WO2016119095A1 - 一种高速铁路用复合铜基新型合金材料及其制备方法 - Google Patents

一种高速铁路用复合铜基新型合金材料及其制备方法 Download PDF

Info

Publication number
WO2016119095A1
WO2016119095A1 PCT/CN2015/000858 CN2015000858W WO2016119095A1 WO 2016119095 A1 WO2016119095 A1 WO 2016119095A1 CN 2015000858 W CN2015000858 W CN 2015000858W WO 2016119095 A1 WO2016119095 A1 WO 2016119095A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
alloy material
alloy
speed railway
zcusn10pb1
Prior art date
Application number
PCT/CN2015/000858
Other languages
English (en)
French (fr)
Inventor
孙飞
赵勇
王青
Original Assignee
苏州金仓合金新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州金仓合金新材料有限公司 filed Critical 苏州金仓合金新材料有限公司
Publication of WO2016119095A1 publication Critical patent/WO2016119095A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the invention relates to the field of copper-based alloy materials, in particular to a composite copper-based new alloy material for high-speed railway and a preparation method thereof.
  • Nano-SiC is a kind of nano-material prepared on the basis of common silicon carbide materials through certain technical conditions.
  • Nano-silicon carbide has high purity, small particle size, uniform distribution, large specific surface area, high surface activity, low bulk density, excellent mechanical, thermal, electrical and chemical properties, ie high hardness, high wear resistance and good Self-lubricating, high thermal conductivity, low thermal expansion coefficient and high temperature strength.
  • the national standard copper alloy material ZCuSn10Pb1 or American standard alloy material C52400 is a kind of phosphor bronze material. Due to its high strength and friction reducing property, good corrosion resistance, it has good pressure processing property in hot state, and can be welded and gas welded. Used for bushings, bushings, flanges, gears and other important wear parts such as high speed railway bearings. However, in terms of specific use, the service life is shorter and the replacement cost is larger. If the performance of the material can be further improved by corresponding technical means, the service life can be extended and the corresponding cost can be greatly reduced.
  • the object of the present invention is to provide a composite copper-based new alloy material for high-speed railway and a preparation method thereof, which further improve the performance of the copper-based alloy material, prolong the service life and greatly reduce the corresponding cost.
  • the invention relates to a composite copper-based new alloy material for high-speed railway, which is composed of the following components: nano-scale silicon carbide with a total volume of 8-15%, and a copper alloy ZCuSn10Pb1 with a total volume of 85-92%.
  • it consists of: 8% of the total volume of nano-sized silicon carbide, accounting for the total volume 92% copper alloy ZCuSn10Pb1.
  • nano-sized silicon carbide in a total volume of 11%
  • copper alloy ZCuSn10Pb1 in a total volume of 89%.
  • it consists of 15% by volume of nano-sized silicon carbide, 85% of the total volume of copper alloy ZCuSn10Pb1.
  • the nano-sized silicon carbide is produced by a known method, and has a size range of 50 ⁇ m ⁇ particle diameter ⁇ 150 ⁇ m.
  • the copper alloy ZCuSn10Pb1 is produced by a casting method according to the standard of GB/T1176-1987.
  • a method for preparing a composite copper-based new alloy material for high-speed railway includes the following steps:
  • the spectrometer in step 2) adopts a Spike direct reading spectrometer.
  • the invention has the beneficial effects that the invention provides a composite copper-based new alloy material for high-speed railway and a preparation method thereof, and the nano silicon carbide material is evenly distributed by certain technical means.
  • the performance of the alloy material is further improved by utilizing nano-sized silicon carbide with high hardness, high wear resistance, and good self-lubrication and high-temperature strength.
  • the nano-alloy new material obtained by the invention has higher strength, hardness and wear resistance, thereby prolonging the service life of the corresponding sleeves and the like for the high-speed railway and reducing the cost.
  • a composite copper-based new alloy material for high-speed railway consists of the following components: 8% of the total volume of nano-sized silicon carbide, accounting for 92% of the total volume of copper alloy ZCuSn10Pb1.
  • the nano-sized silicon carbide is obtained by a known method, and the size range is 50 ⁇ m ⁇ the particle diameter ⁇ 150 ⁇ m; the copper alloy ZCuSn10Pb1 is obtained by the method of casting according to the standard GB/T 1176-1987.
  • electrolytic copper, aluminum ingot and iron are placed in an electric furnace for melting according to the weight ratio.
  • the volume of copper water is controlled according to the volume of the furnace.
