WO2018062906A1 - 무선 통신 시스템에서 sps를 위한 단말 도움 정보를 전송하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 sps를 위한 단말 도움 정보를 전송하는 방법 및 장치 Download PDF

Info

Publication number
WO2018062906A1
WO2018062906A1 PCT/KR2017/010852 KR2017010852W WO2018062906A1 WO 2018062906 A1 WO2018062906 A1 WO 2018062906A1 KR 2017010852 W KR2017010852 W KR 2017010852W WO 2018062906 A1 WO2018062906 A1 WO 2018062906A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
enb
logical channel
assistance information
information
Prior art date
Application number
PCT/KR2017/010852
Other languages
English (en)
French (fr)
Inventor
이영대
이재욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/338,419 priority Critical patent/US10873935B2/en
Priority to EP17856792.1A priority patent/EP3506702B1/en
Publication of WO2018062906A1 publication Critical patent/WO2018062906A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting user equipment (UE) assistance information for semi-persistent scheduling (SPS) in a wireless communication system.
  • UE user equipment
  • SPS semi-persistent scheduling
  • 3rd generation partnership project (3GPP) long-term evolution (LTE) is a technology for enabling high-speed packet communication. Many approaches have been proposed to reduce the cost, improve service quality, expand coverage, and increase system capacity for LTE targets. 3GPP LTE is a high level requirement that requires cost per bit, improved service usability, flexible use of frequency bands, simple structure, open interface and proper power consumption of terminals.
  • V2X LTE-based vehicle-to-everything
  • V2X LTE-based vehicle-to-everything
  • the market for vehicle-to-vehicle (V2V) communications is expected to have ongoing or initiated related activities, such as research projects, field testing and regulatory work, in some countries or regions, such as the United States, Europe, Japan, Korea, and China. do.
  • SPS Semi-persistent
  • DL downlink
  • UL uplink
  • PRB physical resource block
  • V2X communication is relatively small in size and can be transmitted periodically
  • a method of transmitting a V2X message through a resource allocated by the SPS is under discussion.
  • a method of transmitting terminal assistance information related to the SPS to the network is also under discussion.
  • the present invention provides a method and apparatus for transmitting user equipment (UE) assistance information for semi-persistent scheduling (SPS) in a wireless communication system.
  • UE user equipment
  • SPS semi-persistent scheduling
  • the present invention provides a method and apparatus for including an SPS release indication for releasing SPS resources into UE assistance information for each logical channel.
  • a method for instructing semi-persistent scheduling (SPS) release by a user equipment (UE) in a wireless communication system receives a plurality of SPS configurations for a plurality of logical channels from an evolved NodeB (eNB) and sends UE assistance information to the eNB, the UE assistance information including an SPS release indication for any one of the plurality of logical channels. It includes sending.
  • SPS semi-persistent scheduling
  • a user equipment (UE) in a wireless communication system includes a memory, a transceiver, and a processor connected to the memory and the transceiver.
  • the processor controls the transceiver to receive a plurality of semi-persistent scheduling (SPS) configurations for a plurality of logical channels from an evolved NodeB (eNB), and releases an SPS for any one of the plurality of logical channels.
  • SPS semi-persistent scheduling
  • eNB evolved NodeB
  • Control the transceiver to transmit UE assistance information including an indication to the eNB.
  • SPS resources can be effectively released per logical channel.
  • 1 shows a structure of a 3GPP LTE system.
  • FIG. 2 is a block diagram of a user plane protocol stack of an LTE system.
  • FIG. 3 is a block diagram of a control plane protocol stack of an LTE system.
  • FIG. 5 illustrates a method of instructing SPS release by a UE according to an embodiment of the present invention.
  • FIG. 6 illustrates a wireless communication system in which an embodiment of the present invention is implemented.
  • a 3GPP long-term evolution (LTE) system structure includes one or more user equipment (UE) 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC). Include.
  • the UE 10 is a communication device moved by a user.
  • the UE 10 may be fixed or mobile and may be referred to by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
  • the E-UTRAN includes one or more evolved NodeBs (eNBs) 20, and a plurality of UEs may exist in one cell.
  • the eNB 20 provides an end point of a control plane and a user plane to the UE 10.
  • the eNB 20 generally refers to a fixed station that communicates with the UE 10 and may be referred to in other terms, such as a base station (BS), an access point, and the like.
  • BS base station
  • One eNB 20 may be arranged per cell.
  • downlink means communication from the eNB 20 to the UE 10.
  • Uplink means communication from the UE 10 to the eNB 20.
  • Sidelink means communication between the UE (10).
  • the transmitter may be part of the eNB 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the eNB 20.
  • the transmitter and the receiver may be part of the UE 10.
  • the EPC includes a mobility management entity (MME) and a serving gateway (S-GW).
  • MME mobility management entity
  • S-GW serving gateway
  • the MME / S-GW 30 is located at the end of the network.
  • the MME / S-GW 30 provides an end point of session and mobility management functionality for the UE 10.
  • the MME / S-GW 30 is simply expressed as a "gateway", which may include both the MME and the S-GW.
  • a packet dana network (PDN) gateway (P-GW) may be connected to an external network.
  • PDN packet dana network gateway
  • the MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for UEs in idle mode and activation mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management features, including roaming, authentication, and dedicated bearer setup, selection of a serving GPRS support node (SGSN) for handover to the network, public warning system (ETWS) and earthquake and tsunami warning system (CMAS) It provides various functions such as message transmission support.
  • NAS non-access stratum
  • AS access stratum
  • inter CN node network
  • IMS node network
  • MME selection for handover with MME change 2G or 3G 3GPP access Bearer management features, including roaming, authentication, and dedicated bearer setup, selection
  • S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR (access point name aggregate maximum bit rate).
  • per-user packet filtering eg, through deep packet inspection
  • legal blocking e.g, terminal IP (Internet protocol) address assignment
  • transport level packing marking in DL e.g, UL / DL service level charging
  • gating Internet protocol
  • An interface for user traffic transmission or control traffic transmission may be used.
  • the UE 10 and the eNB 20 are connected by a Uu interface.
  • the UEs 10 are connected by a PC5 interface.
  • the eNBs 20 are connected by an X2 interface.
  • the neighboring eNB 20 may have a mesh network structure by the X2 interface.
  • the eNB 20 and the gateway 30 are connected through an S1 interface.
  • the layer of the air interface protocol between the UE and the E-UTRAN is based on the lower three layers of the open system interconnection (OSI) model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). Hierarchical).
  • OSI open system interconnection
  • the physical layer belongs to L1.
  • the physical layer provides an information transmission service to a higher layer through a physical channel.
  • the physical layer is connected to a higher layer of a media access control (MAC) layer through a transport channel.
  • Physical channels are mapped to transport channels.
  • Data is transmitted between the MAC layer and the physical layer through a transport channel.
  • Data is transmitted over a physical channel between different physical layers, that is, between a physical layer of a transmitter and a physical layer of a receiver.
  • the MAC layer, radio link control (RLC) layer, and packet data convergence protocol (PDCP) layer belong to L2.
  • the MAC layer provides a service to an RLC layer, which is a higher layer, through a logical channel.
  • the MAC layer provides data transfer services on logical channels.
  • the RLC layer supports reliable data transmission. Meanwhile, the function of the RLC layer may be implemented as a functional block inside the MAC layer, in which case the RLC layer may not exist.
  • the PDCP layer introduces an IP packet, such as IPv4 or IPv6, over a relatively low bandwidth air interface to provide header compression that reduces unnecessary control information so that the transmitted data is transmitted efficiently.
  • the radio resource control (RRC) layer belongs to L3.
  • the RRC layer at the bottom of L3 is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers (RBs).
  • RB means a service provided by L2 for data transmission between the UE and the E-UTRAN.
  • the RLC and MAC layers may perform functions such as scheduling, ARQ, and hybrid automatic repeat request (HARQ).
  • the PDCP layer may perform user plane functions such as header compression, integrity protection and encryption.
  • the RLC / MAC layer (end at eNB at network side) may perform the same functions for the control plane.
  • the RRC layer (terminated at the eNB at the network side) may perform functions such as broadcast, paging, RRC connection management, RB control, mobility functionality, and UE measurement reporting and control.
  • the NAS control protocol (terminated at the gateway's MME at the network side) may perform functions such as SAE bearer management, authentication, LTE_IDLE mobility management, paging start in LTE_IDLE, and security control for signaling between the gateway and the UE.
  • the physical channel transmits signaling and data between the physical layer of the UE and the physical layer of the eNB through radio resources.
  • the physical channel is composed of a plurality of subframes in the time domain and a plurality of subcarriers in the frequency domain.
  • One subframe of 1ms consists of a plurality of symbols in the time domain.
  • a specific symbol of the corresponding subframe, for example, the first symbol of the subframe may be used for the PDCCH.
  • the PDCCH may carry dynamically allocated resources, such as a physical resource block (PRB) and modulation and coding schemes (MCS).
  • PRB physical resource block
  • MCS modulation and coding schemes
  • the DL transport channel is a broadcast channel (BCH) used for transmitting system information, a paging channel (PCH) used for paging a UE, and a downlink shared channel (DL-SCH) used for transmitting user traffic or control signals.
  • BCH broadcast channel
  • PCH paging channel
  • DL-SCH downlink shared channel
  • MCH Multicast channel
  • the DL-SCH supports dynamic link adaptation and dynamic / semi-static resource allocation by varying HARQ, modulation, coding and transmit power.
  • the DL-SCH may enable the use of broadcast and beamforming throughout the cell.
  • the UL transport channel generally includes a random access channel (RACH) used for initial access to a cell, an uplink shared channel (UL-SCH) used for transmitting user traffic or control signals.
  • RACH random access channel
  • UL-SCH uplink shared channel
  • the UL-SCH supports dynamic link adaptation with HARQ and transmit power and potential changes in modulation and coding.
  • the UL-SCH may enable the use of beamforming.
  • Logical channels are classified into control channels for information transmission in the control plane and traffic channels for information transmission in the user plane according to the type of information to be transmitted. That is, a set of logical channel types is defined for different data transfer services provided by the MAC layer.
  • the control channel is used only for conveying information in the control plane.
  • the control channel provided by the MAC layer includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a dedicated control channel (DCCH).
  • BCCH is a DL channel for broadcasting system control information.
  • PCCH is a DL channel for the transmission of paging information, and is used when the network does not know the location of the cell unit of the UE.
  • CCCH is used by the UE when it does not have an RRC connection with the network.
  • the MCCH is a one-to-many DL channel used for transmitting multimedia broadcast multicast services (MBMS) control information from the network to the UE.
  • DCCH is a one-to-one bidirectional channel used by a UE having an RRC connection for transmission of dedicated control information between the UE and the network.
  • the traffic channel is used only for conveying information in the user plane.
  • the traffic channel provided by the MAC layer includes a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
  • DTCH is used for transmission of user information of one UE on a one-to-one channel and may exist in both UL and DL.
  • MTCH is a one-to-many DL channel for transmitting traffic data from the network to the UE.
  • the UL connection between the logical channel and the transport channel includes a DCCH that can be mapped to the UL-SCH, a DTCH that can be mapped to the UL-SCH, and a CCCH that can be mapped to the UL-SCH.
  • the DL connection between logical channel and transport channel is BCCH which can be mapped to BCH or DL-SCH, PCCH which can be mapped to PCH, DCCH which can be mapped to DL-SCH, DTCH which can be mapped to DL-SCH, MCH MCCH that can be mapped to and MTCH that can be mapped to MCH.
  • the RRC state indicates whether the RRC layer of the UE is logically connected with the RRC layer of the E-UTRAN.
  • the RRC state may be divided into two types, such as an RRC connected state (RRC_CONNECTED) and an RRC idle state (RRC_IDLE).
  • RRC_CONNECTED an RRC connected state
  • RRC_IDLE while the UE designates a discontinuous reception (DRX) set by the NAS, the UE may receive a broadcast of system information and paging information.
  • the UE may be assigned an ID for uniquely designating the UE in the tracking area, and perform public land mobile network (PLMN) selection and cell reselection.
  • PLMN public land mobile network
  • no RRC context is stored at the eNB.
  • the UE In RRC_CONNECTED, it is possible for the UE to have an E-UTRAN RRC connection and context in the E-UTRAN to send data to the eNB and / or receive data from the eNB. In addition, the UE may report channel quality information and feedback information to the eNB. In RRC_CONNECTED, the E-UTRAN may know the cell to which the UE belongs. Therefore, the network may transmit data to and / or receive data from the UE, and the network may inter-RAT with a GSM EDGE radio access network (GERAN) through the UE's mobility (handover and network assisted cell change (NACC). radio access technology (cell change indication), and the network may perform cell measurement for a neighboring cell.
  • GSM EDGE radio access network GERAN
  • NACC network assisted cell change
  • radio access technology cell change indication
  • the UE specifies a paging DRX cycle. Specifically, the UE monitors the paging signal at a specific paging occasion for every UE specific paging DRX cycle. Paging opportunity is the time period during which the paging signal is transmitted. The UE has its own paging opportunity. The paging message is transmitted on all cells belonging to the same tracking area (TA). When a UE moves from one TA to another TA, the UE may send a tracking area update (TAU) message to the network to update its location.
  • TAU tracking area update
  • Sidelinks are described. Sidelink is an interface between UEs for sidelink communication and sidelink discovery. Sidelinks correspond to PC5 interfaces. Sidelink communication is an AS feature that enables two or more neighboring UEs to directly communicate Proximity-based services (ProSe) using E-UTRA technology without going through any network node. Sidelink discovery is an AS feature that allows two or more neighboring UEs to directly discover ProSe using E-UTRA technology without going through any network node.
  • ProSe Proximity-based services
  • the sidelink physical channel includes a physical sidelink broadcast channel (PSBCH) for transmitting system and synchronization related information transmitted from the UE, a physical sidelink discovery channel (PSCH) for transmitting a sidelink discovery message transmitted from the UE, and a side transmitted from the UE.
  • Sidelink physical channels are mapped to sidelink transport channels.
  • PSBCH is mapped to a sidelink broadcast channel (SL-BCH).
  • the PSDCH is mapped to a sidelink discovery channel (SL-DCH).
  • PSSCH is mapped to a sidelink shared channel (SL-SCH).
  • the sidelink control channel includes a sidelink broadcast control channel (SBCCH), which is a sidelink channel for broadcasting sidelink system information from one UE to another UE. SBCCH is mapped to SL-BCH.
  • the sidelink traffic channel includes a sidelink traffic channel (STCH), which is a point-to-multipoint channel for the transmission of user information from one UE to another. STCH is mapped to SL-SCH. This channel can only be used by UEs capable of sidelink communication.
  • the E-UTRAN may allocate semi-persistent transmission resources to the UE for the first HARQ transmission.
  • RRC defines the period of semi-persistent DL grants.
  • the PDCCH indicates whether the DL grant is semi-permanent, that is, whether it can be implicitly reused in the next TTI according to a period defined by the RRC.
  • retransmission is explicitly signaled on the PDCCH.
  • C-RNTI cell radio network temporary identity
  • semi-persistent DL resources may be configured only for a primary cell (PCell), and only PDCCH allocation for PCell may take precedence over semi-permanent allocation.
  • PCell primary cell
  • PDCCH allocation for PCell may take precedence over the semi-permanent allocation for the PCell
  • PSCell primary secondary cell
  • the E-UTRAN may allocate semi-persistent UL resources to the UE for first HARQ transmission and potential retransmission.
  • RRC defines the period of semi-permanent UL grant.
  • the PDCCH indicates whether the UL grant is semi-permanent, that is, whether it can be implicitly reused in the next TTI according to a period defined by the RRC.
  • UL transmission according to the semi-permanent allocation assigned to the UE in the TTI may be performed.
  • the network performs decoding of the predefined PRB according to the predefined MCS. Otherwise, in a subframe in which the UE has semi-persistent UL resources, if the UE finds its C-RNTI on the PDCCH, the PDCCH assignment takes precedence over the semi-permanent assignment for that TTI, and the UE's transmission is assigned a PDCCH assignment rather than a semi-permanent assignment.
