WO2018026147A1 - 라이다 장치 - Google Patents

라이다 장치 Download PDF

Info

Publication number
WO2018026147A1
WO2018026147A1 PCT/KR2017/008220 KR2017008220W WO2018026147A1 WO 2018026147 A1 WO2018026147 A1 WO 2018026147A1 KR 2017008220 W KR2017008220 W KR 2017008220W WO 2018026147 A1 WO2018026147 A1 WO 2018026147A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mirror
wavelength band
transmission
predetermined wavelength
Prior art date
Application number
PCT/KR2017/008220
Other languages
English (en)
French (fr)
Inventor
연용현
Original Assignee
연용현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연용현 filed Critical 연용현
Priority to US16/322,873 priority Critical patent/US12025737B2/en
Publication of WO2018026147A1 publication Critical patent/WO2018026147A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar

Definitions

  • the present invention relates to a lidar device for measuring the distance of an external object using light.
  • LiDAR Light Detection And Ranging
  • LiDAR Light Detection And Ranging
  • RIDAR is similar to RADAR (Radio Detection And Ranging) measurement method, but the difference is that it uses light instead of radio wave, and in this regard it is called 'image radar'. And the rider is characterized by superior spatial resolution and resolution compared to radar.
  • lidar is also used as an application for measuring various physical properties such as air velocity and component analysis using light.
  • LIDA has been used exclusively for special fields such as aviation and satellites. It is being applied to various fields such as the field.
  • recent studies on lidar applicable to autonomous driving have been actively conducted.
  • Lidar devices typically include a light source, a transmission optical system for transmitting light, a receiving optical system for receiving light, and a photo detector for detecting a time difference or phase difference between the transmission light and the reception light, and measuring a distance.
  • 3D image data can be generated within a field of view.
  • a transmission optical system for transmitting light emitted from a light source and a reception optical system for receiving light reflected by an external object are separately configured.
  • an expensive wide-angle lens must be used for the transmission optical system and the reception optical system, respectively, and there is a problem in that the implementation of the lidar device takes a lot of cost.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a lidar device capable of miniaturization and wide field of view by integrating a transmission space and a reception space of light.
  • the lidar apparatus a light source for emitting light of a predetermined wavelength band;
  • a transmission mirror which is provided on an optical path through which light of the predetermined wavelength band travels, and reflects light of the predetermined wavelength band that is incident to a predetermined angle range;
  • a reception mirror provided integrally with the transmission mirror and configured to receive light from the outside;
  • An optical detector detecting a transmission / reception time difference or phase difference of light in a predetermined wavelength band to obtain a distance-based 3D image;
  • a first mirror provided between the light source and the transmission mirror and reflecting the light received by the reception mirror to the light detector.
  • the lidar apparatus the image acquisition unit for obtaining an image; And a second mirror provided between the light source and the transmission mirror and reflecting light received by the reception mirror to the image acquisition unit, wherein the first mirror provides light of the predetermined wavelength band. Reflect, transmit light having a wavelength band other than the predetermined wavelength band, and the second mirror may reflect light having a wavelength band other than the predetermined wavelength band, and transmit light of the predetermined wavelength band. .
  • the first mirror includes a first light transmitting part on the light path of the light source
  • the second mirror includes a second light transmitting part on the light path of the light source. It may be.
  • the transmission mirror and the reception mirror are integrally formed and a conventional unused shadow area is used as the light transmission area, there is an advantage that a separate design of the lidar device is possible without the need for a separate light transmission space.
  • the mirror structure is adopted in place of the expensive wide-angle lens for securing a wide field of view (FOV) of the prior art, there is an advantage that the lidar device can be manufactured at low cost.
  • FIG. 1 is a view showing a lidar apparatus according to an embodiment of the present invention.
  • FIG. 2 is an embodiment of a transmitting mirror and a receiving mirror of the lidar apparatus shown in FIG. 1.
  • FIG. 3 is a view showing an optical transmission path of the lidar apparatus shown in FIG.
  • FIG. 4 is a view showing a light receiving path of the lidar apparatus shown in FIG.
  • FIG. 5 is a diagram illustrating a distance-based 3D image and a general image acquired by a lidar device, respectively.
  • the lidar apparatus emits light of a predetermined wavelength band and then, when the light of the predetermined wavelength band is reflected by the external object, receives the reflected light of the predetermined wavelength band and measures the distance of the external object.
  • a lidar apparatus includes a light source 100, a transmission mirror 200, a reception mirror 300, a first mirror 410, and a second mirror.
  • the mirror 420, the light detector 510, the image acquisition unit 520, the first lens unit 610, and the second lens unit 620 may be configured to be included.
  • the light source 100 emits light of a predetermined wavelength band in order to measure the distance of an external object (not shown) existing outside the lidar device, and preferably emits laser light or LED light having good linearity. It may be.