  • the melting temperature is 1300-1380 degrees Celsius, and the time is 2 - 3 hours; the molten copper alloy water is tested by Spike direct reading spectrometer to determine its chemical composition within the requirements of the national standard;
  • the nano-sized silicon carbide powder is placed on the surface of the qualified ZCuSn10Pb1 copper alloy liquid, the vibration device of the power frequency electric furnace is turned on and stirred by a graphite rod to uniformly mix, and the temperature is further raised to 1400-1450 degrees Celsius and maintained at 1-1.5. Hour; insulation and casting, the smelted alloy material is kept for 30-50 minutes, and the alloy is cast into an alloy rod by continuous casting, the casting temperature is 1100-1150 degrees Celsius; the alloy after casting is completed The bar is surface treated and packaged according to factory standards.
  • the composite copper-based new alloy material for high-speed railway provided by the embodiment has higher strength, hardness and wear resistance, thereby prolonging the corresponding bushings and the like for high-speed railway. Service life and reduced costs.
  • the invention relates to a composite copper-based new alloy material for high-speed railway, which is composed of the following components: nano-sized silicon carbide with a total volume of 11%, and a copper alloy ZCuSn10Pb1 with a total volume of 89%.
  • the nano-sized silicon carbide is obtained by a known method, and the size range is 50 ⁇ m ⁇ the particle diameter ⁇ 150 ⁇ m; the copper alloy ZCuSn10Pb1 is obtained by the method of casting according to the standard GB/T 1176-1987.
  • electrolytic copper, aluminum ingot and iron are placed in an electric furnace for melting according to the weight ratio.
  • the volume of copper water is controlled according to the volume of the furnace.
  • the melting temperature is 1300-1380 degrees Celsius, and the time is 2 - 3 hours; the molten copper alloy water is tested by Spike direct reading spectrometer to determine its chemical composition within the requirements of the national standard;
  • the nano-sized silicon carbide powder is placed on the surface of the qualified ZCuSn10Pb1 copper alloy liquid, the vibration device of the power frequency electric furnace is turned on and stirred by a graphite rod to uniformly mix, and the temperature is further raised to 1400-1450 degrees Celsius and maintained at 1-1.5. Hour; insulation and casting, the smelted alloy material is kept for 30-50 minutes, and the alloy is cast into an alloy rod by continuous casting, the casting temperature is 1100-1150 degrees Celsius; the alloy after casting is completed The bar is surface treated and packaged according to factory standards.
  • the composite copper-based new alloy material for high-speed railway provided by the embodiment has higher strength, hardness and wear resistance, thereby prolonging the corresponding bushings and the like for high-speed railway. Service life and reduced costs.
  • the invention relates to a composite copper-based new alloy material for high-speed railway, which is composed of the following components: nano-sized silicon carbide of 15% of the total volume, and copper alloy ZCuSn10Pb1 which accounts for 85% of the total volume.
  • nano-sized silicon carbide is obtained by a known method, and the size range is 50 ⁇ m ⁇ the particle diameter ⁇ 150 ⁇ m; the copper alloy ZCuSn10Pb1 is obtained by the method of casting according to the standard GB/T 1176-1987.
  • electrolytic copper, aluminum ingot and iron are placed in an electric furnace for melting according to the weight ratio.
  • the volume of copper water is controlled according to the volume of the furnace.
  • the melting temperature is 1300-1380 degrees Celsius, and the time is 2 - 3 hours; the molten copper alloy water is tested by Spike direct reading spectrometer to determine its chemical composition within the requirements of the national standard; Na The rice-grade silicon carbide powder is placed on the surface of the qualified ZCuSn10Pb1 copper alloy liquid, the vibration device of the power frequency electric furnace is turned on and stirred with a graphite rod to uniformly mix, and the temperature is further raised to 1400-1450 degrees Celsius and maintained at 1-1.5. Hour; insulation and casting, the smelted alloy material is kept for 30-50 minutes, and the alloy is cast into an alloy rod by continuous casting, the casting temperature is 1100-1150 degrees Celsius; the alloy after casting is completed The bar is surface treated and packaged according to factory standards.
  • the composite copper-based new alloy material for high-speed railway provided by the embodiment has higher strength, hardness and wear resistance, thereby prolonging the corresponding bushings and the like for high-speed railway. Service life and reduced costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

