WO2019061422A1 - Techniques for forwarding resource allocation - Google Patents

Techniques for forwarding resource allocation Download PDF

Info

Publication number
WO2019061422A1
WO2019061422A1 PCT/CN2017/104836 CN2017104836W WO2019061422A1 WO 2019061422 A1 WO2019061422 A1 WO 2019061422A1 CN 2017104836 W CN2017104836 W CN 2017104836W WO 2019061422 A1 WO2019061422 A1 WO 2019061422A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
mobile station
message
pssch
pscch
Prior art date
Application number
PCT/CN2017/104836
Other languages
French (fr)
Inventor
Jin Yang
Youxiong Lu
Weimin XING
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN201780093716.2A priority Critical patent/CN111034315B/en
Priority to PCT/CN2017/104836 priority patent/WO2019061422A1/en
Publication of WO2019061422A1 publication Critical patent/WO2019061422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This patent document is directed generally to digital wireless communications.
  • This document discloses methods, systems, and devices related to digital wireless communication, and more specifically, to forwarding resource allocation information for transmissions between mobile stations.
  • a method for wireless communication includes receiving, by a first mobile station, a first control message that includes information about resource allocations for communications between the first mobile station and a second mobile station; and transmitting, by the first mobile station, a second control message to the second mobile station, the second control message comprising a subset of the information from the first control message that is indicative of the resource allocation for the communications between the first mobile station and the second mobile station.
  • the information included in the first control message comprises a first indicator to indicate a first resource for the first mobile station to transmit control information to the second mobile station.
  • the first resource is a physical Sidelink control channel (PSCCH) resource.
  • PSCCH physical Sidelink control channel
  • the information included in the first control message further indicates one or more resources allocated for the communications between the first mobile station and the second mobile station.
  • the one or more resources include at least one of: a physical Sidelink shared channel (PSSCH) resource allocated for the second mobile station to receive data, a PSCCH resource allocated for the second mobile station to transmit control information, or a PSSCH resource allocated to the second mobile station to transmit data.
  • PSSCH physical Sidelink shared channel
  • the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on the first resource.
  • the first resource to transmit control information or the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on a resource used for transmitting the first control message.
  • the subset of the information from the first control message includes a second indicator that indicates a second resource for the second mobile station to transmit data.
  • the second resource is a physical Sidelink shared channel (PSSCH) resource.
  • PSSCH physical Sidelink shared channel
  • the subset of the information further indicates one or more resources allocated for the second mobile station to perform communications.
  • the one or more transmission resources includes at least one of: a physicalSidelink shared channel (PSSCH) resource allocated for the second mobile station to receive data, or a PSCCH resource allocated for the second mobile station to transmit control information.
  • the second indicator also indicates the one or more resources allocated for the second mobile station to perform communications.
  • a method for wireless communication includes receiving, by a first mobile station, a first control message that includes information about resource allocations for a second mobile station; and transmitting, by the first mobile station, a second control message that comprises the information from the first control message.
  • the information includes one or more indicators that indicate one or more resources allocated for the second mobile station, wherein the one or more resources include at least one of: a PSSCH resource allocated for the second mobile station to transmit data, or a PSCCH resource allocated for the second mobile station to transmit control information.
  • the one or more resources has a predetermined association with a resource used for transmitting the first control message.
  • the one or more resources are allocated based on a resource used for transmitting the second control message.
  • a wireless communications apparatus comprising a processor.
  • the processor is configured to implement a method described herein.
  • the various techniques described herein may be embodied as processor-executable code and stored on a computer-readable program medium.
  • FIG. 1 shows a schematic diagram of an exemplary configuration for Sidelink communication.
  • FIG. 2 shows a schematic diagram of an exemplary resource frame used in a wireless communication system.
  • FIG. 3 shows a schematic diagram of an exemplary resource block structure used in a wireless communication system.
  • FIG. 4 shows an exemplary configuration of a physical Sidelink control channel (PSCCH) and physical Sidelink shared channel (PSSCH) resource pool.
  • PSCCH physical Sidelink control channel
  • PSSCH physical Sidelink shared channel
  • FIG. 5 shows another exemplary configuration of a PSCCH/PSSCH resource pool.
  • FIG. 6 shows an exemplary diagram of a relay node forwarding Sidelink transmissions.
  • FIG. 7A is a flowchart representation of a method for wireless communication.
  • FIG. 7B is another flowchart representation of a method for wireless communication.
  • FIG. 8 is another flowchart representation of a method for wireless communication.
  • FIG. 9 is yet another flowchart representation of a method for wireless communication.
  • FIG. 10 shows an example of a transmission using a message that includes a physical subframe offset with respect to the subframe that the message is transmitted on.
  • FIG. 11 shows an example of a transmission using a message that includes a logical subframe offset based on the resource pools.
  • FIG. 12 shows an example of a transmission using a predetermined offset value.
  • FIG. 13 shows another example of a transmission using a pre-determined offset value.
  • FIG. 14 shows another example of a transmission using a predetermined value.
  • FIG. 15 shows an example of a transmission using an implicit association between a reference resource and a target resource.
  • FIG. 16 shows another example of a transmission using an implicit association between a reference resource and a target resource.
  • FIG. 17 shows another example of a transmission using an implicit association between a reference resource and a target resource.
  • FIG. 18A shows an exemplary diagram of frequency domain resource allocation for Sidelink transmissions.
  • FIG. 18B shows another exemplary diagram of frequency domain resource allocation for Sidelink transmissions.
  • FIG. 19 shows an example of a transmission using a message that includes a resource block (RB) index.
  • RB resource block
  • FIG. 20 shows another example of a transmission using a message that includes an RB index.
  • FIG. 21 shows an example of a transmission using a message that includes a sub-channel index.
  • FIG. 22 shows an example of a transmission using a message that includes an offset value in the frequency domain.
  • FIG. 23 shows another example of a transmission using an implicit association between a reference resource and a target resource.
  • FIG. 24 shows an exemplary partition of a PSSCH resource pool.
  • FIG. 25 shows an example of a transmission using a message that includes an index for time-frequency indication.
  • FIG. 26 shows an example of a relay node forwarding resource allocation information to a remote node.
  • FIG. 27 shows another example of a relay node forwarding resource allocation information to a remote node.
  • FIG. 28 shows yet another example of a relay node forwarding resource allocation information to a remote node.
  • FIG. 29 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
  • FIG. 30 is a block diagram representation of a portion of a radio station.
  • FIG. 1 shows a schematic diagram of an exemplary configuration 100 for Sidelink communications.
  • a base station (BS) 106 is connected to the core network 108.
  • Two UEs, UE1 (102) and UE 2 (104) can communication directly with the BS 106.
  • the two UEs can also perform Sidelink communications with each other without passing through the BS 106.
  • FIG. 2 shows a schematic diagram of an exemplary resource frame used in a wireless communication system.
  • the resource frame is partitioned into smaller units in the time domain repeats after the frame duration.
  • the duration of each frame is 10 milliseconds and is further logically divided into 10 subframes.
  • Each subframe is lms, which is further logically partitioned into 2 slots of 0.5 ms each (called slot 0 and slot 1) .
  • FIG. 3 shows a schematic diagram of an exemplary resource block structure along both time and frequency domains.
  • resources are allocated in units of subcarriers.
  • each unit contains 15 kHz or 7.5 kHz resources.
  • Multiple subcarriers (e.g., 12, 24, etc. ) in a slot are referred to as a resource block (RB) .
  • RB resource block
  • a base station may schedule transmission resources for a mobile station (MS, also referred to as UE) based on the above-described time-frequency domain resource allocation scheme. Specifically, the eNB may schedule resources based on subframes in the time domain, and/or resource blocks (RBs) in the frequency domain.
  • MS mobile station
  • RBs resource blocks
  • the eNB may flexibly allocate and indicate one or more resources allocated for a UE.
  • a UE uses the resources in Sidelink resource pools to transmit or receive signals.
  • the Sidelink resource pools include a physical Sidelink control channel (PSCCH) resource pool, which is used for Sidelink control information, and a physical Sidelink shared channel (PSSCH) resource pool, which is used for Sidelink data transmission.
  • PSCCH physical Sidelink control channel
  • PSSCH physical Sidelink shared channel
  • the UE uses a PSCCH resource to send a Sidelink control information (SCI) message, which may be used to indicate PSSCH resources and other associated control information.
  • SCI Sidelink control information
  • the PSSCH resources are subsequently used for Sidelink data transmissions.
  • a PSCCH resource pool includes resources used to for Sidelink control information transmission.
  • the resources can be configured by the network side through high layer signaling or system pre-configuration.
  • the PSCCH resource pool includes one or more subframes in the time domain. Subframes in the PSCCH resource pool may also be referred to as PSCCH subframes. Each PSCCH subframe may be continuous or discontinuous.
  • the PSCCH resource pool contains one or more RBs in the frequency domain, and the RBs may be continuous or discontinuous.
  • Each PSCCH resource includes one or more subframes in the time domain and one or more RBs in frequency domain.
  • a PSSCH resource pool includes resources used to for Sidelink data transmission.
  • the resources can be configured by the network side through high layer signaling or system pre- configuration.
  • the PSSCH resource pool includes one or more subframes in the time domain. Subframes in each PSSCH resource pool may also be referred to as PSSCH subframes, and each PSSCH subframe may be continuous or discontinuous.
  • the PSSCH resource pool includes one or more RBs or sub-channels in the frequency domain, wherein each sub-channel includes multiple RBs. The RBs or sub-channels included in a PSSCH resource may be continuous or discontinuous.
  • FIG. 4 shows an exemplary configuration of a PSCCH/PSSCH resource pool.
  • the PSCCH/PSSCH resource pool is periodic.
  • Each cycle of the resource pool includes a number of PSCCH/PSSCH subframes.
  • Each subframe includes several RBs.
  • FIG. 5 shows another exemplary configuration of a PSCCH/PSSCH resource pool.
  • the PSCCH resource pool and PSSCH resource pool share the same subframes.
  • the PSSCH resource pool includes several sub-channels, and each sub-channel includes k RBs (k is an integer) .
  • the PSSCH resource pool includes several sub-channels, and each sub-channel includes k RBs.
  • the PSCCH resource pool includes several RBs in the frequency domain, and the RBs in the PSCCH resource pool may not be adjacent to the RBs in the PSSCH resource pool.
  • the Sidelink resources are used for transmission of control information and data between the UEs.
  • the transmitting UE transmits Sidelink control information (SCI) using a PSCCH resource, notifies the receiving UE regarding the PSSCH resources it should use for transmitting Sidelink data, and the relevant configuration information for Sidelink transmissions.
  • SCI Sidelink control information
  • the transmitting UE further sends Sidelink data on the indicated PSSCH resource.
  • the base station can directly schedule the PSCCH and PSSCH resources for UEs. As the networks grow, however, the base station may not be able to perform direct scheduling. A relay node is then used to forward resource allocation information to the UEs performing Sidelink transmission.
  • FIG. 6 shows an exemplary diagram of a relay node forwarding Sidelink transmissions.
  • Relay UE (601) acts as a relay node for relaying information between Remote UE (602) and eNB (603) .
  • Relay UE (601) and Remote UE (602) first establish a connection and then exchange information using Sidelink communication.
  • the eNB 603 schedules or pre- configures the resources to be used by Relay UE (601) and Remote UE (602) based on thePSCCH and PSSCH resource pools, and sends the resource allocation information to Relay UE 601.
  • Relay UE 601 then forwards such information to Remote UE (602) in a message.
  • the network may include a base station (e.g., eNB) , a Multi-cell Coordinating Entity (MCE) , a gateway (GW) , a Mobility Management Entity (MME) , a Evolved Universal Terrestrial Radio Access Network (EUTRAN) , or Operations, Administration, and Management (OAM) systems.
  • a base station e.g., eNB
  • MCE Multi-cell Coordinating Entity
  • GW gateway
  • MME Mobility Management Entity
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • OAM Operations, Administration, and Management
  • Relay UE (601) forwards information from the network (e.g., eNB) to Remote UE (602) .
  • the network allocates the resources on PSCCH and/or PSSCH for Remote UE (602) , and indicates such resources to Relay UE (601) .
  • Relay UE 601 then forwards such information to Remote UE (602) .
  • FIG. 7A is a flowchart representation of a method for wireless communication 700.
  • the method 700 includes, at 702, receiving, by a first mobile station, a first control message that includes information about resource allocations for communications between the first mobile station and a second mobile station.