  • the transmission mirror 200 is provided on the path of the light emitted from the light source 100, and reflects the light emitted from the light source 100 to the outside in a predetermined angle range (ie, a field of view (FOV) range).
  • a field of view (FOV) range ie, a field of view (FOV) range.
  • 1 to 4 illustrate a case in which the horizontal field of view FOV is omnidirectional (360 degrees).
  • the transmission mirror 200 is a mirror of a cone or axicon structure, and may be designed in various forms according to a required field of view (FOV), and may have a total wavelength or a predetermined wavelength band emitted from the light source 100. It can be configured as a dichroic mirror so that only light is selectively reflected.
  • FOV required field of view
  • the reception mirror 300 is a mirror that receives light reflected from an external object.
  • the reception mirror 300 is a cone or axicon mirror like the transmission mirror 200, and may be designed in various forms according to a required field of view, and may be a dichroic mirror or a total reflection mirror. It can be configured as.
  • the transmission mirror 200 and the reception mirror 300 may be separately or integrally formed.
  • the reception mirror 300 can be designed in a reduced shape of the transmission mirror 200.
  • FIG. 5 illustrates distance-based 3D images and general images acquired by a lidar device, where A region represents a shaded region, B region represents an actual measured or photographed region, and C region represents a design angle of view (FOV) Each area outside of is represented.
  • a region represents a shaded region
  • B region represents an actual measured or photographed region
  • C region represents a design angle of view (FOV)
  • the present invention utilizes an area (shading area) that is not actually used as the light transmission area, so that a separate space for the optical transmission optical system is not required, thereby miniaturizing the LiDAR device. Has an advantage.
  • the transmission mirror 200 and the reception mirror 300 may be integrally formed by processing one mirror or may be integrally formed by processing two mirrors and bonding them together.
  • each of the first mirror 410 and the second mirror 420 may be configured as a dichroic mirror or a dichroic prism that reflects only light of a specific wavelength band and transmits light of other wavelength bands. Can be.
  • the first mirror 410 reflects only light of a predetermined wavelength band emitted from the light source 100 among the light reflected by the receiving mirror 300, and the light having a wavelength band other than the predetermined wavelength band Permeate.
  • the second mirror 420 transmits light of a predetermined wavelength band emitted from the light source 100 among the light reflected by the receiving mirror 300, and reflects light having a wavelength band other than the predetermined wavelength band. Let's do it.
  • the first mirror 410 is formed with a first transmission portion (not shown) on the path of the light emitted from the light source 100
  • the second mirror In 420, a second transmission part (not shown) is formed on a path of light emitted from the light source 100.
  • the first transmission part and the second transmission part refer to a fine hole or a mirror-free transparent area through which light emitted from the light source 100 can be transmitted.
  • the light of a predetermined wavelength band emitted from the light source 100 through the first and second transmission parts may pass through the first mirror 410 and the second mirror 420 without light loss.
  • the light detector 510 includes a 2D TOF sensor for distance measurement or a single optical receiver (photo diode (PD), avalanche photo diode (APD), etc.) in a two-dimensional arrangement.
  • the distance of the external object is measured by detecting a time difference or a phase difference of transmitted / received light proportional to the distance of.
  • the image acquisition unit 520 acquires an image of an external object by using the light reflected through the receiving mirror 300 and the second mirror 420, and an image sensor (CCD, RGB-IR, etc.) corresponds to this. Can be.
  • an image sensor CCD, RGB-IR, etc.
  • the first lens unit 610 is disposed between the first mirror 410 and the light detector 510 and performs a focus adjustment function.
  • the second lens unit 620 is disposed between the second mirror 420 and the image acquisition unit 520 and performs a focus adjustment function.
  • the transmission mirror 200 has a horizontal and vertical angle of view designed to reflect light to a predetermined area.
  • the light transmitted toward the external object is reflected by the external object and then incident on the receiving mirror 300.
  • only light of a predetermined wavelength band emitted from the light source 100 is reflected by the first mirror 410 to be incident on the light detector 510.
  • the light detector 510 is based on a distance of an external object.
  • a distance-based 3D image as shown in FIG. 5 (a) is obtained.
  • Light having a wavelength band other than the predetermined wavelength band emitted from the light source 100 is incident on the image acquisition unit 520 through the receiving mirror 300 and the second mirror 420. 520 acquires a general image of the external object as shown in FIG.
  • FIG. 5 (c) shows a 3D image obtained by spatially correcting the 3D image shown in FIG. 5 (a) through a spatial correction algorithm.
  • FIG. 5 (d) shows a spatial correction algorithm of the normal image shown in FIG. 5 (b). It shows the space-corrected general image.
  • the lidar apparatus can simultaneously acquire a distance-based 3D image together with the general image of the external object, and based on the real-world image based on the 3D image and the general image acquired simultaneously It can be used for modeling.
  • the above-described embodiment of the present invention exemplarily describes a lidar device capable of measuring the horizontal angle of view (FOV) in all directions (360 degrees). Do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