提供了一种高速铁路用复合铜基合金材料及其制备方法。该复合铜基合金材料由以下组分组成:占总体积8-15%的纳米级碳化硅,占总体积85-92%的铜合金ZCuSn10Pb1。将纳米碳化硅材料通过一定的技术手段均匀分布在现有的合金材料中,利用纳米级碳化硅高硬度、高耐磨性、良好的自润滑及高温强度大的性能,该铜基合金材料实现了合金材料性能的进一步提升。

Description

一种高速铁路用复合铜基新型合金材料及其制备方法 技术领域
本发明涉及铜基合金材料领域,具体涉及一种高速铁路用复合铜基新型合金材料及其制备方法。
背景技术
纳米碳化硅是一种通过一定的技术条件,在普通碳化硅材料的基础上制备出的一种纳米材料。纳米碳化硅具有纯度高,粒径小,分布均匀,比表面积大,高表面活性,松装密度低,极好的力学,热学,电学和化学性能,即具有高硬度,高耐磨性和良好的自润滑,高热传导率,低热膨胀系数及高温强度大等特点。
国标铜合金材料ZCuSn10Pb1或美标合金材料C52400是一种磷青铜材料,由于有较高的强度和减摩性,良好的耐蚀性,在热态下压力加工性良好,可电焊和气焊,主要用于如轴衬,轴套,法兰盘,齿轮及其他重要耐磨零件,比如高速铁路轴承等。但是在具体的使用方面,其使用年限较短,更换成本较大。如果能够通过相应的技术手段进一步改进此材料的性能,可以延长使用寿命并大大降低相应的成本。
发明内容
本发明的目的在于提供一种高速铁路用复合铜基新型合金材料及其制备方法,进一步改进铜基合金材料的性能,延长使用寿命并大大降低相应的成本。
为了实现上述发明目的,本发明采用的技术方案如下:
一种高速铁路用复合铜基新型合金材料,由以下组分组成:占总体积8-15%的纳米级碳化硅,占总体积85-92%的铜合金ZCuSn10Pb1。
优选地,由以下组分组成:占总体积8%的纳米级碳化硅,占总体积 92%的铜合金ZCuSn10Pb1。
优选地,由以下组分组成:占总体积11%的纳米级碳化硅,占总体积89%的铜合金ZCuSn10Pb1。
优选地,由以下组分组成:占总体积15%的纳米级碳化硅,占总体积85%的铜合金ZCuSn10Pb1。
进一步地,所述纳米级碳化硅通过已知的方法制得,尺寸范围是50μm≤粒径≤150μm。
进一步地,所述铜合金ZCuSn10Pb1采用铸造的方法按照国标GB/T1176-1987的标准制得。
一种高速铁路用复合铜基新型合金材料的制备方法,包括以下步骤:
1)按照国标GB/T 1176-1987的标准及铜合金ZCuSn10Pb1的化学成分要求将电解铜、铝锭及铁按照重量比例放入电炉中熔炼,熔炼期间根据熔炉的体积大小控制铜水体积在熔炉体积的90%以下,熔炼温度为1300-1380摄氏度,时间为2--3小时;
2)采用光谱仪对熔炼完成的铜合金水进行成分检测,以确定其化学成分在国标要求范围之内;
3)将纳米级碳化硅粉体放入检验合格的ZCuSn10Pb1铜合金液体的表面,开启工频电炉的震动装置并用石墨棒进行搅拌,使其均匀混合,进一步升高温度至1400-1450摄氏度并保持1-1.5小时;
4)保温与铸造,将熔炼完成的合金材料进行保温,时间为30-50分钟,采用连续铸造的方式将此合金铸造成合金棒材,铸造温度为1100-1150摄氏度;
5)将铸造完成后的合金棒材进行表面车加工处理,并按照出厂标准包装。
进一步地,步骤2)中所述光谱仪采用斯派克直读光谱仪。
本发明的有益效果是:本发明提供了一种高速铁路用复合铜基新型合金材料及其制备方法,将纳米碳化硅材料通过一定的技术手段均匀分布在 现有的合金材料中,利用纳米级碳化硅高硬度、高耐磨性和良好的自润滑及高温强度大的性能,实现了合金材料的性能的进一步提升。本发明所得到的纳米合金新材料具有更高的强度﹑硬度及耐磨性,从而延长了高速铁路用相应轴套等零件的使用寿命,降低了成本。
具体实施方式
以下结合实施例对本发明作进一步说明,但并非限制本发明的应用范围。
实施例1
一种高速铁路用复合铜基新型合金材料,由以下组分组成:占总体积8%的纳米级碳化硅,占总体积92%的铜合金ZCuSn10Pb1。其中纳米级碳化硅通过已知的方法制得,尺寸范围是50μm≤粒径≤150μm;铜合金ZCuSn10Pb1采用铸造的方法按照国标GB/T 1176-1987的标准制得。
