WO2018025826A1 - Antibody fused with labeling protein - Google Patents

Antibody fused with labeling protein Download PDF

Info

Publication number
WO2018025826A1
WO2018025826A1 PCT/JP2017/027791 JP2017027791W WO2018025826A1 WO 2018025826 A1 WO2018025826 A1 WO 2018025826A1 JP 2017027791 W JP2017027791 W JP 2017027791W WO 2018025826 A1 WO2018025826 A1 WO 2018025826A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
gene
leucine zipper
sequence
chain
Prior art date
Application number
PCT/JP2017/027791
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 中野
昭博 森
晃代 加藤
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2018531899A priority Critical patent/JPWO2018025826A1/en
Publication of WO2018025826A1 publication Critical patent/WO2018025826A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to an antibody fused with a labeled protein. Specifically, the present invention relates to a labeled protein fusion Fab antibody and its use.
  • This application claims priority based on Japanese Patent Application No. 2016-152447 filed on August 3, 2016, the entire contents of which are incorporated by reference.
  • Antibody-enzyme fusions are used for ELISA, Western blotting, cell staining, in vivo substance imaging, cancer treatment, and the like (Non-Patent Documents 1 to 5).
  • enzyme modification of an antibody has been mainly carried out by chemical modification, but has the disadvantages that “the amount of enzyme to be modified cannot be quantitatively controlled” and “experiment of chemical modification is required”.
  • an example in which an antibody in which an enzyme is genetically fused is prepared has been reported (Non-patent Documents 6 and 7), but most are related to scFv antibodies (single-chain Fv antibodies).
  • the interaction between the V region of the L chain and the H chain is weak, and it is often impossible to form a stable antigen-binding site, resulting in a decrease in antigen affinity or a sufficient enzymatic activity.
  • an antibody fused with a labeled protein such as an enzyme can be used not only for various detection methods but also for medical applications such as diagnosis and treatment.
  • a labeled protein fusion antibody having a sufficient function suitable for use in various applications has not been developed. Therefore, an object of the present invention is to provide a novel antibody that is excellent in the original characteristics of an antibody (that is, recognition of an antigen) and that the fused labeled protein exhibits a sufficient function.
  • Non-Patent Document 6 which is one of the few reports, alkaline phosphatase (PhoA) is genetically fused to an anti-human tumor necrosis factor ⁇ (TNF) Fab antibody and produced in a secretory expression system of Escherichia coli.
  • Non-patent Document 9 there is an example in which a divided nanoluciferase gene is fused to an anti-HER2 Fab antibody and expressed in Escherichia coli.
  • the common point of these reports is that they use only one kind of antibody gene that is most manageable in each research environment.
  • Fab antibodies have been studied under conditions that can be stably produced in E. coli, and their versatility has not been shown.
  • secretory expression of Fab antibodies is very difficult, but Fab antibody expression technology with excellent versatility and practicality has not been realized.
  • Non-Patent Document 6 since Non-Patent Document 6 has been reported, there has been no report on a technique for fusing Fab antibodies and enzymes.
  • Fab antibodies have light chain and heavy chain interactions in their constant regions (CL and CH1), which makes them more stable than scFv and can be used for a short time when newly prepared from B cells.
  • Non-patent Document 8 Fab formation efficiency differs depending on the type of antibody, and a desired activity may not be obtained.
  • LZ leucine zipper
  • Hc and Lc of Fab antibody it is possible to efficiently fold in E. coli cell-free protein synthesis system and E. coli intracellular expression system.
  • An antibody molecule is developed and named Zipbody (Patent Document 1 and Non-Patent Document 10).
  • the present inventors considered the effectiveness of Zipbody and genetically fused a labeled protein (for example, an enzyme) to the C-terminus of Zipbody. It was thought that the presence of LZ could produce a Fab antibody-labeled protein fusion with a stable structure. Based on this idea, a detailed experiment was planned using the knowledge and experience accumulated so far, and a detailed study was conducted. As a result, it was found that the above-mentioned strategy is extremely effective, and a fusion antibody that can achieve both recognition of the antigen and expression of the function of the labeled protein at a high level can be obtained (see Examples described later).
  • a labeled protein for example, an enzyme
  • the present inventors succeeded in providing labeled protein fusion antibodies that are extremely effective for various detection methods.
  • One thing that should be noted is that the effects were demonstrated in both mouse-derived antibodies and rabbit-derived antibodies, and in a plurality of labeled proteins (specifically, GFP and luciferase), and high versatility was confirmed. is there. Also, during the study, important and interesting findings related to practicality were obtained. Furthermore, when another enzyme (alkaline phosphatase) was fused, the desired effect was obtained, confirming the high versatility.
  • the following invention is mainly based on the above results and considerations.
  • [4] The labeled protein-fused Fab antibody according to [3], wherein the fluorescent protein is GFP and the luminescent enzyme is luciferase.
  • a peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (where X represents any amino acid residue) is linked to the N-terminus of the H chain and L chain, respectively.
  • [6] The labeled protein-fused Fab antibody according to any one of [1] to [5], which is refolded.
  • [7] The labeled protein-fused Fab antibody according to any one of [1] to [5], which is synthesized in the cytoplasm of E. coli.
  • a detection reagent comprising the labeled protein-fused Fab antibody according to any one of [1] to [7].
  • a detection kit comprising the detection reagent according to [8].
  • [10] The following steps: (A) co-expressing antibody H chain gene encoding VH region and CH1 region and antibody L chain gene encoding VL region and CL region, or (B) antibody H chain encoding VH region and CH1 region A gene and an antibody L chain gene encoding a VL region and a CL region, respectively, and then mixing the expression product, Including Of the pair of peptides constituting the leucine zipper, the first tag sequence encoding one of them is at the 3 ′ end of the antibody H chain gene, and the second tag sequence encoding the other is at the 3 ′ end of the antibody L chain gene.
  • a labeled protein gene is linked to the antibody H chain gene and / or the antibody L chain gene via the first or second tag sequence, Preparation method of labeled protein fusion Fab antibody.
  • the expression system is an expression system using E.
  • a protease recognition sequence is interposed between the sequence encoding the peptide tag and the antibody H chain gene, and between the sequence encoding the peptide tag and the antibody L chain gene, [13] or [14 ]
  • the preparation method as described in. [16] The preparation method according to any one of [13] to [15], wherein the expression system using E. coli is an expression system using a T7 promoter or an expression system using a low-temperature expression promoter. [17] The preparation method according to any one of [13] to [15], wherein the expression system using E. coli is a cell-free protein synthesis system using E. coli-derived components.
  • [18] The preparation method according to any one of [10] to [17], wherein the antibody H chain gene and the antibody L chain gene are prepared by the following steps (i) to (viii): (i) providing mRNA derived from a single B cell; (ii) preparing cDNA by reverse transcription PCR using the mRNA as a template; (iii) PCR is performed using a primer set consisting of multiple primers containing the same third tag sequence at the 5 ′ end and capable of amplifying the antibody H chain gene encoding the VH region and CH1 region, and using the cDNA as a template.
  • Step to do (iv) PCR is performed using a primer set consisting of multiple primers containing the same fourth tag sequence at the 5 'end and capable of amplifying the antibody L chain gene encoding the VL region and CL region, and using the cDNA as a template Step to do; (v) performing PCR using a single primer containing the third tag sequence and using the amplification product of step (iii) as a template; (vi) performing PCR using a single primer containing the fourth tag sequence and using the amplification product of step (iv) as a template; (vii) adding the first tag sequence to the antibody heavy chain gene that is the amplification product of step (v); (viii) A step of adding the second tag sequence to the antibody L chain gene that is the amplification product of step (vi).
  • a promoter A first cloning site for a gene encoding one of the antibody chains constituting the Fab antibody; A first leucine zipper sequence encoding one of a pair of leucine zipper peptides; A second cloning site for a gene encoding the other antibody chain constituting the Fab antibody; A second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
  • Vector for preparing labeled protein fusion Fab antibody [21]
  • the promoter is a promoter that functions in E.
  • coli The vector according to [20], wherein a ribosome binding site is disposed between the promoter and the first cloning site. [22] Immediately before the first cloning site and immediately before the second cloning site, A sequence encoding a peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (X represents an arbitrary amino acid residue) arranged immediately after the initiation codon is arranged. The vector according to [20] or [21].
  • a promoter A first antibody gene encoding one of the antibody chains constituting the Fab antibody; A first leucine zipper sequence encoding one of a pair of leucine zipper peptides; A second antibody gene encoding the other antibody chain constituting the Fab antibody; A second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
  • Vector for preparing labeled protein fusion Fab antibody [24]
  • the promoter is a promoter that functions in E.
  • coli The vector according to [23], wherein a ribosome binding site is arranged between the promoter and the first antibody gene. [25] Immediately before the first antibody gene and immediately before the second antibody gene, A sequence encoding a peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (X represents an arbitrary amino acid residue) arranged immediately after the initiation codon is arranged. The vector according to [23] or [24].
  • a promoter A first cloning site for a gene encoding one of the antibody chains constituting the Fab antibody; A first vector having a first leucine zipper sequence encoding one of a pair of leucine zipper peptides; A promoter, A second cloning site for a gene encoding one of the antibody chains constituting the Fab antibody; A second vector having a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
  • a vector set for preparing a labeled protein-fused Fab antibody A vector set for preparing a labeled protein-fused Fab antibody.
  • a promoter A first antibody gene encoding one of the antibody chains constituting the Fab antibody; A first vector having a first leucine zipper sequence encoding one of a pair of leucine zipper peptides; A promoter, A second antibody gene encoding one of the antibody chains constituting the Fab antibody; A second vector having a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
  • a vector set for preparing a labeled protein-fused Fab antibody A vector set for preparing a labeled protein-fused Fab antibody.
  • Zipbody, Zipbody-Luc and Zipbody-GFP structures A leucine zipper (LZ) was fused to the C-terminus of Hc and Lc to facilitate the association of Hc and Lc. Luc and GFP were genetically fused to the C-terminus of Zipbody Hc.
  • LZ leucine zipper
  • a secondary antibody that recognizes the primary antibody is used, and an antigen is detected by a signal from the secondary antibody.
  • ELISA using a Fab-fluorescent protein fusion fluorescence from the fluorescent protein is detected, and a secondary antibody is not required. Plasmid structure for expressing Zipbody-Luc and Zipbody-GFP.
  • Plasmids were constructed to express mouse-derived anti-E. Coli O157 Fab antibody m6Fab, mouse-derived anti-E. Coli O157 Zipbody, and rabbit-derived anti-L. Monocytogenes Zipbody.
  • Luc gene is m6Fab Hc (pET22 m6Fab Hc-Luc), m6Fab LZ Hc (pET22 m6Fab LZ Hc-Luc), m6Fab LZ Lc (pET22 m6Fab LZ Lc-Luc), m6Fab Lc Hc (both m6Fab LZ W-Luc) and r4Fab LZ Hc (pET22 r4Fab LZ Hc-Luc).
  • the GFP gene was fused to m6Fab LZ Hc (pET22 m6Fab LZ Hc-GFP) and r4Fab LZ Hc (pET22 r4Fab LZ Hc-GFP).
  • the sequence of pET22 m6Fab LZ Hc-Luc is SEQ ID NO.1
  • the sequence of pET22 r4Fab LZ Hc-Luc is SEQ ID NO.2
  • the sequence of pET22 m6Fab LZ Hc-GFP is SEQ ID NO.3
  • pET22 r4Fab LZ Hc-GFP Is shown in SEQ ID NO: 4. Selection of host for expression of Zipbody-fluorescent protein fusion.
  • the affinity of each fusion protein for E.coli O157 was evaluated. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). Luminescent ELISA using anti-E. Coli O157 Zipbody-Luc. An immunoassay was performed using the Luc molecule of the fusion protein. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). ELISA using anti-L. Monocytogenes Zipbody-Luc or anti-L. Monocytogenes Zipbody-GFP. The affinity of each fusion protein for L. monocytogenes was evaluated. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). Luminescent ELISA using anti-L.
  • Monocytogenes Zipbody-Luc An immunoassay was performed using the Luc molecule of the fusion protein. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). Zipbody-GFP fluorescence. The GFP activity of each soluble fusion protein was evaluated. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). Fluorescence ELISA using Zipbody-GFP. An immunoassay using the GFP molecule of the fusion protein was performed. (A) Anti-E. Coli O157, (B) Anti-L.Lmonocytogenes. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). A list of primers.
  • the first aspect of the present invention relates to a labeled protein fusion Fab antibody (hereinafter, sometimes referred to as “the antibody of the present invention” for convenience of explanation).
  • the labeled protein-fused Fab antibody is a Fab antibody fused with a labeled protein, and has a function as an antibody that specifically recognizes a specific antigen, and also has a function of the labeled protein (in the case of an enzyme, a specific protein). Enzyme activity of catalyzing the reaction).
  • the Fab antibody is a fragment antibody composed of an H chain having a VH region and a CH1 region and an L chain having a VL region and a CL region, and does not contain an Fc region.
  • the H chain constituting the Fab antibody may be referred to as Hc and the gene encoding it may be referred to as the Hc gene, respectively, according to common practice.
  • the L chain constituting the Fab antibody may be referred to as Lc, and the gene encoding it may be referred to as Lc gene.
  • the antibody of the present invention contains a leucine zipper as part of its structure.
  • Leucine zippers are used to improve the rate of Fab antibody formation.
  • the binding force unique to the leucine zipper assists the association of Hc and Lc, and the Fab formation efficiency is improved.
  • stabilization of the structure of the Fab antibody can be expected by using a leucine zipper. Stabilization of the structure leads to improvement of antigen recognition ability or specificity.
  • Leucine zipper is a characteristic structure found as a secondary structure motif of proteins (Science. 1988 Jun 24; 240 (4860): 1759-64.).
  • the leucine zipper has a basic skeleton in which 4 to 5 leucine residues are arranged every 7 in an amino acid sequence that tends to have an ⁇ -helix structure. By this skeleton, leucine residues are arranged in almost one row in the ⁇ -helix axis direction, and are hydrophobically linked to the leucine residue sequence in another leucine zipper structure.
  • a pair of peptides referred to as leucine zipper peptide A and leucine zipper peptide B) containing such a characteristic motif is used.
  • Leucine zipper peptide A and leucine zipper peptide B have high affinity and form leucine zippers.
  • Leucine zipper peptide A contains leucine every 7 residues so that a leucine zipper can be formed.
  • leucine zipper peptide B contains leucine every 7 residues. These leucines are arranged so as to correspond to leucine in leucine zipper peptide A (those constituting leucine zipper motif).
  • the length of leucine zipper peptide A and leucine zipper peptide B is not particularly limited, but if it is too short, the desired effect, i.e., the binding force due to the leucine zipper structure, cannot be fully exerted, and if it is too long, the length of Hc and Lc may be reduced due to steric hindrance, etc. May affect association and antibody binding (antigen recognition). Therefore, the length of leucine zipper peptide A and leucine zipper peptide B is, for example, 25 to 50 residues, preferably 28 to 35 residues.
  • the lengths of leucine zipper peptide A and leucine zipper peptide B are basically the same, but may be different in length as long as a leucine zipper structure can be formed.
  • leucine zippers that exert binding force by electrostatic interaction between positively charged amino acids and negatively charged amino acids in addition to hydrophobic bonds between leucine and leucine are adopted. To do. Such leucine zippers (referred to as “charged leucine zippers” for convenience of description) exhibit high binding forces.
  • leucine zipper peptide A and leucine zipper peptide B have the following structural features (a) or (b).
  • (a) Leucine zipper peptide A contains a positively charged amino acid (basic amino acid).
  • Leucine zipper peptide B contains a negatively charged amino acid (acidic amino acid) at a position corresponding to the positively charged amino acid of leucine zipper peptide A.
  • Leucine zipper peptide A contains an acidic amino acid.
  • Leucine zipper peptide B contains a basic amino acid at a position corresponding to the acidic amino acid of leucine zipper peptide A.
  • Examples of basic amino acids are lysine (K), arginine (R), and histidine (H). Among these, K or R may be selected for reasons of charge strength.