본 발명에 따른 라이다 장치는, 소정 파장 대역의 광을 방출하는 광원; 상기 소정 파장 대역의 광이 진행하는 광 경로 상에 구비되며, 입사되는 상기 소정 파장 대역의 광을 소정의 각도 범위로 반사시키는 송신용 미러; 상기 송신용 미러와 일체로 구비되며, 외부로부터의 광을 수신하기 위한 수신용 미러; 상기 소정 파장 대역의 광의 송수신 시간차 또는 위상차를 검출하여 거리 기반 3D 영상을 획득하는 광 검출부; 및 상기 광원과 상기 송신용 미러 사이에 구비되며, 상기 수신용 미러에 의해 수신된 광을 상기 광 검출부로 반사하는 제1 미러;를 포함하여 이루어질 수 있다. 이러한 본 발명에 의하면, 송신 미러 및 수신 미러를 일체화 구성하고 종래 미사용 음영 영역을 광 송신 영역으로 활용함으로써, 별도의 광 송신 공간이 불필요하여 라이다 장치의 최소화 설계가 가능하다는 이점이 있다.

Description

라이다 장치
본 발명은 광을 이용하여 외부 대상체의 거리를 측정하는 라이다 장치에 관한 것이다.
라이다(LiDAR: Light Detection And Ranging)는 외부 대상체에 광을 조사한 뒤 이로부터 수신되는 광의 시간차(Time of Flight) 또는 위상차를 검출하여 거리를 측정하는 것를 말한다.
라이다는 전파를 이용한 레이더(RADAR: Radio Detection And Ranging)와 측정 방식이 유사하지만, 전파 대신 광을 이용한다는 점에 차이가 있으며, 이러한 점에서 '영상 레이더'라고 칭해지기도 한다. 그리고 라이다는 레이더에 비해 공간 분해능 및 해상도가 우수하다는 특징을 가진다.
또한, 라이다는 광을 이용하여 대기의 속도나 성분 분석 등 다양한 물성을 측정하는 용도로서도 활용되고 있다.
최근 레이저 광학 및 반도체 공정의 눈부신 발전에 따라 그동안 항공 및 위성 분야 등 특수 분야에 한정적으로 사용되던 라이다는, 감시정찰 등의 민수 및 국방 분야 로봇, 무인 수상함, 드론 등의 항공기, 산업용 보안 및 안전 분야 등 다양한 분야로 확대 적용되고 있다. 특히, 최근 들어 자율 주행에 적용 가능한 라이다에 관한 연구가 활발하게 이루어지고 있다.
라이다 장치는 통상적으로 광원, 광을 송신하는 송신 광학계, 광을 수신하는 수신 광학계, 그리고 송신광과 수신광의 시간차 또는 위상차를 검출하여 거리를 측정하는 광 검출기를 포함하며, 주어진 화각(FOV: Field of View) 내에서 3D 영상 데이터를 생성할 수 있다.
그런데 종래의 라이다 장치는 광원에서 방출하는 광을 송신하는 송신 광학계와 외부 대상체에 의해 반사되는 광을 수신하는 수신 광학계가 별도 구성된다. 또한, 넓은 화각을 구현하기 위해서는 송신 광학계 및 수신 광학계에 고가의 광각 렌즈를 각각 사용해야 하는데, 라이다 장치를 이와 같이 구현할 경우에는 많은 비용이 소요된다는 문제점이 있었다.
[선행기술문헌]
[특허문헌]
미국등록특허공보 제8836922호(2014.09.16.)
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 광의 송신 공간 및 수신 공간을 일체화함으로써, 소형화가 가능하고 넓은 화각 구현이 가능한 라이다 장치를 제공하는데 있다.