按照国标GB/T 1176-1987的标准及铜合金ZCuSn10Pb1的化学成分要求将电解铜、铝锭及铁按照重量比例放入电炉中熔炼,熔炼期间根据熔炉的体积大小控制铜水体积在熔炉体积的90%以下,熔炼温度为1300-1380摄氏度,时间为2--3小时;采用斯派克直读光谱仪对熔炼完成的铜合金水进行成分检测,以确定其化学成分在国标要求范围之内;将纳米级碳化硅粉体放入检验合格的ZCuSn10Pb1铜合金液体的表面,开启工频电炉的震动装置并用石墨棒进行搅拌,使其均匀混合,进一步升高温度至1400-1450摄氏度并保持1-1.5小时;保温与铸造,将熔炼完成的合金材料进行保温,时间为30-50分钟,采用连续铸造的方式将此合金铸造成合金棒材,铸造温度为1100-1150摄氏度;将铸造完成后的合金棒材进行表面车加工处理,并按照出厂标准包装。
与现有的铜基合金材料相比,本实施例提供的高速铁路用复合铜基新型合金材料,具有更高的强度﹑硬度及耐磨性,从而延长了高速铁路用相应轴套等零件的使用寿命,降低了成本。
实施例2
一种高速铁路用复合铜基新型合金材料,由以下组分组成:占总体积11%的纳米级碳化硅,占总体积89%的铜合金ZCuSn10Pb1。其中纳米级碳化硅通过已知的方法制得,尺寸范围是50μm≤粒径≤150μm;铜合金ZCuSn10Pb1采用铸造的方法按照国标GB/T 1176-1987的标准制得。
按照国标GB/T 1176-1987的标准及铜合金ZCuSn10Pb1的化学成分要求将电解铜、铝锭及铁按照重量比例放入电炉中熔炼,熔炼期间根据熔炉的体积大小控制铜水体积在熔炉体积的90%以下,熔炼温度为1300-1380摄氏度,时间为2--3小时;采用斯派克直读光谱仪对熔炼完成的铜合金水进行成分检测,以确定其化学成分在国标要求范围之内;将纳米级碳化硅粉体放入检验合格的ZCuSn10Pb1铜合金液体的表面,开启工频电炉的震动装置并用石墨棒进行搅拌,使其均匀混合,进一步升高温度至1400-1450摄氏度并保持1-1.5小时;保温与铸造,将熔炼完成的合金材料进行保温,时间为30-50分钟,采用连续铸造的方式将此合金铸造成合金棒材,铸造温度为1100-1150摄氏度;将铸造完成后的合金棒材进行表面车加工处理,并按照出厂标准包装。
与现有的铜基合金材料相比,本实施例提供的高速铁路用复合铜基新型合金材料,具有更高的强度﹑硬度及耐磨性,从而延长了高速铁路用相应轴套等零件的使用寿命,降低了成本。
实施例3
一种高速铁路用复合铜基新型合金材料,由以下组分组成:占总体积15%的纳米级碳化硅,占总体积85%的铜合金ZCuSn10Pb1。其中纳米级碳化硅通过已知的方法制得,尺寸范围是50μm≤粒径≤150μm;铜合金ZCuSn10Pb1采用铸造的方法按照国标GB/T 1176-1987的标准制得。
按照国标GB/T 1176-1987的标准及铜合金ZCuSn10Pb1的化学成分要求将电解铜、铝锭及铁按照重量比例放入电炉中熔炼,熔炼期间根据熔炉的体积大小控制铜水体积在熔炉体积的90%以下,熔炼温度为1300-1380摄氏度,时间为2--3小时;采用斯派克直读光谱仪对熔炼完成的铜合金水进行成分检测,以确定其化学成分在国标要求范围之内;将纳 米级碳化硅粉体放入检验合格的ZCuSn10Pb1铜合金液体的表面,开启工频电炉的震动装置并用石墨棒进行搅拌,使其均匀混合,进一步升高温度至1400-1450摄氏度并保持1-1.5小时;保温与铸造,将熔炼完成的合金材料进行保温,时间为30-50分钟,采用连续铸造的方式将此合金铸造成合金棒材,铸造温度为1100-1150摄氏度;将铸造完成后的合金棒材进行表面车加工处理,并按照出厂标准包装。
与现有的铜基合金材料相比,本实施例提供的高速铁路用复合铜基新型合金材料,具有更高的强度﹑硬度及耐磨性,从而延长了高速铁路用相应轴套等零件的使用寿命,降低了成本。
以上所述仅为本发明的较佳实施例,并非用来限定本发明的实施范围;如果不脱离本发明的精神和范围,对本发明进行修改或者等同替换,均应涵盖在本发明权利要求的保护范围当中。