  • examples of acidic amino acids are aspartic acid (D) and glutamic acid (E).
  • D aspartic acid
  • E glutamic acid
  • Increasing the number of charged amino acids in the leucine zipper peptide increases the electrostatic interaction, which can be expected to improve the binding power of the leucine zipper. Therefore, the proportion of charged amino acids in the leucine zipper peptide is, for example, 15% to 50%, preferably 20% to 40%.
  • LZA and LZB can be used as a pair of leucine zipper peptides rich in charged amino acids.
  • LZA and LZB The sequences of LZA and LZB are shown below.
  • LZA Leucine zipper peptide that retains negative charge
  • AQLEKELQALEKENAQLEWELQALEKELAQK SEQ ID NO: 5
  • glutamic acid E
  • E glutamic acid
  • LZB Leucine zipper peptide that retains positive charge
  • AQLKKKLQALKKKNAQLKWKLQALKKKLAQK SEQ ID NO: 6
  • lysine (K) is arranged at the 4th, 6th, 11th, 13th, 18th, 20th, 25th, and 27th positions.
  • the antibody of the present invention one of a pair of peptides constituting a leucine zipper (leucine zipper peptide A) is added in a state linked to the C terminus of the H chain (Hc), that is, CH1, and the other (leucine zipper peptide B) is added in a state of being linked to the C terminus of the L chain (Lc), that is, CL.
  • the antibody of the present invention is a Fab antibody in which a leucine zipper is added to the C-terminal, that is, the constant region side.
  • the antibody exhibits specific binding properties depending on the variable region, with the leucine zipper added.
  • the leucine zipper peptide is linked to the H chain and L chain directly or via a linker sequence.
  • a peptide linker is used as the linker.
  • a peptide linker is a linker consisting of a peptide in which amino acids are linked in a straight chain.
  • a typical example of a peptide linker is a linker composed of glycine and serine (GGS linker or GS linker).
  • a GGS linker consists of a sequence in which GGS is repeated one to several times. The number of repetitions is not particularly limited, but is preferably 2 to 6 times, more preferably 2 to 4 times.
  • the GS linker is a sequence in which GGGGS (SEQ ID NO: 7) is repeated one to several times.
  • GGS linker and glycine and serine which are amino acids constituting the GS linker, have a small size per se and are difficult to form higher-order structures in the linker. Therefore, it is unlikely to become an obstacle during the association of Hc and Lc and the formation of the leucine zipper structure.
  • a labeled protein is linked to the H chain, L chain, or both via a leucine zipper peptide. Therefore, the antibody of the present invention can take the following three forms.
  • the form (1) is particularly preferred because high expression efficiency and high antigen affinity were observed when the labeled protein was linked only to the H chain (see Examples below).
  • the labeled protein linked to the H chain and the labeled protein linked to the L chain may not be the same.
  • the labeled protein is not particularly limited. That is, various labeled proteins can be employed as a component of the antibody of the present invention.
  • a labeled protein is a protein whose label is its own luminescence or fluorescence, or an enzyme reaction product.
  • Antibodies fused with labeled proteins are (1) detection and measurement of specific antigens (qualitative or quantitative), (2) labeling, staining or visualization of cells, tissues or organs / organs (eg in vivo imaging), Used for treatment.
  • labeled proteins examples include GFP (green fluorescent protein), EGFP, GFP2, ECFP, EBFP, YFP, mBanana, mOrange, DsRed2, mStrawberry, mCherry, mRasberry, mPlum, Kaede, and other fluorescent proteins, luciferase (Luc), nano Luminescent enzymes such as lanthanum, peroxidase (for example, HRP), alkaline phosphatase, ⁇ -galactosidase, glucose oxidase, and hydrolase.
  • Proteins such as luciferase and GFP are widely used for monitoring gene translation control (Ghim CM, Lee SK, Takayama S, Mitchell RJ. 2010. The art of reporter proteins in science: past, present and future applications. Bmb Reports 43 (7): 451-460.). These proteins can be genetically fused to the protein to be monitored and their behavior detected as a luminescent signal. Luciferase is a general term for enzymes that generate luminescence by oxidizing a substrate (Hastings JW. 1996. Chemistries and colors of bioluminescent reactions: A review. Gene 173 (1): 5-11.).
  • Luciferase from L. cruciata was first reported in 1989 as an enzyme that catalyzes the oxidation of luciferin in the presence of ATP and oxygen molecules (MasudasT, Tatsumi H, Nakano E. 1989.
  • 257 Tyr is known to affect the emission wavelength, and it is yellow-green in the wild type (WT), but Y257F, Y257A, Y257E, Y257R show yellow, orange, red, and yellow, respectively (Wang Y , Akiyama H, Terakado K, Nakatsu T. 2013. Impact of Site-Directed Mutant Luciferase on Quantitative Green and Orange / Red Emission Intensities in Firefly Bioluminescence. Scientific Reports 3.).
  • GFP is a protein that emits green fluorescence. It has been discovered from Aequorea aequorea, etc., and is frequently used for protein expression monitoring (Zimmer M. 2002. Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior. Chemical Reviews 102 (3): 759-781.). Moreover, it is known that misfolding is likely to occur when GFP is expressed in E. coli (Tsien RY. 1998. The green fluorescent protein. Annual Review of Biochemistry 67: 509-544.).
  • Pedelacq and others have developed super folder GFP with high folding efficiency by introducing cycle-3 'mutation (F99S, M153T, V163A) and enhanced GFP mutateon (F64L, S65T) into GFP derived from Pyrobaculum aerophilum (Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology 24 (1): 79-88.).
  • a peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (where X represents any amino acid residue) is linked to the N-terminus of the H chain and L chain, respectively. is doing.
  • the antibody of the present invention is prepared as a protein (tag added protein) in which a specific peptide tag is linked to each antibody chain.
  • the peptide tag used in the present invention is composed of an amino acid sequence of SK, SKX, SKXX (SEQ ID NO: 8), AKXX (SEQ ID NO: 9) or KKXX (SEQ ID NO: 10).
  • X represents any amino acid residue.
  • SK for example, I (Ile), K (Lys), S (Ser), A (Ala) or the like is used.
  • K (Lys), I (Ile) or the like is used.
  • X following AK is preferably I (Ile).
  • AKX is preferably I (Ile) or K (Lys).
  • KK is preferably K (Lys).
  • KKX is preferably K (Lys).
  • SK is a peptide (Ser-Lys) in which serine (Ser) and lysine (Lys) are linked in this order from the N-terminal side to the C-terminal side.
  • SKX is a peptide in which one amino acid residue is added to SK
  • SKXX (SEQ ID NO: 8) is a peptide in which two amino acid residues are added to SK.
  • a specific example of the peptide represented by SKX is SKI (Ser-Lys-Ile).
  • SKXX (SEQ ID NO: 8) is preferably SKIX (SEQ ID NO: 11), that is, contains SKI.
  • SKIX SKIX
  • SKIK SKIK
  • SKII Ser-Lys-Ile-Ile
  • SEQ ID NO: 13 SKII
  • SKKK Ser-Lys-Lys -Lys
  • AKXX is a peptide in which two amino acid residues are added to a peptide (Ala-Lys) in which alanine (Ala) and lysine (Lys) are linked in this order from the N-terminal side to the C-terminal side. It is.
  • Specific examples of the peptide represented by AKXX (SEQ ID NO: 9) are AKIK (Ala-Lys-Ile-Lys) (SEQ ID NO: 15) and AKII (Ala-Lys-Ile-Ile) (SEQ ID NO: 16).
  • KKXX (SEQ ID NO: 10) is a peptide in which two amino acid residues are added to a peptide (LysL-Lys) in which lysine (Lys) and lysine (Lys) are linked in this order from the N-terminal side to the C-terminal side. It is.
  • a specific example of the peptide represented by KKXX (SEQ ID NO: 10) is KKKK (Lys-Lys-Lys -Lys) (SEQ ID NO: 17).
  • the peptide tag used in the present invention is composed of the amino acid sequence of SK, SKX, SKXX (SEQ ID NO: 8), AKXX (SEQ ID NO: 9) or KKXX (SEQ ID NO: 10) as described above, and typically 2-4 Consists of amino acid residues.
  • other amino acid residues may be added to the N-terminal side and / or C-terminal side as long as the function (improving the expression level of the target protein) is not affected.
  • the total length is 5 to 13 amino acid residues, preferably 5 to 10 amino acid residues, more preferably 5 to 7 amino acid residues.
  • a plurality of the above peptide tags (SK, SKX, SKXX (SEQ ID NO: 8), AKXX (SEQ ID NO: 9) or KKXX (SEQ ID NO: 10)) may be used.
  • SK, SKX, SKXX (SEQ ID NO: 8), AKXX (SEQ ID NO: 9) or KKXX (SEQ ID NO: 10) may be used.
  • 2 to 5 peptide tags are linked in tandem.
  • the above peptide tag and other tags for example, His tag, HA tag, FLAG tag, etc.
  • the second aspect of the present invention provides a preparation method of the labeled protein fusion Fab antibody.
  • the preparation method of the present invention comprises antibody H chain gene encoding VH region (heavy chain variable region) and CH1 region (heavy chain constant region 1), VL region (light chain variable region) and CL region (light chain constant region). And expressing an antibody L chain gene encoding).
  • the antibody H chain gene and the antibody L chain gene are coexpressed (step (A), hereinafter referred to as “coexpression step”). That is, the antibody H chain gene and the antibody L chain gene are expressed in the same expression system.
  • the antibody H chain gene and the antibody L chain gene are each expressed.
  • the expression product is mixed after expression, and the antibody H chain and the antibody L chain are associated.
  • a characteristic antibody H chain gene and antibody L chain gene are subjected to expression. That is, as an antibody gene used in the expression step, an Hc gene to which a base sequence (first tag sequence) encoding one (leucine zipper peptide A) of a pair of peptides constituting leucine zipper is added, and the other (leucine) An Lc gene to which a base sequence (second tag sequence) encoding zipper peptide B) has been added is used.
  • the Hc gene and / or Lc gene, or both encodes a labeled protein via a base sequence encoding a leucine zipper peptide (first tag sequence in the case of Hc gene, second tag sequence in the case of Lc gene) Keep the genes linked.
  • a leucine zipper peptide first tag sequence in the case of Hc gene, second tag sequence in the case of Lc gene
  • Such a characteristic Hc gene expression construct and Lc gene expression construct are expressed, and a leucine zipper is added, and a Fab antibody in which a labeled protein is fused to the H chain, the L chain, or both is obtained.
  • the addition position of the first tag sequence is the 3 ′ end of the Hc gene.
  • the addition position of the second tag sequence is the same, and is added to the 3 ′ end of the Lc gene.
  • the first tag sequence and the second tag sequence are linked to the antibody gene directly or via a linker sequence (sequence encoding the linker). In the latter case, a Fab antibody in which leucine zippers are linked by a linker is obtained.
  • the gene encoding the tag protein is a base sequence encoding the leucine zipper peptide (first tag sequence in the case of the Hc gene, second tag in the case of the Lc gene), either directly or via a linker sequence (sequence encoding the linker). Array).
  • the antibody gene (Hc gene, Lc gene) can be directly or via a sequence encoding the peptide tag.
  • An expression construct comprising a structure linked to is used.
  • various sequences can be employed. For example, if the peptide tag is SK, tctaaa or tcg aag sequence, etc.
  • the peptide tag is SKI, tct ⁇ ⁇ aaa ata or tcg aag atc sequence, etc., if the peptide tag is SKIK
  • the peptide tag is SKKK, such as the sequence of tct aaa ata aaa (SEQ ID NO: 18) or tcg aag atc aag (SEQ ID NO: 19), the sequence of tct aaaaaaaa (SEQ ID NO: 20), the peptide tag is SKII
  • tct aaa att att SEQ ID NO: 21
  • the peptide tag is AKIK
  • gca aaa att aaa SEQ ID NO: 22
  • the peptide tag is AKII
  • the sequence of gca ⁇ aa att att SEQ ID NO: 23) and the sequence of aaaaaaaaa
  • protease recognition sequence is an amino acid sequence that is recognized by a specific protease and necessary for cleavage of the protein by the protease.
  • a sortase recognition sequence, an HRV3C recognition sequence, or a TEV protease recognition sequence can be used.
  • a functional sequence such as a sequence encoding a protease recognition sequence, a sequence not having a specific function may be interposed between the sequence encoding the peptide tag and the antibody gene.
  • Hc gene and Lc gene can be prepared by any method.
  • Our research group has developed a method for obtaining Fab antibodies called the SICREX method (Single-Cell RT-PCR Linked In Vitro Expression).
  • the SICREX method makes it possible to obtain a desired antibody from antibody-producing cells in a short time.
  • the Hc gene and the Lc gene are prepared easily and in a short time, and the series of operations is accelerated. In a typical operation of the SICREX method (Biotechnol Prog.
  • B cells are isolated from spleen and peripheral blood of rats and rabbits) or human peripheral blood. Dilute the solution containing the isolated B cells so that the cell count is 1 cell / well. Alternatively, B cells are isolated using a micromanipulator or the like.
  • cDNA is synthesized from mRNA in B cells using reverse transcription PCR (RT-PCR). Subsequently, the Hc gene and the Lc gene are amplified separately by two-step PCR.
  • first primer set a plurality of cDNA-specific primers (first primer set) having the same tag sequence added to the 5 ′ end are used.
  • the second stage PCR is performed using the amplification product of the first stage PCR as a template.
  • a single primer with the same tag sequence added to the 5 'end as the tag sequence used for the first primer set is used, and the amplification product of the first stage PCR is specifically and efficiently used. Amplify to.
  • the single primer used for the second stage PCR is complementary to the 5 ′ end part and the 3 ′ end part of the amplification product obtained by the first stage PCR. Therefore, specific amplification with a single primer becomes possible.
  • Step of preparing mRNA derived from a single B cell ii) Step of preparing cDNA by reverse transcription PCR using said mRNA as a template
  • Step of preparing cDNA by reverse transcription PCR using said mRNA as a template iii) Tag sequence identical to the 5 ′ end (third tag)
  • step Iv performing PCR using a primer set that can amplify an antibody H chain gene (Hc gene) encoding a VH region and a CH1 region, and using the cDNA as a template.
  • a primer set consisting of a plurality of primers containing the same tag sequence (4th tag sequence) at the end and capable of amplifying an antibody L chain gene (Lc gene) encoding VL region and CL region, and using the cDNA as a template (V) performing PCR using a single primer including the third tag sequence and using the amplification product of step (iii) as a template (vi) performing a single step including the fourth tag sequence Using the primers, the amplification product of step (iv) A step of performing PCR using as a template (vii) a step of adding a first tag sequence (sequence encoding leucine zipper peptide A) to the antibody H chain gene (Hc gene) which is an amplification product of step (v) (viii) A step of adding a second tag sequence (sequence encoding leucine zipper peptide B) to the antibody L chain gene (Lc gene) which is an amplification product of step (vi)
  • steps (vii) and (viii) are particularly characteristic of the present invention.
  • the tag sequence in steps (vii) and (viii) can be added by overlap PCR in the same manner as the addition of elements necessary for expression in the cell-free protein synthesis system in the SICREX method.
  • a promoter is used as “an element necessary for expression in a cell-free protein synthesis system”.
  • a promoter and a terminator are used in combination. More preferably, a promoter, a terminator and a ribosome binding site are used in combination.
  • T7 promoter, T3 promoter, SP6 promoter and the like can be used.
  • the terminator for example, a T7 terminator can be used.
  • an improved technique of SICREX method that uses two-step PCR in one operation (one-step PCR) by simultaneously using the primers used for the first-step PCR and the second-step PCR at a predetermined quantitative ratio.
  • the antibody gene is amplified by one-step PCR instead of the conventional two-step PCR.
  • the following steps (a) and (b) are performed in place of the steps (iii) to (vi).
  • a primer set comprising a plurality of primers containing the same tag sequence (fifth tag sequence) at the 5 ′ end and capable of amplifying an antibody H chain gene (Hc gene) encoding a VH region and a CH1 region;
  • B performing PCR using a single primer containing the fifth tag sequence used at a higher concentration than the primer set and using the cDNA as a template
  • a primer set that can amplify an antibody L chain gene (Lc gene) encoding a VL region and a CL region, and a primer set that is used at a higher concentration than the primer set.