  • the method 700 also includes, at 704, transmitting, by the first mobile station, a second control message that comprises a subset of the information from the first control message indicative of the resource allocations for the communications between the first mobile station and the second mobile station.
  • the information included in the first control message comprises a first indicator to indicate a first resource for the first mobile station to transmit control information to the second mobile station.
  • the first resource is a physical Sidelink control channel (PSCCH) resource.
  • PSCCH physical Sidelink control channel
  • the information included in the first control message further indicates one or more resources allocated for the communications between the first mobile station and the second mobile station.
  • the one or more resources include at least one of: a physical Sidelink shared channel (PSSCH) resource allocated for the second mobile station to receive data, a PSCCH resource allocated for the second mobile station to transmit control information, or a PSSCH resource allocated to the second mobile station to transmit data.
  • PSSCH physical Sidelink shared channel
  • the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on the first resource.
  • the first resource to transmit control information or the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on a resource used for transmitting the first control message.
  • the subset of the information from the first control message includes a second indicator that indicates a second resource for the second mobile station to transmit data.
  • the second resource is a physical Sidelink shared channel (PSSCH) resource.
  • PSSCH physical Sidelink shared channel
  • the subset of the information further indicates one or more resources allocated for the second mobile station to perform communications.
  • the one or more transmission resources includes at least one of: a physical Sidelink shared channel (PSSCH) resource allocated for the second mobile station to receive data, or a PSCCH resource allocated for the second mobile station to transmit control information.
  • the second indicator also indicates the one or more resources allocated for the second mobile station to perform communications.
  • Relay UE receives a message from the network (e.g., eNB) regarding resource allocations for one or more Sidelink transmissions to be performed later.
  • the message can be a Downlink Control Information (DCI) message or a higher layer signaling message, such as a Radio Resource Control (RRC) message.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the network e.g., eNB
  • the message may further include information regarding Remote UE, such as UE identifier (ID) , UE index.
  • ID UE identifier
  • the DCI can be scrambled using the UE ID of Remote UE.
  • the DCI may include an indicator for Remote UE, such as UE ID or UE index.
  • the indicator can then be used by Relay UE (601) to distinguish what resources are allocated to which UE performing Sidelink transmissions. For example, when Relay UE (601) is connected to multiple remote UEs, Relay UE (601) can use the indicator to distinguish each remote UE.
  • the message received by Relay UE (601) includes a first PSCCH resource and/or a first PSSCH resource to be used by Relay UE (601) to transmit control information and/or data to Remote UE.
  • the message may also include a second PSCCH resource and/or a second PSSCH resource to be used by Remote UE (602) to transmit control information and/or data back to Relay UE (601) .
  • Relay UE (601) can use the first PSCCH resource indicated in the first message to send a second message (e.g., SCI) to Remote UE (602) to forward relevant control information for Remote UE.
  • Relay UE (601) can also use the first PSSCH resource to transmit data to Remote UE (602) .
  • Relay UE can indicate resource allocation information for Remote UE (602) such as a second PSCCH resource and a second PSSCH resource for Remote UE in the second message.
  • the second message (e.g., SCI) may also include other configuration indicators, such as Modulation and Coding Scheme (MCS) , Transmission Power Control (TPC) , data retransmission indicator, etc.
  • MCS Modulation and Coding Scheme
  • TPC Transmission Power Control
  • data retransmission indicator etc.
  • FIG. 7B is another flowchart representation of a method for wireless communication 720.
  • the method 720 includes, at 722, receiving, by a first mobile station, a first control message that includes information about resource allocations for a second mobile station; and, at 724, transmitting, by the first mobile station, a second control message that comprises the information from the first control message.
  • the information includes one or more indicators that indicate one or more resources allocated for the second mobile station, wherein the one or more resources include at least one of: a PSSCH resource allocated for the second mobile station to transmit data, or a PSCCH resource allocated for the second mobile station to transmit control information.
  • the one or more resources has a predetermined association with a resource used for transmitting the first control message.
  • the one or more resources are allocated based on a resource used for transmitting the second control message.
  • a message that includes information about resource allocation for Sidelink transmission (s) can be used for forwarding such information to UEs performing the Sidelink transmission (s) .
  • a message that includes information about resource allocation for Sidelink transmission (s) can be used for forwarding such information to UEs performing the Sidelink transmission (s) .
  • a message that includes information about resource allocation for Sidelink transmission (s) can be used for forwarding such information to UEs performing the Sidelink transmission (s) .
  • the network may use a message to indicate a first PSCCH resource and/or a first PSSCH resource for Relay UE (601) to transmit control information and/or data to Remote UE (602) .
  • the network may use a message to indicate a second PSCCH resource and/or a second PSSCH resource for Remote UE (602) to transmit control information and/or data back to Relay UE (601) .
  • Relay UE (601) may use the first PSCCH resource indicated in a message from the network (e.g., eNB) to forward other resource allocation information to Remote UE (602) .
  • the network e.g., eNB
  • Relay UE may determine a second PSCCH resource and/or a second PSSCH resource based on resource pools for Remote UE (602) and indicate such resource (s) in a message.
  • the message can also include a type indicator to indicate which type of resource allocation is used.
  • the type of resource allocation may present the number of the resources indicated in the message and the resource type of each assigned resources.
  • the type indicator is indicated using two bits with three types of allocation, including:
  • Type A the message indicates two resources, the first PSCCH resource and the second PSSCH resource;
  • Type B the message indicates three resources, the first PSCCH resource, the second PSCCH resource and the second PSSCH resource;
  • Type C the message indicates four resources, the first PSCCH resource, the first PSSCH resource, the second PSCCH resource and the second PSSCH resource.
  • the type indicator is indicated using one bit with two types of allocation, including:
  • Type A the message indicates two resources, the second PSCCH resource and the second PSSCH resource;
  • Type B the message indicates three resources, the first PSSCH resource, the second PSCCH resource and the second PSSCH resource.
  • FIG. 8 is a flowchart representation of a method for wireless communication 800.
  • the method 800 can be used for cases (1) and (2) mentioned above.
  • the method 800 includes, at 802, transmit a message including one or more indicators to indicate a PSCCH and/or a PSSCH resources that are to be used for a transmission of control information and/or data.
  • FIG. 9 is a flowchart representation of a method for wireless communication 900.
  • the method 900 can be used for cases (3) and (4) as mentioned above.
  • the method 900 includes, at 902, transmit control information including one or more indicators that indicate a PSCCH and/or PSSCH resources that are to be used for the second mobile station.
  • the method 900 also includes, at 904, receiving, control and/or data transmitted from the second mobile station using the assigned resource.
  • Either the network (e.g., eNB) or the Relay UE can send a message to include an indicator to indicate the PSCCH and/or PSSCH resources in the time domain for Sidelink transmission (s) .
  • the indicator includes an offset value in the time domain.
  • the offset value can be a physical offset with respect to the subframe that the message is transmitted on.
  • the offset may also be a logical offset based on the corresponding resource pool, i.e., a PSCCH or PSSCH resource pool.
  • the indicator can be pre-configured by the network. This way, there is no additional signaling overhead to transmit the indicator in the message.
  • the indicator includes an offset value predetermined to be k, where k is a non-negative integer.
  • the offset value k can be a physical offset with respect to the subframe that the message is transmitted on.
  • the value k can be pre-configured to determine that the PSCCH/PSSCH resource is scheduled after k subframes from the subframe that the message is transmitted on.
  • the offset k may also be a logical offset based on the corresponding resource pool. In other words, the PSCCH/PSSCH resource is scheduled after k logic consecutive subframes in the corresponding PSCCH/PSSCH resource pool from the subframe that the message is transmitted on.
  • the message includes an indicator that can indicate multiple resources.
  • the indicator may have a direct association with one resource (i.e., a reference resource) , and multiple implicit associations with the remaining resources (i.e., target resources) .
  • the target resource allocation can be determined based on an implicit correspondence between the reference resource and a set ofpredefined rules.
  • the reference resource and corresponding target resources may be the following:
  • the first PSCCH resource is used as the reference resource, and the first PSSCH resource is implicitly determined as the target resource;
  • the first PSCCH resource is used as the reference resource, and the second PSCCH resource is implicitly determined as the target resource;
  • the first PSCCH resource is used as the reference resource, and the second PSSCH resource is implicitly determined as the target resource;
  • the second PSCCH resource is used as the reference resource, and the second PSSCH resource is implicitly determined as the target resource;
  • the above sets of the reference resource and the target resource can be joint used without no collision.
  • FIG. 10 shows an example of a transmission using a message that includes a physical offset value with respect to the subframe that the message is transmitted on.
  • a communication node e.g., Relay UE (601) or Remote UE (602) receives a message (e.g., DCI or SCI) at subframe n.
  • FIG. 11 shows an example of a transmission using a message that includes a logical offset value based on the resource pools.
  • a communication node e.g., Relay UE (601) or Remote UE (602) receives a message (e.g., DCI or SCI) at subframe n.
  • the indicated PSCCH resource (the 3rd PSCCH subframe after subframe n) is located at subframe n+7 in the time domain.
  • the indicated PSSCH resource (the 3rd PSSCH subframe after subframe n) is located at subframe n+11 in the time domain.
  • FIG. 12 shows an example of a transmission using a predetermined offset value.
  • a commtmication node e.g., Relay UE (601) or Remote UE (602)
  • receives a message e.g., DCI or SCI
  • a PSCCH/PSSCH resource is scheduled at 4 subframes after the current subframe n (e.g., at subframe n+4) .
  • FIG. 13 shows another example of a transmission using a pre-determined offset value.
  • a communication node e.g., Relay UE (601) or Remote UE (602)
  • receives a message e.g., DCI or SCI
  • a PSCCH or PSSCH resource is scheduled at the 4th PSCCH or PSSCH resource after the current subframe.
  • the indicated PSCCH resource i.e., the 4th PSCCH subframe after subframe n
  • the indicated PSSCH resource is located at subframe n+12 in the time domain.
  • FIG. 14 shows another example of a transmission using a predetermined offset.
  • a communication node e.g., Relay UE (601) or Remote UE (602) receives a message (e.g., DCI or SCI) at subframe n.
  • FIG. 15 shows an example of a transmission using an implicit association between a reference resource and a target resource.
  • Relay UE receives a message (e.g., DCI) from the network (e.g., eNB) .
  • the message includes an indicator that explicitly indicates a reference Sidelink resource (i.e., a first PSCCH resource for Relay UE 601 to transmit control information to Remote UE (602) at subframe n.
  • Relay UE 601 can determine the position of the target Sidelink resource (e.g., a first PSSCH resource) to be at subframe m+4 in the time domain based on the message and the preconfigured offset k.
  • FIG. 16 shows another example ora transmission using an implicit association between a reference resource and a target resource.
  • Remote UE receives a message (e.g., SCI) from Relay UE (601) .
  • the message includes an indicator that explicitly indicates a reference Sidelink resource (i.e., a second PSCCH resource for Remote UE (602) to transmit control information to Relay UE (601) ) at subframe m .
  • Remote UE (602) can determine the position of the target Sidelink resource (i.e., the second PSSCH resource) to be the 2 nd PSSCH subframe after subframe m, that is, subframe m+6.
  • FIG. 17 shows another example of a transmission using an implicit association between a reference resource and a target resource.
  • Relay UE receives a message (e.g., DCI) from the network (e.g., eNB) .
  • the message includes an indicator to indicate multiple Sidelink resources to be used by Relay UE (601) and Remote UE (602) .
  • the message includes an indicator that explicitly indicates a reference Sidelink resource (i.e., a first PSCCH resource for Relay UE (601) ) at subframe m.
  • Relay UE (601) therefore, can determine the time domain positions of both the reference Sidelink resource (i.e., the first PSCCH resource for itself) and the target Sidelink resource (i.e., the second PSSCH resource for Remote UE (602) .
  • Relay UE (601) then forwards the relevant control information to Remote UE (602) using the first PSCCH resource explicitly indicated in the message.
  • Relay UE 601 may include information regarding the target Sidelink resource (i.e., the second PSSCH resource) in the control information so that Remote UE (602) understands when it is supposed to transmit data to Relay UE (601) using the second PSSCH resource.
  • FIG. 18A-B show exemplary diagrams of frequency domain resource allocation for Sidelink transmissions.