또한, 본 발명의 목적은 별도의 매칭 알고리즘 없이 거리 기반의 3D 영상과 일반 영상을 동시 획득이 가능한 라이다 장치를 제공하는데 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명에 따른 라이다 장치는, 소정 파장 대역의 광을 방출하는 광원; 상기 소정 파장 대역의 광이 진행하는 광 경로 상에 구비되며, 입사되는 상기 소정 파장 대역의 광을 소정의 각도 범위로 반사시키는 송신용 미러; 상기 송신용 미러와 일체로 구비되며, 외부로부터의 광을 수신하기 위한 수신용 미러; 상기 소정 파장 대역의 광의 송수신 시간차 또는 위상차를 검출하여 거리 기반 3D 영상을 획득하는 광 검출부; 및 상기 광원과 상기 송신용 미러 사이에 구비되며, 상기 수신용 미러에 의해 수신된 광을 상기 광 검출부로 반사하는 제1 미러;를 포함하여 이루어질 수 있다.
여기서, 본 발명에 따른 라이다 장치는, 영상을 획득하는 영상 획득부; 및 상기 광원과 상기 송신용 미러 사이에 구비되며, 상기 수신용 미러에 의해 수신된 광을 상기 영상 획득부로 반사하는 제2 미러;를 더 포함하고, 상기 제1 미러는 상기 소정 파장 대역의 광을 반사하고, 상기 소정 파장 대역 이외의 파장 대역을 갖는 광을 투과하며, 상기 제2 미러는 상기 소정 파장 대역 이외의 파장 대역을 갖는 광을 반사하고, 상기 소정 파장 대역의 광을 투과하는 것일 수 있다.
또한, 본 발명에 따른 라이다 장치는, 상기 제1 미러는 상기 광원의 광 경로 상에 제1 광 투과부를 포함하고, 상기 제2 미러는 상기 광원의 광 경로 상에 제2 광 투과부를 포함하는 것일 수 있다.
본 발명에 의하면, 송신 미러 및 수신 미러를 일체화 구성하고 종래 미사용 음영 영역을 광 송신 영역으로 활용함으로써, 별도의 광 송신 공간이 불필요하여 라이다 장치의 최소화 설계가 가능하다는 이점이 있다.
또한, 본 발명에 의하면, 종래의 넓은 화각(FOV)을 확보하기 위한 고가의 광각 렌즈 대신에 미러 구조를 채택함으로써 라이다 장치를 저가로 제작할 수 있는 이점이 있다.
또한, 본 발명에 의하면, 외부 대상체의 거리 기반 3D 영상과 함께 실제 일반 영상을 동시 획득하고 이를 실사 기반 3D 모델링에 활용 가능하다는 이점이 있다.
도 1은 본 발명의 일 실시예에 따른 라이다 장치를 나타낸 도면이다.
도 2는 도 1에 도시된 라이다 장치의 송신용 미러 및 수신용 미러의 일 실시예이다.
도 3은 도 1에 도시된 라이다 장치의 광 송신 경로를 나타낸 도면이다.
도 4는 도 1에 도시된 라이다 장치의 광 수신 경로를 나타낸 도면이다.
도 5는 라이다 장치에서 획득한 거리 기반의 3D 영상 및 일반 영상을 각각 나타낸 도면이다.
이하 첨부한 도면들을 참조하여 본 발명에 따른 라이다 장치에 대해 상세하게 설명한다. 첨부한 도면들은 통상의 기술자에게 본 발명의 기술적 사상이 충분히 전달될 수 있도록 하기 위해 예시적으로 제공되는 것으로서, 본 발명은 이하 제시되는 도면들로 한정되지 않고 얼마든지 다른 형태로 구체화될 수 있다.
본 발명에 따른 라이다 장치는 소정 파장 대역의 광을 방출한 뒤 상기 소정 파장 대역의 광이 외부 대상체에 의해 반사되면, 이 반사되는 소정 파장 대역의 광을 수신하여 외부 대상체의 거리를 측정한다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 라이다 장치는, 광원(100), 송신용 미러(200), 수신용 미러(300), 제1 미러(410), 제2 미러(420), 광 검출부(510), 영상획득부(520), 제1 렌즈부(610) 및 제2 렌즈부(620)를 포함하여 구성될 수 있다.
먼저, 광원(100)은 라이다 장치의 외부에 존재하는 외부 대상체(미도시)의 거리를 측정하기 위해 소정 파장 대역의 광을 방출하며, 바람직하게는 직진성이 좋은 레이저광 또는 LED광을 방출하는 것일 수 있다.
