WO2018027926A1 - 半静态传输方法及装置 - Google Patents

半静态传输方法及装置 Download PDF

Info

Publication number
WO2018027926A1
WO2018027926A1 PCT/CN2016/094943 CN2016094943W WO2018027926A1 WO 2018027926 A1 WO2018027926 A1 WO 2018027926A1 CN 2016094943 W CN2016094943 W CN 2016094943W WO 2018027926 A1 WO2018027926 A1 WO 2018027926A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
static
logical channel
transmission resource
resource
Prior art date
Application number
PCT/CN2016/094943
Other languages
English (en)
French (fr)
Inventor
肖潇
曹振臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/094943 priority Critical patent/WO2018027926A1/zh
Priority to EP16912381.7A priority patent/EP3487239B1/en
Priority to CN201680087675.1A priority patent/CN109479267B/zh
Publication of WO2018027926A1 publication Critical patent/WO2018027926A1/zh
Priority to US16/273,670 priority patent/US10973045B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of data transmission technologies, and in particular, to a semi-static transmission method and apparatus.
  • V2X communication refers to vehicles and vehicles (English: Vehicle to Vehicle, V2V for short), vehicles and infrastructure (English: Vehicle-to-Infrastructure, V2I for short), and vehicles and pedestrians (English: Vehicle-to-Infrastructure, abbreviation :V2P) communication.
  • V2X communication is essentially a communication technology that performs data transmission and information exchange between vehicles. Because V2X communication is related to the key information of vehicle driving safety, it needs to exchange information in a timely and accurate manner, thus having the communication requirement of “high reliability and short delay”.
  • the 3rd Generation Partner Project (English: 3GPP) Long Term Evolution (English: Long Term Evolution, LTE for short) cellular communication has delay Short, large capacity, fast speed and high reliability, so you can consider using LTE cellular system to support V2X communication to achieve good V2X communication performance.
  • LTE-based V2X communication LTE-V2X
  • LTE-V2X LTE-based V2X communication
  • the 3GPP LTE-V2X standard adopts semi-persistent scheduling in order to reduce the scheduling overhead of the Physical Downlink Control Channel (PDCCH: PDCCH) that may be brought about by V2X communication.
  • PDCCH Physical Downlink Control Channel
  • SPS persistent Scheduling
  • allocating semi-static transmission resources to a UE based on the SPS technology includes: the base station allocates SPS resources to the UE through the PDCCH, and then the UE can periodically use the allocated SPS resources.
  • the moment when each SPS resource appears in the time domain is called an "SPS transmission opportunity", and at each transmission opportunity, the UE can transmit data by using the corresponding transmission resource.
  • the base station only needs to indicate the uplink SPS scheduling information at one time, and the UE can periodically transmit the uplink data on the allocated SPS resources, thereby saving the uplink scheduling overhead of the base station.
  • the existing SPS scheduling method supports IP-based voice services (English: Voice over IP, VoIP for short) Such a periodic transmission of fixed periodic service data, and in the existing SPS scheduling mechanism, only supports scheduling of one SPS resource, and in actual V2X communication, such as Cooperative Awareness Message (English: Cooperative Awareness Message) , abbreviated as: CAM), Decentralized Environmental Notification Message (DENM), Backward Set-up Message (BSM), and other different message types, different types of V2X There are often different service reaching cycles, and the existing SPS scheduling scheme is difficult to support the scheduling of various semi-static service data.
  • Cooperative Awareness Message English: Cooperative Awareness Message
  • DENM Decentralized Environmental Notification Message
  • BSM Backward Set-up Message
  • the embodiment of the invention provides a semi-static transmission method and device, which can support scheduling transmission of various semi-static service data.
  • a semi-static transmission method comprising:
  • the user equipment UE acquires a semi-static transmission resource
  • the UE transmits data in a logical channel corresponding to the semi-static transmission resource on the semi-static transmission resource.
  • the semi-static transmission resource has a corresponding relationship with the logical channel, and the UE ensures that the data in the logical channel corresponding to the transmission resource is transmitted in the transmission resource during data transmission, thereby implementing various types of
  • the scheduling transmission of static service data avoids problems such as transmission failure, packet loss, and waste of semi-static transmission resources caused by improper data multiplexing and transmission sequence between logical channels.
  • the method further includes: the UE receiving semi-static resource configuration information from the network device.
  • the UE acquires semi-static resource configuration information based on the scheduling of the network device, and avoids collision or interference between the multiple UE transmission resources.
  • the method further includes: the UE receiving semi-static resource configuration information corresponding to the semi-static transmission resource from a network device.
  • the method further includes: the UE sending a terminal capability report to the network device, where the terminal capability report carries indication information about whether the UE supports multiple semi-static scheduling configurations in parallel.
  • the UE notifies the network device whether it supports multiple semi-persistent scheduling configurations based on the terminal capability report, so that the network device determines whether to perform related configuration of the multiplexed semi-static transmission to the UE.
  • the method further includes: the UE sending terminal assistance information to the network device, where the terminal assistance information includes service characteristic information of the at least one logical channel.
  • the UE reports the service characteristics in the logical channel to the network device based on the terminal assistance information, so that the network device determines the allocation policy of the semi-static transmission resource according to the service characteristics of the logical channel reported by the UE.
  • the UE receives an activation message from a network device, the activation message indicating the semi-static transmission resource; and the UE determining the semi-static transmission resource according to the activation message.
  • the UE determines a semi-static transmission resource based on an activation message from the network device.
  • the method further includes: the UE activating a semi-static resource configuration according to the activation message, where the semi-static resource configuration is determined according to semi-static resource configuration information.
  • the UE activates the semi-static resource configuration based on an activation message from the network device.
  • the semi-static resource configuration activated by the UE according to the activation message corresponds to the semi-static transmission resource indicated by the activation message.
  • the semi-static resource configuration activated by the UE is corresponding to the semi-static transmission resource indicated by the activation message, and has a corresponding relationship.
  • the indication information is used to indicate that the UE supports multiple semi-persistent scheduling configurations based on the through link.
  • the UE notifies the UE to support multiple semi-persistent scheduling configurations of the through link by using the specific content indicated by the indication information.
  • the traffic characteristic information is used to indicate traffic characteristics based on a straight link logical channel.
  • the service characteristic information includes one or a combination of the following parameters: a logical channel identifier (English: logical channel identify, referred to as LCID), a layer 2 target address, a packet arrival period, Packet arrival time, packet size, and packet priority.
  • a logical channel identifier English: logical channel identify, referred to as LCID
  • a layer 2 target address a packet arrival period
  • Packet arrival time Packet arrival time
  • packet size packet priority
  • the packet priority is adjacent to the service packet priority.
  • the semi-static resource configuration information includes one or a combination of a plurality of parameters: a semi-static configuration identifier, a semi-persistent scheduling interval, a modulation and coding scheme, an LCID, and a layer 2 target address.
  • the activation message further carries one of the following parameters or a combination of multiple parameters: a semi-static configuration identifier, an LCID, a layer 2 target address, and a semi-static scheduling type indicator.
  • the UE activates a semi-static resource configuration, including:
  • the UE activates the semi-static resource configuration corresponding to the semi-static resource configuration information of the same semi-static configuration identifier according to the semi-static configuration identifier in the activation message.
  • the method further includes:
  • the UE determines a correspondence between the activated semi-static resource configuration and the logical channel determined by the LCID and the layer 2 target address in the activation message.
  • the indication information is used to indicate that the UE supports multiple uplink-based semi-persistent scheduling configurations.
  • the UE notifies the UE to support multiple semi-persistent scheduling configurations of the uplink by using the specific content indicated by the indication information.
  • the traffic characteristic information is used to indicate traffic characteristics based on an uplink logical channel.
  • the service characteristic information includes one or a combination of the following parameters: LCID, packet arrival period, packet arrival time, and packet size.
  • the semi-static resource configuration information includes a combination of one parameter and multiple parameters: a semi-static configuration identifier, a semi-static scheduling interval, and an LCID.
  • the activation message further carries one of the following parameters or a combination of multiple parameters: a semi-static configuration identifier, an LCID, and a semi-static scheduling type indicator.
  • the UE activates a semi-static resource configuration, including:
  • the UE activates the semi-static resource configuration corresponding to the semi-static resource configuration information of the same semi-static configuration identifier according to the semi-static configuration identifier in the activation message.
  • the method further includes:
  • the UE performs data transmission on the corresponding semi-static transmission resource corresponding to the activated semi-static resource configuration according to the activated semi-static resource configuration.
  • the manner in which the UE acquires semi-static transmission resources includes:
  • the UE selects the semi-static transmission resource corresponding to the logical channel from the pre-configured transmission resource pool, and the correspondence may be regarded as a binding, that is, the UE selects to be used for binding to the logical channel.
  • Fixed semi-static transmission resources
  • the UE does not need to interact with the network device to directly determine a semi-static transmission resource corresponding to the logical channel from the pre-configured transmission resource pool, thereby saving interaction cost with the network device.
  • the method further includes: the UE determining, by itself, a logical channel for corresponding to the selected semi-static transmission resource.
  • the method further includes:
  • the UE determines semi-static resource configuration information corresponding to the semi-static transmission resource according to the service characteristic information in the logical channel.
  • the semi-static resource configuration information includes a combination of one or more of the following parameters: a semi-persistent scheduling interval, a modulation and coding scheme, an LCID, and a layer 2 target address.
  • a semi-static transmission method comprising:
  • the UE When the UE determines that there is data to be transmitted in the logical channel, the UE acquires a semi-static transmission resource having a corresponding relationship with the logical channel;
  • the UE transmits data in a logical channel corresponding to the semi-static transmission resource on the semi-static transmission resource.
  • the UE transmits data in a logical channel corresponding to the semi-static transmission resource, including:
  • the UE preferentially allocates a semi-static transmission resource to the to-be-transmitted data in the logical channel corresponding to the semi-static transmission resource until the semi-static transmission resource is allocated.
  • the UE transmits data in a logical channel corresponding to the semi-static transmission resource, including:
  • the UE preferentially allocates semi-static transmission resources to all data to be transmitted in the logical channel corresponding to the semi-static transmission resource, until all the data to be transmitted in the corresponding logical channel is allocated to transmit enough for transmission. Resources.
  • a semi-static transmission that corresponds to the logical channel in which the data to be transmitted is located
  • the transmission resource further includes an idle resource that is not occupied
  • data in the logical channel that does not have a corresponding relationship with the semi-static transmission resource is transmitted on the idle resource.
  • a semi-static transmission method including:
  • the network device allocates a semi-static transmission resource to the UE, and determines a logical channel that has a corresponding relationship with the semi-static transmission resource;
  • the network device sends, to the UE, information of a semi-static transmission resource allocated to the UE and information of a logical channel corresponding to the semi-static transmission resource.
  • the method before the network device allocates a semi-static transmission resource to the UE, the method further includes:
  • the network device receives a terminal capability report from the UE, where the terminal capability report carries indication information about whether the UE supports multiple semi-static scheduling configurations in parallel.
  • the network device allocates semi-static transmission resources to the UE, including:
  • the network device receives terminal assistance information from the UE, where the terminal assistance information includes service characteristic information of at least one logical channel;
  • the network device allocates a semi-static transmission resource to the UE according to service characteristic information of the logical channel.
  • the network device sends the information of the semi-static transmission resource allocated to the UE and the information of the logical channel corresponding to the semi-static transmission resource to the UE, including:
  • the network device sends semi-static resource configuration information corresponding to the semi-static transmission resource to the UE.
  • the method further includes:
  • the network device sends an activation message to the UE, and the activation message indicates the semi-static transmission resource allocated for the UE.
  • the indication information is used to indicate that the UE supports multiple semi-persistent scheduling configurations based on the through link.
  • the traffic characteristic information is used to indicate traffic characteristics based on a straight link logical channel.
  • the service characteristic information includes one or a combination of the following parameters: a logical channel identifier LCID, a layer 2 target address, a packet arrival period, a packet arrival time, a packet size, and data.
  • LCID logical channel identifier
  • the service characteristic information includes one or a combination of the following parameters: a logical channel identifier LCID, a layer 2 target address, a packet arrival period, a packet arrival time, a packet size, and data.
  • the packet priority is adjacent to the service packet priority.
  • the semi-static resource configuration information includes one or a combination of a plurality of parameters: a semi-static configuration identifier, a semi-persistent scheduling interval, a modulation and coding scheme, an LCID, and a layer 2 target address.
  • the activation message further carries one of the following parameters or a combination of multiple parameters: a semi-static configuration identifier, an LCID, a layer 2 target address, and a semi-static scheduling type indicator.
  • the indication information is used to indicate that the UE supports multiple uplink-based semi-persistent scheduling configurations.
  • the traffic characteristic information is used to indicate traffic characteristics based on an uplink logical channel.
  • the service characteristic information includes one or a combination of the following parameters: LCID, packet arrival period, packet arrival time, and packet size.
  • the semi-static resource configuration information includes one parameter or a combination of multiple parameters: a semi-static configuration identifier, a semi-static scheduling interval, and an LCID.
  • the activation message further carries one of the following parameters or a combination of multiple parameters: a semi-static configuration identifier, an LCID, and a semi-static scheduling type indicator.
  • the embodiment of the present invention provides a semi-static transmission device, which has a function of implementing UE behavior in the semi-static transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the semi-static transmission device includes a plurality of functional units for implementing the semi-static transmission method of any one of the foregoing first aspects, such that a semi-static transmission resource has a corresponding relationship with the logical channel.
  • the UE ensures that the data in the logical channel corresponding to the transmission resource is transmitted in the transmission resource during data transmission, so that scheduling and transmission of various semi-static service data can be realized, thereby avoiding improper data multiplexing and transmission sequence between logical channels. The resulting transmission failure, packet loss, and wasted semi-static transmission resources.
  • the semi-static transmission device includes an obtaining unit, a determining unit, and a transmitting unit, wherein: an acquiring unit, configured to acquire a semi-static transmission resource, and a determining unit, configured to determine that the semi-static transmission resource has a corresponding a logical channel of the relationship; a transmission unit, configured to transmit data in the logical channel corresponding to the semi-static transmission resource on the semi-static transmission resource.
  • an embodiment of the present invention provides a semi-static transmission apparatus, which has a function of implementing UE behavior in the semi-static transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the semi-static transmission device includes a plurality of functional units for implementing the semi-static transmission method of any one of the foregoing first aspects, such that a semi-static transmission resource has a corresponding relationship with the logical channel.
  • the UE ensures that the data in the logical channel corresponding to the transmission resource is transmitted in the transmission resource during data transmission, so that scheduling and transmission of various semi-static service data can be realized, thereby avoiding improper data multiplexing and transmission sequence between logical channels. The resulting transmission failure, packet loss, and wasted semi-static transmission resources.
  • the semi-static transmission device includes: an obtaining unit and a transceiver unit, wherein: an obtaining unit, configured to acquire a semi-static transmission corresponding to the logical channel when determining that there is data to be transmitted in the logical channel And a transceiver unit, configured to transmit data in the logical channel corresponding to the semi-static transmission resource on the semi-static transmission resource.
  • an embodiment of the present invention provides a semi-static transmission device, which has a function of implementing network device behavior in the semi-static transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the semi-static transmission device includes: an allocating unit and an information transceiving unit, wherein: an allocating unit, configured to allocate semi-static transmission resources to the UE, and determine a logical channel corresponding to the semi-static transmission resource And an information transceiving unit, configured to send, to the UE, information of a semi-static transmission resource allocated to the UE and information of a logical channel having a correspondence relationship with the semi-static transmission resource.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the semi-static transmission device of the fourth aspect, which includes a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the semi-static transmission device of the fifth aspect, which includes a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the semi-static transmission device of the sixth aspect, which includes a program designed to perform the above aspects.
  • the semi-static transmission resource has a corresponding relationship with the logical channel, and the UE ensures that the data in the logical channel corresponding to the transmission resource is transmitted in the transmission resource during data transmission, thereby implementing
  • the scheduling transmission of various semi-static service data avoids problems such as transmission failure, packet loss and waste of semi-static transmission resources caused by improper data multiplexing and transmission sequence between logical channels.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present invention
  • FIG. 2 is a schematic diagram of another possible application scenario of the present invention.
  • FIG. 3 is a flowchart of a half static transmission method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a semi-static transmission method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a three-half static transmission method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a four-half static transmission method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a five-half static transmission method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another semi-static transmission method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 10 is another schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of still another structure of a UE according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is another schematic structural diagram of a base station according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present invention.
  • the scenario includes an access device and multiple UEs.
  • the access device is configured to allocate semi-static transmission resources to each UE, and the UE performs data transmission and information interaction through D2D direct communication technology.
  • the link for direct data communication between the UE and the UE is called a direct link (English: Sidelink, SL for short).
  • each UE is connected to an access device, and data communication between UEs requires transit of the access device, where the radio link that the UE sends data to the access device is called an uplink (English: Uplink) , abbreviation: UL), the access device sends data to the UE
  • the wireless link is called the downlink (English: Downlink, DL for short).
  • the semi-static transmission method provided by the embodiment of the present invention is applicable not only to the application scenarios shown in FIG. 1 and FIG. 2 but also to other communication systems including SL and UL.