  • FIG. 18A shows that the system bandwidth in the frequency domain includes a number of resource blocks (RBs) .
  • RBs resource blocks
  • Each RB has a physical index, staring from physical RB index 0 (1801) .
  • Some of the system bandwidth is allocated for Sidelink transmissions.
  • the RBs also have a logical RB index, such as logical RB index 0 (1802) .
  • the Sidelink transmission bandwidth can be partitioned into a number of sub-channel allocations, such as shown in FIG. 18B.
  • Each of the sub-channel allocations has a sub-channel index (e.g., 1803) .
  • Either the network (e.g., eNB) or the Relay UE can send a message to include an indicator in the frequency domain to indicate the PSCCH and/or PSSCH resources to be used for Sidelink transmission (s) .
  • the indicator includes an index value.
  • the index value can be a resource block (RB) index or a sub-channel index.
  • the indicator also includes a number to indicate the number of RBs or sub-channels to be used for the Sidelink transmissions. In some implementations, the network preconfigures this number instead. Based on the index value and the number of RBs/sub-channels to be used, the resources allocated for Sidelink transmission (s) then can be determined.
  • the indicator may has a direct association with one resource (i.e., a reference resource) , and multiple implicit associations with the remaining resources (i.e., target resources) .
  • the target resources then can be determined, using a set of predetermined rules, based on the reference resource.
  • FIG. 19 shows an example of a transmission using a message that indicates a RB index.
  • a communication node e.g., Relay UE (601) or Remote UE (602) receives a message (e.g., DCI or SCI) that indicates a physical RB index in the frequency domain.
  • the network also sets a predetermined value m to indicate m consecutive RBs for Sidelink transmissions. This way, the communication node can determine the amount of RBs allocated for Sidelink transmission (s) based on the RB index and number of RBs (e.g., from RB #s to #s+m-1) .
  • FIG. 20 shows another example of a transmission using a message that indicates a RB index.
  • a communication node e.g., Relay UE (601) or Remote UE (602) receives a message (e.g., DCI or SCI) that indicates a physical RB index in the frequency domain.
  • the message also includes a value t to indicate the number of consecutive RBs to be used for Sidelink transmission (s) .
  • the communication node can determined the amount of RBs allocated for Sidelink transmission (s) based on both the RB index and the number of RBs to be used (e.g., from RB #s to #s+t-1) .
  • FIG. 21 shows an example of a transmission using a message that indicates a sub-channel index.
  • Relay UE (601) and Remote UE (602) each has respective Sidelink resource pools. Both the resource pools of Relay UE (601) and Remote UE (602) partition the Sidelink resources into sub-channels in the frequency domain.
  • Relay UE (601) first receives a first message (e.g., DCI) from the network (e.g., eNB) .
  • a target resource e.g., the second PSSCH resource for Remote UE (602)
  • FIG. 22 shows an example of a transmission using a message that indicates an offset in the frequency domain.
  • Relay UE (601) and Remote UE (602) share the Sidelink resource pools.
  • Relay UE (601) transmits a message (e.g., SCI) to Remote UE (602) .
  • the message explicitly indicates a reference Sidelink resource (i.e., the second PSCCH resource for Remote UE (602) ) in time and/or frequency domains.
  • Remote UE (602) can determine the time domain position of the target resource using methods described above.
  • a set of rules of the relationship between reference Sidelink resource and the target Sidelink resource can be determined by network.
  • the set of rules may also be predetermined.
  • the RB index (i2) of the target Sidelink resource can be determined based on the RB index (i1) of the reference Sidelink resource.
  • FIG. 23 shows another example of a transmission using an implicit association between a reference resource and a target resource.
  • Remote UE receives a message (e.g., SCI) from Relay UE (601) , explicitly indicating a reference Sidelink resource (i.e., the second PSCCH resource for Remote UE (602) ) in the time and/or frequency domain.
  • Remote UE (602) determines the time-frequency position of a target source (e.g., the second PSSCH resource for itself) based on the reference resource.
  • a target source e.g., the second PSSCH resource for itself
  • a single index can be used to indicate the resource in both time and frequency domains.
  • a resource pool can be partitioned into a number of parts, each having a unique index as an identification. This way, an index included in a message can uniquely identify a part in the resource pool as the resource for Sidelink transmission (s) .
  • the parts in the resource pool may not be consecutive, so long as they can be uniquely identified using the index value.
  • FIG. 24 shows an exemplary partition of a PSSCH resource pool.
  • the PSSCH resource pool includes 10 subframes in each period. Each subframe includes 20 RBs.
  • the network can preconfigure each of the PSSCH resource to be one subframe having 5 RBs.
  • FIG. 25 shows an example of a transmission using a message that indicates an index for time-frequency indication.
  • the PSCCH resource pool for Relay UE (601) is partitioned into 24 parts, each part occupying one subframe in time domain and one sub-channel (two RBs) in frequency domain.
  • the PSSCH resource pool for Remote UE (602) is also partitioned into 24 parts, each part occupying one subframe in the time domain and one sub-channel (two RBs) in the frequency domain.
  • Relay UE (601) first receives a message (e.g., DCI) from the network (e.g., eNB) .
  • the network further preconfigures the number of sub-channels for the second PSSCH resource to be 3, so Relay UE (601) can determine the exact position of the second PSSCH resource (resource indices 9-11) and forward this information to Remote UE (602) via a second message (e.g., SC1) .
  • a second message e.g., SC1
  • Relay UE (601) is capable of forwarding information regarding subsequent Sidelink Transmission to Remote UE (602) appropriately.
  • FIG. 26 shows an example of a relay node forwarding resource allocation information to a remote node.
  • the network e.g., eNB
  • transmits a message e.g., DCI
  • Relay UE 602 to indicate a first PSCCH resource for Relay UE (601) and a second PSSCH resource for Remote UE (602) .
  • Remote UE (602) After receiving the second message, Remote UE (602) now is aware of the Sidelink resources allocated for its Sidelink transmission (s) . Remote UE (602) may subsequently transmits Sidelink data to Relay UE (601) using the second PSSCH resource. There is no need for Remote UE (602) to send another message (e.g., SCI) to Relay UE to indicate the relevant resources because both nodes are already aware of the resources allocated for the transmission.
  • another message e.g., SCI
  • FIG. 27 shows another example of a relay node forwarding resource allocation information to a remote node.
  • the network e.g., eNB
  • transmits a message e.g., DCI
  • Relay UE 602 to indicate a first PSCCH resource for Relay UE (601) , a second PSCCH resource for Remote UE (602) , and a second PSSCH resource for Remote UE (602) .
  • the second PSCCH resource is set as the reference resource by the network, and the second PSSCH resource is set as the target resource whose time-frequency position can be determined based on the reference resource.
  • Relay UE (601) can determine, based on a set of predetermined rules, that the index value for the second PSSCH resource (the target resource) is the same as the index value for the reference resource corresponding to the PSSCH resource pool.
  • Relay UE (601) then transmits a second message (e.g., SCI) to Remote UE (602) using the first PSCCH resource to forward information regarding the second PSCCH resource and the second PSSCH resource.
  • Remote UE (602) determines, based on the set of predetermined rules, that the index value for the second PSSCH resource (the target resource) is the same as the index value corresponding to the PSSCH resource pool for the reference resource.
  • Remote UE (602) then proceeds to transmit control information using the second PSCCH resource to Relay UE (601) , and transmit data using the second PSSCH resource to Relay UE (601) .
  • FIG. 28 shows yet another example of a relay node forwarding resource allocation information to a remote node.
  • the network e.g., eNB
  • transmits a first message e.g., DCI
  • Relay UE 601
  • the first PSCCH resource is set as the reference resource by the network
  • the second PSSCH resource is set as the target resource whose time-frequency position can be determined from the reference resource.
  • the predetermined value k2 indicates that the second PSSCH is located at subframe #n+8.
  • the time-frequency position of the second PSSCH resource is now fully determined based on the rules and the predetermined value k2.
  • Relay UE (601) then transmits a second message (e.g., SCI) to Remote UE (602) using the first PSCCH resource, on subframe #n+4, to forward information regarding the second PSSCH resource.
  • a second message e.g., SCI
  • Remote UE 602
  • Remote UE (602) After receiving the second message, Remote UE (602) determines the corresponding time-frequency position of the second PSSCH resource. Remote UE (602) then proceeds to transmit Sidelink data using the second PSSCH resource to Relay UE (601) . Because both Relay UE (601) and Remote UE (602) are aware of the second PSSCH resource, there is no need for Remote UE (602) to transmit an additional message to indicate such information.
  • the network e.g., eNB transmits a message (e.g., DCI) to Relay UE (602) to indicate a second PSCCH resource and a second PSSCH resource for Remote UE (602) .
  • the second PSCCH resource is set as the reference resource by the network, and the second PSSCH resource is set as the target resource whose time-frequency position can be determined based on the reference resource.
  • Relay UE (601) can determine, based on a set of predetermined rules, that the index value for the second PSSCH resource (i.e., the target resource) is the same as the index value for the reference resource in corresponding PSSCH resource pool.
  • Relay UE (601) transmits a second message (e.g., SCI) to Remote UE (602) using a PSCCH resource, which is determined by the Relay UE itself in the PSCCH resource pool, to forward information regarding the second PSCCH resource and the second PSSCH resource.
  • Remote UE (602) determines, based on the set of predetermined rules, that the index value for the second PSSCH resource (the target resource) is the same as the index value in corresponding PSSCH resource pool for the reference resource.
  • Remote UE (602) then proceeds to transmit control information using the second PSCCH resource to Relay UE (601) , and transmit data using the second PSSCH resource to Relay UE (601) .
  • FIG. 29 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
  • a wireless communication system 400 can include one or more base stations (BSs) 2905a, 2905b, one or more wireless devices 2910a, 2910b, 2910c, 2910d, and an access network 2925.
  • a base station 2905a, 2905b can provide wireless service to wireless devices 2910a, 2910b, 2910c and 2910d in one or more wireless sectors.
  • a base station 2905a, 2905b includes directional antennas to produce two or more directional beams to provide wireless coverage in different sectors.
  • the access network 2925 can communicate with one or more base stations 2905a, 2905b.
  • the access network 2925 includes one or more base stations 2905a, 2905b.
  • the access network 2925 is in communication with a core network (not shown in FIG. 29) that provides connectivity with other wireless communication systems and wired communication systems.
  • the core network may include one or more service subscription databases to store information related to the subscribed wireless devices 2910a, 2910b, 2910c and 2910d.
  • a first base station 2905a can provide wireless service based on a first radio access technology
  • a second base station 2905b can provide wireless service based on a second radio access technology.
  • the base stations 2905a and 2905b may be co-located or may be separately installed in the field according to the deployment scenario.
  • the access network 2925 can support multiple different radio access technologies.
  • a wireless communication system can include multiple networks using different wireless technologies.
  • a dual-mode or multi-mode wireless device includes two or more wireless technologies that could be used to connect to different wireless networks.
  • FIG. 30 is a block diagram representation of a portion of a radio station.
  • a radio station 3005 such as a base station or a wireless device (or UE) can include processor electronics 3010 such as a microprocessor that implements one or more of the wireless techniques presented in this document.
  • the radio station 3005 can include transceiver electronics 3015 to send and/or receive wireless signals over one or more communication interfaces such as antenna 3020.
  • the radio station 3005 can include other communication interfaces for transmitting and receiving data.
  • Radio station 3005 can include one or more memories (not explicitly shown) configured to store information such as data and/or instmctions.
  • the processor electronics 3010 can include at least a portion of the transceiver electronics 3015. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the radio station 3005.
  • the disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them.
  • the disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus.
  • the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them.
  • data processing apparatus encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
  • a propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) .
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read only memory or a random access memory or both.
  • the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • a computer need not have such devices.
  • Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks.
  • semiconductor memory devices e.g., EPROM, EEPROM, and flash memory devices
  • magnetic disks e.g., internal hard disks or removable disks
  • magneto optical disks e.g., CD ROM and DVD-ROM disks.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices are disclosed for forwarding resource allocation information for transmissions between mobile stations. In one exemplary aspect, a method for wireless communication is disclosed. The method includes receiving, by a first mobile station, a first control message that includes information about resource allocations for communications between the first mobile station and a second mobile station; and transmitting, by the first mobile station, a second control message that comprising a subset of the information from the first control message that is indicative of the resource allocations for the communications between the first mobile station and the second mobile station.

