WO2018025872A1 - Liquid crystal display element equipped with liquid crystal panel having curved surface and liquid crystal aligning agent for same - Google Patents

Liquid crystal display element equipped with liquid crystal panel having curved surface and liquid crystal aligning agent for same Download PDF

Info

Publication number
WO2018025872A1
WO2018025872A1 PCT/JP2017/027924 JP2017027924W WO2018025872A1 WO 2018025872 A1 WO2018025872 A1 WO 2018025872A1 JP 2017027924 W JP2017027924 W JP 2017027924W WO 2018025872 A1 WO2018025872 A1 WO 2018025872A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
fluorine
integer
Prior art date
Application number
PCT/JP2017/027924
Other languages
French (fr)
Japanese (ja)
Inventor
政太郎 大田
亮一 芦澤
暁子 杉山
徳俊 三木
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020197006237A priority Critical patent/KR102438830B1/en
Priority to CN201780061295.5A priority patent/CN109791332B/en
Priority to JP2018531931A priority patent/JPWO2018025872A1/en
Publication of WO2018025872A1 publication Critical patent/WO2018025872A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal display element including a liquid crystal panel having a curved shape and a liquid crystal aligning agent therefor.
  • liquid crystal display devices have been used in various electronic devices such as smartphones, mobile phones, televisions, navigation devices, electronic notebooks, electronic books, etc., along with reductions in thickness and power consumption.
  • the liquid crystal display device includes a liquid crystal panel and a drive circuit, and is configured by attaching auxiliary equipment such as a backlight, a light guide plate, and a casing as necessary.
  • auxiliary equipment such as a backlight, a light guide plate, and a casing as necessary.
  • the display surface of the liquid crystal display device is configured to be arranged in a planar shape substantially parallel to the housing of the electronic device.
  • liquid crystal display devices have been used in various fields in recent years, the display area of electronic devices has increased in display area, wideness, immersiveness, and design.
  • a liquid crystal display device including a liquid crystal panel having a curved shape along the outer surface of a housing of a device has been proposed and used (see Patent Document 1).
  • the liquid crystal panel When manufacturing a display device having a curved liquid crystal panel, the liquid crystal panel is bent along the outer surface of the housing. Thereby, the spacer which exists in the inside of a liquid crystal panel moves within a liquid crystal panel, and rubs a liquid crystal aligning film.
  • the liquid crystal alignment film stressed by the spacer cannot regulate the alignment of the liquid crystal, and although the liquid crystal panel is displayed black, for example, light escapes from the periphery of the spacer and is displayed as a bright spot. It has become a problem.
  • An object of the present invention has been made in view of the above circumstances, and a liquid crystal display device comprising a liquid crystal panel having a curved surface that can minimize bright spots even when physical friction such as rubbing by a spacer occurs. And providing a liquid crystal aligning agent therefor.
  • a liquid crystal display device comprising a curved liquid crystal panel having a liquid crystal alignment film obtained from a liquid crystal alignment agent containing a polymer having a structure represented by the following formula [1].
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, and Y 2 is a single bond A bond or (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O —, —CH 2 O—, —COO— or OCO—.
  • Y 4 represents a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms)
  • Y 5 represents a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring (any hydrogen atom on these cyclic groups is a carbon atom).
  • Y 4 is a benzene ring, when a cyclic group selected from the group consisting of hexane ring and the heterocyclic cycloheteroalkyl is an integer of 2 ⁇ 4, Y 4 is an organic group having a carbon number of 12 to 25 having a steroid skeleton In the case of a divalent organic group selected, it is an integer of 0 to 4.
  • Y 5 has the above definition independently.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • a liquid crystal aligning agent for a liquid crystal display device including a liquid crystal panel having a curved shape, and containing a polymer having a structure represented by the above formula [1].
  • a liquid crystal display device including a liquid crystal panel having a curved surface shape that can minimize the bright spot even when physical friction such as rubbing by a spacer occurs, and a liquid crystal aligning agent therefor. Can do.
  • a curved liquid crystal display element comprising a liquid crystal panel having a curved shape according to the present invention is a liquid crystal alignment obtained from a liquid crystal aligning agent containing a polymer containing a structure represented by the following formula [1] (also referred to as a specific structure).
  • a membrane is provided.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. .
  • a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or COO— is preferable because a side chain structure is easily synthesized. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or COO—.
  • Y 2 is a single bond or (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—.
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO— is preferable because they are easily synthesized. More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or OCO—.
  • Y 4 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 4 is a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton.
  • Y 4 is preferably a C 12-25 organic group having a benzene ring, a cyclohexyl ring or a steroid skeleton.
  • Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 4 is a benzene ring, when a cyclic group selected from the group consisting of hexane ring and the heterocyclic cycloheteroalkyl is an integer of 2 to 4, organic Y 4 carbon number of 12 to 25 having a steroid skeleton In the case of a divalent organic group selected from a group, it is an integer of 0 to 4. Further, when n is plural, the plural Y 5 have the above definition independently.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • Polymer having specific structure Although it does not specifically limit as a polymer which has the specific structure used for this invention, The group which consists of an acrylic polymer, a methacryl polymer, a novolak resin, a polyhydroxystyrene, a polyimide precursor, a polyimide, polyamide, polyester, cellulose, and polysiloxane
  • the polymer is preferably selected from the group consisting of Among these, a polyimide precursor, polyimide or polysiloxane is preferable, and a polyimide precursor or polyimide is more preferable.
  • the polymer used in the present invention is a polyimide precursor or polyimide
  • they are obtained by reaction of diamine and tetracarboxylic dianhydride, but have a specific structure from the viewpoint of ease of production. Is preferably a diamine.
  • ⁇ Diamine having a specific structure The above-described diamine having a specific structure (also referred to as a specific diamine) is represented by the following formula [2].
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n in the formula [2] are the same as the above definition in the formula [1] including each preferable one.
  • m is an integer of 1 to 4, preferably 1.
  • R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • a 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group
  • a 2 is An oxygen atom or COO- * (where a bond with “*” is bonded to A 3 )
  • a 1 is an oxygen atom or COO— * (where a bond with “*” is ( CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10, and a 3 is 1.
  • ⁇ Other diamine compounds> other diamine compounds other than specific diamine can be used together as a diamine component.
  • specific diamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4 , 6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphen
  • diamines having an alkyl group or a fluorine-containing alkyl group in the diamine side chain can be used in combination.
  • diamines of the following formulas [DA1] to [DA12] can be exemplified.
  • a 5 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • a 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—
  • a 7 represents an alkyl group having 1 to 22 carbon atoms. Or a fluorine-containing alkyl group is shown.
  • p is an integer of 1 to 10.
  • diamines of the following formulas [DA13] to [DA20] can be used in combination.
  • n is an integer of 1 to 5.
  • a diamine having a carboxyl group in the molecule represented by the following formulas [DA21] to [DA25] can be used in combination.
  • m 1 is an integer of 1 to 4
  • a 8 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO—, each of m 2 and m 3 is an integer of 0 to 4, and m 2 + m 3 is an integer of 1 to 4.
  • m 4 and m 5 are each an integer of 1 to 5
  • a 9 is a linear or branched alkyl group having 1 to 5 carbon atoms
  • m 6 is an integer of 1 to 5.
  • a 10 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, —O—, —CO—, — NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO— and m 7 is an integer from 1 to 4.
  • the said other diamine compound can also be used 1 type or in mixture of 2 or more types according to characteristics, such as a liquid crystal aligning property at the time of setting it as a liquid crystal aligning film,
  • a tetracarboxylic dianhydride (also referred to as a specific tetracarboxylic dianhydride) represented by the following formula [3] is used.
  • Z 1 is a tetravalent organic group, and the structure thereof is not particularly limited, but is a tetravalent organic group having 4 to 13 carbon atoms and a non-aromatic cyclic group having 4 to 10 carbon atoms. It preferably contains a hydrocarbon group.
  • Z 2 to Z 5 are each independently a group selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring.
  • Z 6 and Z 7 are each independently a hydrogen atom or a methyl group.
  • Particularly preferred examples of Z 1 are the formula [3a], the formula [3c], the formula [3d], the formula [3e], the formula [3f], and the formula [3g] because of polymerization reactivity and ease of synthesis.
  • tetracarboxylic dianhydrides other tetracarboxylic dianhydrides other than the specific tetracarboxylic dianhydride (other tetracarboxylic dianhydrides can be used.
  • Other tetracarboxylic dianhydrides are shown below. The tetracarboxylic dianhydride of tetracarboxylic acid is mentioned.
  • the method for synthesizing the specific polymer in the present invention is not particularly limited. Usually, it is obtained by polycondensation reaction of a diamine component and a tetracarboxylic dianhydride component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid. In order to obtain the polyamic acid alkyl ester, a method of converting the carboxyl group of the polyamic acid into an ester is used.
  • the method of imidating the said polyamic acid or polyamic-acid alkylester to make a polyimide is used.
  • the liquid crystal alignment film obtained by using the specific polymer of the present invention increases the content ratio of the specific diamine in the diamine component, in addition to the initial characteristics, even after being exposed to the backlight for a long time, Charges accumulated by the voltage holding ratio and DC voltage are quickly relaxed. Moreover, the pretilt angle of a liquid crystal can be enlarged, so that the content rate of specific diamine in a diamine component increases.
  • the content of the specific diamine compound in the diamine component is preferably 0.01 to 99 mol, more preferably 0.1 to 50 mol, relative to 1 mol of the specific diamine.
  • Moles more preferably 0.5 to 20 moles, and most preferably 0.5 to 10 moles.
  • tetracarboxylic dianhydride for the tetracarboxylic dianhydride component.
  • 1 mol% or more of a tetracarboxylic dianhydride component is a specific tetracarboxylic dianhydride, More preferably, it is 5 mol% or more, More preferably, it is 10 mol% or more.
  • 100 mol% of the tetracarboxylic dianhydride component may be a specific tetracarboxylic dianhydride.
  • Reaction of a diamine component and a tetracarboxylic dianhydride component is normally performed in an organic solvent. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Specific examples are given below.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred and the tetracarboxylic dianhydride component is used as it is or in an organic solvent.
  • a method of adding by dispersing or dissolving in a solvent, a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component may be used alternately, and any of these methods may be used.
  • the polymerization temperature can be selected from -20 to 150 ° C., preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a specific polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. It becomes difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic dianhydride component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyimide precursor, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • impurities in the polymer can be reduced.
  • the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the specific polymer of the present invention was measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the polymer film obtained therefrom, workability when forming the polymer film, and uniformity of the polymer film.
  • the weight average molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the polymer in the liquid crystal aligning agent used in the present invention may all be the above specific polymer, or other polymers may be mixed. In that case, the content of the other polymer with respect to the specific polymer is 0.5 to 15% by mass, preferably 1 to 10% by mass.
  • examples of other polymers include a polyimide precursor obtained from a diamine component not containing a specific diamine and a tetracarboxylic dianhydride component, or a polyimide obtained from the polyimide precursor.
  • a polyimide precursor and a polymer other than polyimide, specifically, an acrylic polymer, a methacrylic polymer, polystyrene, or polyamide are also included.
  • the organic solvent in the liquid crystal aligning agent used in the present invention preferably has an organic solvent content of 70 to 99% by mass from the viewpoint of forming a uniform polymer film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
  • the organic solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above.
  • the liquid crystal aligning agent used in the present invention includes a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group or an alkoxyl group It is preferable to contain a crosslinkable compound having a polymerizable unsaturated bond (hereinafter also referred to as a crosslinking agent).
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
  • crosslinkable compound having a cyclocarbonate group examples include a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5]. Specifically, it is a crosslinkable compound represented by the following formulas [5-1] to [5-37].
  • n is an integer of 1 to 5
  • n is an integer of 1 to 5
  • n is 1 to 5
  • n is 1 to 100.
  • n is an integer of 1 to 10.
  • polysiloxanes having at least one structure represented by the following formulas [5-38] to [5-40] can also be mentioned.
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently a structure represented by the formula [5], a hydrogen atom, a hydroxyl group, It is an alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic ring, and at least one is a structure represented by the formula [5].
  • Specific examples include compounds of the following formula [5-41] or formula [5-42].
  • n is an integer of 1 to 10.
  • crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group or an alkoxyl group include, for example, amino resins having a hydroxyl group or an alkoxyl group, such as melamine resin, urea resin, guanamine resin, glycoluril. -Formaldehyde resin, succinylamide-formaldehyde resin, ethyleneurea-formaldehyde resin and the like.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • Melamine derivatives or benzoguanamine derivatives can also exist as dimers or trimers. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Eight-substituted MW-30 (above, manufactured by Sanwa Chemical Co., Ltd.), Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, methoxy such as Cymel 1123 Methylated ethoxyme Benzomethylamine, methoxymethyl butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzo
  • Benzene having a hydroxyl group or an alkoxyl group, or a phenolic compound can also be exemplified as a crosslinkable compound.
  • a crosslinkable compound for example, 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis (sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p -Tert-butylphenol and the like.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di ( ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di ( (Meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidy
  • E 1 is a monovalent group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring
  • E 2 is the following formula [7a ] Or a monovalent group consisting of the formula [7b], and n is an integer of 1 to 4.
  • the said compound is an example of a crosslinkable compound, It is not limited to these.
  • the crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may be combined two or more types.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the polymer component, the crosslinking reaction proceeds, and the desired effect is exhibited.
  • the amount is more preferably 0.1 to 100 parts by mass, and particularly 1 to 50 parts by mass.
  • a nitrogen-containing heterocyclic amine compound represented by the following formulas [M1] to [M156] is added as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge loss of a liquid crystal cell using the liquid crystal alignment film. It is preferable to do.
  • the amine compound may be added directly to the solution of the specific polymer, but it is preferable to add the amine compound after making a solution with a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above.
  • the liquid crystal aligning agent of the present invention is an organic solvent (also referred to as a poor solvent) that improves the uniformity and surface smoothness of the polymer film when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired.
  • organic solvent also referred to as a poor solvent
  • Compounds can be included.
  • a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be contained.
  • Specific examples of poor solvents that improve film thickness uniformity and surface smoothness include the following.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • fluorine-based surfactants silicone-based surfactants
  • nonionic surfactants include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like.
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. .
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount is preferably 0.1 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the polymer component contained in the liquid crystal aligning agent. It is. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the dielectric constant and conductivity of the liquid crystal aligning film are within the range in which the effects of the present invention are not impaired. For example, a dielectric material or a conductive material for changing electrical characteristics may be added.
  • the liquid crystal aligning agent of this invention can be used as a liquid crystal aligning film by apply
  • it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the liquid crystal aligning agent As a method for applying the liquid crystal aligning agent, industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • the solvent can be evaporated at 50 to 300 ° C., preferably 80 to 250 ° C., by a heating means such as a hot plate to form a polymer film. If the thickness of the polymer film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm. When the liquid crystal is horizontally or tilted, the polymer film after baking is treated with rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent and then preparing a liquid crystal cell by a known method.
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
  • a characteristic of the present invention is that the liquid crystal display panel in the liquid crystal display element has a curved surface shape. That is, the pair of substrates constituting the liquid crystal display panel has a curved surface, and there are various shapes and degrees of the curved surface, and these are arbitrarily selected.
  • the present invention is effective for a liquid crystal display panel having a curved surface shape in a section along a uniaxial direction and a curvature radius (R) of the curved surface shape of 1000 mm to 3000 mm.
  • the liquid crystal aligning agent of this invention has a liquid crystal layer between a pair of board
  • the active energy ray is preferably ultraviolet rays.
  • the liquid crystal display element controls a pretilt angle of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a small amount of a photopolymerizable compound for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound.
  • the pretilt angle of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt angle of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. .
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt angle by the rubbing process.
  • liquid crystal display element of the present invention after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, a liquid crystal cell is prepared, and a polymerizable compound is applied by at least one of ultraviolet irradiation and heating.
  • the orientation of liquid crystal molecules can be controlled by polymerization.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure and sealing is performed, or a method in which liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is attached and sealed.
  • a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element.
  • the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates.
  • positioning the liquid crystal aligning film containing this, and applying a voltage between electrodes is used preferably.
  • the active energy ray is preferably ultraviolet rays.
  • a method of adding a compound containing the polymerizable group to a liquid crystal aligning agent, or a polymer containing a polymerizable group examples include methods using components.
  • the polymerizable group include polymerizable unsaturated groups such as an acryl group, a methacryl group, a vinyl group, and a maleimide group.
  • the liquid crystal aligning agent of the present invention contains a specific amine compound having a double bond site that reacts by heat or ultraviolet irradiation
  • the alignment of liquid crystal molecules can be controlled by at least one of ultraviolet irradiation and heating. it can. If an example of liquid crystal cell production is given, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure and sealing is performed, or a method in which liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is attached and sealed.
  • the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
  • the liquid crystal display element manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
  • TEOS Tetraethoxysilane UPS: 3-Ureidopropyltriethoxysilane
  • MPMS 3-Methacryloxypropyltrimethoxysilane
  • HTMS Hexadecyltrimethoxysilane (organic solvent)
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • BCS butyl cellosolve
  • PB propylene glycol monobutyl ether
  • DME 1,2-dimethoxyethane
  • DPM dipropylene glycol monomethyl ether
  • DMI 1, 3-Dimethyl-2-imidazolidinone
  • HG hexylene glycol
  • the molecular weight of the polyimide in the synthesis example was measured as follows using a room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Science Co., Ltd. and a column (KD-803, KD-805) manufactured by Shodex.
  • GPC room temperature gel permeation chromatography
  • the imidation ratio of polyimide was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard ⁇ 5 manufactured by Kusano Kagaku Co., Ltd.), add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture), and apply ultrasonic waves. To dissolve completely. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum.
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • equation using the integrated value. Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • a solution of alkoxysilane monomer was prepared by mixing 24.9 g of HG, 24.9 g of BCS, 52.5 g of TEOS, and 11.2 g of HTMS in a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube.
  • a solution prepared by mixing 8.5 g of HG, 8.5 g of BCS, 16.2 g of water and 0.8 g of oxalic acid as a catalyst was added dropwise to the solution over 30 minutes at room temperature, and the mixture was further stirred at room temperature for 30 minutes.
  • NEP 54.0 g was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution, and the liquid crystal aligning agent [1] was obtained by stirring for 5 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP (54.0 g) was added to the polyimide powder (B) (6.0 g) obtained in Synthesis Example 2, and dissolved by stirring at 70 ° C. for 40 hours.
  • NEP 54.0 g was added to the polyimide powder (C) (6.0 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 40 hours.
  • BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [3]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (D) (6.0 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 40 hours.
  • BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [4]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (E) (6.0 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 40 hours.
  • BCS 40.0 g was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [5]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (F) (6.0 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 40 hours.
  • BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [7]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (G) (6.0 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 40 hours.
  • BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [7]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (H) (6.0 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 40 hours.
  • BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [8]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours.
  • PB 40.0 g was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [9]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours.
  • DME 40.0 g was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [10]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (30.0 g) and DME (10.0 g) were added to this solution, and stirred for 5 hours to obtain a liquid crystal aligning agent [11]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (30.0 g) and DPM (10.0 g) were added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [12]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours.
  • BCS 40.0 g was added to this solution and stirred for 5 hours, and then Compound 1 powder (0.6 g) was added and stirred for 24 hours to obtain a liquid crystal aligning agent [13].
  • Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours.
  • BCS 40.0 g was added to this solution and stirred for 5 hours, and then Compound 2 powder (0.6 g) was added and stirred for 24 hours to obtain a liquid crystal aligning agent [14].
  • Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • NEP 54.0 g was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours.
  • BCS 40.0 g was added to this solution and stirred for 5 hours, and then Compound 1 powder (0.3 g) and Compound 2 powder (0.3 g) were added and stirred for 24 hours, whereby a liquid crystal aligning agent [15 ] Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • a liquid crystal aligning agent [10] was obtained by mixing 10.0 g of the polysiloxane solution (I) obtained in Synthesis Example 9 and 15.0 g of HG and 15.0 g of BCS. It was confirmed that no abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent.
  • a liquid crystal aligning agent [17] was obtained by mixing 10.0 g of the polysiloxane solution (J) obtained in Synthesis Example 10 and 15.0 g of HG and 15.0 g of BCS. It was confirmed that no abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent.
  • Example 1 The polyimide coated substrate obtained in Example 1 and Comparative Example 1 was attached to UMT-2 (sensor is FVL, 1.6 mm sapphire sphere attached to the tip of the device) manufactured by Bruker AXS, and the horizontal axis A scratch test was performed from 0.5 mm (5 mm / second), 2 mm in the moving direction, from 1 mN to 20 mN over 100 seconds, and then MLC-3022 (manufactured by Merck Japan) was dropped. Then, a 4 ⁇ m spacer was sprayed onto the other polyimide-coated substrate obtained above and sandwiched toward the dropped MLC-3022 side.
  • UMT-2 sensor is FVL, 1.6 mm sapphire sphere attached to the tip of the device
  • MLC-3022 manufactured by Merck Japan