Claims (8)

  1. 一种高速铁路用复合铜基新型合金材料,其特征在于,由以下组分组成:占总体积8-15%的纳米级碳化硅,占总体积85-92%的铜合金ZCuSn10Pb1。
  2. 根据权利要求1所述的高速铁路用复合铜基新型合金材料,其特征在于,由以下组分组成:占总体积8%的纳米级碳化硅,占总体积92%的铜合金ZCuSn10Pb1。
  3. 根据权利要求1所述的高速铁路用复合铜基新型合金材料,其特征在于,由以下组分组成:占总体积11%的纳米级碳化硅,占总体积89%的铜合金ZCuSn10Pb1。
  4. 根据权利要求1所述的高速铁路用复合铜基新型合金材料,其特征在于,由以下组分组成:占总体积15%的纳米级碳化硅,占总体积85%的铜合金ZCuSn10Pb1。
  5. 根据权利要求1-4中任意一项所述的高速铁路用复合铜基新型合金材料,其特征在于,所述纳米级碳化硅通过已知的方法制得,尺寸范围是50μm≤粒径≤150μm。
  6. 根据权利要求1-4中任意一项所述的高速铁路用复合铜基新型合金材料,其特征在于,所述铜合金ZCuSn10Pb1采用铸造的方法按照国标GB/T 1176-1987的标准制得。
  7. 一种如权利要求1-4中任意一项所述的高速铁路用复合铜基新型合金材料的制备方法,其特征在于,包括以下步骤:
    1)按照国标GB/T 1176-1987的标准及铜合金ZCuSn10Pb1的化学成分要求将电解铜、铝锭及铁按照重量比例放入电炉中熔炼,熔炼期间根据熔炉的体积大小控制铜水体积在熔炉体积的90%以下,熔炼温度为1300-1380摄氏度,时间为2-3小时;
    2)采用光谱仪对熔炼完成的铜合金水进行成分检测,以确定其化学 成分在国标要求范围之内;
    3)将纳米级碳化硅粉体放入检验合格的ZCuSn10Pb1铜合金液体的表面,开启工频电炉的震动装置并用石墨棒进行搅拌,使其均匀混合,进一步升高温度至1400-1450摄氏度并保持1-1.5小时;
    4)保温与铸造,将熔炼完成的合金材料进行保温,时间为30-50分钟,采用连续铸造的方式将此合金铸造成合金棒材,铸造温度为1100-1150摄氏度;
    5)将铸造完成后的合金棒材进行表面车加工处理,并按照出厂标准包装。
  8. 根据权利要求7所述的高速铁路用复合铜基新型合金材料的制备方法,其特征在于,步骤2)中所述光谱仪采用斯派克直读光谱仪。
PCT/CN2015/000858 2015-01-27 2015-12-04 一种高速铁路用复合铜基新型合金材料及其制备方法 WO2016119095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510041147.X 2015-01-27
CN201510041147.XA CN104630544A (zh) 2015-01-27 2015-01-27 一种高速铁路用复合铜基新型合金材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2016119095A1 true WO2016119095A1 (zh) 2016-08-04