  • the amount ratio of the primer set to the single primer is, for example, 1: 2 to 1:50, preferably 1: 5 to 1:20, more preferably 1: 8 to 1:15.
  • the antibody cDNA is specifically amplified by a two-step PCR method (nested PCR method) using an outer primer and an inner primer. Also good.
  • steps (I) to (IV) are performed.
  • IV Amplifying the antibody L chain gene by a nested PCR method using the cDNA as a template.
  • the Hc gene (the first tag sequence is added.
  • the tag protein gene is also linked.
  • the Lc gene (the first tag sequence is added.
  • the co-expression step of the labeled protein gene is also performed in an expression system using a host cell or a cell-free protein synthesis system.
  • an expression vector holding the Hc gene so that it can be expressed and an expression vector holding the Lc gene so that it can be expressed are prepared, and an appropriate host is transformed with these expression vectors.
  • the host is transformed with an expression vector capable of co-expressing the Hc gene and the Lc gene.
  • the obtained transformant is cultured under conditions that allow expression of the antibody gene from the expression vector, and then the labeled protein-fused Fab antibody, which is an aggregate of expression products, is recovered from the transformant or culture medium .
  • an appropriate host is transformed with an expression vector that holds the Hc gene so that the Lc gene can be expressed.
  • An appropriate host is transformed with an expression vector retained so as to allow expression.
  • the expression product is recovered from the transformant or the culture solution. Thereafter, the expression products are mixed and associated to obtain a labeled protein fusion Fab antibody.
  • E. coli bacterial cells
  • yeast cells for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris
  • filamentous fungi cells for example, Aspergillus oryzae, Aspergillus niger
  • mammalian cells for example, CHO cells, Sp2 / 0 cells, NS0 cells
  • E. coli is employed as the host.
  • E. coli is suitable for the efficient and large-scale preparation of the target protein.
  • T7 promoter Various expression systems using T7 promoter, lac promoter, tac promoter, trp promoter, T3 promoter, SP6 promoter, low-temperature expression promoter (cold shock gene cspA promoter) and the like can be used.
  • the T7 promoter and the low-temperature expression promoter are particularly preferred promoters because they have the advantages of being easily induced and capable of strong expression control. Therefore, it is preferable to use an expression system using a T7 promoter or a low temperature expression promoter.
  • E. coli expression system the expression system using E. coli as a host
  • E. coli expression system the cell-free protein synthesis system using E. coli-derived components (described later) are comprehensively used. Expression system ".
  • the expression vector may be selected in consideration of the relationship with the host.
  • Each operation and conditions such as transformation, culture, and recovery may be in accordance with conventional methods. Alternatively, each operation may be performed according to past reports.
  • the cell-free protein synthesis system does not use living cells, but uses ribosomes derived from living cells (or obtained by genetic engineering techniques), transcription / translation factors, etc. It means to synthesize in vitro.
  • a cell-free protein synthesis system a cell extract obtained by purifying a cell disruption solution as needed is generally used.
  • Cell extracts generally contain ribosomes necessary for protein synthesis, various factors such as initiation factors, and various enzymes such as tRNA.
  • other substances necessary for protein synthesis such as various amino acids, energy sources such as ATP and GTP, and creatine phosphate are added to the cell extract.
  • a ribosome, various factors, and / or various enzymes prepared separately may be supplemented as necessary during protein synthesis.
  • the cell-free protein synthesis system has the following advantages. First, since there is no need to maintain live cells, operability is good and the degree of freedom of the system is high. Therefore, it is possible to design a synthetic system with various modifications and modifications according to the properties of the target protein. Next, in the synthesis of cell systems, it is basically impossible to synthesize proteins that are toxic to the cells used, but in the cell-free system, even such toxic proteins can be produced. In addition, high throughput can be easily achieved because many types of proteins can be synthesized simultaneously and rapidly. It also has the advantage that the produced protein can be easily separated and purified, which is advantageous for high throughput. In addition, it also has the advantage that non-natural proteins can be synthesized by incorporating non-natural amino acids.
  • a cell-free protein synthesis system If a cell-free protein synthesis system is adopted, a series of operations of the preparation method of the present invention can be performed according to the SICREX method, and a labeled protein-fused Fab antibody can be prepared efficiently and rapidly.
  • E. coli S30 extract system prokaryotic cell system
  • wheat germ extract system eukaryotic cell system
  • rabbit reticulocyte lysate system eukaryotic cell system
  • the E. coli 30S fraction is prepared through steps of E. coli collection, cell disruption, and purification.
  • the preparation of the 30S fraction of E. coli and the cell-free transcription / translation coupling reaction were performed by the method of Pratt et al. (Pratt, J. M .: Chapter 7, in “Transcription and Translation: A practical approach”, ed. By B. D. Hames & S. J. Higgins, pp. 179-209, IRL Press, New York (1984)) and Ellman et al. (Ellman, llJ. Et al .: Methods Enzymol., 202, 301-336 (1991)) This can be done with reference.
  • the wheat germ extract system has the advantage of efficiently synthesizing high-quality eukaryotic proteins, and is often used to synthesize eukaryotic proteins that are difficult to synthesize using the E. coli S30 extract system. Is done. Recently, it has been reported that a highly efficient and stable synthetic system is constructed by preparing an extract from germs from which seed endosperm components have been washed away (Madin, K. et al .: Proc. Natl. Acad. Sci. USA, 97: 559-564, 2000). After that, technical developments such as mRNA untranslated sequence with high translation promoting ability, protein synthesis method for multi-item function analysis using PCR, construction of dedicated high expression vector, etc. were carried out (Sawasaki, T. et al .: Proc Natl. Acad. Sci. USA, 99: 14652-14657, 2002), is expected to be applied in various fields.
  • the wheat germ extract can be obtained by grinding and centrifuging wheat germ and then separating the supernatant by gel filtration.
  • Anderson et al. the method of Anderson et al. (Anderson, C. W. et al .: Methods Enzymol., 101, 638-644 (1983)) can be referred to. Improved methods have also been reported, such as the method of Kawarazaki et al. (Kawarasaki, Y. et al .: Biotechnol. Prog., 16, 517-521 (2000)) and the method of Madin et al. (Madin, K. et al. : Proc. Natl. Acad. Sci. USA, 97: -559-564, 2000).
  • Rabbit reticulocyte lysate system is suitable for globulin production.
  • Rabbit reticulocyte lysate is made anemic by injecting phenylhydrazine intravenously into rabbits for several days, blood is collected after a predetermined period (for example, day 8), and then subjected to ultracentrifugation from the hemolyzed solution. can get.
  • the preparation of rabbit reticulocyte lysate can be performed with reference to the method of Jackson and Hunt (Jackson, R. J. and Hunt, T .: Methods Enzymol., 96, 50-74 (1983)). .
  • the cell-free protein synthesis system that can be used in the practice of the present invention is not limited to the above-described ones, for example, bacterial extracts other than E. coli and plant extracts other than wheat, insect-derived extracts, animal cell-derived extracts, Alternatively, a system constructed based on genome information may be used. Preferably, an E. coli S30 extract system (prokaryotic cell system) or a system reconstituted based on the E. coli genome as described above is used. These systems are also commercially available as kits and can be used easily.
  • the expressed or synthesized labeled protein-fused Fab antibody can be recovered by conventional methods (centrifugation, filtration, affinity chromatography, etc.). If a collection tag sequence (for example, histidine tag) is incorporated into the Hc gene and the Lc gene, the tag sequence can be used for easy and simple collection.
  • a collection tag sequence for example, histidine tag
  • Refolding operation may be performed after expression.
  • Refolding is an operation of rewinding to an active natural structure, and is roughly divided into a dilution method and a dialysis method.
  • the expression product is solubilized with a denaturing agent such as guanidine hydrochloride (in combination with a reducing agent such as DDT or ⁇ -mercaptoethanol to form a disulfide bond), and then diluted in a refolding buffer.
  • a denaturing agent such as guanidine hydrochloride (in combination with a reducing agent such as DDT or ⁇ -mercaptoethanol to form a disulfide bond)
  • dialysis method after treatment with a denaturant, dialysis is performed using a dialysis solution in which the concentration of the denaturant is reduced stepwise to remove the denaturant.
  • the peptide tag is linked to the N-terminus of the H chain and L chain with the protease recognition sequence interposed.
  • the peptide tag is cleaved by prosthesis treatment ( It is possible to obtain a labeled protein-fused Fab antibody that has been separated.
  • Vector for preparing labeled protein-fused Fab antibody The present invention also provides a vector for preparing labeled protein-fused Fab antibody.
  • a promoter, a first cloning site for a gene encoding one antibody chain constituting a Fab antibody, and a first leucine zipper sequence encoding one of a pair of leucine zipper peptides A second cloning site for a gene encoding the other antibody chain constituting the Fab antibody, and a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and the first leucine zipper A sequence encoding a labeled protein is arranged downstream of the sequence and / or the second leucine zipper sequence.
  • the Hc gene and the Lc gene are inserted into the first cloning site and the second cloning site (the antibody gene that has not been inserted into the first cloning site is inserted into the second cloning site).
  • a vector expressing the desired labeled protein-fused Fab antibody is completed. Therefore, it can be said that it is a versatile vector.
  • a promoter a first antibody gene encoding one antibody chain constituting a Fab antibody, a first leucine zipper sequence encoding one of a pair of leucine zipper peptides, and the Fab
  • a second antibody gene encoding the other antibody chain constituting the antibody and a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and the first leucine zipper sequence and / or the first leucine zipper sequence
  • a sequence encoding a labeled protein is arranged downstream of the 2 leucine zipper sequence.
  • a pair of antibody genes (Hc gene and Lc gene) corresponding to the Fab antibody are incorporated.
  • the antibody gene is obtained by inserting a pair of antibody genes into the vector of the first embodiment. Can do.
  • the vector of the present invention can be constructed, for example, as a vector using E. coli as a host or a vector using yeast as a host.
  • Escherichia coli When Escherichia coli is used as a host, a promoter that functions in Escherichia coli, such as T7 promoter, lac promoter, tac promoter, trp promoter, T3 promoter, SP6 promoter, cold expression promoter ( Cold shock gene cspA promoter) and the like.
  • a ribosome binding site is usually incorporated downstream of the promoter (between the promoter and the first cloning site in the first embodiment and between the promoter and the first antibody gene in the second embodiment).
  • the ribosome binding site contains a sequence (SD sequence) to which the liposome binds.
  • SD sequence is a sequence rich in adenine and guanine, and consists of, for example, the AGGAGG sequence.
  • the expression vector is in the form of a plasmid.
  • the vector of the present invention When constructing the vector of the present invention as a vector using yeast as a host, it typically takes the form of a plasmid.
  • a shuttle vector having an origin of replication capable of replicating in E. coli may be used.
  • promoters examples include GAL1, GAL10, AOX1, pTEF1, pADH1, pTPI1, pHXT7, pTDH3, pPGK1, or pPYK1.
  • Nutritional complement genes eg, URA3 gene, HIS3 gene, LYS2 gene, LEU2 gene, etc.
  • URA3 gene, HIS3 gene, LYS2 gene, LEU2 gene, etc. can also be incorporated into the vector.
  • the vector of the present invention may contain, in addition to the above-described elements, elements necessary for propagation in host E. coli, elements necessary or useful for expression of antibody genes, elements useful for detection and identification, and the like.
  • elements that can be incorporated into the vector of the present invention include replication origin, terminator (eg, T7 terminator), drug resistance gene (ampicillin resistance gene, kanamycin resistance gene, chloramphenicol resistance gene, streptomycin resistance gene, etc.) It is.
  • a sequence encoding a peptide tag may be incorporated in the vector so that the antibody is expressed as a protein (tag added protein) in which a peptide tag is linked to each antibody chain.
  • the amino acid sequence of SK, SKX, SKXX, AKXX, or KKXX arranged immediately before the first cloning site and immediately before the second cloning site and immediately after the start codon.
  • a sequence encoding a peptide tag consisting of (wherein X represents any amino acid residue) is arranged.
  • similar sequences are arranged immediately before the first antibody gene and immediately before the second antibody gene.
  • the sequence encoding the peptide tag and the first and second cloning sites (in the first embodiment), or the sequences encoding the first and second antibody genes (in the second embodiment) are directly or other sequences. It is connected via.
  • Hc and Lc are expressed by one vector, but Hc and Lc can also be expressed by separate vectors. Further aspects of the invention (third and fourth aspects) provide a set of vectors used for such expression. In addition, about the matter which is not demonstrated especially, the corresponding description of a 1st aspect or a 2nd aspect is used.
  • a promoter, a first cloning site for a gene encoding one antibody chain constituting a Fab antibody, and a first leucine zipper encoding one of a pair of leucine zipper peptides are provided.
  • a sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
  • a first vector having a promoter, a first antibody gene encoding one antibody chain constituting a Fab antibody, and a first leucine zipper sequence encoding one of a pair of leucine zipper peptides A vector set comprising a second vector having a promoter, a second antibody gene encoding one of the antibody chains constituting the Fab antibody, and a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides
  • a sequence encoding a labeled protein is disposed downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
  • a sequence encoding a peptide tag can be incorporated as in the first and second aspects.
  • a further aspect of the present invention relates to use of the labeled protein fusion Fab antibody.
  • the labeled protein-fused Fab antibody of the present invention has a function as an antibody, that is, an affinity for a specific antigen, and also has a labeling ability due to fusion of the labeled protein, and a specific target (antigen) It is useful as a reagent for specific detection or measurement. For example, it can be applied to various immunological methods (for example, ELISA method), labeling, staining or visualization (for example, in vivo imaging) of cells, tissues or organs / organs.
  • a labeled protein-fused Fab antibody derived from a specific subject for example, a patient suffering from a specific disease
  • diagnosis evaluation of disease state and therapeutic effect
  • a protein capable of exerting a therapeutic effect such as an enzyme exhibiting anticancer activity
  • the labeled protein-fused Fab antibody can be used as a therapeutic antibody.
  • the present invention further provides a detection kit containing the reagent of the present invention.
  • detection and measurement using the reagent of the present invention can be performed more easily.
  • the kit of the present invention contains the reagent of the present invention as a main component. Other reagents, reaction solutions, containers / equipment necessary for detection and measurement may be included in the kit of the present invention. Usually, an instruction manual is attached to the kit of the present invention.
  • LZ leucine zipper
  • E. coli DH5 ⁇ was used as a host strain for gene manipulation.
  • E. coli SHuffle (registered trademark) T7 express (New England biolabs, fhuA2 lacZ :: T7 gene1 [lon] ompT ahpC gal ⁇ att :: pNEB3-r1-cDsbC (Spec R , lacI q ) ⁇ trxB sulA11 R (mcr-73 :: miniTn10--Tet S ) 2 [dcm] R (zgb-210 :: Tn10 --Tet S ) endA1 ⁇ gor ⁇ (mcrC-mrr) 114 :: IS10), E.
  • coli BL21 DE3) pLysS (Promega, F - , ompT, hsdS (r B -, m B -)., dcm, gal, ⁇ (DE3), pLysS, Cm r), E coli Rosetta-gami TM 2 (DE3) pLysS ( Merck Millipore, ⁇ (ara-leu) 7697 ⁇ lacX74 ⁇ phoA PvuII phoR araD139 ahpC galE galK rpsL (DE3) F ′ [lac + lacIq pro] gor522 :: Tn10 trxB pLysSRARE2 (CamR, StrR, TetR)) was used. E. coli was cultured at 37 ° C. or 16 ° C. using LB medium. Ampicillin was appropriately added as a selection marker so as to be 100 ⁇ g / mL.
  • Plasmids were extracted from the generated colonies, and DNA sequence analysis was performed using BigDye Terminator v3.1 cycle sequencing kit and ABI PRISM 3100 genetic analyzer. The prepared plasmid was designated as pCold orange Luc.
  • the prepared plasmid was designated as pCold green Luc.
