WO2018027943A1 - 通信方法、基站及系统 - Google Patents

通信方法、基站及系统 Download PDF

Info

Publication number
WO2018027943A1
WO2018027943A1 PCT/CN2016/094978 CN2016094978W WO2018027943A1 WO 2018027943 A1 WO2018027943 A1 WO 2018027943A1 CN 2016094978 W CN2016094978 W CN 2016094978W WO 2018027943 A1 WO2018027943 A1 WO 2018027943A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot signal
base station
indication information
terminal
indicate
Prior art date
Application number
PCT/CN2016/094978
Other languages
English (en)
French (fr)
Inventor
王曼
邓天乐
胡星星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680087527.XA priority Critical patent/CN109479265B/zh
Priority to PCT/CN2016/094978 priority patent/WO2018027943A1/zh
Publication of WO2018027943A1 publication Critical patent/WO2018027943A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of mobile communications technologies, and in particular, to a communication method, a base station, and a system.
  • the base station may send a pilot signal to the terminal, so that the terminal tests the quality of the downlink channel according to the received pilot signal, obtains a channel quality indicator (CQI), and obtains CQI feedback.
  • CQI channel quality indicator
  • the base station is provided such that the base station determines the quality of the channel between the base station and the terminal.
  • the terminal cannot determine the time-frequency resource and other information occupied by the pilot signal transmitted by the base station in advance, and thus it takes a long time to receive the pilot signal, so that it takes a long time to determine the base station.
  • the quality of the channel between the terminal and the terminal reduces system efficiency.
  • the embodiments of the present application provide a communication method, a base station, and a system, which are used to improve the efficiency of determining the quality of a channel between a base station and a terminal.
  • an embodiment of the present application provides a communication method, including:
  • the first base station determines the pilot signal indication information, where the pilot signal indication information is used to indicate a position of the pilot signal sent by the second base station to the terminal in the downlink subframe;
  • the first base station sends the pilot signal indication information to the terminal.
  • the first base station after the first base station determines that the second base station sends the pilot signal indication information of the pilot signal, the first base station sends the pilot signal indication information to the terminal, which may be implemented in the second base station and the terminal.
  • the first base station auxiliary terminal confirms the channel quality between the second base station and the terminal, so that the terminal quickly determines information such as the time-frequency resource occupied by the pilot signal sent by the second base station, and improves the information.
  • the terminal receives the effect of the pilot signal transmitted by the second base station Rate and accuracy, so as to quickly obtain the quality of the channel between the second base station and the terminal, improve the channel throughput by improving the channel quality.
  • the method further includes:
  • the first base station receives a pilot indication request message sent by the terminal, where the pilot indication request message is used to request the first base station to send the pilot signal indication information to the terminal.
  • the method further includes:
  • the first base station receives a pilot signal request message sent by the terminal, where the pilot signal request message is used to request the first base station to instruct the second base station to send the pilot signal to the terminal.
  • the first base station may instruct the second base station to send a pilot signal to the terminal, which may avoid the channel quality difference between the terminal and the second base station, resulting in the terminal and the When the connection between the two base stations is not good, the terminal cannot instruct the second terminal to send a pilot signal thereto.
  • the pilot signal request message includes at least one of the following information:
  • the cell indication information is used to indicate that the second base station sends a pilot signal in the cell indicated by the cell indication information
  • the data unit indication information is used to indicate that the second base station sends the pilot signal by using the data unit indicated by the data unit indication information
  • the beam indication information is used to indicate that the second base station sends a pilot signal by using a beam indicated by the beam indication information.
  • the terminal may determine, according to the at least one item of information in the pilot signal request message, the data unit, the beam, and the cell in which the pilot signal is used by the second base station to transmit the pilot signal, so that the terminal can quickly determine.
  • the information such as the time-frequency resource occupied by the pilot signal sent by the second base station improves the efficiency and accuracy of the terminal receiving the pilot signal sent by the second base station, thereby improving the good channel quality between the terminal and the second base station. System throughput.
  • the pilot signal indication information includes at least one of the following information:
  • Site information configured to indicate to the terminal, the second base station that sends the pilot signal
  • a subframe indication information configured to indicate that a downlink subframe that includes the pilot signal is located in a position of all downlink subframes that are sent by the second base station to the terminal;
  • the frequency domain location indication information is used to indicate a location of the frequency domain resource unit occupied by the pilot signal in a downlink subframe
  • Time domain location indication information used to indicate a location of the time domain resource unit occupied by the pilot signal in a downlink subframe
  • the duration indication information is used to indicate a sum of durations between a downlink subframe that includes the pilot signal and a downlink subframe that includes the pilot signal that is sent by the second base station.
  • the pilot signal indication information may indicate to the terminal, the downlink subframe in which the pilot signal is located, the location of the frequency domain resource unit occupied by the pilot signal in the downlink subframe, and the time domain occupied by the pilot signal in the downlink subframe.
  • Information such as the location of the resource unit, so that the terminal can quickly receive the pilot signal, so that the terminal can quickly determine information such as CQI according to the pilot signal.
  • the site information includes at least one of the following information:
  • Base station identification information used to indicate a base station that transmits a pilot signal
  • the cell identifier information is used to indicate a cell where the pilot signal sent by the second base station is located;
  • Data unit identification information used to indicate a data unit used by the second base station to transmit the pilot signal
  • the beam identification information is used to indicate a beam used by the second base station to transmit the pilot signal.
  • the terminal may be configured to determine a cell, a data unit, and a beam, where the second base station transmits the pilot signal, thereby improving the efficiency of the terminal receiving the pilot signal.
  • the frequency domain location indication information is a bit bitmap; one bit in the bitmap is uniquely corresponding to a frequency domain resource unit in a downlink subframe in which the pilot signal is located;
  • the value of one bit in the bit bitmap is a preset threshold
  • the value of the bit indicates that the pilot signal occupies the downlink subframe in which the pilot signal is located and the bit position Corresponding frequency domain resource unit.
  • the pilot signal indication information is located in a dedicated physical layer channel in a downlink subframe in which the pilot signal is located, where the dedicated physical layer channel is a downlink subroutine in which the pilot signal is located.
  • the method further includes:
  • the first base station sends the pilot signal indication information to the second base station by using a pilot signal notification message.
  • the embodiment of the present application provides a base station, which can perform any communication method that implements the foregoing first aspect.
  • the base station includes a plurality of functional modules, and is used to implement any one of the communication methods provided by the foregoing first aspect, such that the second base station is not connected or connected to the terminal by the first
  • the base station assists the terminal to confirm the channel quality between the second base station and the terminal, so that the terminal quickly determines information such as the time-frequency resource occupied by the pilot signal sent by the second base station, and improves the terminal receiving the pilot signal sent by the second base station.
  • Efficiency and accuracy so as to quickly obtain the quality of the channel between the second base station and the terminal, improve the channel throughput by improving the channel quality.
  • the structure of the base station includes a processor and a transceiver, the processor being configured to support the base station to perform corresponding functions in the above communication method.
  • the transceiver is configured to support communication between the base station and the terminal, and send information or instructions involved in the foregoing communication method to the terminal.
  • a memory may also be included in the base station for coupling with the processor, which stores the necessary program instructions and data for the base station.
  • an embodiment of the present application provides a communication method, including:
  • the second base station generates a pilot signal when the pilot signal transmission condition is satisfied
  • the second base station sends the pilot signal to a terminal.
  • the second base station does not send the pilot signal in each downlink subframe, but sends a pilot signal to the terminal when determining that the pilot signal transmission condition is satisfied, thereby avoiding the terminal.
  • a pilot signal needs to be included in each downlink subframe transmitted, thereby reducing the resources occupied by transmitting the pilot signal and improving resource utilization.
  • the pilot signal sending condition is any one of the following conditions:
  • the second base station determines that downlink data needs to be sent to the terminal
  • the second base station receives the pilot request message sent by the terminal.
  • the pilot request message or the pilot signal sending notification message includes at least one of the following information:
  • the cell indication information is used to indicate that the second base station sends a pilot signal in the cell indicated by the cell indication information
  • the data unit indication information is used to indicate that the second base station sends the pilot signal by using the data unit indicated by the data unit indication information
  • the beam indication information is used to indicate that the second base station sends a pilot signal by using a beam indicated by the beam indication information.
  • the second base station can be configured to transmit a pilot signal in a cell, a data unit, and a beam indicated by the terminal, thereby improving the efficiency of the terminal receiving the pilot signal.
  • the method further includes:
  • the second base station sends the pilot signal indication information to the terminal, where the pilot signal indication information is used to indicate a location of a pilot signal sent by the second base station to the terminal in a downlink subframe.
  • the pilot signal indication information includes at least one of the following information:
  • Site information configured to indicate to the terminal, the second base station that sends the pilot signal
  • a subframe indication information configured to indicate that a downlink subframe that includes the pilot signal is located in a position of all downlink subframes that are sent by the second base station to the terminal;
  • the frequency domain location indication information is used to indicate a location of the frequency domain resource unit occupied by the pilot signal in a downlink subframe
  • Time domain location indication information used to indicate a location of the time domain resource unit occupied by the pilot signal in a downlink subframe
  • the duration indication information is used to indicate a sum of durations between a downlink subframe that includes the pilot signal and a downlink subframe that includes the pilot signal that is sent by the second base station.
  • the pilot signal indication information may indicate to the terminal, the downlink subframe in which the pilot signal is located, and the guide The information of the frequency domain resource unit in the downlink subframe and the location of the time domain resource unit occupied by the pilot signal in the downlink subframe, so that the terminal can quickly receive the pilot signal, thereby enabling the terminal to enable the terminal to Quickly determine information such as CQI based on the pilot signal.
  • the site information includes at least one of the following information:
  • Base station identification information used to indicate a base station that transmits a pilot signal
  • the cell identifier information is used to indicate a cell where the pilot signal sent by the second base station is located;
  • Data unit identification information used to indicate a data unit used by the second base station to transmit the pilot signal
  • the beam identification information is used to indicate a beam used by the second base station to transmit the pilot signal.
  • the frequency domain location indication information is a bit bitmap; one bit in the bitmap and the pilot signal One of the frequency domain resource units in the downlink subframe in which it is located corresponds uniquely;
  • the value of one bit in the bit bitmap is a preset threshold
  • the value of the bit indicates that the pilot signal occupies the downlink subframe in which the pilot signal is located and the bit position Corresponding frequency domain resource unit.
  • the pilot signal indication information is located in a dedicated physical layer channel in a downlink subframe in which the pilot signal is located, where the dedicated physical layer channel is a downlink subroutine in which the pilot signal is located.
  • the method further includes:
  • the second base station indicates, to the target terminal, whether the pilot signal is included in the target downlink subframe, including:
  • the scrambling mode adopted by the path control channel or the enhanced physical downlink control channel indicates to the target terminal whether the pilot signal is included in the target downlink subframe;
  • the second base station indicates the target to the target terminal by transmitting pilot signal flag information in a physical downlink control channel or an enhanced physical downlink control channel corresponding to the target terminal in the target downlink subframe Whether the pilot signal is included in the downlink subframe; or
  • the second base station indicates to the target terminal whether the pilot signal is included in the target downlink subframe by transmitting pilot signal flag information in a common physical downlink indication channel in the target downlink subframe.
  • the embodiment of the present application provides a base station, which can perform any one of the communication methods provided by the foregoing third aspect.
  • the base station includes a plurality of functional modules for implementing any one of the foregoing communication methods, so that the base station sends a pilot signal to the terminal when determining that the pilot signal transmission condition is satisfied, thereby avoiding sending to the terminal.
  • a pilot signal needs to be included in each downlink subframe, thereby reducing resources occupied by transmitting pilot signals and improving resource utilization.
  • the base station includes a processor and a transceiver configured to support a base station to perform a corresponding function in the above communication method.
  • the transceiver is configured to support communication between the base station and the terminal, and send information or instructions involved in the foregoing communication method to the terminal.
  • a memory may also be included in the base station for coupling with the processor, which stores the necessary program instructions and data for the base station.
  • an embodiment of the present application provides a communications system, including:
  • a first base station configured to determine pilot signal indication information, where the pilot signal indication information is used to indicate a location of a pilot signal sent by the second base station to the terminal in a downlink subframe; and send the Pilot signal indication information;
  • a second base station configured to: when the pilot signal transmission condition is met, the second base station generates a pilot signal; and send the pilot signal to the terminal;
  • the terminal is configured to receive pilot signal indication information sent by the first base station, and receive the pilot signal sent by the second base station according to the pilot signal indication information.
  • the first base station may perform any one of the communication methods provided by the foregoing first aspect.
  • the second base station can perform any one of the communication methods provided by implementing the above third aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station provided in the foregoing second aspect, which includes a program designed to execute the foregoing first aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station provided in the foregoing fourth aspect, which includes a program designed to execute the foregoing third aspect.
  • FIG. 1 is a schematic diagram of a CRAN communication network
  • FIG. 2 is a schematic diagram of a communication network
  • FIG. 3 is a schematic diagram of network coverage of a base station according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a pilot signal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a pilot signal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication method according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the embodiments of the present application are applicable to a 4G (fourth generation mobile communication system) evolution system, such as an LTE (Long Term Evolution) system, a 5G (fifth generation mobile communication system) system, such as a new wireless access technology (newo). Radio access technology (New RAT) access network; CRAN (Cloud Radio Access Network, cloud wireless access network) and other communication networks.
  • 4G fourth generation mobile communication system
  • LTE Long Term Evolution
  • 5G fourth generation mobile communication system
  • new wireless access technology new RAT
  • Radio access technology New RAT
  • CRAN Cloud Radio Access Network, cloud wireless access network
  • terminal includes but is not limited to a mobile station, a fixed or mobile subscriber unit, a pager, a cellular phone, a personal digital assistant (PDA), a computer or any other type capable of being in a wireless environment.
  • User equipment UE
  • base station includes but is not limited to a base station, a node, a base station controller, an access point (AP), a macro station, a micro station or a small station, a high frequency station, a low frequency station, a beam, a relay station, and a part of a base station.
  • CRAN unit or any other type of interface device capable of operating in a wireless environment.
  • the "base station” includes, but is not limited to, a base station in a 4G system and a base station in a 5G system.
  • CRAN can be divided into multiple CRAN clusters such as CRAN cluster 110, CRAN cluster 120, and CRAN cluster 130.
  • Each CRAN cluster can serve multiple terminals.
  • CRAN cluster 110 serves terminal 111 and terminal 112
  • CRAN cluster 120 serves terminal 121
  • CRAN cluster 130 serves terminal 131.
  • Each CRAN cluster can be divided into one or more Central Units (CUs), which in turn are connected to one or more Data Units (DUs).
  • the CU can connect to a single DU or multiple DUs.
  • a CRAN cluster can have a different number of CUs, DUs, etc., and serve a different number of terminals.
  • the solution provided by the embodiment of the present application is also applicable to a scenario in which a terminal switches between different cells. Specifically, as shown in FIG. 2, when the terminal 203 moves from the cell of the base station 201 to the cell of the base station 202, it is necessary to quickly determine information such as channel quality and the base station 202 by using the pilot signal.
  • the scenarios of different cells include, but are not limited to, cells in the same base station, cells in different base stations, and the like.
  • FIG. 3 it is a schematic diagram of a base station network coverage provided by an embodiment of the present application.
  • Macro station 301 There are two micro base stations in the signal coverage range, namely 302 and 303 respectively, and the terminal 304 can select to access the macro station 301, the micro base station 302 or the micro base station 303 according to actual conditions.
  • the macro station includes, but is not limited to, a macro station in a 4G system and a macro station in a 5G system; correspondingly, the micro base station includes, but is not limited to, a micro base station in a 4G system and a micro base station in a 5G system.