  • Retransmissions are implicitly assigned when the UE uses semi-permanent UL assignment, or explicitly assigned via the PDCCH if the UE does not follow semi-permanent assignment.
  • semi-persistent UL resources may be configured only for the PCell, and only PDCCH allocation for the PCell may take precedence over the semi-permanent allocation.
  • semi-persistent UL resources may be configured only for the PCell or PSCell. Only the PDCCH allocation for the PCell may take precedence over the semi-permanent allocation for the PCell, and only the PDCCH allocation for the PSCell may take precedence over the semi-permanent allocation for the PSCell.
  • TDD time division duplex
  • the above information may be delivered in the SPS-Config information element (IE).
  • the SPS-Config IE is used to specify the SPS configuration.
  • Table 1 shows the SPS-Config IE.
  • the SPS-Config IE includes the SPS C-RNTI ( semiPersistSchedC-RNTI ), the UL SPS interval ( semiPersistSchedIntervalUL ), the number of empty transmissions before implicit release ( implicitReleaseAfter ), and whether twoIntervalsConfig is possible for the UL ( twoIntervalsConfig ). It may include at least one of a DL SPS interval ( semiPersistSchedIntervalDL ) and a number of HARQ processes ( numberOfConfSPS-Processes ) configured for the SPS when the SPS is possible for the DL.
  • UE assistance information (UAI) is described. This may be referred to Section 5.6.10 of 3GPP TS 36.331 V13.2.0 (2016-06).
  • the purpose of the UE help information procedure is to inform the E-UTRAN of the power saving preferences of the UE.
  • PPI power preference indication
  • the E-UTRAN may consider that the UE does not prefer a configuration that is primarily optimized for power saving until the UE explicitly states otherwise.
  • step S40 the UE and the E-UTRAN perform an RRC connection reconfiguration procedure.
  • step S41 the UE transmits UE help information to the E-UTRAN.
  • a UE capable of providing PPI at RRC_CONNECTED may initiate the UE assistance information transmission procedure when configured to provide PPI and in some cases, including a change in power preference.
  • the UE Initiating the UE assistance information transmission procedure, the UE:
  • the UE has not sent a UEAssistanceInformation message since it is configured to provide PPI; or
  • the UE sets the contents of the UEAssistanceInformation message as follows.
  • the UE submits a UEAssistanceInformation message to the lower layer for transmission.
  • Table 2 shows an example of UE assistance information.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • RSU road side unit
  • pedestrians to collect knowledge about their local environment (for example, information received from other vehicles or sensor equipment in close proximity), and can be used for collaborative collision alerts or autonomous driving. This means that knowledge can be processed and shared to provide intelligent services.
  • V2X service is a type of communication service that includes a transmitting or receiving UE using a V2V application over 3GPP transmission.
  • the V2X service may be divided into a V2V service, a V2I service, a V2P service, and a vehicle-to-network (V2N) service according to a counterpart who participated in the communication.
  • V2V service is a type of V2X service that is a UE that uses V2V applications on both sides of the communication.
  • a V2I service is a type of V2X service that uses a V2I application, with one side of communication being a UE and the other side being an RSU.
  • the RSU is an entity supporting a V2I service that can transmit / receive with a UE using a V2I application.
  • RSU is implemented in an eNB or a fixed UE.
  • V2P service is a type of V2X service that is a UE that uses V2P applications on both sides of the communication.
  • a V2N service is a type of V2X service in which one side of communication is a UE and the other is a serving entity, all using V2N applications and communicating with each other via an LTE network entity.
  • the E-UTRAN allows UEs in close proximity to each other to exchange V2V related information using E-UTRA (N) when permit, authorization and proximity criteria are met.
  • Proximity criteria may be configured by a mobile network operator (MNO).
  • MNO mobile network operator
  • the UE supporting the V2V service may exchange such information when it is provided or not provided by the E-UTRAN supporting the V2X service.
  • the UE supporting the V2V application sends application layer information (eg, about its location, dynamics and attributes as part of the V2V service).
  • the V2V payload must be flexible to accommodate different content, and information can be sent periodically depending on the configuration provided by the MNO.
  • V2V is mainly broadcast based.
  • V2V includes the direct exchange of V2V related application information between different UEs, and / or due to the limited direct communication range of V2V, V2V is an infrastructure supporting V2X service for V2V related application information between different UEs (eg For example, the exchange through the RSU, application server, etc.).
  • the UE supporting the V2I application transmits application layer information to the RSU.
  • the RSU transmits application layer information to the UE supporting the UE group or the V2I application.
  • the E-UTRAN allows UEs in close proximity to each other to exchange V2P related information using the E-UTRAN when permit, authorization and proximity criteria are met.
  • Proximity criteria may be constructed by the MNO.
  • the UE supporting the V2P service may exchange this information even when not serviced by the E-UTRAN supporting the V2X service.
  • the UE supporting the V2P application transmits application layer information. Such information may be broadcast by vehicle UEs (eg, alerting pedestrians) that support V2X services and / or pedestrian UEs (eg, alerting vehicles) that support V2X services.
  • V2P involves exchanging V2V related application information directly between different UEs (one vehicle, another pedestrian), and / or due to the limited direct communication range of V2P, V2P is a V2P related application between different UEs. This involves exchanging information through infrastructures that support V2X services (eg, RSUs, application servers, etc.).
  • V2X services eg, RSUs, application servers, etc.
  • messages such as common awareness messages (CAM), decentralized environmental notification messages (DENM), or basic safety messages (BSM) may be transmitted.
  • the CAM includes information such as the type, location, speed, and direction of the vehicle, and can be broadcast periodically by all vehicles.
  • the DENM includes information on a type of a specific event, a region in which a specific event occurs, and may be broadcast by an RSU or a vehicle.
  • the BSM is included in the US J2735 safety message and has similar characteristics to CAM. BSM can provide emergency brake warnings, forward collision warnings, intersection safety assistance, blind spot and lane change warnings, overtaking warnings, and out of control warnings.
  • a method of transmitting a V2X message using resources allocated through the SPS has been discussed. That is, a method of transmitting a V2X message to a network or another UE using UL SPS resources or SL SPS resources is under discussion.
  • the UE transmits UE assistance information for the SPS to the network.
  • UE assistance information for the SPS may be included in the UE assistance information described in FIG. 4.
  • SPS assistance information UE assistance information for SPS will be referred to simply as SPS assistance information.
  • the UE help information includes SPS help information. The following have been agreed on SPS enhancements and UE assistance information.
  • the transmission of UE assistance information may be triggered based on the UE implementation.
  • the UE assistance information may include a set of timing offsets for subframe 0 of the preferred SPS period and system frame number (SFN) 0.
  • SFN system frame number
  • UE assistance information may be reported when a change in the estimated period of an arriving packet occurs.
  • UE help information may be reported if a change in the estimated offset of the arriving packet occurs.
  • UE help information may be configured by the eNB.
  • UE assistance information may be reported both when the SPS is configured and when the SPS is not configured.
  • UE help information may be configured for each existing SPS configuration or a new SPS configuration.
  • Reporting of UE assistance information is configured by the eNB for at least PC5 V2X.
  • the UE assistance information may further include an SPS index of the SPS configuration.
  • the present invention proposes detailed features of UE assistance information through various embodiments.
  • UE assistance information is reported by logical channel or ProSe per-packet priority (PPPP) has not been determined yet. If several types of messages with the same PPPP are sent together via the SPS resource, it is expected that it is difficult for the UE to predict the combined traffic pattern. In other words, it is expected that the UE assistance information may not accurately reflect the combined traffic pattern. Therefore, according to an embodiment of the present invention, it may be proposed that UE assistance information is reported for each logical channel.
  • PPPP ProSe per-packet priority
  • the UE assistance information may be reported regardless of whether the SPS is configured, and the UE assistance information may be provided for each existing SPS configuration or a new SPS configuration.
  • the application layer forwards the V2X message to AS layer 2. Therefore, there is data that can be transferred to the SL buffer.
  • the reporting of UE assistance information can be assumed to be triggered only when there is data that can be sent to the SL buffer. In other words, if there is no data to transmit to the SL buffer, the UE should not trigger the reporting of the UE assistance information. Therefore, according to an embodiment of the present invention, it may be proposed that the reporting of the UE assistance information is triggered only when there is data that can be transmitted to the SL buffer, that is, layer 2.
  • the UE may initially estimate the period of the V2X message transmission based on the interaction with the application layer. This option may be possible because the vehicle initially leaves the parking lot at zero or slow speed. However, this option may not work well in some cases, for example for event triggered messages.
  • the UE may not report the UE help information until it can better estimate the traffic pattern for the logical channel.
  • the UE can initially send only the sidelink buffer status report (BSR) to the eNB. Based on the sidelink BSR, the eNB can allocate sidelink mode 3 resources with dynamic scheduling.
  • BSR sidelink buffer status report
  • a particular UE may not report UE assistance information until the UE can better predict traffic patterns. If the UE assistance information includes packet size per logical channel, the UE may report UE assistance information including packet size per logical channel without period and timing offset until the traffic pattern is estimated. In this case, the eNB may dynamically allocate resources to sidelink mode 3 based on the UE assistance information.
  • UE assistance information may include packet size. If the packet size is included in the UE assistance information, the packet size may be the total amount of data that can be transmitted. In addition, as described above, the reporting of the UE help information can be triggered only when there is data that can be transmitted to the SL buffer, so that the packet size included in the UE help information is not the estimated size but the exact size of the data in the SL buffer. Can be.
  • the packet size may be calculated for the corresponding logical channel.
  • the UE assistance information may include the total amount of data that can be transmitted for the logical channel. If UE help information is reported for PPPP, the packet size included in the UE help information may be the total amount of data that can be transmitted over all logical channels associated with the PPPP.
  • the UE help information may include a packet size, which is defined as the total amount of data that can be transmitted for a logical channel (or all logical channels associated with PPPP). Can be.
  • the UE assistance information includes the packet size, there is no need to use the sidelink BSR for the logical channel (or PPPP) that is the subject of the UE assistance information reporting. Assuming that the packet size included in the UE assistance information is provided for each logical channel, the packet size per logical channel included in the UE assistance information may provide more impact to the eNB than sidelink BSR for SPS operation per logical channel. . That is, if the packet size is included in the UE assistance information for the STCH, sidelink BSR reporting is not necessary.
  • SR prohibit timer (logicalChannelSR-ProhibitTimer ) or SR masking (logicalChannelSR-Mask ) need to be supported for the logical channel (or all logical channels associated with PPPP) associated with the UE assistance information.
  • the above parameters may be configured by the eNB.
  • the SL inhibit timer (logicalChannelSR-ProhibitTimer ) and SR masking ( logicalChannelSR-Mask ) do not need to be configured at the eNB.
  • the SL inhibit timer (logicalChannelSR-ProhibitTimer ) or SR masking (logicalChannelSR-Mask ) is an explicit indication from the eNB. It can be configured for the logical channel without signaling.
  • the SL inhibit timer (logicalChannelSR-ProhibitTimer ) or SR masking (logicalChannelSR-Mask ) may be considered to be configured for the corresponding STCH from the eNB.
  • LCID logical channel identifier
  • the eNB may need priority information such as PPPP to schedule sidelink mode 3 transmission. Therefore, according to an embodiment of the present invention, the LCID included in the UE assistance information may be mapped to PPPP according to the configuration or preconfiguration from the eNB. Accordingly, the eNB scheduler can understand the priority information for the logical channel from the LCID included in the UE assistance information.
  • the UE may prefer to indicate transmission stop (or SPS release) in the UE assistance information.
  • Such indication of stopping transmission for SPS release may be included in UE assistance information for each logical channel (or all logical channels related to PPPP). This indication does not need to be explicit within the UE help information. For example, a period set to 0, a specific LCID value, or a packet size of 0 may be used as an indication of stopping transmission for SPS release.
  • SPS release may not be useful for CAM.
  • SPS release can be useful for DENM.
  • the AS layer can understand the stopping of DENM's transmission based on its interaction with the application layer. Thus, it may depend on the UE implementation when the UE will instruct transmission stop for the logical channel.
  • the UE instructs the eNB to stop transmitting for SPS release, whether or not the actual SPS is released may depend on the eNB.
  • the indication may be included in the UE assistance information for each logical channel.
  • whether or not the actual SPS is released may depend on the eNB.
  • it may depend on the UE implementation when the UE indicates to stop transmitting for SPS release.
  • the UE assistance information may include at least one of the following information.
  • Period (if necessary, a period set to 0 can mean an SPS release request)
  • the UE may request a specific period and / or a specific timing offset.
  • the UE may again trigger the transmission of the UE assistance information including the same content. Therefore, according to an embodiment of the present invention, the UE should not continuously trigger transmission of UE assistance information including the same content.
  • an SPS configuration may be associated with a logical channel.
  • FIG. 5 illustrates a method of instructing SPS release by a UE according to an embodiment of the present invention.
  • Various embodiments of the present invention described above may be applied to the present embodiment.
  • step S100 the UE receives a plurality of SPS configurations for a plurality of logical channels from an eNB.
  • step S110 the UE transmits UE assistance information including an SPS release indication for any one of the plurality of logical channels to the eNB.
  • the UE help information may be transmitted only when there is data that can be sent to the sidelink buffer.
  • the UE assistance information may include an LCID, an SPS period, an SPS timing offset, and a packet size for the one logical channel.
  • the SPS release indication may be indicated by the SPS period set to zero.
  • the SPS release indication may be indicated by the LCID set to a specific value.
  • the SPS release indication may be indicated by the packet size set to zero.
  • the packet size for the one logical channel may correspond to the total amount of data that can be transmitted for the one logical channel.
  • SR prohibit timer and SR masking for any one logical channel may be configured.
  • the LCID may be mapped to PPPP by configuration or preconfiguration by the eNB.
  • FIG. 6 illustrates a wireless communication system in which an embodiment of the present invention is implemented.
  • the eNB 800 includes a processor 810, a memory 820, and a transceiver 830.
  • Processor 810 may be configured to implement the functions, processes, and / or methods described herein. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the transceiver 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the UE 900 includes a processor 910, a memory 920, and a transceiver 930.
  • Processor 910 may be configured to implement the functions, processes, and / or methods described herein. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the transceiver 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • Processors 810 and 910 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memories 820 and 920 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media and / or other storage devices.
  • the transceivers 830 and 930 may include a baseband circuit for processing radio frequency signals.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 820, 920 and executed by the processor 810, 910.
  • the memories 820 and 920 may be inside or outside the processors 810 and 910, and may be connected to the processors 810 and 910 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