  • the UE involved in the present invention is mainly a terminal device involved in V2X, such as an in-vehicle terminal.
  • the UE may also be a variety of handheld devices, in-vehicle devices, wearable devices, computing devices or connected to the wireless device having wireless communication functions.
  • UE User Equipment
  • MS mobile station
  • terminal equipment terminal equipment
  • the access device involved in the present invention is a device in the access network, such as a base station.
  • a base station (BS) according to the present invention is a device deployed in a radio access network to provide a wireless communication function for a UE.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the name of a device having a base station function may be different.
  • an evolved Node B evolved Node B: eNB or eNodeB
  • Node B evolved Node B
  • 3G network it is called Node B and so on.
  • the network device in the present invention includes the foregoing access device, and may include a core network device, such as a Mobility Management Entity (MME), a data gateway, and the like.
  • MME Mobility Management Entity
  • the existing uplink semi-persistent scheduling transmission technology only one semi-static transmission resource can be supported, which cannot meet the requirements of multi-path service data transmission. Even if the multi-way semi-static transmission resource is configured for the UE according to the existing semi-static scheduling system, The service transmission may be confusing. For example, the SPS1 resource configured in the UE matches the service 1 period, and the SPS2 resource matches the service 2. When the UE transmits the service 1 and the service 2, the service 1 may be preempted. The SPS2 resource and the service 2 seize the SPS1 resource.
  • an embodiment of the present invention provides a semi-static transmission scheme, which supports a configuration of one or more semi-static transmissions in a UE, where semi-static in the solution of the present invention Corresponding relationship between the transmission resource and the logical channel, and ensuring transmission of data in the logical channel corresponding to the transmission resource in the transmission resource during data transmission, thereby avoiding transmission due to improper data multiplexing and transmission sequence between logical channels Problems such as failure, packet loss, and waste of semi-static transmission resources.
  • the "correspondence relationship” involved can be regarded as a kind of "binding relationship”, and “correspondence” can be regarded as a kind of "binding”, for example, a semi-static transmission resource has a correspondence with a logical channel. Relationship can be seen as a semi-static transmission resource bound to a logical channel, and a semi-static transmission resource and a logical channel channel have a binding relationship system.
  • FIG. 3 is a flow chart of a half static transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 3 is performed in a communication system including the SL shown in FIG. 1, for example, in an LTE-V2X scenario, the method shown in FIG. 1 includes:
  • the UE1 sends a terminal capability report to the eNB, where the terminal capability report carries indication information that the UE1 supports multiple SPS configurations.
  • the indication information in the terminal capability report is used to indicate whether the UE supports multiple SPS configurations based on a through link.
  • the existing 3GPP LTE protocol version does not support parallel SPS configuration mechanisms on Sidelink.
  • UEs based on existing protocol versions may not be able to support this technology. Therefore, on the basis of the existing LTE protocol, the UE needs to enhance the UE function according to the technical solution of the present invention to support multiple SPS configuration mechanisms in parallel.
  • the UE needs to report to the eNB whether it has the mechanism to support multiple parallel SPS configurations based on Sidelink to assist the eNB in making corresponding decisions for SPS configuration and activation.
  • the eNB will perform resource scheduling scheduling according to the existing LTE version of the sidelink communication technology; if the terminal capability reported by the UE indicates that the UE supports parallel multiple SPS based on Sidelink
  • the configuration mechanism is such that the UE and the eNB perform the following steps.
  • Step 102 The UE1 sends terminal assistance information to the eNB.
  • the UE1 reports the service characteristics of its SL logical channel to the eNB through the terminal assistance information to request the eNB to perform SL SPS configuration and/or activation for the service data of the corresponding SL logical channel.
  • the terminal assistance information reported by the UE1 indicates the service characteristics based on the SL logical channel.
  • the service characteristic information of the at least one SL logical channel is included in the terminal assistance information, and the service characteristic information of each SL logical channel includes but is not limited to the following one parameter or a combination of multiple parameters: logical channel identifier LCID, layer 2 Target address, packet arrival period, packet arrival time, packet size, and packet priority; the packet priority may be: ProSe Per-Packet Priority (PPPP).
  • PPPP ProSe Per-Packet Priority
  • the LCID and the layer 2 destination address can uniquely identify and determine an SL.
  • Logical channel; the PPPP corresponding to each SL logical channel indicates the priority of the SL logical channel, and the eNB can obtain the quality of service (QoS) requirements of the corresponding SL logical channel, service data delay requirement, reliability requirement, etc. through PPPP.
  • QoS quality of service
  • Packet arrival period you can set a special value, such as "Inf", to identify the corresponding business data packet arrival as "non-period".
  • the triggering condition that the UE1 sends the terminal assistance information to the eNB may be: when the UE1 determines that service data arrives in one or more SL logical channels, and the service data is periodically arrived, the UE1 sends the terminal to the eNB.
  • the method for the UE to obtain the data packet arrival period in each SL logical channel may be: for a certain logical channel, the UE may set a counter for it, and record the arrival interval of each data packet, when the latest M times the packet arrival interval If the interval is equal, the arrival interval is regarded as a packet arrival period; or, when the variance of the latest M packet arrival interval is less than a certain threshold, the average of the arrival intervals is used as the SL logical channel. Packet arrival period.
  • the method for the UE to obtain the data packet arrival period depends on the implementation of the UE, and is not specifically limited herein.
  • the terminal assistance information in the step may be sent by the UE1 through an RRC dedicated message or a Medium Access Control (MAC) layer control unit (MAC CE).
  • MAC Medium Access Control
  • MAC CE Medium Access Control
  • step S103 the eNB sends the SL SPS configuration information to the UE1.
  • the eNB sends the SL SPS configuration information to the UE1 by using an RRC dedicated message, where the eNB may include multiple SL SPS configuration information in parallel, and each SL SPS configuration information corresponds to one SL SPS configuration.
  • the configuration information of each SL SPS configuration sent by the eNB to the UE1 includes, but is not limited to, a combination of one or more parameters: SPS ID, SPS interval, modulation and coding strategy (English: Modulation and Coding Scheme, referred to as :MCS), LCID, Layer 2 destination address, PPPP.
  • SPS ID SPS ID
  • SPS interval SPS interval
  • modulation and coding strategy English: Modulation and Coding Scheme, referred to as :MCS
  • LCID Layer 2 destination address
  • PPPP Layer 2 destination address
  • the SPS ID in each SL SPS configuration information uniquely identifies a specific SL SPS configuration and a corresponding set of configuration parameters. For a specific SL SPS configuration, when it contains the LCID and Layer 2 target addresses, the LCID and Layer 2 target addresses will uniquely indicate an SL logical channel.
  • the eNB may be configured for the service characteristics of the corresponding SL logical channel reported in the terminal assistance information (eg, The packet arrival period, the data arrival time, and the packet size), configure the SL SPS configuration parameters matching the SL logical channel service characteristics for the UE1, including the SPS ID, the SPS interval, the MCS, and (optionally) identify the SL.
  • the LCID of the logical channel and the destination address of layer 2 are sent to UE1.
  • the value of the parameters such as the SPS ID, the SPS interval, and the MCS is determined according to the eNB algorithm, and is not specifically limited herein.
  • the UE1 will receive the SL SPS configuration information received in this step, overwriting the SL SPS configuration information that may have been received before, and having the same SPS ID; and if the SPS configuration information corresponding to the SL SPS configuration information received by the UE1 If the SPS ID is different from the existing SP SPS configuration, UE1 will separately store the SL SPS configurations received in this step based on the existing SL SPS configuration.
  • step S104 the eNB sends an SPS activation message to the UE1.
  • UE1 activates the corresponding SL SPS configuration by using the SPS activation message sent by the eNB, and indicates the SL SPS transmission resource for the activated SL SPS configuration, and further UE1 also activates the SL SPS configuration and the corresponding SL SPS transmission resource with the specified SL logical channel. Establish a correspondence between them.
  • the SL SPS activation message includes a combination of one or more of the following parameters: SPS ID, SL SPS transmission resource, LCID, layer 2 target address, and SPS type indicator.
  • the eNB may allocate the corresponding SL SPS transmission resource to the SL logical channel of the UE1 according to the service characteristic parameter (eg, the packet size) of the SL logical channel reported in the terminal assistance information; the specific resource allocation method depends on the algorithm of the eNB. Implementation, not limited here.
  • the service characteristic parameter eg, the packet size
  • the UE1 After receiving the activation message, the UE1 activates the SL SPS configuration including the same SPS ID according to the SPS ID in the activation message, and then the UE1 can activate the SL SPS configuration to include the SPS interval as a period according to the included MCS. Data is transmitted to other UEs, such as UE2, periodically using the SL SPS transmission resources allocated by the eNB.
  • UE1 establishes a correspondence between the activated SL SPS configuration and the corresponding SL SPS transmission resource and the designated SL logical channel, including:
  • the UE1 determines the LCID and layer in the semi-static transmission resource and the activation message indicated by the activation message. 2 Correspondence between logical channels determined by the target address.
  • each SL SPS configuration information includes an LCID and a layer 2 target address, and the LCID and layer 2 target addresses can uniquely identify one SL logical channel
  • UE1 determines the activated semi-static resource configuration and activation.
  • the UE1 determines the LCID and layer 2 target in the activated semi-static resource configuration and activation message. The correspondence between the logical channels determined by the address.
  • UE1 will activate the SL SPS configuration and its corresponding SL SPS transmission resource with the specified SL logic according to the SL SPS configuration information or the LCID and layer 2 target address carried in the activation message. There is a correspondence between channels.
  • the SPS type indicator may be a 1 bit identifier, which is used to distinguish the type of the activated SL SPS configuration. For example, when the indicator is set to “1”, the activated SPS is configured as a SL SPS configuration, and When set to "2", it is identified as UL SPS configuration.
  • the activation message may be sent by the eNB to the UE1 by using downlink control information (DCI).
  • DCI downlink control information
  • UE1 For the SL SPS configuration activated in this step, if UE1 has activated the SL SPS configuration with the same SPS ID and assigned the corresponding SL SPS transmission resource before performing this step, then the activation in this step is received. After the message, UE1 will first activate the currently activated SL SPS configuration, release the corresponding SL SPS transmission resource, and then reactivate the corresponding SL SPS configuration and use its corresponding SL SPS transmission resource to transmit data according to the activation message in this step. Otherwise, UE1 may activate the SL SPS configuration of this step in parallel on the basis of other SL SPS configurations that have been activated, and configure corresponding multi-channel SPS resource data transmissions using each SL SPS.
  • the eNB may be implemented by sending multiple SL SPS activation messages to the UE1.
  • UE1 may activate multiple SL SPS configurations, respectively corresponding to multiple parallel SL SPS transmission resources, and each SL SPS configuration activated and corresponding SL SPS transmission resources will correspond to the designated SL logical channel.
  • Step S105 for the activated SL SPS configuration, UE1 transmits data in the SL logical channel with which it has a corresponding relationship on the corresponding SL SPS resource.
  • the UE1 For the SL SPS transmission resource corresponding to the activated SL SPS configuration, the UE1 allocates the SL SPS resource to the SL logical channel according to the following method, thereby multiplexing the data of the logical channels into the MAC PDU.
  • the UE1 preferentially allocates resources for the data to be transmitted in the SL logical channel corresponding to the SL SPS configuration until all SL SPS transmission resources are exhausted; when the SL SPS transmission resources are sufficient to accommodate the SL logical channel corresponding thereto In all data transmissions, UE1 allocates sufficient transmission resources for all data to be transmitted in the corresponding SL logical channel.
  • the resources in the other SL logical channels are allocated according to the logical channel prioritization procedure of the Sidelink communication in the existing LTE protocol.
  • UE1 After processing according to the above method, UE1 will determine the amount of data that can be multiplexed according to the allocated resource size according to the size of the allocated resources of each SL logical channel, and accordingly multiplex the service data of the corresponding SL logical channel into the MAC PDU. And it is used for Sidelink transmission through SL SPS transmission resources.
  • the source of the SPS transmission corresponding to the activated SL SPS configuration is preferentially assigned to the corresponding SL logical channel, so this step can ensure that each activated SL SPS configuration, its SL SPS transmission resources will be Used to transmit the corresponding SL.
  • the corresponding SPS resources will be periodically reproduced; therefore, on each SL SPS transmission resource that occurs, UE1 allocates resources on the SL logical channel by using the above method, and determines each The amount of data that the SL logical channel can transmit and the multiplexing of the data to be transmitted.
  • the activated SPS configuration is corresponding to the corresponding logical channel, and the data multiplexing process of the existing MAC layer is improved to ensure data transmission performance, and the parallel multiplexing of the SPS configuration is avoided, due to data multiplexing and The problem of improper packet loss/resource wasted due to improper transmission sequence.
  • FIG. 4 is a flow chart of a two-half static transmission method according to an embodiment of the present invention.
  • the method illustrated in Figure 4 is performed in a communication system, such as that shown in Figure 1, including SL, comprising:
  • step S201 the UE1 sends a terminal capability report to the base station, where the terminal capability report carries indication information of whether the UE1 supports multiple SL SPSs in parallel.
  • step S202 the eNB sends the SL SPS configuration information to the UE1.
  • step S203 the UE1 sends terminal assistance information to the base station.
  • the UE1 may report the service characteristics of the SL logical channel to the eNB according to the configuration of the terminal assistance information in the first embodiment, to request the eNB to perform SL SPS configuration and/or activation for the service data of the corresponding SL logical channel.
  • step S204 the eNB sends an SPS activation message to the UE1.
  • the UE1 activates the corresponding SL SPS configuration by using the SPS activation message sent by the UE1, the activation message is also used to indicate the SL SPS transmission resource for the activated SL SPS configuration, and further the UE1 will also activate the SL SPS configuration and the corresponding SL SPS transmission resource. Corresponds to the specified SL logical channel.
  • Step S205 For the activated SL SPS configuration, UE1 transmits data in the SL logical channel with which it has a corresponding relationship on the corresponding SL SPS resource.
  • the second embodiment differs from the method in the first embodiment only in that the first embodiment receives the SPS configuration information sent by the eNB after transmitting the terminal assistance information to the eNB.
  • the eNB first sends all possible SPS configuration information to the UE1, and then the UE1 sends the terminal assistance information to the eNB to request the eNB to activate one or more SPS configurations specified by the UE1.
  • FIG. 5 is a flowchart of a three-half static transmission method according to an embodiment of the present invention. The method illustrated in Figure 5 is performed in a communication system, such as that shown in Figure 1, including SL, comprising:
  • step 301 the UE1 determines the SL transmission resource pool configuration information.
  • the UE1 determines, according to the SL transmission resource pool configuration information, the SL transmission resource pool allocated by the network device and the resources included in the transmission resource pool.
  • the SL transmission resource pool includes a set of "time-frequency" resources for SL data transmission.
  • the UE1 obtains the SL transmission resource pool configuration information by using the eNB.
  • the eNB may send the SL transmission resource pool configuration information to the UE1 by using a system information broadcast or an RRC dedicated message.
  • the UE1 may be pre-configured in the UE by the terminal manufacturer according to factors related to the protocol and/or spectrum planning of the operator.
  • Step 302 The UE1 selects a semi-static transmission resource in the SL transmission resource pool according to the service characteristics in the SL logical channel, and determines the corresponding SL SPS configuration information by itself, and selects the semi-static transmission resource and/or the self-selected semi-static transmission resource.
  • the SL SPS configuration information is associated with the corresponding SL logical channel.
  • the UE 1 selects the semi-static transmission resource and determines the trigger condition of the corresponding SL SPS configuration information, which may be the same as the trigger condition that the UE1 determines to send the terminal auxiliary information to the eNB in the first embodiment.
  • the UE1 will determine, according to the service characteristics (data packet arrival period, data arrival time, and packet size) of its corresponding SL logical channel, that the SL semi-static resource configuration parameter UE1 matching the SL logical channel service characteristic will be based on Corresponding semi-static resource configuration is determined by the service characteristics in the corresponding SL logical channel.
  • the parameter included in the semi-static resource configuration determined by the UE may be any combination of the following parameters: SPS ID, SPS interval, MCS, LCID, layer 2 destination address, and the like.
  • the value of the parameters such as the SPS ID, the SPS interval, and the MCS is determined according to the UE algorithm, and is not specifically limited herein.
  • the UE1 selects the half-state transmission resource for the SL logical channel, where the UE1 randomly selects a specific resource in the SL transmission resource pool, or the UE1 detects a resource load according to the resource pool in the SL resource pool. , select the idle resources in the current SL transmission resource pool.
  • the specific resource selection method here depends on the implementation of the UE algorithm, and is not specifically limited herein.
  • the UE After configuring the corresponding semi-static resource configuration for the SL logical channel and selecting the semi-static transmission resource, the UE "corresponds" the version of the static transmission resource with the corresponding SL logical channel, that is, determines the semi-static transmission resource. Correspondence with the corresponding SL logical channel
  • Step 303 UE1 performs data multiplexing on the selected SL semi-static transmission, and uses the corresponding SL semi-static transmission resource to transmit data in the SL logical channel with which it has a corresponding relationship.
  • step S105 The specific content of this step is the same as that of step S105 in the first embodiment, and details are not described herein again.
  • FIG. 6 is a flow chart of a four-half static transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 6 is performed in a communication system including UL as shown in FIG. 2, for example, in an LTE-V2X scenario, the method shown in FIG. 6 includes:
  • the UE1 sends a terminal capability report to the eNB, where the terminal capability report carries indication information about whether the UE1 supports multiple SPS configurations in parallel.
  • the indication information is used to indicate whether the UE supports UL-based parallel multiple SPS configurations.
  • the UE1 sends terminal assistance information to the eNB.
  • the UE1 reports the service characteristics of its UL logical channel to the eNB through the terminal assistance information to request the eNB to perform UL SPS configuration and/or activation for the service data of the corresponding UL logical channel.
  • the terminal assistance information reported by the UE1 indicates a service characteristic based on the UL logical channel.
  • the service characteristic information of one or more UL logical channels may be included in the terminal assistance information, and the service characteristic information corresponding to each UL logical channel includes but is not limited to the following one parameter or a combination of multiple parameters: the UL The LCID (logical channel identifier) corresponding to the logical channel, the packet arrival period, the packet arrival time, the packet size, and the like.
  • the parameters included in the foregoing service characteristic information are only examples. The present invention does not specifically limit the parameters included in the service characteristic information corresponding to each SL logic.
  • the LCID can uniquely identify and determine a UL logical channel; since the UL logical channel is configured by the eNB for the UE, the eNB itself knows the delay requirement of the service data in the logical channel corresponding to each LCID of the UE.
  • Quality of Service (QoS) requirements such as reliability requirements.
  • step 403 the eNB sends the UL SPS configuration information to the UE1.