  • the pilot signal may be a pilot signal used for channel measurement by the terminal; the pilot signal may be a pilot signal used for channel estimation by the terminal; and the pilot signal may also be used for channel status of the terminal.
  • the specific content of the pilot signal can be referred to the description in the existing communication standard, and details are not described herein again.
  • the first base station and the second base station are only used to distinguish different base stations, and do not represent other meanings such as ordering of the base stations.
  • the embodiment of the present application provides a schematic flowchart of a communication method, including:
  • Step 401 The first base station determines pilot signal indication information, where the pilot signal indication information is used to indicate a location of a pilot signal sent by the second base station to the terminal in a downlink subframe.
  • Step 402 The first base station sends the pilot signal indication information to the terminal.
  • the terminal may first send a pilot indication request message to the first base station, where the pilot indication request message is used to request the first base station to send the location to the terminal.
  • the pilot signal indicates information.
  • the first base station After the first base station receives the pilot indication request message sent by the terminal, the first base station is triggered to perform the step of transmitting the pilot signal indication information.
  • the first base station may be a macro station, such as an eNB (Evolved Node B, an evolved base station); and the second base station may be a micro base station, such as a femtocell (flying cell).
  • the macro base station has the characteristics of wide signal coverage and large capacity. However, there are objects in the area where the signal is blocked (for example, a tall building), so that the signal of the macro base station cannot cover the area, and the micro base station can be arranged in the area.
  • the micro base station has the characteristics of small coverage, small size, convenient installation, and the like, so that a complementary relationship can be formed with the macro base station.
  • the second base station is a base station located within a signal coverage area of the first base station.
  • the second base station may also be a base station whose signal coverage area overlaps with the signal coverage area of the first base station.
  • the first base station determines the pilot signal indication information according to information such as a time-frequency resource of the transmitted pilot signal allocated by the first base station to the second base station.
  • the first base station may autonomously determine the location of the frequency domain resource unit occupied by the pilot signal transmitted by the second base station in the downlink subframe, and the location of the time domain resource unit, or may determine the second base station to send.
  • the downlink subframe including the pilot signal is located at a position and the like in all downlink subframes sent by the second base station to the terminal, and determines pilot signal indication information according to the foregoing information.
  • the first base station may further send the pilot signal indication information to the first base station.
  • the first base station may send a pilot signal indication information to the second base station by using a pilot signal transmission notification message sent to the second base station.
  • the pilot signal sending notification message is used to instruct the second base station to send a pilot signal to the terminal.
  • the first base station may also send the pilot signal indication information to the second base station by using other methods, and details are not described herein again.
  • the first base station may receive the pilot signal indication information sent by the second base station, so as to forward the received pilot signal indication information to the terminal.
  • the first base station may send a pilot signal transmission notification message to the second base station.
  • the second base station may send pilot signal indication information to the first base station, and send a pilot signal to the terminal. At this time, the first base station can thereby determine the pilot signal indication information.
  • the first base station may further receive a pilot signal request message sent by the terminal, where the pilot signal request message is used to request the first base station to indicate the second base station. Transmitting the pilot signal to the terminal.
  • the pilot signaling notification message may include at least one of the following information:
  • the cell indication information is used to indicate that the second base station sends a pilot signal in the cell indicated by the cell indication information
  • the data unit indication information is used to indicate that the second base station sends the pilot signal by using the data unit indicated by the data unit indication information
  • the beam indication information is used to indicate that the second base station sends a pilot signal by using a beam indicated by the beam indication information.
  • the cell indication information, the data unit indication information, and the beam indication information may be determined by the terminal and sent to the first base station.
  • the terminal may determine information such as a cell, a beam, a data unit, and the like that the terminal receives the pilot signal according to information such as a location where the terminal is currently located, and send the information including the cell indication information, the data unit indication information, and the beam indication information to the first base station.
  • At least one piece of information of the pilot signal request message such that the pilot signal is transmitted by the first base station instructing the second base station to adopt the corresponding cell, using the corresponding beam, and the data unit.
  • the data unit is an entity that includes a part of the protocol layer of the existing base station, such as a part of the function including only the physical layer, or a function including all physical layers, or a physical layer and a MAC (Media). Part of the Access Control, Media Access Control layer.
  • the pilot signal indication information may include at least one of the following information:
  • Site information configured to indicate to the terminal, the second base station that sends the pilot signal
  • a subframe indication information configured to indicate that a downlink subframe that includes the pilot signal is located in a position of all downlink subframes that are sent by the second base station to the terminal;
  • the frequency domain location indication information is used to indicate a location of the frequency domain resource unit occupied by the pilot signal in a downlink subframe
  • Time domain location indication information used to indicate a location of the time domain resource unit occupied by the pilot signal in a downlink subframe
  • the duration indication information is used to indicate a sum of durations between a downlink subframe that includes the pilot signal and a downlink subframe that includes the pilot signal that is sent by the second base station.
  • the site information may include at least one of the following information:
  • Base station identification information used to indicate a base station that transmits a pilot signal
  • the cell identifier information is used to indicate a cell where the pilot signal sent by the second base station is located;
  • Data unit identification information used to indicate a data unit used by the second base station to transmit the pilot signal
  • the beam identification information is used to indicate a beam used by the second base station to transmit the pilot signal.
  • the base station that transmits the pilot signal and the information about the cell, the data unit, the beam, and the like used by the base station to transmit the pilot signal can be indicated to the terminal, so that the terminal can quickly determine the pilot signal.
  • the second base station may not send the pilot signal in all the downlink subframes sent to the terminal.
  • the subframe indication information may indicate that the downlink subframe including the pilot signal is located in the downlink subframe. The location in all downlink subframes sent by the second base station to the terminal.
  • the sub-frame indication information may be represented by multiple bits, and each bit uniquely corresponds to one downlink sub-frame. When the value of one bit is a preset value, it may represent a downlink sub-frame corresponding to the bit.
  • the pilot signal is included; when the value of one bit is not a preset value, it may indicate that the pilot signal is not included in the downlink subframe corresponding to the bit.
  • each bit and the downlink subframe may be pre-agreed by the second base station and the terminal.
  • the subframe indication information may be 1100, indicating that the first frame downlink subframe and the second frame downlink subframe sent by the second base station include a pilot signal, the second subframe downlink subframe transmitted by the second base station, and the fourth frame.
  • the pilot signal is not included in the frame downlink subframe.
  • the subframe indication information may also be in other forms, and details are not described herein again.
  • the second base station may send, in every H downlink subframes, a downlink subframe that includes a pilot signal, where H is a natural number.
  • the subframe indication information may further indicate that the period in which the second base station transmits the downlink subframe including the pilot signal is H.
  • the location of all downlink subframes including the pilot signal sent by the second base station is indicated to the terminal by using the subframe indication information, so that the terminal can quickly locate the downlink subframe including the pilot signal, thereby acquiring the pilot.
  • Signals improve information processing efficiency.
  • frequency domain location indication information and time domain location indication information are Third, frequency domain location indication information and time domain location indication information
  • the pilot signal indication information may not include the frequency domain location indication information.
  • the time domain location indication information may not be included in the pilot signal indication information.
  • the preset frequency domain resource unit or the preset time domain resource unit refers to a frequency domain resource unit or a time domain resource unit that the second base station and the terminal pre-arrange to transmit a pilot signal.
  • the frequency domain location indication information and the time domain location indication information may have multiple implementation forms.
  • the location of the time domain resource unit occupied by the pilot signal in the downlink subframe is the preset time domain resource unit, and the location of the frequency domain resource unit occupied by the pilot signal in the downlink subframe is not the preset frequency domain.
  • the resource unit is described as an example.
  • the implementation of the time domain resource unit in the downlink subframe is not the default time domain resource unit.
  • the frequency domain location indication information may be a bit bitmap; one bit in the bit bitmap uniquely corresponds to one of the frequency domain resource units in the downlink subframe in which the pilot signal is located.
  • the value of one bit in the bit bitmap is a preset threshold, the value of the bit indicates that the pilot signal occupies a corresponding one of the downlink subframes in which the pilot signal is located a frequency domain resource unit; otherwise, the value of the bit indicates that the pilot signal does not occupy a frequency domain resource unit corresponding to the bit in a downlink subframe in which the pilot signal is located.
  • each bit in the bit bitmap and the frequency domain resource unit may be pre-arranged by the second base station and the terminal, and details are not described herein again.
  • the preset threshold is 1. At this time, when the value of one bit in the bit bitmap is 1, it indicates that the pilot signal occupies the frequency domain resource unit corresponding to the bit in the downlink subframe in which the pilot signal is located; When the value of one bit is 0, it indicates that the pilot signal does not occupy the frequency domain resource unit corresponding to the bit in the downlink subframe.
  • the preset threshold may also be 0. In this case, when the value of the bit is 1, the pilot signal does not occupy the frequency domain resource unit corresponding to the bit in the downlink subframe. .
  • the time domain location indication information may also be a bit bitmap; a ratio in the bit bitmap
  • the special bit uniquely corresponds to one time domain resource unit in the first downlink subframe.
  • the value of one bit in the bit bitmap is a preset threshold
  • the value of the bit indicates that the pilot signal occupies the time corresponding to the bit in the first downlink subframe a domain resource unit; otherwise, the value of the bit indicates that the pilot signal does not occupy a time domain resource unit corresponding to the bit in the first downlink subframe.
  • each bit in the bit bitmap and the time domain resource unit may be pre-arranged by the second base station and the terminal, and details are not described herein again.
  • the position of the frequency domain resource unit and the time domain resource unit in the downlink subframe may be in various forms, which is not limited in this embodiment of the present application.
  • the pilot signal may occupy one frequency domain resource unit every y frequency domain resource units in the frequency domain, and occupy one time domain resource unit every x time domain resource units in the time domain.
  • the pilot signal may occupy one frequency domain resource unit every y frequency domain resource units in the frequency domain, and occupy (i-k+1) time domains in the i-th to kth time domain resource units in the time domain.
  • Resource unit Among them, y, x, i, k are all natural numbers.
  • a time domain resource unit may be an arbitrary waveform symbol, including but not limited to an Orthogonal Frequency Division Multiplexing (OFDM) symbol, and a sparse code division multiple access (Sparse Code Multiplexing Access).
  • SCMA Orthogonal Frequency Division Multiplexing
  • F-OFDM Orthogonal Frequency Division Multiplexing
  • NOMA Non-Orthogonal Multiple Access
  • FIG. 5 it is a schematic diagram of a pilot signal provided by an embodiment of the present application.
  • the pilot signal occupies one frequency domain resource unit every six frequency domain resource units in the frequency domain, and one time domain resource unit is occupied on the first time domain resource unit in the time domain. .
  • the pilot signal may occupy the entire system bandwidth, and may also occupy only part of the system bandwidth.
  • the density of the pilot signal can be reduced, thereby reducing the occupied resource blocks, thereby improving resource utilization.
  • the entire system bandwidth can be pressed
  • the frequency is divided into Q frequency bands, and the resource blocks occupied by the pilot signals are only located in the E frequency bands, thereby reducing the density of the pilot signals. Where Q is greater than 2 and E is less than Q.
  • FIG. 6 it is a schematic diagram of a pilot signal provided by an embodiment of the present application.
  • the entire system bandwidth is divided into three frequency bands according to frequency, and the resource blocks occupied by the pilot signals are located only in one of the frequency bands.
  • the second base station may send the at least one downlink subframe that includes the pilot signal to the terminal, so that the duration indication information may be used to enable the terminal to receive the guide sent by the second base station within the time length indicated by the duration indication information.
  • Frequency signal may be used to enable the terminal to receive the guide sent by the second base station within the time length indicated by the duration indication information.
  • step 402 the first base station transmits the determined pilot signal indication information to the terminal.
  • the pilot signal indication information may be located in a dedicated physical layer channel in a downlink subframe where the pilot signal is located, where the dedicated physical layer channel is a downlink subframe in which the pilot signal is located.
  • the pilot signal indication information may also be located in a physical layer channel existing in a downlink subframe in which the pilot signal is located, for example, a PDCCH (Physical Downlink Control Channel), ePDCCH (enhanced Physical Downlink) Control Channel, enhanced physical downlink control channel) and other channels.
  • PDCCH Physical Downlink Control Channel
  • ePDCCH enhanced Physical Downlink Control Channel
  • the first base station may further send the pilot signal indication information to the terminal by using a MAC layer message or an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the MAC layer message including the pilot signal indication information may be an existing MAC layer message, or may be a newly created indicator signal for transmitting the pilot signal.
  • the MAC layer message may be an existing MAC layer message, or may be a newly created indicator signal for transmitting the pilot signal.
  • the RRC signaling including the pilot signal indication information may be the existing RRC signaling, or may be newly created for transmitting the pilot.
  • the signal indicates the RRC signaling of the information.
  • the first base station may further send the pilot signal indication information to the second base station by using a pilot signaling message.
  • the pilot signaling message may also be used to instruct the second base station to send a pilot signal to the terminal.
  • the pilot signal notification message and the pilot signal sending notification message may be the same message, and the pilot signal notification message or the pilot signal sending notification message may indicate that the second base station sends the pilot signal to the terminal. At the same time, the pilot signal indication information is sent to the second base station.
  • the pilot signal notification message and the pilot signal transmission notification message may also be different two messages, which may be determined according to actual conditions, and details are not described herein again.
  • the terminal after receiving the pilot signal sent by the second base station, the terminal sends a pilot signal adjustment request message to the first base station, where the pilot signal adjustment request message is used to notify the first base station to notify the first
  • the second base station adjusts the frequency of transmitting the pilot signal.
  • the first base station may send a pilot signal adjustment indication message to the second base station, where the pilot signal adjustment indication message is used to instruct the second base station to adjust the transmit pilot signal. Frequency of.
  • the pilot signal adjustment indication message may indicate that the second base station increases the frequency of transmitting the pilot signal, and may also instruct the second base station to reduce the frequency of transmitting the pilot signal adjustment indication message.
  • the subframe indication information may be changed by changing one or more of the subframe indication information, the frequency domain location indication information, and the time domain location indication information, the duration indication information, or the physical layer channel, MAC.
  • Layers or RRC layer messages are directly indicated, and may be determined according to actual conditions, and details are not described herein again.
  • FIG. 7 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • Step 701 The terminal sends a pilot signal request message to the first base station.
  • the pilot signal request message is used to request the first base station to instruct the second base station to send the pilot signal to the terminal.
  • the first base station sends a pilot signal sending notification message to the second base station.
  • the pilot signal sending notification message is used to instruct the second base station to send a pilot signal to the terminal.
  • this step is optional.
  • the pilot signal transmission notification message is used to send the pilot signal indication information to the second base station; when the second base station is already transmitting the pilot signal, and the pilot signal is The indication information informs the first base station.
  • the first base station After receiving the pilot signal indication information sent by the second base station, the first base station determines the pilot signal indication signal sent to the terminal. Step 702 can be omitted.
  • Step 703 The first base station sends the pilot signal indication information to the terminal.
  • Step 704 The second base station sends a pilot signal to the terminal.
  • FIG. 8 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • Step 801 The second base station broadcasts a pilot signal in a signal coverage range of the second base station.
  • Step 802 The terminal sends a pilot signal request message to the first base station.
  • Step 803 The first base station sends the pilot signal indication information to the terminal.
  • Step 804 The terminal receives the pilot signal according to the pilot signal indication information, and sends a pilot signal adjustment request message to the first base station.
  • Step 805 The first base station sends a pilot signal adjustment indication message to the second base station.
  • Step 806 The second base station adjusts the frequency of transmitting the pilot signal according to the pilot signal adjustment indication message.