  • Plasmid pET22m6Fab LZ Hc-Luc for expressing the protein m6Fab LZ Hc-Luc in which Luc was fused to the C-terminus of Hc of m6Fab LZ was prepared (FIG. 3).
  • primers L. cruciata Luc F and L. cruciata Luc R (FIG. 13) were used for PCR [2 minutes at 94 ° C.
  • Each DNA amplification product was treated with Dpn I (Takara), then purified with FastGene Gel / PCR Extraction Kit (Nippon Genetics Co., Ltd.), and Luc gene was converted to Hc C of m6Fab LZ with Gibson Assembly (New England BioLabs). Fused to the ends.
  • Each fused DNA was introduced into E. coli DH5 ⁇ , the generated colonies were cultured overnight in LB medium, and the plasmid was extracted with FastGene Plasmid Mini Kit] (Nippon Genetics). The sequence of each plasmid was confirmed by a DNA sequence analysis service (Fusmac Co., Ltd.). The operation after amplification of the DNA fragment was carried out in the same manner in the subsequent plasmid construction experiments (2-4) to (2-9).
  • the cells were suspended in 2 mL of PBS, and the cells were crushed with zirconia / silica beads 0.1 mm (Ieda Trading Co., Ltd.) and a bead-type cell crusher Micro Smash TM MS 100R. Centrifuged at 14,000 x g for 10 minutes at 4 ° C. The obtained supernatant was used as a soluble fraction. The precipitate was suspended in 2 mL of PBS to obtain an insoluble fraction.
  • the polyacrylamide gel after electrophoresis was transferred to a nitrocellulose membrane using iBlot (registered trademark) Dry Blotting System (Thermo Fisher Scientific Inc.) and iBlot (registered trademark) Gel Transfer Stacks Nitrocellulose, Mini (Thermo Fisher Scientific Inc.) .
  • iBlot registered trademark
  • Dry Blotting System Thermo Fisher Scientific Inc.
  • iBlot registered trademark
  • Gel Transfer Stacks Nitrocellulose, Mini Thermo Fisher Scientific Inc.
  • the plate was washed with PBS-T for 5 minutes.
  • 2,000-fold diluted anti-hemagglutinin, monoclonal antibody, peroxidase binding (Wako Pure Chemical Industries) or 5,000-fold diluted Anti-Flag, chicken-Poly, HRP (GeneTex, Inc.) were added and shaken for 30 minutes.
  • Emission-ELISA Zipbody-Luc was used as a primary antibody, and its luminescence was used as an index, and ELISA was performed without using a secondary antibody.
  • 96-well nunc white immunoplate maxi soap (Thermo scientific, Inc.) was coated with antigen, blocked, washed wells, and each sample was added. After further washing the wells, 20 ⁇ L of an equal volume of PBS and ONE-Glo TM Luciferase Assay System was added. Luminescence was measured per second with a microplate reader.
  • Fluorescence-ELISA Zipbody-GFP was used as a primary antibody, and its luminescence was used as an index, and ELISA was performed without using a secondary antibody.
  • 96-well nunc black immunoplate maxisorp (Thermo Fisher Scientific Inc.) was coated with antigen, blocked, washed wells, and each sample was added. After further washing the wells, 20 ⁇ L of PBS was added. The fluorescence per 20 ⁇ s at 530 nm with respect to the excitation light at 488 nm was measured with a microplate reader.
  • the insoluble fraction was dissolved in 100 mM Tris HCl (pH 7.5) containing 1 mL of 6 M GuHCl and 10 mM mercaptoethanol, and incubated overnight at 4 ° C. Subsequently, the mixture was transferred to a dialysis tube and dialyzed for 12 hours using 100 mM Tris HCl (pH 7.5) containing 6M GuHCl as a dialysis buffer. Thereafter, every 12 hours, the dialysis buffer was replaced with 100 mM Tris HCl (pH 7.5) containing GuHCl at concentrations of 3, 2, 1, 0.5, and 0 M (pH 7.5) only (1M dialysis contains 375 ⁇ M ⁇ ⁇ GSSG). The supernatant was collected at 14,000 ⁇ g for 5 minutes, and the retention of activity was confirmed by fluorescence ELISA.
  • the refolded Zipbodyzyme was purified using Ni-sepharose 6 Fast Flow (GE Health care) according to the manual. Subsequently, the antibody titer of m6Fab LZ Hc-GFP after purification was examined by BLitz using an Aminopropylsilane sensor.
  • the program is as follows: Initial Baseline 30 seconds, Loading 120 seconds, Baseline 30 seconds, Association 120 seconds, Dissociation 120 seconds.
  • E. coli BL21 (DE3) pLysS In particular, high expression was observed in both fractions in E. coli SHuffle (registered trademark) T7 express. On the other hand, expression was not confirmed from E. coli Rosetta-gami TM 2 (DE3).
  • E. coli SHuffle (registered trademark) T7 express was used, a signal 18.4 times as high as that of the clone into which pET22b, which was a negative control, was introduced.
  • E. coli BL21 (DE3) pLysS and E. coli Rosetta-gami TM 2 (DE3) were used, the activity was only as high as that of the clone into which the negative control pET22b was introduced. From this result, E. coli SHuffle (registered trademark) T7 express was used for the subsequent experiments.
  • E. coli SHuffle (registered trademark) T7 express E. coli BL21 (DE3) pLysS, E. coli Rosetta-gami TM 2 (DE3) pLysS. The productivity was compared (Fig. 4).
  • E. coli SHuffle (registered trademark) T7 express is characterized in that the chaperone DsbC that optimizes the disulfide bond originally present in the periplasm is highly expressed in the cytoplasm and the cytoplasm is in a reduced state.
  • BL21 (DE3) pLysS holds a plasmid pLysS encoding a T7 lysozyme gene that inhibits transcription of T7 RNA polymerase, and is a strain capable of strict expression control by IPTG.
  • Rosetta-gami TM 2 (DE3) pLysS can enhance disulfide bond formation due to the cytoplasm being oxidized by two types of reductase mutations.
  • E. coli has a tRNA corresponding to a codon having a small abundance and is a host capable of expressing a protein regardless of species differences.
  • E. coli SHuffle (registered trademark) T7 express had the highest expression level and the antigen affinity of the soluble fraction was high.
  • E. coli Rosetta-gami TM 2 (DE3) was also oxidative in the cytoplasm and suitable for disulfide bond formation, but both the expression level and ELISA signal were low. From this result, it is considered that DsbC expressed in the cytoplasm of E. coli SHuffle (registered trademark) T7 express is important for correct folding of m6Fab LZ.
  • E. coli SHuffle (registered trademark) T7 express has been reported by Robinson et al.
  • m6Fab LZ Hc-Luc in which Luc was genetically fused to the Hc of Zipbody m6Fab ⁇ ⁇ LZ, was expressed in the cytoplasm of E. coli SHuffle (registered trademark) T7 express.
  • E. coli SHuffle registered trademark
  • m6Fab Hc-Luc in which Luc was fused to Hc of m6Fab without LZ was also compared.
  • the expression of each fusion protein was confirmed by Western blotting and retained almost the same Luc activity and antigen affinity (FIGS. 5 to 7).
  • m6Fab LZ Hc-Luc showed a signal about 15 times higher than m6Fab Hc-Luc (FIG. 8). From this result, it was found that a complex in which an enzyme is fused to a Zipbody having LZ can be detected by highly sensitive antigen detection using the Luc moiety. The main factor is that the fusion protein is stabilized by the presence of LZ.
  • m6Fab LZ Lc-Luc fused to Lc and m6Fab LZ W-Luc fused to both Hc and Lc were examined in order to optimize the fusion site of Luc to Zipbody.
  • m6Fab LZ Lc-Luc and m6Fab LZ W-Luc were not detected in any of the Lc bands fused to Luc, and m6Fab LZ W-Luc had a band corresponding to the Hc-Luc fusion. Only a small amount was detected (FIG. 5). From this, it was found that the expression level was decreased by fusion of Luc to Lc.
  • Fab antibodies have been reported to produce fusion proteins with alkaline phosphatase (Weiss E, Orfanoudakis G. 1994. Application of an alkaline-phosphatase fusion protein system suitable for efficient screening and production of fab-enzyme conjugates in Escherichia coli. Journal of Biotechnology 33 (1): 43-53 .; Carrier A, Ducancel F, Settiawan NB, Cattolico L, Maillere B, Lreonetti M, Drevet P, Menez A, Boulain Jcomant conjugates for diagnosis of human iggs-application to anti-hbsag detection.
  • R4Fab ⁇ LZ Hc-Luc in which Luc was added to the Hc of r4Fab LZ, a rabbit-derived anti-L. Monocytogenes antibody, was expressed in order to investigate whether a fusion protein with Luc could be produced using a Zipbody other than m6Fab LZ. According to prior studies by the inventors, it has been known that r4Fab LZ requires purification in order to perform ELISA. Also in this study, a significant signal could not be detected by ELISA before the soluble fraction before purification, but a significant signal could be detected by luminescence ELISA using the same fraction (FIGS. 9 and 10).
  • a luminescence ELISA can be performed even with a Zipbdy-Luc fusion produced from a rabbit-derived Zibpdoy. Moreover, it means that the sensitivity of the luminescence ELISA is higher than that of a general ELISA using a secondary antibody. Because of the successful production of Zipbody-Luc that retains activity from both mouse-derived antibody m6Fab LZ and rabbit-derived antibody r4Fab LZ, Luc can be fused universally to Zipbody derived from various species. The possibility is suggested.
  • m6Fab ⁇ LZ ⁇ Hc-GFP and r4Fab LZ Hc-GFP were prepared by fusing GFP with mouse and rabbit-derived Zipbody Hc.
  • fluorescent ELISA was performed using the soluble fraction, a significant signal was obtained with m6Fab LZ Hc-GFP (FIG. 11).
  • no significant signal was obtained with r4Fab LZ Hc-GFP.
  • Western blotting analysis shows the expression of r4Fab LZ Hc-GFP in Hc-LZ-GFP and Lc-LZ (Fig. 5). Consideration is necessary.
  • GFP-ELISA Unlike Luc, HRP, and alkaline phosphatase, GFP-ELISA has the merit that it can be detected without the need for a substrate, and an assay at a low running cost is expected. Since GFP and Zipbody were successfully genetically fused not only with Luc, it is considered that Zipbody can be genetically fused with various enzymes and expressed in E. coli.
  • insoluble m6Fab LZ Hc-GFP expressed at 37 ° C was refolded to successfully prepare a fusion that retained both antibody and GFP activity.
  • the antibody titer of this molecule was equivalent to that without GFP fusion.
  • fusion proteins can be produced in the future by combining Zipbody derived from various biological species (human, goat, rat, etc.) and various types of enzymes (horseradish peroxidase, alkaline phosphatase, etc.). It is done.
  • Plasmid 1 the amino acid Ser-Lys-Ile immediately after the start codon of heavy chain and light chain of pET22 m6Fab LZ (plasmid 1) in which the gene of m6Fab LZ was introduced into the NdeI site of the expression vector pET22b PET22 SKIKm6Fab LZ (plasmid 2) into which the DNA sequence 5′-TCTAAAATAAAA-3 ′ (SEQ ID NO: 18) encoding -Lys (SKIK) was inserted was prepared.
  • AP alkaline phosphatase
  • Plasmid 3 includes a heavy chain-LZA-AP-His tag (amino acid sequence shown in SEQ ID NO: 35) and a light chain-LZB-FLAG tag (amino acid sequence shown in SEQ ID NO: 36) between the T7 promoter and T7 terminator. These genes are located in series so that both polypeptide chains can be expressed.
  • the sequence of the gene coding region of pET22b SKIK m6FabLZ-AP (plasmid 3) is shown in SEQ ID NO: 37.
  • Ni-NTA affinity chromatography (Wako Pure Chemicals, binding buffer: 50 mM TrisHCl (pH 8.0), 500 mM NaCl, 20 mM Imidazole, washing solution: 50 mM TrisHCl (pH 8.0), 500 mM NaCl, 50 mM Imidazole, eluent: 50
  • the collected fraction was applied to mM TrisHCl (pH 8.0), 500 mM NaCl, 500 mM Imidazole), and the collected fraction was concentrated by ultrafiltration Amicon centrifugal filter (10 KDa cut-off) to obtain 1.2 liter of a solution having a protein concentration of 0.13 mg / mL.
  • the AP activity measurement method is as follows. A substrate solution containing paranitrophenyl phosphate (pNPP) (0.1 M Tris-HCl (pH 8.0), 5 mM pNPP) was dispensed in 500 ⁇ L aliquots, 5 ⁇ L of enzyme solution was added thereto, and incubated at 37 ° C. for 30 minutes. . After 50 ⁇ L of 2 M NaOH was added to stop the reaction, absorbance at 410 nm was measured. An enzyme solution containing 1% BSA was used as a negative control.
  • pNPP paranitrophenyl phosphate
  • AP-ELISA is the same method as the light-emitting ELISA except that a transparent Maxisorp plate is used and color development is used as an index. Specifically, after washing the Zipbodyzyme solution, 350 ⁇ L of a substrate solution containing pNPP was added and reacted at 37 ° C. for 30 minutes. After 35 ⁇ L of 2M NaOH was added to stop the reaction, the absorbance at 410 nm was measured.
  • FIGS. 16B and 16C The results of normal ELISA and AP-ELISA are shown in FIGS. 16B and 16C, respectively.
  • a specific ELISA signal for the antigen E. coli O157 was detected at a sample concentration of 320 ⁇ ng / mL or more and in AP-ELISA at a concentration of 32000 ng / mL.
  • the antibody of the present invention has a stable structure and exhibits high affinity for an antigen. Moreover, the fused labeled protein (for example, an enzyme) exhibits a sufficient function.
  • the antibody of the present invention having such excellent characteristics includes various detection methods represented by ELISA, staining of cells or tissues, use for in vivo imaging, and further use / application for diagnosis and treatment of diseases. There is expected.
  • SEQ ID NO: 1 Description of artificial sequence: pET22 m6Fab LZ Hc-Luc SEQ ID NO: 2 Description of artificial sequence: pET22 r4Fab LZ Hc-Luc SEQ ID NO: 3 Description of artificial sequence: pET22 m6Fab LZ Hc-GFP SEQ ID NO: 4: Description of artificial sequence: pET22 r4Fab LZ Hc-GFP Sequence number 5: Description of artificial sequence: LZA Sequence number 6: Description of artificial sequence: LZB SEQ ID NO: 7: description of artificial sequence: linker SEQ ID NO: 8-24: description of artificial sequence: tag sequence SEQ ID NO: 25-34: description of artificial sequence: primer SEQ ID NO: 35: description of artificial sequence: heavy chain-LZA-AP -His tag SEQ ID NO: 36: Description of artificial sequence: light chain-LZB-FLAG tag SEQ ID NO: 37: Description of artificial sequence: gene coding region of pET22b SKIK m6FabLZ-AP

Abstract

The present invention addresses the problem of providing a novel antibody that has excellent properties inherent to antibodies and enables a labeling protein fused therewith to sufficiently function. Provided is an Fab antibody fused with a labeling protein, wherein one of a pair of peptides that constitute a leucine zipper is added to the C-terminus of the H-chain and the other of said pair is added to the C-terminus of the L-chain respectively and the labeling protein is attached to the H-chain and/or the L-chain via the peptide(s).

Description

標識タンパク質を融合した抗体Antibody fused with labeled protein
 本発明は標識タンパク質を融合した抗体に関する。詳しくは、標識タンパク質融合Fab抗体及びその用途に関する。本出願は、2016年8月3日に出願された日本国特許出願第2016-152447号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to an antibody fused with a labeled protein. Specifically, the present invention relates to a labeled protein fusion Fab antibody and its use. This application claims priority based on Japanese Patent Application No. 2016-152447 filed on August 3, 2016, the entire contents of which are incorporated by reference.