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a liquid crystal display device equipped with a liquid crystal panel which has a curved surface and is still free from a bright dot even if a physical friction such as rubbing by a spacer has occurred. A curved liquid crystal display element which is provided with a liquid crystal alignment film that contains a polymer having a structure represented by formula (1). (In the formula, Y1 represents a single bond, -(CH2)a- (wherein a represents an integer of 1-15), -O-, -CH2O-, -COO- or OCO-; Y2 represents a single bond or (CH2)b- (wherein b represents an integer of 1-15); Y3 represents a single bond, -(CH2)c- (wherein c represents an integer of 1-15), -O-, -CH2O-, -COO- or OCO-; Y4 represents a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups may be substituted by an alkyl group having 1-3 carbon atoms, an alkoxyl group having 1-3 carbon atoms, a fluorine-containing alkyl group having 1-3 carbon atoms, a fluorine-containing alkoxyl group having 1-3 carbon atoms, or a fluorine atom), or a divalent organic group selected from among organic groups having a steroid skeleton and 12-25 carbon atoms; Y5 represents a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups may be substituted by an alkyl group having 1-3 carbon atoms, an alkoxyl group having 1-3 carbon atoms, a fluorine-containing alkyl group having 1-3 carbon atoms, a fluorine-containing alkoxyl group having 1-3 carbon atoms, or a fluorine atom); n represents an integer of 2-4 in cases where Y4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or represents an integer of 0-4 in cases where Y4 is a divalent organic group selected from among organic groups having a steroid skeleton and 12-25 carbon atoms, and in cases where n is 2 or more, each of the plurality of Y5 moieties independently represents one of the groups defined above; and Y6 represents an alkyl group having 1-18 carbon atoms, a fluorine-containing alkyl group having 1-18 carbon atoms, an alkoxyl group having 1-18 carbon atoms or a fluorine-containing alkoxyl group having 1-18 carbon atoms.)

