a certain technical means, and the silicon carbide treated with potassium fluorozirconate has high hardness and high resistance. Grindability and good self-lubricating and high-temperature strength properties can further improve the performance of alloy materials.
  • the composite alloy new material obtained by the invention has higher strength, hardness, wear resistance and corrosion resistance, thereby prolonging aerospace high-strength pressure-resistant products, wear-resistant parts of petroleum engineering equipment, and corrosion resistance of marine engineering equipment. The service life of the product accessories.
  • the dwell time is 30 seconds
  • the indenter is 5 mm
  • the pressure is 62.5 kg.
  • the data in the table is 3 test pieces for each set of experiments, and the average value of each test block is 5 times.
  • the specific parameters are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

一种碳化硅颗粒与铜铝复合的新材料及其制备方法,所述方法包括配料、熔炼、加入颗粒、保温搅拌和降温的步骤;将经氟锆酸钾处理的碳化硅颗粒通过一定的技术手段均匀分布在现有的合金材料中,利用经氟锆酸钾处理的碳化硅高硬度,高耐磨性和良好的自润滑及高温强度大的性能,实现合金材料的性能的进一步提升。

Description

一种碳化硅颗粒与铜铝复合的材料及其制备方法 技术领域
本发明涉及复合材料领域,具体涉及一种碳化硅颗粒与铜铝复合的材料及其制备方法。
背景技术
碳化硅具有纯度高、粒径小、分布均匀、比表面积大、高表面活性、松装密度低、极好的力学、热学、电学和化学性能,即具有高硬度,高耐磨性和良好的自润滑、高热传导率、低热膨胀系数及高温强度大等特点。
已知的铜铝合金,由于有较高的强度和减摩性,良好的耐蚀性,在热态下压力加工性良好,可电焊和气焊,主要用于如轴衬,轴套,法兰盘,齿轮及其他重要耐蚀零件,耐磨零件。但是在特殊应用方面,其性能难以满足比如航空航天高强度耐压产品﹑石油工程设别的耐磨件产品以及海洋工程设备耐腐蚀产品配件的需求。
发明内容
综上所述,本发明的目的在于提供一种碳化硅颗粒与铜铝复合的新材料及其制备方法,能够使得材料具有更高的强度、硬度、耐磨性以及耐腐蚀性。
本发明的目的是通过以下技术方案来实现:
一种碳化硅颗粒与铜铝复合的材料的制备方法,包括以下步骤:
1)配料:称取纯铜1800克,纯铝200克置于石墨坩埚中,粒径100微米的氟锆酸钾处理的碳化硅颗粒备用;
2)熔炼:感应电炉加热至1200度,保温10分钟,除气、除渣;
3)加入颗粒:待温度将至1080度时开始加入研磨过的处理后的氟锆酸钾处理的碳化硅,同时做搅拌处理;
4)保温搅拌:温度降至1042度时为半固态阶段,搅拌10分钟;
5)降温。
进一步地,所述氟锆酸钾处理的碳化硅颗粒的体积分数为1%。
进一步地,所述氟锆酸钾处理的碳化硅颗粒的体积分数为3%。
进一步地,所述氟锆酸钾处理的碳化硅颗粒的体积分数为5%。
本发明还提供了一种碳化硅颗粒与铜铝复合的材料,所述材料采用上述方法制备。
本发明的有益效果为:本发明将经氟锆酸钾处理的碳化硅颗粒通过一定的技术手段均匀分布在现有的合金材料中,利用经氟锆酸钾处理的碳化硅高硬度,高耐磨性和良好的自润滑及高温强度大的性能,实现合金材料的性能的进一步提升。本发明所得到的复合合金新材料具有更高的强度﹑硬度﹑耐磨性以及耐腐蚀性,从而延长航空航天高强度耐压产品﹑石油工程设别的耐磨件产品以及海洋工程设备耐腐蚀产品配件的使用寿命。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种碳化硅颗粒与铜铝复合的新材料及其制备方法,包括以下步骤:
1)配料:称取纯铜1800克,纯铝200克置于石墨坩埚中,粒径100微米的氟锆酸钾处理的碳化硅颗粒备用;其中,氟锆酸钾处理的碳化硅颗粒的体积分数为1%;
2)熔炼:感应电炉加热至1200度,保温10分钟,除气、除渣;
3)加入颗粒:待温度将至1080度时开始加入研磨过的处理后的氟锆酸钾处理的碳化硅,同时做搅拌处理;
4)保温搅拌:温度降至1042度时为半固态阶段,搅拌10分钟;
5)降温。
实施例2
一种碳化硅颗粒与铜铝复合的新材料及其制备方法,包括以下步骤:
1)配料:称取纯铜1800克,纯铝200克置于石墨坩埚中,粒径100微米的氟锆酸钾处理的碳化硅颗粒备用;其中,氟锆酸钾处理的碳化硅颗粒的体积分数为3%;
2)熔炼:感应电炉加热至1200度,保温10分钟,除气、除渣;
3)加入颗粒:待温度将至1080度时开始加入研磨过的处理后的氟锆酸钾处理的碳化硅,同时做搅拌处理;
4)保温搅拌:温度降至1042度时为半固态阶段,搅拌10分钟;
5)降温。
实施例3
一种碳化硅颗粒与铜铝复合的新材料及其制备方法,包括以下步骤:
1)配料:称取纯铜1800克,纯铝200克置于石墨坩埚中,粒径100微米的氟锆酸钾处理的碳化硅颗粒备用;其中,氟锆酸钾处理的碳化硅颗粒的体积分数为5%;
2)熔炼:感应电炉加热至1200度,保温10分钟,除气、除渣;
3)加入颗粒:待温度将至1080度时开始加入研磨过的处理后的氟锆酸钾处理的碳化硅,同时做搅拌处理;
4)保温搅拌:温度降至1042度时为半固态阶段,搅拌10分钟;
5)降温。
实验硬度结果对比:
采用布氏硬度计,保压时间30秒,压头5毫米,压力62.5千克,表中数据为每组实验取3个试块,每个试块打硬度5次求的平均值。具体参数见下表:
Figure PCTCN2016108100-appb-000001
数据显示,随着增强相体积分数的增加,布氏硬度逐渐增强,相同体积分数条件下,经过化学镀镍处理的碳化硅样品的硬度值明显高于未添加碳化硅的铜铝合金材料。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (5)