  • the pilot signal adjustment indication message is used to instruct the second base station to adjust a frequency of transmitting a pilot signal.
  • the base station may transmit a pilot signal in a periodic broadcast message; or transmit a pilot signal or the like in a downlink subframe in which resources are allocated to the terminal.
  • TD-LTE Time Division Long Term Evolution
  • CRS Cell-Specific Reference Singals
  • a terminal can perform channel estimation and the like according to CRS.
  • the CRS occupies one resource element (RE) every six subcarriers in the frequency domain, and every two to four symbols appear in the time domain. In the case of a single antenna, the CRS occupies 4 resource elements in each resource block (RB), and the CRS is across the entire system bandwidth.
  • the proportion of resources occupied by CRS in a downlink subframe is between 4.8% and 14.3%, and the resources occupying the channel are very large, and the resource utilization of the channel is low. Therefore, it is required to provide a reduced transmission.
  • the method of the overhead caused by the pilot signal is required to provide a reduced transmission.
  • the embodiment of the present application provides a schematic flowchart of a communication method, including:
  • Step 901 When the pilot signal transmission condition is met, the second base station generates a pilot signal.
  • Step 902 The second base station sends the pilot signal to a terminal.
  • the second base station may determine that the pilot signal transmission condition is satisfied in multiple cases, which are described in detail below.
  • the first possible condition is that the second base station receives the access request sent by the terminal.
  • the terminal When the terminal needs to send uplink data, the terminal needs to establish a connection with the second base station through a random access procedure. During the random access process, the terminal needs to send an access request to the second base station, and the second base station receives the access request sent by the terminal, so as to determine that the pilot signal sending condition is satisfied.
  • the access request sent by the terminal to the second base station is a preamble (Preamble)
  • the second base station determines that a pilot signal needs to be sent to the terminal, and the pilot signal can be used.
  • the terminal estimates the channel quality between the second base station and the terminal.
  • the second possible condition is that the second base station determines that downlink data needs to be sent to the terminal. For example, the second base station receives downlink data sent by other base stations or other terminals to the terminal, or needs to directly send downlink data to the terminal.
  • a third possible condition is that the second base station receives the resource request sent by the terminal.
  • the resource request sent by the second base station may be a scheduling request (Schedule Request, SR), or may be a message for requesting an uplink resource, such as a Buffer Status Reports (BSR).
  • SR scheduling request
  • BSR Buffer Status Reports
  • the fourth possible condition is that the second base station receives the pilot signal transmission notification message sent by the first base station.
  • the pilot signal sending notification message For the specific content of the pilot signal sending notification message, reference may be made to the foregoing description, and details are not described herein again.
  • a fifth possible condition is that the second base station receives the pilot request message sent by the terminal, where the pilot request message is used to request the second base station to send a pilot signal to the terminal. For example, when the terminal detects that the signal of the second base station is deteriorating, the terminal sends a pilot request message to the second base station to further determine the signal change of the second base station, requesting the second base station to send more pilot signals, thereby The signal quality of the second base station can be determined based on the pilot signal.
  • the pilot request message includes at least one of the following information:
  • the cell indication information is used to indicate that the second base station sends a pilot signal in the cell indicated by the cell indication information
  • the data unit indication information is used to indicate that the second base station sends the pilot signal by using the data unit indicated by the data unit indication information
  • the beam indication information is used to indicate that the second base station sends a pilot signal by using a beam indicated by the beam indication information.
  • pilot signal transmission conditions may have other forms, which are not described herein again.
  • the second base station when the second base station determines that the pilot signal sending condition is met, the second base station may perform an operation of allocating an uplink resource to the terminal.
  • the terminal may report the sequence number of the terminal by using the uplink resource allocated by the second base station, or send the CQI and the like determined according to the pilot signal to the second base station by using the uplink resource allocated by the second base station. It should be noted that, the terminal determines how to determine the CQI according to the pilot signal, and may refer to the provisions in the existing communication standard, and details are not described herein again.
  • the second base station may further send pilot signal indication information to the terminal.
  • pilot signal indication information For the specific information about the content of the pilot signal that is sent by the second base station to the terminal, and the manner in which the second terminal sends the pilot signal indication information, refer to the foregoing description, and details are not described herein again.
  • the second base station may further send a target downlink subframe to the target terminal, and indicate to the target terminal whether the pilot signal is included in the target downlink subframe, and the target terminal is to access the second Any one of the base stations except the terminal.
  • the target downlink subframe is any downlink subframe that the second base station sends to the target terminal.
  • the second base station may indicate to the target terminal whether the pilot signal is included in the target downlink subframe in multiple manners.
  • the second base station may indicate, by sending the pilot signal indication information to the target terminal, whether the pilot signal is included in the target downlink subframe.
  • the second base station passes the target downlink subframe
  • the scrambling mode adopted by the physical downlink control channel or the enhanced physical downlink control channel corresponding to the target terminal indicates to the target terminal whether the pilot signal is included in the target downlink subframe.
  • the second base station and the terminal pre-arrange the mapping relationship between the scrambling mode adopted by the target downlink subframe and the pilot signal in the target downlink subframe, for example, when the second base station passes the first RNTI (Radio Network Tempory Identity)
  • the target downlink subframe is scrambled, it indicates that the target downlink subframe includes a pilot signal, and when the target downlink subframe is scrambled by the second RNTI mode, it indicates that the target downlink subframe does not include the pilot. signal.
  • the first RNTI is different from the second RNTI.
  • the scrambling mode used by the second base station may have other forms, and details are not described herein again.
  • the second base station sends pilot signal flag information in a physical downlink control channel or an enhanced physical downlink control channel corresponding to the target terminal in the target downlink subframe
  • the target terminal indicates whether the pilot signal is included in the target downlink subframe.
  • the pilot signal flag information occupies 1 bit. When the bit occupied by the pilot signal flag information is 1, it indicates that the target downlink subframe contains the pilot signal; when the pilot signal flag information occupies the bit 0. , indicating that the pilot signal is not included in the target downlink subframe.
  • the pilot signal flag information may have other forms, and details are not described herein again.
  • the second base station indicates the target downlink subframe to the target terminal by sending pilot signal flag information in a common physical downlink indicator channel in the target downlink subframe. Whether or not the pilot signal is included.
  • the pilot signal notification message and the pilot signal sending notification message may be the same message, where the pilot signal notification message or the pilot signal sending notification message may indicate that the second base station sends the notification message to the terminal.
  • the pilot signal indication information is sent to the second base station simultaneously with the pilot signal.
  • the pilot signal notification message and the pilot signal sending notification message may also be different two messages, which may be determined according to actual conditions, and details are not described herein again.
  • the second base station does not send the pilot signal in each downlink subframe, but sends a pilot signal to the terminal when determining that the pilot signal transmission condition is satisfied, thereby avoiding the terminal.
  • the pilot signal needs to be included in each downlink subframe transmitted, thereby reducing the transmission
  • the resources occupied by the pilot signals increase the resource utilization.
  • a base station is provided in the embodiment of the present invention, which may be used to execute the foregoing method flow.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station includes:
  • the processing unit 1001 is configured to determine pilot signal indication information, where the pilot signal indication information is used to indicate a location of a pilot signal sent by the second base station to the terminal in a downlink subframe;
  • the transceiver unit 1002 is configured to send the pilot signal indication information to the terminal.
  • the transceiver unit 1002 is further configured to:
  • the transceiver unit 1002 is further configured to:
  • pilot signal request message is used to request the base station to instruct the second base station to send the pilot signal to the terminal.
  • the pilot signal request message includes at least one of the following information:
  • the cell indication information is used to indicate that the second base station sends a pilot signal in the cell indicated by the cell indication information
  • the data unit indication information is used to indicate that the second base station sends the pilot signal by using the data unit indicated by the data unit indication information
  • the beam indication information is used to indicate that the second base station sends a pilot signal by using a beam indicated by the beam indication information.
  • the pilot signal indication information includes at least one of the following information:
  • Site information configured to indicate to the terminal, the second base station that sends the pilot signal
  • a subframe indication information configured to indicate that a downlink subframe that includes the pilot signal is located in a position of all downlink subframes that are sent by the second base station to the terminal;
  • the frequency domain location indication information is used to indicate a location of the frequency domain resource unit occupied by the pilot signal in a downlink subframe
  • Time domain location indication information used to indicate a location of the time domain resource unit occupied by the pilot signal in a downlink subframe
  • the duration indication information is used to indicate a sum of durations between a downlink subframe that includes the pilot signal and a downlink subframe that includes the pilot signal that is sent by the second base station.
  • the site information includes at least one of the following information:
  • Base station identification information used to indicate a base station that transmits a pilot signal
  • the cell identifier information is used to indicate a cell where the pilot signal sent by the second base station is located;
  • Data unit identification information used to indicate a data unit used by the second base station to transmit the pilot signal
  • the beam identification information is used to indicate a beam used by the second base station to transmit the pilot signal.
  • the frequency domain location indication information is a bit bitmap; one bit in the bitmap is uniquely corresponding to a frequency domain resource unit in a downlink subframe in which the pilot signal is located;
  • the value of one bit in the bit bitmap is a preset threshold
  • the value of the bit indicates that the pilot signal occupies the downlink subframe in which the pilot signal is located and the bit position Corresponding frequency domain resource unit.
  • the pilot signal indication information is located in a dedicated physical layer channel in a downlink subframe in which the pilot signal is located, where the dedicated physical layer channel is a downlink subroutine in which the pilot signal is located.
  • the transceiver unit 1002 is further configured to:
  • the pilot signal indication information is sent to the second base station by a pilot signal notification message.
  • the base station provided by the embodiment of the present application, after the second base station sends the pilot signal indication information of the pilot signal, the pilot signal indication information is sent to the terminal, and the second base station is not connected or connected to the terminal.
  • the first base station assists the terminal to confirm the channel quality between the second base station and the terminal, so that the terminal quickly determines the time-frequency resource and other information occupied by the pilot signal sent by the second base station, and improves the terminal receiving.
  • the efficiency and accuracy of the pilot signal transmitted by the second base station thereby quickly obtaining the quality of the channel between the second base station and the terminal, and improving the system throughput by improving the channel quality.
  • a base station is provided in the embodiment of the present invention, which can be used to perform the foregoing method. Process.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station includes a processor 1101, a memory 1102, and a transceiver 1103.
  • Memory 1102 can be used to store programs.
  • the processor 1101 reads an instruction corresponding to the program from the memory 1102, and performs the following operations:
  • pilot signal indication information Determining pilot signal indication information, where the pilot signal indication information is used to indicate a location of a pilot signal sent by the second base station to the terminal in a downlink subframe;
  • the transceiver 1103 is configured to send the pilot signal indication information to the terminal.
  • the transceiver 1103 is further configured to:
  • the transceiver 1103 is further configured to:
  • pilot signal request message is used to request the base station to instruct the second base station to send the pilot signal to the terminal.
  • the pilot signal request message includes at least one of the following information:
  • pilot signal request message For a detailed description of the content included in the above-mentioned pilot signal request message, reference may be made to the related content in the foregoing embodiments of the present application, and details are not described herein.
  • the pilot signal indication information includes at least one of the following information:
  • pilot signal indication information For a detailed description of the above-mentioned various types of pilot signal indication information, reference may be made to the related content in the foregoing embodiments of the present application, and details are not described herein.
  • the site information includes at least one of the following information:
  • the transceiver 1103 is further configured to:
  • the pilot signal indication information is sent to the second base station by a pilot signal notification message.
  • a base station is provided in the embodiment of the present invention, which may be used to execute the foregoing method flow.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station includes:
  • the processing unit 1201 is configured to generate a pilot signal when the pilot signal transmission condition is met;
  • the transceiver unit 1202 is configured to send the pilot signal to the terminal.
  • the transceiver unit 1202 is further configured to:
  • the target terminal Sending a target downlink subframe to the target terminal, and indicating to the target terminal whether the pilot signal is included in the target downlink subframe; the target terminal is accessing the second base station except the terminal Any one terminal.
  • processing unit 1201 is further configured to:
  • the scrambling mode adopted by the enhanced physical downlink control channel indicates to the target terminal whether the pilot signal is included in the target downlink subframe;
  • Notifying whether the target downlink subframe is in the target downlink terminal by transmitting pilot signal flag information in a physical downlink control channel or an enhanced physical downlink control channel corresponding to the target terminal in the target downlink subframe Including the pilot signal; or
  • a base station is provided in an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the terminal includes a processor 1301, a memory 1302, and a transceiver 1303.
  • Memory 1302 can be used to store programs.
  • the processor 1301 reads an instruction corresponding to the program from the memory 1302, and performs the following operations:
  • the transceiver 1303 is configured to send the pilot signal to a terminal.
  • the base station includes a plurality of functional modules for implementing any one of the foregoing communication methods, so that the base station sends a pilot signal to the terminal when determining that the pilot signal transmission condition is satisfied, thereby avoiding sending to the terminal.
  • a pilot signal needs to be included in each downlink subframe, thereby reducing resources occupied by transmitting pilot signals and improving resource utilization. .
  • the structure of the base station includes a processor and a transceiver, the processor being configured to support the base station to perform corresponding functions in the above communication method.
  • the transceiver is configured to support communication between the base station and the terminal, and send information or instructions involved in the foregoing communication method to the terminal.
  • a memory may also be included in the base station for coupling with the processor, which stores the necessary program instructions and data for the base station.
  • the base station does not transmit a pilot signal in each downlink subframe, but sends a pilot signal to the terminal when determining that the pilot signal transmission condition is satisfied, thereby avoiding each transmission to the terminal.
  • the pilot signals need to be included in all downlink subframes, thereby reducing resources occupied by transmitting pilot signals and improving resource utilization.
  • the transceiver may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network communication interface, a cellular network communication interface, or a combination thereof.
  • the processor may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the memory may include a volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); the memory may also include non-volatile memory (English: non-volatile memory).
  • read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, Abbreviation: SSD); the memory may also include a combination of the above types of memory.
  • FIG. 11 and FIG. 13 may further include a bus, and the bus may include any number of interconnected buses and bridges, and specifically, various circuits of the memory represented by one or more processors and memories represented by the processor. Linked together.
  • the bus can also link various other circuits such as peripherals, voltage regulators, and power management circuits, and will not be further described in this application.
  • the transceiver provides means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the processor when performing the operation. The data used.
  • FIG. 14 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the communication system includes:
  • the first base station 1401 is configured to determine pilot signal indication information, where the pilot signal indication information is used to indicate a location of a pilot signal sent by the second base station 1402 to the terminal 1403 in a downlink subframe; to the terminal 1403. Send the pilot signal indication information.
  • the second base station 1402 is configured to: when the pilot signal transmission condition is met, the second base station 1402 generates a pilot signal; and send the pilot signal to the terminal 1403;
  • the terminal 1403 is configured to receive pilot signal indication information sent by the first base station 1401, and receive the pilot signal sent by the second base station 1402 according to the pilot signal indication information.
  • embodiments of the present application can be provided as a method, or a computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • a device implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of a flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、基站及系统,包括,第一基站确定导频信号指示信息,其中,导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置;所述第一基站向终端发送所述导频信号指示信息。根据本申请实施例提供的方法,第一基站确定了第二基站发送导频信号的导频信号指示信息之后,将所述导频信号指示信息发送给终端,使得在第二基站与终端未连接或者连接不好的情况下由第一基站辅助终端确认第二基站和终端之间的信道质量,使得终端快速地确定第二基站发送的导频信号所占用的时频资源等信息,提升了终端接收第二基站发送的导频信号的效率与准确性,从而快速获取第二基站与终端之间信道的质量,通过改善信道质量,提高系统吞吐率。