Description

曲面形状を有する液晶パネルを備える液晶表示素子及びそのための液晶配向剤LIQUID CRYSTAL DISPLAY ELEMENT WITH LIQUID CRYSTAL PANEL AND LIQUID CRYSTAL ALIGNANT
 本発明は、曲面形状を有する液晶パネルを備える液晶表示素子及びそのための液晶配向剤に関する。 The present invention relates to a liquid crystal display element including a liquid crystal panel having a curved shape and a liquid crystal aligning agent therefor.
 近年、液晶表示装置は、薄型化及び低消費電力化に伴い、スマートフォン、携帯電話、テレビ、ナビケーション機器、電子手帳、電子ブック等の種々の電子機器に用いられている。液晶表示装置は、液晶パネルと駆動回路とを備え、必要に応じて、バックライト、導光板、ケーシング等の付帯機器を装着して構成されている。通常の液晶表示装置が電子機器に用いられる場合、その液晶表示装置の表示面は、電子機器の筐体とほぼ平行に、且つ、平面形状にて配置されて構成されることとなる。 In recent years, liquid crystal display devices have been used in various electronic devices such as smartphones, mobile phones, televisions, navigation devices, electronic notebooks, electronic books, etc., along with reductions in thickness and power consumption. The liquid crystal display device includes a liquid crystal panel and a drive circuit, and is configured by attaching auxiliary equipment such as a backlight, a light guide plate, and a casing as necessary. When a normal liquid crystal display device is used in an electronic device, the display surface of the liquid crystal display device is configured to be arranged in a planar shape substantially parallel to the housing of the electronic device.
 一方、近年、液晶表示装置が種々の分野で使用されるのに伴って、電子機器の表示部に対して、表示面積の増大や、ワイド感、没入感、更にはデザイン上の点から、電子機器の筐体外面に沿った曲面形状を持つ液晶パネルを備えた液晶表示装置が提案され、使用されている(特許文献1参照) On the other hand, as liquid crystal display devices have been used in various fields in recent years, the display area of electronic devices has increased in display area, wideness, immersiveness, and design. A liquid crystal display device including a liquid crystal panel having a curved shape along the outer surface of a housing of a device has been proposed and used (see Patent Document 1).
日本特開平10-268245号公報Japanese Unexamined Patent Publication No. 10-268245 日本特開平10-104633号公報Japanese Unexamined Patent Publication No. 10-104633 日本特開平8-76128号公報Japanese Unexamined Patent Publication No. 8-76128
 曲面形状の液晶パネルを備えた表示装置を製造する際、液晶パネルを筐体外面に沿って屈曲させる。これにより、液晶パネルの内部に存在するスペーサが液晶パネル内で移動し、液晶配向膜をこすり付ける。スペーサによってストレスを与えられた液晶配向膜は液晶の配向を規制することができず、液晶パネルを、例えば、黒表示させているにも関わらず、スペーサ周辺部から光が抜け、輝点として表示されることが問題となっている。 When manufacturing a display device having a curved liquid crystal panel, the liquid crystal panel is bent along the outer surface of the housing. Thereby, the spacer which exists in the inside of a liquid crystal panel moves within a liquid crystal panel, and rubs a liquid crystal aligning film. The liquid crystal alignment film stressed by the spacer cannot regulate the alignment of the liquid crystal, and although the liquid crystal panel is displayed black, for example, light escapes from the periphery of the spacer and is displayed as a bright spot. It has become a problem.
 本発明の目的は、上記の事情に鑑みなされたものであって、スペーサによるこすり付けなどの物理的摩擦が発生した際でも輝点を最少にできるが曲面形状を有する液晶パネルを備える液晶表示装置、及びそのための液晶配向剤を提供することにある。 An object of the present invention has been made in view of the above circumstances, and a liquid crystal display device comprising a liquid crystal panel having a curved surface that can minimize bright spots even when physical friction such as rubbing by a spacer occurs. And providing a liquid crystal aligning agent therefor.
 本発明者は、鋭意研究を行った結果、本発明を完成するに至った。すなわち、本発明は以下の要旨を有するものである。
(1)下記式[1]で表される構造を有する重合体を含有する液晶配向剤から得られる液晶配向膜を有する曲面液晶パネルを備える液晶表示素子。
Figure JPOXMLDOC01-appb-C000009
 Yは、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-であり、Yは、単結合又は(CH-(bは1~15の整数である)であり、Yは、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yは、ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)、又はステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基であり、Yは、ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)であり、nは、Yがベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基である場合は2~4の整数であり、Yがステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基である場合は0~4の整数である。また、nが複数である場合、複数のYはそれぞれ独立して上記の定義を有する。Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。
(2)曲面形状を有する液晶パネルを備える液晶表示素子のための液晶配向剤であり、上記式[1]で表される構造を有する重合体を含有する液晶配向剤。
As a result of intensive studies, the present inventors have completed the present invention. That is, the present invention has the following gist.
(1) A liquid crystal display device comprising a curved liquid crystal panel having a liquid crystal alignment film obtained from a liquid crystal alignment agent containing a polymer having a structure represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000009
Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, and Y 2 is a single bond A bond or (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O —, —CH 2 O—, —COO— or OCO—. Y 4 represents a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms) An alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms or a fluorine atom which may be substituted), or an organic group having 12 to 25 carbon atoms having a steroid skeleton Y 5 represents a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring (any hydrogen atom on these cyclic groups is a carbon atom). (It may be substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.) And n , Y 4 is a benzene ring, when a cyclic group selected from the group consisting of hexane ring and the heterocyclic cycloheteroalkyl is an integer of 2 ~ 4, Y 4 is an organic group having a carbon number of 12 to 25 having a steroid skeleton In the case of a divalent organic group selected, it is an integer of 0 to 4. Further, when n is plural, the plural Y 5 have the above definition independently. Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
(2) A liquid crystal aligning agent for a liquid crystal display device including a liquid crystal panel having a curved shape, and containing a polymer having a structure represented by the above formula [1].
 本発明によれば、スペーサーによるこすり付けなどの物理的摩擦が発生した際でも輝点を最少にできるが曲面形状をもつ液晶パネルを備えた液晶表示装置、及びそのための液晶配向剤を提供することができる。 According to the present invention, it is possible to provide a liquid crystal display device including a liquid crystal panel having a curved surface shape that can minimize the bright spot even when physical friction such as rubbing by a spacer occurs, and a liquid crystal aligning agent therefor. Can do.
スクラッチ試験(実施例に詳述する)を施したポリイミド塗膜付き基板を用いて作製した液晶セルを、偏光顕微鏡で観察した写真である。この写真では、スクラッチ試験を行った箇所に輝点がほぼ見られていない。It is the photograph which observed the liquid crystal cell produced using the board | substrate with a polyimide coating film which gave the scratch test (it explains in full detail in an Example) with the polarizing microscope. In this photograph, almost no bright spot is seen at the place where the scratch test was conducted. 上述したスクラッチ試験を施したポリイミド塗膜付き基板を用いて作製した液晶セルを、偏光顕微鏡で観察した写真である。この写真では、スクラッチ試験を行った箇所から光が透過し、輝点となっていることが解る。It is the photograph which observed the liquid crystal cell produced using the board | substrate with a polyimide coating film which gave the scratch test mentioned above with the polarizing microscope. In this photograph, it can be seen that light is transmitted from the place where the scratch test was performed, and is a bright spot.
 本発明の曲面形状を有する液晶パネルを備える曲面液晶表示素子は、下記式[1]で表される構造(特定構造ともいう。)を含有する重合体を含有する液晶配向剤から得られる液晶配向膜を具備する。
<特定構造>
Figure JPOXMLDOC01-appb-C000010
A curved liquid crystal display element comprising a liquid crystal panel having a curved shape according to the present invention is a liquid crystal alignment obtained from a liquid crystal aligning agent containing a polymer containing a structure represented by the following formula [1] (also referred to as a specific structure). A membrane is provided.
<Specific structure>
Figure JPOXMLDOC01-appb-C000010
 式[1]中、Yは、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。なかでも、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又はCOO-は、側鎖構造を合成しやすいので好ましい。より好ましくは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又はCOO-である。
 Yは、単結合又は(CH-(bは1~15の整数である)である。なかでも、単結合又は(CH-(bは1~10の整数である)が好ましい。
 Yは、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。なかでも、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-が、合成しやすいので好ましい。より好ましくは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-又はOCO-である。
In the formula [1], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. . Among these, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or COO— is preferable because a side chain structure is easily synthesized. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or COO—.
Y 2 is a single bond or (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. Among these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO— is preferable because they are easily synthesized. More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or OCO—.
 Yは、ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数12~25の2価の有機基である。Yとしては、ベンゼン環、シクロへキシル環又はステロイド骨格を有する炭素数12~25の有機基が好ましい。
 Yは、ベンゼン環、シクロへキシル環及び複素環よりなる群から選ばれる2価の環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
Y 4 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Y 4 is a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton. Y 4 is preferably a C 12-25 organic group having a benzene ring, a cyclohexyl ring or a steroid skeleton.
Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
 nは、Yがベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基である場合は2~4の整数であり、Yがステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基である場合は0~4の整数である。また、nが複数である場合、複数のYはそれぞれ独立して上記の定義を有する。
 Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。さらに好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。
n is, Y 4 is a benzene ring, when a cyclic group selected from the group consisting of hexane ring and the heterocyclic cycloheteroalkyl is an integer of 2 to 4, organic Y 4 carbon number of 12 to 25 having a steroid skeleton In the case of a divalent organic group selected from a group, it is an integer of 0 to 4. Further, when n is plural, the plural Y 5 have the above definition independently.
Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
<特定構造を有する重合体>
 本発明に用いられる特定構造を有する重合体としては、特に限定はされないが、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる重合体であることが好ましい。なかでも、ポリイミド前駆体、ポリイミド又はポリシロキサンが好ましく、より好ましくは、ポリイミド前駆体又はポリイミドである。
 本発明に用いられる重合体が、ポリイミド前駆体又はポリイミドである場合、それらはジアミンとテトラカルボン酸二無水物との反応で得られるが、製造上の容易性の観点から、特定構造を有するのはジアミンであることが好ましい。
<Polymer having specific structure>
Although it does not specifically limit as a polymer which has the specific structure used for this invention, The group which consists of an acrylic polymer, a methacryl polymer, a novolak resin, a polyhydroxystyrene, a polyimide precursor, a polyimide, polyamide, polyester, cellulose, and polysiloxane The polymer is preferably selected from the group consisting of Among these, a polyimide precursor, polyimide or polysiloxane is preferable, and a polyimide precursor or polyimide is more preferable.
When the polymer used in the present invention is a polyimide precursor or polyimide, they are obtained by reaction of diamine and tetracarboxylic dianhydride, but have a specific structure from the viewpoint of ease of production. Is preferably a diamine.
<特定構造を有するジアミン>
 上述した、特定構造を有するジアミン(特定ジアミンともいう。)は、下記式[2]で表される。
Figure JPOXMLDOC01-appb-C000011
 式[2]におけるY、Y、Y、Y、Y、Y、nは、それぞれの好ましいものを含めて、式[1]における上記の定義と同じである。なお、mは、1~4の整数であり、好ましくは、1である。
<Diamine having a specific structure>
The above-described diamine having a specific structure (also referred to as a specific diamine) is represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000011
Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n in the formula [2] are the same as the above definition in the formula [1] including each preferable one. Note that m is an integer of 1 to 4, preferably 1.
 具体的には、下記式[2-1]~[2-23]が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000012
 Rは、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Specific examples include, but are not limited to, the following formulas [2-1] to [2-23].
Figure JPOXMLDOC01-appb-C000012
R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
Figure JPOXMLDOC01-appb-C000013
 Rは、炭素数3以上12以下のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure JPOXMLDOC01-appb-C000013
R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 Aは、フッ素原子で置換されていてもよい炭素数3~20のアルキル基であり、Aは、1,4-シクロへキシレン基又は1,4-フェニレン基であり、Aは、酸素原子又はCOO-*(ただし、「*」を付した結合手がAと結合する)であり、Aは、酸素原子又はCOO-*(ただし、「*」を付した結合手が(CH)a)と結合する)である。また、aは、0又は1の整数であり、aは、2~10の整数であり、aは1である。 A 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, A 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group, and A 2 is An oxygen atom or COO- * (where a bond with “*” is bonded to A 3 ), and A 1 is an oxygen atom or COO— * (where a bond with “*” is ( CH 2 ) a 2 ). A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is 1.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<その他ジアミン化合物>
 本発明においては、特定ジアミン以外のその他のジアミン化合物を、ジアミン成分として併用することができる。その具体例を以下に挙げる。
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、4-(アミノメチル)アニリン、3-(アミノメチル)アニリン、4-(2-アミノエチル)アニリン、3-(2-アミノエチルアニリン)などの芳香族ジアミン化合物;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン化合物;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン化合物。
<Other diamine compounds>
In this invention, other diamine compounds other than specific diamine can be used together as a diamine component. Specific examples are given below.
p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4 , 6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy -4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-diph Fluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 2,3′-diaminodiphenylmethane, 4, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3 '-Sulphonyldianiline, bis (4-aminophenyl) silane, bis (3-amino Nophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 4,4′-diaminodiphenylamine, 3, 3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,3 3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2,3′-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8- Diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3 -Aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis ( 3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) ben 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-amino) Benzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis (methylene) ] Dianiline, 3,4 '-[1,4-phenylenebis (methylene)] dianiline, 3,4'-[1,3-phenylenebis (methylene)] dianiline, 3,3 '-[1,4-phenylene Bis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3 -Ami Phenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis ( 3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N '-(1,3-phenylene) bis (4-aminobenzamide), N, N'-(1,4-phenylene) bi (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3 -Aminophenyl) terephthalamide, N, N'-bis (4-aminophenyl) isophthalamide, N, N'-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl ] Hexafluoropropane, 2,2'-bis (4-aminophenyl) hexafluoropropane, 2,2'-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2 '-Bis (3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-amino) Phenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4 -Aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) Nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane, 4- (aminomethyl) aniline, 3- (aminomethyl) aniline, 4- (2-aminoethyl) aniline, Aromatic diamine compounds such as 3- (2-aminoethylaniline); bis (4-aminocyclohexyl) methane, bis (4-amino-3-methyl) Cyclohexane) alicyclic diamine compounds such as methane; 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8 -Aliphatic diamine compounds such as diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane.