송신용 미러(200)는 광원(100)으로부터 방출되는 광의 경로 상에 구비되며, 광원(100)으로부터 방출되는 광을 소정의 각도 범위(즉, 화각(FOV) 범위)로 외부로 반사시킨다. 도 1 내지 도 4는 수평 화각(FOV)이 전방향(360도)인 경우를 나타내고 있다.
송신용 미러(200)는 콘(Con)이나 엑시콘(Axicon) 구조의 미러로서, 필요 화각(FOV)에 따라 다양한 형태로 설계될 수 있으며, 전반사 또는 광원(100)에서 방출되는 소정 파장 대역의 광만이 선택적으로 반사되도록 다이크로익 미러(Dichroic mirror)로 구성될 수 있다.
수신용 미러(300)는 외부 대상체로부터 반사되는 광을 수신하는 미러이다. 수신용 미러(300)는 송신용 미러(200)와 마찬가지로 콘(Con)이나 엑시콘(Axicon) 미러로서, 필요 화각(FOV)에 따라 다양한 형태로 설계될 수 있으며, 다이크로익 미러 또는 전반사 미러로 구성될 수 있다.
도 2는 송신용 미러(200)와 수신용 미러(300)의 일 실시예이다. 도 2에 나타낸 바와 같이 송신용 미러(200)와 수신용 미러(300)는 별도 또는 일체로 구성될 수 있다. 또한, 수신용 미러(300)는 송신용 미러(200)의 축소형 닯은꼴로 설계가 가능하다.
도 5는 라이다 장치에서 획득한 거리 기반의 3D 영상 및 일반 영상을 각각 나타낸 것으로, A영역은 음영 영역을 나타내고, B영역은 실제 측정 또는 촬영된 영역을 나타내며, C영역은 설계 화각(FOV)을 벗어난 영역을 각각 나타낸다.
도 5에 따르면 본 발명은 송신용 미러(200)를 실제 사용되지 않는 영역(음영 영역)을 광 송신 영역으로 활용함으로써, 광 송신 광학계를 위한 별도 공간이 불필요하므로 라이다 장치의 소형화 설계가 가능하다는 장점을 가진다.
이러한 송신용 미러(200)와 수신용 미러(300)는 하나의 미러를 가공 처리하여 일체로 형성한 것이거나, 두 개의 미러를 각각 가공한 뒤 서로 접합하여 일체로 형성한 것일 수 있다.
한편, 제1 미러(410) 및 제2 미러(420)는 각각 특정 파장 대역의 광만을 반사시키고 그 외 파장 대역의 광은 투과시키는 다이크로익 미러(Dichroic Mirror) 또는 다이크로익 프리즘으로 구성될 수 있다.
구체적으로, 제1 미러(410)는 수신용 미러(300)에 의해 반사되는 광 중에서 광원(100)에서 방출되는 소정 파장 대역의 광만을 반사시키고, 상기 소정 파장 대역 이외의 파장 대역을 갖는 광은 투과시킨다. 이와 반대로 제2 미러(420)는 수신용 미러(300)에 의해 반사되는 광 중에서 광원(100)에서 방출되는 소정 파장 대역의 광을 투과시키고, 상기 소정 파장 대역 이외의 파장 대역을 갖는 광은 반사시킨다.
한편, 광원(100)에서 방출되는 광을 그대로 투과시키기 위하여, 제1 미러(410)에는 광원(100)에서 방출되는 광의 경로 상에 제1 투과부(미도시)가 형성되어 있고, 제2 미러(420)에는 광원(100)에서 방출되는 광의 경로 상에 제2 투과부(미도시)가 형성되어 있다. 여기서, 제1 투과부 및 제2 투과부는 광원(100)에서 방출되는 광이 투과될 수 있는 미세 홀 또는 미러 코팅되지 않은 투명 영역을 말한다. 이러한 제1 투과부 및 제2 투과부를 통해 광원(100)에서 방출되는 소정 파장 대역의 광은 광 손실 없이 제1 미러(410) 및 제2 미러(420)를 그대로 투과하게 된다.
광 검출부(510)는 거리 측정용 2D TOF(Time Of Flight) 센서 또는 단일 광 수신소자(포토 다이오드(PD), 애벌런치 포토 다이오드(APD) 등)가 2차원 배열된 형태로 구성되며, 외부 대상체의 거리에 비례하는 송수신 광의 시간차나 위상차를 검출하는 방법으로 외부 대상체의 거리를 측정하게 된다.