Description

TECHNIQUES FOR FORWARDING RESOURCE ALLOCATION TECHNICAL FIELD
This patent document is directed generally to digital wireless communications.
BACKGROUND
Mobile communication technologies are moving the world toward an increasingly connected and networked society. The rapid growth of mobile communications and advances in technology have led to greater demand for capacity and connectivity. Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios. Various techniques, including new ways to provide higher quality of service, are being discussed.
BRIEF SUMMARY
This document discloses methods, systems, and devices related to digital wireless communication, and more specifically, to forwarding resource allocation information for transmissions between mobile stations.
In one exemplary aspect, a method for wireless communication is disclosed. The method includes receiving, by a first mobile station, a first control message that includes information about resource allocations for communications between the first mobile station and a second mobile station; and transmitting, by the first mobile station, a second control message to the second mobile station, the second control message comprising a subset of the information from the first control message that is indicative of the resource allocation for the communications between the first mobile station and the second mobile station.
In some embodiments, the information included in the first control message comprises a first indicator to indicate a first resource for the first mobile station to transmit control information to the second mobile station. In some implementations, the first resource is a physical Sidelink control channel (PSCCH) resource.
In some embodiments, the information included in the first control message further indicates one or more resources allocated for the communications between the first mobile station and the second mobile station. In some implementations, the one or more resources include at least one of: a physical Sidelink shared channel (PSSCH) resource allocated for the  second mobile station to receive data, a PSCCH resource allocated for the second mobile station to transmit control information, or a PSSCH resource allocated to the second mobile station to transmit data.
In some embodiments, the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on the first resource. In some implementations, the first resource to transmit control information or the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on a resource used for transmitting the first control message.
In some embodiments, the subset of the information from the first control message includes a second indicator that indicates a second resource for the second mobile station to transmit data. In some implementations, the second resource is a physical Sidelink shared channel (PSSCH) resource.
In some embodiments, the subset of the information further indicates one or more resources allocated for the second mobile station to perform communications. In some implementations, the one or more transmission resources includes at least one of: a physicalSidelink shared channel (PSSCH) resource allocated for the second mobile station to receive data, or a PSCCH resource allocated for the second mobile station to transmit control information. In some embodiments, the second indicator also indicates the one or more resources allocated for the second mobile station to perform communications.
In another exemplary aspect, a method for wireless communication is disclosed. The method includes receiving, by a first mobile station, a first control message that includes information about resource allocations for a second mobile station; and transmitting, by the first mobile station, a second control message that comprises the information from the first control message.
In some embodiments, the information includes one or more indicators that indicate one or more resources allocated for the second mobile station, wherein the one or more resources include at least one of: a PSSCH resource allocated for the second mobile station to transmit data, or a PSCCH resource allocated for the second mobile station to transmit control information. In some implementations, the one or more resources has a predetermined association with a resource used for transmitting the first control message. In some embodiments, the one or more  resources are allocated based on a resource used for transmitting the second control message.
In another exemplary aspect, a wireless communications apparatus comprising a processor is disclosed. The processor is configured to implement a method described herein.
In yet another exemplary aspect, the various techniques described herein may be embodied as processor-executable code and stored on a computer-readable program medium.
The details of one or more implementations are set forth in the accompanying attachments, the drawings, and the description below. Other features will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a schematic diagram of an exemplary configuration for Sidelink communication.
FIG. 2 shows a schematic diagram of an exemplary resource frame used in a wireless communication system.
FIG. 3 shows a schematic diagram of an exemplary resource block structure used in a wireless communication system.
FIG. 4 shows an exemplary configuration of a physical Sidelink control channel (PSCCH) and physical Sidelink shared channel (PSSCH) resource pool.
FIG. 5 shows another exemplary configuration of a PSCCH/PSSCH resource pool. 
FIG. 6 shows an exemplary diagram of a relay node forwarding Sidelink transmissions.
FIG. 7A is a flowchart representation of a method for wireless communication.
FIG. 7B is another flowchart representation of a method for wireless communication. 
FIG. 8 is another flowchart representation of a method for wireless communication. 
FIG. 9 is yet another flowchart representation of a method for wireless communication.
FIG. 10 shows an example of a transmission using a message that includes a physical subframe offset with respect to the subframe that the message is transmitted on.
FIG. 11 shows an example of a transmission using a message that includes a logical subframe offset based on the resource pools.
FIG. 12 shows an example of a transmission using a predetermined offset value.
FIG. 13 shows another example of a transmission using a pre-determined offset value.
FIG. 14 shows another example of a transmission using a predetermined value.
FIG. 15 shows an example of a transmission using an implicit association between a reference resource and a target resource.
FIG. 16 shows another example of a transmission using an implicit association between a reference resource and a target resource.
FIG. 17 shows another example of a transmission using an implicit association between a reference resource and a target resource.
FIG. 18A shows an exemplary diagram of frequency domain resource allocation for Sidelink transmissions.
FIG. 18B shows another exemplary diagram of frequency domain resource allocation for Sidelink transmissions.
FIG. 19 shows an example of a transmission using a message that includes a resource block (RB) index.
FIG. 20 shows another example of a transmission using a message that includes an RB index.
FIG. 21 shows an example of a transmission using a message that includes a sub-channel index.
FIG. 22 shows an example of a transmission using a message that includes an offset value in the frequency domain.
FIG. 23 shows another example of a transmission using an implicit association between a reference resource and a target resource.
FIG. 24 shows an exemplary partition of a PSSCH resource pool.
FIG. 25 shows an example of a transmission using a message that includes an index for time-frequency indication.
FIG. 26 shows an example of a relay node forwarding resource allocation information to a remote node.
FIG. 27 shows another example of a relay node forwarding resource allocation information to a remote node.
FIG. 28 shows yet another example of a relay node forwarding resource allocation information to a remote node.
FIG. 29 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
FIG. 30 is a block diagram representation of a portion of a radio station.
DETAILED DESCRIPTION
The technology and examples of implementations in this document can be used to improve performance in multiuser wireless communication systems. The term “exemplary” is used to mean “an example of” and, unless otherwise stated, does not imply an ideal or a preferred embodiment. Section headers are used in the present document to facilitate understanding and do not limit the disclosed technology in the sections only to the corresponding section.
Sidelink is a communication mechanism between one mobile station (or user equipment UE) and another mobile station (or UE) without going through a base station. Modem communication systems can use Sidelink communication to help save radio spectrum resources, reduce data transmission pressure on the network, reduce system resource consumption, increase spectral efficiency, reduce transmission power consumption, and/or improve network operation costs. FIG. 1 shows a schematic diagram of an exemplary configuration 100 for Sidelink communications. In this configuration, a base station (BS) 106 is connected to the core network 108. Two UEs, UE1 (102) and UE 2 (104) , can communication directly with the BS 106. The two UEs can also perform Sidelink communications with each other without passing through the BS 106.
FIG. 2 shows a schematic diagram of an exemplary resource frame used in a wireless communication system. The resource frame is partitioned into smaller units in the time domain repeats after the frame duration. In some embodiments, the duration of each frame is 10 milliseconds and is further logically divided into 10 subframes. Each subframe is lms, which is further logically partitioned into 2 slots of 0.5 ms each (called slot 0 and slot 1) .
FIG. 3 shows a schematic diagram of an exemplary resource block structure along both time and frequency domains. In the frequency domain, resources are allocated in units of subcarriers. In some embodiments, each unit contains 15 kHz or 7.5 kHz resources. Multiple subcarriers (e.g., 12, 24, etc. ) in a slot are referred to as a resource block (RB) .
A base station (BS, also referred to as eNB) may schedule transmission resources for  a mobile station (MS, also referred to as UE) based on the above-described time-frequency domain resource allocation scheme. Specifically, the eNB may schedule resources based on subframes in the time domain, and/or resource blocks (RBs) in the frequency domain.
Depending on the scheduling requirements, the eNB may flexibly allocate and indicate one or more resources allocated for a UE.
For Sidelink communications, a UE uses the resources in Sidelink resource pools to transmit or receive signals. The Sidelink resource pools include a physical Sidelink control channel (PSCCH) resource pool, which is used for Sidelink control information, and a physical Sidelink shared channel (PSSCH) resource pool, which is used for Sidelink data transmission. The UE uses a PSCCH resource to send a Sidelink control information (SCI) message, which may be used to indicate PSSCH resources and other associated control information. The PSSCH resources are subsequently used for Sidelink data transmissions.
A PSCCH resource pool includes resources used to for Sidelink control information transmission. The resources can be configured by the network side through high layer signaling or system pre-configuration. The PSCCH resource pool includes one or more subframes in the time domain. Subframes in the PSCCH resource pool may also be referred to as PSCCH subframes. Each PSCCH subframe may be continuous or discontinuous. The PSCCH resource pool contains one or more RBs in the frequency domain, and the RBs may be continuous or discontinuous. Each PSCCH resource includes one or more subframes in the time domain and one or more RBs in frequency domain.
A PSSCH resource pool includes resources used to for Sidelink data transmission.
The resources can be configured by the network side through high layer signaling or system pre- configuration. The PSSCH resource pool includes one or more subframes in the time domain. Subframes in each PSSCH resource pool may also be referred to as PSSCH subframes, and each PSSCH subframe may be continuous or discontinuous. The PSSCH resource pool includes one or more RBs or sub-channels in the frequency domain, wherein each sub-channel includes multiple RBs. The RBs or sub-channels included in a PSSCH resource may be continuous or discontinuous.
PSCCH/PSSCH resource pool can have a variety of configurations. FIG. 4 shows an exemplary configuration of a PSCCH/PSSCH resource pool. In this configuration, the PSCCH/PSSCH resource pool is periodic. Each cycle of the resource pool includes a number of  PSCCH/PSSCH subframes. Each subframe includes several RBs. FIG. 5 shows another exemplary configuration of a PSCCH/PSSCH resource pool. In this configuration, the PSCCH resource pool and PSSCH resource pool share the same subframes. In the frequency domain (see part (a) ) , the PSSCH resource pool includes several sub-channels, and each sub-channel includes k RBs (k is an integer) . In the frequency domain (see part (b) ) , the PSSCH resource pool includes several sub-channels, and each sub-channel includes k RBs. The PSCCH resource pool includes several RBs in the frequency domain, and the RBs in the PSCCH resource pool may not be adjacent to the RBs in the PSSCH resource pool.
In Sidelink communications, the Sidelink resources are used for transmission of control information and data between the UEs. The transmitting UE transmits Sidelink control information (SCI) using a PSCCH resource, notifies the receiving UE regarding the PSSCH resources it should use for transmitting Sidelink data, and the relevant configuration information for Sidelink transmissions. The transmitting UE further sends Sidelink data on the indicated PSSCH resource.
Relay of Sidelink Transmission