  • the eNB sends the UL SPS configuration information to the UE1 by using an RRC dedicated message, where the eNB may include multiple UL SPS configurations in parallel, and each UL SPS configuration information corresponds to one UL SPS configuration.
  • the configuration information of each UL SPS configuration sent by the eNB to the UE1 includes, but is not limited to, a combination of one or more parameters: an SPS ID, an SPS interval, and an LCID.
  • the configuration information included in each UL SPS configuration is not specifically limited here.
  • the SPS ID in each UL SPS configuration information uniquely identifies a specific UL SPS configuration and a corresponding set of configuration parameters. For a specific SPS configuration, when it contains an LCID, the LCID uniquely indicates a UL logical channel.
  • step 404 the eNB sends an SPS activation message to the UE1.
  • UE1 activates the corresponding UL SPS configuration by using the SPS activation message sent by the eNB, and indicates the UL SPS transmission resource for the activated UL SPS configuration, and further UE1 also activates the UL SPS configuration and the corresponding UL SPS transmission resource with the designated UL logical channel. Correspondence.
  • the UL SPS activation message includes a combination of one or more of the following parameters: SPS ID, SL SPS transmission resource, LCID, SPS type indicator.
  • the eNB may allocate the corresponding UL SPS transmission resource to the UL logical channel of the UE1 according to the service characteristic parameter (eg, the data packet size) of the corresponding SL logical channel reported in the terminal assistance information; the specific resource allocation method depends on the eNB. Algorithm implementation, not limited here.
  • the UE1 After receiving the activation message, the UE1 activates the UL SPS configuration including the same SPS ID according to the SPS ID in the activation message, and then the UE1 may use the SPS interval included in the activated UL SPS configuration as a period according to the included MCS. Periodically using the UL SPS transmission resources allocated by the eNB to other UEs, such as UE2 transfer data.
  • the UE1 associates the activated UL SPS configuration and the corresponding UL SPS transmission resource with the specified UL logical channel, including:
  • the LCID can uniquely identify a UL logical channel, and the UE1 determines the correspondence between the semi-static transmission resource indicated by the activation message and the logical channel determined by the LCID in the activation message.
  • each UL SPS configuration information includes an LCID, and the LCID can uniquely identify one UL logical channel, UE1 determines the semi-static transmission resource indicated by the activated semi-static resource configuration and activation message message, and the UL SPS configuration. Correspondence between logical channels determined by LCID in the information.
  • the LCID can uniquely identify a UL logical channel, and the UE1 determines the correspondence between the activated semi-static resource configuration and the logical channel determined by the LCID in the activation message.
  • the UE1 associates the activated UL SPS configuration and its corresponding UL SPS transmission resource with the designated UL logical channel according to the UL SPS configuration information or the LCID carried in the activation message.
  • the UL SPS configuration information activated in this step is allowed to not include the LCID, and the corresponding LCID is not included in the activation message; in this case, the activated UL SPS configuration and The corresponding SL SPS transmission resource will not correspond to any UL logical channel.
  • Step 405 For the activated UL SPS configuration, the UE1 performs data multiplexing on the corresponding UL SPS resource, and uses the corresponding UL SPS transmission resource to transmit data in the corresponding UL logical channel.
  • This method is the same as the S105 implementation method in the first embodiment, and will not be described again.
  • the UE will directly use the UL in the existing LTE protocol on the UL SPS transmission resource.
  • the logical channel priority processing method multiplexes data in each UL logical channel, and transmits the multiplexed MAC PDU through the UL SPS resource for data transmission.
  • the method for implementing the steps of the embodiment is the same as that of the first embodiment, and details are not described herein again.
  • FIG. 7 is a flowchart of a five-half static transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 7 is performed in a communication system including UL as shown in FIG. 2, for example, in an LTE-V2X scenario, the method shown in FIG. 7 includes:
  • Step S501 The UE1 sends a terminal capability report to the base station, where the terminal capability report carries whether the UE1 supports Indicates information of multiple UL SPSs in parallel.
  • step S502 the eNB sends UL SPS configuration information to the UE1.
  • the eNB may configure all possible UL SPS configuration information to UE1 at one time.
  • the possible parameters of the parameters (such as SPS ID, SPS interval, MCS, LCID, etc.) included in each UL SPS configuration information may be specified by a standard protocol, or the configuration of an eNB to which an eNB belongs, or an eNB manufacturer. The settings are not specifically limited here.
  • the possible value of the layer 2 target address corresponding to the UE1 is reported to the eNB by the UE1 according to the prior art.
  • Step S503 the UE1 sends terminal assistance information to the base station.
  • the UE1 may report the service characteristics of its UL logical channel to the eNB according to the configuration of the terminal assistance information in the fourth embodiment, to request the eNB to perform UL SPS configuration and/or activation for the service data of the corresponding UL logical channel.
  • step S504 the eNB sends an SPS activation message to the UE1.
  • the UE1 activates the corresponding UL SPS configuration by using the SPS activation message sent by the UE1, the activation message is further used to indicate the UL SPS transmission resource for the activated UL SPS configuration, and further the UE1 also activates the UL SPS configuration and the corresponding UL SPS transmission resource. Corresponds to the specified UL logical channel.
  • Step S505 for the activated UL SPS configuration, the UE1 transmits data in the UL logical channel with which it has a corresponding relationship on the corresponding UL SPS resource.
  • the fifth embodiment differs from the fourth embodiment only in that the fourth embodiment receives the SPS configuration information sent by the eNB after transmitting the terminal assistance information to the eNB.
  • the eNB first sends all possible SPS configuration information to the UE1, and then the UE1 sends the terminal assistance information to the eNB to request the eNB to activate one or more SPS configurations specified by the UE1.
  • FIG. 8 is a flowchart of another semi-static transmission method according to an embodiment of the present invention, where the processing steps include:
  • Step S601 When the UE determines that there is data to be transmitted in the logical channel, the UE acquires a semi-static transmission resource having a corresponding relationship with the logical channel;
  • Step S602 The UE transmits data in a logical channel corresponding to the semi-static transmission resource on the semi-static transmission resource.
  • the UE transmits data in the logical channel corresponding to the semi-static transmission resource, including:
  • the UE preferentially allocates semi-static transmission resources to the to-be-transmitted data in the logical channel corresponding to the semi-static transmission resource until the semi-static transmission resource is allocated.
  • the UE transmits data in the logical channel corresponding to the semi-static transmission resource, including:
  • the UE preferentially allocates semi-static transmission resources to all the data to be transmitted in the logical channel corresponding to the semi-static transmission resource until all the data to be transmitted in the corresponding logical channel is allocated to the transmission resource sufficient for the transmission.
  • the semi-static transmission resource corresponding to the logical channel in which the data to be transmitted is located further includes an unoccupied idle resource
  • the logical resource that does not have a corresponding relationship with the semi-static transmission resource is transmitted on the idle resource.
  • FIG. 9 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE shown in FIG. 9 corresponds to the UE1 in the first, second, and third embodiments of the foregoing method, and includes:
  • An obtaining unit 701, configured to acquire a semi-static transmission resource
  • a determining unit 702 configured to determine a logical channel that has a corresponding relationship with the semi-static transmission resource
  • the transmitting unit 703 is configured to transmit data in the logical channel corresponding to the semi-static transmission resource on the semi-static transmission resource.
  • the transmitting unit 703 is further configured to:
  • the transmitting unit 703 is further configured to:
  • the semi-static resource configuration information corresponding to the semi-static transmission resource is received from the network device.
  • the transmitting unit 703 is further configured to:
  • the terminal capability report carries indication information about whether the UE supports multiple semi-persistent scheduling configurations in parallel.
  • the transmitting unit 703 is further configured to:
  • the terminal assistance information includes service characteristic information of at least one logical channel.
  • the transmitting unit 703 is further configured to receive an activation message from the network device, where the activation message indicates the semi-static transmission resource;
  • the determining unit 702 is further configured to determine the semi-static transmission resource according to the activation message.
  • the device further includes:
  • the activation unit 704 is configured to activate a semi-static resource configuration according to the activation message, where the semi-static resource configuration is determined according to the semi-static resource configuration information.
  • the semi-static resource configuration activated by the activation unit 704 according to the activation message corresponds to the semi-static transmission resource indicated by the activation message.
  • the indication information is used to indicate that the UE supports multiple semi-persistent scheduling configurations based on the through link.
  • the service characteristic information is used to indicate a service characteristic based on a straight link logical channel.
  • the service characteristic information includes one parameter or a combination of multiple parameters: a logical channel identifier LCID, a layer 2 target address, a packet arrival period, a packet arrival time, a packet size, and a packet priority.
  • the data packet priority is an adjacent service data packet priority.
  • the semi-static resource configuration information includes one parameter or a combination of multiple parameters: a semi-static configuration identifier, a semi-persistent scheduling interval, a modulation and coding system, an LCID, and a layer 2 target address.
  • the activation message further carries a parameter or a combination of multiple parameters: a semi-static configuration identifier, an LCID, a layer 2 target address, and a semi-static scheduling type indicator.
  • the activation unit 704 is specifically configured to:
  • the semi-static resource configuration corresponding to the semi-static resource configuration information of the same semi-static configuration identifier is activated according to the semi-static configuration identifier in the activation message.
  • the determining unit 702 is further configured to:
  • a correspondence between the activated semi-static resource configuration and the logical channel determined by the LCID and the layer 2 target address in the activation message is determined.
  • the indication information is used to indicate that the UE supports multiple uplink-based semi-persistent scheduling configurations.
  • the service characteristic information is used to indicate a service characteristic based on an uplink logical channel.
  • the service characteristic information includes one or a combination of the following parameters: an LCID, a data packet arrival period, a data packet arrival time, and a data packet size.
  • the semi-static resource configuration information includes a combination of one parameter and multiple parameters: a semi-static configuration identifier, a semi-static scheduling interval, and an LCID.
  • the activation message further carries a parameter or a combination of multiple parameters: a semi-static configuration identifier, an LCID, and a semi-static scheduling type indicator.
  • the activation unit 704 is specifically configured to:
  • the semi-static resource configuration corresponding to the semi-static resource configuration information of the same semi-static configuration identifier is activated according to the semi-static configuration identifier in the activation message.
  • the determining unit 702 is further configured to:
  • a correspondence between the activated semi-static resource configuration and the logical channel determined by the LCID in the activation message is determined.
  • the transmitting unit 703 is specifically configured to:
  • the semi-static transmission corresponding to the activated semi-static resource configuration Data transmission on the transmission resource.
  • the obtaining unit 701 is specifically configured to:
  • the semi-static transmission resource corresponding to the logical channel is selected from the pre-configured transmission resource pool by itself.
  • the determining unit 702 is specifically configured to:
  • the logical channel for corresponding to the selected semi-static transmission resource is determined by itself.
  • the determining unit 702 is further configured to:
  • the semi-static resource configuration information includes a combination of one or more of the following parameters: a semi-persistent scheduling interval, a modulation and coding mode, an LCID, and a layer 2 target address.
  • the transmission unit 703 may implement a function of transmitting and receiving information by a transceiver integrated with a transmitter and a receiver function, or may perform a function of receiving information by an independent receiver, respectively.
  • the function of transmitting information is implemented by an independent transmitter.
  • the determining unit 702 and the activating unit 704 may be combined into one functional module embedded in or independent of the processor of the UE1 in hardware, or may be stored in the memory of the UE1 in software, so that the processor calls to execute the corresponding units. Operation.
  • the obtaining unit 701 may be combined with the transmission unit 703 into one functional module; when the UE determines the semi-static transmission resource by itself, the obtaining unit 701 is merged into the determining unit 702 and the activation unit described above. 704 is located in the module.
  • FIG. 10 is another schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE shown in FIG. 10 corresponds to the UE1 in the fourth embodiment of the foregoing method, and includes:
  • the obtaining unit 801 is configured to: when determining that there is data to be transmitted in the logical channel, acquire a semi-static transmission resource having a corresponding relationship with the logical channel;
  • the transceiver unit 802 is configured to transmit data in a logical channel corresponding to the semi-static transmission resource on the semi-static transmission resource.
  • the transceiver unit 802 is specifically configured to:
  • the semi-static transmission resource is allocated to the data to be transmitted in the logical channel corresponding to the semi-static transmission resource, until the semi-static transmission resource is allocated.
  • the transceiver unit 802 is specifically configured to:
  • the semi-static transmission resources are allocated to all the to-be-transmitted data in the logical channel corresponding to the semi-static transmission resource until all the data to be transmitted in the corresponding logical channel is allocated to the transmission resource sufficient for the transmission.
  • the transceiver unit 802 is further configured to:
  • the semi-static transmission resource corresponding to the logical channel in which the data to be transmitted further includes an idle resource that is not occupied, transmitting, on the idle resource, a logical channel that does not have a corresponding relationship with the semi-static transmission resource The data.
  • the transmission unit may implement a function of transmitting and receiving information by a transceiver integrated with a transmitter and a receiver function, or may perform a function of receiving information by an independent receiver, respectively.
  • the function of transmitting information is implemented by an independent transmitter.
  • the obtaining unit 801 is embedded in or independent of the processor of the UE in a hardware form, and may also be stored in the memory of the UE in software, so that the processor calls to perform operations corresponding to the above units.
  • FIG. 11 is a schematic structural diagram of still another structure of a UE according to an embodiment of the present invention.
  • the UE includes a transmitter 901, a receiver 902, and a processor 903.
  • Transmitter 901 conditions (e.g., analog conversion, filtering, amplifying, upconverting, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Receiver 902 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the processor 903 performs control management on the actions of the UE, and is used to perform the processing performed by the UE in the first to fourth embodiments.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the network device in the implementation of the reference corresponding method shown in FIG. 12, for example, a corresponding eNB, includes:
  • An allocating unit 100 configured to allocate a semi-static transmission resource to the UE, and determine a logical channel that has a corresponding relationship with the semi-static transmission resource;
  • the information transceiving unit 1002 is configured to send, to the UE, information of a semi-static transmission resource allocated to the UE and information of a logical channel having a correspondence relationship with the semi-static transmission resource.
  • the information transceiver unit 1002 is further configured to:
  • the terminal capability report carries indication information about whether the UE supports multiple semi-static scheduling configurations in parallel.
  • the information transceiver unit 1002 is further configured to: receive terminal assistance information from the UE, where the terminal assistance information includes service characteristic information of at least one logical channel;
  • the allocating unit 1001 is specifically configured to allocate a semi-static transmission resource to the UE according to service characteristic information of the logical channel.
  • the information transceiver unit 1002 is specifically configured to:
  • the information transceiver unit 1002 is further configured to:
  • the activation message indicating the semi-static transmission resource allocated for the UE.
  • the indication information is used to indicate that the UE supports multiple semi-persistent scheduling configurations based on the through link.
  • the service characteristic information is used to indicate a service characteristic based on a straight link logical channel.
  • the service characteristic information includes one parameter or a combination of multiple parameters: a logical channel identifier LCID, a layer 2 target address, a packet arrival period, a packet arrival time, a packet size, and a packet priority.
  • the data packet priority is an adjacent service data packet priority.
  • the semi-static resource configuration information includes one parameter or a combination of multiple parameters: a semi-static configuration identifier, a semi-persistent scheduling interval, a modulation and coding system, an LCID, and a layer 2 target address.
  • the activation message further carries a parameter or a combination of multiple parameters: a semi-static configuration identifier, an LCID, a layer 2 target address, and a semi-static scheduling type indicator.
  • the indication information is used to indicate that the UE supports multiple uplink-based semi-persistent scheduling configurations.
  • the service characteristic information is used to indicate uplink logic based The service characteristics of the channel.
  • the service characteristic information includes one or a combination of the following parameters: an LCID, a data packet arrival period, a data packet arrival time, and a data packet size.
  • the semi-static resource configuration information includes one parameter or a combination of multiple parameters: a semi-static configuration identifier, a semi-static scheduling interval, and an LCID.
  • the activation message further carries a parameter or a combination of multiple parameters: a semi-static configuration identifier, an LCID, and a semi-static scheduling type indicator.
  • the information transceiving unit 1002 may implement a function of transmitting and receiving information by a transceiver integrated with a transmitter and a receiver function, or may be implemented by an independent receiver to receive information. Function, the function of sending information to the independent transmitter.
  • the allocating unit 1001 may be embedded in the hardware of the UE or may be stored in the memory of the UE in the form of software, so that the processor calls to perform the operations corresponding to the above units.
  • each unit in the UE or the base station can be connected to each other via a communication bus. It is not shown in the drawings, and the units in the above-mentioned respective devices may be connected by other connection methods, which is not particularly limited in the embodiment of the present invention.
  • FIG. 13 is another schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes a transmitter/receiver 1101, a controller/processor 1102, and a communication unit 1103.
  • the transmitter/receiver 1101 is configured to support the base station to transmit and receive information with the UE in the foregoing embodiment, and to support radio communication between the UE and other UEs.
  • the controller/processor 1102 performs various functions for communicating with the UE.
  • On the uplink the uplink signal from the UE is received via the antenna, coordinated by the receiver 1101, and further processed by the controller/processor 1112 to recover the traffic data and signaling information transmitted by the UE.
  • traffic data and signaling messages are processed by controller/processor 1102 and mediated by transmitter 1101 to generate downlink signals for transmission to the UE via the antenna.
  • the controller/processor 1102 also performs the processes involved in the base stations in Embodiments 1 through 5 and/or other processes for the techniques described herein.
  • the communication unit 1103 is configured to support the base station to communicate with other network entities. For example, it is used to support the base station to communicate with the UE or the MME, SGW and or PGW located in the core network EPC.
  • Figure 13 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present invention are within the scope of the present invention.
  • the processor for performing the above-described base station and UE functions of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or Other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及数据传输技术领域,尤其涉及一种半静态传输方法及装置。所涉及的一种半静态传输方法包括:用户设备UE获取半静态传输资源;所述UE确定与所述半静态传输资源具有对应关系的逻辑信道;所述UE在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。本发明实施例的半静态传输方法及装置,能够支持各类半静态业务数据的调度传输。