 抗体と酵素の融合体(酵素融合抗体)は、ELISAやウェスタンブロッティング、細胞染色、生体内物質のイメージング、がん治療などに活用されている(非特許文献1~5)。従来、抗体の酵素修飾は、化学修飾で主に行われてきたが、「修飾する酵素量の定量的な制御ができない」、「化学修飾の実験が必要になる」といった欠点があった。それらの欠点の解決策として、遺伝子的に酵素を融合させた抗体を作製した例が報告されているが(非特許文献6、7)、多くはscFv抗体(単鎖Fv抗体)に関するものであり、L鎖とH鎖のV領域間の相互作用は一般的には弱く、安定した抗原結合部位を形成できずに抗原親和性が低下したり、或いは十分な酵素活性を発揮できないことも多い。 Antibody-enzyme fusions (enzyme-fused antibodies) are used for ELISA, Western blotting, cell staining, in vivo substance imaging, cancer treatment, and the like (Non-Patent Documents 1 to 5). Conventionally, enzyme modification of an antibody has been mainly carried out by chemical modification, but has the disadvantages that “the amount of enzyme to be modified cannot be quantitatively controlled” and “experiment of chemical modification is required”. As a solution to these disadvantages, an example in which an antibody in which an enzyme is genetically fused is prepared has been reported (Non-patent Documents 6 and 7), but most are related to scFv antibodies (single-chain Fv antibodies). In general, the interaction between the V region of the L chain and the H chain is weak, and it is often impossible to form a stable antigen-binding site, resulting in a decrease in antigen affinity or a sufficient enzymatic activity.
国際公開第2015/190262号パンフレットInternational Publication No. 2015/190262
 酵素等の標識タンパク質を融合した抗体には、各種検出法での利用はもとより、診断や治療等の医療分野への応用も期待できる。しかしながら、各種用途への使用に適した、十分な機能を有する標識タンパク質融合抗体は開発できていない。そこで本発明は、抗体本来の特性(即ち抗原の認識)に優れ、且つ融合した標識タンパク質が十分な機能を発揮する、新規な抗体を提供することを課題とする。 An antibody fused with a labeled protein such as an enzyme can be used not only for various detection methods but also for medical applications such as diagnosis and treatment. However, a labeled protein fusion antibody having a sufficient function suitable for use in various applications has not been developed. Therefore, an object of the present invention is to provide a novel antibody that is excellent in the original characteristics of an antibody (that is, recognition of an antigen) and that the fused labeled protein exhibits a sufficient function.
 上記の通り、酵素を融合した抗体を遺伝子工学的に調製する試みはあるものの、その多くはscFv抗体に関するものであった。抗体の別の形態としてFab抗体があるが、遺伝子工学的手法によってFab抗体に酵素等の標識タンパク質を融合したという報告はあるものの、その数は多くない。数少ない報告の一つである非特許文献6では、抗human tumor necrosis factor α (TNF)のFab抗体にアルカリフォスファターゼ(PhoA)を遺伝子的に融合し、大腸菌の分泌発現系で作製している。また、ごく最近の報告として、分割したナノルシフェラーゼ遺伝子を抗HER2のFab抗体に融合し、大腸菌で発現させた例がある(非特許文献9)。これらの報告の共通点は、各々の研究環境において最も扱いやすい抗体遺伝子一種類を用いているにすぎない点である。また、そもそもFab抗体を大腸菌で安定的に作製できる条件下で検討しており、その汎用性は示されていない。近年、Fab抗体の分泌発現は非常に困難であることが明らかになる一方で、汎用性及び実用性に優れたFab抗体の発現技術は実現できていない。実際、非特許文献6が報告されて以後、Fab抗体と酵素を融合する技術に関する報告は見当たらない。 As described above, although there have been attempts to genetically prepare an antibody fused with an enzyme, most of them have been related to scFv antibodies. There is a Fab antibody as another form of the antibody. Although there are reports that a labeled protein such as an enzyme is fused to the Fab antibody by a genetic engineering technique, the number is not large. In Non-Patent Document 6, which is one of the few reports, alkaline phosphatase (PhoA) is genetically fused to an anti-human tumor necrosis factor α (TNF) Fab antibody and produced in a secretory expression system of Escherichia coli. Furthermore, as a recent report, there is an example in which a divided nanoluciferase gene is fused to an anti-HER2 Fab antibody and expressed in Escherichia coli (Non-patent Document 9). The common point of these reports is that they use only one kind of antibody gene that is most manageable in each research environment. In the first place, Fab antibodies have been studied under conditions that can be stably produced in E. coli, and their versatility has not been shown. In recent years, it has become clear that secretory expression of Fab antibodies is very difficult, but Fab antibody expression technology with excellent versatility and practicality has not been realized. In fact, since Non-Patent Document 6 has been reported, there has been no report on a technique for fusing Fab antibodies and enzymes.
 Fab抗体は、L鎖とH鎖の相互作用がその定常領域(CLおよびCH1)にも存在しそのために、scFvに比し安定性に優れ、また、新たにB細胞から調製する場合に短時間で調製可能である(非特許文献8)。その一方で、抗体の種類によってFab形成効率が異なり、所望の活性が得られない場合もある。大腸菌でFab抗体を調製する場合においては、分子間の会合がうまくいかず、活性を示す抗体が得られないことがある。尚、本発明者らの研究グループでは、Fab抗体のHcとLcにロイシンジッパー(LZ)を付加することにより、E. coli無細胞タンパク質合成系やE. coli細胞内発現系において、効率よくフォールドする抗体分子を開発し、それをZipbodyと名付けている(特許文献1及び非特許文献10)。 Fab antibodies have light chain and heavy chain interactions in their constant regions (CL and CH1), which makes them more stable than scFv and can be used for a short time when newly prepared from B cells. (Non-patent Document 8). On the other hand, Fab formation efficiency differs depending on the type of antibody, and a desired activity may not be obtained. When preparing a Fab antibody in E. coli, the association between molecules is not successful, and an antibody exhibiting activity may not be obtained. In addition, in our research group, by adding a leucine zipper (LZ) to Hc and Lc of Fab antibody, it is possible to efficiently fold in E. coli cell-free protein synthesis system and E. coli intracellular expression system. An antibody molecule is developed and named Zipbody (Patent Document 1 and Non-Patent Document 10).
 本発明者らはFab抗体の利点(特に、安定性が優れる点)に着目するとともに、Zipbodyの有効性を考慮し、ZipbodyのC末端に標識タンパク質(例えば酵素)を遺伝子的に融合すれば、LZが存在することにより、構造が安定したFab抗体-標識タンパク質融合体を作製できる可能性があると考えた。この着想の下、これまでに蓄積した知識及び経験を活用して緻密な実験計画を立て、詳細な検討を行った。その結果、上記の戦略が極めて有効であり、抗原の認識と標識タンパク質の機能の発現を高いレベルで両立できる融合抗体が得られることが判明した(後述の実施例を参照)。即ち、各種検出方法等に極めて有効な標識タンパク質融合抗体を提供することに成功した。特筆すべきことの一つは、マウス由来抗体及びウサギ由来抗体の両者において、また、複数の標識タンパク質(具体的にはGFPとルシフェラーゼ)において効果が実証され、高い汎用性が確認されたことである。また、検討の中で、実用性に関わる重要且つ興味深い知見も得られた。更には、別の酵素(アルカリホスファターゼ)を融合した場合にも所望の効果が得られ、汎用性の高さが裏づけられた。
 以下の発明は主として上記の成果及び考察に基づく。
 [1]ロイシンジッパーを構成する一対のペプチドの片方がH鎖の末端に、他方がL鎖のC末端にそれぞれ付加されており、
 前記H鎖及び/又は前記L鎖には、前記ペプチドを介して標識タンパク質が連結している、
 標識タンパク質融合Fab抗体。
 [2]前記標識タンパク質が前記H鎖にのみ連結している、[1]に記載の標識タンパク質融合Fab抗体。
 [3]前記標識タンパク質が蛍光タンパク質又は発光酵素である、[1]又は[2]に記載の標識タンパク質融合Fab抗体。
 [4]前記蛍光タンパク質がGFPであり、前記発光酵素がルシフェラーゼである、[3]に記載の標識タンパク質融合Fab抗体。
 [5]SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグが前記H鎖及び前記L鎖のN末端にそれぞれ連結している、[1]~[4]のいずれか一項に記載の標識タンパク質融合Fab抗体。
[6]リフォールディングされたものであることを特徴とする、[1]~[5]のいずれか一項に記載の標識タンパク質融合Fab抗体。
[7]大腸菌の細胞質内で合成されたものであることを特徴とする、[1]~[5]のいずれか一項に記載の標識タンパク質融合Fab抗体。
 [8][1]~[7]のいずれか一項に記載の標識タンパク質融合Fab抗体を含む検出試薬。
 [9][8]に記載の検出試薬を含む検出キット。
 [10]以下のステップ、即ち、
 (A)VH領域とCH1領域をコードする抗体H鎖遺伝子と、VL領域とCL領域をコードする抗体L鎖遺伝子を共発現させるステップ、又は
 (B)VH領域とCH1領域をコードする抗体H鎖遺伝子と、VL領域とCL領域をコードする抗体L鎖遺伝子を各々発現させた後、発現産物を混合するステップ、
 を含み、
 ロイシンジッパーを構成する一対のペプチドの内、片方をコードする第1タグ配列が前記抗体H鎖遺伝子の3'末端に、他方をコードする第2タグ配列が前記抗体L鎖遺伝子の3'末端にそれぞれ付加されており、
 前記抗体H鎖遺伝子及び/又は前記抗体L鎖遺伝子には、前記第1又は第2タグ配列を介して標識タンパク質遺伝子が連結している、
 標識タンパク質融合Fab抗体の調製法。
 [11]前記標識タンパク質遺伝子が前記抗体H鎖遺伝子にのみ連結している、[10]に記載の調製法。
 [12]宿主細胞を用いた発現系又は無細胞タンパク質合成系を用いて前記ステップを行う、[10]又は[11]に記載の調製法。
 [13]前記発現系が、大腸菌を利用した発現系であり、前記抗体H鎖遺伝子及び前記抗体L鎖遺伝子の5'末端側には、SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグをコードする配列が付加されており、
 該ペプチドタグがN末端に連結したタグ付加タンパク質として前記標識タンパク質融合Fab抗体が発現する、[12]に記載の調製法。
 [14]前記ペプチドタグが、SKI、SKIK、SKKK、SKII、AKIK、AKII又はKKKKのアミノ酸配列からなる、[13]に記載の調製法。
 [15]前記ペプチドタグをコードする配列と前記抗体H鎖遺伝子の間、及び前記ペプチドタグをコードする配列と前記抗体L鎖遺伝子の間に、プロテアーゼ認識配列が介在する、[13]又は[14]に記載の調製法。
 [16]大腸菌を利用した前記発現系が、T7プロモーターを用いた発現系、又は低温発現プロモーターを用いた発現系である、[13]~[15]のいずれか一項に記載の調製法。
 [17]大腸菌を利用した前記発現系が、大腸菌由来成分を用いた無細胞タンパク質合成系である、[13]~[15]のいずれか一項に記載の調製法。
 [18]前記抗体H鎖遺伝子と前記抗体L鎖遺伝子が、以下のステップ(i)~(viii)によって調製される、[10]~[17]のいずれか一項に記載の調製法:
 (i)単一のB細胞に由来するmRNAを用意するステップ;
 (ii)前記mRNAを鋳型とした逆転写PCR法によりcDNAを調製するステップ;
 (iii)5'末端に同一の第3タグ配列を含む複数のプライマーからなり、VH領域とCH1領域をコードする抗体H鎖遺伝子を増幅可能なプライマーセットを用い、前記cDNAを鋳型としてPCRを実施するステップ;
 (iv)5'末端に同一の第4タグ配列を含む複数のプライマーからなり、VL領域とCL領域をコードする抗体L鎖遺伝子を増幅可能なプライマーセットを用い、前記cDNAを鋳型としてPCRを実施するステップ;
 (v)前記第3タグ配列を含む単一のプライマーを用い、ステップ(iii)の増幅産物を鋳型としてPCRを実施するステップ;
 (vi)前記第4タグ配列を含む単一のプライマーを用い、ステップ(iv)の増幅産物を鋳型としてPCRを実施するステップ;
 (vii)ステップ(v)の増幅産物である抗体H鎖遺伝子に前記第1タグ配列を付加するステップ;
 (viii)ステップ(vi)の増幅産物である抗体L鎖遺伝子に前記第2タグ配列を付加するステップ。
 [19]前記抗体H鎖遺伝子と前記抗体L鎖遺伝子が、以下のステップ(I)~(IV)によって調製される、[10]~[17]のいずれか一項に記載の調製法:
 (I)単一のB細胞に由来するmRNAを用意するステップ;
 (II)前記mRNAを鋳型とした逆転写PCR法によりcDNAを調製するステップ;
 (III)前記cDNAを鋳型としたnested PCR法により前記抗体H鎖遺伝子を増幅させるステップ、
 (IV)前記cDNAを鋳型としたnested PCR法により前記抗体L鎖遺伝子を増幅させるステップ。
 [20]プロモーターと、
 Fab抗体を構成する片方の抗体鎖をコードする遺伝子用の第1クローニング部位と、
 一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、
 前記Fab抗体を構成する他方の抗体鎖をコードする遺伝子用の第2クローニング部位と、
 前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有するとともに、
 前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている、
 標識タンパク質融合Fab抗体を調製するためのベクター。
 [21]前記プロモーターが、大腸菌で機能するプロモーターであり、
 前記プロモーターと前記第1クローニング部位との間にはリボソーム結合部位が配置される、[20]に記載のベクター。
 [22]前記第1クローニング部位の直前と前記第2クローニング部位の直前に、
 開始コドン及び該開始コドンの直後に配置された、SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグをコードする配列が配置されている、[20]又は[21]に記載のベクター。
 [23]プロモーターと、
 Fab抗体を構成する片方の抗体鎖をコードする第1抗体遺伝子と、
 一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、
 前記Fab抗体を構成する他方の抗体鎖をコードする第2抗体遺伝子と、
 前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有するとともに、
 前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている、
 標識タンパク質融合Fab抗体を調製するためのベクター。
 [24]前記プロモーターが、大腸菌で機能するプロモーターであり、
 前記プロモーターと前記第1抗体遺伝子との間にはリボソーム結合部位が配置される、[23]に記載のベクター。
 [25]前記第1抗体遺伝子の直前と前記第2抗体遺伝子の直前に、
 開始コドン及び該開始コドンの直後に配置された、SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグをコードする配列が配置されている、[23]又は[24]に記載のベクター。
 [26]プロモーターと、
 Fab抗体を構成する片方の抗体鎖をコードする遺伝子用の第1クローニング部位と、
 一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、を有する第1ベクターと、
 プロモーターと、
 Fab抗体を構成する片方の抗体鎖をコードする遺伝子用の第2クローニング部位と、
 前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有する第2ベクターと、からなり、
 前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている、
 標識タンパク質融合Fab抗体を調製するためのベクターセット。
 [27]プロモーターと、
 Fab抗体を構成する片方の抗体鎖をコードする第1抗体遺伝子と、
 一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、を有する第1ベクターと、
 プロモーターと、
 Fab抗体を構成する片方の抗体鎖をコードする第2抗体遺伝子と、
 前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有する第2ベクターと、からなり、
 前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている、
 標識タンパク質融合Fab抗体を調製するためのベクターセット。
In addition to focusing on the advantages of Fab antibodies (particularly in terms of stability), the present inventors considered the effectiveness of Zipbody and genetically fused a labeled protein (for example, an enzyme) to the C-terminus of Zipbody. It was thought that the presence of LZ could produce a Fab antibody-labeled protein fusion with a stable structure. Based on this idea, a detailed experiment was planned using the knowledge and experience accumulated so far, and a detailed study was conducted. As a result, it was found that the above-mentioned strategy is extremely effective, and a fusion antibody that can achieve both recognition of the antigen and expression of the function of the labeled protein at a high level can be obtained (see Examples described later). That is, the present inventors succeeded in providing labeled protein fusion antibodies that are extremely effective for various detection methods. One thing that should be noted is that the effects were demonstrated in both mouse-derived antibodies and rabbit-derived antibodies, and in a plurality of labeled proteins (specifically, GFP and luciferase), and high versatility was confirmed. is there. Also, during the study, important and interesting findings related to practicality were obtained. Furthermore, when another enzyme (alkaline phosphatase) was fused, the desired effect was obtained, confirming the high versatility.