In current Sidelink communication, the base station can directly schedule the PSCCH and PSSCH resources for UEs. As the networks grow, however, the base station may not be able to perform direct scheduling. A relay node is then used to forward resource allocation information to the UEs performing Sidelink transmission.
FIG. 6 shows an exemplary diagram of a relay node forwarding Sidelink transmissions. Relay UE (601) acts as a relay node for relaying information between Remote UE (602) and eNB (603) . Relay UE (601) and Remote UE (602) first establish a connection and then exchange information using Sidelink communication. The eNB 603 schedules or pre- configures the resources to be used by Relay UE (601) and Remote UE (602) based on thePSCCH and PSSCH resource pools, and sends the resource allocation information to Relay UE 601. Relay UE 601 then forwards such information to Remote UE (602) in a message. The network may include a base station (e.g., eNB) , a Multi-cell Coordinating Entity (MCE) , a gateway (GW) , a Mobility Management Entity (MME) , a Evolved Universal Terrestrial Radio Access Network (EUTRAN) , or Operations, Administration, and Management (OAM) systems.
Relay UE (601) forwards information from the network (e.g., eNB) to Remote UE (602) . For example, the network allocates the resources on PSCCH and/or PSSCH for  Remote UE (602) , and indicates such resources to Relay UE (601) . Relay UE 601 then forwards such information to Remote UE (602) .
FIG. 7A is a flowchart representation of a method for wireless communication 700. The method 700 includes, at 702, receiving, by a first mobile station, a first control message that includes information about resource allocations for communications between the first mobile station and a second mobile station. The method 700 also includes, at 704, transmitting, by the first mobile station, a second control message that comprises a subset of the information from the first control message indicative of the resource allocations for the communications between the first mobile station and the second mobile station.
In some embodiments, the information included in the first control message comprises a first indicator to indicate a first resource for the first mobile station to transmit control information to the second mobile station. In some implementations, the first resource is a physical Sidelink control channel (PSCCH) resource.
In some embodiments, the information included in the first control message further indicates one or more resources allocated for the communications between the first mobile station and the second mobile station. In some implementations, the one or more resources include at least one of: a physical Sidelink shared channel (PSSCH) resource allocated for the second mobile station to receive data, a PSCCH resource allocated for the second mobile station to transmit control information, or a PSSCH resource allocated to the second mobile station to transmit data.
In some embodiments, the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on the first resource. In some implementations, the first resource to transmit control information or the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on a resource used for transmitting the first control message.
In some embodiments, the subset of the information from the first control message includes a second indicator that indicates a second resource for the second mobile station to transmit data. In some implementations, the second resource is a physical Sidelink shared channel (PSSCH) resource.
In some embodiments, the subset of the information further indicates one or more  resources allocated for the second mobile station to perform communications. In some implementations, the one or more transmission resources includes at least one of: a physical Sidelink shared channel (PSSCH) resource allocated for the second mobile station to receive data, or a PSCCH resource allocated for the second mobile station to transmit control information. In some embodiments, the second indicator also indicates the one or more resources allocated for the second mobile station to perform communications.
For example, in some embodiments, Relay UE (601) receives a message from the network (e.g., eNB) regarding resource allocations for one or more Sidelink transmissions to be performed later. The message can be a Downlink Control Information (DCI) message or a higher layer signaling message, such as a Radio Resource Control (RRC) message. If the network (e.g., eNB) uses a RRC message, the message may further include information regarding Remote UE, such as UE identifier (ID) , UE index. Ifthe network (e.g., eNB) uses a DCI message, the DCI can be scrambled using the UE ID of Remote UE. In some implementations, the DCI may include an indicator for Remote UE, such as UE ID or UE index. The indicator can then be used by Relay UE (601) to distinguish what resources are allocated to which UE performing Sidelink transmissions. For example, when Relay UE (601) is connected to multiple remote UEs, Relay UE (601) can use the indicator to distinguish each remote UE.
In some embodiments, the message received by Relay UE (601) includes a first PSCCH resource and/or a first PSSCH resource to be used by Relay UE (601) to transmit control information and/or data to Remote UE. The message may also include a second PSCCH resource and/or a second PSSCH resource to be used by Remote UE (602) to transmit control information and/or data back to Relay UE (601) .
In some embodiments, Relay UE (601) can use the first PSCCH resource indicated in the first message to send a second message (e.g., SCI) to Remote UE (602) to forward relevant control information for Remote UE. In some embodiments, Relay UE (601) can also use the first PSSCH resource to transmit data to Remote UE (602) . In some implementations, Relay UE can indicate resource allocation information for Remote UE (602) such as a second PSCCH resource and a second PSSCH resource for Remote UE in the second message.
In some embodiments, the second message (e.g., SCI) may also include other configuration indicators, such as Modulation and Coding Scheme (MCS) , Transmission Power Control (TPC) , data retransmission indicator, etc.
FIG. 7B is another flowchart representation of a method for wireless communication 720. The method 720 includes, at 722, receiving, by a first mobile station, a first control message that includes information about resource allocations for a second mobile station; and, at 724, transmitting, by the first mobile station, a second control message that comprises the information from the first control message.
In some embodiments, the information includes one or more indicators that indicate one or more resources allocated for the second mobile station, wherein the one or more resources include at least one of: a PSSCH resource allocated for the second mobile station to transmit data, or a PSCCH resource allocated for the second mobile station to transmit control information. In some implementations, the one or more resources has a predetermined association with a resource used for transmitting the first control message. In some embodiments, the one or more resources are allocated based on a resource used for transmitting the second control message.
Exemplary Message Configurations
As discussed above, a message that includes information about resource allocation for Sidelink transmission (s) can be used for forwarding such information to UEs performing the Sidelink transmission (s) . Here are several exemplary scenarios that such a message can be used: 
(1) The network (e.g., eNB) may use a message to indicate a first PSCCH resource and/or a first PSSCH resource for Relay UE (601) to transmit control information and/or data to Remote UE (602) .
(2) The network (e.g., eNB) may use a message to indicate a second PSCCH resource and/or a second PSSCH resource for Remote UE (602) to transmit control information and/or data back to Relay UE (601) .
(3) Relay UE (601) may use the first PSCCH resource indicated in a message from the network (e.g., eNB) to forward other resource allocation information to Remote UE (602) .
(4) Relay UE (601) may determine a second PSCCH resource and/or a second PSSCH resource based on resource pools for Remote UE (602) and indicate such resource (s) in a message.
The message can also include a type indicator to indicate which type of resource allocation is used. The type of resource allocation may present the number of the resources indicated in the message and the resource type of each assigned resources.
For example, in a message transmitted by eNB, the type indicator is indicated using  two bits with three types of allocation, including:
Type A: the message indicates two resources, the first PSCCH resource and the second PSSCH resource;
Type B: the message indicates three resources, the first PSCCH resource, the second PSCCH resource and the second PSSCH resource;
Type C: the message indicates four resources, the first PSCCH resource, the first PSSCH resource, the second PSCCH resource and the second PSSCH resource.
For another example, in the message transmitted by Relay UE, the type indicator is indicated using one bit with two types of allocation, including:
Type A: the message indicates two resources, the second PSCCH resource and the second PSSCH resource;
Type B: the message indicates three resources, the first PSSCH resource, the second PSCCH resource and the second PSSCH resource.
FIG. 8 is a flowchart representation of a method for wireless communication 800.
The method 800 can be used for cases (1) and (2) mentioned above. The method 800 includes, at 802, transmit a message including one or more indicators to indicate a PSCCH and/or a PSSCH resources that are to be used for a transmission of control information and/or data.
FIG. 9 is a flowchart representation of a method for wireless communication 900.
The method 900 can be used for cases (3) and (4) as mentioned above. The method 900 includes, at 902, transmit control information including one or more indicators that indicate a PSCCH and/or PSSCH resources that are to be used for the second mobile station. The method 900 also includes, at 904, receiving, control and/or data transmitted from the second mobile station using the assigned resource.
Exemplary Resource Indications in Time Domain
Either the network (e.g., eNB) or the Relay UE can send a message to include an indicator to indicate the PSCCH and/or PSSCH resources in the time domain for Sidelink transmission (s) .
In some embodiments, the indicator includes an offset value in the time domain. The offset value can be a physical offset with respect to the subframe that the message is transmitted on. The offset may also be a logical offset based on the corresponding resource pool, i.e., a PSCCH or PSSCH resource pool.
In some embodiments, the indicator can be pre-configured by the network. This way, there is no additional signaling overhead to transmit the indicator in the message. For example, the indicator includes an offset value predetermined to be k, where k is a non-negative integer. The offset value k can be a physical offset with respect to the subframe that the message is transmitted on. In some implementation, the value k can be pre-configured to determine that the PSCCH/PSSCH resource is scheduled after k subframes from the subframe that the message is transmitted on. The offset k may also be a logical offset based on the corresponding resource pool. In other words, the PSCCH/PSSCH resource is scheduled after k logic consecutive subframes in the corresponding PSCCH/PSSCH resource pool from the subframe that the message is transmitted on.
In some scenarios, it is desirable to indicate multiple resources using the message transmitted by the network (e.g., eNB) or the Relay UE 601. However, including multiple offset values in the message, each for a different resource, increases signaling overhead. On the other hand, pre-configuring all the indicators can impact flexibility of resource allocations. Therefore, in some embodiments, the message includes an indicator that can indicate multiple resources. The indicator may have a direct association with one resource (i.e., a reference resource) , and multiple implicit associations with the remaining resources (i.e., target resources) . For example, the target resource allocation can be determined based on an implicit correspondence between the reference resource and a set ofpredefined rules.
In some embodiments, the reference resource and corresponding target resources may be the following:
The first PSCCH resource is used as the reference resource, and the first PSSCH resource is implicitly determined as the target resource;
The first PSCCH resource is used as the reference resource, and the second PSCCH resource is implicitly determined as the target resource;
The first PSCCH resource is used as the reference resource, and the second PSSCH resource is implicitly determined as the target resource;
The second PSCCH resource is used as the reference resource, and the second PSSCH resource is implicitly determined as the target resource;
The above sets of the reference resource and the target resource can be joint used without no collision.
The above mentioned methods for resource indications in time domain are further explained in the following embodiments.
Exemplary Embodiment 1
FIG. 10 shows an example of a transmission using a message that includes a physical offset value with respect to the subframe that the message is transmitted on. In this example, a communication node (e.g., Relay UE (601) or Remote UE (602) ) receives a message (e.g., DCI or SCI) at subframe n. The message includes a physical offset k= 6 to indicate that a PSCCH or PSSCH resource that is scheduled 6 subframes after the current subframe n (i.e., at subframe n+6) .
Exemplary Embodiment 2
FIG. 11 shows an example of a transmission using a message that includes a logical offset value based on the resource pools. In this example, a communication node (e.g., Relay UE (601) or Remote UE (602) ) receives a message (e.g., DCI or SCI) at subframe n. The message includes a logical offset k= 3 to indicate that a PSCCH or PSSCH resource is allocated at the 3rd PSCCH or PSSCH subframe after the current subframe. As shown in FIG. 11, ifthe logical offset is used to indicate a PSCCH resource, the indicated PSCCH resource (the 3rd PSCCH subframe after subframe n) is located at subframe n+7 in the time domain. Ifthe logical offset is used to indicate a PSSCH resource, the indicated PSSCH resource (the 3rd PSSCH subframe after subframe n) is located at subframe n+11 in the time domain.