Description

通信方法、基站及系统 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法、基站及系统。
背景技术
在移动通信系统中,由于无线衰落信道时变的特点,使得通信过程存在大量的不确定性。为了确定信道的质量,基站可以向终端发送导频信号,从而使得终端根据接收到的导频信号对下行信道的质量进行测试,得到信道质量指示(Channel Quality Indicator,CQI)并将获得的CQI反馈给基站,从而使得基站确定基站与终端之间信道的质量。
目前,基站发送导频信号之后,终端事先无法确定基站发送的导频信号所占用的时频资源等信息,从而需要经过较长时间才能接收到导频信号,从而需要经过较长时间才能确定基站与终端之间信道的质量,降低了系统效率。
发明内容
本申请实施例提供一种通信方法、基站及系统,用以提高终端确定基站与终端之间信道的质量的效率。
第一方面,本申请实施例提供一种通信方法,包括:
第一基站确定导频信号指示信息,其中,所述导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置;
所述第一基站向所述终端发送所述导频信号指示信息。
根据本申请实施例提供的方法,第一基站确定了第二基站发送导频信号的导频信号指示信息之后,将所述导频信号指示信息发送给终端,可以实现在第二基站与终端未连接或者连接不好的情况下由第一基站辅助终端确认第二基站和终端之间的信道质量,使得终端快速地确定第二基站发送的导频信号所占用的时频资源等信息,提升了终端接收第二基站发送的导频信号的效 率与准确性,从而快速获取第二基站与终端之间信道的质量,通过改善信道质量,提高系统吞吐率。
可选的,所述方法还包括:
所述第一基站接收所述终端发送的导频指示请求消息,所述导频指示请求消息用于请求所述第一基站向所述终端发送所述导频信号指示信息。
可选的,所述方法还包括:
所述第一基站接收所述终端发送的导频信号请求消息,所述导频信号请求消息用于请求所述第一基站指示所述第二基站向所述终端发送所述导频信号。
通过上述方法,第一基站可以在接收到终端发送的导频信号请求消息后,指示第二基站向终端发送导频信号,可以避免终端与第二基站之间由于信道质量差,导致终端与第二基站之间连接不好的情况下,终端无法指示第二终端向其发送导频信号。
可选的,所述导频信号请求消息中包括以下至少一项信息:
小区指示信息,用于指示第二基站在所述小区指示信息指示的小区中发送导频信号;
数据单元指示信息,用于指示第二基站使用所述数据单元指示信息指示的数据单元发送导频信号;
波束指示信息,用于指示第二基站使用所述波束指示信息指示的波束发送导频信号。
通过上述方法,终端可以根据导频信号请求消息中的下至少一项信息确定第二基站发送导频信号所使用的数据单元、波束以及导频信号所处的小区,从而使得终端能够快速地确定第二基站发送的导频信号所占用的时频资源等信息,提升了终端接收第二基站发送的导频信号的效率与准确性,从而通过改终端与第二基站之间善信道质量,提高系统吞吐率。
可选的,所述导频信号指示信息中包括以下至少一项信息:
站点信息,用于向所述终端指示发送所述导频信号的第二基站;
子帧指示信息,用于指示包括所述导频信号的下行子帧位于所述第二基站向所述终端发送的所有下行子帧中的位置;
频域位置指示信息,用于指示所述导频信号在下行子帧中所占频域资源单元的位置;
时域位置指示信息,用于指示所述导频信号在下行子帧中所占时域资源单元的位置;
持续时间指示信息,用于指示所述第二基站发送的第一个包括导频信号的下行子帧至最后一个包括导频信号的下行子帧之间的持续时间之和。
通过导频信号指示信息可以向终端指示出导频信号所处的下行子帧、导频信号在下行子帧中所占频域资源单元的位置、导频信号在下行子帧中所占时域资源单元的位置等信息,从而使得终端能够快速接收到导频信号,从而使得终端能够快速的根据导频信号确定出CQI等信息。
可选的,所述站点信息包括以下至少一项信息:
基站标识信息,用于指示发送导频信号的基站;
小区标识信息,用于指示第二基站发送的导频信号所处的小区;
数据单元标识信息,用于指示第二基站发送导频信号所使用的数据单元;
波束标识信息,用于指示第二基站发送导频信号所使用的波束。
通过上述方法,可以使得终端确定第二基站发送导频信号的小区、数据单元以及波束,从而提高终端接收导频信号的效率。
可选的,所述频域位置指示信息为比特位图;所述比特位图中的一个比特位与所述导频信号所处的下行子帧中的一个频域资源单元唯一对应;
当所述比特位图中的一个比特位的值为预设阈值时,所述比特位的值指示所述导频信号占用所述导频信号所处的下行子帧中与所述比特位所对应的频域资源单元。
可选的,所述导频信号指示信息位于所述导频信号所处的下行子帧中专用的物理层信道中,其中所述专用的物理层信道为所述导频信号所处的下行子帧中的预设资源块。
可选的,所述第一基站确定导频信号指示信息之后,还包括:
所述第一基站通过导频信号通知消息向所述第二基站发送所述导频信号指示信息。
第二方面,本申请实施例提供一种基站,可以执行实现上述第一方面提供的任意一种通信方法。
在一种可能的设计中,该基站包括多个功能模块,用于实现上述第一方面提供的任意一种通信方法,使得在第二基站与终端未连接或者连接不好的情况下由第一基站辅助终端确认第二基站和终端之间的信道质量,使得终端快速地确定第二基站发送的导频信号所占用的时频资源等信息,提升了终端接收第二基站发送的导频信号的效率与准确性,从而快速获取第二基站与终端之间信道的质量,通过改善信道质量,提高系统吞吐率。
在一种可能的设计中,基站的结构中包括处理器和收发机,所述处理器被配置为支持基站执行上述通信方法中相应的功能。所述收发机用于支持基站与终端之间的通信,向终端发送上述通信方法中所涉及的信息或者指令。基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
第三方面,本申请实施例提供一种通信方法,包括:
当导频信号发送条件满足时,第二基站生成导频信号;
所述第二基站向终端发送所述导频信号。
根据本申请实施例提供的方法,第二基站并不是在每个下行子帧中都发送导频信号,而是在确定导频信号发送条件满足时,向终端发送导频信号,从而避免向终端发送的每个下行子帧中都需要包括导频信号,从而减少了发送导频信号所占的资源,提高了资源利用率。
可选的,所述导频信号发送条件为以下条件中的任意一种:
第二基站接收到终端发送的接入请求;
第二基站确定需要向终端发送下行数据;
第二基站接收到终端发送的资源请求;
第二基站接收到第一基站发送的导频信号发送通知消息,所述导频信号发送通知消息用于指示所述第二基站向终端发送导频信号;
第二基站接收到终端发送的导频请求消息。
可选的,所述导频请求消息或者所述导频信号发送通知消息中包括以下至少一项信息:
小区指示信息,用于指示第二基站在所述小区指示信息指示的小区中发送导频信号;
数据单元指示信息,用于指示第二基站使用所述数据单元指示信息指示的数据单元发送导频信号;
波束指示信息,用于指示第二基站使用所述波束指示信息指示的波束发送导频信号。
通过上述方法,可以使得第二基站在终端所指示的小区、数据单元以及波束中发送导频信号,从而提高终端接收导频信号的效率。
可选的,所述方法还包括:
所述第二基站向所述终端发送所述导频信号指示信息,所述导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置。
可选的,所述导频信号指示信息中包括以下至少一项信息:
站点信息,用于向所述终端指示发送所述导频信号的第二基站;
子帧指示信息,用于指示包括所述导频信号的下行子帧位于所述第二基站向所述终端发送的所有下行子帧中的位置;
频域位置指示信息,用于指示所述导频信号在下行子帧中所占频域资源单元的位置;
时域位置指示信息,用于指示所述导频信号在下行子帧中所占时域资源单元的位置;
持续时间指示信息,用于指示所述第二基站发送的第一个包括导频信号的下行子帧至最后一个包括导频信号的下行子帧之间的持续时间之和。
通过导频信号指示信息可以向终端指示出导频信号所处的下行子帧、导 频信号在下行子帧中所占频域资源单元的位置、导频信号在下行子帧中所占时域资源单元的位置等信息,从而使得终端能够快速接收到导频信号,从而使得终端能够快速的根据导频信号确定出CQI等信息。
可选的,当所述导频信号指示信息包括所述站点信息时,所述站点信息包括以下至少一项信息:
基站标识信息,用于指示发送导频信号的基站;
小区标识信息,用于指示第二基站发送的导频信号所处的小区;
数据单元标识信息,用于指示第二基站发送导频信号所使用的数据单元;
波束标识信息,用于指示第二基站发送导频信号所使用的波束。
可选的,当所述导频信号指示信息包括所述频域位置指示信息时,所述频域位置指示信息为比特位图;所述比特位图中的一个比特位与所述导频信号所处的下行子帧中的一个频域资源单元唯一对应;
当所述比特位图中的一个比特位的值为预设阈值时,所述比特位的值指示所述导频信号占用所述导频信号所处的下行子帧中与所述比特位所对应的频域资源单元。
可选的,所述导频信号指示信息位于所述导频信号所处的下行子帧中专用的物理层信道中,其中所述专用的物理层信道为所述导频信号所处的下行子帧中的预设资源块。
可选的,所述方法还包括:
所述第二基站向目标终端发送目标下行子帧,并向目标终端指示出所述目标下行子帧中是否包括所述导频信号;所述目标终端为接入所述第二基站中除所述终端之外的任意一个终端。
可选的,所述第二基站向目标终端指示出所述目标下行子帧中是否包括所述导频信号,包括:
所述第二基站通过向所述目标终端发送所述导频信号指示信息指示出所述目标下行子帧中是否包括所述导频信号;或者
所述第二基站通过对所述目标下行子帧中与目标终端对应的物理下行链 路控制信道或增强物理下行链路控制信道所采用的加扰方式向所述目标终端指示出所述目标下行子帧中是否包括所述导频信号;或者
所述第二基站通过在所述目标下行子帧中与目标终端对应的物理下行链路控制信道或增强物理下行链路控制信道中发送导频信号标志信息向所述目标终端指示出所述目标下行子帧中是否包括所述导频信号;或者
所述第二基站通过在所述目标下行子帧中的公用的物理下行指示信道中发送导频信号标志信息向所述目标终端指示出所述目标下行子帧中是否包括所述导频信号。
第四方面,本申请实施例提供一种基站,可以执行实现上述第三方面提供的任意一种通信方法。
在一种可能的设计中,该基站包括多个功能模块,用于实现上述任意一种通信方法,使得基站在确定导频信号发送条件满足时,向终端发送导频信号,从而避免向终端发送的每个下行子帧中都需要包括导频信号,从而减少了发送导频信号所占的资源,提高了资源利用率。
在一种可能的设计中,该基站的结构中包括处理器和收发机,所述处理器被配置为支持基站执行上述通信方法中相应的功能。所述收发机用于支持基站与终端之间的通信,向终端发送上述通信方法中所涉及的信息或者指令。基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
第五方面,本申请实施例提供一种通信系统,包括:
第一基站,用于确定导频信号指示信息,其中,所述导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置;向所述终端发送所述导频信号指示信息;
第二基站,用于当导频信号发送条件满足时,第二基站生成导频信号;向终端发送所述导频信号;
终端,用于接收所述第一基站发送的导频信号指示信息,并根据所述导频信号指示信息接收所述第二基站发送的所述导频信号。
本申请实施例提供的通信系统中,第一基站可以执行实现上述第一方面提供的任意一种通信方法。相应的,第二基站可以执行实现上述第三方面提供的任意一种通信方法。
第六方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第二方面提供的基站所用的计算机软件指令,其包含用于执行上述第一方面所设计的程序。
第七方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第四方面提供的基站所用的计算机软件指令,其包含用于执行上述第三方面所设计的程序。
附图说明
图1为一种CRAN通信网络示意图;
图2为一种通信网络示意图;
图3为本申请实施例提供的一种基站网络覆盖示意图;
图4为本申请实施例提供的一种通信方法流程示意图;
图5为本申请实施例提供的一种导频信号的图案示意图;
图6为本申请实施例提供的一种导频信号的图案示意图;
图7为本申请实施例提供的一种通信方法示意图;
图8为本申请实施例提供的一种通信方法示意图;
图9为本申请实施例提供的一种通信方法流程示意图;
图10为本申请实施例提供的一种基站结构示意图;
图11为本申请实施例提供的一种基站结构示意图;
图12为本申请实施例提供的一种基站结构示意图;
图13为本申请实施例提供的一种基站结构示意图;
图14为本申请实施例提供的一种通信系统结构示意图。
具体实施方式
本申请实施例适用于4G(第四代移动通信系统)演进系统,如LTE(Long Term Evolution,长期演进)系统,5G(第五代移动通信系统)系统,如采用新型无线接入技术(newo radio access technology,New RAT)的接入网;CRAN(Cloud Radio Access Network,云无线接入网)等通信网络。
本申请实施例中,术语“终端”包括但不限于移动站、固定或移动用户单元、寻呼机、蜂窝电话、个人数字助理(Personal Digital Assistant,PDA)、计算机或任何其它类型的能在无线环境中工作的用户设备(user equipment,UE)。术语“基站”包括但不限于基站、节点、基站控制器、接入点(Access Point,AP)、宏站、微站或小站、高频站、低频站、波束、中继站、基站某一部分功能,CRAN单元或任何其它类型的能够在无线环境中工作的接口设备。同时,“基站”包括但不限于4G系统中的基站、5G系统中的基站。
本申请实施例提供的方案适用于CRAN等网络中。如图1所示,为一种CRAN通信网络示意图。如图1示出,CRAN可划分为CRAN集群110、CRAN集群120和CRAN集群130等多个CRAN集群。每个CRAN集群可服务多个终端。例如,CRAN集群110服务终端111和终端112,而CRAN集群120服务终端121,CRAN集群130服务终端131。每个CRAN集群可划分为一个或多个控制单元(Central Unit,CU),而CU又连接一个或多个数据单元(Data Unit,DU)。CU可连接单个DU或多个DU。一般而言,CRAN集群可具有不同数目的CU、DU等,并服务不同数目的终端。
本申请实施例提供的方案还适用于终端在不同小区间切换的场景中。具体的,如图2所示,终端203从基站201的小区移动到基站202的小区中时,需要通过导频信号快速确定出与基站202之间的信道质量等信息。其中,不同小区间包括但不限于同一基站下的小区、不同基站下的小区等场景。
本申请实施例提供的方案还适用于宏站中覆盖多个微基站的场景。具体的,如图3所示,为本申请实施例提供的一种基站网络覆盖示意图。宏站301 的信号覆盖范围内存在两个微基站,分别为302和303,终端304可以根据实际情况选择接入宏站301、微基站302或者微基站303。其中,宏站包括但不限于4G系统中的宏站、5G系统中的宏站;相应的,微基站包括但不限于4G系统中的微基站、5G系统中的微基站。
本申请实施例中,导频信号可以为用于终端进行信道测量的导频信号;导频信号可以为用于终端进行信道估计的导频信号;导频信号还可以为用于终端进行信道状态测量以及反馈的导频信号,导频信号的具体内容可以参考现有的通信标准中的描述,在此不再赘述。