Description

半静态传输方法及装置 技术领域
本申请涉及数据传输技术领域,尤其涉及一种半静态传输方法及装置。
背景技术
V2X通信泛指车辆与车辆(英文:Vehicle to Vehicle,简称:V2V)、车辆与基础设施(英文:Vehicle-to-Infrastructure,简称:V2I)以及车辆与行人(英文:Vehicle-to-Infrastructure,简称:V2P)之间的通信。V2X通信本质上是一种在车辆之间进行数据传输和信息交互的通信技术。由于V2X通信事关车辆行驶安全的关键信息,其需要及时、准确地进行信息交互,因而具有“高可靠、短时延”的通信需求。另一方面,作为现有全球主流的无线通信技术,第三代合作伙伴计划(英文:3rd Generation Partner Project,简称:3GPP)长期演进(英文:Long Term Evolution,简称:LTE)蜂窝通信具有时延短、容量大、速度快及可靠性高等优势,因此可以考虑利用LTE蜂窝系统支持V2X通信,以实现良好的V2X通信性能。
鉴于此,标准化组织3GPP(3rd Generation Partner Project)已经开始着手进行“基于LTE的V2X通信(LTE-based V2X,LTE-V2X)”标准化工作,旨在基于LTE蜂窝通信系统、充分利用LTE的优势,有效支持与道路安全相关的车辆无线通信。
在基于LTE-V2X通信系统中,为了降低V2X通信可能带来的下行物理控制信道(英文:Physical Downlink Control Channel,简称:PDCCH)调度开销,3GPP LTE-V2X标准采用半静态调度(英文:Semi-persistent Scheduling,简称:SPS)技术为车辆用户终端(英文:User Equipment,简称:UE)分配传输资源。
在LTE-V2X中,基于SPS技术为UE分配半静态传输资源包括:基站通过PDCCH为UE分配SPS资源,之后UE即可周期性地使用所分配的SPS资源。特别地,在时域上每一次SPS资源出现的时刻,称为一次“SPS传输机会”,在每一次传输机会上,UE即可利用相应的传输资源传输数据。
可见,在LTE-V2X的上行SPS中,基站只需一次性地指示上行SPS调度信息,UE即可周期性地在分配的SPS资源上传输上行数据,从而节省基站上行调度开销。现有的此种SPS调度方法,支持基于IP的语音业务(英文:Voice over IP,简称:VoIP) 这类到达周期固定的周期性业务数据的传输,并且在现有的SPS调度机制中,仅支持一路SPS资源的调度,而在实际的V2X通信中,具有诸如协同感知消息(英文:Cooperative Awareness Message,简称:CAM)、分散环境通知消息(英文:Decentralized Environmental Notification Message,简称:DENM)、后向建立消息(英文:Backward Set-up Message,简称:BSM)等不同的消息类型,不同种类的V2X往往具有不同的业务达到周期,现有的SPS调度方案难以支持各种类半静态业务数据的调度。
发明内容
本发明实施例提供了一种半静态传输方法及装置,能够支持各类半静态业务数据的调度传输。
一方面,提供了一种半静态传输方法,包括:
用户设备UE获取半静态传输资源;
所述UE确定与所述半静态传输资源具有对应关系的逻辑信道;
所述UE在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
在本实现方式中,半静态传输资源与逻辑信道之间具有对应关系,并且UE在数据传输时确保在传输资源中传输与该传输资源对应的逻辑信道中的数据,从而可以实现对各类半静态业务数据的调度传输,避免因为逻辑信道间数据复用和传输顺序不当导致的传输失败、丢包和半静态传输资源浪费等问题。
在一种可能的设计中,所述方法还包括:所述UE从网络设备接收半静态资源配置信息。
在本实现方式中,UE基于网络设备的调度获取半静态资源配置信息,避免多UE传输资源之间的碰撞或干扰。
在一种可能的设计中,所述方法还包括:所述UE从网络设备接收与所述半静态传输资源对应的半静态资源配置信息。
在一种可能的设计中,所述方法还包括:所述UE向网络设备发送终端能力报告,所述终端能力报告中携带所述UE是否支持并行的多个半静态调度配置的指示信息。
在本实现方式中,UE基于终端能力报告通知网络设备其是否支持多个半静态调度配置,以便于网络设备决策是否对UE进行多路半静态传输的相关配置。
在一种可能的设计中,所述方法还包括:所述UE向网络设备发送终端辅助信息,所述终端辅助信息中包括至少一个逻辑信道的业务特性信息。
在本实现方式中,UE基于终端辅助信息向网络设备上报自身逻辑信道中的业务特性,以便于网络设备根据UE上报的逻辑信道的业务特性决策半静态传输资源的分配策略。
在一种可能的设计中,所述UE接收来自网络设备的激活消息,所述激活消息指示所述半静态传输资源;所述UE根据所述激活消息确定所述半静态传输资源。
在本实现方式中,UE基于来自网络设备的激活消息确定半静态传输资源。
在一种可能的设计中,所述方法还包括:所述UE根据所述激活消息激活半静态资源配置,所述半静态资源配置根据半静态资源配置信息确定。
在本实现方式中,UE基于来自网络设备的激活消息激活半静态资源配置。
在一种可能的设计中,所述UE根据所述激活消息激活的所述半静态资源配置与所述激活消息所指示的所述半静态传输资源对应。
在本实现方式中,UE激活的半静态资源配置是与激活消息所指示的半静态传输资源对应的,具有对应关系。
在一种可能的设计中,在直通链路通信场景中,所述指示信息用于指示所述UE支持基于直通链路的多个半静态调度配置。
在本实现方式中,UE通过指示信息所指示的具体内容通知UE支持直通链路的多个半静态调度配置。
在一种可能的设计中,在直通链路通信场景中,所述业务特性信息用于指示基于直通链路逻辑信道的业务特性。
在一种可能的设计中,所述业务特性信息包括下述一个参数或多个参数的组合:逻辑信道标识(英文:logical channel identify,简称:LCID)、层2目标地址、数据包到达周期、数据包到达时刻、数据包大小和数据包优先级。
在一种可能的设计中,所述数据包优先级为临近业务数据包优先级。
在一种可能的设计中,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔、调制编码制式、LCID和层2目标地址。
在一种可能的设计中,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID、层2目标地址和半静态调度类型指示符。
在一种可能的设计中,所述UE激活半静态资源配置,包括:
所述UE根据所述激活消息中的半静态配置标识,激活包含相同半静态配置标识的半静态资源配置信息所对应的半静态资源配置。
在一种可能的设计中,所述方法还包括:
所述UE确定所述激活消息所指示的半静态传输资源与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系;
或者,
所述UE确定所激活的半静态资源配置和所述激活消息消息所指示的半静态传输资源,与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系;
或者,
所述UE确定所激活的半静态资源配置与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系。
在一种可能的设计中,在上行链路通信场景中,所述指示信息用于指示所述UE支持基于上行链路的多个半静态调度配置。
在本实现方式中,UE通过指示信息所指示的具体内容通知UE支持上行链路的多个半静态调度配置。
在一种可能的设计中,在上行链路通信场景中,所述业务特性信息用于指示基于上行链路逻辑信道的业务特性。
在一种可能的设计中,所述业务特性信息包括下述一个参数或多个参数的组合:LCID、数据包到达周期、数据包到达时刻和数据包大小。
在一种可能的设计中,所述半静态资源配置信息包括下述一个参数多个参数的组合:半静态配置标识、半静态调度间隔和LCID。
在一种可能的设计中,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID和半静态调度类型指示符。
在一种可能的设计中,所述UE激活半静态资源配置,包括:
所述UE根据激活消息中的半静态配置标识,激活包含相同半静态配置标识的半静态资源配置信息所对应的半静态资源配置。
在一种可能的设计中,所述方法还包括:
所述UE确定激活消息所指示的半静态传输资源与所述激活消息中的LCID所确定的逻辑信道之间的对应关系;
或者,
所述UE确定所激活的半静态资源配置和所述激活消息消息所指示的半静态传输资源,与所述激活消息中的LCID所确定的逻辑信道之间的对应关系;
或者,
所述UE确定所激活的半静态资源配置与所述激活消息中的LCID所确定的逻辑 信道之间的对应关系。
在一种可能的设计中,所述UE根据所激活的半静态资源配置,在所激活的半静态资源配置所对对应的半静态传输资源上,进行数据传输。
在一种可能的设计中,所述UE获取半静态传输资源的方式包括:
所述UE自行从预先配置的传输资源池中,选择用于与逻辑信道对应的所述半静态传输资源,此种对应可以看做是一种绑定,即UE自行选择用于与逻辑信道绑定的半静态传输资源。
在本实现方式中,UE无需与网络设备交互直接从预先配置的传输资源池中确定用于与逻辑信道对应的半静态传输资源,节省与网络设备的交互开销。
在一种可能的设计中,所述方法还包括:所述UE自行确定用于与所选择的所述半静态传输资源进行对应的逻辑信道。
在一种可能的设计中,所述方法还包括:
所述UE根据逻辑信道中的业务特性信息,确定与所述半静态传输资源对应的半静态资源配置信息。
在一种可能的设计中,所述半静态资源配置信息包括下述一个或多个参数的组合:半静态调度间隔、调制编码方式、LCID和层2目标地址。
第二方面,提供了一种半静态传输方法,包括:
UE确定逻辑信道中有待传数据时,所述UE获取与所述逻辑信道具有对应关系的半静态传输资源;
所述UE在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
在一种可能的设计中,所述UE传输与所述半静态传输资源具有对应关系的逻辑信道中的数据,包括:
所述UE优先为与所述半静态传输资源所对应的逻辑信道中的待传数据分配半静态传输资源,直至所述半静态传输资源分配完毕。
在一种可能的设计中,所述UE传输与所述半静态传输资源具有对应关系的逻辑信道中的数据,包括:
所述UE优先为与所述半静态传输资源所对应的逻辑信道中的所有待传数据均分配半静态传输资源,直至所对应的逻辑信道中的所有待传数据都分配到足够其传输的传输资源。
在一种可能的设计中,当与待传数据所位于的逻辑信道具有对应关系的半静态传 输资源还包括未被占用的空闲资源时,在所述空闲资源上传输未与所述半静态传输资源具有对应关系的逻辑信道中的数据。
第三方面,提供了一种半静态传输方法,包括:
网络设备为UE分配半静态传输资源,并且确定与所述半静态传输资源具有对应关系的逻辑信道;
所述网络设备将为所述UE分配的半静态传输资源的信息和与所述半静态传输资源具有对应关系的逻辑信道的信息发送给所述UE。
在一种可能的设计中,所述网络设备为UE分配半静态传输资源之前,所述方法还包括:
所述网络设备接收来自所述UE的终端能力报告,所述终端能力报告中携带所述UE是否支持并行的多个半静态调度配置的指示信息。
在一种可能的设计中,所述网络设备为UE分配半静态传输资源,包括:
所述网络设备接收来自UE的终端辅助信息,所述终端辅助信息中包括至少一个逻辑信道的业务特性信息;
所述网络设备根据逻辑信道的业务特性信息为所述UE分配半静态传输资源。
在一种可能的设计中,所述网络设备将为所述UE分配的半静态传输资源的信息和与所述半静态传输资源具有对应关系的逻辑信道的信息发送给所述UE,包括:
所述网络设备向所述UE发送与所述半静态传输资源对应的半静态资源配置信息。
在一种可能的设计中,所述网络设备向UE发送半静态资源配置信息之后,所述方法还包括:
所述网络设备向所述UE发送激活消息,所述激活消息指示为所述UE分配的所述半静态传输资源。
在一种可能的设计中,在直通链路通信场景中,所述指示信息用于指示所述UE支持基于直通链路的多个半静态调度配置。
在一种可能的设计中,在直通链路通信场景中,所述业务特性信息用于指示基于直通链路逻辑信道的业务特性。
在一种可能的设计中,所述业务特性信息包括下述一个参数或多个参数的组合:逻辑信道标识LCID、层2目标地址、数据包到达周期、数据包到达时刻、数据包大小和数据包优先级。
在一种可能的设计中,所述数据包优先级为临近业务数据包优先级。
在一种可能的设计中,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔、调制编码制式、LCID和层2目标地址。
在一种可能的设计中,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID、层2目标地址和半静态调度类型指示符。
在一种可能的设计中,在上行链路通信场景中,所述指示信息用于指示所述UE支持基于上行链路的多个半静态调度配置。
在一种可能的设计中,在上行链路通信场景中,所述业务特性信息用于指示基于上行链路逻辑信道的业务特性。
在一种可能的设计中,所述业务特性信息包括下述一个参数或多个参数的组合:LCID、数据包到达周期、数据包到达时刻和数据包大小。
在一种可能的设计中,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔和LCID。
在一种可能的设计中,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID和半静态调度类型指示符。
第四方面,为了实现上述第一方面的半静态传输方法,本发明实施例提供了一种半静态传输装置,该半静态传输装置具有实现上述半静态传输方法中UE行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该半静态传输装置包括多个功能单元,用于实现上述第一方面中的任一种半静态传输方法,使得半静态传输资源与逻辑信道之间具有对应关系,并且UE在数据传输时确保在传输资源中传输与该传输资源对应的逻辑信道中的数据,从而可以实现对各类半静态业务数据的调度传输,避免因为逻辑信道间数据复用和传输顺序不当导致的传输失败、丢包和半静态传输资源浪费等问题。
在一种可能的设计中,半静态传输装置包括获取单元、确定单元和传输单元,其中:获取单元,用于获取半静态传输资源;确定单元,用于确定与所述半静态传输资源具有对应关系的逻辑信道;传输单元,用于在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
第五方面,为了实现上述第二方面的半静态传输方法,本发明实施例提供了一种半静态传输装置,该半静态传输装置具有实现上述半静态传输方法中UE行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该半静态传输装置包括多个功能单元,用于实现上述第一方面中的任一种半静态传输方法,使得半静态传输资源与逻辑信道之间具有对应关系,并且UE在数据传输时确保在传输资源中传输与该传输资源对应的逻辑信道中的数据,从而可以实现对各类半静态业务数据的调度传输,避免因为逻辑信道间数据复用和传输顺序不当导致的传输失败、丢包和半静态传输资源浪费等问题。
在一种可能的设计中,半静态传输装置包括:获取单元及收发单元,其中:获取单元,用于当确定逻辑信道中有待传数据时,获取与所述逻辑信道具有对应关系的半静态传输资源;收发单元,用于在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
第六方面,为了实现上述第三方面的半静态传输方法,本发明实施例提供了一种半静态传输装置,该半静态传输装置具有实现上述半静态传输方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,半静态传输装置包括:分配单元和信息收发单元,其中:分配单元,用于为UE分配半静态传输资源,并且确定与所述半静态传输资源具有对应关系的逻辑信道;信息收发单元,用于将为所述UE分配的半静态传输资源的信息和与所述半静态传输资源具有对应关系的逻辑信道的信息发送给所述UE。
第七方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第四方面半静态传输装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第五方面半静态传输装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第九方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第六方面半静态传输装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例的半静态传输方案,半静态传输资源与逻辑信道之间具有对应关系,并且UE在数据传输时确保在传输资源中传输与该传输资源对应的逻辑信道中的数据,从而可以实现对各类半静态业务数据的调度传输,避免因为逻辑信道间数据复用和传输顺序不当导致的传输失败、丢包和半静态传输资源浪费等问题。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前 提下,还可以根据这些附图获得其他的附图。
图1是本发明的一种可能的应用场景示意图;
图2是本发明的另一种可能的应用场景示意图;
图3是本发明实施例一半静态传输方法的流程图;
图4是本发明实施例二半静态传输方法的流程图;
图5是本发明实施例三半静态传输方法的流程图;
图6是本发明实施例四半静态传输方法的流程图;
图7是本发明实施例五半静态传输方法的流程图;
图8是本发明实施例的另一种半静态传输方法流程图;
图9是本发明实施例UE的一种结构示意图;
图10是本发明实施例UE的另一种结构示意图;
图11是本发明实施例中UE的又一种结构示意图;
图12是本发明实施例基站的一种结构示意图;
图13是本发明实施例基站的另一种结构示意图。
具体实施方式
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图1是本发明的一种可能的应用场景示意图。如图1所示,该场景中包括接入设备和多个UE,接入设备用于为各个UE分配半静态传输资源,UE之间通过D2D直通技术进行数据传输和信息的交互。在图1所示场景中,UE与UE之间进行数据直接通信的链路称为直通链路(英文:Sidelink,简称:SL)。