The following invention is mainly based on the above results and considerations.
[1] One of a pair of peptides constituting a leucine zipper is added to the end of the H chain, and the other is added to the C terminus of the L chain,
A labeled protein is linked to the H chain and / or the L chain via the peptide,
Labeled protein fusion Fab antibody.
[2] The labeled protein fusion Fab antibody according to [1], wherein the labeled protein is linked only to the H chain.
[3] The labeled protein fusion Fab antibody according to [1] or [2], wherein the labeled protein is a fluorescent protein or a luminescent enzyme.
[4] The labeled protein-fused Fab antibody according to [3], wherein the fluorescent protein is GFP and the luminescent enzyme is luciferase.
[5] A peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (where X represents any amino acid residue) is linked to the N-terminus of the H chain and L chain, respectively. [1] The labeled protein-fused Fab antibody according to any one of [4].
[6] The labeled protein-fused Fab antibody according to any one of [1] to [5], which is refolded.
[7] The labeled protein-fused Fab antibody according to any one of [1] to [5], which is synthesized in the cytoplasm of E. coli.
[8] A detection reagent comprising the labeled protein-fused Fab antibody according to any one of [1] to [7].
[9] A detection kit comprising the detection reagent according to [8].
[10] The following steps:
(A) co-expressing antibody H chain gene encoding VH region and CH1 region and antibody L chain gene encoding VL region and CL region, or (B) antibody H chain encoding VH region and CH1 region A gene and an antibody L chain gene encoding a VL region and a CL region, respectively, and then mixing the expression product,
Including
Of the pair of peptides constituting the leucine zipper, the first tag sequence encoding one of them is at the 3 ′ end of the antibody H chain gene, and the second tag sequence encoding the other is at the 3 ′ end of the antibody L chain gene. Each has been added,
A labeled protein gene is linked to the antibody H chain gene and / or the antibody L chain gene via the first or second tag sequence,
Preparation method of labeled protein fusion Fab antibody.
[11] The preparation method according to [10], wherein the marker protein gene is linked only to the antibody H chain gene.
[12] The preparation method according to [10] or [11], wherein the step is performed using an expression system using a host cell or a cell-free protein synthesis system.
[13] The expression system is an expression system using E. coli, and an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX is provided at the 5 ′ end side of the antibody H chain gene and the antibody L chain gene (provided that , X represents an arbitrary amino acid residue), and a sequence encoding a peptide tag is added,
The preparation method according to [12], wherein the labeled protein fusion Fab antibody is expressed as a tagged protein in which the peptide tag is linked to the N-terminus.
[14] The preparation method according to [13], wherein the peptide tag consists of an amino acid sequence of SKI, SKIK, SKKK, SKII, AKIK, AKII or KKKK.
[15] A protease recognition sequence is interposed between the sequence encoding the peptide tag and the antibody H chain gene, and between the sequence encoding the peptide tag and the antibody L chain gene, [13] or [14 ] The preparation method as described in.
[16] The preparation method according to any one of [13] to [15], wherein the expression system using E. coli is an expression system using a T7 promoter or an expression system using a low-temperature expression promoter.
[17] The preparation method according to any one of [13] to [15], wherein the expression system using E. coli is a cell-free protein synthesis system using E. coli-derived components.
[18] The preparation method according to any one of [10] to [17], wherein the antibody H chain gene and the antibody L chain gene are prepared by the following steps (i) to (viii):
(i) providing mRNA derived from a single B cell;
(ii) preparing cDNA by reverse transcription PCR using the mRNA as a template;
(iii) PCR is performed using a primer set consisting of multiple primers containing the same third tag sequence at the 5 ′ end and capable of amplifying the antibody H chain gene encoding the VH region and CH1 region, and using the cDNA as a template. Step to do;
(iv) PCR is performed using a primer set consisting of multiple primers containing the same fourth tag sequence at the 5 'end and capable of amplifying the antibody L chain gene encoding the VL region and CL region, and using the cDNA as a template Step to do;
(v) performing PCR using a single primer containing the third tag sequence and using the amplification product of step (iii) as a template;
(vi) performing PCR using a single primer containing the fourth tag sequence and using the amplification product of step (iv) as a template;
(vii) adding the first tag sequence to the antibody heavy chain gene that is the amplification product of step (v);
(viii) A step of adding the second tag sequence to the antibody L chain gene that is the amplification product of step (vi).
[19] The preparation method according to any one of [10] to [17], wherein the antibody H chain gene and the antibody L chain gene are prepared by the following steps (I) to (IV):
(I) providing mRNA derived from a single B cell;
(II) preparing cDNA by reverse transcription PCR using the mRNA as a template;
(III) amplifying the antibody H chain gene by a nested PCR method using the cDNA as a template,
(IV) Amplifying the antibody L chain gene by a nested PCR method using the cDNA as a template.
[20] a promoter;
A first cloning site for a gene encoding one of the antibody chains constituting the Fab antibody;
A first leucine zipper sequence encoding one of a pair of leucine zipper peptides;
A second cloning site for a gene encoding the other antibody chain constituting the Fab antibody;
A second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and
A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
Vector for preparing labeled protein fusion Fab antibody.
[21] The promoter is a promoter that functions in E. coli,
The vector according to [20], wherein a ribosome binding site is disposed between the promoter and the first cloning site.
[22] Immediately before the first cloning site and immediately before the second cloning site,
A sequence encoding a peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (X represents an arbitrary amino acid residue) arranged immediately after the initiation codon is arranged. The vector according to [20] or [21].
[23] a promoter;
A first antibody gene encoding one of the antibody chains constituting the Fab antibody;
A first leucine zipper sequence encoding one of a pair of leucine zipper peptides;
A second antibody gene encoding the other antibody chain constituting the Fab antibody;
A second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and
A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
Vector for preparing labeled protein fusion Fab antibody.
[24] The promoter is a promoter that functions in E. coli,
The vector according to [23], wherein a ribosome binding site is arranged between the promoter and the first antibody gene.
[25] Immediately before the first antibody gene and immediately before the second antibody gene,
A sequence encoding a peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (X represents an arbitrary amino acid residue) arranged immediately after the initiation codon is arranged. The vector according to [23] or [24].
[26] a promoter;
A first cloning site for a gene encoding one of the antibody chains constituting the Fab antibody;
A first vector having a first leucine zipper sequence encoding one of a pair of leucine zipper peptides;
A promoter,
A second cloning site for a gene encoding one of the antibody chains constituting the Fab antibody;
A second vector having a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides,
A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
A vector set for preparing a labeled protein-fused Fab antibody.
[27] a promoter;
A first antibody gene encoding one of the antibody chains constituting the Fab antibody;
A first vector having a first leucine zipper sequence encoding one of a pair of leucine zipper peptides;
A promoter,
A second antibody gene encoding one of the antibody chains constituting the Fab antibody;
A second vector having a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides,
A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
A vector set for preparing a labeled protein-fused Fab antibody.
Zipbody、Zipbody-Luc及びZipbody-GFPの構造。ロイシンジッパー(LZ)をHcとLcのC末端に融合し、HcとLcの会合を促進させた。LucとGFPを遺伝子的にZipbodyのHcのC末端に融合した。Zipbody, Zipbody-Luc and Zipbody-GFP structures. A leucine zipper (LZ) was fused to the C-terminus of Hc and Lc to facilitate the association of Hc and Lc. Luc and GFP were genetically fused to the C-terminus of Zipbody Hc. 2次抗体を使用する従来のELISAとFab-蛍光タンパク質融合体を使用したELISAの比較。従来のELISAでは1次抗体を認識する2次抗体を使用し、2次抗体からのシグナルで抗原を検出する。Fab-蛍光タンパク質融合体を使用したELISAでは、蛍光タンパク質からの蛍光を検出することになり、2次抗体が不要となる。Comparison of a conventional ELISA using a secondary antibody and an ELISA using a Fab-fluorescent protein fusion. In conventional ELISA, a secondary antibody that recognizes the primary antibody is used, and an antigen is detected by a signal from the secondary antibody. In ELISA using a Fab-fluorescent protein fusion, fluorescence from the fluorescent protein is detected, and a secondary antibody is not required. Zipbody-Luc及びZipbody-GFPを発現するためのプラスミドの構造。マウス由来抗E. coli O157 Fab抗体m6Fab、マウス由来抗E. coli O157 Zipbody、及びウサギ由来抗L. monocytogenes Zipbodyを発現させるためプラスミドを構築した。Luc遺伝子をm6FabのHc(pET22 m6Fab Hc-Luc)、m6Fab LZのHc(pET22 m6Fab LZ Hc-Luc)、m6Fab LZのLc(pET22 m6Fab LZ Lc-Luc)、m6Fab LZのHcとLcの両方(pET22 m6Fab LZ W-Luc)、r4Fab LZのHc(pET22 r4Fab LZ Hc-Luc)にそれぞれ融合した。GFP遺伝子をm6Fab LZのHc(pET22 m6Fab LZ Hc-GFP)とr4Fab LZのHc(pET22 r4Fab LZ Hc-GFP)にそれぞれ融合した。尚、pET22 m6Fab LZ Hc-Lucの配列を配列番号1に、pET22 r4Fab LZ Hc-Lucの配列を配列番号2に、pET22 m6Fab LZ Hc-GFPの配列を配列番号3に、pET22 r4Fab LZ Hc-GFPの配列を配列番号4に示す。Plasmid structure for expressing Zipbody-Luc and Zipbody-GFP. Plasmids were constructed to express mouse-derived anti-E. Coli O157 Fab antibody m6Fab, mouse-derived anti-E. Coli O157 Zipbody, and rabbit-derived anti-L. Monocytogenes Zipbody. Luc gene is m6Fab Hc (pET22 m6Fab Hc-Luc), m6Fab LZ Hc (pET22 m6Fab LZ Hc-Luc), m6Fab LZ Lc (pET22 m6Fab LZ Lc-Luc), m6Fab Lc Hc (both m6Fab LZ W-Luc) and r4Fab LZ Hc (pET22 r4Fab LZ Hc-Luc). The GFP gene was fused to m6Fab LZ Hc (pET22 m6Fab LZ Hc-GFP) and r4Fab LZ Hc (pET22 r4Fab LZ Hc-GFP). The sequence of pET22 m6Fab LZ Hc-Luc is SEQ ID NO.1, the sequence of pET22 r4Fab LZ Hc-Luc is SEQ ID NO.2, the sequence of pET22 m6Fab LZ Hc-GFP is SEQ ID NO.3, and pET22 r4Fab LZ Hc-GFP. Is shown in SEQ ID NO: 4. Zipbody-蛍光タンパク質融合体を発現させるための宿主の選択。ウェスタンブロッティング(A)及びELISA(B)によって、m6Fab LZの結合親和性と発現をE. coli SHuffle(登録商標) T7 express、E. coli BL21 (DE3) pLysS及びE. coli Rosetta-gamiTM 2 (DE3)の間で比較した。S T7 E: E. coli SHuffle(登録商標) T7 express、BL21: E. coli BL21 (DE3) pLysS、RG2: E. coli Rosetta-gamiTM 2 (DE3)、LZ: m6Fab LZ、V: pET22b、S: 可溶性画分、I:不溶性画分。Selection of host for expression of Zipbody-fluorescent protein fusion. By Western blotting (A) and ELISA (B), the binding affinity and expression of m6Fab LZ were expressed in E. coli SHuffle (registered trademark) T7 express, E. coli BL21 (DE3) pLysS and E. coli Rosetta-gamiTM 2 (DE3 ). S T7 E: E. coli SHuffle (registered trademark) T7 express, BL21: E. coli BL21 (DE3) pLysS, RG2: E. coli Rosetta-gamiTM 2 (DE3), LZ: m6Fab LZ, V: pET22b, S: Soluble fraction, I: Insoluble fraction. Zipbody-LucとZipbody-GFPのウェスタンブロッティング。各融合タンパク質を含む可溶性画分のSDS-PAGEの後、ニトロセルロース膜に転写した。各融合タンパク質のHc(HAタグを含む)を検出するため、HRP標識抗HA抗体を使用した。一方、各融合タンパク質のLc(Flagタグを含む)を検出するため、HRP標識抗Flag抗体を使用した。Western blotting of Zipbody-Luc and Zipbody-GFP. After SDS-PAGE of the soluble fraction containing each fusion protein, it was transferred to a nitrocellulose membrane. In order to detect Hc (including HA tag) of each fusion protein, an HRP-labeled anti-HA antibody was used. On the other hand, in order to detect Lc (including Flag tag) of each fusion protein, an HRP-labeled anti-Flag antibody was used. Zipbody-LucのLuc活性。各融合タンパク質のLuc活性を評価した。3回の実験の平均値を示す。グラフ中のバーは標準誤差(S.E.)を表す。Zipbody-Luc Luc activity. The Luc activity of each fusion protein was evaluated. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). 抗E. coli O157 Zipbody-Luc又は抗E. coli O157 Zipbody-GFPを用いたELISA。各融合タンパク質のE. coli O157に対する親和性を評価した。3回の実験の平均値を示す。グラフ中のバーは標準誤差(S.E.)を表す。ELISA using anti-E.coli-O157-Zipbody-Luc or anti-E.coli-O157-Zipbody-GFP. The affinity of each fusion protein for E.coli O157 was evaluated. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). 抗E. coli O157 Zipbody-Lucを用いた発光ELISA。融合タンパク質のLuc分子を用いた免疫アッセイを行った。3回の実験の平均値を示す。グラフ中のバーは標準誤差(S.E.)を表す。Luminescent ELISA using anti-E. Coli O157 Zipbody-Luc. An immunoassay was performed using the Luc molecule of the fusion protein. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). 抗L. monocytogenes Zipbody-Luc又は抗L. monocytogenes Zipbody-GFPを用いたELISA。各融合タンパク質のL. monocytogenesに対する親和性を評価した。3回の実験の平均値を示す。グラフ中のバーは標準誤差(S.E.)を表す。ELISA using anti-L. Monocytogenes Zipbody-Luc or anti-L. Monocytogenes Zipbody-GFP. The affinity of each fusion protein for L. monocytogenes was evaluated. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). 抗L. monocytogenes Zipbody-Lucを用いた発光ELISA。融合タンパク質のLuc分子を用いた免疫アッセイを行った。3回の実験の平均値を示す。グラフ中のバーは標準誤差(S.E.)を表す。Luminescent ELISA using anti-L. Monocytogenes Zipbody-Luc. An immunoassay was performed using the Luc molecule of the fusion protein. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). Zipbody-GFPの蛍光。各可溶性融合タンパク質のGFP活性を評価した。3回の実験の平均値を示す。グラフ中のバーは標準誤差(S.E.)を表す。Zipbody-GFP fluorescence. The GFP activity of each soluble fusion protein was evaluated. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). Zipbody-GFPを用いた蛍光ELISA。融合タンパク質のGFP分子を用いた免疫アッセイを行った。(A)抗E. coli O157、(B)抗L. monocytogenes。3回の実験の平均値を示す。グラフ中のバーは標準誤差(S.E.)を表す。Fluorescence ELISA using Zipbody-GFP. An immunoassay using the GFP molecule of the fusion protein was performed. (A) Anti-E. Coli O157, (B) Anti-L.Lmonocytogenes. Average values of three experiments are shown. The bar in the graph represents standard error (S.E.). プライマーのリスト。太字はプラスミドとの相同配列を示す。A list of primers. Bold letters indicate homologous sequences with the plasmid. 蛍光ELISAの結果。Results of fluorescence ELISA. SKIK m6FabLZ-AP発現物のSDS-PAGE解析。M: サイズマーカー。矢印は目的サイズ(30 kDa[軽鎖]および80kDa[重鎖-AP融合物])を示す。A) 細胞破砕物 S: 可溶性画分、I: 不溶性画分。B) Ni-NTAクロマトグラフィとゲルろ過による精製フラクション。BはNi-NTAクロマトグラフィにより回収したフラクション。9~12はゲルろ過クロマトグラフィで回収したフラクション。SDS-PAGE analysis of SKIK m6FabLZ-AP expression product. M: size marker. Arrows indicate the desired size (30 kDa [light chain] and 80 kDa [heavy chain-AP fusion]). A) cell lysate S: soluble fraction, I: insoluble fraction. B) Purified fraction by Ni-NTA chromatography and gel filtration. B is a fraction collected by Ni-NTA chromatography. 9 to 12 are fractions collected by gel filtration chromatography. SKIK m6FabLZ-AP精製物の評価。A) AP活性。B) ELISA。C) AP-ELISA。Evaluation of purified SKIK m6FabLZ-AP. A) AP activity. B) ELISA. C) AP-ELISA.