V2X(vehicle-to-everthing) 통신을 위한 SPS(semi-persistent scheduling) 자원을 효율적으로 할당히기 위하여, 단말(UE; user equipment)은 SPS를 위한 UE 도움 정보를 eNB(evolved NodeB)로 전송할 수 있다. 상기 UE 도움 정보를 통해 SPS 해제가 지시될 수 있다. 보다 구체적으로, 단말은 복수의 논리 채널에 대한 복수의 SPS 구성을 eNB로부터 수신하고, 및 상기 복수의 논리 채널 중 어느 하나의 논리 채널에 대한 SPS 해제 지시를 포함하는 UE 도움 정보를 상기 eNB로 전송한다.

Description

무선 통신 시스템에서 SPS를 위한 단말 도움 정보를 전송하는 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 SPS(semi-persistent scheduling)를 위한 단말(UE; user equipment) 도움 정보를 전송하는 방법 및 장치에 관한 것이다.
3GPP(3rd generation partnership project) LTE(long-term evolution)는 고속 패킷 통신을 가능하게 하기 위한 기술이다. LTE 목표인 사용자와 사업자의 비용 절감, 서비스 품질 향상, 커버리지 확장 및 시스템 용량 증대를 위해 많은 방식이 제안되었다. 3GPP LTE는 상위 레벨 필요조건으로서 비트당 비용 절감, 서비스 유용성 향상, 주파수 밴드의 유연한 사용, 간단한 구조, 개방형 인터페이스 및 단말의 적절한 전력 소비를 요구한다.
널리 보급된 LTE 기반의 네트워크가 자동차 산업이 "연결된 자동차(connected car)"이라는 개념을 실현할 수 있는 기회를 제공하기 때문에, LTE 기반 V2X(vehicle-to-everything)가 시장으로부터 긴급하게 요구되고 있다. 특히 V2V(vehicle-to-vehicle) 통신을 위한 시장은 연구 프로젝트, 필드 테스트 및 규제 업무와 같은 관련 활동이 미국, 유럽, 일본, 한국 및 중국과 같은 일부 국가 또는 지역에서 이미 진행 중이거나 시작될 것으로 예상된다.
SPS(semi-persistent)는 VoIP(voice over Internet protocol)와 같은 지속적인 무선 자원 할당이 필요한 애플리케이션의 제어 채널 오버헤드를 크게 줄이는 기능이다. SPS가 없으면, 모든 DL(downlink) 또는 UL(uplink) PRB(physical resource block) 할당은 PDCCH(physical downlink control channel) 상의 액세스 그랜트 메시지를 통해 허가되어야 한다. 이는 일반적으로 패킷 크기가 큰 대부분의 버스트 형 최선형(bursty best effort type) 애플리케이션에 충분하므로, 대개 각 서브프레임에서 소수의 사용자만 스케줄링 된다. 그러나, 작은 패킷(예를 들어, VoIP)의 지속적인 할당을 필요로 하는 애플리케이션의 경우, 제어 채널의 액세스 그랜트 오버헤드는 SPS로 크게 감소될 수 있다. 즉, SPS는 사용자가 DL에서 기대하거나 UL에서 전송할 수 있는 영구 PRB 할당을 도입한다. SPS가 지속적인 할당을 설정할 수 있는 방법에는 여러 가지가 있다.
V2X 통신은 그 특성상 메시지의 크기가 비교적 작고 주기적으로 전송될 수 있으므로, SPS에 의하여 할당되는 자원을 통해 V2X 메시지를 전송하는 방법이 논의 중에 있다. 또한, SPS에 의한 자원 할당을 돕기 위하여, 단말이 SPS와 관련된 단말 도움 정보를 네트워크로 전송하는 방법 또한 논의 중에 있다.
본 발명은 무선 통신 시스템에서 SPS(semi-persistent scheduling)를 위한 단말(UE; user equipment) 도움 정보를 전송하는 방법 및 장치를 제공한다. 본 발명은 SPS 자원을 해제하는 SPS 해제 지시를 논리 채널 별로 UE 도움 정보에 포함하는 방법 및 장치를 제공한다.
일 양태에 있어서, 무선 통신 시스템에서 단말(UE; user equipment)에 의한 SPS(semi-persistent scheduling) 해제를 지시하는 방법이 제공된다. 상기 방법은 복수의 논리 채널에 대한 복수의 SPS 구성을 eNB(evolved NodeB)로부터 수신하고, 및 상기 복수의 논리 채널 중 어느 하나의 논리 채널에 대한 SPS 해제 지시를 포함하는 UE 도움 정보를 상기 eNB로 전송하는 것을 포함한다.
다른 양태에 있어서, 무선 통신 시스템에서 단말(UE; user equipment)이 제공된다. 상기 단말은 메모리, 송수신부, 및 상기 메모리 및 상기 송수신부와 연결되는 프로세서를 포함한다. 상기 프로세서는 복수의 논리 채널에 대한 복수의 SPS(semi-persistent scheduling) 구성을 eNB(evolved NodeB)로부터 수신하도록 상기 송수신부를 제어하고, 및 상기 복수의 논리 채널 중 어느 하나의 논리 채널에 대한 SPS 해제 지시를 포함하는 UE 도움 정보를 상기 eNB로 전송하도록 상기 송수신부를 제어한다.
SPS 자원이 논리 채널 별로 효과적으로 해제될 수 있다.
도 1은 3GPP LTE 시스템의 구조를 나타낸다.
도 2는 LTE 시스템의 사용자 평면 프로토콜 스택의 블록도이다.
도 3은 LTE 시스템의 제어 평면 프로토콜 스택의 블록도이다.
도 4는 UE 도움 정보를 전송하는 절차를 나타낸다.
도 5는 본 발명의 일 실시예에 따른 UE에 의한 SPS 해제를 지시하는 방법을 나타낸다.
도 6은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸다.
도 1은 3GPP LTE 시스템의 구조를 나타낸다. 도 1을 참조하면, 3GPP LTE(long-term evolution) 시스템 구조는 하나 이상의 사용자 단말(UE; user equipment; 10), E-UTRAN(evolved-UMTS terrestrial radio access network) 및 EPC(evolved packet core)를 포함한다. UE(10)는 사용자에 의해 움직이는 통신 장치이다. UE(10)는 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다.
E-UTRAN은 하나 이상의 eNB(evolved NodeB; 20)를 포함하고, 하나의 셀에 복수의 UE가 존재할 수 있다. eNB(20)는 제어 평면(control plane)과 사용자 평면(user plane)의 끝 지점을 UE(10)에게 제공한다. eNB(20)는 일반적으로 UE(10)와 통신하는 고정된 지점(fixed station)을 말하며, BS(base station), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다. 하나의 eNB(20)는 셀마다 배치될 수 있다.
이하에서, 하향링크(DL; downlink)은 eNB(20)에서 UE(10)로의 통신을 의미한다. 상향링크(UL; uplink)는 UE(10)에서 eNB(20)으로의 통신을 의미한다. 사이드링크(SL; sidelink)는 UE(10) 간의 통신을 의미한다. DL에서 송신기는 eNB(20)의 일부이고, 수신기는 UE(10)의 일부일 수 있다. UL에서 송신기는 UE(10)의 일부이고, 수신기는 eNB(20)의 일부일 수 있다. SL에서 송신기와 수신기는 UE(10)의 일부일 수 있다.
EPC는 MME(mobility management entity)와 S-GW(serving gateway)를 포함한다. MME/S-GW(30)은 네트워크의 끝에 위치한다. MME/S-GW(30)은 UE(10)를 위한 세션 및 이동성 관리 기능의 끝 지점을 제공한다. 설명의 편의를 위해 MME/S-GW(30)은 "게이트웨이"로 단순히 표현하며, 이는 MME 및 S-GW를 모두 포함할 수 있다. PDN(packet dana network) 게이트웨이(P-GW)는 외부 네트워크와 연결될 수 있다.
MME는 eNB(20)로의 NAS(non-access stratum) 시그널링, NAS 시그널링 보안, AS(access stratum) 보안 제어, 3GPP 액세스 네트워크 간의 이동성을 위한 inter CN(core network) 노드 시그널링, 아이들 모드 단말 도달 가능성(페이징 재전송의 제어 및 실행 포함), 트래킹 영역 리스트 관리(아이들 모드 및 활성화 모드인 UE을 위해), P-GW 및 S-GW 선택, MME 변경과 함께 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN(serving GPRS support node) 선택, 로밍, 인증, 전용 베이러 설정을 포함한 베어러 관리 기능, PWS(public warning system: ETWS(earthquake and tsunami warning system) 및 CMAS(commercial mobile alert system) 포함) 메시지 전송 지원 등의 다양한 기능을 제공한다. S-GW 호스트는 사용자 별 기반 패킷 필터링(예를 들면, 심층 패킷 검사를 통해), 합법적 차단, 단말 IP(internet protocol) 주소 할당, DL에서 전송 레벨 패킹 마킹, UL/DL 서비스 레벨 과금, 게이팅 및 등급 강제, APN-AMBR(access point name aggregate maximum bit rate)에 기반한 DL 등급 강제의 갖가지 기능을 제공한다.
사용자 트래픽 전송 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. UE(10)와 eNB(20)은 Uu 인터페이스에 의해 연결된다. UE(10) 간은 PC5 인터페이스에 의해 연결된다. eNB(20) 간은 X2 인터페이스에 의해 연결된다. 이웃한 eNB(20)는 X2 인터페이스에 의한 망형 네트워크 구조를 가질 수 있다. eNB(20)와 게이트웨이(30)는 S1 인터페이스를 통해 연결된다.
도 2는 LTE 시스템의 사용자 평면 프로토콜 스택의 블록도이다. 도 3은 LTE 시스템의 제어 평면 프로토콜 스택의 블록도이다. UE와 E-UTRAN 간의 무선 인터페이스 프로토콜의 계층은 통신 시스템에서 널리 알려진 OSI(open system interconnection) 모델의 하위 3개 계층을 바탕으로 L1(제1 계층), L2(제2 계층) 및 L3(제3 계층)으로 구분된다.
물리 계층(PHY; physical layer)은 L1에 속한다. 물리 계층은 물리 채널을 통해 상위 계층에 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(media access control) 계층과 전송 채널(transport channel)을 통해 연결된다. 물리 채널은 전송 채널에 맵핑된다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 전송된다. 서로 다른 물리 계층 사이, 즉 송신기의 물리 계층과 수신기의 물리 계층 간에 데이터는 물리 채널을 통해 전송된다.
MAC 계층, RLC(radio link control) 계층 및 PDCP(packet data convergence protocol) 계층은 L2에 속한다. MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC 계층에게 서비스를 제공한다. MAC 계층은 논리 채널상의 데이터 전송 서비스를 제공한다. RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. 한편, RLC 계층의 기능은 MAC 계층 내부의 기능 블록으로 구현될 수 있으며, 이때 RLC 계층은 존재하지 않을 수도 있다. PDCP 계층은 상대적으로 대역폭이 작은 무선 인터페이스 상에서 IPv4 또는 IPv6와 같은 IP 패킷을 도입하여 전송되는 데이터가 효율적으로 전송되도록 불필요한 제어 정보를 줄이는 헤더 압축 기능을 제공한다.