图2是本发明的另一种可能的应用场景示意图。如图2所示,各个UE均与接入设备连接,UE之间的数据通信需要接入设备的中转,其中,UE向接入设备发送数据的无线链路称为上行链路(英文:Uplink,简称:UL),接入设备向UE发送数据 的无线链路称为下行链路(英文:Downlink,简称:DL)。
本发明实施例提供的半静态传输方法不仅适用于图1和图2所示的应用场景中,也可以应用于其它包括SL和UL的通信系统中。
本发明涉及到的UE主要是在V2X中涉及到的终端设备,如车载终端,当然该UE还可以是各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,简称UE),移动台(Mobile station,简称MS),终端(terminal),终端设备(Terminal Equipment)等等。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。
本发明所涉及的接入设备是接入网中的设备,如基站。本发明所涉及到的基站(base station,简称BS)是一种部署在无线接入网中用以为UE提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB简称:eNB或者eNodeB),在第三代3G网络中,称为节点B(Node B)等等。为方便描述,本申请中,上述为UE提供无线通信功能的装置统称为基站或BS。本发明中的网络设备包括上述接入设备,可以包括核心网设备,如移动管理实体(英文:Mobility Management Entity,简称:MME),数据网关等。
在现有的上行半静态调度传输技术中只能支持一路半静态传输资源,无法适应多路业务数据传输的需求,即使按照现有半静态调度制度为UE配置了多路半静态传输资源,也可能会发生业务传输混乱的情况,例如,在UE中配置的SPS1资源与业务1的周期相匹配,SPS2资源与业务2相匹配,UE在传输业务1和业务2时,可能会出现业务1抢占SPS2资源以及业务2抢占SPS1资源的情况发生。
为了解决现有技术中存在的上述问题,本发明实施例提供了一种半静态传输方案,该半静态传输方案支持UE中一路或多路半静态传输的配置,其中在本发明方案中半静态传输资源与逻辑信道之间具有对应关系,并且在数据传输时确保在传输资源中传输与该传输资源对应的逻辑信道中的数据,进而避免因为逻辑信道间数据复用和传输顺序不当导致的传输失败、丢包和半静态传输资源浪费等问题。
在本申请中,所涉及的“对应关系”可以看做是一种“绑定关系”,“对应”可以看做是一种“绑定”,例如半静态传输资源与逻辑信道之间具有对应关系,可以看做半静态传输资源与逻辑信道绑定,半静态传输资源与逻辑信道信道之间具有绑定关 系。
以下将结合附图对本发明实施例的半静态传输方法进行详细说明。
图3是本发明实施例一半静态传输方法的流程图。图3所示方法在诸如图1所示的包括SL的通信系统中执行,例如LTE-V2X场景中,图1所示方法包括:
S101,UE1向eNB发送终端能力报告,该终端能力报告中携带UE1是否支持多个SPS配置的指示信息。
在图1所示的场景中,终端能力报告中的指示信息用于指示UE是否支持基于直通链路(Sidelink)的多个SPS配置。
现有3GPP LTE协议版本在Sidelink上并不支持并行多个SPS配置的机制,基于现有协议版本(Rel-13及之前版本)的UE也可能无法支持该技术。因而,UE需要在现有LTE协议的基础上,按照本发明的技术方案,对UE功能进行增强后,才能支持并行多个SPS配置机制。
鉴于此,UE需要通过此步骤向eNB上报其是否具有能力支持基于Sidelink的多个并行SPS配置的机制,以辅助eNB进行SPS配置及激活的相应决策。
若UE上报的终端能力无法支持并行多SPS配置机制,则eNB将按照现有LTE版本的sidelink通信技术,为其进行资源调度调度;若UE所上报的终端能力指示UE支持基于Sidelink的并行多SPS配置机制,则UE和eNB执行下述步骤。
步骤102,UE1向eNB发送终端辅助信息。
UE1通过终端辅助信息向eNB上报其SL逻辑信道的业务特性,以请求eNB为相应SL逻辑信道的业务数据进行SL SPS配置和/或激活。其中在图1所示的场景中,UE1上报的终端辅助信息指示基于SL逻辑信道的业务特性。
可选的,在终端辅助信息中包括至少一个SL逻辑信道的业务特性信息,每个SL逻辑信道的业务特性信息包括但不限于以下一个参数或多个参数的组合:逻辑信道标识LCID、层2目标地址、数据包到达周期、数据包到达时刻、数据包大小和数据包优先级;所述数据包优先级可以是:临近业务数据包优先级(英文:ProSe Per-Packet Priority,PPPP)。上述业务特性信息中所包括的参数仅作为示例,本发明对每个SL逻辑所对应业务特性信息包含的参数不做具体限制。
业务特性信息的上述参数中,LCID和层2目的地址可以唯一标识和确定一个SL 逻辑信道;每个SL逻辑信道所对应的PPPP,标示该SL逻辑信道的优先级,且eNB可以通过PPPP获得相应SL逻辑信道中、业务数据时延要求、可靠性要求等服务质量(QoS)需求;数据包到达周期,可以设置一个特殊取值,例如“Inf”,标识相应的业务数据包到达为“非周期”。
可选的,UE1向eNB发送所述终端辅助信息的触发条件可以是:当UE1确定一个或多个SL逻辑信道中有业务数据到达,且所述业务数据是周期性到达时UE1向eNB发送终端辅助信息;或,UE1确定一个或多个SL逻辑信道中的数据的到达周期发生改变,包括从一个周期变成另一个周期,或者工周期性到达变成非周期的,此处对于UE的实现方法不做具体限制。
UE获得每个SL逻辑信道中数据包到达周期的实现方法可以是:对于某逻辑信道,UE可以为其设置一个计数器、记录每个数据包的到达间隔,当最近M次的数据包到达间隔都相等,则将所述到达间隔认为是数据包到达周期;或,当最近M次的数据包到达间隔的方差小于某一门限值,则将所述到达间隔的平均值作为该SL逻辑信道的数据包到达周期。此处,UE获得数据包到达周期的方法,取决于UE的实现,此处不做具体限定。
可选的,本步骤中所述的终端辅助信息,可以通过RRC专用消息、也可以通过媒体接入控制协议(英文:Medium Access Control,简称:MAC)层控制单元(MAC CE),由UE1发送给eNB。
步骤S103,eNB向UE1发送SL SPS配置信息。
可选的,eNB通过通过RRC专用消息,向UE1发送SL SPS配置信息,其中可包括并行多个SL SPS配置信息,每个SL SPS配置信息对应一个SL SPS配置。
可选的,eNB向UE1发送的每个SL SPS配置的配置信息包括但不限于下述一个或多个参数的组合:SPS ID、SPS间隔、调制与编码策略(英文:Modulation and Coding Scheme,简称:MCS)、LCID、层2目的地址、PPPP。上述SL SPS配置信息中所包括的参数仅作为示例,本发明对每个SL SPS配置信息包含的参数不做具体限制。
其中,每个SL SPS配置信息中SPS ID唯一标识一个具体的SL SPS配置及相应的一组配置参数。对于一个具体的SL SPS配置,当其包含LCID和层2目标地址时,LCID和层2目标地址将唯一指示一个SL逻辑信道。
本步骤中,eNB可以针对终端辅助信息中上报的相应SL逻辑信道的业务特性(如 数据包到达周期、数据到达时刻、数据包大小),为UE1配置与该SL逻辑信道业务特性相匹配的SL SPS配置参数,包括SPS ID,SPS间隔,MCS,以及(可选的)标识该SL逻辑信道的LCID和层2目的地址,并发送给UE1。具体如何根据业务特性、设置SPS ID、SPS间隔、MCS等参数的值,取决于eNB算法实现,此处不做具体限定。
此外,UE1会将此步骤中所接收到的SL SPS配置信息、覆盖其此前可能接收的、具有相同SPS ID的SL SPS配置信息;而如果UE1所接收到的SL SPS配置信息所对应的SPS ID,与已有SL SPS配置的SPS ID都不相同,则UE1会在已有SL SPS配置的基础上,另行存储本步骤中所接收的这些SL SPS配置。
步骤S104,eNB向UE1发送SPS激活消息。
UE1利用eNB发送的SPS激活消息激活相应的SL SPS配置,并且为激活的SL SPS配置指示SL SPS传输资源,进一步UE1还将激活的SL SPS配置及相应的SL SPS传输资源与指定的SL逻辑信道之间建立对应关系。
可选的,SL SPS激活消息包括下述参数的一个或者多个的组合:SPS ID,SL SPS传输资源,LCID,层2目标地址和SPS类型指示符。
其中,eNB可以按照终端辅助信息中上报的SL逻辑信道的业务特征参数(如,数据包大小),为UE1的该SL逻辑信道分配相应的SL SPS传输资源;具体资源分配方法取决于eNB的算法实现,此处不做限定。
收到此激活消息后,UE1根据激活消息中的SPS ID,激活包含相同SPS ID的SL SPS配置,随后UE1即可以所激活的SL SPS配置中包含的SPS间隔为周期、按照所包含的MCS,周期性地使用eNB所分配的SL SPS传输资源向其它UE,如UE2传输数据。
本步骤中,UE1将激活的SL SPS配置及相应的SL SPS传输资源与指定的SL逻辑信道之间建立对应关系,包括:
(1)如果激活消息中包含了LCID和层2目标地址,LCID和层2目标地址可以唯一标识一个SL逻辑信道,则UE1确定激活消息所指示的半静态传输资源与激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系。
(2)如果每个SL SPS配置信息均包含了LCID和层2目标地址,LCID和层2目标地址可以唯一标识一个SL逻辑信道,则UE1确定所激活的半静态资源配置和激 活消息消息所指示的半静态传输资源,与SL SPS配置信息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系.
(3)如果激活消息中包含了LCID和层2目标地址,LCID和层2目标地址可以唯一标识一个SL逻辑信道,则UE1确定所激活的半静态资源配置与激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系。
总而言之,无论是上述哪种方式,UE1会根据SL SPS配置信息或激活消息中所携带的LCID和层2目标地址,将所激活的SL SPS配置及其对应的SL SPS传输资源与指定的SL逻辑信道之间具有对应关系。
可选的,所述SPS类型指示符可以是1bit标识,用于区分所激活的SL SPS配置的类型,例如该指示符设置为“1”时、标识所激活的SPS配置为SL SPS配置,而设置为“2”时标识为UL SPS配置。
可选的,所述激活消息具体可以通过下行控制信息(DCI)由eNB发送给UE1。
对于本步骤中所激活的SL SPS配置,如果在执行本步骤之前,UE1已经激活了与其具有相同SPS ID的SL SPS配置、并分配了相应SL SPS传输资源,那么在收到本步骤中的激活消息后,UE1将首先去激活当前已激活SL SPS配置、释放相应的SL SPS传输资源,再按照本步骤中的激活消息,重新激活相应的SL SPS配置、使用其对应SL SPS传输资源传输数据。否则,UE1则可以在已激活的其他SL SPS配置的基础上,并行激活本步骤的SL SPS配置,并使用各SL SPS配置相应的多路SPS资源数据传输。
可选的,如果要eNB根据步骤S103的UE1终端辅助信息上报,需要激活多个SL SPS配置,则可以通过向UE1发送多个SL SPS激活消息来实现。
在本步骤之后,UE1可能激活多路SL SPS配置、分别对应于多路并行的SL SPS传输资源,而所激活的每个SL SPS配置及相应SL SPS传输资源均会与指定SL逻辑信道对应。
步骤S105,对于所激活的SL SPS配置,UE1在相应SL SPS资源上传输与其具有对应关系的SL逻辑信道中的数据。
对于所激活的SL SPS配置对应的SL SPS传输资源,UE1将按照如下方法将SL SPS资源分配给SL逻辑信道,进而将个逻辑信道的数据复用到MAC PDU中。
当SL逻辑信道中待传输数据量大于与其对应的SL SPS传输资源所能容纳的数 据量时,UE1优先为所述SL SPS配置所对应的SL逻辑信道中的待传数据分配资源,直到所有的SL SPS传输资源被用尽;当SL SPS传输资源足够容纳与其对应的SL逻辑信道中的所有数据传输时,UE1为所对应的SL逻辑信道中的所有待传数据都分配足够的传输资源。
进一步,如果所述SL SPS传输资源没有被占满,则按照现有的LTE协议中,Sidelink通信的逻辑信道优先级处理(Logical Channel Prioritization Procedure)方法,为其它SL逻辑信道中的数据分配资源。
按照上述方法处理后,UE1将按照每个SL逻辑信道将按照其所分配资源大小、确定其所能复用的数据量,并据此将相应SL逻辑信道的业务数据复用到MAC PDU中,并将其通过SL SPS传输资源进行Sidelink传输。
由于上述步骤中,所激活SL SPS配置对应的SPS传输中源被优先分配给了其所对应的SL逻辑信道,因此本步骤可以保证每个所激活的SL SPS配置,其SL SPS传输资源均会用于传输其所对应的SL。
对于每个已经激活的SL SPS配置,其所对应SPS资源将周期性重现;因此在每次出现的SL SPS传输资源上,UE1均会采用上述方法在SL逻辑信道上分配资源,确定每个SL逻辑信道能够传输的数据量,并完成待传数据的复用。
本发明实施例方案,将激活的SPS配置与相应逻辑信道进行对应,并且通过改进现有MAC层的数据复用流程,确保数据传输性能,避免激活并行多路SPS配置后,因数据复用和传输顺序不当,而产生的潜在丢包/资源浪费的问题。
图4是本发明实施例二半静态传输方法的流程图。图4所示方法在诸如图1所示的包括SL的通信系统中执行,包括:
步骤S201,UE1向基站发送终端能力报告,该终端能力报告中携带UE1是否支持并行的多个SL SPS的指示信息。
步骤S202,eNB向UE1发送SL SPS配置信息。
本步骤中eNB可以将所有可能的SL SPS配置信息,一次性配置给UE1。其中,每个SL SPS配置信息所包含的参数(如SPS ID、SPS间隔、MCS、LCID等)所有可能的取值,可以是标准协议的规定,或eNB所属运营商的配置、或eNB生产商的设置,此处不做具体限定。而UE1所对应的层2目标地址的可能取值,将按照现有技术,由UE1上报给eNB。
步骤S203,UE1向基站发送终端辅助信息。
本步骤中,UE1可以按照实施例一中配置终端辅助信息的方式,向eNB上报其SL逻辑信道的业务特性,以请求eNB为相应SL逻辑信道的业务数据进行SL SPS配置和/或激活。
步骤S204,eNB向UE1发送SPS激活消息。
UE1利用UE1发送的SPS激活消息激活相应的SL SPS配置,所述激活消息还用于为激活的SL SPS配置指示SL SPS传输资源,进一步UE1还将激活的SL SPS配置及相应的SL SPS传输资源与指定的SL逻辑信道进行对应。
步骤S205,对于所激活的SL SPS配置,UE1在相应SL SPS资源上传输与其具有对应关系的SL逻辑信道中的数据。
本发明实施例二方法实现的各个步骤可以参见实施例一,本实施例二与实施例一方法的区别仅在于,实施例一在将终端辅助信息发送给eNB之后接收eNB发送的配SPS配置信息,而在实施例二中eNB先将所有可能的SPS配置信息发送给UE1,之后UE1向eNB发送终端辅助信息以请求eNB激活UE1所指定的一个或多个SPS配置。
图5是本发明实施例三半静态传输方法的流程图。图5所示方法在诸如图1所示的包括SL的通信系统中执行,包括:
步骤301,UE1确定SL传输资源池配置信息。
UE1根据SL传输资源池配置信息确定网络设备分配的SL传输资源池以及该传输资源池包含的资源。具体的,SL传输资源池包括用于SL数据传输的“时-频”资源的集合。
可选的,UE1通过eNB获取SL传输资源池配置信息,例如eNB可以通过系统信息广播或者RRC专用消息,向UE1发送SL传输资源池配置信息。
可选的,UE1也可以根据协议的相关规定和/或运营商的频谱规划等因素,由终端厂商预先配置在UE中。
步骤302,UE1根据自身SL逻辑信道中的业务特性,在上述SL传输资源池中,自行选择半静态传输资源、自行确定相应的SL SPS配置信息,并且将自行选择的半静态传输资源和/或SL SPS配置信息与相应的SL逻辑信道之间建立对应关系。
可选的,本步骤中UE1自行选择半静态传输资源、确定相应SL SPS配置信息的触发条件,可以与实施例一中UE1确定向eNB发送终端辅助信息的触发条件相同。
其中,UE1将针对其相应SL逻辑信道的业务特征(数据包到达周期、数据到达时刻、数据包大小),自行确定与该SL逻辑信道业务特性相匹配的SL半静态资源配置参数UE1将根据其相应SL逻辑信道中的业务特性,自行确定相应的半静态资源配置。可选的,所述的UE自行确定的半静态资源配置所包含的参数可以是下述参数的任意组合:SPS ID,SPS间隔,MCS,LCID,层2目的地址等。具体如何根据业务特性、设置SPS ID、SPS间隔、MCS等参数的值,取决于UE算法实现,此处不做具体限定。
可选的,UE1为所述SL逻辑信道选择所述半态传输资源的方法,可以是UE1在所述SL传输资源池中随机选择具体资源,或者UE1根据其对SL资源池中资源负载检测结果,选择当前SL传输资源池中、空闲的资源。此处具体资源选择方法取决于UE算法实现,此处不做具体限定。
在为其SL逻辑信道配置相应的半静态资源配置并选择了半静态传输资源后,UE将所述的版静态传输资源与相应的SL逻辑信道进行“对应”,即确定所述半静态传输资源与相应SL逻辑信道的对应关系
步骤303,UE1将在所选择的SL半静态传输上进行数据复用,并利用相应的SL半静态传输资源,传输与其具有对应关系的SL逻辑信道中的数据。
本步骤的具体内容,与上述实施例一中的步骤S105相同,不再赘述。
图6是本发明实施例四半静态传输方法的流程图。图6所示方法在诸如图2所示的包括UL的通信系统中执行,例如LTE-V2X场景中,图6所示方法包括:
S401,UE1向eNB发送终端能力报告,该终端能力报告中携带UE1是否支持并行的多个SPS配置的指示信息。
在图2所示的场景中,所述指示信息用于指示UE是否支持基于UL的并行多个SPS配置。
S402,UE1向eNB发送终端辅助信息。
UE1通过终端辅助信息向eNB上报其UL逻辑信道的业务特性,以请求eNB为相应UL逻辑信道的业务数据进行UL SPS配置和/或激活。其中在图1所示的场景中,UE1上报的终端辅助信息指示基于UL逻辑信道的业务特性。
可选的,在终端辅助信息中可以包括一个或多个UL逻辑信道的业务特性信息,每个UL逻辑信道对应的业务特性信息包括但不限于以下一个参数或多个参数的组合:所述UL逻辑信道对应的LCID(逻辑信道标识)、数据包到达周期、数据包到达时刻、数据包大小等。上述业务特性信息中所包括的参数仅作为示例,本发明对每个SL逻辑所对应业务特性信息包含的参数不做具体限制。