  1. 一种碳化硅颗粒与铜铝复合的材料的制备方法,其特征在于,包括以下步骤:
    1)配料:称取纯铜1800克,纯铝200克置于石墨坩埚中,粒径100微米的氟锆酸钾处理的碳化硅颗粒备用;
    2)熔炼:感应电炉加热至1200度,保温10分钟,除气、除渣;
    3)加入颗粒:待温度将至1080度时开始加入研磨过的处理后的氟锆酸钾处理的碳化硅,同时做搅拌处理;
    4)保温搅拌:温度降至1042度时为半固态阶段,搅拌10分钟;
    5)降温。
  2. 根据权利要求1所述的碳化硅颗粒与铜铝复合的材料的制备方法,其特征在于:所述氟锆酸钾处理的碳化硅颗粒的体积分数为1%。
  3. 根据权利要求1所述的碳化硅颗粒与铜铝复合的材料的制备方法,其特征在于:所述氟锆酸钾处理的碳化硅颗粒的体积分数为3%。
  4. 根据权利要求1所述的碳化硅颗粒与铜铝复合的材料的制备方法,其特征在于:所述氟锆酸钾处理的碳化硅颗粒的体积分数为5%。
  5. 一种碳化硅颗粒与铜铝复合的材料,其特征在于,所述材料采用权利要求1-4中任一项所述的方法制备。
PCT/CN2016/108100 2016-08-09 2016-11-30 一种碳化硅颗粒与铜铝复合的材料及其制备方法 WO2018028095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610647201.X 2016-08-09
CN201610647201.XA CN106086515A (zh) 2016-08-09 2016-08-09 一种碳化硅颗粒与铜铝复合的材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2018028095A1 true WO2018028095A1 (zh) 2018-02-15

Family

ID=57456065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108100 WO2018028095A1 (zh) 2016-08-09 2016-11-30 一种碳化硅颗粒与铜铝复合的材料及其制备方法

Country Status (2)

Country Link
CN (1) CN106086515A (zh)
WO (1) WO2018028095A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079710A (zh) * 2019-05-16 2019-08-02 江苏理工学院 一种原位纳米TiC颗粒增强Al-Si基复合材料及其制备方法
CN113047229A (zh) * 2020-12-29 2021-06-29 武汉力拓桥科防撞设施有限公司 一种具有自润滑性、耐腐蚀新型防船撞设施