Exemplary Embodiment 3
FIG. 12 shows an example of a transmission using a predetermined offset value. The network sets a predetermined offset k=4 as a physical offset with respect to the subframe that a message is transmitted on. In this example, a commtmication node (e.g., Relay UE (601) or Remote UE (602) ) receives a message (e.g., DCI or SCI) at subframe n. Based on the predetermined k, a PSCCH/PSSCH resource is scheduled at 4 subframes after the current subframe n (e.g., at subframe n+4) .
Exemplary Embodiment 4
FIG. 13 shows another example of a transmission using a pre-determined offset value. The network sets a predetermined offset k=4 as a logical offset based on the resource pools. In this example, a communication node (e.g., Relay UE (601) or Remote UE (602) ) receives a message (e.g., DCI or SCI) at subframe n. Based on the predetermined k, a PSCCH or PSSCH  resource is scheduled at the 4th PSCCH or PSSCH resource after the current subframe. As shown in FIG. 13, if k is used to indicate a PSCCH resource, the indicated PSCCH resource (i.e., the 4th PSCCH subframe after subframe n) is located at subframe n+8 in the time domain. Ifk is used to indicate a PSSCH resource, the indicated PSSCH resource (i.e., the 4th PSSCH subframe after subframe n) is located at subframe n+12 in the time domain.
Exemplary Embodiment 5
FIG. 14 shows another example of a transmission using a predetermined offset. In this example, a communication node (e.g., Relay UE (601) or Remote UE (602) ) receives a message (e.g., DCI or SCI) at subframe n. The network sets a predetermined value k=4 to indicate a PSCCH/PSSCH resource is scheduled at least k subframes after subframe that the message is transmitted on. Ifk is used to indicate a PSCCH resource, the indicated PSCCH resource (i.e., the first PSCCH resource at least 4 subframes after the current subframe) is located at subframe n+7 in the time domain. Ifk is used to indicate a PSSCH resource, the indicated PSSCH resource (i.e., the first PSSCH resource at least 4 subframes after the current subframe) is located at subframe n+6 in the time domain.
Exemplary Embodiment 6
FIG. 15 shows an example of a transmission using an implicit association between a reference resource and a target resource. In this example, Relay UE (601) receives a message (e.g., DCI) from the network (e.g., eNB) . The message includes an indicator that explicitly indicates a reference Sidelink resource (i.e., a first PSCCH resource for Relay UE 601 to transmit control information to Remote UE (602) at subframe n. At the same time, the network also preconfigures a offset k=4 to implicitly indicate a physical subframe offset between the reference Sidelink resource and the target Sidelink resource. In this case, Relay UE 601 can determine the position of the target Sidelink resource (e.g., a first PSSCH resource) to be at subframe m+4 in the time domain based on the message and the preconfigured offset k.
Exemplary Embodiment 7
FIG. 16 shows another example ora transmission using an implicit association between a reference resource and a target resource. In this example, Remote UE (602) receives a message (e.g., SCI) from Relay UE (601) . The message includes an indicator that explicitly indicates a reference Sidelink resource (i.e., a second PSCCH resource for Remote UE (602) to transmit control information to Relay UE (601) ) at subframe m . At the same time, the network  also preconfigures a offset k=2 to indicate a logical subframe offset between the reference Sidelink resource and the target Sidelink resource for PSSCH resources. In this case, Remote UE (602) can determine the position of the target Sidelink resource (i.e., the second PSSCH resource) to be the 2nd PSSCH subframe after subframe m, that is, subframe m+6.
Exemplary Embodiment 8
FIG. 17 shows another example of a transmission using an implicit association between a reference resource and a target resource. In this example, Relay UE (601) receives a message (e.g., DCI) from the network (e.g., eNB) . The message includes an indicator to indicate multiple Sidelink resources to be used by Relay UE (601) and Remote UE (602) . For example, the message includes an indicator that explicitly indicates a reference Sidelink resource (i.e., a first PSCCH resource for Relay UE (601) ) at subframe m. At the same time, the network also preconfigures a logical offset value k=4 for PSSCH resources to indicate that a target Sidelink resource (i.e., a second PSSCH resource for Remote UE (602) ) is allocated at the 4th PSSCH subframe after the reference Sidelink resource (i.e., at subframe m+11) . Relay UE (601) , therefore, can determine the time domain positions of both the reference Sidelink resource (i.e., the first PSCCH resource for itself) and the target Sidelink resource (i.e., the second PSSCH resource for Remote UE (602) .
Relay UE (601) then forwards the relevant control information to Remote UE (602) using the first PSCCH resource explicitly indicated in the message. Relay UE 601 may include information regarding the target Sidelink resource (i.e., the second PSSCH resource) in the control information so that Remote UE (602) understands when it is supposed to transmit data to Relay UE (601) using the second PSSCH resource.
Exemplary Resource Indications in Frequency Domain
FIG. 18A-B show exemplary diagrams of frequency domain resource allocation for Sidelink transmissions. FIG. 18A shows that the system bandwidth in the frequency domain includes a number of resource blocks (RBs) . Each RB has a physical index, staring from physical RB index 0 (1801) . Some of the system bandwidth is allocated for Sidelink transmissions. Within the Sidelink transmission bandwidth, the RBs also have a logical RB index, such as logical RB index 0 (1802) . Alternatively, the Sidelink transmission bandwidth can be partitioned into a number of sub-channel allocations, such as shown in FIG. 18B. Each of the sub-channel allocations has a sub-channel index (e.g., 1803) .
Either the network (e.g., eNB) or the Relay UE can send a message to include an indicator in the frequency domain to indicate the PSCCH and/or PSSCH resources to be used for Sidelink transmission (s) . In some embodiments, the indicator includes an index value. For example, the index value can be a resource block (RB) index or a sub-channel index. In some embodiments, the indicator also includes a number to indicate the number of RBs or sub-channels to be used for the Sidelink transmissions. In some implementations, the network preconfigures this number instead. Based on the index value and the number of RBs/sub-channels to be used, the resources allocated for Sidelink transmission (s) then can be determined.
Similarly to time-domain indications, sometimes it is desirable to indicate multiple resources using minimal amount of information. To save signaling overhead yet maintain some flexibility in resource allocations, the indicator may has a direct association with one resource (i.e., a reference resource) , and multiple implicit associations with the remaining resources (i.e., target resources) . The target resources then can be determined, using a set of predetermined rules, based on the reference resource.
The above mentioned methods for resource indications in frequency domain are further explained in the following embodiments.
Exemplary Embodiment 9
FIG. 19 shows an example of a transmission using a message that indicates a RB index. In this example, a communication node (e.g., Relay UE (601) or Remote UE (602)) receives a message (e.g., DCI or SCI) that indicates a physical RB index in the frequency domain. The network also sets a predetermined value m to indicate m consecutive RBs for Sidelink transmissions. This way, the communication node can determine the amount of RBs allocated for Sidelink transmission (s) based on the RB index and number of RBs (e.g., from RB #s to #s+m-1) .
Exemplary Embodiment 10
FIG. 20 shows another example of a transmission using a message that indicates a RB index. In this example, a communication node (e.g., Relay UE (601) or Remote UE (602)) receives a message (e.g., DCI or SCI) that indicates a physical RB index in the frequency domain. The message also includes a value t to indicate the number of consecutive RBs to be used for Sidelink transmission (s) . This way, the communication node can determined the amount of RBs allocated for Sidelink transmission (s) based on both the RB index and the number of RBs to be  used (e.g., from RB #s to #s+t-1) .
Exemplary Embodiment 11
FIG. 21 shows an example of a transmission using a message that indicates a sub-channel index. In this example, Relay UE (601) and Remote UE (602) each has respective Sidelink resource pools. Both the resource pools of Relay UE (601) and Remote UE (602) partition the Sidelink resources into sub-channels in the frequency domain. Relay UE (601) first receives a first message (e.g., DCI) from the network (e.g., eNB) . The first message includes a sub-channel index=m to explicitly indicate a reference Sidelink resource (i.e., the first PSCCH resource for Relay UE (601) ) in the frequency domain. Relay UE (601) then determines a target resource (e.g., the second PSSCH resource for Remote UE (602) ) based on the reference resource. For example, Relay UE (601) can determine the time domain position of the target resource using methods described above. In the frequency domain, Relay UE (601) may find that the sub-channel index for the target resource is preconfigured to be the same as the sub-channel index for the reference resource (e.g., index=m) , thereby determining the frequency-domain position of the target resource for Remote UE (602) .
Exemplary Embodiment 12
FIG. 22 shows an example of a transmission using a message that indicates an offset in the frequency domain. In this example, Relay UE (601) and Remote UE (602) share the Sidelink resource pools. Relay UE (601) transmits a message (e.g., SCI) to Remote UE (602) . The message explicitly indicates a reference Sidelink resource (i.e., the second PSCCH resource for Remote UE (602) ) in time and/or frequency domains. For example, the message includes a RB index=m to explicitly indicate a reference Sidelink resource (i.e., the second PSCCH resource) in frequency domain, and indicates an additional offset=2. According to the message, Remote UE (602) can determine the time domain position of the target resource using methods described above. In the frequency domain, the message includes an indicator to indicate a frequency-domain offset k=2 for the target Sidelink resource (i.e., the second PSSCH resource) with respect the reference Sidelink resource (i.e., the second PSCCH resource) . Remote UE (602) then determines the frequency position of the target Sidelink resource (i.e., the second PSSCH resource) to begin at physical RB index=m+2. The message also indicates the number of RBs used for the second PSSCH resource=4, so the second PSSCH resource includes the RBs from RB index m+2 to RB index m+5.
Exemplary Embodiment 13
A set of rules of the relationship between reference Sidelink resource and the target Sidelink resource can be determined by network. The set of rules may also be predetermined. For example, the RB index (i2) of the target Sidelink resource can be determined based on the RB index (i1) of the reference Sidelink resource. For example, the network may preconfigure the rule to be i2=i1 mod 5, wherein mod is the modulo operation.
FIG. 23 shows another example of a transmission using an implicit association between a reference resource and a target resource. In this example, Remote UE (602) receives a message (e.g., SCI) from Relay UE (601) , explicitly indicating a reference Sidelink resource (i.e., the second PSCCH resource for Remote UE (602) ) in the time and/or frequency domain. Here, the message includes an RB index value=15 to indicate the frequency position of the reference resource (i.e., the second PSCCH resource) . Remote UE (602) then determines the time-frequency position of a target source (e.g., the second PSSCH resource for itself) based on the reference resource. For example, Remote UE (602) can determine the time domain position of the target resource using methods described above. In frequency domain, Remote UE (602) may determine, based on a set of predetermined rules, that the sub-channel index of the target resource (i2) has a predetermined relationship with the RB index of the reference resource (i1) . For example, the following relationship between i1 and i2 can be used: i2=i1 mod 5=15 mod 5 = 0, wherein mod is the modulo operation.
Exemplary Indications in Both Time and Frequency Domains
In some embodiments, instead of indicating the Sidelink resource in time and/or frequency domain separately, a single index can be used to indicate the resource in both time and frequency domains. For example, a resource pool can be partitioned into a number of parts, each having a unique index as an identification. This way, an index included in a message can uniquely identify a part in the resource pool as the resource for Sidelink transmission (s) . The parts in the resource pool may not be consecutive, so long as they can be uniquely identified using the index value.
FIG. 24 shows an exemplary partition of a PSSCH resource pool. The PSSCH resource pool includes 10 subframes in each period. Each subframe includes 20 RBs. The network can preconfigure each of the PSSCH resource to be one subframe having 5 RBs. The resource pool is then partitioned into 40 PSCCH resources, each given an index value to  uniquely identify itself within the resource pool. For example, an index value=5 indicates that the PSCCH resource is the five consecutive RBs located at subframe n+l from RB index m to RB index m+4.
Exemplary Embodiment 14