1.標識タンパク質融合Fab抗体
 本発明の第1の局面は標識タンパク質融合Fab抗体(以下、説明の便宜上、「本発明の抗体」と呼ぶことがある)に関する。標識タンパク質融合Fab抗体とは、標識タンパク質が融合されたFab抗体であり、特定の抗原を特異的に認識するという、抗体としての機能を備えるとともに、標識タンパク質の機能(酵素であれば、特定の反応を触媒するという酵素活性)を示す。Fab抗体とは、VH領域及びCH1領域を備えたH鎖と、VL領域及びCL領域を備えたL鎖からなる断片抗体であり、Fc領域を含まない。以下の説明では、慣例に従い、Fab抗体を構成するH鎖のことをHc、それをコードする遺伝子のことをHc遺伝子とそれぞれ呼ぶことがある。同様に、Fab抗体を構成するL鎖のことをLc、それをコードする遺伝子のことをLc遺伝子とそれぞれ呼ぶことがある。
1. Labeled Protein Fusion Fab Antibody The first aspect of the present invention relates to a labeled protein fusion Fab antibody (hereinafter, sometimes referred to as “the antibody of the present invention” for convenience of explanation). The labeled protein-fused Fab antibody is a Fab antibody fused with a labeled protein, and has a function as an antibody that specifically recognizes a specific antigen, and also has a function of the labeled protein (in the case of an enzyme, a specific protein). Enzyme activity of catalyzing the reaction). The Fab antibody is a fragment antibody composed of an H chain having a VH region and a CH1 region and an L chain having a VL region and a CL region, and does not contain an Fc region. In the following description, the H chain constituting the Fab antibody may be referred to as Hc and the gene encoding it may be referred to as the Hc gene, respectively, according to common practice. Similarly, the L chain constituting the Fab antibody may be referred to as Lc, and the gene encoding it may be referred to as Lc gene.
 本発明の抗体はその構造の一部としてロイシンジッパーを含む。ロイシンジッパーはFab抗体の形成率向上を図るために利用される。ロイシンジッパーを付加することにより、ロイシンジッパー特有の結合力がHcとLcの会合を補助し、Fab形成効率が向上する。一方、ロイシンジッパーを利用することにより、Fab抗体の構造の安定化も期待できる。構造の安定化は抗原認識力ないし特異性の向上をもたらす。 The antibody of the present invention contains a leucine zipper as part of its structure. Leucine zippers are used to improve the rate of Fab antibody formation. By adding a leucine zipper, the binding force unique to the leucine zipper assists the association of Hc and Lc, and the Fab formation efficiency is improved. On the other hand, stabilization of the structure of the Fab antibody can be expected by using a leucine zipper. Stabilization of the structure leads to improvement of antigen recognition ability or specificity.
 ロイシンジッパーとは、タンパク質の二次構造のモチーフとして見出された特徴的な構造である(Science. 1988 Jun 24;240(4860):1759-64.)。ロイシンジッパーの構造は、ロイシン残基がα-ヘリックス構造をとりやすいアミノ酸配列の中に7個ごとに4~5個並ぶのを基本骨格とする。この骨格によって、ロイシン残基がα-ヘリックスの軸方向にほぼ1列に並び、別のロイシンジッパー構造中のロイシン残基の並びと疎水的に結合する。本発明では、このように特徴的なモチーフを含む、一対のペプチド(ロイシンジッパーペプチドA、ロイシンジッパーペプチドBと呼ぶ)を利用する。ロイシンジッパーペプチドAとロイシンジッパーペプチドBは高い親和性を持ち、ロイシンジッパーを形成する。ロイシンジッパーペプチドAは、ロイシンジッパーを形成できるように7残基毎にロイシンを含む。ロイシンジッパーペプチドBも同様に、7残基毎にロイシンを含む。これらのロイシンは、ロイシンジッパーペプチドAにおけるロイシン(ロイシンジッパーモチーフを構成するもの)に対応するように配置されている。ロイシンジッパーペプチドAとロイシンジッパーペプチドBの長さは特に限定されないが、短すぎると所望の効果、即ちロイシンジッパー構造による結合力を十分に発揮できなくなり、長すぎれば立体障害等によってHcとLcの会合や抗体の結合性(抗原の認識)に影響を及ぼすおそれがある。そこで、ロイシンジッパーペプチドAとロイシンジッパーペプチドBの長さは、例えば25~50残基、好ましくは28~35残基である。尚、ロイシンジッパーペプチドAとロイシンジッパーペプチドBの長さは原則として同一であるが、ロイシンジッパー構造を形成できる限りにおいて、両者に長さの相違があってもよい。 Leucine zipper is a characteristic structure found as a secondary structure motif of proteins (Science. 1988 Jun 24; 240 (4860): 1759-64.). The leucine zipper has a basic skeleton in which 4 to 5 leucine residues are arranged every 7 in an amino acid sequence that tends to have an α-helix structure. By this skeleton, leucine residues are arranged in almost one row in the α-helix axis direction, and are hydrophobically linked to the leucine residue sequence in another leucine zipper structure. In the present invention, a pair of peptides (referred to as leucine zipper peptide A and leucine zipper peptide B) containing such a characteristic motif is used. Leucine zipper peptide A and leucine zipper peptide B have high affinity and form leucine zippers. Leucine zipper peptide A contains leucine every 7 residues so that a leucine zipper can be formed. Similarly, leucine zipper peptide B contains leucine every 7 residues. These leucines are arranged so as to correspond to leucine in leucine zipper peptide A (those constituting leucine zipper motif). The length of leucine zipper peptide A and leucine zipper peptide B is not particularly limited, but if it is too short, the desired effect, i.e., the binding force due to the leucine zipper structure, cannot be fully exerted, and if it is too long, the length of Hc and Lc may be reduced due to steric hindrance, etc. May affect association and antibody binding (antigen recognition). Therefore, the length of leucine zipper peptide A and leucine zipper peptide B is, for example, 25 to 50 residues, preferably 28 to 35 residues. The lengths of leucine zipper peptide A and leucine zipper peptide B are basically the same, but may be different in length as long as a leucine zipper structure can be formed.
 様々な構成のロイシンジッパーを用いることができるが、好ましくは、ロイシン-ロイシン間の疎水結合に加え、正電荷アミノ酸-負電荷アミノ酸間の静電的相互作用により結合力を発揮するロイシンジッパーを採用する。このようなロイシンジッパー(説明の便宜上、「荷電型ロイシンジッパー」と呼ぶ)は高い結合力を示す。電荷保持ロイシンジッパーを用いる場合には、ロイシンジッパーペプチドAとロイシンジッパーペプチドBが、以下の(a)又は(b)の構造的特徴を有する。
 (a) ロイシンジッパーペプチドAが正電荷アミノ酸(塩基性アミノ酸)を含む。ロイシンジッパーペプチドBはロイシンジッパーペプチドAの正電荷アミノ酸に対応する位置に負電荷アミノ酸(酸性アミノ酸)を含む。
 (b) ロイシンジッパーペプチドAが酸性アミノ酸を含む。ロイシンジッパーペプチドBはロイシンジッパーペプチドAの酸性アミノ酸に対応する位置に塩基性アミノ酸を含む。
Various configurations of leucine zippers can be used. Preferably, leucine zippers that exert binding force by electrostatic interaction between positively charged amino acids and negatively charged amino acids in addition to hydrophobic bonds between leucine and leucine are adopted. To do. Such leucine zippers (referred to as “charged leucine zippers” for convenience of description) exhibit high binding forces. When a charge-holding leucine zipper is used, leucine zipper peptide A and leucine zipper peptide B have the following structural features (a) or (b).
(a) Leucine zipper peptide A contains a positively charged amino acid (basic amino acid). Leucine zipper peptide B contains a negatively charged amino acid (acidic amino acid) at a position corresponding to the positively charged amino acid of leucine zipper peptide A.
(b) Leucine zipper peptide A contains an acidic amino acid. Leucine zipper peptide B contains a basic amino acid at a position corresponding to the acidic amino acid of leucine zipper peptide A.
 塩基性アミノ酸の例はリシン(K)、アルギニン(R)、ヒスチジン(H)であるが、この中でも、電荷の強さの理由から、KまたはRを選択するとよい。同様に、酸性アミノ酸の例はアスパラギン酸(D)、グルタミン酸(E)である。ロイシンジッパーペプチド中の電荷アミノ酸の数を多くすると静電的相互作用が高まり、ロイシンジッパーの結合力の向上を望める。そこで、ロイシンジッパーペプチド中の電荷アミノ酸の割合は例えば15%~50%、好ましくは20%~40%である。 Examples of basic amino acids are lysine (K), arginine (R), and histidine (H). Among these, K or R may be selected for reasons of charge strength. Similarly, examples of acidic amino acids are aspartic acid (D) and glutamic acid (E). Increasing the number of charged amino acids in the leucine zipper peptide increases the electrostatic interaction, which can be expected to improve the binding power of the leucine zipper. Therefore, the proportion of charged amino acids in the leucine zipper peptide is, for example, 15% to 50%, preferably 20% to 40%.
 1993年O'sheaらは、GCN4ロイシンジッパーを改変した、ACID-p1(LZA)及びBASE-p2(LZB)と呼ばれるペプチドを設計した(Oshea, E. K., K. J. Lumb, and P. S. Kim, 1993, PEPTIDE VELCRO - DESIGN OF A HETERODIMERIC COILED-COIL: Current Biology, v. 3, p. 658-667.)。LZA、LZBはpHやイオン強度、温度などの物理的条件に影響を受けず、高い特異性とアフィニティーを持つヘテロダイマーを形成する(Kd = 3×10-8 M)。電荷アミノ酸を豊富に含む一対のロイシンジッパーペプチドとしてLZA及びLZBを用いることができる。LZA及びLZBの配列を以下に示す。
(1)LZA(負電荷を保持するロイシンジッパーペプチド)
 AQLEKELQALEKENAQLEWELQALEKELAQK(配列番号5)
 尚、静電的相互作用のために、4番目、6番目、11番目、13番目、18番目、20番目、25番目、27番目にグルタミン酸(E)が配置されている。
(2)LZB(正電荷を保持するロイシンジッパーペプチド)
 AQLKKKLQALKKKNAQLKWKLQALKKKLAQK(配列番号6)
 尚、静電的相互作用のために、4番目、6番目、11番目、13番目、18番目、20番目、25番目、27番目にリシン(K)が配置されている。
1993 O'shea et al. Designed peptides called ACID-p1 (LZA) and BASE-p2 (LZB) with modified GCN4 leucine zipper (Oshea, EK, KJ Lumb, and PS Kim, 1993, PEPTIDE VELCRO -DESIGN OF A HETERODIMERIC COILED-COIL: Current Biology, v. 3, p. 658-667.). LZA and LZB are not affected by physical conditions such as pH, ionic strength, and temperature, and form heterodimers with high specificity and affinity (Kd = 3 × 10 -8 M). LZA and LZB can be used as a pair of leucine zipper peptides rich in charged amino acids. The sequences of LZA and LZB are shown below.
(1) LZA (Leucine zipper peptide that retains negative charge)
AQLEKELQALEKENAQLEWELQALEKELAQK (SEQ ID NO: 5)
Note that glutamic acid (E) is arranged at the 4th, 6th, 11th, 13th, 18th, 20th, 25th, and 27th positions for electrostatic interaction.
(2) LZB (Leucine zipper peptide that retains positive charge)
AQLKKKLQALKKKNAQLKWKLQALKKKLAQK (SEQ ID NO: 6)
For electrostatic interaction, lysine (K) is arranged at the 4th, 6th, 11th, 13th, 18th, 20th, 25th, and 27th positions.
 本発明の抗体では、ロイシンジッパーを構成する一対のペプチドの片方(ロイシンジッパーペプチドA)がH鎖(Hc)のC末端、即ち、CH1に連結する状態で付加されており、他方(ロイシンジッパーペプチドB)がL鎖(Lc)のC末端、即ち、CLに連結する状態で付加されている。このように、本発明の抗体はC末端、即ち定常領域側にロイシンジッパーが付加されたFab抗体である。当該抗体は、ロイシンジッパーが付加された状態のままで、可変領域に依存した特異的な結合性を示すことになる。ロイシンジッパーペプチドは、直接又はリンカー配列を介してH鎖、L鎖に連結される。リンカーを用いることにより、Fab抗体部分とロイシンジッパーが、適度な柔軟性をもって連結されることになり、HcとLcの会合効率、及びロイシンジッパー構造の形成効率の向上が望める。リンカーとしては例えばペプチドリンカーが用いられる。ペプチドリンカーとは、直鎖状にアミノ酸が連結したペプチドからなるリンカーである。ペプチドリンカーの代表例は、グリシンとセリンから構成されるリンカー(GGSリンカーやGSリンカー)である。GGSリンカーは、GGSが1~数回、繰り返される配列からなる。繰り返し数は特に限定されないが、好ましくは2~6回、更に好ましくは2~4回である。一方、GSリンカーはGGGGS(配列番号7)が1~数回、繰り返される配列である。GGSリンカー及びGSリンカーを構成するアミノ酸であるグリシンとセリンは、それ自体のサイズが小さく、リンカー内で高次構造が形成されにくい。従って、HcとLcの会合、及びロイシンジッパー構造の形成の際の障害になりにくい。 In the antibody of the present invention, one of a pair of peptides constituting a leucine zipper (leucine zipper peptide A) is added in a state linked to the C terminus of the H chain (Hc), that is, CH1, and the other (leucine zipper peptide B) is added in a state of being linked to the C terminus of the L chain (Lc), that is, CL. Thus, the antibody of the present invention is a Fab antibody in which a leucine zipper is added to the C-terminal, that is, the constant region side. The antibody exhibits specific binding properties depending on the variable region, with the leucine zipper added. The leucine zipper peptide is linked to the H chain and L chain directly or via a linker sequence. By using the linker, the Fab antibody portion and the leucine zipper are linked with appropriate flexibility, and it is possible to improve the association efficiency of Hc and Lc and the formation efficiency of the leucine zipper structure. For example, a peptide linker is used as the linker. A peptide linker is a linker consisting of a peptide in which amino acids are linked in a straight chain. A typical example of a peptide linker is a linker composed of glycine and serine (GGS linker or GS linker). A GGS linker consists of a sequence in which GGS is repeated one to several times. The number of repetitions is not particularly limited, but is preferably 2 to 6 times, more preferably 2 to 4 times. On the other hand, the GS linker is a sequence in which GGGGS (SEQ ID NO: 7) is repeated one to several times. The GGS linker and glycine and serine, which are amino acids constituting the GS linker, have a small size per se and are difficult to form higher-order structures in the linker. Therefore, it is unlikely to become an obstacle during the association of Hc and Lc and the formation of the leucine zipper structure.
 H鎖又はL鎖、或いはこれらの両方には、ロイシンジッパーペプチドを介して標識タンパク質が連結される。従って、本発明の抗体は以下の3形態を取りうる。
 (1)N末端側からC末端側に向かってHc、ロイシンジッパーペプチド及び標識タンパク質が連なった構造のH鎖と、N末端側からC末端側に向かってLc及びロイシンジッパーペプチドが連なった構造のL鎖を含むFab抗体
 (2)N末端側からC末端側に向かってHc及びロイシンジッパーペプチドが連なった構造のH鎖と、N末端側からC末端側に向かってLc、ロイシンジッパーペプチド及び標識タンパク質が連なった構造のL鎖を含むFab抗体
 (3)N末端側からC末端側に向かってHc、ロイシンジッパーペプチド及び標識タンパク質が連なった構造のH鎖と、N末端側からC末端側に向かってLc、ロイシンジッパーペプチド及び標識タンパク質が連なった構造のL鎖を含むFab抗体
A labeled protein is linked to the H chain, L chain, or both via a leucine zipper peptide. Therefore, the antibody of the present invention can take the following three forms.