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086515A (zh) * 2016-08-09 2016-11-09 苏州金仓合金新材料有限公司 一种碳化硅颗粒与铜铝复合的材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489331A1 (de) * 2003-05-30 2004-12-22 Sgl Carbon Ag Reibkörper aus metallinfiltriertem, mit Fasern verstärktem porösem Kohlenstoff
CN103305742A (zh) * 2013-06-26 2013-09-18 苏州金仓合金新材料有限公司 一种纳米级碳化硅铜基合金材料制备方法
CN105177350A (zh) * 2015-11-02 2015-12-23 苏州金仓合金新材料有限公司 一种高速机车齿轮用高强度纳米级碳化硅铜基复合合金新材料
CN105420525A (zh) * 2015-11-11 2016-03-23 苏州阿罗米科技有限公司 一种颗粒增强铝基复合材料的制备方法
CN106086515A (zh) * 2016-08-09 2016-11-09 苏州金仓合金新材料有限公司 一种碳化硅颗粒与铜铝复合的材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080171A (zh) * 2011-02-21 2011-06-01 美的集团有限公司 一种用于制作电真空器件的复合材料
TWI449661B (zh) * 2013-03-29 2014-08-21 Taiwan Carbon Nanotube Technology Corp Fabrication method of metal - based nanometer carbon nanotubes composite
CN105238948A (zh) * 2015-10-30 2016-01-13 苏州列治埃盟新材料技术转移有限公司 一种高强度纳米级碳化硅铜基合金材料及其制备方法
CN105586503A (zh) * 2015-12-29 2016-05-18 东南大学 铜石墨复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489331A1 (de) * 2003-05-30 2004-12-22 Sgl Carbon Ag Reibkörper aus metallinfiltriertem, mit Fasern verstärktem porösem Kohlenstoff
CN103305742A (zh) * 2013-06-26 2013-09-18 苏州金仓合金新材料有限公司 一种纳米级碳化硅铜基合金材料制备方法
CN105177350A (zh) * 2015-11-02 2015-12-23 苏州金仓合金新材料有限公司 一种高速机车齿轮用高强度纳米级碳化硅铜基复合合金新材料
CN105420525A (zh) * 2015-11-11 2016-03-23 苏州阿罗米科技有限公司 一种颗粒增强铝基复合材料的制备方法
CN106086515A (zh) * 2016-08-09 2016-11-09 苏州金仓合金新材料有限公司 一种碳化硅颗粒与铜铝复合的材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079710A (zh) * 2019-05-16 2019-08-02 江苏理工学院 一种原位纳米TiC颗粒增强Al-Si基复合材料及其制备方法
CN113047229A (zh) * 2020-12-29 2021-06-29 武汉力拓桥科防撞设施有限公司 一种具有自润滑性、耐腐蚀新型防船撞设施
CN113047229B (zh) * 2020-12-29 2022-07-15 武汉力拓桥科防撞设施有限公司 一种具有自润滑性、耐腐蚀防船撞设施

Also Published As

Publication number Publication date
CN106086515A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2018028092A1 (zh) 一种化学镀镍碳化硅颗粒与铜铝复合的材料及其制备方法
Hou et al. Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites
Chu et al. Interface structure and strengthening behavior of graphene/CuCr composites
Yang et al. AlCoCrFeNi high-entropy alloy particle reinforced 5083Al matrix composites with fine grain structure fabricated by submerged friction stir processing
WO2016119095A1 (zh) 一种高速铁路用复合铜基新型合金材料及其制备方法
WO2014205606A1 (zh) 一种纳米级碳化硅铜基合金材料制备方法
WO2018028095A1 (zh) 一种碳化硅颗粒与铜铝复合的材料及其制备方法
CN104862522A (zh) 一种镍铝青铜合金及其制备方法
WO2018028096A1 (zh) 一种多用途的铜基复合材料及其制备方法
Sha et al. Effects of cobalt content on microstructure and mechanical properties of hypereutectic Al–Si alloys
Li et al. Hierarchical microstructure architecture: A roadmap towards strengthening and toughening reduced graphene oxide/2024Al matrix composites synthesized by flake powder thixoforming
CN101586200B (zh) 一种铸造铜铬合金及制备方法
Dong et al. Preparation, characterization and mechanical properties of Cu-Sn alloy/graphite composites
Venkatesan et al. Experimental investigation on stir and squeeze casted aluminum alloy composites reinforced with graphene
Gao et al. Anisotropic Mechanical Properties of Graphene Nanosheet–Reinforced Powder Metallurgy Nickel‐Based Superalloy
CN107312950A (zh) 一种镀镍碳化硅铜基合金材料及其制备方法
Li et al. Thermomechanical fatigue behavior of spray-deposited SiCp/Al-Si composite applied in the high-speed railway brake disc
Zakaulla et al. Effect of electroless copper coating on the corrosion behavior of aluminium based metal matrix composites reinforced with silicon carbide particles
Zhai et al. Effect of samarium on the high temperature tensile properties and fracture behaviors of Al–Zn–Mg–Cu–Zr alloy
Zengin Wear and corrosion behavior of multi-walled carbon nanotubes (MWCNTs) reinforced Al-15Mg2Si in-situ composites
Derimow et al. Duplex phase hexagonal-cubic multi-principal element alloys with high hardness
Xiong et al. Microstructure and properties of a novel Cu20Ni 20Mn-xGa alloy with high strength, high elasticity and high plasticity
Zhang et al. Dependence of Creep Properties on Aging Treatment in Al–Cu–Mg Alloy
Xie et al. A Novel Al–Cu Composite with Ultra‐High Strength at 350° C via Dual‐Phase Particle Reinforced Submicron‐Structure
Gu et al. Microstructures, mechanical and electrochemical properties of MoNbTa-based refractory multi-component alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912549

Country of ref document: EP

Kind code of ref document: A1