业务特性信息的上述参数中,LCID可以唯一标识和确定一个UL逻辑信道;由于UL逻辑信道是eNB为UE配置的,因此eNB本身知道UE每个LCID相应的逻辑信道中、业务数据的时延要求、可靠性要求等服务质量(QoS)需求。
步骤403,eNB向UE1发送UL SPS配置信息。
可选的,eNB通过RRC专用消息,向UE1发送UL SPS配置信息,其中可包括并行多个UL SPS配置,每个UL SPS配置信息对应一个UL SPS配置。
可选的,eNB向UE1发送的每个UL SPS配置的配置信息包括但不限于下述一个或多个参数的组合:SPS ID、SPS间隔、LCID。此处对每个UL SPS配置所包括的配置信息不做具体限制。
其中,每个UL SPS配置信息中的SPS ID唯一标识一个具体的UL SPS配置及相应的一组配置参数。对于一个具体的SPS配置,当其包含LCID时,LCID唯一指示一个UL逻辑信道。
步骤404,eNB向UE1发送SPS激活消息。
UE1利用eNB发送的SPS激活消息激活相应的UL SPS配置,并且为激活的UL SPS配置指示UL SPS传输资源,进一步UE1还将激活的UL SPS配置及相应的UL SPS传输资源与指定的UL逻辑信道进行对应。
可选的,UL SPS激活消息包括下述参数的一个或者多个的组合:SPS ID,SL SPS传输资源,LCID,SPS类型指示符。
其中,eNB可以按照终端辅助信息中上报的相应SL逻辑信道的业务特征参数(如,数据包大小),为UE1的该UL逻辑信道分配相应的UL SPS传输资源;具体资源分配方法取决于eNB的算法实现,此处不做限定。
收到此激活消息后,UE1根据激活消息中的SPS ID,激活包含相同SPS ID的UL SPS配置,随后UE1即可以所激活的UL SPS配置中包含的SPS间隔为周期、按照所包含的MCS,周期性地使用eNB所分配的UL SPS传输资源向其它UE,如UE2 传输数据。
本步骤中,UE1将激活的UL SPS配置及相应的UL SPS传输资源与指定的UL逻辑信道进行对应,包括:
(1)如果激活消息中包含了LCID,LCID可以唯一标识一个UL逻辑信道,则UE1确定激活消息所指示的半静态传输资源与激活消息中的LCID所确定的逻辑信道之间的对应关系。
(2)如果每个UL SPS配置信息均包含了LCID,LCID可以唯一标识一个UL逻辑信道,则UE1确定所激活的半静态资源配置和激活消息消息所指示的半静态传输资源,与UL SPS配置信息中的LCID所确定的逻辑信道之间的对应关系.
(3)如果激活消息中包含了LCID,LCID可以唯一标识一个UL逻辑信道,则UE1确定所激活的半静态资源配置与激活消息中的LCID所确定的逻辑信道之间的对应关系。
总而言之,无论是上述哪种方式,UE1会根据UL SPS配置信息或激活消息中所携带的LCID,将所激活的UL SPS配置及其对应的UL SPS传输资源与指定的UL逻辑信道对应。
另外,可选的,本实施例中允许本步骤所激活的UL SPS配置信息中不包含LCID、且激活消息中也不包括相应的LCID;则在这种情况下,所激活的UL SPS配置及相应的SL SPS传输资源,将不与任何UL逻辑信道进行对应。
步骤405,对于所激活的UL SPS配置,UE1在相应UL SPS资源上进行数据复用,并利用相应的UL SPS传输资源,传输所对应的UL逻辑信道中的数据。
本步骤中与实施例一中的S105实现方法相同,不再赘述。另外,若在上述步骤S404中,所激活的UL SPS配置及相应的UL SPS传输资源没有与任何的UL逻辑信道对应,则在该UL SPS传输资源上,UE将直接沿用现有LTE协议中UL的逻辑信道优先级处理方法,对各个UL逻辑信道中的数据进行复用,并将复用后所封装的MAC PDU通过所述UL SPS资源进行数据传输。除此之外,本实施例的各步骤的实现方法与实施例一对应相同,不再赘述。
图7是本发明实施例五半静态传输方法的流程图。图7所示方法在诸如图2所示的包括UL的通信系统中执行,例如LTE-V2X场景中,图7所示方法包括:
步骤S501,UE1向基站发送终端能力报告,该终端能力报告中携带UE1是否支 持并行的多个UL SPS的指示信息。
步骤S502,eNB向UE1发送UL SPS配置信息。
本步骤中eNB可以将所有可能的UL SPS配置信息,一次性配置给UE1。其中,每个UL SPS配置信息所包含的参数(如SPS ID、SPS间隔、MCS、LCID等)所有可能的取值,可以是标准协议的规定,或eNB所属运营商的配置、或eNB生产商的设置,此处不做具体限定。而UE1所对应的层2目标地址的可能取值,将按照现有技术,由UE1上报给eNB。
步骤S503,UE1向基站发送终端辅助信息。
本步骤中,UE1可以按照实施例四中配置终端辅助信息的方式,向eNB上报其UL逻辑信道的业务特性,以请求eNB为相应UL逻辑信道的业务数据进行UL SPS配置和/或激活。
步骤S504,eNB向UE1发送SPS激活消息。
UE1利用UE1发送的SPS激活消息激活相应的UL SPS配置,所述激活消息还用于为激活的UL SPS配置指示UL SPS传输资源,进一步UE1还将激活的UL SPS配置及相应的UL SPS传输资源与指定的UL逻辑信道进行对应。
步骤S505,对于所激活的UL SPS配置,UE1在相应UL SPS资源上传输与其具有对应关系的UL逻辑信道中的数据。
本发明实施例二方法实现的各个步骤可以参见实施例四,本实施例五与实施例四方法的区别仅在于,实施例四在将终端辅助信息发送给eNB之后接收eNB发送的配SPS配置信息,而在实施例五中eNB先将所有可能的SPS配置信息发送给UE1,之后UE1向eNB发送终端辅助信息以请求eNB激活UE1所指定的一个或多个SPS配置。
图8是本发明实施例的另一种半静态传输方法流程图,处理步骤包括:
步骤S601,UE确定逻辑信道中有待传数据时,UE获取与逻辑信道具有对应关系的半静态传输资源;
步骤S602,UE在半静态传输资源上,传输与半静态传输资源具有对应关系的逻辑信道中的数据。
可选的,UE传输与半静态传输资源具有对应关系的逻辑信道中的数据,包括:
UE优先为与半静态传输资源所对应的逻辑信道中的待传数据分配半静态传输资源,直至半静态传输资源分配完毕。
可选的,UE传输与半静态传输资源具有对应关系的逻辑信道中的数据,包括:
UE优先为与半静态传输资源所对应的逻辑信道中的所有待传数据均分配半静态传输资源,直至所对应的逻辑信道中的所有待传数据都分配到足够其传输的传输资源。
可选的,当与待传数据所位于的逻辑信道具有对应关系的半静态传输资源还包括未被占用的空闲资源时,在空闲资源上传输未与半静态传输资源具有对应关系的逻辑信道中的数据。
图9是本发明实施例UE的一种结构示意图。图9所示的UE对应上述方法实施例一、二、三中的UE1,包括:
获取单元701,用于获取半静态传输资源;
确定单元702,用于确定与所述半静态传输资源具有对应关系的逻辑信道;
传输单元703,用于在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
可选的,所述传输单元703,还用于:
从网络设备接收半静态资源配置信息。
可选的,所述传输单元703,还用于:
从网络设备接收与所述半静态传输资源对应的半静态资源配置信息。
可选的,所述传输单元703,还用于:
向网络设备发送终端能力报告,所述终端能力报告中携带所述UE是否支持并行的多个半静态调度配置的指示信息。
可选的,所述传输单元703,还用于:
向网络设备发送终端辅助信息,所述终端辅助信息中包括至少一个逻辑信道的业务特性信息。
可选的,所述传输单元703还用于接收来自网络设备的激活消息,所述激活消息指示所述半静态传输资源;
所述确定单元702,还用于根据所述激活消息确定所述半静态传输资源。
可选的,所述装置还包括:
激活单元704,用于根据所述激活消息激活半静态资源配置,所述半静态资源配置根据半静态资源配置信息确定。
可选的,所述激活单元704根据所述激活消息激活的所述半静态资源配置与所述激活消息所指示的所述半静态传输资源对应。
可选的,在直通链路通信场景中,所述指示信息用于指示所述UE支持基于直通链路的多个半静态调度配置。
可选的,在直通链路通信场景中,所述业务特性信息用于指示基于直通链路逻辑信道的业务特性。
可选的,所述业务特性信息包括下述一个参数或多个参数的组合:逻辑信道标识LCID、层2目标地址、数据包到达周期、数据包到达时刻、数据包大小和数据包优先级。
可选的,所述数据包优先级为临近业务数据包优先级。
可选的,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔、调制编码制式、LCID和层2目标地址。
可选的,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID、层2目标地址和半静态调度类型指示符。
可选的,所述激活单元704,具体用于:
根据所述激活消息中的半静态配置标识,激活包含相同半静态配置标识的半静态资源配置信息所对应的半静态资源配置。
可选的,所述确定单元702还用于:
确定所述激活消息所指示的半静态传输资源与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系;
或者,
确定所激活的半静态资源配置和所述激活消息消息所指示的半静态传输资源,与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系;
或者,
确定所激活的半静态资源配置与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系。
可选的,在上行链路通信场景中,所述指示信息用于指示所述UE支持基于上行链路的多个半静态调度配置。
可选的,在上行链路通信场景中,所述业务特性信息用于指示基于上行链路逻辑信道的业务特性。
可选的,所述业务特性信息包括下述一个参数或多个参数的组合:LCID、数据包到达周期、数据包到达时刻和数据包大小。
可选的,所述半静态资源配置信息包括下述一个参数多个参数的组合:半静态配置标识、半静态调度间隔和LCID。
可选的,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID和半静态调度类型指示符。
可选的,所述激活单元704,具体用于:
根据激活消息中的半静态配置标识,激活包含相同半静态配置标识的半静态资源配置信息所对应的半静态资源配置。
可选的,所述确定单元702,还用于:
确定激活消息所指示的半静态传输资源与所述激活消息中的LCID所确定的逻辑信道之间的对应关系;
或者,
确定所激活的半静态资源配置和所述激活消息消息所指示的半静态传输资源,与所述激活消息中的LCID所确定的逻辑信道之间的对应关系;
或者,
确定所激活的半静态资源配置与所述激活消息中的LCID所确定的逻辑信道之间的对应关系。
可选的,所述传输单元703,具体用于:
根据所激活的半静态资源配置,在所激活的半静态资源配置所对对应的半静态传 输资源上,进行数据传输。
可选的,所述获取单元701,具体用于:
自行从预先配置的传输资源池中,选择用于与逻辑信道对应的所述半静态传输资源。
可选的,所述确定单元702,具体用于:
自行确定用于与所选择的所述半静态传输资源进行对应的逻辑信道。
可选的,所述确定单元702,还用于:
根据逻辑信道中的业务特性信息,确定与所述半静态传输资源对应的半静态资源配置信息。
可选的,所述半静态资源配置信息包括下述一个或多个参数的组合:半静态调度间隔、调制编码方式、LCID和层2目标地址。
在本发明的另一个实施例中,在硬件实现上,传输单元703可以由集成了发射器和接收器功能的收发器实现收发信息的功能,也可以分别由独立的接收器实现接收信息的功能,由独立的发射器实现发送信息的功能。确定单元702和激活单元704可以合并为一个功能模块以硬件形式内嵌于或独立于UE1的处理器中,也可以以软件形式存储于UE1的存储器中,以便于处理器调用执行以上各个单元对应的操作。当UE从网络设备中获取半静态传输资源时,获取单元701可以与传输单元703合并为一个功能模块;当UE自行确定半静态传输资源时,获取单元701合并到上述的确定单元702和激活单元704所位于的模块中。
图10是本发明实施例UE的另一种结构示意图。图10所示的UE对应上述方法实施例四中的UE1,包括:
获取单元801,用于当确定逻辑信道中有待传数据时,获取与所述逻辑信道具有对应关系的半静态传输资源;
收发单元802,用于在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
可选的,所述收发单元802,具体用于:
优先为与所述半静态传输资源所对应的逻辑信道中的待传数据分配半静态传输资源,直至所述半静态传输资源分配完毕。
可选的,所述收发单元802,具体用于:
优先为与所述半静态传输资源所对应的逻辑信道中的所有待传数据均分配半静态传输资源,直至所对应的逻辑信道中的所有待传数据都分配到足够其传输的传输资源。
可选的,所述收发单元802,还用于:
当与待传数据所位于的逻辑信道具有对应关系的半静态传输资源还包括未被占用的空闲资源时,在所述空闲资源上传输未与所述半静态传输资源具有对应关系的逻辑信道中的数据。
在本发明的另一个实施例中,在硬件实现上,传输单元可以由集成了发射器和接收器功能的收发器实现收发信息的功能,也可以分别由独立的接收器实现接收信息的功能,由独立的发射器实现向发送信息的功能。获取单元801为一个功能模块以硬件形式内嵌于或独立于UE的处理器中,也可以以软件形式存储于UE的存储器中,以便于处理器调用执行以上各个单元对应的操作。
图11是本发明实施例中UE的又一种结构示意图。所述UE包括发射器901,接收器902和处理器903,。
发射器901调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器902调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
处理器903对UE的动作进行控制管理,用于执行上述实施例一至四中由UE进行的处理。
图12是本发明实施例基站的一种结构示意图,图12所示的基准对应方法实施中的网络设备,例如对应eNB,包括:
分配单元1001,用于为UE分配半静态传输资源,并且确定与所述半静态传输资源具有对应关系的逻辑信道;
信息收发单元1002,用于将为所述UE分配的半静态传输资源的信息和与所述半静态传输资源具有对应关系的逻辑信道的信息发送给所述UE。
可选的,所述信息收发单元1002,还用于:
接收来自所述UE的终端能力报告,所述终端能力报告中携带所述UE是否支持并行的多个半静态调度配置的指示信息。
可选的,所述信息收发单元1002,还用于:接收来自UE的终端辅助信息,所述终端辅助信息中包括至少一个逻辑信道的业务特性信息;
所述分配单元1001,具体用于:根据逻辑信道的业务特性信息为所述UE分配半静态传输资源。
可选的,所述信息收发单元1002,具体用于:
向所述UE发送与所述半静态传输资源对应的半静态资源配置信息。
可选的,所述信息收发单元1002,还用于:
向所述UE发送激活消息,所述激活消息指示为所述UE分配的所述半静态传输资源。
可选的,在直通链路通信场景中,所述指示信息用于指示所述UE支持基于直通链路的多个半静态调度配置。
可选的,在直通链路通信场景中,所述业务特性信息用于指示基于直通链路逻辑信道的业务特性。
可选的,所述业务特性信息包括下述一个参数或多个参数的组合:逻辑信道标识LCID、层2目标地址、数据包到达周期、数据包到达时刻、数据包大小和数据包优先级。
可选的,所述数据包优先级为临近业务数据包优先级。
可选的,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔、调制编码制式、LCID和层2目标地址。
可选的,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID、层2目标地址和半静态调度类型指示符。
可选的,在上行链路通信场景中,所述指示信息用于指示所述UE支持基于上行链路的多个半静态调度配置。
可选的,在上行链路通信场景中,所述业务特性信息用于指示基于上行链路逻辑 信道的业务特性。
可选的,所述业务特性信息包括下述一个参数或多个参数的组合:LCID、数据包到达周期、数据包到达时刻和数据包大小。
可选的,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔和LCID。
可选的,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID和半静态调度类型指示符。
在本发明的另一个实施例中,在硬件实现上,信息收发单元1002可以由集成了发射器和接收器功能的收发器实现收发信息的功能,也可以分别由独立的接收器实现接收信息的功能,由独立的发射器实现向发送信息的功能。分配单元1001可以硬件形式内嵌于或独立于UE的处理器中,也可以以软件形式存储于UE的存储器中,以便于处理器调用执行以上各个单元对应的操作。
如图9、图10及图12任一所示,上述UE或基站中的各单元之间可以通过通信总线的方式相互连接。图中未示,上述各设备内的各单元也可以采用其他连接方式连接,本发明实施例对此不做特别限定。
图13是本发明实施例基站的另一种结构示意图。
基站包括发射器/接收器1101,控制器/处理器1102以及通信单元1103。所述发射器/接收器1101用于支持基站与上述实施例中的所述的UE之间收发信息,以及支持所述UE与其他UE之间进行无线电通信。所述控制器/处理器1102执行各种用于与UE通信的功能。在上行链路,来自所述UE的上行链路信号经由天线接收,由接收器1101进行调解,并进一步由控制器/处理器1112进行处理来恢复UE所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器1102进行处理,并由发射器1101进行调解来产生下行链路信号,并经由天线发射给UE。控制器/处理器1102还执行实施例一至五中涉及基站的处理过程和/或用于本申请所描述的技术的其他过程。通信单元1103用于支持基站与其他网络实体进行通信。例如,用于支持基站与UE或者位于核心网EPC中的MME,SGW和或PGW等通信。
可以理解的是,图13仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的基站都在本发明的保护范围之内。
用于执行本发明上述基站和UE功能的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (96)