영상획득부(520)는 수신용 미러(300) 및 제2 미러(420)를 통해 반사되는 광을 이용하여 외부 대상체의 영상을 획득하며, 영상 센서(CCD, RGB-IR 등)가 이에 해당될 수 있다.
제1 렌즈부(610)는 제1 미러(410) 및 광 검출부(510) 사이에 배치되며 초점 조절 기능을 수행한다. 그리고 제2 렌즈부(620)는 제2 미러(420) 및 영상 획득부(520) 사이에 배치되며 초점 조절 기능을 수행한다.
이하, 도 3 내지 도 5를 참조하여 라이다 장치의 동작을 살펴보면 다음과 같다.
먼저, 광 송신 과정을 살펴보면, 광원(100)에서 방출되는 소정 파장 대역의 광은 제1 투과부 및 제2 투과부를 통해 제1 미러(410) 및 제2 미러(420)를 그대로 투과한 뒤 송신용 미러(200)에 입사되고, 이후 송신용 미러(200)를 통해 외부 대상체를 향해 송신된다. 이 때, 송신용 미러(200)는 설계된 수평 및 수직 화각을 갖고 일정 영역으로 광을 반사하게 된다.
이어서, 광 수신 과정을 살펴보면, 외부 대상체를 향해 송신된 광은 외부 대상체에 의해 반사된 후 수신용 미러(300)에 입사된다. 이후, 제1 미러(410)에 의해 광원(100)에서 방출되는 소정 파장 대역의 광만이 반사되어 광 검출부(510)에 입사되며, 이에 따라 상기 광 검출부(510)는 외부 대상체의 거리를 기반으로 한 도 5(a)에 표시된 바와 같은 거리 기반의 3D 영상을 획득하게 된다. 그리고 광원(100)에서 방출되는 소정 파장 대역 이외의 파장 대역을 갖는 광은 수신용 미러(300) 및 제2 미러(420)를 통해 영상 획득부(520)에 입사되며, 이에 따라 상기 영상 획득부(520)는 도 5(b)에 표시된 바와 같이 외부 대상체의 일반 영상을 획득하게 된다.
도 5(c)는 도 5(a)에 표시된 3D 영상을 공간 보정 알고리즘을 통해 공간 보정한 3D 영상을 나타낸 것이고, 도 5(d)는 도 5(b)에 표시된 일반 영상을 공간 보정 알고리즘을 통해 공간 보정한 일반 영상을 나타낸 것이다.
상술한 바와 같이, 본 발명에 따른 라이다 장치는 외부 대상체의 일반 영상과 함께 거리를 기반으로 한 3D 영상을 동시에 획득할 수 있으며, 동시 획득된 3D 영상 및 일반 영상을 기초로 실사 이미지 기반의 3D 모델링에 활용이 가능하다는 장점을 가진다.
또한, 도 5(a) 및 도 5(b)에 도시된 음영 영역(A)을 광 송신 영역으로 활용함으로써, 별도의 송신 공간이 필요하지 않아 소형화된 라이다 장치의 제작이 가능하다는 장점을 가진다.
이상, 본 발명의 바람직한 실시형태를 도면을 참고하여 예를 들어 설명하였으나, 본 발명은 상기 실시형태에 한정되지 않고 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 다양한 변형 및 변경이 가능한 것은 자명하다.
특히, 거리 기반의 3D 영상만을 획득하고자 하는 경우에는 상술한 제2 미러(420), 제2 렌즈부(620) 및 영상 획득부(520)의 구성 요소는 제외 가능함은 자명하다.
또한, 상술한 본 발명의 실시예는 수평 화각(FOV)이 전방향(360도) 측정이 가능한 라이다 장치를 예시적으로 설명하고 있으나 임의의 수평 화각(FOV)을 갖도록 설계 및 변경 가능함은 자명하다.
[부호의 설명]
100: 광원
200: 송신용 미러
300: 수신용 미러
410: 제1 미러
420: 제2 미러
510: 광 검출부
520: 영상획득부
610: 제1 렌즈부
620: 제2 렌즈부