 また、その他のジアミンとして、ジアミン側鎖にアルキル基又はフッ素含有アルキル基を有するジアミンを併用することができる。具体的には、下記式[DA1]~[DA12]のジアミンを例示できる。 As other diamines, diamines having an alkyl group or a fluorine-containing alkyl group in the diamine side chain can be used in combination. Specifically, diamines of the following formulas [DA1] to [DA12] can be exemplified.
Figure JPOXMLDOC01-appb-C000020
 Aは、炭素数1~22のアルキル基又はフッ素含有アルキル基である。
Figure JPOXMLDOC01-appb-C000020
A 5 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
Figure JPOXMLDOC01-appb-C000021
 Aは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又はNH-を示し、Aは、炭素数1~22のアルキル基又はフッ素含有アルキル基を示す。
Figure JPOXMLDOC01-appb-C000021
A 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—, and A 7 represents an alkyl group having 1 to 22 carbon atoms. Or a fluorine-containing alkyl group is shown.
Figure JPOXMLDOC01-appb-C000022
 pは、1~10の整数である。
Figure JPOXMLDOC01-appb-C000022
p is an integer of 1 to 10.
 また、下記式[DA13]~[DA20]のジアミンを併用することもできる。 Also, diamines of the following formulas [DA13] to [DA20] can be used in combination.
Figure JPOXMLDOC01-appb-C000023
 mは、0~3の整数であり、nは、1~5の整数である。
Figure JPOXMLDOC01-appb-C000023
m is an integer of 0 to 3, and n is an integer of 1 to 5.
 さらに、下記式[DA21]~[DA25]で示される分子内にカルボキシル基を有するジアミンを併用することもできる。
Figure JPOXMLDOC01-appb-C000024
Furthermore, a diamine having a carboxyl group in the molecule represented by the following formulas [DA21] to [DA25] can be used in combination.
Figure JPOXMLDOC01-appb-C000024
 mは、1~4の整数であり、Aは、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF)-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、m、mは、それぞれ0~4の整数であり、かつm+mは1~4の整数である。m、mは、それぞれ1~5の整数であり、Aは、炭素数1~5の直鎖又は分岐アルキル基であり、mは、1~5の整数である。A10は、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF)-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、mは、1~4の整数である。
 上記その他ジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
m 1 is an integer of 1 to 4, and A 8 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO—, each of m 2 and m 3 is an integer of 0 to 4, and m 2 + m 3 is an integer of 1 to 4. m 4 and m 5 are each an integer of 1 to 5, A 9 is a linear or branched alkyl group having 1 to 5 carbon atoms, and m 6 is an integer of 1 to 5. A 10 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, —O—, —CO—, — NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO— and m 7 is an integer from 1 to 4.
The said other diamine compound can also be used 1 type or in mixture of 2 or more types according to characteristics, such as a liquid crystal aligning property at the time of setting it as a liquid crystal aligning film, a voltage holding rate, and an accumulation charge.
<テトラカルボン酸二無水物成分>
 本発明における特定重合体を得るためには、下記式[3]で示されるテトラカルボン酸二無水物(特定テトラカルボン酸二無水物ともいう。)が用いられる。
Figure JPOXMLDOC01-appb-C000025
 式[3]中、Zは4価の有機基であり、その構造は特に限定されないが、炭素数4~13の4価の有機基であり、かつ炭素数4~10の非芳香族環状炭化水素基を含有することが好ましい。
<Tetracarboxylic dianhydride component>
In order to obtain the specific polymer in the present invention, a tetracarboxylic dianhydride (also referred to as a specific tetracarboxylic dianhydride) represented by the following formula [3] is used.
Figure JPOXMLDOC01-appb-C000025
In formula [3], Z 1 is a tetravalent organic group, and the structure thereof is not particularly limited, but is a tetravalent organic group having 4 to 13 carbon atoms and a non-aromatic cyclic group having 4 to 10 carbon atoms. It preferably contains a hydrocarbon group.
 具体的には、下記式[3a]~[3j]で示される基である。
Figure JPOXMLDOC01-appb-C000026
Specifically, it is a group represented by the following formulas [3a] to [3j].
Figure JPOXMLDOC01-appb-C000026
 Z~Zは、それぞれ独立して、水素原子、メチル基、塩素原子又はベンゼン環から選ばれる基である。式[3g]中、Z、Zは、それぞれ独立して、水素原子又はメチル基である。Zの特に好ましい例は、重合反応性や合成の容易性から、式[3a]、式[3c]、式[3d]、式[3e]、式[3f]又は式[3g]である。 Z 2 to Z 5 are each independently a group selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring. In the formula [3g], Z 6 and Z 7 are each independently a hydrogen atom or a methyl group. Particularly preferred examples of Z 1 are the formula [3a], the formula [3c], the formula [3d], the formula [3e], the formula [3f], and the formula [3g] because of polymerization reactivity and ease of synthesis.
<その他テトラカルボン酸二無水物>
 本発明においては、特定テトラカルボン酸二無水物以外のその他のテトラカルボン酸二無水物(その他テトラカルボン酸二無水物とを用いることができる。その他テトラカルボン酸二無水物としては、以下に示すテトラカルボン酸のテトラカルボン酸二無水物が挙げられる。
<Other tetracarboxylic dianhydrides>
In the present invention, other tetracarboxylic dianhydrides other than the specific tetracarboxylic dianhydride (other tetracarboxylic dianhydrides can be used. Other tetracarboxylic dianhydrides are shown below. The tetracarboxylic dianhydride of tetracarboxylic acid is mentioned.
 ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。
 上記その他テトラカルボン酸二無水物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
Pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7 -Anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3 ', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4-biphenyltetracarboxylic acid, bis ( 3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2 , 2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bi (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxy) Phenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic Examples include acids.
The other tetracarboxylic dianhydrides may be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding ratio, accumulated charge and the like when the liquid crystal alignment film is formed.
<特定重合体の製造方法>
 本発明における特定重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸二無水物成分とを重縮合反応させて得られる。一般的には、テトラカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。ポリアミド酸アルキルエステルを得るには、ポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
<Method for producing specific polymer>
The method for synthesizing the specific polymer in the present invention is not particularly limited. Usually, it is obtained by polycondensation reaction of a diamine component and a tetracarboxylic dianhydride component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid. In order to obtain the polyamic acid alkyl ester, a method of converting the carboxyl group of the polyamic acid into an ester is used.
 さらに、ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルをイミド化してポリイミドとする方法が用いられる。
 本発明の特定重合体を用いて得られる液晶配向膜は、上記ジアミン成分における特定ジアミンの含有割合が多くなるほど、初期特性に加えて、バックライト光に長時間曝された後であっても、電圧保持率及び直流電圧により蓄積する電荷の緩和が速い。また、ジアミン成分における特定ジアミンの含有割合が多くなるほど、液晶のプレチルト角を大きくすることができる。その際、上記した特性を高める目的では、ジアミン成分において、特定ジアミン化合物の含有量は、特定ジアミンの1モルに対して、0.01~99モルが好ましく、より好ましくは、0.1~50モルであり、更に好ましくは、0.5~20モルであり、最も好ましくは0.5~10モルである。
Furthermore, in order to obtain a polyimide, the method of imidating the said polyamic acid or polyamic-acid alkylester to make a polyimide is used.
The liquid crystal alignment film obtained by using the specific polymer of the present invention increases the content ratio of the specific diamine in the diamine component, in addition to the initial characteristics, even after being exposed to the backlight for a long time, Charges accumulated by the voltage holding ratio and DC voltage are quickly relaxed. Moreover, the pretilt angle of a liquid crystal can be enlarged, so that the content rate of specific diamine in a diamine component increases. At that time, for the purpose of enhancing the above-mentioned characteristics, the content of the specific diamine compound in the diamine component is preferably 0.01 to 99 mol, more preferably 0.1 to 50 mol, relative to 1 mol of the specific diamine. Moles, more preferably 0.5 to 20 moles, and most preferably 0.5 to 10 moles.
 また、本発明の特定重合体を得るためには、テトラカルボン酸二無水物成分に特定テトラカルボン酸二無水物を用いることが好ましい。その際、テトラカルボン酸二無水物成分の1モル%以上が特定テトラカルボン酸二無水物であることが好ましく、より好ましくは、5モル%以上、さらに好ましくは、10モル%以上である。また、テトラカルボン酸二無水物成分の100モル%が特定テトラカルボン酸二無水物であってもよい。
 ジアミン成分とテトラカルボン酸二無水物成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
Moreover, in order to obtain the specific polymer of this invention, it is preferable to use specific tetracarboxylic dianhydride for the tetracarboxylic dianhydride component. In that case, it is preferable that 1 mol% or more of a tetracarboxylic dianhydride component is a specific tetracarboxylic dianhydride, More preferably, it is 5 mol% or more, More preferably, it is 10 mol% or more. Further, 100 mol% of the tetracarboxylic dianhydride component may be a specific tetracarboxylic dianhydride.
Reaction of a diamine component and a tetracarboxylic dianhydride component is normally performed in an organic solvent. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム又は4-ヒドロキシ-4-メチル-2-ペンタノンなどである。これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, isopropyl alcohol, Methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene Glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether , Propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether , Dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether , 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n -Pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, Methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionate 3-methoxy propionic acid propyl, and the like 3-methoxypropionate butyl, diglyme or 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散、あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ特定重合体としてもよい。その際の重合温度は-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の特定重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 When the diamine component and the tetracarboxylic dianhydride component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred and the tetracarboxylic dianhydride component is used as it is or in an organic solvent. A method of adding by dispersing or dissolving in a solvent, a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component These may be used alternately, and any of these methods may be used. Moreover, when making it react using multiple types of diamine component or tetracarboxylic dianhydride component, respectively, you may make it react in the state mixed previously, you may make it react separately one by one, and it was made to react individually further Low molecular weight substances may be mixed and reacted to form a specific polymer. In this case, the polymerization temperature can be selected from -20 to 150 ° C., preferably in the range of −5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a specific polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. It becomes difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリイミド前駆体を得る重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸二無水物成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 本発明のポリイミドは前記のポリイミド前駆体を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
 本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
In the polymerization reaction for obtaining the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic dianhydride component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
The polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyimide precursor, and is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量、反応温度、反応時間を調節することにより制御することができる。
The temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
The catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
 本発明の特定重合体の分子量は、そこから得られる重合体被膜の強度、重合体被膜形成時の作業性、重合体被膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the specific polymer of the present invention was measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the polymer film obtained therefrom, workability when forming the polymer film, and uniformity of the polymer film. The weight average molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
<液晶配向剤>
 本発明に用いる液晶配向剤における、重合体は、全てが上記特定重合体であってもよく、それ以外の他の重合体が混合されていてもよい。その際、特定重合体に対するそれ以外の他の重合体の含有量は0.5~15質量%、好ましくは1~10質量%である。
 それ以外の他の重合体としては、特定ジアミンを含まないジアミン成分とテトラカルボン酸二無水物成分とから得られるポリイミド前駆体、又は該ポリイミド前駆体から得られるポリイミドが挙げられる。さらには、ポリイミド前駆体及びポリイミド以外の重合体、具体的には、アクリルポリマー、メタクリルポリマー、ポリスチレン又はポリアミドなども挙げられる。
<Liquid crystal aligning agent>
The polymer in the liquid crystal aligning agent used in the present invention may all be the above specific polymer, or other polymers may be mixed. In that case, the content of the other polymer with respect to the specific polymer is 0.5 to 15% by mass, preferably 1 to 10% by mass.
Examples of other polymers include a polyimide precursor obtained from a diamine component not containing a specific diamine and a tetracarboxylic dianhydride component, or a polyimide obtained from the polyimide precursor. Furthermore, a polyimide precursor and a polymer other than polyimide, specifically, an acrylic polymer, a methacrylic polymer, polystyrene, or polyamide are also included.
 本発明に用いる液晶配向剤中の有機溶媒は、塗布により均一な重合体被膜を形成するという観点から、有機溶媒の含有量が70~99質量%が好ましい。この含有量は、目的とする液晶配向膜の膜厚によって適宜変更できる。有機溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。より具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム及び4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。 The organic solvent in the liquid crystal aligning agent used in the present invention preferably has an organic solvent content of 70 to 99% by mass from the viewpoint of forming a uniform polymer film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film. The organic solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above. More specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinylpyrrolidone, Dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, Examples thereof include ethylene carbonate, propylene carbonate, diglyme and 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination.
<添加剤>
 本発明に用いる液晶配向剤には、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基又はアルコキシル基からなら群より選ばれる少なくとも1種の置換基を有する架橋性化合物、重合性不飽和結合を有する架橋性化合物等(以下、架橋剤ともいう。)などを含有することが好ましい。
<Additives>
The liquid crystal aligning agent used in the present invention includes a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group or an alkoxyl group It is preferable to contain a crosslinkable compound having a polymerizable unsaturated bond (hereinafter also referred to as a crosslinking agent).