需要说明的是,本申请实施例中,第一基站和第二基站只是为了区分不同的基站,并不代表对基站的排序等其他含义。
基于上述描述,如图4所示,本申请实施例提供一种通信方法流程示意图,包括:
步骤401,第一基站确定导频信号指示信息,其中,所述导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置;
步骤402,所述第一基站向所述终端发送所述导频信号指示信息。
步骤401中,第一基站确定导频信号指示信息之前,终端可以先向第一基站发送导频指示请求消息,所述导频指示请求消息用于请求所述第一基站向所述终端发送所述导频信号指示信息。所述第一基站接收终端发送的导频指示请求消息之后,从而触发第一基站执行发送导频信号指示信息的步骤。
需要说明的是,本申请实施例中,第一基站可以为宏站,例如eNB(Evolved Node B,演进型基站);第二基站可以为微基站,例如femtocell(飞蜂窝)等。宏基站具有信号覆盖范围广、容量大的特点。但是有些区域内存在遮挡信号的物体(例如高楼),从而导致宏基站的信号无法覆盖该区域,此时可以在该区域布置微基站。微基站具有覆盖范围小、体积小、安装方便等特点,从而可以与宏基站之间形成互补关系。在该场景下,可选的,第二基站为位于第一基站的信号覆盖范围内的基站。当然,第二基站也可以为信号覆盖范围与第一基站的信号覆盖范围存在重叠区域的基站。
本申请实施例中,第一基站确定导频信号指示信息的方式有多种。一种可能的实现方式中,第一基站根据第一基站为第二基站分配的发送导频信号的时频资源等信息确定出导频信号指示信息。在该方式下,第一基站可以自主确定第二基站发送的导频信号在下行子帧中所占频域资源单元的位置、所占时域资源单元的位置,也可以自主确定第二基站发送的包括导频信号的下行子帧位于所述第二基站向所述终端发送的所有下行子帧中的位置等信息,并根据上述信息确定出导频信号指示信息。
可选的,第一基站若根据第一基站为第二基站分配的发送导频信号的时频资源等信息确定出导频信号指示信息,则第一基站还可以将导频信号指示信息发送给第二基站。举例来说,第一基站可以通过向第二基站发送的导频信号发送通知消息发送导频信号指示信息发送给第二基站。所述导频信号发送通知消息用于指示所述第二基站向所述终端发送导频信号。当然,以上只是示例,第一基站还可以通过其他方式向第二基站发送导频信号指示信息,在此不再赘述。
一种可能的实现方式中,第一基站可以接收第二基站发送的导频信号指示信息,从而将接收到的导频信号指示信息转发给终端。
第一基站可以向所述第二基站发送导频信号发送通知消息。第二基站接收到导频信号发送通知消息之后,可以向第一基站发送导频信号指示信息,并向终端发送导频信号。此时,第一基站从而可以确定导频信号指示信息。
可选的,第一基站发送导频信号发送通知消息之前,还可以接受到终端发送的导频信号请求消息,所述导频信号请求消息用于请求所述第一基站指示所述第二基站向所述终端发送所述导频信号。
可选的,导频信号发送通知消息中可以包括以下至少一项信息:
小区指示信息,用于指示第二基站在所述小区指示信息指示的小区中发送导频信号;
数据单元指示信息,用于指示第二基站使用所述数据单元指示信息指示的数据单元发送导频信号;
波束指示信息,用于指示第二基站使用所述波束指示信息指示的波束发送导频信号。
可选的,本申请实施例中,小区指示信息、数据单元指示信息以及波束指示信息可以为终端确定并发送给第一基站的。例如,终端可以根据终端当前所处的位置等信息确定终端接收导频信号的小区、波束、数据单元等信息,并向第一基站发送包括小区指示信息、数据单元指示信息、波束指示信息中的至少一项信息的导频信号请求消息,从而通过将第一基站指示第二基站采用相应的小区、采用相应的波束、数据单元发送导频信号。
需要说明的是,本申请实施例中,数据单元是包含现有基站的部分协议层的实体,比如只包含物理层的部分功能,或者包含全部物理层的功能,或者包含物理层和MAC(Media Access Control,媒体访问控制)层的部分功能。
可选的,本申请实施例中,所述导频信号指示信息中可以包括以下至少一项信息:
站点信息,用于向所述终端指示发送所述导频信号的第二基站;
子帧指示信息,用于指示包括所述导频信号的下行子帧位于所述第二基站向所述终端发送的所有下行子帧中的位置;
频域位置指示信息,用于指示所述导频信号在下行子帧中所占频域资源单元的位置;
时域位置指示信息,用于指示所述导频信号在下行子帧中所占时域资源单元的位置;
持续时间指示信息,用于指示所述第二基站发送的第一个包括导频信号的下行子帧至最后一个包括导频信号的下行子帧之间的持续时间之和。
下面分别描述导频信号指示信息中的每项信息:
一、站点信息
本申请实施例中,所述站点信息可以包括以下至少一项信息:
基站标识信息,用于指示发送导频信号的基站;
小区标识信息,用于指示第二基站发送的导频信号所处的小区;
数据单元标识信息,用于指示第二基站发送导频信号所使用的数据单元;
波束标识信息,用于指示第二基站发送导频信号所使用的波束。
通过站点信息,可以向终端指示出发送导频信号的基站,以及基站发送导频信号所使用的小区、数据单元、波束等信息,从而可以使得终端快速的确定导频信号。
二、子帧指示信息
本申请实施例中,第二基站可能并不在向终端发送的所有下行子帧中均发送导频信号,为此,可以通过子帧指示信息指示出包括所述导频信号的下行子帧位于所述第二基站向所述终端发送的所有下行子帧中的位置。子帧指示信息可以用多个比特位表示,每个比特位与一个下行子帧唯一对应,当一个比特位的取值为预设取值时,可以表示与该比特位对应的下行子帧中包括导频信号;当一个比特位的取值不为预设取值时,可以表示与该比特位对应的下行子帧中不包括导频信号。
需要说明的是,每个比特位与下行子帧的对应关系可以由第二基站与终端预先约定。
举例来说,第二基站确定导频信号发送条件满足时,确定需要向终端发送4帧下行子帧,并确定只需要在前两帧下行子帧中发送导频信号,预设取值为1。此时,子帧指示信息可以为1100,表示第二基站发送的第一帧下行子帧和第二帧下行子帧中包括导频信号、第二基站发送的第三帧下行子帧和第四帧下行子帧中不包括导频信号。当然,子帧指示信息还可以为其他形式,在此不再赘述。
可选的,本申请实施例中,第二基站可以每隔H个下行子帧发送一个包括导频信号的下行子帧,H为自然数。此时,子帧指示信息还可以指示出第二基站发送包括导频信号的下行子帧的周期为H。
通过上述方法,通过子帧指示信息向终端指示出第二基站发送的包括导频信号的所有下行子帧的位置,从而使得终端能够快速的定位包括导频信号的下行子帧,从而获取导频信号,提高信息处理效率。
三、频域位置指示信息以及时域位置指示信息
本申请实施例中,若导频信号在下行子帧中所占频域资源单元的位置为预设的频域资源单元,则导频信号指示信息中可以不包括频域位置指示信息。相应的,若导频信号在下行子帧中所占时域资源单元的位置为预设的时域资源单元,则导频信号指示信息中可以不包括时域位置指示信息。
需要说明是,预设的频域资源单元或预设的时域资源单元是指第二基站与终端预先约定发送导频信号的频域资源单元或时域资源单元。
本申请实施例中,频域位置指示信息以及时域位置指示信息可以有多种实现形式。下面以导频信号在下行子帧中所占时域资源单元的位置为预设的时域资源单元、导频信号在下行子帧中所占频域资源单元的位置不为预设的频域资源单元为例进行描述,导频信号在下行子帧中所占时域资源单元的位置不为预设的时域资源单元的实现方式可以参考下面的描述,在此不再赘述。
一种可能的实现形式中,频域位置指示信息可以为比特位图;比特位图中的一个比特位与所述导频信号所处的下行子帧中的一个频域资源单元唯一对应。当所述比特位图中的一个比特位的值为预设阈值时,所述比特位的值指示所述导频信号占用导频信号所处的下行子帧中与所述比特位所对应的频域资源单元;否则,所述比特位的值指示所述导频信号未占用导频信号所处的下行子帧中与所述比特位所对应的频域资源单元。
需要说明的是,比特位图中每个比特位与频域资源单元的对应关系可以由第二基站与终端预先约定,在此不再赘述。
举例来说,预设阈值为1。此时,比特位图中的一个比特位的值为1时,表示导频信号占用导频信号所处的下行子帧中与所述比特位所对应的频域资源单元;比特位图中的一个比特位的值为0时,表示导频信号未占用下行子帧中与所述比特位所对应的频域资源单元。当然,以上只是示例,预设阈值也可以为0,此时,相应的,比特位的值为1时,表示导频信号未占用下行子帧中与所述比特位所对应的频域资源单元。
相应的,时域位置指示信息也可以为比特位图;该比特位图中的一个比 特位与所述第一下行子帧中的一个时域资源单元唯一对应。当所述比特位图中的一个比特位的值为预设阈值时,所述比特位的值指示所述导频信号占用所述第一下行子帧中与所述比特位所对应的时域资源单元;否则,所述比特位的值指示所述导频信号未占用所述第一下行子帧中与所述比特位所对应的时域资源单元。
需要说明的是,比特位图中每个比特位与时域资源单元的对应关系可以由第二基站与终端预先约定,在此不再赘述。
导频信号在下行子帧中所占频域资源单元以及时域资源单元的位置可以有多种形式,本申请实施例并不限定。例如,导频信号可以在频域上每隔y个频域资源单元占用一个频域资源单元、时域上每隔x个时域资源单元占用一个时域资源单元。再例如,导频信号可以在频域上每隔y个频域资源单元占用一个频域资源单元、时域上在第i至k个时域资源单元占用(i-k+1)个时域资源单元。其中,y、x、i,k均为自然数。
本申请实施例中,一个时域资源单元可以为任意波形符号,包含但不限于一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,以下描述中将任意波形符号简称为符号;一个频域资源单元可以为一个子载波。
举例来说,如图5所示,为本申请实施例提供的一种导频信号的图案示意图。图5中,一个下行子帧中,导频信号在频域上每隔6个频域资源单元占用一个频域资源单元、时域上在第1个时域资源单元上占用一个时域资源单元。
本申请实施例中,导频信号可以占用整个系统带宽,也可以只占用部分系统带宽。导频信号占用部分系统带宽时,可以减少导频信号的密度,从而减少占用的资源块,从而提高资源利用率。具体的,可以将整个系统带宽按 照频率划分为Q个频带,导频信号占据的资源块只位于其中的E个频带中,从而减少导频信号的密度。其中,Q大于2,E小于Q。
举例来说,如图6所示,为本申请实施例提供的一种导频信号的图案示意图。图6中,整个系统带宽按照频率划分为3个频带,导频信号占据的资源块只位于其中的1个频带中。
四、持续时间指示信息
本申请实施例中,第二基站可能向终端发送至少一个包括导频信号的下行子帧,因此可以通过持续时间指示信息使得终端在持续时间指示信息指示的时间长度内接收第二基站发送的导频信号。
最后,在步骤402中,第一基站向终端发送确定出的导频信号指示信息。
可选的,导频信号指示信息可以位于所述导频信号所处的下行子帧中专用的物理层信道中,其中所述专用的物理层信道为所述导频信号所处的下行子帧中的预设资源块。导频信号指示信息还可以位于所述导频信号所处的下行子帧中已有的物理层信道中,例如,PDCCH(Physical Downlink Control Channel,物理下行链路控制信道),ePDCCH(enhanced Physical Downlink Control Channel,增强物理下行链路控制信道)等信道。
可选的,本申请实施例中,第一基站还可以通过MAC层消息或者RRC(Radio Resource Control,无线资源控制)信令向终端发送导频信号指示信息。
第一基站若通过MAC层消息向终端发送导频信号指示信息,包括导频信号指示信息的MAC层消息可以为已有的MAC层消息,也可以为新建的专门用于发送导频信号指示信息的MAC层消息。
相应的,第一基站若通过RRC信令向终端发送导频信号指示信息,包括导频信号指示信息的RRC信令可以为已有的RRC信令,也可以为新建的专门用于发送导频信号指示信息的RRC信令。
可选的,所述第一基站还可以通过导频信号通知消息向所述第二基站发送所述导频信号指示信息。所述导频信号通知消息还可以用于指示所述第二基站向终端发送导频信号。
本申请实施例中,导频信号通知消息和导频信号发送通知消息可以为相同的消息,此时导频信号通知消息或者导频信号发送通知消息可以指示第二基站向终端发送导频信号的同时,向所述第二基站发送所述导频信号指示信息。导频信号通知消息和导频信号发送通知消息也可以为不同的两条消息,具体可以根据实际情况确定,在此不再赘述。
可选的,终端在接收到第二基站发送的导频信号后,向第一基站发送导频信号调整请求消息,所述导频信号调整请求消息用于指示所述第一基站通知所述第二基站调整发送导频信号的频率。第一基站接收到终端发送的导频信号调整请求信息后,可以向第二基站发送导频信号调整指示消息,所述导频信号调整指示消息用于指示所述第二基站调整发送导频信号的频率。导频信号调整指示消息可以指示第二基站增加发送导频信号的频率,也可以指示第二基站减少发送导频信号调整指示消息的频率。具体地可以通过改变导频信号指示信息中的子帧指示信息,频域位置指示信息以及时域位置指示信息,持续时间指示信息中的一个或者多个来改变,也可以通过物理层信道,MAC层或者RRC层消息来直接指示,具体可以根据实际情况确定,在此不再赘述。
下面通过具体的实施例描述图4所示的过程。
如图7所示,为本申请实施例提供的一种通信方法示意图。
步骤701:终端向第一基站发送导频信号请求消息。
所述导频信号请求消息用于请求所述第一基站指示所述第二基站向所述终端发送所述导频信号。
可选的,步骤702:第一基站向第二基站发送导频信号发送通知消息。
所述导频信号发送通知消息用于指示所述第二基站向所述终端发送导频信号。
另外,这个步骤是可选的。当导频信号指示信息由第一基站生成,导频信号发送通知消息用于向所述第二基站发送导频信号指示信息时;当第二基站已经在发送导频信号,并将导频信号指示信息通知第一基站。第一基站收到第二基站发送的导频信号指示信息后才确定给终端发送的导频信号指示信 息时,步骤702可以省略。
步骤703:第一基站向所述终端发送所述导频信号指示信息。
步骤704:第二基站向终端发送导频信号。
如图8所示,为本申请实施例提供的一种通信方法示意图。
步骤801:第二基站在第二基站的信号覆盖范围内广播导频信号。
步骤802:终端向第一基站发送导频信号请求消息。
步骤803:第一基站向所述终端发送所述导频信号指示信息。
步骤804:终端根据所述导频信号指示信息接收导频信号,并向第一基站发送导频信号调整请求消息。
步骤805:第一基站向第二基站发送导频信号调整指示消息。
步骤806:第二基站根据导频信号调整指示消息调整发送导频信号的频率。
所述导频信号调整指示消息用于指示所述第二基站调整发送导频信号的频率。
基站会在周期性的广播消息中发送导频信号;或者在向终端分配资源的下行子帧中发送导频信号等。例如,在时分长期演进(Time Division Long Term Evolution,TD-LTE)系统中,小区参考信号(Cell-Specific Reference Singals,CRS)是一种重要的导频信号,终端可以根据CRS进行信道估计等操作。CRS在频域上每隔六个子载波占用一个资源元素(resource element,RE)、时域上每隔二至四个符号出现一次。在单天线情况下,CRS在每个资源块(resource block,RB)中占用4个资源元素,而且CRS是跨整个系统带宽的。根据基站的发射天线数量不同,一个下行子帧中CRS所占的资源比例在4.8%-14.3%之间,占用信道的资源非常多,信道的资源利用率低,为此需要提供一种减少发送导频信号所造成的开销的方法。
基于上述描述,如图9所示,本申请实施例提供一种通信方法流程示意图,包括:
步骤901,当导频信号发送条件满足时,第二基站生成导频信号。