Claims (3)

  1. 소정 파장 대역의 광을 방출하는 광원;
    상기 소정 파장 대역의 광이 진행하는 광 경로 상에 구비되며, 입사되는 상기 소정 파장 대역의 광을 소정의 각도 범위로 반사시키는 송신용 미러;
    상기 송신용 미러와 일체로 구비되며, 외부로부터의 광을 수신하기 위한 수신용 미러;
    상기 소정 파장 대역의 광의 송수신 시간차 또는 위상차를 검출하여 거리 기반 3D 영상을 획득하는 광 검출부; 및
    상기 광원과 상기 송신용 미러 사이에 구비되며, 상기 수신용 미러에 의해 수신된 광을 상기 광 검출부로 반사하는 제1 미러;를 포함하는 라이다 장치.
  2. 제1항에 있어서,
    영상을 획득하는 영상 획득부; 및
    상기 광원과 상기 송신용 미러 사이에 구비되며, 상기 수신용 미러에 의해 수신된 광을 상기 영상 획득부로 반사하는 제2 미러;를 더 포함하고,
    상기 제1 미러는 상기 소정 파장 대역의 광을 반사하고, 상기 소정 파장 대역 이외의 파장 대역을 갖는 광을 투과하며,
    상기 제2 미러는 상기 소정 파장 대역 이외의 파장 대역을 갖는 광을 반사하고, 상기 소정 파장 대역의 광을 투과하는 것을 특징으로 하는 라이다 장치.
  3. 제2항에 있어서,
    상기 제1 미러는 상기 광원의 광 경로 상에 제1 광 투과부를 포함하고,
    상기 제2 미러는 상기 광원의 광 경로 상에 제2 광 투과부를 포함하는 것을 특징으로 하는 라이다 장치.
PCT/KR2017/008220 2016-08-02 2017-07-31 라이다 장치 WO2018026147A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/322,873 US12025737B2 (en) 2016-08-02 2017-07-31 LiDAR device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160098492A KR102209500B1 (ko) 2016-08-02 2016-08-02 라이다 장치
KR10-2016-0098492 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018026147A1 true WO2018026147A1 (ko) 2018-02-08

Family

ID=61073825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008220 WO2018026147A1 (ko) 2016-08-02 2017-07-31 라이다 장치

Country Status (2)

Country Link
KR (1) KR102209500B1 (ko)
WO (1) WO2018026147A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109068033A (zh) * 2018-08-30 2018-12-21 歌尔股份有限公司 景深摄像模组

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225965A1 (en) 2018-05-24 2019-11-28 Samsung Electronics Co., Ltd. Lidar device
KR102272659B1 (ko) 2019-05-02 2021-07-05 화진기업(주) ToF를 적용한 장애물 검출 범용 회전형 라이다 센서 시스템
KR102317073B1 (ko) * 2019-05-14 2021-10-25 현대모비스 주식회사 라이다 장치
KR20230095767A (ko) 2021-12-22 2023-06-29 아이탑스오토모티브 주식회사 모듈형 플래시 라이다 장치
KR20240058475A (ko) 2022-10-26 2024-05-07 주식회사 버츠 플래시 라이다 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664529B2 (en) * 2000-07-19 2003-12-16 Utah State University 3D multispectral lidar
KR20110113055A (ko) * 2010-04-08 2011-10-14 에스엔유 프리시젼 주식회사 공초점 현미경구조를 이용한 측정대상물의 영상획득방법 및 시스템
KR20120059314A (ko) * 2010-11-30 2012-06-08 전자빔기술센터 주식회사 하나의 송수신모듈만을 이용하는 테라헤르츠파 발생 및 검출 시스템
KR20140020657A (ko) * 2012-08-10 2014-02-19 엘지전자 주식회사 거리 검출 장치, 및 이를 구비하는 영상처리장치
KR20150116239A (ko) * 2014-04-07 2015-10-15 (주)다하테크놀로지 라이다(LiDAR) 센서가 부착된 차량충돌회피용 스마트 블랙박스