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシフェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノール等が挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane, 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxyphenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
 オキセタン基を有する架橋性化合物としては、下記式[4]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000027
The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000027
 具体的には、下記の式[4a]~[4k]で示される架橋性化合物である。
Figure JPOXMLDOC01-appb-C000028
Specifically, it is a crosslinkable compound represented by the following formulas [4a] to [4k].
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 シクロカーボネート基を有する架橋性化合物としては、下記の式[5]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 具体的には、下記の式[5-1]~式[5-37]で示される架橋性化合物である。
Examples of the crosslinkable compound having a cyclocarbonate group include a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
Figure JPOXMLDOC01-appb-C000031
Specifically, it is a crosslinkable compound represented by the following formulas [5-1] to [5-37].
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式[5-24]中、nは1~5の整数であり、式[5-25]中、nは1~5の整数であり、式[5-36]中、nは1~100の整数であり、式[5-37]中、nは1~10の整数である。
 さらに、下記の式[5-38]~式[5-40]に示される少なくとも1種の構造を有するポリシロキサンを挙げることもできる。
Figure JPOXMLDOC01-appb-C000040
In the formula [5-24], n is an integer of 1 to 5, in the formula [5-25], n is an integer of 1 to 5, and in the formula [5-36], n is 1 to 100. In the formula [5-37], n is an integer of 1 to 10.
Furthermore, polysiloxanes having at least one structure represented by the following formulas [5-38] to [5-40] can also be mentioned.
Figure JPOXMLDOC01-appb-C000040
 式[5-38]~式[5-40]中、R、R、R、RおよびRは、それぞれ独立して、式[5]で示される構造、水素原子、水酸基、炭素数1~10のアルキル基、アルコキシル基、脂肪族環または芳香族環であり、少なくとも1つは式[5]で示される構造である。
 具体的には、下記式[5-41]又は式[5-42]の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000041
 式[5-42]中、nは1~10の整数である。
In the formulas [5-38] to [5-40], R 1 , R 2 , R 3 , R 4 and R 5 are each independently a structure represented by the formula [5], a hydrogen atom, a hydroxyl group, It is an alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic ring, and at least one is a structure represented by the formula [5].
Specific examples include compounds of the following formula [5-41] or formula [5-42].
Figure JPOXMLDOC01-appb-C000041
In the formula [5-42], n is an integer of 1 to 10.
 ヒドロキシル基又はアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂、エチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。メラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3~6個有するものが好ましい。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group or an alkoxyl group include, for example, amino resins having a hydroxyl group or an alkoxyl group, such as melamine resin, urea resin, guanamine resin, glycoluril. -Formaldehyde resin, succinylamide-formaldehyde resin, ethyleneurea-formaldehyde resin and the like. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used. Melamine derivatives or benzoguanamine derivatives can also exist as dimers or trimers. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)、サイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141などのカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123などのメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10などのメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128などのブトキシメチル化ベンゾグアナミン、サイメル1125-80などのカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)等が挙げられる。また、グリコールウリルの例としては、サイメル1170などのブトキシメチル化グリコールウリル、サイメル1172などのメチロール化グリコールウリル、パウダーリンク1174などのメトキシメチロール化グリコールウリル等が挙げられる。 Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (above, manufactured by Sanwa Chemical Co., Ltd.), Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, methoxy such as Cymel 1123 Methylated ethoxyme Benzomethylamine, methoxymethyl butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 ) And the like. Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, methoxymethylolated glycoluril such as Powderlink 1174, and the like.
 ヒドロキシル基又はアルコキシル基を有するベンゼン、又はフェノール性化合物も架橋性化合物として例示できる。例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン又は2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。 Benzene having a hydroxyl group or an alkoxyl group, or a phenolic compound can also be exemplified as a crosslinkable compound. For example, 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis (sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p -Tert-butylphenol and the like.
 より具体的には、下記式[6-1]~式[6-48]で示される架橋性化合物である。
Figure JPOXMLDOC01-appb-C000042
More specifically, it is a crosslinkable compound represented by the following formulas [6-1] to [6-48].
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート又はヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等の重合性不飽和基を分子内に2個有する架橋性化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル又はN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物が挙げられる。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di ( ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di ( (Meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, phthalic acid diglycidyl ester di (meth) acrylate or hydroxypivalate neopentyl glycol Crosslinkable compounds having two polymerizable unsaturated groups in the molecule such as di (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl Pyr (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2-hydroxypropyl Crosslinkable compounds having one polymerizable unsaturated group in the molecule such as (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester or N-methylol (meth) acrylamide It is done.
 加えて、下記式[7]で示される化合物も架橋性化合物として例示できる。
Figure JPOXMLDOC01-appb-C000047
 Eは、シクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環又はフェナントレン環からなる1価の基であり、Eは、下記の式[7a]又は式[7b]からなる1価の基であり、nは、1~4の整数である。
In addition, the compound represented by the following formula [7] can also be exemplified as the crosslinkable compound.
Figure JPOXMLDOC01-appb-C000047
E 1 is a monovalent group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring, and E 2 is the following formula [7a ] Or a monovalent group consisting of the formula [7b], and n is an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000048
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向剤に含有される架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
Figure JPOXMLDOC01-appb-C000048
The said compound is an example of a crosslinkable compound, It is not limited to these. Moreover, the crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may be combined two or more types.
 本発明の液晶配向剤における、架橋性化合物の含有量は、重合体成分100質量部に対して、0.1~150質量部が好ましく、架橋反応が進行し目的の効果を発現し、かつ液晶の配向性を低下させないために、より好ましくは0.1~100質量部であり、特には、1~50質量部である。
 液晶配向膜中の電荷移動を促進し、該液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、下記の式[M1]~[M156]で示される窒素含有複素環アミン化合物を添加することが好ましい。このアミン化合物は、特定重合体の溶液に直接添加しても構わないが、適当な溶媒で濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。
In the liquid crystal aligning agent of the present invention, the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the polymer component, the crosslinking reaction proceeds, and the desired effect is exhibited. In order not to lower the orientation, the amount is more preferably 0.1 to 100 parts by mass, and particularly 1 to 50 parts by mass.
A nitrogen-containing heterocyclic amine compound represented by the following formulas [M1] to [M156] is added as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge loss of a liquid crystal cell using the liquid crystal alignment film. It is preferable to do. The amine compound may be added directly to the solution of the specific polymer, but it is preferable to add the amine compound after making a solution with a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent. . The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の重合体被膜の膜厚の均一性や表面平滑性を向上させる有機溶媒(貧溶媒ともいわれる)又は化合物を含有することができる。さらに、液晶配向膜と基板との密着性を向上させる化合物などを含有することもできる。膜厚の均一性や表面平滑性を向上させる貧溶媒の具体例としては次のものが挙げられる。 The liquid crystal aligning agent of the present invention is an organic solvent (also referred to as a poor solvent) that improves the uniformity and surface smoothness of the polymer film when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired. Compounds can be included. Furthermore, a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be contained. Specific examples of poor solvents that improve film thickness uniformity and surface smoothness include the following.
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、ジプロピレングリコールジメチルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、2,6-ジメチル‐4-ヘプタノール、ダイアセトンアルコール、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する有機溶媒が挙げられる。
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような貧溶媒を用いる場合は、液晶配向剤に含まれる有機溶媒全体の5~80質量%が好ましく、より好ましくは20~60質量%である。
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, 1-butoxy-2-propanol, 2-butoxy-1-propanol, dipropylene glycol monomethyl ether, Diethylene glycol, diethylene glycol mono Cetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether , Dipropylene glycol dimethyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, Diisobutyl ketone, 2,6-dimethyl-4-hept Tanol, diacetone alcohol, methylcyclohexene, propyl ether, dihexyl ether, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, acetic acid Propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, 3- Propyl methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol Monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester Organic solvents having low surface tension such as lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, and lactyl isoamyl ester.
These poor solvents may be used alone or in combination. When the above poor solvent is used, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the whole organic solvent contained in the liquid crystal aligning agent.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有される重合体成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
Specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like. The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. .
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-tri Toxisilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxy Silane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyl Trimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Lopylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部が好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向剤には、上記の架橋性化合物、貧溶媒及び密着性を向上させる化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
When a compound that improves the adhesion to the substrate is used, the amount is preferably 0.1 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the polymer component contained in the liquid crystal aligning agent. It is. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
In the liquid crystal aligning agent of the present invention, in addition to the crosslinkable compound, the poor solvent, and the compound that improves adhesion, the dielectric constant and conductivity of the liquid crystal aligning film are within the range in which the effects of the present invention are not impaired. For example, a dielectric material or a conductive material for changing electrical characteristics may be added.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミニウムなどの光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal aligning agent of this invention can be used as a liquid crystal aligning film by apply | coating and baking on a board | substrate and performing alignment processing by a rubbing process, light irradiation, etc. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
 液晶配向剤の塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコータ、スリットコータ、スピンナーなどがあり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後は、ホットプレートなどの加熱手段により50~300℃、好ましくは80~250℃で溶媒を蒸発させて重合体被膜とすることができる。焼成後の重合体被膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の重合体被膜をラビング又は偏光紫外線照射などで処理する。
As a method for applying the liquid crystal aligning agent, industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
After applying the liquid crystal aligning agent on the substrate, the solvent can be evaporated at 50 to 300 ° C., preferably 80 to 250 ° C., by a heating means such as a hot plate to form a polymer film. If the thickness of the polymer film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm. When the liquid crystal is horizontally or tilted, the polymer film after baking is treated with rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。
 本発明において特徴的なことは、液晶表示素子における液晶表示パネルが曲面形状を有することにある。すなわち、液晶表示パネルを構成ずる一対の基板が曲面を有するが、この曲面の形状や程度は種々のものがあり、任意に選択される。特に、本発明では、一軸方向に沿った断面において曲面形状を有し、曲面形状の曲率半径(R)が1000mmから3000mmの液晶表示パネルに対して効果的である。
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent and then preparing a liquid crystal cell by a known method.
As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
A characteristic of the present invention is that the liquid crystal display panel in the liquid crystal display element has a curved surface shape. That is, the pair of substrates constituting the liquid crystal display panel has a curved surface, and there are various shapes and degrees of the curved surface, and these are arbitrarily selected. In particular, the present invention is effective for a liquid crystal display panel having a curved surface shape in a section along a uniaxial direction and a curvature radius (R) of the curved surface shape of 1000 mm to 3000 mm.
 さらに、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線は、紫外線が好適である。
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルト角を制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルト角を制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルト角を調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルト角を制御することが難しい垂直配向型の液晶層の形成に適している。
Furthermore, the liquid crystal aligning agent of this invention has a liquid crystal layer between a pair of board | substrates provided with the electrode, and contains the polymeric compound superposed | polymerized by at least one of an active energy ray and heat between a pair of board | substrates. It is also preferably used for a liquid crystal display element produced by a step of polymerizing a polymerizable compound by disposing a liquid crystal composition and applying a voltage between electrodes while at least one of irradiation with active energy rays and heating. Here, the active energy ray is preferably ultraviolet rays.
The liquid crystal display element controls a pretilt angle of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound. The pretilt angle of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt angle of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. . The PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt angle by the rubbing process.