其中,第二基站的相关描述可以参考前面的描述,在此不再赘述。
步骤902,所述第二基站向终端发送所述导频信号。
步骤901中,第二基站可以在多种情况下确定满足导频信号发送条件,下面分别详细描述。
第一种可能的条件为:第二基站接收到终端发送的接入请求。
终端在需要发送上行数据时,需要先通过随机接入(Random Access)过程与第二基站建立连接。终端在进行随机接入过程中,需要向第二基站发送接入请求,第二基站接收到终端发送的接入请求后,从而确定满足导频信号发送条件。
举例来说,终端向第二基站发送的接入请求为前导码(Preamble),第二基站在接收到终端发送的前导码之后,从而确定需要向终端发送导频信号,导频信号可以用于终端对第二基站与终端之间的信道质量进行估计。
第二种可能的条件为:第二基站确定需要向终端发送下行数据。例如,第二基站接收到其他基站或其他终端向所述终端发送的下行数据,或者需要直接向终端发送下行数据。
第三种可能的条件为:第二基站接收到终端发送的资源请求。
第二基站接收到终端发送的资源请求可以为调度请求(Schedule Request,SR),也可以为缓冲区状态报告(Buffer Status Reports,BSR)等用于请求上行资源的消息。
第四种可能的条件为:第二基站接收到第一基站发送的导频信号发送通知消息。导频信号发送通知消息的具体内容可以参考前面的描述,在此不再赘述。
第五种可能的条件为:第二基站接收到终端发送的导频请求消息,所述导频请求消息用于请求所述第二基站向终端发送导频信号。比如当终端检测到第二基站的信号在变差时,终端为了更加确定第二基站的信号变化情况,向第二基站发送导频请求消息,请求第二基站发送更多的导频信号,从而可以根据导频信号判断第二基站的信号质量。
可选的,所述导频请求消息中包括以下至少一项信息:
小区指示信息,用于指示第二基站在所述小区指示信息指示的小区中发送导频信号;
数据单元指示信息,用于指示第二基站使用所述数据单元指示信息指示的数据单元发送导频信号;
波束指示信息,用于指示第二基站使用所述波束指示信息指示的波束发送导频信号。
当然,上面的条件只是示例,导频信号发送条件还可以有其他形式,在此不再赘述。
本申请实施例中,第二基站确定导频信号发送条件满足时,还可以执行为终端分配上行资源等操作。终端可以通过第二基站分配的上行资源上报终端的序列号,或者,通过第二基站分配的上行资源向第二基站发送根据导频信号确定的CQI等信息。需要说明是,终端如何根据导频信号确定CQI为现有技术,具体可以参考现有通信标准中的规定,本申请实施例在此不再赘述。
可选的,本申请实施例中,第二基站还可以向终端发送导频信号指示信息。第二基站向终端发送的导频信号指示信息中所包括的内容,以及第二终端发送导频信号指示信息的具体方式,可以参考前面的描述,在此不再赘述。
步骤902中,第二基站还可以向目标终端发送目标下行子帧,并向目标终端指示出所述目标下行子帧中是否包括所述导频信号;所述目标终端为接入所述第二基站中除所述终端之外的任意一个终端。目标下行子帧为第二基站向目标终端发送的任意一个下行子帧。
第二基站可以通过多种方式向目标终端指示出所述目标下行子帧中是否包括所述导频信号。一种可能的实现方式中,所述第二基站可以通过向所述目标终端发送所述导频信号指示信息指示出所述目标下行子帧中是否包括所述导频信号。第二基站向目标终端发送导频信号指示信息的具体实现方式可以参考前面的描述,在此不再赘述。
一种可能的实现方式中,所述第二基站通过对所述目标下行子帧中与目 标终端对应的物理下行链路控制信道或增强物理下行链路控制信道所采用的加扰方式向所述目标终端指示出所述目标下行子帧中是否包括所述导频信号。举例来说,第二基站与终端预先约定了目标下行子帧采用的加扰方式与目标下行子帧中是否包括导频信号的映射关系,例如当第二基站通过第一RNTI(Radio Network Tempory Identity,无线网络临时标识)加扰目标下行子帧时,表示目标下行子帧中包含了导频信号,当通过第二RNTI方式加扰目标下行子帧时,表示目标下行子帧中没有包含导频信号。其中,第一RNTI与第二RNTI不同。当然,以上只是示例,第二基站所采用的加扰方式还可以有其他形式,在此不再赘述。
一种可能的实现方式中,所述第二基站通过在所述目标下行子帧中与目标终端对应的物理下行链路控制信道或增强物理下行链路控制信道中发送导频信号标志信息,向所述目标终端指示出所述目标下行子帧中是否包括所述导频信号。举例来说,导频信号标志信息占用1比特,当导频信号标志信息占用的比特为1时,表示目标下行子帧中包含了导频信号;当导频信号标志信息占用的比特为0时,表示目标下行子帧中没有包含导频信号。当然,以上只是示例,导频信号标志信息还可以有其他形式,在此不再赘述。
一种可能的实现方式中,所述第二基站通过在所述目标下行子帧中的公用的物理下行指示信道中发送导频信号标志信息,向所述目标终端指示出所述目标下行子帧中是否包括所述导频信号。
可选的,本申请实施例中,导频信号通知消息和导频信号发送通知消息可以为相同的消息,此时导频信号通知消息或者导频信号发送通知消息可以指示第二基站向终端发送导频信号的同时向所述第二基站发送所述导频信号指示信息。,导频信号通知消息和导频信号发送通知消息也可以为不同的两条消息,具体可以根据实际情况确定,在此不再赘述。
根据本申请实施例提供的方法,第二基站并不是在每个下行子帧中都发送导频信号,而是在确定导频信号发送条件满足时,向终端发送导频信号,从而避免向终端发送的每个下行子帧中都需要包括导频信号,从而减少了发 送导频信号所占的资源,提高了资源利用率。
基于相同构思,本发明实施例中提供一种基站,可以用于执行上述方法流程。
如图10所示,为本申请实施例提供的一种基站结构示意图。
参见图10,该基站包括:
处理单元1001,用于确定导频信号指示信息,其中,所述导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置;
收发单元1002,用于向所述终端发送所述导频信号指示信息。
可选的,所述收发单元1002还用于:
接收所述终端发送的导频指示请求消息,所述导频指示请求消息用于请求所述基站向所述终端发送所述导频信号指示信息。
可选的,所述收发单元1002还用于:
接收所述终端发送的导频信号请求消息,所述导频信号请求消息用于请求所述基站指示所述第二基站向所述终端发送所述导频信号。
可选的,所述导频信号请求消息中包括以下至少一项信息:
小区指示信息,用于指示第二基站在所述小区指示信息指示的小区中发送导频信号;
数据单元指示信息,用于指示第二基站使用所述数据单元指示信息指示的数据单元发送导频信号;
波束指示信息,用于指示第二基站使用所述波束指示信息指示的波束发送导频信号。
可选的,所述导频信号指示信息中包括以下至少一项信息:
站点信息,用于向所述终端指示发送所述导频信号的第二基站;
子帧指示信息,用于指示包括所述导频信号的下行子帧位于所述第二基站向所述终端发送的所有下行子帧中的位置;
频域位置指示信息,用于指示所述导频信号在下行子帧中所占频域资源单元的位置;
时域位置指示信息,用于指示所述导频信号在下行子帧中所占时域资源单元的位置;
持续时间指示信息,用于指示所述第二基站发送的第一个包括导频信号的下行子帧至最后一个包括导频信号的下行子帧之间的持续时间之和。
可选的,所述站点信息包括以下至少一项信息:
基站标识信息,用于指示发送导频信号的基站;
小区标识信息,用于指示第二基站发送的导频信号所处的小区;
数据单元标识信息,用于指示第二基站发送导频信号所使用的数据单元;
波束标识信息,用于指示第二基站发送导频信号所使用的波束。
可选的,所述频域位置指示信息为比特位图;所述比特位图中的一个比特位与所述导频信号所处的下行子帧中的一个频域资源单元唯一对应;
当所述比特位图中的一个比特位的值为预设阈值时,所述比特位的值指示所述导频信号占用所述导频信号所处的下行子帧中与所述比特位所对应的频域资源单元。
可选的,所述导频信号指示信息位于所述导频信号所处的下行子帧中专用的物理层信道中,其中所述专用的物理层信道为所述导频信号所处的下行子帧中的预设资源块。
可选的,所述收发单元1002还用于:
通过导频信号通知消息向所述第二基站发送所述导频信号指示信息。
根据本申请实施例提供的基站,确定了第二基站发送导频信号的导频信号指示信息之后,将所述导频信号指示信息发送给终端,可以实现在第二基站与终端未连接或者连接不好的情况下由第一基站辅助终端确认第二基站和终端之间的信道质量,使得终端快速地确定第二基站发送的导频信号所占用的时频资源等信息,提升了终端接收第二基站发送的导频信号的效率与准确性,从而快速获取第二基站与终端之间信道的质量,通过改善信道质量,提高系统吞吐率。
基于相同构思,本发明实施例中提供一种基站,可以用于执行上述方法 流程。
如图11所示,为本申请实施例提供的一种基站结构示意图。
参见图11,该基站包括:处理器1101、存储器1102和收发机1103。
存储器1102可以用来存储程序。
处理器1101从所述存储器1102中读取所述程序对应的指令,执行如下操作:
确定导频信号指示信息,其中,所述导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置;
收发机1103,用于向所述终端发送所述导频信号指示信息。
可选的,所述收发机1103还用于:
接收所述终端发送的导频指示请求消息,所述导频指示请求消息用于请求所述基站向所述终端发送所述导频信号指示信息。
可选的,所述收发机1103还用于:
接收所述终端发送的导频信号请求消息,所述导频信号请求消息用于请求所述基站指示所述第二基站向所述终端发送所述导频信号。
可选的,所述导频信号请求消息中包括以下至少一项信息:
小区指示信息;
数据单元指示信息;
波束指示信息。
关于上述导频信号请求消息中包括的内容的具体描述可以参照本申请实施例中前面的相关内容,在此不做赘述。
可选的,所述导频信号指示信息中包括以下至少一项信息:
站点信息;
子帧指示信息;
频域位置指示信息;
时域位置指示信息;
持续时间指示信息。
关于上述各类导频信号指示信息的具体描述可以参照本申请实施例中前面的相关内容,在此不做赘述。
可选的,所述站点信息包括以下至少一项信息:
基站标识信息;
小区标识信息;
数据单元标识信息;
波束标识信息。
关于上述各类站点信息的具体描述可以参照本申请实施例中前面的相关内容,在此不做赘述。
可选的,所述收发机1103还用于:
通过导频信号通知消息向所述第二基站发送所述导频信号指示信息。
关于该基站内装置或器件的功能的详细描述可以参照本申请其他实施例的相关内容,在此不做赘述。
基于相同构思,本发明实施例中提供一种基站,可以用于执行上述方法流程。
如图12所示,为本申请实施例提供的一种基站结构示意图。
参见图12,该基站包括:
处理单元1201,用于当导频信号发送条件满足时,生成导频信号;
收发单元1202,用于向终端发送所述导频信号。
可选的,所述收发单元1202还用于:
向目标终端发送目标下行子帧,并向目标终端指示出所述目标下行子帧中是否包括所述导频信号;所述目标终端为接入所述第二基站中除所述终端之外的任意一个终端。
可选的,所述处理单元1201还用于:
通过向所述目标终端发送所述导频信号指示信息指示出所述目标下行子帧中是否包括所述导频信号;或者
通过对所述目标下行子帧中与目标终端对应的物理下行链路控制信道或 增强物理下行链路控制信道所采用的加扰方式向所述目标终端指示出所述目标下行子帧中是否包括所述导频信号;或者
通过在所述目标下行子帧中与目标终端对应的物理下行链路控制信道或增强物理下行链路控制信道中发送导频信号标志信息向所述目标终端指示出所述目标下行子帧中是否包括所述导频信号;或者
通过在所述目标下行子帧中的公用的物理下行指示信道中发送导频信号标志信息向所述目标终端指示出所述目标下行子帧中是否包括所述导频信号。
基于相同构思,本发明实施例中提供一种基站。
如图13所示,为本申请实施例提供的一种基站结构示意图。
参见图13,该终端包括:处理器1301、存储器1302和收发机1303。
存储器1302可以用来存储程序。
处理器1301从所述存储器1302中读取所述程序对应的指令,执行如下操作:
当导频信号发送条件满足时,生成导频信号;
所述收发机1303,用于向终端发送所述导频信号。
在一种可能的设计中,该基站包括多个功能模块,用于实现上述任意一种通信方法,使得基站在确定导频信号发送条件满足时,向终端发送导频信号,从而避免向终端发送的每个下行子帧中都需要包括导频信号,从而减少了发送导频信号所占的资源,提高了资源利用率。。
在一种可能的设计中,基站的结构中包括处理器和收发机,所述处理器被配置为支持基站执行上述通信方法中相应的功能。所述收发机用于支持基站与终端之间的通信,向终端发送上述通信方法中所涉及的信息或者指令。基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
关于该基站内装置或器件的功能的详细描述可以参照本申请其他实施例的相关内容,在此不做赘述。
根据本申请实施例提供的基站,并不是在每个下行子帧中都发送导频信号,而是在确定导频信号发送条件满足时,向终端发送导频信号,从而避免向终端发送的每个下行子帧中都需要包括导频信号,从而减少了发送导频信号所占的资源,提高了资源利用率。
本申请实施例中,收发机可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网通信接口,蜂窝网络通信接口或其组合。处理器可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。存储器可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器还可以包括上述种类的存储器的组合。
本申请实施例中,图11以及图13中还可以包括总线,总线可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,本申请不再对其进行进一步描述。收发机提供用于在传输介质上与各种其他设备通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所 使用的数据。
结合前面的描述,本申请实施例提供一种通信系统。如图14所示,为本申请实施例提供的一种通信系统结构示意图。
参见图14,该通信系统,包括:
第一基站1401,用于确定导频信号指示信息,其中,所述导频信号指示信息用于指示第二基站1402向终端1403发送的导频信号在下行子帧中的位置;向所述终端1403发送所述导频信号指示信息;
第二基站1402,用于当导频信号发送条件满足时,第二基站1402生成导频信号;向终端1403发送所述导频信号;
终端1403,用于接收所述第一基站1401发送的导频信号指示信息,并根据所述导频信号指示信息接收所述第二基站1402发送的所述导频信号。
关于该通信系统内装置或器件的功能的详细描述可以参照本申请其他实施例的相关内容,在此不做赘述。
本所属领域的技术人员可以清楚地了解到,本发明提供的各实施例的描述可以相互参照,为描述的方便和简洁,关于本发明实施例提供的各装置、设备的功能以及执行的步骤可以参照本发明方法实施例的相关描述,在此不做赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包括有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的设备。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令设备的制造品,该指令设备实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (17)