Family

ID=53209787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000858 WO2016119095A1 (zh) 2015-01-27 2015-12-04 一种高速铁路用复合铜基新型合金材料及其制备方法

Country Status (2)

Country Link
CN (1) CN104630544A (zh)
WO (1) WO2016119095A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630544A (zh) * 2015-01-27 2015-05-20 苏州金仓合金新材料有限公司 一种高速铁路用复合铜基新型合金材料及其制备方法
CN105063414A (zh) * 2015-08-12 2015-11-18 苏州卫生职业技术学院 一种刀具用合金材料及其制备方法
CN105220011A (zh) * 2015-10-30 2016-01-06 苏州列治埃盟新材料技术转移有限公司 一种高强度碳化钛颗粒增强铜基合金材料及其制备方法
CN105238948A (zh) * 2015-10-30 2016-01-13 苏州列治埃盟新材料技术转移有限公司 一种高强度纳米级碳化硅铜基合金材料及其制备方法
CN105219988A (zh) * 2015-10-30 2016-01-06 苏州天兼新材料科技有限公司 一种碳化钛颗粒增强铜基复合合金材料及其制造方法
CN105200265A (zh) * 2015-10-30 2015-12-30 苏州天兼新材料科技有限公司 一种TiB2增强的铸造青铜合金以及制造该合金的方法
CN105220000A (zh) * 2015-10-30 2016-01-06 苏州列治埃盟新材料技术转移有限公司 一种高强度二硼化钛颗粒增强铜基复合材料及其制备方法
CN105200264A (zh) * 2015-10-30 2015-12-30 苏州列治埃盟新材料技术转移有限公司 一种高强度二硼化钛颗粒增强铜基复合材料及其制备方法
CN105219987A (zh) * 2015-10-30 2016-01-06 苏州列治埃盟新材料技术转移有限公司 一种高强度二硼化钛增强铜基复合材料及其制备方法
CN105256170A (zh) * 2015-10-30 2016-01-20 苏州列治埃盟新材料技术转移有限公司 一种高强度碳化钛颗粒增强铜基复合材料及其制备方法
CN105385888A (zh) * 2015-11-02 2016-03-09 苏州金仓合金新材料有限公司 一种机车高负荷连杆用高强度颗粒铜基复合合金新材料
CN105220006A (zh) * 2015-11-02 2016-01-06 苏州金仓合金新材料有限公司 一种车辆轴承用镀镍碳化硅颗粒增强铜基复合材料及其制备方法
CN105177350A (zh) * 2015-11-02 2015-12-23 苏州金仓合金新材料有限公司 一种高速机车齿轮用高强度纳米级碳化硅铜基复合合金新材料
CN105238947A (zh) * 2015-11-02 2016-01-13 苏州金仓合金新材料有限公司 一种重型装备零部件用高强度纳米级碳化硅铜基复合合金新材料
CN105220008A (zh) * 2015-11-02 2016-01-06 苏州金仓合金新材料有限公司 一种海洋工程起重设备用高强度耐腐蚀合金新材料
CN105238952A (zh) * 2015-11-02 2016-01-13 苏州金仓合金新材料有限公司 一种海洋工程用高强度纳米级碳化硅铜基合金新材料
CN105238951A (zh) * 2015-11-02 2016-01-13 苏州金仓合金新材料有限公司 一种核能蒸汽管道用高强度纳米级碳化硅铜基合金新材料
CN106191514A (zh) * 2016-08-09 2016-12-07 苏州金仓合金新材料有限公司 一种多用途的铜基复合材料及其制备方法
CN106319281A (zh) * 2016-11-28 2017-01-11 墨宝股份有限公司 一种海洋工程用的高强度纳米级碳化硅铜基合金新材料
CN107312950A (zh) * 2017-06-22 2017-11-03 苏州天兼新材料科技有限公司 一种镀镍碳化硅铜基合金材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187836A (ja) * 1984-10-08 1986-05-06 Toyota Motor Corp 繊維強化金属複合材料の製造方法
CN2256045Y (zh) * 1995-09-01 1997-06-11 大连机车车辆厂 齿轮泵
CN102978434A (zh) * 2012-12-13 2013-03-20 北京科技大学 一种短纤维与颗粒协同增强铜基复合材料及其制备方法
CN103305742A (zh) * 2013-06-26 2013-09-18 苏州金仓合金新材料有限公司 一种纳米级碳化硅铜基合金材料制备方法
CN103302294A (zh) * 2013-06-25 2013-09-18 浙江理工大学 一种粉末冶金法制备纳米Cu@SiC/Cu基复合材料的方法
CN104630544A (zh) * 2015-01-27 2015-05-20 苏州金仓合金新材料有限公司 一种高速铁路用复合铜基新型合金材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040226636A1 (en) * 2001-09-06 2004-11-18 Bampton Clifford Charles Oxidation resistant and burn resistant copper metal matrix composites
CN102031410A (zh) * 2010-11-12 2011-04-27 哈尔滨工业大学 高强耐磨自润滑铜基复合材料
CN103555992B (zh) * 2013-11-08 2016-03-30 苏州天兼金属新材料有限公司 一种无铅环保铜基合金棒及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187836A (ja) * 1984-10-08 1986-05-06 Toyota Motor Corp 繊維強化金属複合材料の製造方法
CN2256045Y (zh) * 1995-09-01 1997-06-11 大连机车车辆厂 齿轮泵
CN102978434A (zh) * 2012-12-13 2013-03-20 北京科技大学 一种短纤维与颗粒协同增强铜基复合材料及其制备方法
CN103302294A (zh) * 2013-06-25 2013-09-18 浙江理工大学 一种粉末冶金法制备纳米Cu@SiC/Cu基复合材料的方法
CN103305742A (zh) * 2013-06-26 2013-09-18 苏州金仓合金新材料有限公司 一种纳米级碳化硅铜基合金材料制备方法
CN104630544A (zh) * 2015-01-27 2015-05-20 苏州金仓合金新材料有限公司 一种高速铁路用复合铜基新型合金材料及其制备方法