  1. 一种半静态传输方法,其特征在于,包括:
    用户设备UE获取半静态传输资源;
    所述UE确定与所述半静态传输资源具有对应关系的逻辑信道;
    所述UE在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
  2. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    所述UE从网络设备接收半静态资源配置信息。
  3. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    所述UE从网络设备接收与所述半静态传输资源对应的半静态资源配置信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述UE向网络设备发送终端能力报告,所述终端能力报告中携带所述UE是否支持并行的多个半静态调度配置的指示信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述UE向网络设备发送终端辅助信息,所述终端辅助信息中包括至少一个逻辑信道的业务特性信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述UE接收来自网络设备的激活消息,所述激活消息指示所述半静态传输资源;
    所述UE根据所述激活消息确定所述半静态传输资源。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述UE根据所述激活消息激活半静态资源配置,所述半静态资源配置根据半静态资源配置信息确定。
  8. 根据权利要求7所述的方法,其特征在于,所述UE根据所述激活消息激活的所述半静态资源配置与所述激活消息所指示的所述半静态传输资源对应。
  9. 根据权利要求4所述的方法,其特征在于,在直通链路通信场景中,所述指示信息用于指示所述UE支持基于直通链路的多个半静态调度配置。
  10. 根据权利要求5所述的方法,其特征在于,在直通链路通信场景中,所述业务特性信息用于指示基于直通链路逻辑信道的业务特性。
  11. 根据权利要求5或10所述方法,其特征在于,所述业务特性信息包括下述一个参数或多个参数的组合:逻辑信道标识LCID、层2目标地址、数据包到达周期、数据包到达时刻、数据包大小和数据包优先级。
  12. 根据权利要求11所述方法,其特征在于,所述数据包优先级为临近业务数据包优先级。
  13. 根据权利要求2、7或8所述的方法,其特征在于,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔、调制编码制式、LCID和层2目标地址。
  14. 根据权利要求13所述的方法,其特征在于,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID、层2目标地址和半静态调度类型指示符。
  15. 根据权利要求14所述的方法,其特征在于,所述UE激活半静态资源配置,包括:
    所述UE根据所述激活消息中的半静态配置标识,激活包含相同半静态配置标识的半静态资源配置信息所对应的半静态资源配置。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述UE确定所述激活消息所指示的半静态传输资源与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系;
    或者,
    所述UE确定所激活的半静态资源配置和所述激活消息消息所指示的半静态传输资源,与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系;
    或者,
    所述UE确定所激活的半静态资源配置与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系。
  17. 根据权利要求4所述的方法,其特征在于,在上行链路通信场景中,所述指示信息用于指示所述UE支持基于上行链路的多个半静态调度配置。
  18. 根据权利要求5所述的方法,其特征在于,在上行链路通信场景中,所述业务特性信息用于指示基于上行链路逻辑信道的业务特性。
  19. 根据权利要求5或18所述的方法,其特征在于,所述业务特性信息包括下述一个参数或多个参数的组合:LCID、数据包到达周期、数据包到达时刻和数据包大小。
  20. 根据权利要求2、7或8所述的方法,其特征在于,所述半静态资源配置信息包括下述一个参数多个参数的组合:半静态配置标识、半静态调度间隔和LCID。
  21. 根据权利要求20所述的方法,其特征在于,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID和半静态调度类型指示符。
  22. 根据权利要求21所述的方法,其特征在于,所述UE激活半静态资源配置,包括:
    所述UE根据激活消息中的半静态配置标识,激活包含相同半静态配置标识的半静态资源配置信息所对应的半静态资源配置。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述UE确定激活消息所指示的半静态传输资源与所述激活消息中的LCID所确定的逻辑信道之间的对应关系;
    或者,
    所述UE确定所激活的半静态资源配置和所述激活消息消息所指示的半静态传输资源,与所述激活消息中的LCID所确定的逻辑信道之间的对应关系;
    或者,
    所述UE确定所激活的半静态资源配置与所述激活消息中的LCID所确定的逻辑信道之间的对应关系。
  24. 根据权利要求7、8、13-16、20至23中任一项所述的方法,其特征在于,所述UE根据所激活的半静态资源配置,在所激活的半静态资源配置所对对应的半静态传输资源上,进行数据传输。
  25. 根据权利要求1所述的方法,其特征在于,所述UE获取半静态传输资源的方式包括:
    所述UE自行从预先配置的传输资源池中,选择用于与逻辑信道对应的所述半静态传输资源。
  26. 根据权利要求1或25所述的方法,其特征在于,所述方法还包括:
    所述UE自行确定用于与所选择的所述半静态传输资源进行对应的逻辑信道。
  27. 根据权利要求1、25或26所述的方法,其特征在于,所述方法还包括:
    所述UE根据逻辑信道中的业务特性信息,确定与所述半静态传输资源对应的半静态资源配置信息。
  28. 根据权利要求27所述方法,其特征在于,所述半静态资源配置信息包括下述一个或多个参数的组合:半静态调度间隔、调制编码方式、LCID和层2目标地址。
  29. 一种半静态传输方法,其特征在于,包括:
    UE确定逻辑信道中有待传数据时,所述UE获取与所述逻辑信道具有对应关系的半静态传输资源;
    所述UE在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
  30. 根据权利要求29所述的方法,其特征在于,所述UE传输与所述半静态传输资源具有对应关系的逻辑信道中的数据,包括:
    所述UE优先为与所述半静态传输资源所对应的逻辑信道中的待传数据分配半静态传输资源,直至所述半静态传输资源分配完毕。
  31. 根据权利要求29所述的方法,其特征在于,所述UE传输与所述半静态传输资源具有对应关系的逻辑信道中的数据,包括:
    所述UE优先为与所述半静态传输资源所对应的逻辑信道中的所有待传数据均分配半静态传输资源,直至所对应的逻辑信道中的所有待传数据都分配到足够其传输的传输资源。
  32. 根据权利要求31所述的方法,其特征在于,当与待传数据所位于的逻辑信道具有对应关系的半静态传输资源还包括未被占用的空闲资源时,在所述空闲资源上传输未与所述半静态传输资源具有对应关系的逻辑信道中的数据。
  33. 一种半静态传输方法,其特征在于,包括:
    网络设备为UE分配半静态传输资源,并且确定与所述半静态传输资源具有对应关系的逻辑信道;
    所述网络设备将为所述UE分配的半静态传输资源的信息和与所述半静态传输资源具有对应关系的逻辑信道的信息发送给所述UE。
  34. 根据权利要求33所述的方法,其特征在于,所述网络设备为UE分配半静态传输资源之前,所述方法还包括:
    所述网络设备接收来自所述UE的终端能力报告,所述终端能力报告中携带所述UE是否支持并行的多个半静态调度配置的指示信息。
  35. 根据权利要求33或34所述的方法,其特征在于,所述网络设备为UE分配半静态传输资源,包括:
    所述网络设备接收来自UE的终端辅助信息,所述终端辅助信息中包括至少 一个逻辑信道的业务特性信息;
    所述网络设备根据逻辑信道的业务特性信息为所述UE分配半静态传输资源。
  36. 根据权利要求33至35中任一项所述方法,其特征在于,所述网络设备将为所述UE分配的半静态传输资源的信息和与所述半静态传输资源具有对应关系的逻辑信道的信息发送给所述UE,包括:
    所述网络设备向所述UE发送与所述半静态传输资源对应的半静态资源配置信息。
  37. 根据权利要求36所述的方法,其特征在于,所述网络设备向UE发送半静态资源配置信息之后,所述方法还包括:
    所述网络设备向所述UE发送激活消息,所述激活消息指示为所述UE分配的所述半静态传输资源。
  38. 根据权利要求34所述的方法,其特征在于,在直通链路通信场景中,所述指示信息用于指示所述UE支持基于直通链路的多个半静态调度配置。
  39. 根据权利要求35所述的方法,其特征在于,在直通链路通信场景中,所述业务特性信息用于指示基于直通链路逻辑信道的业务特性。
  40. 根据权利要求39所述方法,其特征在于,所述业务特性信息包括下述一个参数或多个参数的组合:逻辑信道标识LCID、层2目标地址、数据包到达周期、数据包到达时刻、数据包大小和数据包优先级。
  41. 根据权利要求40所述方法,其特征在于,所述数据包优先级为临近业务数据包优先级。
  42. 根据权利要求36或37所述的方法,其特征在于,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔、调制编码制式、LCID和层2目标地址。
  43. 根据权利要求37或42所述的方法,其特征在于,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID、层2目标地址和半静态调度类型指示符。
  44. 根据权利要求34所述的方法,其特征在于,在上行链路通信场景中,所述指示信息用于指示所述UE支持基于上行链路的多个半静态调度配置。
  45. 根据权利要求35所述的方法,其特征在于,在上行链路通信场景中,所述业务特性信息用于指示基于上行链路逻辑信道的业务特性。
  46. 根据权利要求45所述的方法,其特征在于,所述业务特性信息包括下 述一个参数或多个参数的组合:LCID、数据包到达周期、数据包到达时刻和数据包大小。
  47. 根据权利要求36或37所述的方法,其特征在于,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔和LCID。
  48. 根据权利要求37所述的方法,其特征在于,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID和半静态调度类型指示符。
  49. 一种半静态传输装置,其特征在于,包括:
    获取单元,用于获取半静态传输资源;
    确定单元,用于确定与所述半静态传输资源具有对应关系的逻辑信道;
    传输单元,用于在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
  50. 根据权利要求49所述的装置,其特征在于,所述传输单元,还用于:
    从网络设备接收半静态资源配置信息。
  51. 根据权利要求49所述的装置,其特征在于,所述传输单元,还用于:
    从网络设备接收与所述半静态传输资源对应的半静态资源配置信息。
  52. 根据权利要求49至51中任一项所述的装置,其特征在于,所述传输单元,还用于:
    向网络设备发送终端能力报告,所述终端能力报告中携带所述UE是否支持并行的多个半静态调度配置的指示信息。
  53. 根据权利要求49至52中任一项所述的装置,其特征在于,所述传输单元,还用于:
    向网络设备发送终端辅助信息,所述终端辅助信息中包括至少一个逻辑信道的业务特性信息。
  54. 根据权利要求49至53中任一项所述的装置,其特征在于,所述传输单元还用于接收来自网络设备的激活消息,所述激活消息指示所述半静态传输资源;
    所述确定单元,还用于根据所述激活消息确定所述半静态传输资源。
  55. 根据权利要求54所述的装置,其特征在于,所述装置还包括:
    激活单元,用于根据所述激活消息激活半静态资源配置,所述半静态资源配置根据半静态资源配置信息确定。
  56. 根据权利要求55所述的装置,其特征在于,所述激活单元根据所述激活消息激活的所述半静态资源配置与所述激活消息所指示的所述半静态传输资源对应。
  57. 根据权利要求52所述的装置,其特征在于,在直通链路通信场景中,所述指示信息用于指示所述UE支持基于直通链路的多个半静态调度配置。
  58. 根据权利要求53所述的装置,其特征在于,在直通链路通信场景中,所述业务特性信息用于指示基于直通链路逻辑信道的业务特性。
  59. 根据权利要求53或58所述的装置,其特征在于,所述业务特性信息包括下述一个参数或多个参数的组合:逻辑信道标识LCID、层2目标地址、数据包到达周期、数据包到达时刻、数据包大小和数据包优先级。
  60. 根据权利要求59所述的装置,其特征在于,所述数据包优先级为临近业务数据包优先级。
  61. 根据权利要求50、55或56所述的装置,其特征在于,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔、调制编码制式、LCID和层2目标地址。
  62. 根据权利要求61所述的装置,其特征在于,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID、层2目标地址和半静态调度类型指示符。
  63. 根据权利要求62所述的装置,其特征在于,所述激活单元,具体用于:
    根据所述激活消息中的半静态配置标识,激活包含相同半静态配置标识的半静态资源配置信息所对应的半静态资源配置。
  64. 根据权利要求62或63所述的装置,其特征在于,所述确定单元还用于:
    确定所述激活消息所指示的半静态传输资源与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系;
    或者,
    确定所激活的半静态资源配置和所述激活消息消息所指示的半静态传输资源,与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系;
    或者,
    确定所激活的半静态资源配置与所述激活消息中的LCID和层2目标地址所确定的逻辑信道之间的对应关系。
  65. 根据权利要求52所述的装置,其特征在于,在上行链路通信场景中, 所述指示信息用于指示所述UE支持基于上行链路的多个半静态调度配置。
  66. 根据权利要求53所述的装置,其特征在于,在上行链路通信场景中,所述业务特性信息用于指示基于上行链路逻辑信道的业务特性。
  67. 根据权利要求53或66所述的装置,其特征在于,所述业务特性信息包括下述一个参数或多个参数的组合:LCID、数据包到达周期、数据包到达时刻和数据包大小。
  68. 根据权利要求50、55或56所述的装置,其特征在于,所述半静态资源配置信息包括下述一个参数多个参数的组合:半静态配置标识、半静态调度间隔和LCID。
  69. 根据权利要求68所述的装置,其特征在于,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID和半静态调度类型指示符。
  70. 根据权利要求69所述的装置,其特征在于,所述激活单元,具体用于:
    根据激活消息中的半静态配置标识,激活包含相同半静态配置标识的半静态资源配置信息所对应的半静态资源配置。
  71. 根据权利要求69或70所述的装置,其特征在于,所述确定单元,还用于:
    确定激活消息所指示的半静态传输资源与所述激活消息中的LCID所确定的逻辑信道之间的对应关系;
    或者,
    确定所激活的半静态资源配置和所述激活消息消息所指示的半静态传输资源,与所述激活消息中的LCID所确定的逻辑信道之间的对应关系;
    或者,
    确定所激活的半静态资源配置与所述激活消息中的LCID所确定的逻辑信道之间的对应关系。
  72. 根据权利要求55、56、61-64、68至71中任一项所述的装置,其特征在于,所述传输单元,具体用于:
    根据所激活的半静态资源配置,在所激活的半静态资源配置所对对应的半静态传输资源上,进行数据传输。
  73. 根据权利要求49所述的装置,其特征在于,所述获取单元,具体用于:
    自行从预先配置的传输资源池中,选择用于与逻辑信道对应的所述半静态传输资源。
  74. 根据权利要求49或73所述的装置,其特征在于,所述确定单元,具体用于:
    自行确定用于与所选择的所述半静态传输资源进行对应的逻辑信道。
  75. 根据权利要求49、73或74所述的装置,其特征在于,所述确定单元,还用于:
    根据逻辑信道中的业务特性信息,确定与所述半静态传输资源对应的半静态资源配置信息。
  76. 根据权利要求75所述装置,其特征在于,所述半静态资源配置信息包括下述一个或多个参数的组合:半静态调度间隔、调制编码方式、LCID和层2目标地址。
  77. 一种半静态传输装置,其特征在于,包括:
    获取单元,用于当确定逻辑信道中有待传数据时,获取与所述逻辑信道具有对应关系的半静态传输资源;
    收发单元,用于在所述半静态传输资源上,传输与所述半静态传输资源具有对应关系的逻辑信道中的数据。
  78. 根据权利要求77所述的装置,其特征在于,所述收发单元,具体用于:
    优先为与所述半静态传输资源所对应的逻辑信道中的待传数据分配半静态传输资源,直至所述半静态传输资源分配完毕。
  79. 根据权利要求77所述的装置,其特征在于,所述收发单元,具体用于:
    优先为与所述半静态传输资源所对应的逻辑信道中的所有待传数据均分配半静态传输资源,直至所对应的逻辑信道中的所有待传数据都分配到足够其传输的传输资源。
  80. 根据权利要求79所述的装置,其特征在于,所述收发单元,还用于:
    当与待传数据所位于的逻辑信道具有对应关系的半静态传输资源还包括未被占用的空闲资源时,在所述空闲资源上传输未与所述半静态传输资源具有对应关系的逻辑信道中的数据。
  81. 一种半静态传输装置,其特征在于,包括:
    分配单元,用于为UE分配半静态传输资源,并且确定与所述半静态传输资源具有对应关系的逻辑信道;
    信息收发单元,用于将为所述UE分配的半静态传输资源的信息和与所述半静态传输资源具有对应关系的逻辑信道的信息发送给所述UE。
  82. 根据权利要求81所述的装置,其特征在于,所述信息收发单元,还用 于:
    接收来自所述UE的终端能力报告,所述终端能力报告中携带所述UE是否支持并行的多个半静态调度配置的指示信息。
  83. 根据权利要求81或82所述的装置,其特征在于,所述信息收发单元,还用于:接收来自UE的终端辅助信息,所述终端辅助信息中包括至少一个逻辑信道的业务特性信息;
    所述分配单元,具体用于:根据逻辑信道的业务特性信息为所述UE分配半静态传输资源。
  84. 根据权利要求81至83中任一项所述的装置,其特征在于,所述信息收发单元,具体用于:
    向所述UE发送与所述半静态传输资源对应的半静态资源配置信息。
  85. 根据权利要求84所述的装置,其特征在于,所述信息收发单元,还用于:
    向所述UE发送激活消息,所述激活消息指示为所述UE分配的所述半静态传输资源。
  86. 根据权利要求82所述的装置,其特征在于,在直通链路通信场景中,所述指示信息用于指示所述UE支持基于直通链路的多个半静态调度配置。
  87. 根据权利要求83所述的装置,其特征在于,在直通链路通信场景中,所述业务特性信息用于指示基于直通链路逻辑信道的业务特性。
  88. 根据权利要求87所述的装置,其特征在于,所述业务特性信息包括下述一个参数或多个参数的组合:逻辑信道标识LCID、层2目标地址、数据包到达周期、数据包到达时刻、数据包大小和数据包优先级。
  89. 根据权利要求88所述的装置,其特征在于,所述数据包优先级为临近业务数据包优先级。
  90. 根据权利要求84或85所述的装置,其特征在于,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔、调制编码制式、LCID和层2目标地址。
  91. 根据权利要求85或90所述的装置,其特征在于,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID、层2目标地址和半静态调度类型指示符。
  92. 根据权利要求82所述的装置,其特征在于,在上行链路通信场景中,所述指示信息用于指示所述UE支持基于上行链路的多个半静态调度配置。
  93. 根据权利要求83所述的装置,其特征在于,在上行链路通信场景中,所述业务特性信息用于指示基于上行链路逻辑信道的业务特性。
  94. 根据权利要求93所述的装置,其特征在于,所述业务特性信息包括下述一个参数或多个参数的组合:LCID、数据包到达周期、数据包到达时刻和数据包大小。
  95. 根据权利要求84或85所述的装置,其特征在于,所述半静态资源配置信息包括下述一个参数或多个参数的组合:半静态配置标识、半静态调度间隔和LCID。
  96. 根据权利要求85所述的装置,其特征在于,所述激活消息中还携带下述一个参数或多个参数的组合:半静态配置标识、LCID和半静态调度类型指示符。
PCT/CN2016/094943 2016-08-12 2016-08-12 半静态传输方法及装置 WO2018027926A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/094943 WO2018027926A1 (zh) 2016-08-12 2016-08-12 半静态传输方法及装置
EP16912381.7A EP3487239B1 (en) 2016-08-12 2016-08-12 Semi-static transmission method and apparatus
CN201680087675.1A CN109479267B (zh) 2016-08-12 2016-08-12 半静态传输方法及装置
US16/273,670 US10973045B2 (en) 2016-08-12 2019-02-12 Semi-persistent transmission method and apparatus in VIX communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094943 WO2018027926A1 (zh) 2016-08-12 2016-08-12 半静态传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/273,670 Continuation US10973045B2 (en) 2016-08-12 2019-02-12 Semi-persistent transmission method and apparatus in VIX communication