  1. 一种通信方法,其特征在于,包括:
    第一基站确定导频信号指示信息,其中,所述导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置;
    所述第一基站向所述终端发送所述导频信号指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一基站接收所述终端发送的导频信号请求消息,所述导频信号请求消息用于请求所述第一基站指示所述第二基站向所述终端发送所述导频信号。
  3. 根据权利要求2所述的方法,其特征在于,所述导频信号请求消息中包括以下至少一项信息:
    小区指示信息,用于指示第二基站在所述小区指示信息指示的小区中发送导频信号;
    数据单元指示信息,用于指示第二基站使用所述数据单元指示信息指示的数据单元发送导频信号;
    波束指示信息,用于指示第二基站使用所述波束指示信息指示的波束发送导频信号。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述导频信号指示信息中包括以下至少一项信息:
    站点信息,用于向所述终端指示发送所述导频信号的第二基站;
    子帧指示信息,用于指示包括所述导频信号的下行子帧位于所述第二基站向所述终端发送的所有下行子帧中的位置;
    频域位置指示信息,用于指示所述导频信号在下行子帧中所占频域资源单元的位置;
    时域位置指示信息,用于指示所述导频信号在下行子帧中所占时域资源单元的位置;
    持续时间指示信息,用于指示所述第二基站发送的第一个包括导频信号的下行子帧至最后一个包括导频信号的下行子帧之间的持续时间之和。
  5. 根据权利要求4所述的方法,其特征在于,当所述导频信号指示信息包括所述站点信息时,所述站点信息包括以下至少一项信息:
    基站标识信息,用于指示发送导频信号的基站;
    小区标识信息,用于指示第二基站发送的导频信号所处的小区;
    数据单元标识信息,用于指示第二基站发送导频信号所使用的数据单元;
    波束标识信息,用于指示第二基站发送导频信号所使用的波束。
  6. 根据权利要求4所述的方法,其特征在于,当所述导频信号指示信息包括所述频域位置指示信息时,所述频域位置指示信息为比特位图;所述比特位图中的一个比特位与所述导频信号所处的下行子帧中的一个频域资源单元唯一对应;
    当所述比特位图中的一个比特位的值为预设阈值时,所述比特位的值指示所述导频信号占用所述导频信号所处的下行子帧中与所述比特位所对应的频域资源单元。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述导频信号指示信息位于所述导频信号所处的下行子帧中专用的物理层信道中,其中所述专用的物理层信道为所述导频信号所处的下行子帧中的预设资源块。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述第一基站确定导频信号指示信息之后,还包括:
    所述第一基站通过导频信号通知消息向所述第二基站发送所述导频信号指示信息,或者指示所述第二基站向终端发送导频信号。
  9. 一种基站,其特征在于,包括:
    处理单元,用于确定导频信号指示信息,其中,所述导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置;
    收发单元,用于向所述终端发送所述导频信号指示信息。
  10. 根据权利要求9所述的基站,其特征在于,所述收发单元还用于:
    接收所述终端发送的导频信号请求消息,所述导频信号请求消息用于请求所述基站指示所述第二基站向所述终端发送所述导频信号。
  11. 根据权利要求9或10所述的基站,其特征在于,所述导频信号请求消息中包括以下至少一项信息:
    小区指示信息,用于指示第二基站在所述小区指示信息指示的小区中发送导频信号;
    数据单元指示信息,用于指示第二基站使用所述数据单元指示信息指示的数据单元发送导频信号;
    波束指示信息,用于指示第二基站使用所述波束指示信息指示的波束发送导频信号。
  12. 根据权利要求9至11任一所述的基站,其特征在于,所述导频信号指示信息中包括以下至少一项信息:
    站点信息,用于向所述终端指示发送所述导频信号的第二基站;
    子帧指示信息,用于指示包括所述导频信号的下行子帧位于所述第二基站向所述终端发送的所有下行子帧中的位置;
    频域位置指示信息,用于指示所述导频信号在下行子帧中所占频域资源单元的位置;
    时域位置指示信息,用于指示所述导频信号在下行子帧中所占时域资源单元的位置;
    持续时间指示信息,用于指示所述第二基站发送的第一个包括导频信号的下行子帧至最后一个包括导频信号的下行子帧之间的持续时间之和。
  13. 根据权利要求12所述的基站,其特征在于,当所述导频信号指示信息包括所述站点信息时,所述站点信息包括以下至少一项信息:
    基站标识信息,用于指示发送导频信号的基站;
    小区标识信息,用于指示第二基站发送的导频信号所处的小区;
    数据单元标识信息,用于指示第二基站发送导频信号所使用的数据单元;
    波束标识信息,用于指示第二基站发送导频信号所使用的波束。
  14. 根据权利要求12所述的基站,其特征在于,当所述导频信号指示信息包括所述频域位置指示信息时,所述频域位置指示信息为比特位图;所述比特位图中的一个比特位与所述导频信号所处的下行子帧中的一个频域资源单元唯一对应;
    当所述比特位图中的一个比特位的值为预设阈值时,所述比特位的值指示所述导频信号占用所述导频信号所处的下行子帧中与所述比特位所对应的频域资源单元。
  15. 根据权利要求9至14任一所述的基站,其特征在于,所述导频信号指示信息位于所述导频信号所处的下行子帧中专用的物理层信道中,其中所述专用的物理层信道为所述导频信号所处的下行子帧中的预设资源块。
  16. 根据权利要求9至15任一所述的基站,其特征在于,所述收发单元还用于:
    通过导频信号通知消息向所述第二基站发送所述导频信号指示信息。
  17. 一种通信系统,其特征在于,包括:
    第一基站,用于确定导频信号指示信息,其中,所述导频信号指示信息用于指示第二基站向终端发送的导频信号在下行子帧中的位置;向所述终端发送所述导频信号指示信息;
    第二基站,用于当导频信号发送条件满足时,第二基站生成导频信号;向终端发送所述导频信号;
    终端,用于接收所述第一基站发送的导频信号指示信息,并根据所述导频信号指示信息接收所述第二基站发送的所述导频信号。
PCT/CN2016/094978 2016-08-12 2016-08-12 通信方法、基站及系统 WO2018027943A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680087527.XA CN109479265B (zh) 2016-08-12 2016-08-12 通信方法、基站及系统
PCT/CN2016/094978 WO2018027943A1 (zh) 2016-08-12 2016-08-12 通信方法、基站及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094978 WO2018027943A1 (zh) 2016-08-12 2016-08-12 通信方法、基站及系统