FIG. 25 shows an example of a transmission using a message that indicates an index for time-frequency indication. In this example, the PSCCH resource pool for Relay UE (601) is partitioned into 24 parts, each part occupying one subframe in time domain and one sub-channel (two RBs) in frequency domain. The PSSCH resource pool for Remote UE (602) is also partitioned into 24 parts, each part occupying one subframe in the time domain and one sub-channel (two RBs) in the frequency domain.
Relay UE (601) first receives a message (e.g., DCI) from the network (e.g., eNB) . The message include an index=9 to indicate the first PSCCH resource to be used by Relay UE (601) for Sidelink transmission. The index=9 also indicates that the start index for the second PSSCH resource is 9. The network further preconfigures the number of sub-channels for the second PSSCH resource to be 3, so Relay UE (601) can determine the exact position of the second PSSCH resource (resource indices 9-11) and forward this information to Remote UE (602) via a second message (e.g., SC1) .
Examples of Forwarding Information for Sidelink Transmissions
Using the various message configurations discussed above, Relay UE (601) is capable of forwarding information regarding subsequent Sidelink Transmission to Remote UE (602) appropriately.
Details regarding forwarding information of resource allocation for Sidelink transmissions are further explained in the following embodiments.
Exemplary Embodiment 15
FIG. 26 shows an example of a relay node forwarding resource allocation information to a remote node. In this example, the network (e.g., eNB) transmits a message (e.g., DCI) to Relay UE (602) to indicate a first PSCCH resource for Relay UE (601) and a second PSSCH resource for Remote UE (602) .
The message includes an offset to indicate that the first PSCCH resource has a physical subframe offset=4 in the time domain with respect to the subframe for the message. The offset also indicates that the second PSSCH resource has a physical subframe offset=4 in the  time domain with respect to the fast PSCCH resource. The message further includes an RB index=10 to indicate the frequency-domain position of the first PSCCH resource, and a sub-channel index=1 to indicate the frequency-domain position of the second PSSCH resource for Remote UE (602) .
Relay UE (601) can determine the time and frequency position of the second PSSCH resource based on the indicators included in the message. For example, Relay UE (601) obtains the position of the first PSCCH resource directly using offset=4 and RB index=10. Relay UE (601) then transmits, using the first PSCCH resource, a second message (e.g., SCI) to Remote UE (602) to indicate the time and frequency allocation of the second PSSCH resource. The second message includes the offset=4 and the sub-channel index=1.
After receiving the second message, Remote UE (602) now is aware of the Sidelink resources allocated for its Sidelink transmission (s) . Remote UE (602) may subsequently transmits Sidelink data to Relay UE (601) using the second PSSCH resource. There is no need for Remote UE (602) to send another message (e.g., SCI) to Relay UE to indicate the relevant resources because both nodes are already aware of the resources allocated for the transmission. 
Exemplary Embodiment 16
FIG. 27 shows another example of a relay node forwarding resource allocation information to a remote node. In this example, the network (e.g., eNB) transmits a message (e.g., DCI) to Relay UE (602) to indicate a first PSCCH resource for Relay UE (601) , a second PSCCH resource for Remote UE (602) , and a second PSSCH resource for Remote UE (602) . The second PSCCH resource is set as the reference resource by the network, and the second PSSCH resource is set as the target resource whose time-frequency position can be determined based on the reference resource.
The message (e.g., DCI) includes a first index value=4 to indicate the time-frequency position of the first PSCCH resource. The message also includes a second index value = 15 corresponding to the PSCCH resource pool to indicate the time-frequency position of the second PSCCH resource. After receiving the message, Relay UE (601) obtains the time-frequency position of the first PSCCH resource using the index value=4 included in the message corresponding to the PSCCH resource pool. At the same time, Relay UE (601) also obtains the time-frequency position of the second PSCCH resource (the reference resource) using the index value=15 included the message. Relay UE (601) can determine, based on a set of  predetermined rules, that the index value for the second PSSCH resource (the target resource) is the same as the index value for the reference resource corresponding to the PSSCH resource pool.
Relay UE (601) then transmits a second message (e.g., SCI) to Remote UE (602) using the first PSCCH resource to forward information regarding the second PSCCH resource and the second PSSCH resource. The second message includes an index value=15 corresponding to PSCCH resource pool to indicate the second PSCCH resource (the reference resource) . Remote UE (602) then determines, based on the set of predetermined rules, that the index value for the second PSSCH resource (the target resource) is the same as the index value corresponding to the PSSCH resource pool for the reference resource.
Remote UE (602) then proceeds to transmit control information using the second PSCCH resource to Relay UE (601) , and transmit data using the second PSSCH resource to Relay UE (601) .
Exemplary Embodiment 17
FIG. 28 shows yet another example of a relay node forwarding resource allocation information to a remote node. In this example, the network (e.g., eNB) transmits a first message (e.g., DCI) to Relay UE (601) to indicate a first PSCCH resource for Relay UE (601) and a second PSSCH resource for Remote UE (602) . The first PSCCH resource is set as the reference resource by the network, and the second PSSCH resource is set as the target resource whose time-frequency position can be determined from the reference resource.
The network sets a predetermined value kl=4 to indicate that the first PSCCH resource is scheduled at least kl=4 subframes after the subframe for the first message. The network sets another predetermined value k2=6 to indicate that the second PSSCH resource is scheduled at least k2=6 subframes after the subframe for the first message. In addition, the network also preconfigures that the sub-channel index of the target resource (i2) has the following relationship with the RB index of the reference resource (i1) : i2=i1 mod 5, wherein mod is the modulo operation.
The first message on subframe #n (e.g., DCI) includes an RB index=10 to explicitly indicate the frequency domain position of the first PSCCH resource. After receiving the message, the time-frequency position of the first PSCCH is known based on the first message (e.g., DCI) and the predetermined value kl=4, i.e., subframe #n+4. Relay UE (601) can also determine, based on a set of predetermined rules, that the second PSSCH resource (the target  resource) has a sub-channel index i2=10 mod 5=0 in frequency domain. In time domain, the predetermined value k2 indicates that the second PSSCH is located at subframe #n+8. The time-frequency position of the second PSSCH resource is now fully determined based on the rules and the predetermined value k2.
Relay UE (601) then transmits a second message (e.g., SCI) to Remote UE (602) using the first PSCCH resource, on subframe #n+4, to forward information regarding the second PSSCH resource. Based on the interrelationship between the first PSCCH resource and the second PSSCH resource, Relay UE understands that the indicator of the second PSSCH resource is included in the second message. The second message includes an physical subframe offset=4 and a sub-channel index=0 to indicate the time-frequency position of the second PSSCH resource.
After receiving the second message, Remote UE (602) determines the corresponding time-frequency position of the second PSSCH resource. Remote UE (602) then proceeds to transmit Sidelink data using the second PSSCH resource to Relay UE (601) . Because both Relay UE (601) and Remote UE (602) are aware of the second PSSCH resource, there is no need for Remote UE (602) to transmit an additional message to indicate such information.
Exemplary Embodiment 18
In this example, the network (e.g., eNB) transmits a message (e.g., DCI) to Relay UE (602) to indicate a second PSCCH resource and a second PSSCH resource for Remote UE (602) . The second PSCCH resource is set as the reference resource by the network, and the second PSSCH resource is set as the target resource whose time-frequency position can be determined based on the reference resource.
The message (e.g., DCI) includes an index value=12 corresponding to the PSCCH resource pool to indicate the time-frequency position of the second PSCCH resource. After receiving the message, Relay UE (601) obtains the time-frequency position of the second PSCCH resource (i.e., the reference resource) using the index value=12 included the message. Relay UE (601) can determine, based on a set of predetermined rules, that the index value for the second PSSCH resource (i.e., the target resource) is the same as the index value for the reference resource in corresponding PSSCH resource pool.
Relay UE (601) then transmits a second message (e.g., SCI) to Remote UE (602) using a PSCCH resource, which is determined by the Relay UE itself in the PSCCH resource  pool, to forward information regarding the second PSCCH resource and the second PSSCH resource. The second message includes an index value=12 in corresponding PSCCH resource pool to indicate the second PSCCH resource (the reference resource) . Remote UE (602) then determines, based on the set of predetermined rules, that the index value for the second PSSCH resource (the target resource) is the same as the index value in corresponding PSSCH resource pool for the reference resource.
Remote UE (602) then proceeds to transmit control information using the second PSCCH resource to Relay UE (601) , and transmit data using the second PSSCH resource to Relay UE (601) .
FIG. 29 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied. A wireless communication system 400 can include one or more base stations (BSs) 2905a, 2905b, one or  more wireless devices  2910a, 2910b, 2910c, 2910d, and an access network 2925. A  base station  2905a, 2905b can provide wireless service to  wireless devices  2910a, 2910b, 2910c and 2910d in one or more wireless sectors. In some implementations, a  base station  2905a, 2905b includes directional antennas to produce two or more directional beams to provide wireless coverage in different sectors.
The access network 2925 can communicate with one or  more base stations  2905a, 2905b. In some implementations, the access network 2925 includes one or  more base stations  2905a, 2905b. In some implementations, the access network 2925 is in communication with a core network (not shown in FIG. 29) that provides connectivity with other wireless communication systems and wired communication systems. The core network may include one or more service subscription databases to store information related to the subscribed  wireless devices  2910a, 2910b, 2910c and 2910d. A first base station 2905a can provide wireless service based on a first radio access technology, whereas a second base station 2905b can provide wireless service based on a second radio access technology. The  base stations  2905a and 2905b may be co-located or may be separately installed in the field according to the deployment scenario. The access network 2925 can support multiple different radio access technologies.
In some implementations, a wireless communication system can include multiple networks using different wireless technologies. A dual-mode or multi-mode wireless device includes two or more wireless technologies that could be used to connect to different wireless  networks.
FIG. 30 is a block diagram representation of a portion of a radio station. A radio station 3005 such as a base station or a wireless device (or UE) can include processor electronics 3010 such as a microprocessor that implements one or more of the wireless techniques presented in this document. The radio station 3005 can include transceiver electronics 3015 to send and/or receive wireless signals over one or more communication interfaces such as antenna 3020. The radio station 3005 can include other communication interfaces for transmitting and receiving data. Radio station 3005 can include one or more memories (not explicitly shown) configured to store information such as data and/or instmctions. In some implementations, the processor electronics 3010 can include at least a portion of the transceiver electronics 3015. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the radio station 3005.
It is thus evident that this patent documents describes various messaging configurations that can be applied for forwarding resource allocation information for Sidelink transmissions. By adopting a relay node to forward this information, Sidelink transmissions can be performed when the base station cannot perform direct scheduling of the Sidelink transmissions, thereby help save radio spectrum resources, reduce data transmission pressure on the network, reduce system resource consumption, increase spectral efficiency, reduce transmission power consumption, and/or improve network operation costs.
From the foregoing, it will be appreciated that specific embodiments of the presently disclosed technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. Accordingly, the presently disclosed technology is not limited except as by the appended claims.
The disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a  memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) . A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions  and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
While this document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few examples and implementations are disclosed. Variations, modifications, and enhancements to the described examples and implementations and other implementations can be made based on what is disclosed.