Publications (1)

Publication Number Publication Date
WO2018027926A1 true WO2018027926A1 (zh) 2018-02-15

Family

ID=61161532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094943 WO2018027926A1 (zh) 2016-08-12 2016-08-12 半静态传输方法及装置

Country Status (4)

Country Link
US (1) US10973045B2 (zh)
EP (1) EP3487239B1 (zh)
CN (1) CN109479267B (zh)
WO (1) WO2018027926A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019213883A1 (zh) * 2018-05-09 2019-11-14 华为技术有限公司 资源调度方法、终端及网络设备
CN110943816A (zh) * 2018-09-21 2020-03-31 维沃移动通信有限公司 一种资源配置方法、终端及网络设备
CN114364040A (zh) * 2019-10-30 2022-04-15 Oppo广东移动通信有限公司 无线通信方法和终端设备
EP4027665A4 (en) * 2019-09-30 2022-10-12 Huawei Technologies Co., Ltd. COMMUNICATION PROCESS AND COMMUNICATION DEVICE
WO2023165235A1 (zh) * 2022-03-02 2023-09-07 荣耀终端有限公司 半静态调度方法、用户设备、基站及通信系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135703A1 (en) 2016-02-03 2017-08-10 Lg Electronics Inc. Method and apparatus for performing semi persistent scheduling transmission with scheduling request in wireless communication system
WO2018062906A1 (ko) * 2016-09-30 2018-04-05 엘지전자 주식회사 무선 통신 시스템에서 sps를 위한 단말 도움 정보를 전송하는 방법 및 장치
EP3482601B1 (en) * 2016-10-06 2024-03-06 Samsung Electronics Co., Ltd. Methods for managing wireless communication in vehicle-to-anything communication system
WO2018082985A2 (en) * 2016-11-03 2018-05-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. User equipment, base station, wireless communication network, data signal and method to provide enhanced sps control and continuous sps after handover
CN109803385B (zh) * 2017-11-16 2023-04-14 中兴通讯股份有限公司 请求资源的方法及装置,处理资源请求的方法及装置
JP7235860B2 (ja) * 2018-11-01 2023-03-08 中興通訊股▲ふん▼有限公司 サイドリンク論理チャネルおよびリソース構成
EP3879907B1 (en) * 2018-12-14 2022-09-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data processing method and device, and storage medium
CN111436084A (zh) * 2019-02-13 2020-07-21 维沃移动通信有限公司 辅助信息上报方法及装置、通信设备
CN111294165B (zh) * 2019-03-22 2021-06-08 展讯通信(上海)有限公司 资源分配方法及装置、存储介质、终端
US11451979B2 (en) * 2019-08-14 2022-09-20 At&T Intellectual Property I, L.P. Device testing optimization for 5G or other next generation network
US20230353294A1 (en) * 2019-12-26 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Network slicing in cellular systems
EP4171148A4 (en) * 2020-07-03 2023-08-02 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765211A (zh) * 2008-12-24 2010-06-30 大唐移动通信设备有限公司 半持续调度资源的配置方法、系统及设备
CN102056174A (zh) * 2010-12-16 2011-05-11 大唐移动通信设备有限公司 一种资源调度的方法、装置和基站
CN102104959A (zh) * 2009-12-16 2011-06-22 普天信息技术研究院有限公司 半静态调度业务的授权与传输方法
US20130039320A1 (en) * 2010-04-20 2013-02-14 Panasonic Corporation Base station apparatus and scheduling method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237633A1 (en) * 2009-04-03 2010-10-06 Panasonic Corporation Buffer status reporting in a mobile communication system
US8638815B2 (en) * 2010-01-08 2014-01-28 Blackberry Limited Method and apparatus for logical channel prioritization for uplink carrier aggregation
KR20120074254A (ko) * 2010-12-27 2012-07-05 한국전자통신연구원 단말간 직접 연결 통신 및 단말 릴레잉을 위한 디바이스 대 디바이스 링크의 연결 설정 및 스케쥴링 방법
CN104811892B (zh) * 2014-01-29 2020-03-13 中兴通讯股份有限公司 一种资源分配方法、装置及系统
EP3651486B1 (en) * 2014-05-09 2024-04-17 Sun Patent Trust Resource allocation for d2d discovery transmission
US20150341858A1 (en) * 2014-05-21 2015-11-26 Qualcomm Incorporated Apparatus, methods, and computer program products providing power savings in sps-configured volte with c-drx
CN105142220B (zh) * 2015-06-30 2018-05-22 大唐移动通信设备有限公司 一种语音数据动态延迟调度方法及基站
US10477527B2 (en) * 2015-07-14 2019-11-12 Qualcomm Incorporated Semi-persistent scheduling mechanisms for vehicle-to-vehicle communication
US10470204B2 (en) * 2016-08-10 2019-11-05 Ofinno, Llc Multiple semi persistent scheduling in a wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765211A (zh) * 2008-12-24 2010-06-30 大唐移动通信设备有限公司 半持续调度资源的配置方法、系统及设备
CN102104959A (zh) * 2009-12-16 2011-06-22 普天信息技术研究院有限公司 半静态调度业务的授权与传输方法
US20130039320A1 (en) * 2010-04-20 2013-02-14 Panasonic Corporation Base station apparatus and scheduling method
CN102056174A (zh) * 2010-12-16 2011-05-11 大唐移动通信设备有限公司 一种资源调度的方法、装置和基站

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "SPS Enhancements for Uu Operations in V2X", 3GPP TSG-RAN WG2 #94, R2-164112, 27 May 2016 (2016-05-27), XP051105429 *
OPPO: "Discussion on SPS Enhancements for V2X", 3GPP TSG-RAN2 MEETING #94, R2-163406, 27 April 2016 (2016-04-27), XP051104928 *
QUALCOMM INCORPORATED: "eNodeB Signalling for SPS Resource Allocation", 3GPP TSG-RAN WG1 #85, RL-164421, 27 May 2016 (2016-05-27), XP051096458 *
QUALCOMM INCORPORATED: "SPS for V2V Communication", 3GPP TSG-RAN WG2 MEETING #94, R2-164063, 27 May 2016 (2016-05-27), XP051105386 *
ZTE: "SPS Enhancements for V2X over Uu", 3GPP TSGRAN WG2 #94, R2-163840, 27 May 2016 (2016-05-27), XP051105239 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019213883A1 (zh) * 2018-05-09 2019-11-14 华为技术有限公司 资源调度方法、终端及网络设备
CN112088557A (zh) * 2018-05-09 2020-12-15 华为技术有限公司 资源调度方法、终端及网络设备
CN112088557B (zh) * 2018-05-09 2023-06-02 华为技术有限公司 资源调度方法、终端及网络设备
CN110943816A (zh) * 2018-09-21 2020-03-31 维沃移动通信有限公司 一种资源配置方法、终端及网络设备
US11979893B2 (en) 2018-09-21 2024-05-07 Vivo Mobile Communication Co., Ltd. Resource configuration method, terminal, and network device
EP4027665A4 (en) * 2019-09-30 2022-10-12 Huawei Technologies Co., Ltd. COMMUNICATION PROCESS AND COMMUNICATION DEVICE
CN114364040A (zh) * 2019-10-30 2022-04-15 Oppo广东移动通信有限公司 无线通信方法和终端设备
CN114364040B (zh) * 2019-10-30 2024-03-22 Oppo广东移动通信有限公司 无线通信方法和终端设备
WO2023165235A1 (zh) * 2022-03-02 2023-09-07 荣耀终端有限公司 半静态调度方法、用户设备、基站及通信系统

Also Published As

Publication number Publication date
US10973045B2 (en) 2021-04-06
EP3487239A4 (en) 2019-06-26
EP3487239B1 (en) 2023-11-15
US20190174522A1 (en) 2019-06-06
CN109479267A (zh) 2019-03-15
EP3487239A1 (en) 2019-05-22
CN109479267B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2018027926A1 (zh) 半静态传输方法及装置
US11026250B2 (en) Scheduling method, device, and system
RU2733420C2 (ru) Улучшенные начальные и повторные передачи данных для v2x-передач
KR102132106B1 (ko) 사이드링크 통신을 포함하는 셀룰러 핸드오버를 위한 방법 및 장치
JP6564783B2 (ja) ユーザ装置、及び間欠受信方法
EP3432662B1 (en) Method and device for configuring and determining semi-persistent scheduling
JP6957467B2 (ja) サービス伝送方法及び装置
JP2022549595A (ja) データ送信方法と装置
US20230370913A1 (en) Apparatus and method for allocating resources for switching between macro cell and small cell in wireless communication system
JP6563420B2 (ja) ロングタームエボリューションデバイス間発見のためのリソース割振り制御
WO2020200135A1 (zh) 一种资源配置方法及通信装置
JP2019521535A (ja) 通信方法、端末装置及びネットワーク装置
WO2017134578A1 (en) Latency reduction for communication elements
JP2019533964A (ja) ユーザ機器、基地局、ワイヤレス通信ネットワーク、データ信号、およびハンドオーバ後に強化されたsps制御および連続的なspsを提供する方法
WO2013189367A2 (zh) 一种端到端用户动态复用蜂窝用户资源的方法及基站
JP2023126773A (ja) 通信方法及び通信装置
US20170208490A1 (en) D2d resource utilization monitoring in a wireless communication network
WO2020124534A1 (zh) 数据传输的方法和设备
WO2014192629A1 (ja) ユーザ端末、基地局及びプロセッサ
WO2017132994A1 (zh) 信息发送、接收、上行同步、数据发送指示方法及设备
CN111656745A (zh) 一种数据传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016912381

Country of ref document: EP

Effective date: 20190213