Also Published As

Publication number Publication date
CN104630544A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2016119095A1 (zh) 一种高速铁路用复合铜基新型合金材料及其制备方法
WO2014205606A1 (zh) 一种纳米级碳化硅铜基合金材料制备方法
Dong et al. Microstructures and properties of A356–10% SiC particle composite castings at different solidification pressures
Wang et al. Effect of the content of ball-milled expanded graphite on the bending and tribological properties of copper–graphite composites
WO2017075740A1 (zh) 一种车辆轴承用镀镍碳化硅颗粒增强铜基复合材料及其制备方法
CN105648264A (zh) 高导电高耐磨石墨烯/铜基复合材料及其制备方法
WO2014205607A1 (zh) 一种纳米级碳化硅铝合金棒的制备方法
CN106086534B (zh) 一种高强度耐腐蚀的铝碳铜合金接地材料
Tang et al. Preparation and interface investigation of Fe/Al2O3P composite activated by Ni and Ti
Sun et al. Fabrication and characterization of aluminum matrix fly ash cenosphere composites using different stir casting routes
WO2018028092A1 (zh) 一种化学镀镍碳化硅颗粒与铜铝复合的材料及其制备方法
CN105586503A (zh) 铜石墨复合材料及其制备方法
WO2017075741A1 (zh) 一种高速机车齿轮用高强度纳米级碳化硅铜基复合合金新材料
CN105238952A (zh) 一种海洋工程用高强度纳米级碳化硅铜基合金新材料
WO2017070806A1 (zh) 一种高强度碳化钛颗粒增强铜基复合材料及其制备方法
CN112410597B (zh) 一种纳米wc弥散强化铜的制备方法
CN107312950A (zh) 一种镀镍碳化硅铜基合金材料及其制备方法
Yu et al. Microstructure and properties of titanium matrix composites synergistically reinforced by graphene oxide and alloying elements
WO2018028096A1 (zh) 一种多用途的铜基复合材料及其制备方法
CN104294080A (zh) 耐磨铜合金配方及其制备方法
WO2018028095A1 (zh) 一种碳化硅颗粒与铜铝复合的材料及其制备方法
CN106838079A (zh) 一种高寒地区高速列车制动闸片用冶金摩擦材料
WO2014205608A1 (zh) 一种纳米级碳化硅镁合金材料的制备方法
CN106086493A (zh) 一种快速低温烧结制备CuCr合金材料的方法
CN100535073C (zh) 耐酸磁性液体密封材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879307

Country of ref document: EP

Kind code of ref document: A1