 すなわち、本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射及び加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御することができる。
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又はスペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法などが挙げられる。
That is, in the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, a liquid crystal cell is prepared, and a polymerizable compound is applied by at least one of ultraviolet irradiation and heating. The orientation of liquid crystal molecules can be controlled by polymerization.
If an example of liquid crystal cell production is given, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure and sealing is performed, or a method in which liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is attached and sealed.
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御できる。
In the liquid crystal, a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element. The seizure characteristics of the steel deteriorate.
After the liquid crystal cell is produced, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of liquid crystal molecules can be controlled.
 加えて、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線は、紫外線が好適である。
 活性エネルギー線及び熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、該重合性基を含む化合物を液晶配向剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。重合性基としては、アクリル基、メタクリル基、ビニル基、マレイミド基等の重合性不飽和基が挙げられる。
In addition, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates. The liquid crystal display element manufactured through the process of arrange | positioning the liquid crystal aligning film containing this, and applying a voltage between electrodes is used preferably. Here, the active energy ray is preferably ultraviolet rays.
In order to obtain a liquid crystal alignment film containing a polymerizable group that is polymerized from at least one of active energy rays and heat, a method of adding a compound containing the polymerizable group to a liquid crystal aligning agent, or a polymer containing a polymerizable group Examples include methods using components. Examples of the polymerizable group include polymerizable unsaturated groups such as an acryl group, a methacryl group, a vinyl group, and a maleimide group.
 本発明の液晶配向剤は、熱や紫外線の照射により、反応する2重結合部位を持つ特定アミン化合物を含んでいるため、紫外線の照射及び加熱の少なくとも一方により液晶分子の配向を制御することができる。
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又はスペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法などが挙げられる。
Since the liquid crystal aligning agent of the present invention contains a specific amine compound having a double bond site that reacts by heat or ultraviolet irradiation, the alignment of liquid crystal molecules can be controlled by at least one of ultraviolet irradiation and heating. it can.
If an example of liquid crystal cell production is given, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure and sealing is performed, or a method in which liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is attached and sealed.
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射することで、液晶分子の配向を制御することができる。
 以上のようにして、本発明の液晶配向剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
After the liquid crystal cell is manufactured, the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
As described above, the liquid crystal display element manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、これらに限定されない。なお、以下において、使用する略号は以下のとおりである。
(テトラカルボン酸二無水物)
 CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000055
The present invention will be described more specifically with reference to the following examples, but is not limited thereto. In the following, the abbreviations used are as follows.
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
Figure JPOXMLDOC01-appb-C000055
(ジアミン)
 3-AMPDA:3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミド
 p-PDA:p-フェニレンジアミン
 PBCH5DAB:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
 PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
(Diamine)
3-AMPDA: 3,5-diamino-N- (pyridin-3-ylmethyl) benzamide p-PDA: p-phenylenediamine PBCH5DAB: 1,3-diamino-4- {4- [trans-4- (trans-4 -N-pentylcyclohexyl) cyclohexyl] phenoxy} benzene PCH7DAB: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
(添加剤)
Figure JPOXMLDOC01-appb-C000057
(Additive)
Figure JPOXMLDOC01-appb-C000057
(シロキサン)
TEOS:テトラエトキシシラン
UPS:3-ウレイドプロピルトリエトキシシラン
MPMS:3-メタクリロキシプロピルトリメトキシシラン
HTMS:ヘキサデシルトリメトキシシラン
(有機溶媒)
NMP:N-メチル-2-ピロリドン、NEP:N-エチル-2-ピロリドン
BCS:ブチルセロソルブ、PB:プロピレングリコールモノブチルエーテル
DME:1,2-ジメトキシエタン、DPM:ジプロピレングリコールモノメチルエーテル、DMI:1,3-ジメチル-2-イミダゾリジノン、HG:ヘキシレングリコール
(Siloxane)
TEOS: Tetraethoxysilane UPS: 3-Ureidopropyltriethoxysilane MPMS: 3-Methacryloxypropyltrimethoxysilane HTMS: Hexadecyltrimethoxysilane (organic solvent)
NMP: N-methyl-2-pyrrolidone, NEP: N-ethyl-2-pyrrolidone BCS: butyl cellosolve, PB: propylene glycol monobutyl ether DME: 1,2-dimethoxyethane, DPM: dipropylene glycol monomethyl ether, DMI: 1, 3-Dimethyl-2-imidazolidinone, HG: hexylene glycol
<ポリイミドの分子量測定>
 合成例におけるポリイミドの分子量は、センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分、
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量:約9000,000、150,000、100,000、30,000)、及びポリマーラボラトリー社製 ポリエチレングリコール(分子量:約12,000、4,000、1,000)。
<Measurement of molecular weight of polyimide>
The molecular weight of the polyimide in the synthesis example was measured as follows using a room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Science Co., Ltd. and a column (KD-803, KD-805) manufactured by Shodex.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran ( THF) is 10 ml / L), flow rate: 1.0 ml / min,
Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 9,000,150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (molecular weight: about 12,000, manufactured by Polymer Laboratories) 4,000, 1,000).
<イミド化率の測定>
 ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
  イミド化率(%)=(1-α・x/y)×100
<Measurement of imidization ratio>
The imidation ratio of polyimide was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku Co., Ltd.), add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture), and apply ultrasonic waves. To dissolve completely. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
<分子量測定>
 ポリイミド及びポリシロキサンの分子量は、Shodex社製カラム(サンプル側KF-803、リファレンス側KF-800RH)を用い以下のようにして測定した。
 カラム温度:40℃、
溶離液:テトラヒドロフラン、流速:1ml/分、検量線作成用標準サンプル:Shodex社製 ポリスチレン(分子量:約52,400、19,900、7,200、2,970、580)。
<Molecular weight measurement>
The molecular weights of polyimide and polysiloxane were measured as follows using a column manufactured by Shodex (sample side KF-803, reference side KF-800RH).
Column temperature: 40 ° C
Eluent: Tetrahydrofuran, flow rate: 1 ml / min, standard sample for preparing calibration curve: polystyrene manufactured by Shodex (molecular weight: about 52,400, 19,900, 7,200, 2,970, 580).
<合成例1>
 BODA(23.64g,94.5mmol)、p-PDA(5.11g,47.3mmol)、3―AMPDA(16.0g, 66.15mmol)、及びDA-1(32.86g,75.6mmol)をNMP(216.0g)中で混合し、80℃で5時間反応させた後、CBDA(18.53g,94.5mmol)とNMP(94.6)gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMP(62.3g)を加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.02g)及びピリジン(1.87g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(601.0g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A)を得た。このポリイミドのイミド化率は75%であり、Mn(数平均分子量)は13,200であり、Mw(重量平均分子量)は40,600であった。
<Synthesis Example 1>
BODA (23.64 g, 94.5 mmol), p-PDA (5.11 g, 47.3 mmol), 3-AMPDA (16.0 g, 66.15 mmol), and DA-1 (32.86 g, 75.6 mmol) Were mixed in NMP (216.0 g) and reacted at 80 ° C. for 5 hours, then CBDA (18.53 g, 94.5 mmol) and NMP (94.6) g were added and reacted at 40 ° C. for 6 hours. A polyamic acid solution was obtained.
After adding NMP (62.3g) to this polyamic acid solution (30.0g) and diluting to 6 mass%, acetic anhydride (6.02g) and pyridine (1.87g) were added as an imidation catalyst, and it was 80 degreeC. The reaction was performed for 3 hours. This reaction solution was put into methanol (601.0 g), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (A). The imidation ratio of this polyimide was 75%, Mn (number average molecular weight) was 13,200, and Mw (weight average molecular weight) was 40,600.
<合成例2>
 BODA(23.64g,94.5mmol)、p-PDA(5.11g,47.3mmol)、3―AMPDA(16.0g, 66.15mmol)、DA-1(16.43g,37.8mmol)、及びDA-8(14.39g,37.8mmol)をNMP(207.8g)中で混合し、80℃で5時間反応させた後、CBDA(18.53g,94.5mmol)とNMP(94.6)gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMP(62.3g)を加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.15g)及びピリジン(1.90g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(602.1g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(B)を得た。このポリイミドのイミド化率は75%であり、Mnは12,900であり、Mwは40,400であった。
<Synthesis Example 2>
BODA (23.64 g, 94.5 mmol), p-PDA (5.11 g, 47.3 mmol), 3-AMPDA (16.0 g, 66.15 mmol), DA-1 (16.43 g, 37.8 mmol), And DA-8 (14.39 g, 37.8 mmol) in NMP (207.8 g) and reacted at 80 ° C. for 5 hours, then CBDA (18.53 g, 94.5 mmol) and NMP (94. 6) g was added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP (62.3g) to this polyamic acid solution (30.0g) and diluting to 6 mass%, acetic anhydride (6.15g) and pyridine (1.90g) were added as an imidation catalyst, and it was 80 degreeC. The reaction was performed for 3 hours. This reaction solution was put into methanol (602.1 g), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (B). The imidation ratio of this polyimide was 75%, Mn was 12,900, and Mw was 40,400.
<合成例3>
 BODA(23.14g,88.8mmol)、m-PDA(12.00g,111mmol)、DA-2(16.60g,37mmol)、及びDA-8(16.08g,37mmol)をNMP(170.7g)中で混合し、80℃で5時間反応させた後、CBDA(17.76g,90.7mmol)とNMP(92.6)gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMP(87.1g)を加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.95g)及びピリジン(2.15g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(462.6g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(C)を得た。このポリイミドのイミド化率は75%であり、Mnは11,800であり、Mwは39,600であった。
<Synthesis Example 3>
BODA (23.14 g, 88.8 mmol), m-PDA (12.00 g, 111 mmol), DA-2 (16.60 g, 37 mmol), and DA-8 (16.08 g, 37 mmol) were mixed with NMP (170.7 g). ), And reacted at 80 ° C. for 5 hours. Then, CBDA (17.76 g, 90.7 mmol) and NMP (92.6) g were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution. .
After adding NMP (87.1g) to this polyamic acid solution (30.0g) and diluting to 6 mass%, acetic anhydride (6.95g) and pyridine (2.15g) were added as an imidation catalyst, and it was 80 degreeC. The reaction was performed for 3 hours. This reaction solution was put into methanol (462.6 g), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (C). The imidation ratio of this polyimide was 75%, Mn was 11,800, and Mw was 39,600.
<合成例4>
 BODA(23.14g,88.8mmol)、m-PDA(12.00g,111mmol)、DA-3(17.1g,37mmol)、及びDA-8(14.08g,37mmol)をNMP(170.7g)中で混合し、80℃で5時間反応させた後、CBDA(17.78g,90.7mmol)とNMP(92.6)gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMP(87.1g)を加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.95g)及びピリジン(2.15g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(462.6g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(D)を得た。このポリイミドのイミド化率は75%であり、Mnは11,900であり、Mwは40,100であった。
<Synthesis Example 4>
BODA (23.14 g, 88.8 mmol), m-PDA (12.00 g, 111 mmol), DA-3 (17.1 g, 37 mmol), and DA-8 (14.08 g, 37 mmol) were mixed with NMP (170.7 g). ), And reacted at 80 ° C. for 5 hours. Then, CBDA (17.78 g, 90.7 mmol) and NMP (92.6) g were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution. .
After adding NMP (87.1g) to this polyamic acid solution (30.0g) and diluting to 6 mass%, acetic anhydride (6.95g) and pyridine (2.15g) were added as an imidation catalyst, and it was 80 degreeC. The reaction was performed for 3 hours. This reaction solution was put into methanol (462.6 g), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (D). The imidation ratio of this polyimide was 75%, Mn was 11,900, and Mw was 40,100.
<合成例5>
 BODA(23.14g,88.8mmol)、m-PDA(12.00g,111mmol)、及びDA-4(34.1g,74mmol)をNMP(170.7g)中で混合し、80℃で5時間反応させた後、CBDA(17.78g,90.7mmol)とNMP(92.6)gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMP(87.1g)を加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.95g)及びピリジン(2.15g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(462.6g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(E)を得た。このポリイミドのイミド化率は75%であり、Mnは14,100であり、Mwは41,000であった。
<Synthesis Example 5>
BODA (23.14 g, 88.8 mmol), m-PDA (12.00 g, 111 mmol), and DA-4 (34.1 g, 74 mmol) were mixed in NMP (170.7 g) and at 80 ° C. for 5 hours. After the reaction, CBDA (17.78 g, 90.7 mmol) and NMP (92.6) g were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP (87.1g) to this polyamic acid solution (30.0g) and diluting to 6 mass%, acetic anhydride (6.95g) and pyridine (2.15g) were added as an imidation catalyst, and it was 80 degreeC. The reaction was performed for 3 hours. This reaction solution was put into methanol (462.6 g), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (E). The imidation ratio of this polyimide was 75%, Mn was 14,100, and Mw was 41,000.
<合成例6>
 BODA(23.14g,88.8mmol)、m-PDA(12.00g,111mmol)、及びDA-5(28.6g,74mmol)をNMP(255g)中で混合し、80℃で5時間反応させた後、CBDA(17.78g,90.7mmol)とNMP(92.6)gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMP(87.1g)を加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.95g)及びピリジン(2.15g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(462.6g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(F)を得た。このポリイミドのイミド化率は75%であり、Mnは11,900であり、Mwは40,000であった。
<Synthesis Example 6>
BODA (23.14 g, 88.8 mmol), m-PDA (12.00 g, 111 mmol), and DA-5 (28.6 g, 74 mmol) were mixed in NMP (255 g) and reacted at 80 ° C. for 5 hours. After that, CBDA (17.78 g, 90.7 mmol) and NMP (92.6) g were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP (87.1g) to this polyamic acid solution (30.0g) and diluting to 6 mass%, acetic anhydride (6.95g) and pyridine (2.15g) were added as an imidation catalyst, and it was 80 degreeC. The reaction was performed for 3 hours. This reaction solution was put into methanol (462.6 g), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (F). The imidation ratio of this polyimide was 75%, Mn was 11,900, and Mw was 40,000.
<合成例7>
 BODA(23.14g,88.8mmol)、m-PDA(12.00g,111mmol)、及びDA-6(33.0g,74mmol)をNMP(272.8g)中で混合し、80℃で5時間反応させた後、CBDA(17.78g,90.7mmol)とNMP(71.1)gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMP(87.1g)を加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.95g)及びピリジン(2.15g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(462.6g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(G)を得た。このポリイミドのイミド化率は75%であり、Mnは11,400であり、Mwは39,000であった。
<Synthesis Example 7>