RRC(radio resource control) 계층은 L3에 속한다. L3의 가장 하단 부분에 위치하는 RRC 계층은 오직 제어 평면에서만 정의된다. RRC 계층은 RB(radio bearer)들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 UE와 E-UTRAN 간의 데이터 전송을 위해 L2에 의해 제공되는 서비스를 의미한다.
도 2를 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 스케줄링, ARQ 및 HARQ(hybrid automatic repeat request)와 같은 기능을 수행할 수 있다. PDCP 계층(네트워크 측에서 eNB에서 종료)은 헤더 압축, 무결성 보호 및 암호화와 같은 사용자 평면 기능들을 수행할 수 있다.
도 3을 참조하면, RLC/MAC 계층(네트워크 측에서 eNB에서 종료)은 제어 평면을 위하여 동일한 기능들을 수행할 수 있다. RRC 계층(네트워크 측에서 eNB에서 종료)은 방송, 페이징, RRC 연결 관리, RB 제어, 이동성 기능 및 UE 측정 보고 및 제어와 같은 기능을 수행할 수 있다. NAS 제어 프로토콜(네트워크 측에서 게이트웨이의 MME에서 종료)은 SAE 베어러 관리, 인증, LTE_IDLE 이동성 관리, LTE_IDLE에서의 페이징 시작 및 게이트웨이와 UE 간의 시그널링을 위한 보안 제어와 같은 기능을 수행할 수 있다.
물리 채널은 무선 자원을 통해 UE의 물리 계층과 eNB의 물리 계층 간의 시그널링 및 데이터를 전송한다. 물리 채널은 시간 영역에서 복수의 서브프레임과 주파수 영역에서 복수의 부반송파로 구성된다. 1ms인 하나의 서브프레임은 시간 영역에서 복수의 심벌로 구성된다. 해당 서브프레임의 특정 심벌, 예를 들어 서브프레임의 첫 번째 심벌은 PDCCH를 위하여 사용될 수 있다. PDCCH는 PRB(physical resource block) 및 MCS(modulation and coding schemes)와 같이 동적으로 할당된 자원을 나를 수 있다.
DL 전송 채널은 시스템 정보를 전송하기 위하여 사용되는 BCH(broadcast channel), UE를 페이징하기 위하여 사용되는 PCH(paging channel), 사용자 트래픽 또는 제어 신호를 전송하기 위하여 사용되는 DL-SCH(downlink shared channel), 멀티캐스트 또는 브로드캐스트 서비스 전송을 위하여 사용되는 MCH(multicast channel)를 포함한다. DL-SCH는 HARQ, 변조, 코딩 및 전송 전력의 변화에 의한 동적 링크 적응 및 동적/반정적 자원 할당을 지원한다. 또한, DL-SCH는 셀 전체에 브로드캐스트 및 빔포밍의 사용을 가능하게 할 수 있다.
UL 전송 채널은 일반적으로 셀로의 초기 접속을 위하여 사용되는 RACH(random access channel), 사용자 트래픽 또는 제어 신호를 전송하기 위하여 사용되는 UL-SCH(uplink shared channel)를 포함한다. UL-SCH는 HARQ 및 전송 전력 및 잠재적인 변조 및 코딩의 변화에 의한 동적 링크 적응을 지원한다. 또한, UL-SCH는 빔포밍의 사용을 가능하게 할 수 있다.
논리 채널은 전송되는 정보의 종류에 따라, 제어 평면의 정보 전달을 위한 제어 채널과 사용자 평면의 정보 전달을 위한 트래픽 채널로 분류된다. 즉, 논리 채널 타입의 집합은 MAC 계층에 의해 제공되는 서로 다른 데이터 전송 서비스를 위해 정의된다.
제어 채널은 제어 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 제어 채널은 BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MCCH(multicast control channel) 및 DCCH(dedicated control channel)을 포함한다. BCCH는 시스템 제어 정보를 방송하기 위한 DL 채널이다. PCCH는 페이징 정보의 전송을 위한 DL 채널이며, 네트워크가 UE의 셀 단위의 위치를 알지 못할 때 사용된다. CCCH는 네트워크와 RRC 연결을 갖지 않을 때 UE에 의해 사용된다. MCCH는 네트워크로부터 UE에게 MBMS(multimedia broadcast multicast services) 제어 정보를 전송하기 위하여 사용되는 일대다 DL 채널이다. DCCH는 UE와 네트워크 간에 전용 제어 정보 전송을 위해 RRC 연결을 가지는 UE에 의해 사용되는 일대일 양방향 채널이다.
트래픽 채널은 사용자 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 트래픽 채널은 DTCH(dedicated traffic channel) 및 MTCH(multicast traffic channel)을 포함한다. DTCH는 일대일 채널로 하나의 UE의 사용자 정보의 전송을 위해 사용되며, UL 및 DL 모두에 존재할 수 있다. MTCH는 네트워크로부터 UE에게 트래픽 데이터를 전송하기 위한 일대다 DL 채널이다.
논리 채널과 전송 채널 간의 UL 연결은 UL-SCH에 맵핑될 수 있는 DCCH, UL-SCH에 맵핑될 수 있는 DTCH 및 UL-SCH에 맵핑될 수 있는 CCCH를 포함한다. 논리 채널과 전송 채널 간의 DL 연결은 BCH 또는 DL-SCH에 맵핑될 수 있는 BCCH, PCH에 맵핑될 수 있는 PCCH, DL-SCH에 맵핑될 수 있는 DCCH, DL-SCH에 맵핑될 수 있는 DTCH, MCH에 맵핑될 수 있는 MCCH 및 MCH에 맵핑될 수 있는 MTCH를 포함한다.
RRC 상태는 UE의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적으로 연결되어 있는지 여부를 지시한다. RRC 상태는 RRC 연결 상태(RRC_CONNECTED) 및 RRC 아이들 상태(RRC_IDLE)와 같이 두 가지로 나누어질 수 있다. RRC_IDLE에서, UE가 NAS에 의해 설정된 DRX(discontinuous reception)를 지정하는 동안에, UE는 시스템 정보 및 페이징 정보의 방송을 수신할 수 있다. 그리고, UE는 트래킹 영역에서 UE를 고유하게 지정하는 ID(identification)를 할당 받고, PLMN(public land mobile network) 선택 및 셀 재선택을 수행할 수 있다. 또한 RRC_IDLE에서, 어떠한 RRC 컨텍스트도 eNB에 저장되지 않는다.
RRC_CONNECTED에서, UE는 E-UTRAN에서 E-UTRAN RRC 연결 및 컨텍스트를 가져, eNB로 데이터를 전송 및/또는 eNB로부터 데이터를 수신하는 것이 가능하다. 또한, UE는 eNB로 채널 품질 정보 및 피드백 정보를 보고할 수 있다. RRC_CONNECTED에서, E-UTRAN은 UE가 속한 셀을 알 수 있다. 그러므로 네트워크는 UE에게 데이터를 전송 및/또는 UE로부터 데이터를 수신할 수 있고, 네트워크는 UE의 이동성(핸드오버 및 NACC(network assisted cell change)를 통한 GERAN(GSM EDGE radio access network)으로 inter-RAT(radio access technology) 셀 변경 지시)을 제어할 수 있으며, 네트워크는 이웃 셀을 위해 셀 측정을 수행할 수 있다.
RRC_IDLE에서 UE는 페이징 DRX 주기를 지정한다. 구체적으로 UE는 UE 특정 페이징 DRX 주기 마다의 특정 페이징 기회(paging occasion)에 페이징 신호를 모니터한다. 페이징 기회는 페이징 신호가 전송되는 동안의 시간 구간이다. UE는 자신만의 페이징 기회를 가지고 있다. 페이징 메시지는 동일한 트래킹 영역(TA; tracking area)에 속하는 모든 셀 상으로 전송된다. UE가 하나의 TA에서 다른 TA로 이동하면, UE는 자신의 위치를 업데이트 하기 위하여 네트워크로 TAU(tracking area update) 메시지를 전송할 수 있다.
사이드링크(sidelink)가 설명된다. 사이드링크는 사이드링크 통신(sidelink communication)과 사이드링크 발견(sidelink discovery)을 위한 UE 간 인터페이스이다. 사이드링크는 PC5 인터페이스에 대응한다. 사이드링크 통신은 둘 이상의 근접한 UE가 어떤 네트워크 노드도 거치지 않고 E-UTRA 기술을 사용하여 ProSe(proximity-based services) 직접 통신을 가능하게 하는 AS 기능이다. 사이드링크 발견은 둘 이상의 근접한 UE가 어떤 네트워크 노드도 거치지 않고 E-UTRA 기술을 사용하여 ProSe 직접 발견을 가능하게 하는 AS 기능이다.
사이드링크 물리 채널은, UE로부터 전송되는 시스템 및 동기화 관련 정보를 전달하는 PSBCH(physical sidelink broadcast channel), UE로부터 전송되는 사이드링크 발견 메시지를 전달하는 PSDCH(physical sidelink discovery channel), UE로부터 전송되는 사이드링크 통신에 대한 제어 신호를 전달하는 PSCCH(physical sidelink control channel) 및 UE로부터 전송되는 사이드링크 통신에 대한 데이터를 전달하는 PSSCH(physical sidelink shared channel)를 포함한다. 사이드링크 물리 채널은 사이드링크 전송 채널에 맵핑된다. PSBCH는 SL-BCH(sidelink broadcast channel)에 맵핑된다. PSDCH는 SL-DCH(sidelink discovery channel)에 맵핑된다. PSSCH는 SL-SCH(sidelink shared channel)에 맵핑된다.
사이드링크에서도 논리 채널은 제어 평면의 정보 전달을 위한 제어 채널과 사용자 평면의 정보 전달을 위한 트래픽 채널로 분류된다. 사이드링크 제어 채널은 하나의 UE로부터 다른 UE로 사이드링크 시스템 정보를 방송하기 위한 사이드링크 채널인 SBCCH(sidelink broadcast control channel)를 포함한다. SBCCH는 SL-BCH에 맵핑된다. 사이드링크 트래픽 채널은 하나의 UE로부터 다른 UE로 사용자 정보의 전송을 위한 점대다(point-to-multipoint) 채널인 STCH(sidelink traffic channel)를 포함한다. STCH는 SL-SCH에 맵핑된다. 이 채널은 사이드링크 통신이 가능한 UE만 사용할 수 있다.
반영구적 스케줄링(SPS; semi-persistent scheduling)이 설명된다. E-UTRAN은 UE에게 제1 HARQ 전송을 위해 반영구적 전송 자원을 할당할 수 있다. RRC는 반영구적 DL 그랜트의 주기를 정의한다. PDCCH는 DL 그랜트가 반영구적인지 여부, 즉 RRC에 의해 정의된 주기에 따라 다음 TTI에서 암묵적으로 재사용될 수 있는지 여부를 지시한다.
필요한 경우, 재전송은 PDCCH를 통해 명시적으로 시그널링 된다. UE가 반영구적 DL 자원을 갖는 서브프레임에서, UE가 PDCCH 상에서 자신의 C-RNTI(cell radio network temporary identity)를 찾을 수 없는 경우, TTI에서 UE에게 할당된 반영구적 할당에 따른 DL 전송이 가정된다. 그렇지 않으면, UE가 반영구적 DL 자원을 갖는 서브프레임에서, UE가 PDCCH 상에서 자신의 C-RNTI를 찾으면, PDCCH 할당은 그 TTI에 대하여 반영구적 할당에 우선하며, UE는 반영구적 자원을 디코딩 하지 않는다.