Publications (1)

Publication Number Publication Date
WO2018027943A1 true WO2018027943A1 (zh) 2018-02-15

Family

ID=61161546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094978 WO2018027943A1 (zh) 2016-08-12 2016-08-12 通信方法、基站及系统

Country Status (2)

Country Link
CN (1) CN109479265B (zh)
WO (1) WO2018027943A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111988774B (zh) * 2019-05-24 2023-07-07 阿里巴巴集团控股有限公司 一种通信网络中信标帧的通信方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286762A (zh) * 2007-04-10 2008-10-15 华为技术有限公司 一种发送sounding导频的方法及发送装置
CN101882942A (zh) * 2009-05-07 2010-11-10 中国移动通信集团公司 上行导频信号的发送/接收方法、移动通信终端及基站
CN102546113A (zh) * 2012-01-19 2012-07-04 新邮通信设备有限公司 一种lte的信道测量及反馈方法
WO2013037842A1 (en) * 2011-09-13 2013-03-21 Koninklijke Kpn N.V. Session setup in an energy-efficient cellular wireless telecommunications system
US20150180627A1 (en) * 2013-01-17 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) Resource scheduling for downlink transmissions
CN105072061A (zh) * 2015-07-03 2015-11-18 魅族科技(中国)有限公司 无线局域网通信方法和设备
CN105191467A (zh) * 2013-03-14 2015-12-23 高通股份有限公司 用于分配资源以用于由小型基站或ue装置发射导频信号的方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348602B (zh) * 2013-08-09 2019-06-18 北京三星通信技术研究有限公司 一种混合双工通信方法、基站及终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286762A (zh) * 2007-04-10 2008-10-15 华为技术有限公司 一种发送sounding导频的方法及发送装置
CN101882942A (zh) * 2009-05-07 2010-11-10 中国移动通信集团公司 上行导频信号的发送/接收方法、移动通信终端及基站
WO2013037842A1 (en) * 2011-09-13 2013-03-21 Koninklijke Kpn N.V. Session setup in an energy-efficient cellular wireless telecommunications system
CN102546113A (zh) * 2012-01-19 2012-07-04 新邮通信设备有限公司 一种lte的信道测量及反馈方法
US20150180627A1 (en) * 2013-01-17 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) Resource scheduling for downlink transmissions
CN105191467A (zh) * 2013-03-14 2015-12-23 高通股份有限公司 用于分配资源以用于由小型基站或ue装置发射导频信号的方法和设备
CN105072061A (zh) * 2015-07-03 2015-11-18 魅族科技(中国)有限公司 无线局域网通信方法和设备

Also Published As

Publication number Publication date
CN109479265A (zh) 2019-03-15
CN109479265B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
EP3860024B1 (en) Methods executed by user equipment and user equipment
US11812475B2 (en) Wireless resource allocation method and apparatus
US11606706B2 (en) Cell measurement in communication systems, related configuration and devices
TWI727042B (zh) 終端、無線基地台及無線通訊方法
US10972924B2 (en) Beam-based multi-connection communication method, terminal device, and network device
WO2021128931A1 (zh) 跨载波调度方法、装置及存储介质
CN101959171B (zh) 一种邻区配置信息更新方法及系统
JP6911132B2 (ja) 拡張マルチメディアブロードキャストマルチキャストサービスを用いてユーザ機器のキャリアアグリゲーション設定を制御すること
JP2020506633A (ja) ワイヤレス通信におけるデータ送信のための制御リソース再利用
ES2961694T3 (es) Método para el procesamiento de datos sobre la base de segmento de red
JP6126576B2 (ja) 無線通信装置、無線通信端末、参照信号送信制御方法及び参照信号処理方法
CN109150445B (zh) 一种下行控制信息发送与接收方法及设备
JP2020511904A (ja) チャネル送信方法およびネットワークデバイス
US20230040978A1 (en) Communication method and apparatus
JPWO2018030415A1 (ja) ユーザ端末及び無線通信方法
JP6679733B2 (ja) ワイヤレス通信の方法およびシステム、ならびにデバイス
WO2019061422A1 (en) TECHNIQUES FOR ROUTING RESOURCE ALLOCATION INFORMATION
WO2019130571A1 (ja) ユーザ端末及び無線通信方法
US11044701B2 (en) Communication method and communication apparatus
WO2019035213A1 (ja) ユーザ端末及び無線通信方法
KR20220151606A (ko) 사이드링크 구성을 위한 시스템 및 방법
WO2019049279A1 (ja) ユーザ端末及び無線通信方法
WO2019030928A1 (ja) ユーザ端末及び無線通信方法
WO2018027943A1 (zh) 通信方法、基站及系统
WO2019061504A1 (en) RESOURCE ALLOCATION INDICATION TECHNIQUES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912398

Country of ref document: EP

Kind code of ref document: A1