Claims (18)

  1. A method for wireless communication, comprising:
    receiving, by a first mobile station, a first control message that includes information about resource allocations for communications between the first mobile station and a second mobile station; and
    transmitting, by the first mobile station, a second control message that comprises a subset of the information from the first control message indicative of the resource allocations for the communications between the first mobile station and the second mobile station.
  2. The method of claim 1, wherein the information included in the first control message comprises a first indicator to indicate a first resource for the first mobile station to transmit control information to the second mobile station.
  3. The method of claim 2, wherein the first resource is a physical Sidelink control channel (PSCCH) resource.
  4. The method of claim 2, wherein the information included in the first control message further indicates one or more resources allocated for the communications between the first mobile station and the second mobile station.
  5. The method of claim 4, wherein the one or more resources include at least one of: a physical Sidelink shared channel (PSSCH) resource allocated for the second mobile station to receive data, a PSCCH resource allocated for the second mobile station to transmit control information, or a PSSCH resource allocated to the second mobile station to transmit data.
  6. The method of claim 4, wherein the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on the first resource.
  7. The method of claim 2 or 4, wherein the first resource to transmit control information or the one or more resources allocated for the communications between the first mobile station and the second mobile station are further determined based on a resource used for transmitting the first control message.
  8. The method of claim 1, wherein the subset of the information from the first control message includes a second indicator that indicates a second resource for the second mobile station to transmit data.
  9. The method of claim 8, wherein the second resource is a physical Sidelink shared channel (PSSCH) resource.
  10. The method of claim 8, wherein the subset of the information further indicates one or more resources allocated for the second mobile station to perform communications.
  11. The method of claim 10, wherein the one or more transmission resources includes at least one of: a physical Sidelink shared channel (PSSCH) resource allocated for the second mobile station to receive data, or a PSCCH resource allocated for the second mobile station to transmit control information.
  12. The method of claim 10, wherein the second indicator also indicates the one or more resources allocated for the second mobile station to perform communications.
  13. A method for wireless communication, comprising:
    receiving, by a first mobile station, a first control message that includes information about resource allocations for a second mobile station; and
    transmitting, by the first mobile station, a second control message that comprises the information from the first control message.
  14. The method of claim 13, wherein the information includes one or more indicators that indicate one or more resources allocated for the second mobile station, wherein the one or more resources include at least one of: a PSSCH resource allocated for the second mobile station to transmit data, or a PSCCH resource allocated for the second mobile station to transmit control information.
  15. The method of claim 14, wherein the one or more resources has a predetermined association with a resource used for transmitting the first control message.
  16. The method of claim 14, wherein the one or more resources are allocated based on a resource used for transmitting the second control message.
  17. An apparatus for wireless communication that carries out the method of any of claims 1 to 16.
  18. A non-transitory computer readable medium having code stored thereon, the code when executed by a processor, causing the processor to implement a method recited in any of claims 1 to 16.
PCT/CN2017/104836 2017-09-30 2017-09-30 Techniques for forwarding resource allocation WO2019061422A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780093716.2A CN111034315B (en) 2017-09-30 2017-09-30 Techniques for forwarding resource allocation
PCT/CN2017/104836 WO2019061422A1 (en) 2017-09-30 2017-09-30 Techniques for forwarding resource allocation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104836 WO2019061422A1 (en) 2017-09-30 2017-09-30 Techniques for forwarding resource allocation

Publications (1)

Publication Number Publication Date
WO2019061422A1 true WO2019061422A1 (en) 2019-04-04

Family

ID=65902609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104836 WO2019061422A1 (en) 2017-09-30 2017-09-30 Techniques for forwarding resource allocation

Country Status (2)

Country Link
CN (1) CN111034315B (en)
WO (1) WO2019061422A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221173A1 (en) * 2019-04-30 2020-11-05 华为技术有限公司 Communication method and terminal device
WO2021159278A1 (en) * 2020-02-11 2021-08-19 Oppo广东移动通信有限公司 Resource selection method, terminal device and storage medium
WO2021189365A1 (en) * 2020-03-26 2021-09-30 Oppo广东移动通信有限公司 Information configuration method, apparatus and device, and storage medium
WO2021212505A1 (en) * 2020-04-24 2021-10-28 华为技术有限公司 Communication method, device, and system
WO2022063791A1 (en) * 2020-09-25 2022-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Technique for radio resource allocation in a relayed radio communication
WO2022235441A1 (en) * 2021-05-05 2022-11-10 Kyocera Corporation Inter-ue coordination request signal in vehicle-to-vehicle communications
WO2023019457A1 (en) * 2021-08-18 2023-02-23 Qualcomm Incorporated Forwarding sidelink resource reservation information

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4138474A4 (en) * 2020-04-24 2023-04-26 Huawei Technologies Co., Ltd. Resource indication information transmission method, device and system
CN113068140A (en) * 2021-03-15 2021-07-02 北京贝耀信科技有限公司 Financial behavior big data remote storage method and system based on Internet of things

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021902A1 (en) * 2014-08-03 2016-02-11 엘지전자(주) Method for device-to-device communication in wireless communication system and device therefor
CN106612561A (en) * 2015-10-23 2017-05-03 华为技术有限公司 Resource indication method, device and system
CN106793092A (en) * 2015-11-19 2017-05-31 中兴通讯股份有限公司 The acquisition methods and equipment of control channel resource
CN106797635A (en) * 2014-09-03 2017-05-31 华为技术有限公司 For the system and method for D2D resource allocations

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10212699B2 (en) * 2014-04-21 2019-02-19 Lg Electronics Inc. Method for transmitting and receiving downlink control information in wireless communication system supporting device-to-device communication and device therefor
CN106304351A (en) * 2015-05-27 2017-01-04 中兴通讯股份有限公司 A kind of method and apparatus of resource distribution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021902A1 (en) * 2014-08-03 2016-02-11 엘지전자(주) Method for device-to-device communication in wireless communication system and device therefor
CN106797635A (en) * 2014-09-03 2017-05-31 华为技术有限公司 For the system and method for D2D resource allocations
CN106612561A (en) * 2015-10-23 2017-05-03 华为技术有限公司 Resource indication method, device and system
CN106793092A (en) * 2015-11-19 2017-05-31 中兴通讯股份有限公司 The acquisition methods and equipment of control channel resource

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221173A1 (en) * 2019-04-30 2020-11-05 华为技术有限公司 Communication method and terminal device
WO2021159278A1 (en) * 2020-02-11 2021-08-19 Oppo广东移动通信有限公司 Resource selection method, terminal device and storage medium
WO2021189365A1 (en) * 2020-03-26 2021-09-30 Oppo广东移动通信有限公司 Information configuration method, apparatus and device, and storage medium
WO2021212505A1 (en) * 2020-04-24 2021-10-28 华为技术有限公司 Communication method, device, and system
WO2022063791A1 (en) * 2020-09-25 2022-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Technique for radio resource allocation in a relayed radio communication
WO2022235441A1 (en) * 2021-05-05 2022-11-10 Kyocera Corporation Inter-ue coordination request signal in vehicle-to-vehicle communications
WO2023019457A1 (en) * 2021-08-18 2023-02-23 Qualcomm Incorporated Forwarding sidelink resource reservation information

Also Published As

Publication number Publication date
CN111034315A (en) 2020-04-17
CN111034315B (en) 2022-12-16

Similar Documents

Publication Publication Date Title
CN111034315B (en) Techniques for forwarding resource allocation
KR102258539B1 (en) Downlink Control Information Piggyback in Physical Downlink Shared Channel
KR102164434B1 (en) Methods to support inter-enodeb comp
US20170251466A1 (en) Defining sub-subchannels for data communication using separately provided frequency and time resources and related wireless terminals and network nodes
JP6297690B2 (en) Information transmission and reception method and device
AU2018253265A1 (en) Scheduling and transmission scheme for periodic and aperiodic control information
EP3556039A1 (en) Pucch design with flexible symbol configuration
US20210329679A1 (en) Cancellation timeline for uplink cancellation indication
CN110140407B (en) Method and apparatus for transmitting downlink control information
JP7218756B2 (en) Terminal, network device and method
JP2020501409A (en) User equipment, base station and wireless communication system
US11659403B2 (en) Method and apparatus for sharing frequency resource dynamically in wireless communication system
US11804930B2 (en) Sidelink HARQ feedback transmission method and device thereof
US20230275631A1 (en) Channel reciprocity for a multi-panel base station
CN111096030B (en) Method, apparatus and computer readable storage medium for unlicensed band communication
US20220232555A1 (en) Indication of uplink control channel repetition in wireless communication
US11910380B2 (en) UE capabilities for supporting complementary bandwidth part operations in wireless communication
CN111149401B (en) Techniques for resource allocation indication
KR20220151606A (en) Systems and methods for configuring sidelinks
WO2022154922A1 (en) Indication of uplink control channel repetition in wireless communication
US20200351895A1 (en) Configuring multiple transmissions
WO2022036191A1 (en) Random access response message repetition
CN115334684A (en) Method, apparatus, storage medium and computer program product for random access
CN115443683A (en) Facilitating bandwidth portion selection in a wireless communication system
US12022521B2 (en) Random access response message repetition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17927702

Country of ref document: EP

Kind code of ref document: A1