CA(carrier aggregation)가 구성될 때, 반영구적 DL 자원은 PCell(primary cell)에 대해서만 구성될 수 있으며, PCell에 대한 PDCCH 할당만이 반영구적 할당에 우선할 수 있다. DC(dual connectivity)가 구성될 때, 반영구적 DL 자원은 PCell 또는 PSCell(primary secondary cell)에 대해서만 구성될 수 있다. PCell에 대한 PDCCH 할당만이 PCell에 대한 반영구적 할당에 우선할 수 있고, PSCell에 대한 PDCCH 할당만이 PSCell에 대한 반영구적 할당에 우선할 수 있다.
또한, E-UTRAN은 UE에게 제1 HARQ 전송 및 잠재적인 재전송을 위해 반영구적 UL 자원을 할당할 수 있다. RRC는 반영구적 UL 그랜트의 주기를 정의한다. PDCCH는 UL 그랜트가 반영구적인지 여부, 즉 RRC에 의해 정의된 주기에 따라 다음 TTI에서 암묵적으로 재사용될 수 있는지 여부를 지시한다.
UE가 반영구적 UL 자원을 갖는 서브프레임에서, UE가 PDCCH 상에서 자신의 C-RNTI를 찾을 수 없는 경우, TTI에서 UE에게 할당된 반영구적 할당에 따른 UL 전송이 수행될 수 있다. 네트워크는 미리 정의된 MCS에 따라 미리 정의된 PRB의 디코딩을 수행한다. 그렇지 않으면, UE가 반영구적 UL 자원을 갖는 서브프레임에서, UE가 PDCCH 상에서 자신의 C-RNTI를 찾으면, PDCCH 할당은 그 TTI에 대하여 반영구적 할당에 우선하며, UE의 전송은 반영구적 할당이 아닌 PDCCH 할당을 따른다. 재전송은 UE가 반영구적 UL 할당을 사용하는 경우 암시적으로 할당되거나, 또는 UE가 반영구적 할당을 따르지 않는 경우 PDCCH를 통해 명시적으로 할당된다.
DL과 마찬가지로, 반영구적 UL 자원은 PCell에 대해서만 구성될 수 있으며, PCell에 대한 PDCCH 할당만이 반영구적 할당에 우선할 수 있다. DC가 구성될 때, 반영구적 UL 자원은 PCell 또는 PSCell에 대해서만 구성될 수 있다. PCell에 대한 PDCCH 할당만이 PCell에 대한 반영구적 할당에 우선할 수 있고, PSCell에 대한 PDCCH 할당만이 PSCell에 대한 반영구적 할당에 우선할 수 있다.
RRC에 의하여 SPS가 활성화 되면, 다음 정보가 제공된다.
- SPS C-RNTI;
- UL에 대해서 SPS가 가능하면, UL SPS 인터벌인 semiPersistSchedIntervalUL 및 암묵적인 해제 이전의 빈 전송의 횟수인 implicitReleaseAfter;
- 오직 TDD(time division duplex)에서, UL에 대해서 twoIntervalsConfig 이 가능한지 여부;
- DL에 대해서 SPS가 가능하면, DL SPS 인터벌인 semiPersistSchedIntervalDL 및 SPS에 대하여 구성된 HARQ 프로세스의 개수인 numberOfConfSPS-Processes;
RRC에 의하여 UL 또는 DL에 대하여 SPS가 가능하지 않을 때, 대응하는 구성된 그랜트 또는 구성된 할당은 폐기되어야 한다.
위의 정보는 SPS-Config IE(information element)에서 전달될 수 있다. SPS-Config IE는 SPS 구성을 지정하는 데 사용된다다. 표 1은 SPS-Config IE를 나타낸다.
-- ASN1STARTSPS-Config ::= SEQUENCE {semiPersistSchedC-RNTI C-RNTI OPTIONAL, -- Need ORsps-ConfigDL SPS-ConfigDL OPTIONAL, -- Need ONsps-ConfigUL SPS-ConfigUL OPTIONAL -- Need ON}SPS-ConfigDL ::= CHOICE{release NULL,setup SEQUENCE {semiPersistSchedIntervalDL ENUMERATED {sf10, sf20, sf32, sf40, sf64, sf80,sf128, sf160, sf320, sf640, spare6,spare5, spare4, spare3, spare2,spare1},numberOfConfSPS-Processes INTEGER (1..8),n1PUCCH-AN-PersistentList N1PUCCH-AN-PersistentList,...,[[ twoAntennaPortActivated-r10 CHOICE {release NULL,setup SEQUENCE {n1PUCCH-AN-PersistentListP1-r10 N1PUCCH-AN-PersistentList }} OPTIONAL -- Need ON]]}}SPS-ConfigUL ::= CHOICE {release NULL,setup SEQUENCE {semiPersistSchedIntervalUL ENUMERATED {sf10, sf20, sf32, sf40, sf64, sf80,sf128, sf160, sf320, sf640, spare6,spare5, spare4, spare3, spare2,spare1},implicitReleaseAfter ENUMERATED {e2, e3, e4, e8},p0-Persistent SEQUENCE {p0-NominalPUSCH-Persistent INTEGER (-126..24),p0-UE-PUSCH-Persistent INTEGER (-8..7)} OPTIONAL, -- Need OPtwoIntervalsConfig ENUMERATED {true} OPTIONAL, -- Cond TDD..., [[ p0-PersistentSubframeSet2-r12 CHOICE { release NULL,setup SEQUENCE {p0-NominalPUSCH-PersistentSubframeSet2-r12 INTEGER (-126..24),p0-UE-PUSCH-PersistentSubframeSet2-r12 INTEGER (-8..7)}} OPTIONAL -- Need ON]]}}N1PUCCH-AN-PersistentList ::= SEQUENCE (SIZE (1..4)) OF INTEGER (0..2047)-- ASN1STOP
상술한 바와 같이, SPS-Config IE는, SPS C-RNTI (semiPersistSchedC-RNTI), UL SPS 인터벌 (semiPersistSchedIntervalUL), 암묵적 해제 이전의 빈 전송의 횟수 (implicitReleaseAfter), UL에 대해서 twoIntervalsConfig가 가능한지 여부 (twoIntervalsConfig), DL SPS 인터벌 (semiPersistSchedIntervalDL) 및 DL에 대해서 SPS가 가능할 때 SPS에 대해 구성된 HARQ 프로세스의 개수 (numberOfConfSPS-Processes) 중 적어도 하나를 포함할 수 있다.
UE 도움 정보(UAI; UE assistance information)가 설명된다. 이는 3GPP TS 36.331 V13.2.0 (2016-06)의 5.6.10절을 참조할 수 있다. UE 도움 정보 절차의 목적은 UE의 절전 선호도를 E-UTRAN에 알려주는 것이다. UE가 전력 선호 표시(PPI; power preference indication)를 제공하도록 구성될 때, E-UTRAN은 UE가 명시적으로 달리 지시할 때까지 UE가 절전을 위해 주로 최적화 된 구성을 선호하지 않는다고 고려할 수 있다.
도 4는 UE 도움 정보를 전송하는 절차를 나타낸다. 단계 S40에서 UE와 E-UTRAN은 RRC 연결 재구성 절차를 수행한다. 단계 S41에서 UE는 E-UTRAN으로 UE 도움 정보를 전송한다. RRC_CONNECTED에서 PPI를 제공할 수 있는 UE는 PPI를 제공하도록 구성될 때 및 전력 선호의 변경을 포함하는 몇몇 경우에서 UE 도움 정보 전송 절차를 시작할 수 있다.
UE 도움 정보 전송 절차를 시작하면, UE는 다음을 수행한다.
1> PPI를 제공하도록 구성된 경우:
2> UE가 PPI를 제공하도록 구성된 이후 UEAssistanceInformation 메시지를 전송하지 않은 경우; 또는
2> 현재 전력 선호가 UEAssistanceInformation 메시지의 마지막 전송에서 표시된 것과 다르며 타이머 T340이 실행되고 있지 않은 경우:
3> UEAssistanceInformation 메시지의 전송을 시작한다.
UE는 UEAssistanceInformation 메시지의 내용을 다음과 같이 설정한다.
1> UE가 절전을 위해 주로 최적화 된 구성을 선호하는 경우:
2> powerPrefIndicationlowPowerConsumption으로 설정한다.
1> 그렇지 않으면:
2> 타이머 값을 powerPrefIndicationTimer로 설정하고 타이머 T340을 시작하거나 다시 시작한다.
2> powerPrefIndicationnormal로 설정한다.
UE는 전송을 위해 하위 계층에 UEAssistanceInformation 메시지를 제출한다.
표 2는 UE 도움 정보의 일 예를 나타낸다.
-- ASN1STARTUEAssistanceInformation-r11 ::= SEQUENCE {criticalExtensions CHOICE {c1 CHOICE {ueAssistanceInformation-r11 UEAssistanceInformation-r11-IEs,spare3 NULL, spare2 NULL, spare1 NULL},criticalExtensionsFuture SEQUENCE {}}}UEAssistanceInformation-r11-IEs ::= SEQUENCE {powerPrefIndication-r11 ENUMERATED {normal, lowPowerConsumption} OPTIONAL,lateNonCriticalExtension OCTET STRING OPTIONAL,nonCriticalExtension SEQUENCE {} OPTIONAL}-- ASN1STOP
V2X(vehicle-to-everything) 통신에 대해 설명한다. V2X 통신은 V2V(vehicle-to-vehicle) 통신, V2I(vehicle-to-infrastructure) 통신 및 V2P(vehicle-to-pedestrian) 통신의 세 가지 유형이 있다. V2X의 이러한 세 가지 유형은 최종 사용자를 위한 보다 지능적인 서비스를 제공하기 위해 "협동 의식"을 사용할 수 있다. 이는 차량, RSU(road side unit) 및 보행자와 같은 운송 개체가 해당 지역 환경(예를 들어, 근접한 다른 차량 또는 센서 장비로부터 수신한 정보)에 대한 지식을 수집하고, 협동 충돌 경고 또는 자율 주행과 같은 지능형 서비스를 제공할 수 있도록 해당 지식을 처리하고 공유할 수 있음을 의미한다.
V2X 서비스는 3GPP 전송을 통해 V2V 어플리케이션을 사용하는 전송 또는 수신 UE를 포함하는 통신 서비스의 한 유형이다. 통신에 참여한 상대방에 따라 V2X 서비스는 V2V 서비스, V2I 서비스, V2P 서비스 및 V2N(vehicle-to-network) 서비스로 나뉠 수 있다. V2V 서비스는 통신의 양 측 모두 V2V 어플리케이션을 사용하는 UE인 V2X 서비스의 유형이다. V2I 서비스는 통신의 한 측이 UE이고 다른 한 측이 RSU이며, 모두 V2I 어플리케이션을 사용하는 V2X 서비스의 유형이다. RSU는 V2I 어플리케이션을 사용하여 UE와 송수신할 수 있는 V2I 서비스를 지원하는 개체이다. RSU는 eNB 또는 고정 UE에서 구현된다. V2P 서비스는 통신의 양 측 모두 V2P 어플리케이션을 사용하는 UE인 V2X 서비스의 유형이다. V2N 서비스는 통신의 한 측이 UE이고 다른 한 측이 서빙 개체이며, 모두 V2N 어플리케이션을 사용하며 LTE 네트워크 개체를 통해 서로 통신하는 V2X 서비스의 유형이다.