BODA (23.14 g, 88.8 mmol), m-PDA (12.00 g, 111 mmol), and DA-6 (33.0 g, 74 mmol) were mixed in NMP (272.8 g) and at 80 ° C. for 5 hours. After the reaction, CBDA (17.78 g, 90.7 mmol) and NMP (71.1) g were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP (87.1g) to this polyamic acid solution (30.0g) and diluting to 6 mass%, acetic anhydride (6.95g) and pyridine (2.15g) were added as an imidation catalyst, and it was 80 degreeC. The reaction was performed for 3 hours. This reaction solution was put into methanol (462.6 g), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (G). The imidation ratio of this polyimide was 75%, Mn was 11,400, and Mw was 39,000.
<合成例8>
 BODA(23.14g,88.8mmol)、m-PDA(12.00g,111mmol)、及びDA-7(33.0g,74mmol)をNMP(272.8g)中で混合し、80℃で5時間反応させた後、CBDA(17.78g,90.7mmol)とNMP(71.1)gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMP(87.1g)を加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.95g)及びピリジン(2.15g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(462.6g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(H)を得た。このポリイミドのイミド化率は75%であり、Mnは15,700であり、Mwは41,200であった。
<Synthesis Example 8>
BODA (23.14 g, 88.8 mmol), m-PDA (12.00 g, 111 mmol), and DA-7 (33.0 g, 74 mmol) were mixed in NMP (272.8 g) and at 80 ° C. for 5 hours. After the reaction, CBDA (17.78 g, 90.7 mmol) and NMP (71.1) g were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP (87.1g) to this polyamic acid solution (30.0g) and diluting to 6 mass%, acetic anhydride (6.95g) and pyridine (2.15g) were added as an imidation catalyst, and it was 80 degreeC. The reaction was performed for 3 hours. This reaction solution was put into methanol (462.6 g), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (H). The imidation ratio of this polyimide was 75%, Mn was 15,700, and Mw was 41,200.
<合成例9>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中でHG24.9g、BCS24.9g、TEOS52.5g、及びHTMS11.2gを混合することで、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG8.5g、BCS8.5g、水16.2g及び触媒として蓚酸0.8gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.86gとHG0.86g、BCS0.86gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液(I)を得た。このポリシロキサンは、Mnが5,100であり、Mwは9,100であった。
<Synthesis Example 9>
A solution of alkoxysilane monomer was prepared by mixing 24.9 g of HG, 24.9 g of BCS, 52.5 g of TEOS, and 11.2 g of HTMS in a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube. A solution prepared by mixing 8.5 g of HG, 8.5 g of BCS, 16.2 g of water and 0.8 g of oxalic acid as a catalyst was added dropwise to the solution over 30 minutes at room temperature, and the mixture was further stirred at room temperature for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 30 minutes, and a mixed solution of 0.86 g of a methanol solution having a UPS content of 92% by mass, 0.86 g of HG and 0.86 g of BCS was added in advance. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (I) having a SiO 2 equivalent concentration of 12% by weight. This polysiloxane had Mn of 5,100 and Mw of 9,100.
<合成例10>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中でHG21.3g、BCS21.3g、及びTEOS52.5g、化合物3を18.4g混合することで、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG8.5g、BCS8.5g、水16.2g及び触媒として蓚酸0.8gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.86gとHG0.86g、BCS0.86gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液(J)を得た。このポリシロキサンはMnが2,400であり、Mwは4,800であった。
<Synthesis Example 10>
An alkoxysilane monomer solution was prepared by mixing 28.4 g of HG, 21.3 g of BCS, 52.5 g of TEOS, and 18.4 g of Compound 3 in a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube. A solution prepared by mixing 8.5 g of HG, 8.5 g of BCS, 16.2 g of water and 0.8 g of oxalic acid as a catalyst was added dropwise to the solution over 30 minutes at room temperature, and the mixture was further stirred at room temperature for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 30 minutes, and a mixed solution of 0.86 g of a methanol solution having a UPS content of 92% by mass, 0.86 g of HG and 0.86 g of BCS was added in advance. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (J) having a SiO 2 equivalent concentration of 12% by weight. This polysiloxane had Mn of 2,400 and Mw of 4,800.
<比較合成例1>
 BODA(23.64g,94.5mmol)、p-PDA(5.11g,47.3mmol)、3―AMPDA(16.0g, 66.15mmol)、及びDA-8(28.77g,75.6mmol)をNMP(199.6g)中で混合し、80℃で5時間反応させた後、CBDA(18.53g,94.5mmol)とNMP(94.6)gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMP(62.3g)を加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.29g)及びピリジン(1.95g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(603.2g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(D)を得た。このポリイミドのイミド化率は75%であり、Mnは13,200であり、Mwは39,300であった。
<Comparative Synthesis Example 1>
BODA (23.64 g, 94.5 mmol), p-PDA (5.11 g, 47.3 mmol), 3-AMPDA (16.0 g, 66.15 mmol), and DA-8 (28.77 g, 75.6 mmol) Were mixed in NMP (199.6 g) and reacted at 80 ° C. for 5 hours, then CBDA (18.53 g, 94.5 mmol) and NMP (94.6) g were added and reacted at 40 ° C. for 6 hours. A polyamic acid solution was obtained.
After adding NMP (62.3 g) to this polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (6.29 g) and pyridine (1.95 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was put into methanol (603.2 g), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (D). The imidation ratio of this polyimide was 75%, Mn was 13,200, and Mw was 39,300.
<実施例1>
 合成例1で得たポリイミド粉末(A)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌することで、液晶配向剤[1]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<実施例2>
 合成例2で得たポリイミド粉末(B)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌することで、液晶配向剤[2]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 1>
NEP (54.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution, and the liquid crystal aligning agent [1] was obtained by stirring for 5 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<Example 2>
NEP (54.0 g) was added to the polyimide powder (B) (6.0 g) obtained in Synthesis Example 2, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution, and the liquid crystal aligning agent [2] was obtained by stirring for 5 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例3>
 合成例3で得たポリイミド粉末(C)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌することで、液晶配向剤[3]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 3>
NEP (54.0 g) was added to the polyimide powder (C) (6.0 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [3]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例4>
 合成例4で得たポリイミド粉末(D)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌することで、液晶配向剤[4]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 4>
NEP (54.0 g) was added to the polyimide powder (D) (6.0 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [4]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例5>
 合成例5で得たポリイミド粉末(E)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌することで、液晶配向剤[5]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 5>
NEP (54.0 g) was added to the polyimide powder (E) (6.0 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [5]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例6>
 合成例6で得たポリイミド粉末(F)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌することで、液晶配向剤[7]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 6>
NEP (54.0 g) was added to the polyimide powder (F) (6.0 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [7]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例7>
 合成例7で得たポリイミド粉末(G)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌することで、液晶配向剤[7]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 7>
NEP (54.0 g) was added to the polyimide powder (G) (6.0 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [7]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例8>
 合成例8で得たポリイミド粉末(H)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌することで、液晶配向剤[8]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 8>
NEP (54.0 g) was added to the polyimide powder (H) (6.0 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [8]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例9>
 合成例1で得たポリイミド粉末(A)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にPB(40.0g)を加え、5時間攪拌することで、液晶配向剤[9]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 9>
NEP (54.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. PB (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [9]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例10>
 合成例1で得たポリイミド粉末(A)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にDME(40.0g)を加え、5時間攪拌することで、液晶配向剤[10]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 10>
NEP (54.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. DME (40.0 g) was added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [10]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例11>
 合成例1で得たポリイミド粉末(A)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(30.0g)、DME(10.0g)を加え、5時間攪拌することで、液晶配向剤[11]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 11>
NEP (54.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (30.0 g) and DME (10.0 g) were added to this solution, and stirred for 5 hours to obtain a liquid crystal aligning agent [11]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例12>
 合成例1で得たポリイミド粉末(A)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(30.0g)、DPM(10.0g)を加え、5時間攪拌することで、液晶配向剤[12]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 12>
NEP (54.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (30.0 g) and DPM (10.0 g) were added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent [12]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例13>
 合成例1で得たポリイミド粉末(A)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌した後、化合物1粉末(0.6g)を添加し24時間攪拌することで、液晶配向剤[13]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 13>
NEP (54.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution and stirred for 5 hours, and then Compound 1 powder (0.6 g) was added and stirred for 24 hours to obtain a liquid crystal aligning agent [13]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例14>
 合成例1で得たポリイミド粉末(A)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌した後、化合物2粉末(0.6g)を添加し24時間攪拌することで、液晶配向剤[14]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 14>
NEP (54.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution and stirred for 5 hours, and then Compound 2 powder (0.6 g) was added and stirred for 24 hours to obtain a liquid crystal aligning agent [14]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例15>
 合成例1で得たポリイミド粉末(A)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌した後、化合物1粉末(0.3g)、化合物2粉末(0.3g)を添加し24時間攪拌することで、液晶配向剤[15]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<実施例16>
 合成例9で得たポリシロキサン溶液(I)10.0g及びHG15.0g、BCS15.0gを混合することで、液晶配向剤[10]を得た。この液晶配向剤に濁りや析出などの異常は見られないことを確認した。
<Example 15>
NEP (54.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution and stirred for 5 hours, and then Compound 1 powder (0.3 g) and Compound 2 powder (0.3 g) were added and stirred for 24 hours, whereby a liquid crystal aligning agent [15 ] Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<Example 16>
A liquid crystal aligning agent [10] was obtained by mixing 10.0 g of the polysiloxane solution (I) obtained in Synthesis Example 9 and 15.0 g of HG and 15.0 g of BCS. It was confirmed that no abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent.
<実施例17>
 合成例10で得たポリシロキサン溶液(J)10.0g及びHG15.0g、BCS15.0gを混合することで、液晶配向剤[17]を得た。この液晶配向剤に濁りや析出などの異常は見られないことを確認した。
<Example 17>
A liquid crystal aligning agent [17] was obtained by mixing 10.0 g of the polysiloxane solution (J) obtained in Synthesis Example 10 and 15.0 g of HG and 15.0 g of BCS. It was confirmed that no abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent.
<比較例1>
 比較合成例1で得たポリイミド粉末(K)(6.0g)にNEP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、50℃にて15時間攪拌することで、液晶配向剤[18]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Comparative Example 1>
NEP (54.0 g) was added to the polyimide powder (K) (6.0 g) obtained in Comparative Synthesis Example 1, and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0g) was added to this solution, and it stirred at 50 degreeC for 15 hours, and obtained liquid crystal aligning agent [18]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
<ポリイミド塗膜付き基板の作製>
 上記実施例1~17及び比較例1でそれぞれ得た各液晶配向剤を3cm×4cmITO付きガラス基板のITO面にスピンコートし、70℃で1分30秒間、ホットプレートにて焼成した後、230℃の赤外線加熱炉で30分間焼成を行い、膜厚100nmのポリイミド塗膜付き基板を作製した。
 なお、実施例16で得た液晶配向剤の場合には、ホットプレートにおける焼成を70℃で1分30秒間の代わりに、80℃で3分間行ったが、他は同じである。
<Preparation of substrate with polyimide coating>
Each liquid crystal aligning agent obtained in Examples 1 to 17 and Comparative Example 1 was spin-coated on the ITO surface of a glass substrate with 3 cm × 4 cm ITO and baked on a hot plate at 70 ° C. for 1 minute and 30 seconds. The substrate was baked for 30 minutes in an infrared heating furnace at 0 ° C. to prepare a substrate with a polyimide coating film having a thickness of 100 nm.
In addition, in the case of the liquid crystal aligning agent obtained in Example 16, baking on a hot plate was performed at 80 ° C. for 3 minutes instead of 70 ° C. for 1 minute and 30 seconds.
<輝点の評価>
 上記実施例1及び比較例1で得たポリイミド塗膜付き基板をブルカー・エイエックスエス社製UMT-2(センサーはFVL、装置先端に1.6mmサファイア球を取り付けた)に取り付け、横軸に0.5mm(5mm/秒)、移動方向に2mm、100秒かけて1mNから20mNまでスクラッチ試験をおこなった後、MLC-3022(メルク・ジャパン社製)を滴下した。そこに上記で得たもう1枚のポリイミド塗膜付き基板に4μmのスペーサーを散布し、滴下したMLC-3022側に向けて挟み込んだ。挟み込んだ基板を偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)を偏光板90°にした状態でスクラッチ試験を行った箇所を観察し、光が透過するかを観察した。
 図1のように輝点がほぼ見られない状態を「○」と評価し、図2に示すような輝点が若干みられる状態を「△」と評価し、図3に示すようにスクラッチした箇所が輝点となった状態を「×」と評価し、それらの結果を表1に示した。
<Evaluation of bright spots>
The polyimide coated substrate obtained in Example 1 and Comparative Example 1 was attached to UMT-2 (sensor is FVL, 1.6 mm sapphire sphere attached to the tip of the device) manufactured by Bruker AXS, and the horizontal axis A scratch test was performed from 0.5 mm (5 mm / second), 2 mm in the moving direction, from 1 mN to 20 mN over 100 seconds, and then MLC-3022 (manufactured by Merck Japan) was dropped. Then, a 4 μm spacer was sprayed onto the other polyimide-coated substrate obtained above and sandwiched toward the dropped MLC-3022 side. The place where the scratch test was done in the state which made the polarizing substrate (ECLIPSE E600WPOL) (made by Nikon Corp.) into 90 degrees of polarizing plates was observed, and light was permeate | transmitted.
As shown in FIG. 1, a state where almost no bright spot was seen was evaluated as “◯”, a state where a bright spot as shown in FIG. 2 was slightly seen was evaluated as “Δ”, and scratched as shown in FIG. The state where the spot became a bright spot was evaluated as “x”, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000058