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363910A (ja) * 1986-09-04 1988-03-22 Canon Inc 距離測定装置
KR100657562B1 (ko) * 2005-12-26 2006-12-14 한국과학기술원 원뿔홈을 갖는 원통프리즘을 이용한 거리측정장치
KR20130034573A (ko) * 2011-09-28 2013-04-05 삼성전자주식회사 장애물 감지 장치 및 이를 구비한 로봇 청소기
JP6123163B2 (ja) * 2012-03-21 2017-05-10 株式会社豊田中央研究所 距離測定装置
US9020641B2 (en) * 2012-06-07 2015-04-28 Samsung Electronics Co., Ltd. Obstacle sensing module and cleaning robot including the same
US8836922B1 (en) 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664529B2 (en) * 2000-07-19 2003-12-16 Utah State University 3D multispectral lidar
KR20110113055A (ko) * 2010-04-08 2011-10-14 에스엔유 프리시젼 주식회사 공초점 현미경구조를 이용한 측정대상물의 영상획득방법 및 시스템
KR20120059314A (ko) * 2010-11-30 2012-06-08 전자빔기술센터 주식회사 하나의 송수신모듈만을 이용하는 테라헤르츠파 발생 및 검출 시스템
KR20140020657A (ko) * 2012-08-10 2014-02-19 엘지전자 주식회사 거리 검출 장치, 및 이를 구비하는 영상처리장치
KR20150116239A (ko) * 2014-04-07 2015-10-15 (주)다하테크놀로지 라이다(LiDAR) 센서가 부착된 차량충돌회피용 스마트 블랙박스

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109068033A (zh) * 2018-08-30 2018-12-21 歌尔股份有限公司 景深摄像模组
CN109068033B (zh) * 2018-08-30 2020-11-17 歌尔光学科技有限公司 景深摄像模组

Also Published As

Publication number Publication date
US20210389424A1 (en) 2021-12-16
KR102209500B1 (ko) 2021-02-01
KR20180014974A (ko) 2018-02-12

Similar Documents

Publication Publication Date Title
WO2018026147A1 (ko) 라이다 장치
JP7277461B2 (ja) 回転コンパクト光測距システム
US10634770B2 (en) Optical systems for remote sensing receivers
CN206960658U (zh) 一种固态的二维扫描激光雷达
US9464938B2 (en) Systems and methods for measuring polarization of light in images
EP2378310B1 (en) Time of flight camera unit and optical surveillance system
US20170234977A1 (en) Lidar system and multiple detection signal processing method thereof
CN106896367A (zh) 一种光学测距装置及光学测距系统
US11392805B2 (en) Compact multi-sensor fusion system with shared aperture
AU2020290980B2 (en) Airborne topo-bathy lidar system and methods thereof
TW294778B (en) Scanning optical rangefinder
CN104748720B (zh) 空间测角装置及测角方法
CN104977708A (zh) 多光谱共口径光学系统
CN111175786A (zh) 一种多路消除串扰的宽视场高分辨率固态激光雷达
US10404925B2 (en) Chip scale multispectral imaging and ranging
CN206757042U (zh) 一种光学测距装置及光学测距系统
CN111901032B (zh) 一种一体化星载光学传感器系统
CN110456371B (zh) 一种激光雷达系统及相关测量方法
CN106597422A (zh) 小型化光电被动测距装置
US10178372B2 (en) Long focal length monocular 3D imager
CN112578390A (zh) 激光雷达及生成激光点云数据的方法
RU2617459C1 (ru) Многоканальная оптико-локационная система
CN214315372U (zh) 摄像机及其成像组件
JP2023533875A (ja) アセットおよび/または位置に関連する数量を決定し、データを通信するための投影光学計測システム用の光学ユニット
US12025737B2 (en) LiDAR device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837198

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17837198

Country of ref document: EP

Kind code of ref document: A1