V2V에서, E-UTRAN은 허용, 인가 및 근접성 기준이 충족될 때 서로 근접한 UE가 E-UTRA(N)를 사용하여 V2V 관련 정보를 교환하는 것을 허용한다. 근접 기준은 MNO(mobile network operator)에 의해 구성될 수 있다. 그러나 V2V 서비스를 지원하는 UE는 V2X 서비스를 지원하는 E-UTRAN에 의해 서비스를 제공받거나 제공받지 않을 때 그러한 정보를 교환할 수 있다. V2V 어플리케이션을 지원하는 UE는 어플리케이션 계층 정보(예를 들어, V2V 서비스의 일부로서 그 위치, 동적 및 속성에 관하여)를 전송한다. V2V 페이로드(payload)는 서로 다른 내용을 수용하기 위해 융통성이 있어야 하며, 정보는 MNO에 의해 제공된 구성에 따라 주기적으로 전송될 수 있다. V2V는 주로 방송 기반이다. V2V는 서로 다른 UE 간에 V2V 관련 어플리케이션 정보를 직접 교환하는 것을 포함하고, 및/또는 V2V의 제한된 직접 통신 범위로 인해, V2V는 서로 다른 UE 간에 V2V 관련 어플리케이션 정보를 V2X 서비스를 지원하는 기반 구조(예를 들어, RSU, 어플리케이션 서버 등)를 통해 교환하는 것을 포함한다.
V2I에서, V2I 어플리케이션을 지원하는 UE는 어플리케이션 계층 정보를 RSU로 전송한다. RSU는 어플리케이션 계층 정보를 UE 그룹 또는 V2I 어플리케이션을 지원하는 UE로 전송한다.
V2P에서, E-UTRAN은 허용, 인가 및 근접성 기준이 충족될 때 서로 근접한 UE가 E-UTRAN을 사용하여 V2P 관련 정보를 교환하는 것을 허용한다. 근접 기준은 MNO에 의해 구성될 수 있다. 그러나, V2P 서비스를 지원하는 UE는 V2X 서비스를 지원하는 E-UTRAN에 의해 서비스되지 않을 때에도 이러한 정보를 교환할 수 있다. V2P 어플리케이션을 지원하는 UE는 어플리케이션 계층 정보를 전송한다. 이러한 정보는 V2X 서비스를 지원하는 차량 UE(예를 들어, 보행자에게 경고) 및/또는 V2X 서비스를 지원하는 보행자 UE(예를 들어, 차량에 경고)에 의해 방송될 수 있다. V2P는 서로 다른 UE 간(하나는 차량, 또 하나는 보행자)에 V2V 관련 어플리케이션 정보를 직접 교환하는 것을 포함하고, 및/또는 V2P의 제한된 직접 통신 범위로 인해, V2P는 서로 다른 UE 간에 V2P 관련 어플리케이션 정보를 V2X 서비스를 지원하는 기반 구조(예를 들어, RSU, 어플리케이션 서버 등)를 통해 교환하는 것을 포함한다.
V2X 통신에서, CAM(common awareness messages), DENM(decentralized environmental notification messages) 또는 BSM(basic safety message) 등의 메시지가 전송될 수 있다. CAM은 차량의 종류, 위치, 속도, 방향 등의 정보를 포함하며, 모든 차량에 의하여 주기적으로 방송될 수 있다. DENM은 특정 이벤트의 타입, 특정 이벤트가 발생한 지역 등의 정보를 포함하며, RSU 또는 차량에 의하여 방송될 수 있다. BSM은 미국의 J2735 안전 메시지에 포함되며, CAM과 유사한 특징을 가진다. BSM을 통해 긴급 브레이크 경고, 전방 추돌 경고, 교차로 안전 지원, 사각 지대 및 차선 변경 경고, 추월 경고, 제어 불능 경고 서비스가 제공될 수 있다.
V2X 통신의 특성상, SPS를 통해 할당된 자원을 이용하여 V2X 메시지를 전송하는 방법이 논의되고 있다. 즉, UL SPS 자원 또는 SL SPS 자원을 이용하여 V2X 메시지를 네트워크 또는 다른 UE로 전송하는 방법이 논의 중에 있다. SPS에 의한 자원 할당을 돕기 위하여, UE가 SPS를 위한 UE 도움 정보를 네트워크로 전송하는 것이 합의되었다. SPS를 위한 UE 도움 정보는 도 4에서 설명된 UE 도움 정보에 포함될 수 있다. 이하의 설명에서, SPS를 위한 UE 도움 정보는 간단히 SPS 도움 정보로 부르기로 한다. 또한 이하의 설명에서, UE 도움 정보는 SPS 도움 정보를 포함하는 것으로 가정한다. SPS 향상과 UE 도움 정보에 대하여 다음의 사항이 합의되었다.
- 복수의 SPS 구성이 동시에 활성화 될 수 있다.
- UE 도움 정보의 전송은 UE 구현을 기반으로 트리거 될 수 있다.
- UE 도움 정보는 선호하는 SPS 주기 및 SFN(system frame number) 0의 서브프레임 0에 대한 타이밍 오프셋의 집합을 포함할 수 있다.
- UE 도움 정보는 도착하는 패킷의 추정된 주기의 변경이 발생할 때 보고될 수 있다.
- UE 도움 정보는 도착하는 패킷의 추정된 오프셋의 변경이 발생하면 보고될 수 있다.
- UE 도움 정보는 eNB에 의해 구성될 수 있다.
- UE 도움 정보는 SPS가 구성되는 경우와 SPS가 구성되지 않는 경우에 모두 보고될 수 있다.
- UE 도움 정보는 기존의 SPS 구성 또는 새로운 SPS 구성 별로 구성될 수 있다.
- UE 도움 정보의 보고는 적어도 PC5 V2X에 대해 eNB에 의해 구성된다.
- UE 도움 정보가 eNB에 의해 구성된 경우, UE 도움 정보는 추가로 SPS 구성의 SPS 인덱스를 포함할 수 있다.
이하, 위의 합의 내용을 바탕으로, 본 발명은 다양한 실시예를 통해 UE 도움 정보의 자세한 특징을 제안한다.
(1) UE 도움 정보가 논리 채널 또는 PPPP(ProSe per-packet priority) 별로 보고되는지 여부는 아직 결정된 바가 없다. 만약 PPPP가 동일한 여러 유형의 메시지가 SPS 자원을 통해 함께 전송되는 경우, UE가 결합된 트래픽 패턴을 예측하는 것이 어려울 것으로 예상된다. 즉, UE 도움 정보가 결합된 트래픽 패턴을 정확하게 반영하기 어려울 것으로 예상된다. 따라서, 본 발명의 일 실시예에 따라, UE 도움 정보가 각 논리 채널 별로 보고되는 것이 제안될 수 있다.
(2) 상술한 바와 같이, SPS가 구성되는지 여부와 관계 없이 UE 도움 정보가 보고될 수 있으며, UE 도움 정보는 기존의 SPS 구성 또는 새로운 SPS 구성 별로 제공될 수 있다. SPS가 구성되기 전에, 어플리케이션 계층은 V2X 메시지를 AS 계층 2로 전달한다. 따라서 SL 버퍼에 전송할 수 있는 데이터가 있게 된다. UE 도움 정보의 보고는 SL 버퍼에 전송할 수 있는 데이터가 있는 경우에만 트리거 되는 것으로 가정할 수 있다. 즉, SL 버퍼에 전송할 수 있는 데이터가 없다면, UE는 UE 도움 정보의 보고를 트리거 해서는 안 된다. 따라서, 본 발명의 일 실시예에 따라, UE 도움 정보의 보고는 SL 버퍼, 즉 계층 2에 전송할 수 있는 데이터가 있는 경우에만 트리거 되는 것이 제안될 수 있다.
(3) 첫 데이터가 계층 2에서 전송될 수 있을 때, 즉 V2X 메시지 전송이 시작될 때, UE가 최초에 어떻게 V2X 메시지 전송의 주기를 추정할 수 있을지 불분명하다. 이에 대한 제1 옵션으로, UE는 최초에 어플리케이션 계층과의 상호 작용에 기초하여 V2X 메시지 전송의 주기를 추정할 수 있다. 이 옵션은 차량이 최초에 주차장에서 0 또는 저속으로 출발하기 때문에 가능할 수 있다. 그러나 이 옵션은 일부 경우, 예를 들어 이벤트 트리거 메시지의 경우에 잘 작동하지 않을 수 있다.
제2 옵션으로, UE는 논리 채널에 대해 트래픽 패턴을 더 잘 추정할 수 있을 때까지 UE 도움 정보를 보고하지 않을 수 있다. 이 옵션에서, UE는 최초에 사이드링크 BSR(buffer status report)만 eNB로 전송할 수 있다. 사이드링크 BSR을 기반으로, eNB는 사이드링크 모드 3 자원을 동적 스케줄링과 함께 할당할 수 있다.
상술한 옵션을 고려할 때, V2X 메시지 전송이 시작될 때, 특정 UE는 UE가 트래픽 패턴을 더 잘 예측할 수 있을 때까지 UE 도움 정보를 보고하지 않을 수 있다. UE 도움 정보가 논리 채널 당 패킷 크기를 포함한다면, UE는 트래픽 패턴을 추정할 때까지 주기 및 타이밍 오프셋 없이 논리 채널 당 패킷 크기를 포함하는 UE 도움 정보를 보고할 수 있다. 이 경우, eNB는 UE 도움 정보를 기반으로 사이드링크 모드 3을 자원을 동적으로 할당할 수 있다.
(4) UE 도움 정보는 패킷 크기를 포함할 수 있다. 패킷 크기가 UE 도움 정보에 포함되는 경우, 상기 패킷 크기는 전송될 수 있는 총 데이터 양일 수 있다. 또한, 상술한 바와 같이 UE 도움 정보의 보고는 SL 버퍼에 전송할 수 있는 데이터가 있는 때에만 트리거 될 수 있으므로, UE 도움 정보에 포함되는 패킷 크기는 추정된 크기가 아닌 SL 버퍼에 있는 데이터의 정확한 크기일 수 있다.
또한, UE 도움 정보가 패킷 크기를 포함하고 UE 도움 정보가 논리 채널 별로 제공되는 경우, 패킷 크기는 대응하는 논리 채널에 대해 계산될 수 있다. 즉, UE 도움 정보는 논리 채널에 대해 전송될 수 있는 총 데이터 양을 포함할 수 있다. 만약 UE 도움 정보가 PPPP에 대해 보고되면, UE 도움 정보에 포함되는 패킷 크기는 PPPP와 연관된 모든 논리 채널을 통해 전송될 수 있는 총 데이터 양일 수 있다.
정리하면, 본 발명의 일 실시예에 따라, UE 도움 정보는 패킷 크기를 포함할 수 있고, 상기 패킷 크기는 논리 채널(또는 PPPP와 연관된 모든 논리 채널)에 대해 전송될 수 있는 총 데이터 양으로 정의될 수 있다.
(5) UE 도움 정보가 패킷 크기를 포함하는 경우, UE 도움 정보 보고의 대상이 되는 논리 채널(또는 PPPP)에 대한 사이드링크 BSR을 사용할 필요가 없다. UE 도움 정보에 포함되는 패킷 크기가 논리 채널 별로 제공된다고 가정하면, UE 도움 정보에 포함되는 논리 채널 당 패킷 크기는 논리 채널 당 SPS 동작을 위하여 사이드링크 BSR보다 더 많은 영향을 eNB에 제공할 수 있다. 즉, STCH에 대해 UE 도움 정보에 패킷 크기가 포함되면, 사이드링크 BSR 보고는 필요하지 않다.
따라서, UE 도움 정보와 연관된 논리 채널(또는 PPPP와 연관된 모든 논리 채널)에 대해 SR 금지 타이머(logicalChannelSR-ProhibitTimer) 또는 SR 마스킹(logicalChannelSR-Mask)이 지원될 필요가 있다. UL에 대하여, 위의 파라미터는 eNB에 의해 구성될 수 있다. 그러나 이 경우, SL 금지 타이머(logicalChannelSR-ProhibitTimer) 및 SR 마스킹(logicalChannelSR-Mask)은 eNB에서 의해 구성될 필요가 없다. 패킷 크기를 포함하는 UE 도움 정보가 논리 채널(또는 PPPP와 연관된 모든 논리 채널)에 대해 보고되도록 구성되는 경우, SL 금지 타이머(logicalChannelSR-ProhibitTimer) 또는 SR 마스킹(logicalChannelSR-Mask)은 eNB로부터의 명시적인 시그널링 없이 해당 논리 채널에 대해 구성될 수 있다. 정리하면, 본 발명의 일 실시예에 따라, 패킷 크기를 포함하는 UE 도움 정보가 STCH(또는 PPPP와 연관된 모든 STCH)에 대해 보고되도록 구성되는 경우, SL 금지 타이머(logicalChannelSR-ProhibitTimer) 또는 SR 마스킹(logicalChannelSR-Mask)은 eNB로부터의 해당 STCH에 대해 구성되는 것으로 간주될 수 있다..
(6) 논리 채널 당 UE 도움 정보로부터 제기될 수 있는 한 가지 문제로, eNB가 UE 도움 정보에서 LCID(logical channel identifier)로부터 우선 순위를 알 수 없다. eNB는 사이드링크 모드 3 전송을 스케줄링 하기 위해 PPPP와 같은 우선 순위 정보를 필요로 할 수 있다. 따라서, 본 발명의 일 실시예에 따라, eNB로부터의 구성 또는 사전 구성에 따라 UE 도움 정보에 포함된 LCID가 PPPP에 맵핑될 수 있다. 이에 따라, eNB 스케줄러는 UE 도움 정보에 포함된 LCID로부터 논리 채널에 대한 우선 순위 정보를 이해할 수 있다.
(7) 또한, UE가 SPS 해제에 대해 eNB에 알려야 하는 경우, UE는 UE 도움 정보에서 전송 중지(또는 SPS 해제)를 지시하는 것을 선호할 수 있다. 이와 같은 SPS 해제를 위한 전송 중지에 대한 지시는 논리 채널(또는 PPPP와 관련된 모든 논리 채널) 별로 UE 도움 정보 내에 포함될 수 있다. 이 지시는 UE 도움 정보 내에서 명시적일 필요는 없다. 예를 들어, 0으로 설정된 주기, 특정 LCID 값 또는 0인 패킷 크기 등이 SPS 해제를 위한 전송 중지에 대한 지시로 사용될 수 있다.