 なお、2016年8月3日に出願された日本特許出願2016-153149号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Figure JPOXMLDOC01-appb-T000058

It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-153149 filed on August 3, 2016 are cited herein as disclosure of the specification of the present invention. Incorporate.

Claims (11)

  1.  下記式[1]で表される構造を有する重合体を含有する液晶配向剤から得られる液晶配向膜を有する曲面液晶パネルを備える液晶表示素子。
    Figure JPOXMLDOC01-appb-C000001
    (Yは、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-であり、Yは、単結合又は(CH-(bは1~15の整数である)であり、Yは、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yは、ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)、又はステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基であり、Yは、ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)であり、nは、Yがベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基である場合は2~4の整数であり、Yがステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基である場合は0~4の整数である。また、nが複数である場合、複数のYはそれぞれ独立して上記の定義を有する。Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。)
    A liquid crystal display element provided with the curved liquid crystal panel which has a liquid crystal aligning film obtained from the liquid crystal aligning agent containing the polymer which has a structure represented by following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, and Y 2 is A single bond or (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), — O—, —CH 2 O—, —COO— or OCO— Y 4 represents a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (any hydrogen on these cyclic groups). The atom is substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Or a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. A group, Y 5 is a benzene ring, any hydrogen atom on the divalent cyclic group (these cyclic group selected from the group consisting of hexane ring and the heterocyclic cycloheteroalkyl an alkyl group having 1-3 carbon atoms And optionally substituted with a C 1-3 alkoxyl group, a C 1-3 fluorine-containing alkyl group, a C 1-3 fluorine-containing alkoxyl group, or a fluorine atom. When 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, it is an integer of 2 to 4, and Y 4 is selected from an organic group having 12 to 25 carbon atoms having a steroid skeleton. When it is a divalent organic group, it is an integer of 0 to 4. When n is plural, a plurality of Y 5 each independently has the above definition, and Y 6 has 1 to 18 carbon atoms. Alkyl group, fluorine-containing amine having 1 to 18 carbon atoms Kill group, a fluorine-containing alkoxyl group 1-18 alkoxyl group or a carbon number of 1 to 18 carbon atoms.)
  2.  前記重合体が、ポリイミド前駆体及びポリイミドからなる群より選ばれる少なくとも1種の重合体である、請求項1に記載の液晶表示素子。 The liquid crystal display element according to claim 1, wherein the polymer is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide.
  3.  前記重合体が、下記式で表されるジアミンを含有するジアミンと、テトラカルボン酸二無水物成分との反応物であるポリイミド前駆体及びポリイミドからなる群より選ばれる少なくとも1種の重合体である、請求項1に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000002
     式[2]におけるY、Y、Y、Y、Y、Y、nは、式[1]におけるY、Y、Y、Y、Y、Y、nのそれぞれの定義と同じである。mは、1~4の整数である。
    The polymer is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide which are a reaction product of a diamine containing a diamine represented by the following formula and a tetracarboxylic dianhydride component. The liquid crystal display element according to claim 1.
    Figure JPOXMLDOC01-appb-C000002
    Y 1, Y 2, Y 3 in the formula [2], Y 4, Y 5, Y 6, n is, Y 1, Y 2, Y 3 in the formula [1], Y 4, Y 5, Y 6, n Is the same as each definition. m is an integer of 1 to 4.
  4.  前記テトラカルボン酸二無水物成分が、下記式[3]で表されるテトラカルボン酸二無水物を含有する、請求項3に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000003
     式[3]中、Zは4価の有機基であり、炭素数4~13の4価の有機基であり、かつ炭素数4~10の非芳香族環状炭化水素基を含有することが好ましい。
    The liquid crystal display element of Claim 3 in which the said tetracarboxylic dianhydride component contains the tetracarboxylic dianhydride represented by following formula [3].
    Figure JPOXMLDOC01-appb-C000003
    In the formula [3], Z 1 is a tetravalent organic group, a tetravalent organic group having 4 to 13 carbon atoms, and a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms. preferable.
  5.  前記式[3]で表されるテトラカルボン酸二無水物のZが、以下の構造式から選ばれる少なくとも1種である、請求項4に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000004
    (Z~Zは、それぞれ独立して、水素原子、メチル基、塩素原子又はベンゼン環から選ばれる基であり、Z、及びZは、それぞれ独立して、水素原子又はメチル基である。)
    The liquid crystal display element according to claim 4, wherein Z 1 of the tetracarboxylic dianhydride represented by the formula [3] is at least one selected from the following structural formulas.
    Figure JPOXMLDOC01-appb-C000004
    (Z 2 to Z 5 are each independently a group selected from a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and Z 6 and Z 7 are each independently a hydrogen atom or a methyl group. is there.)
  6.  曲面形状を有する液晶パネルを備える液晶表示素子のための液晶配向剤であり、下記式[1]で表される構造を有する重合体を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (Yは、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-であり、Yは、単結合又は(CH-(bは1~15の整数である)であり、Yは、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yは、ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)、又はステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基であり、Yは、ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)であり、nは、Yがベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基である場合は2~4の整数であり、Yがステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基である場合は0~4の整数である。また、nが複数である場合、複数のYはそれぞれ独立して上記の定義を有する。Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。)
    A liquid crystal aligning agent, which is a liquid crystal aligning agent for a liquid crystal display device including a liquid crystal panel having a curved shape, and contains a polymer having a structure represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000005
    (Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, and Y 2 is A single bond or (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), — O—, —CH 2 O—, —COO— or OCO— Y 4 represents a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (any hydrogen on these cyclic groups). The atom is substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Or a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. A group, Y 5 is a benzene ring, any hydrogen atom on the divalent cyclic group (these cyclic group selected from the group consisting of hexane ring and the heterocyclic cycloheteroalkyl represents an alkyl group having 1 to 3 carbon atoms And optionally substituted with a C 1-3 alkoxyl group, a C 1-3 fluorine-containing alkyl group, a C 1-3 fluorine-containing alkoxyl group, or a fluorine atom. When 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, it is an integer of 2 to 4, and Y 4 is selected from an organic group having 12 to 25 carbon atoms having a steroid skeleton. When it is a divalent organic group, it is an integer of 0 to 4. When n is plural, a plurality of Y 5 each independently has the above definition, and Y 6 has 1 to 18 carbon atoms. Alkyl group, fluorine-containing amine having 1 to 18 carbon atoms Kill group, a fluorine-containing alkoxyl group 1-18 alkoxyl group or a carbon number of 1 to 18 carbon atoms.)
  7.  前記重合体が、ポリイミド前駆体及びポリイミドからなる群より選ばれる少なくとも1種の重合体である、請求項6に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 6, wherein the polymer is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide.
  8.  前記重合体が、下記式で表されるジアミンを含有するジアミンと、テトラカルボン酸二無水物成分との反応物であるポリイミド前駆体及びポリイミドからなる群より選ばれる少なくとも1種の重合体である、請求項6に記載の液晶配向剤。 The polymer is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide which are a reaction product of a diamine containing a diamine represented by the following formula and a tetracarboxylic dianhydride component. The liquid crystal aligning agent of Claim 6.
  9.  前記重合体が、下記式で表されるジアミンを含有するジアミンと、テトラカルボン酸二無水物成分との反応物であるポリイミド前駆体及びポリイミドからなる群より選ばれる少なくとも1種の重合体である、請求項6に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (式[2]におけるY、Y、Y、Y、Y、Y、nは、式[1]におけるY、Y、Y、Y、Y、Y、nのそれぞれの定義と同じである。mは、1~4の整数である。)
    The polymer is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide which are a reaction product of a diamine containing a diamine represented by the following formula and a tetracarboxylic dianhydride component. The liquid crystal aligning agent of Claim 6.
    Figure JPOXMLDOC01-appb-C000006
    (Y 1 in the formula [2], Y 2, Y 3, Y 4, Y 5, Y 6, n is, Y 1, Y 2, Y 3 in the formula [1], Y 4, Y 5, Y 6, (It is the same as each definition of n. m is an integer of 1 to 4.)
  10.  前記テトラカルボン酸二無水物成分が、下記式[3]で表されるテトラカルボン酸二無水物を含有する、請求項8又は9に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
    (Zは、炭素数4~13の4価の有機基である。)
    The liquid crystal aligning agent of Claim 8 or 9 in which the said tetracarboxylic dianhydride component contains the tetracarboxylic dianhydride represented by following formula [3].
    Figure JPOXMLDOC01-appb-C000007
    (Z 1 is a tetravalent organic group having 4 to 13 carbon atoms.)
  11.  前記式[3]におけるZが、以下の構造式から選ばれる少なくとも1種である、請求項10に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (Z~Zは、それぞれ独立して、水素原子、メチル基、塩素原子又はベンゼン環から選ばれる基であり、Z、Zは、それぞれ独立して、水素原子又はメチル基である。)
    Z 1 in the formula [3] is at least one selected from the following structural formulas, the liquid crystal aligning agent of claim 10.
    Figure JPOXMLDOC01-appb-C000008
    (Z 2 to Z 5 are each independently a group selected from a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and Z 6 and Z 7 are each independently a hydrogen atom or a methyl group. .)
PCT/JP2017/027924 2016-08-03 2017-08-01 Liquid crystal display element equipped with liquid crystal panel having curved surface and liquid crystal aligning agent for same WO2018025872A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197006237A KR102438830B1 (en) 2016-08-03 2017-08-01 Liquid crystal display element having a liquid crystal panel having a curved shape, and liquid crystal aligning agent therefor
CN201780061295.5A CN109791332B (en) 2016-08-03 2017-08-01 Liquid crystal display element having curved liquid crystal panel and liquid crystal aligning agent used for same
JP2018531931A JPWO2018025872A1 (en) 2016-08-03 2017-08-01 Liquid crystal display device having liquid crystal panel having curved surface shape and liquid crystal alignment agent therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016153149 2016-08-03
JP2016-153149 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018025872A1 true WO2018025872A1 (en) 2018-02-08

Family

ID=61073686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027924 WO2018025872A1 (en) 2016-08-03 2017-08-01 Liquid crystal display element equipped with liquid crystal panel having curved surface and liquid crystal aligning agent for same

Country Status (5)

Country Link
JP (1) JPWO2018025872A1 (en)
KR (1) KR102438830B1 (en)
CN (1) CN109791332B (en)
TW (1) TWI826353B (en)
WO (1) WO2018025872A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159637A1 (en) * 2017-02-28 2018-09-07 日産化学株式会社 Compound, liquid crystal composition and liquid crystal display element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070714A1 (en) * 2019-10-07 2021-04-15 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7505505B2 (en) * 2019-12-06 2024-06-25 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and method for producing liquid crystal display element
CN116794886A (en) * 2023-07-21 2023-09-22 业成科技(成都)有限公司 Curved substrate friction alignment device and application method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112197A (en) * 2012-11-07 2014-06-19 Jsr Corp Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
US20170090250A1 (en) * 2015-09-25 2017-03-30 Samsung Display Co. Ltd. Liquid crystal display and method of manufacturing the same
US20170139280A1 (en) * 2015-11-18 2017-05-18 Samsung Display Co., Ltd. Liquid crystal display device and method for manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201172B2 (en) 1994-09-08 2001-08-20 ジェイエスアール株式会社 Liquid crystal alignment agent
JP3650982B2 (en) 1996-10-02 2005-05-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JPH10268245A (en) 1997-03-24 1998-10-09 Seiko Epson Corp Curved surface display liquid crystal panel, device and method for manufacturing it and manufacture of liquid crystal display device
WO2008117759A1 (en) * 2007-03-23 2008-10-02 Nissan Chemical Industries, Ltd. Diamine compound, polyamic acid, polyimide and liquid crystal aligning agent
WO2009093711A1 (en) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material and liquid-crystal display element
JP5532195B2 (en) * 2008-06-10 2014-06-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
KR101775181B1 (en) * 2010-04-22 2017-09-05 닛산 가가쿠 고교 가부시키 가이샤 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
JP5761188B2 (en) * 2010-06-30 2015-08-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same
JP5874646B2 (en) * 2010-12-28 2016-03-02 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR101988082B1 (en) * 2012-10-18 2019-06-11 닛산 가가쿠 가부시키가이샤 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6164117B2 (en) * 2013-06-18 2017-07-19 Jsr株式会社 Liquid crystal aligning agent, retardation film, and method for producing retardation film
KR102275484B1 (en) * 2013-10-23 2021-07-08 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112197A (en) * 2012-11-07 2014-06-19 Jsr Corp Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
US20170090250A1 (en) * 2015-09-25 2017-03-30 Samsung Display Co. Ltd. Liquid crystal display and method of manufacturing the same
US20170139280A1 (en) * 2015-11-18 2017-05-18 Samsung Display Co., Ltd. Liquid crystal display device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159637A1 (en) * 2017-02-28 2018-09-07 日産化学株式会社 Compound, liquid crystal composition and liquid crystal display element

Also Published As

Publication number Publication date
KR102438830B1 (en) 2022-08-31
JPWO2018025872A1 (en) 2019-06-20
CN109791332B (en) 2022-04-05
CN109791332A (en) 2019-05-21
KR20190031570A (en) 2019-03-26
TW201821483A (en) 2018-06-16
TWI826353B (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP5904121B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5936000B2 (en) Manufacturing method of liquid crystal display element
JP5257548B2 (en) Liquid crystal display element and liquid crystal aligning agent
KR102224531B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6083382B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5900337B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6065074B2 (en) Diamine compounds, polyimide precursors and polyimides
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014084309A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP5874646B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2015227373A (en) Cyclocarbonate group-containing compound
WO2018025872A1 (en) Liquid crystal display element equipped with liquid crystal panel having curved surface and liquid crystal aligning agent for same
WO2013115387A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2012121259A1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014126102A1 (en) Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197006237

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17836975

Country of ref document: EP

Kind code of ref document: A1