한편, CAM 전송은 차량이 움직이지 않을 때까지 계속될 수 있다. 따라서 SPS 해제는 CAM에는 유용하지 않을 수 있다. 그러나 SPS 해제는 DENM에는 유용 할 수 있다. DENM의 경우, AS 계층은 어플리케이션 계층과의 상호 작용을 기반으로 DENM의 전송 중지를 이해할 수 있다. 따라서, 언제 UE가 논리 채널에 대해 전송 중지를 지시할 것인지는 UE 구현에 달려 있을 수 있다. 또한, UE가 SPS 해제를 위한 전송 중지를 eNB에 지시하더라도, 실제 SPS가 해제되는지 여부는 eNB에 달려 있을 수 있다.
정리하면, 본 발명의 일 실시예에 따라, UE가 SPS 해제를 위한 전송 중지를 eNB에 지시하는 경우, 해당 지시는 논리 채널 별로 UE 도움 정보에 포함될 수 있다. 그러나, 실제 SPS가 해제되는지 여부는 eNB에 달려 있을 수 있다. 또한, 언제 UE가 SPS 해제를 위한 전송 중지를 지시할 것인지는 UE 구현에 달려 있을 수 있다.
(8) 상술한 본 발명의 실시예에 따른 UE 도움 정보의 다양한 측면을 고려할 때, UE 도움 정보는 다음의 정보 중 적어도 하나를 포함할 수 있다.
- 주기 (필요한 경우, 0으로 설정된 주기는 SPS 해제 요청을 의미할 수 있다)
- 타이밍 오프셋
- LCID
- 전송될 수 있는 총 데이터 양(추정된 패킷 크기가 아닌)
- SPS 인덱스(SPS가 구성된 경우)
(9) 한편, UE가 동일한 UE 보조 정보의 전송을 연속적으로 트리거 하는 경우는 피하는 것이 바람직하다. 예를 들어, UE는 특정 주기 및/또는 특정 타이밍 오프셋을 요청할 수 있다. 그러나, eNB가 해당 요청을 수락하지 않으면, UE는 동일한 내용을 포함하는 UE 도움 정보의 전송을 다시 트리거 할 수 있다. 따라서, 본 발명의 일 실시예에 따라, UE는 동일한 내용을 포함하는 UE 도움 정보의 전송을 연속적으로 트리거 해서는 안 된다.
(10) 현재 SPS가 LCID와 연관되는지 PPPP와 연관되는지 명확하지 않다. 복수의 SPS에 대한 전형적인 V2X 사용 사례는 CAM과 DENM의 병렬 전송이다. 서로 다른 유형의 메시지는 서로 다른 주기와 타이밍 오프셋을 가질 수 있다. 이 경우, 서로 다른 유형의 메시지는 서로 다른 논리 채널을 통해 서로 다른 SPS 자원에 할당될 수 있다.
그러나, 서로 다른 논리 채널 상의 서로 다른 유형의 메시지가 항상 서로 다른 PPPP를 가지지는 않을 수 있다. 즉, 동일한 PPPP를 가지는 서로 다른 유형의 메시지가 SPS 자원 상으로 함께 전송될 수 있다. 서로 다른 트래픽 패턴이 동일한 SPS 자원에 혼합되면, UE는 서로 다른 주기 및 타이밍 오프셋을 갖는 메시지가 결합된 트래픽 패턴을 추정하기가 어려울 수 있다. 따라서, SPS 구성은 논리 채널과 연관시킬 가능성이 높다. 따라서, 본 발명의 일 실시예에 따라, SPS 구성은 논리 채널에 연관될 수 있다.
도 5는 본 발명의 일 실시예에 따른 UE에 의한 SPS 해제를 지시하는 방법을 나타낸다. 상술한 본 발명의 다양한 실시예에가 본 실시예에 적용될 수 있다.
단계 S100에서, UE는 복수의 논리 채널에 대한 복수의 SPS 구성을 eNB로부터 수신한다. 단계 S110에서, UE는 상기 복수의 논리 채널 중 어느 하나의 논리 채널에 대한 SPS 해제 지시를 포함하는 UE 도움 정보를 상기 eNB로 전송한다. 상기 UE 도움 정보는 사이드링크 버퍼에 전송될 수 있는 데이터가 있을 때에만 전송될 수 있다.
상기 UE 도움 정보는 상기 어느 하나의 논리 채널에 대한, LCID, SPS 주기, SPS 타이밍 오프셋 및 패킷 크기를 포함할 수 있다. 상기 SPS 해제 지시는 0으로 설정된 상기 SPS 주기에 의해 지시될 수 있다. 또는, 상기 SPS 해제 지시는 특정 값으로 설정된 상기 LCID에 의해 지시될 수 있다. 또는, 상기 SPS 해제 지시는 0으로 설정된 상기 패킷 크기에 의해 지시될 수 있다. 상기 어느 하나의 논리 채널에 대한 패킷 크기는 상기 어느 하나의 논리 채널에 대한 전송될 수 있는 총 데이터 양에 대응할 수 있다. 상기 어느 하나의 논리 채널에 대한 SR 금지 타이머 및 SR 마스킹이 구성될 수 있다. 상기 LCID는 상기 eNB에 의한 구성 또는 사전 구성에 의하여 PPPP에 맵핑될 수 있다.
도 6은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸다.
eNB(800)는 프로세서(processor; 810), 메모리(memory; 820) 및 송수신부(transceiver; 830)를 포함한다. 프로세서(810)는 본 명세서에서 설명된 기능, 과정 및/또는 방법을 구현하도록 구성될 수 있다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. 송수신부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
UE(900)는 프로세서(910), 메모리(920) 및 송수신부(930)를 포함한다. 프로세서(910)는 본 명세서에서 설명된 기능, 과정 및/또는 방법을 구현하도록 구성될 수 있다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. 송수신부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(810, 910)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(820, 920)는 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신부(830, 930)는 무선 주파수 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(820, 920)에 저장되고, 프로세서(810, 910)에 의해 실행될 수 있다. 메모리(820, 920)는 프로세서(810, 910) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(810, 910)와 연결될 수 있다.
상술한 예시적인 시스템에서, 상술된 본 발명의 특징에 따라 구현될 수 있는 방법들은 순서도를 기초로 설명되었다. 편의상 방법들은 일련의 단계 또는 블록으로 설명되었으나, 청구된 본 발명의 특징은 단계들 또는 블록들의 순서에 한정되는 것은 아니며, 어떤 단계는 다른 단계와 상술한 바와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. 무선 통신 시스템에서 단말(UE; user equipment)에 의한 SPS(semi-persistent scheduling) 해제를 지시하는 방법에 있어서,
    복수의 논리 채널에 대한 복수의 SPS 구성을 eNB(evolved NodeB)로부터 수신하고; 및
    상기 복수의 논리 채널 중 어느 하나의 논리 채널에 대한 SPS 해제 지시를 포함하는 UE 도움 정보를 상기 eNB로 전송하는 것을 포함하는 방법.
  2. 제 1 항에 있어서,
    상기 UE 도움 정보는 상기 어느 하나의 논리 채널에 대한, LCID(logical channel identifier), SPS 주기, SPS 타이밍 오프셋 및 패킷 크기를 포함하는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서,
    상기 SPS 해제 지시는 0으로 설정된 상기 SPS 주기에 의해 지시되는 것을 특징으로 하는 방법.
  4. 제 2 항에 있어서,
    상기 SPS 해제 지시는 특정 값으로 설정된 상기 LCID에 의해 지시되는 것을 특징으로 하는 방법.
  5. 제 2 항에 있어서,
    상기 SPS 해제 지시는 0으로 설정된 상기 패킷 크기에 의해 지시되는 것을 특징으로 하는 방법.
  6. 제 2 항에 있어서,
    상기 어느 하나의 논리 채널에 대한 패킷 크기는 상기 어느 하나의 논리 채널에 대한 전송될 수 있는 총 데이터 양에 대응하는 것을 특징으로 하는 방법.
  7. 제 2 항에 있어서,
    상기 어느 하나의 논리 채널에 대한 SR(scheduling request) 금지 타이머 및 SR 마스킹(making)이 구성되는 것을 특징으로 하는 방법.
  8. 제 2 항에 있어서,
    상기 LCID는 상기 eNB에 의한 구성 또는 사전 구성에 의하여 PPPP(ProSe per-packet priority)에 맵핑되는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서,
    상기 UE 도움 정보는 사이드링크 버퍼에 전송될 수 있는 데이터가 있을 때에만 전송되는 것을 특징으로 하는 방법.
  10. 무선 통신 시스템에서 단말(UE; user equipment)에 있어서,
    메모리;
    송수신부; 및
    상기 메모리 및 상기 송수신부와 연결되는 프로세서를 포함하며,
    상기 프로세서는,
    복수의 논리 채널에 대한 복수의 SPS(semi-persistent scheduling) 구성을 eNB(evolved NodeB)로부터 수신하도록 상기 송수신부를 제어하고, 및
    상기 복수의 논리 채널 중 어느 하나의 논리 채널에 대한 SPS 해제 지시를 포함하는 UE 도움 정보를 상기 eNB로 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 단말.
  11. 제 10 항에 있어서,
    상기 UE 도움 정보는 상기 어느 하나의 논리 채널에 대한, LCID(logical channel identifier), SPS 주기, SPS 타이밍 오프셋 및 패킷 크기를 포함하는 것을 특징으로 하는 단말.
  12. 제 11 항에 있어서,
    상기 SPS 해제 지시는 0으로 설정된 상기 SPS 주기에 의해 지시되는 것을 특징으로 하는 단말.
  13. 제 11 항에 있어서,
    상기 SPS 해제 지시는 특정 값으로 설정된 상기 LCID에 의해 지시되는 것을 특징으로 하는 단말.
  14. 제 11 항에 있어서,
    상기 SPS 해제 지시는 0으로 설정된 상기 패킷 크기에 의해 지시되는 것을 특징으로 하는 단말.
  15. 제 11 항에 있어서,
    상기 어느 하나의 논리 채널에 대한 패킷 크기는 상기 어느 하나의 논리 채널에 대한 전송될 수 있는 총 데이터 양에 대응하는 것을 특징으로 하는 단말.
PCT/KR2017/010852 2016-09-30 2017-09-28 무선 통신 시스템에서 sps를 위한 단말 도움 정보를 전송하는 방법 및 장치 WO2018062906A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/338,419 US10873935B2 (en) 2016-09-30 2017-09-28 Method and apparatus for transmitting terminal support data for SPS in wireless communication system
EP17856792.1A EP3506702B1 (en) 2016-09-30 2017-09-28 Method and apparatus for transmitting terminal support data for sps in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662402067P 2016-09-30 2016-09-30
US62/402,067 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062906A1 true WO2018062906A1 (ko) 2018-04-05

Family

ID=61762938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010852 WO2018062906A1 (ko) 2016-09-30 2017-09-28 무선 통신 시스템에서 sps를 위한 단말 도움 정보를 전송하는 방법 및 장치

Country Status (3)

Country Link
US (1) US10873935B2 (ko)
EP (1) EP3506702B1 (ko)
WO (1) WO2018062906A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11044637B2 (en) * 2016-09-27 2021-06-22 Nokia Technologies Oy Multi-cell allocation
EP3482601B1 (en) * 2016-10-06 2024-03-06 Samsung Electronics Co., Ltd. Methods for managing wireless communication in vehicle-to-anything communication system
WO2018230993A1 (en) * 2017-06-15 2018-12-20 Samsung Electronics Co., Ltd. Method and apparatus for performing scheduling request to support plurality of services efficiently
EP4236564A3 (en) * 2017-09-28 2023-11-08 ZTE Corporation Method and apparatus for carrier aggregation in sidelink communication
CN111436084A (zh) * 2019-02-13 2020-07-21 维沃移动通信有限公司 辅助信息上报方法及装置、通信设备
WO2022082681A1 (zh) * 2020-10-22 2022-04-28 华为技术有限公司 无线通信方法、装置及系统
CN114679686A (zh) * 2020-12-24 2022-06-28 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
WO2023203361A1 (en) * 2022-04-22 2023-10-26 Orope France Sarl Apparatus and method of wireless communication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140023008A1 (en) * 2010-12-27 2014-01-23 Jae-Young Ahn Method for establishing a device-to-device link connection and scheduling for device-to-device communication and terminal relaying

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726705B1 (ko) * 2014-12-01 2017-04-26 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 스케줄링 요청(sr)에 대한 금지 타이머를 처리하기 위한 방법 및 장치
CN109076590B (zh) * 2016-02-03 2022-07-26 瑞典爱立信有限公司 用于无线通信的有效周期性调度
US10200991B2 (en) * 2016-04-25 2019-02-05 Ofinno Technologies, Llc Scheduling request process in a wireless device and wireless network
US10778379B2 (en) * 2016-07-12 2020-09-15 Lg Electronics Inc. Uplink signal transmission method and user equipment
US10356758B2 (en) * 2016-08-11 2019-07-16 Asustek Computer Inc. Method and apparatus for requesting and modifying resource configuration in a wireless communication system
US10798726B2 (en) * 2016-08-12 2020-10-06 Lg Electronics Inc. Method and apparatus for transmitting SPS assistance information in wireless communication system
EP3487239B1 (en) * 2016-08-12 2023-11-15 Huawei Technologies Co., Ltd. Semi-static transmission method and apparatus
CN110050500B (zh) * 2016-08-12 2023-07-04 北京小米移动软件有限公司 无线网络和设备中的周期性资源分配

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140023008A1 (en) * 2010-12-27 2014-01-23 Jae-Young Ahn Method for establishing a device-to-device link connection and scheduling for device-to-device communication and terminal relaying

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"SL SPS Configuration and UE Assistant Information", R2-165693, 3GPP TSG-RAN WG2 #95, 13 August 2016 (2016-08-13), Gothenburg, Sweden, XP051127090 *
ASUSTECK: "Discussion on Multiple SL SPS for V2X Transmission", R2-165288, 3GPP TSG-RAN WG2 MEETING #95, 12 August 2016 (2016-08-12), G oteborg, Sweden, XP051126866 *
ERICSSON: "Introducing Sidelink SPS in MAC", R2-165529, 3GPP TSG-RAN WG2 MEETING #95, 12 August 2016 (2016-08-12), Gothenburg, Sweden, XP051126308 *
ERICSSON: "Summary of Offline SPS Agreements", R2-165762, 3GPP TSG-RAN WG2 #95, 26 August 2016 (2016-08-26), Gothenburg , Sweden, XP051127205 *
See also references of EP3506702A4 *

Also Published As

Publication number Publication date
EP3506702B1 (en) 2021-01-13
EP3506702A4 (en) 2019-07-17
US10873935B2 (en) 2020-12-22
EP3506702A1 (en) 2019-07-03
US20190313379A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018030834A1 (ko) 무선 통신 시스템에서 자원 풀 구성을 기반으로 단말 자체적으로 자원을 재선택하는 방법 및 장치
WO2017191963A2 (ko) 무선 통신 시스템에서 sps 동작 변경에 따라 pucch 자원을 재할당하는 방법 및 장치
US11785586B2 (en) Method and apparatus for performing user equipment triggered semi-persistent scheduling activation in wireless communication system
WO2017160070A1 (ko) 무선 통신 시스템에서 사이드링크 자원의 점유 정도를 보고하는 방법 및 장치
WO2018062857A1 (ko) 무선 통신 시스템에서 우선 순위를 기반으로 단말 자체적으로 자원을 재선택하는 방법 및 장치
WO2018084590A1 (ko) 무선 통신 시스템에서 사이드링크 채널 혼잡 비율을 전송하는 방법 및 장치
WO2018208114A1 (ko) 무선 통신 시스템에서 중계 ue를 통하여 사이드링크 자원을 할당하는 방법 및 장치
WO2018062906A1 (ko) 무선 통신 시스템에서 sps를 위한 단말 도움 정보를 전송하는 방법 및 장치
WO2017196085A2 (ko) 무선 통신 시스템에서 v2v 통신을 위해 하향링크 방송을 향상시키는 방법 및 장치
WO2017043940A1 (en) Method and apparatus for allocating mbms based resources for v2x message transmission in wireless communication system
WO2018088832A1 (ko) 무선 통신 시스템에서 아이들 상태에 있는 중계 단말을 위한 rrc 연결 확립 원인을 구성하는 방법 및 장치
WO2017135783A1 (en) Method and apparatus for allocating resources for v2x message transmission in wireless communication system
WO2016108554A1 (en) Method and apparatus for performing switching control between uplink and sidelink in wireless communication system
WO2017105151A1 (en) Method and apparatus for allocating common sps resource across multiple cells in wireless communication system
WO2016048082A1 (en) Method and apparatus for canceling triggered prose bsr in wireless communication system
WO2017196152A2 (ko) 무선 통신 시스템에서 차량 단말의 지리 정보를 보고하는 방법 및 장치
WO2015170871A1 (en) Method and apparatus for indicating d2d resource pool in wireless communication system
WO2015142132A1 (en) Method and apparatus for indicating d2d related information in wireless communication system
WO2016163834A1 (en) Method and apparatus for configuring criteria for relay configuration in wireless communication system
WO2015170866A1 (en) Method and apparatus for configuring transmission of d2d control information in wireless communication system
WO2018030832A1 (ko) 무선 통신 시스템에서 카운터를 기반으로 단말 자체적으로 자원을 재선택하는 방법 및 장치
WO2017052103A1 (en) Method for handling an id collision for a d2d communication system and device therefor
WO2015147605A1 (en) Method and apparatus for performing d2d operation in wireless communication system
WO2017135738A1 (en) Method and apparatus for performing semi-persistent scheduling reactivation between sidelink and uplink in wireless communication system
KR20190020152A (ko) 무선 통신 시스템에서 카운터를 기반으로 단말 자체적으로 자원을 재선택하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856792

Country of ref document: EP

Effective date: 20190328