(1) H chain with a structure in which Hc, leucine zipper peptide and labeled protein are linked from the N-terminal side to the C-terminal side, and a structure in which Lc and leucine zipper peptide are linked from the N-terminal side to the C-terminal side Fab antibody containing L chain (2) H chain in which Hc and leucine zipper peptide are linked from N-terminal side to C-terminal side, and Lc, leucine zipper peptide and label from N-terminal side to C-terminal side Fab antibody containing L chain with protein structure (3) H chain with structure of Hc, leucine zipper peptide and labeled protein from N terminal side to C terminal side, and N terminal side to C terminal side Fab antibody containing L chain of Lc, leucine zipper peptide and labeled protein
 標識タンパク質をH鎖にのみ連結した場合に高い発現効率及び高い抗原親和性が認められたことから(後述の実施例を参照)、(1)の形態が特に好ましい。(3)の形態の場合、H鎖に連結する標識タンパク質とL鎖に連結する標識タンパク質は同一でなくてもよい。 The form (1) is particularly preferred because high expression efficiency and high antigen affinity were observed when the labeled protein was linked only to the H chain (see Examples below). In the case of (3), the labeled protein linked to the H chain and the labeled protein linked to the L chain may not be the same.
 標識タンパク質は特に限定されない。即ち、様々な標識タンパク質を本発明の抗体の構成要素として採用し得る。標識タンパク質とは、それ自体の発光や蛍光、或いは酵素反応産物等が標識となるタンパク質である。標識タンパク質を融合した抗体は、(1)特定の抗原の検出や測定(定性的又は定量的)、(2)細胞、組織又は器官/臓器の標識化、染色又は可視化(例えば生体内イメージング)、治療等に利用される。標識タンパク質の例は、GFP(緑色蛍光タンパク質)、EGFP、GFP2、ECFP、EBFP、YFP、mBanana、mOrange、DsRed2、mStrawberry、mCherry、mRasberry、mPlum、Kaede等の蛍光タンパク質、ルシフェラーゼ(Luc)、ナノ・ランタン等の発光酵素、ペルオキシダーゼ(例えばHRP)、アルカリホスファターゼ、β-ガラクトシダーゼ、グルコースオキシダーゼ、加水分解酵素である。 The labeled protein is not particularly limited. That is, various labeled proteins can be employed as a component of the antibody of the present invention. A labeled protein is a protein whose label is its own luminescence or fluorescence, or an enzyme reaction product. Antibodies fused with labeled proteins are (1) detection and measurement of specific antigens (qualitative or quantitative), (2) labeling, staining or visualization of cells, tissues or organs / organs (eg in vivo imaging), Used for treatment. Examples of labeled proteins include GFP (green fluorescent protein), EGFP, GFP2, ECFP, EBFP, YFP, mBanana, mOrange, DsRed2, mStrawberry, mCherry, mRasberry, mPlum, Kaede, and other fluorescent proteins, luciferase (Luc), nano Luminescent enzymes such as lanthanum, peroxidase (for example, HRP), alkaline phosphatase, β-galactosidase, glucose oxidase, and hydrolase.
 ルシフェラーゼやGFPなどのタンパク質は、遺伝子の翻訳制御などをモニタリングする際などに幅広く活用されている(Ghim C-M, Lee SK, Takayama S, Mitchell RJ. 2010. The art of reporter proteins in science: past, present and future applications. Bmb Reports 43(7):451-460.)。これらのタンパク質を、モニタリングするタンパク質に遺伝子的に融合し、その挙動を発光シグナルとして検出することができる。ルシフェラーゼは、基質を酸化することによって発光を生じる酵素の総称である(Hastings JW. 1996. Chemistries and colors of bioluminescent reactions: A review. Gene 173(1):5-11.)。様々な生物種に由来するものが知られており、ゲンジボタルLuciola cruciata、ヘイケボタルLuciola lateralis、北アメリカホタルPhotinus pyralis、ペンシルバニアホタルPhoturis pennsylvanica、コメツキムシPyrophorus plagiophthalamus、ウミシイタケRenilla reniformis、カイアシGaussia princeps、貝虫Cypridina noctilucaに由来するものが報告されている(Masuda T, Tatsumi H, Nakano E. 1989. Cloning and sequence-analysis of cdna for luciferase of a japanese firefly, Luciola cruciata. Gene 77(2):265-270.; Tatsumi H, Kajiyama N, Nakano E. 1992. Molecular-cloning and expression in escherichia-coli of a cdna clone encoding luciferase of a firefly, luciola-lateralis. Biochimica Et Biophysica Acta 1131(2):161-165.; Thorne N, Inglese J, Auldl DS. 2010. Illuminating Insights into Firefly Luciferase and Other Bioluminescent Reporters Used in Chemical Biology. Chemistry & Biology 17(6):646-657.)。L. cruciata由来ルシフェラーゼはATP、酸素分子存在下でルシフェリンの酸化を触媒する酵素として1989年に初めてcDNA配列が報告された(Masuda T, Tatsumi H, Nakano E. 1989. Cloning and sequence-analysis of cdna for luciferase of a japanese firefly, Luciola cruciata. Gene 77(2):265-270.)。変異体Thr217Ileは、耐熱性が向上することが知られている(Kajiyama N, Nakano E. 1993. Thermostabilization of firefly luciferase by a single amino-acid substitution at position-217. Biochemistry 32(50):13795-13799.)。257 Tyrは発光波長に影響を与えることが知られており、野生型(WT)では黄緑色であるが、Y257F、Y257A、Y257E、Y257Rは、それぞれ黄色、橙色、赤色、黄色を示す(Wang Y, Akiyama H, Terakado K, Nakatsu T. 2013. Impact of Site-Directed Mutant Luciferase on Quantitative Green and Orange/Red Emission Intensities in Firefly Bioluminescence. Scientific Reports 3.)。また、286 Serを他の残基に置換すると発光波長が超波長側へシフトすることが知られている(Kato D, Kubo T, Maenaka M, Niwa K, Ohmiya Y, Takeo M, Negoro S. 2013. Confirmation of color determination factors for Ser286 derivatives of firefly luciferase from Luciola cruciata (LUC-G). Journal of Molecular Catalysis B-Enzymatic 87:18-23.)。 Proteins such as luciferase and GFP are widely used for monitoring gene translation control (Ghim CM, Lee SK, Takayama S, Mitchell RJ. 2010. The art of reporter proteins in science: past, present and future applications. Bmb Reports 43 (7): 451-460.). These proteins can be genetically fused to the protein to be monitored and their behavior detected as a luminescent signal. Luciferase is a general term for enzymes that generate luminescence by oxidizing a substrate (Hastings JW. 1996. Chemistries and colors of bioluminescent reactions: A review. Gene 173 (1): 5-11.). Known from a variety of species, including the common firefly Luciola cruciata, Heike firefly Luciola lateralis, North American firefly Photinus pyralis, Pennsylvania firefly Photuris pennsylvanica, click beetle Pyrophorus plagiophthalamus, It has been reported (Masuda T, Tatsumi H, Nakano E. 1989. Cloning and sequence-analysis of cdna for luciferase of a japanese firefly, Luciola cruciata. Gene 77 (2): 265-270 .; Tatsumi H , Kajiyama N, Nakano E. 1992. Molecular-cloning and expression in escherichia-coli of a cdna clone encoding luciferase of a firefly, luciola-lateralis. Biochimica Et Biophysica Acta 1131 (2) hornle 1165 J, Auldl DS. 2010. Illuminating Insights into Firefly Luciferase and Other Bioluminescent Reporters Used in Chemical B iology. Chemistry & Biology 17 (6): 646-657.). Luciferase from L. cruciata was first reported in 1989 as an enzyme that catalyzes the oxidation of luciferin in the presence of ATP and oxygen molecules (MasudasT, Tatsumi H, Nakano E. 1989. Cloning and sequence-analysis of cdna for luciferase of a japanese firefly, Luciola cruciata. Gene 77 (2): 265-270.). Mutant Thr217Ile is known to have improved heat resistance (Kajiyama N, Nakano E. 1993. Thermostabilization of firefly luciferase by a single amino-acid substitution at position-217. Biochemistry 32 (50): 13795-13799 .). 257 Tyr is known to affect the emission wavelength, and it is yellow-green in the wild type (WT), but Y257F, Y257A, Y257E, Y257R show yellow, orange, red, and yellow, respectively (Wang Y , Akiyama H, Terakado K, Nakatsu T. 2013. Impact of Site-Directed Mutant Luciferase on Quantitative Green and Orange / Red Emission Intensities in Firefly Bioluminescence. Scientific Reports 3.). In addition, it is known that substitution of 286erSer with other residues shifts the emission wavelength to the super-wavelength side (Kato D, Kubo T, Maenaka M, Niwa K, Ohmiya Y, Takeo M, Negoro S. 2013 . Confirmation of color determination factors for Ser286 derivatives of firefly luciferase from Luciola cruciata (LUC-G). Journal of Molecular Catalysis B-Enzymatic 87: 18-23.).
 GFPは、緑色の蛍光を発するタンパク質である。オワンクラゲAequorea aequoreaなどから発見されており、タンパク質発現のモニタリングに頻繁に用いられている(Zimmer M. 2002. Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior. Chemical Reviews 102(3):759-781.)。また、E. coliでGFP発現させるとミスフォールドを起こしやすいことが知られている(Tsien RY. 1998. The green fluorescent protein. Annual Review of Biochemistry 67:509-544.)。Pedelacq らはPyrobaculum aerophilum由来GFPに、cycle-3' mutation(F99S, M153T, V163A)、enhanced GFP mutateon (F64L, S65T)を導入することにより、フォールディング効率が高いsuper folder GFPを開発している(Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology 24(1):79-88.)。 GFP is a protein that emits green fluorescence. It has been discovered from Aequorea aequorea, etc., and is frequently used for protein expression monitoring (Zimmer M. 2002. Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior. Chemical Reviews 102 (3): 759-781.). Moreover, it is known that misfolding is likely to occur when GFP is expressed in E. coli (Tsien RY. 1998. The green fluorescent protein. Annual Review of Biochemistry 67: 509-544.). Pedelacq and others have developed super folder GFP with high folding efficiency by introducing cycle-3 'mutation (F99S, M153T, V163A) and enhanced GFP mutateon (F64L, S65T) into GFP derived from Pyrobaculum aerophilum (Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology 24 (1): 79-88.).
 本発明の抗体の一態様では、SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグがH鎖及びL鎖のN末端にそれぞれ連結している。換言すれば、特定のペプチドタグが各抗体鎖に連結したタンパク質(タグ付加タンパク質)として本発明の抗体が調製される。 In one embodiment of the antibody of the present invention, a peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (where X represents any amino acid residue) is linked to the N-terminus of the H chain and L chain, respectively. is doing. In other words, the antibody of the present invention is prepared as a protein (tag added protein) in which a specific peptide tag is linked to each antibody chain.
 本発明に使用されるペプチドタグは、SK、SKX、SKXX(配列番号8)、AKXX(配列番号9)又はKKXX(配列番号10)のアミノ酸配列から構成される。Xは任意のアミノ酸残基を表す。SKに続くXとしては、例えばI(Ile)、K(Lys)、S(Ser)、A(Ala)等が用いられる。同様にSKXに続くXとしては、例えばK(Lys)、I(Ile)等が用いられる。また、AKに続くXは好ましくはI(Ile)である。AKXに続くXは好ましくはI(Ile)又はK(Lys)である。KKに続くXは好ましくはK(Lys)である。KKXに続くXは好ましくはK(Lys)である。 The peptide tag used in the present invention is composed of an amino acid sequence of SK, SKX, SKXX (SEQ ID NO: 8), AKXX (SEQ ID NO: 9) or KKXX (SEQ ID NO: 10). X represents any amino acid residue. As X following SK, for example, I (Ile), K (Lys), S (Ser), A (Ala) or the like is used. Similarly, as X following SKX, for example, K (Lys), I (Ile) or the like is used. X following AK is preferably I (Ile). X following AKX is preferably I (Ile) or K (Lys). X following KK is preferably K (Lys). X following KKX is preferably K (Lys).
 SKはセリン(Ser)及びリシン(Lys)がN末端側からC末端側に向かってこの順序で連結したペプチド(Ser-Lys)である。SKXは、SKにアミノ酸残基が1つ付加されたペプチドであり、SKXX(配列番号8)はSKにアミノ酸残基が2つ付加されたペプチドである。SKXで表されるペプチドの具体例はSKI(Ser-Lys-Ile)である。SKXX(配列番号8)はSKIX(配列番号11)であること、即ち、SKIを含むことが好ましい。SKIX(配列番号11)で表されるペプチドの具体例はSKIK(Ser-Lys-Ile-Lys)(配列番号12)及びSKII(Ser-Lys-Ile-Ile)(配列番号13)である。SKKK(Ser-Lys-Lys -Lys)(配列番号14)も好ましい具体例の一つである。 SK is a peptide (Ser-Lys) in which serine (Ser) and lysine (Lys) are linked in this order from the N-terminal side to the C-terminal side. SKX is a peptide in which one amino acid residue is added to SK, and SKXX (SEQ ID NO: 8) is a peptide in which two amino acid residues are added to SK. A specific example of the peptide represented by SKX is SKI (Ser-Lys-Ile). SKXX (SEQ ID NO: 8) is preferably SKIX (SEQ ID NO: 11), that is, contains SKI. Specific examples of the peptide represented by SKIX (SEQ ID NO: 11) are SKIK (Ser-Lys-Ile-Lys) (SEQ ID NO: 12) and SKII (Ser-Lys-Ile-Ile) (SEQ ID NO: 13). SKKK (Ser-Lys-Lys -Lys) (SEQ ID NO: 14) is also a preferred specific example.
 AKXX(配列番号9)は、アラニン(Ala)及びリシン(Lys)がN末端側からC末端側に向かってこの順序で連結したペプチド(Ala-Lys)にアミノ酸残基が2つ付加されたペプチドである。AKXX(配列番号9)で表されるペプチドの具体例はAKIK(Ala-Lys-Ile-Lys)(配列番号15)及びAKII(Ala-Lys-Ile-Ile)(配列番号16)である。 AKXX (SEQ ID NO: 9) is a peptide in which two amino acid residues are added to a peptide (Ala-Lys) in which alanine (Ala) and lysine (Lys) are linked in this order from the N-terminal side to the C-terminal side. It is. Specific examples of the peptide represented by AKXX (SEQ ID NO: 9) are AKIK (Ala-Lys-Ile-Lys) (SEQ ID NO: 15) and AKII (Ala-Lys-Ile-Ile) (SEQ ID NO: 16).
 KKXX(配列番号10)は、リシン(Lys)及びリシン(Lys)がN末端側からC末端側に向かってこの順序で連結したペプチド(Lys -Lys)にアミノ酸残基が2つ付加されたペプチドである。KKXX(配列番号10)で表されるペプチドの具体例はKKKK(Lys-Lys-Lys -Lys)(配列番号17)である。 KKXX (SEQ ID NO: 10) is a peptide in which two amino acid residues are added to a peptide (LysL-Lys) in which lysine (Lys) and lysine (Lys) are linked in this order from the N-terminal side to the C-terminal side. It is. A specific example of the peptide represented by KKXX (SEQ ID NO: 10) is KKKK (Lys-Lys-Lys -Lys) (SEQ ID NO: 17).
 本発明に使用されるペプチドタグは上記の通りSK、SKX、SKXX(配列番号8)、AKXX(配列番号9)又はKKXX(配列番号10)のアミノ酸配列から構成され、典型的には2~4アミノ酸残基からなる。但し、その機能(目的タンパク質の発現量を向上させること)に影響のない限り、そのN末端側及び/又はC末端側に他のアミノ酸残基を付加することにしてもよい。この態様の場合、全体の長さを5~13アミノ酸残基、好ましくは5~10アミノ酸残基、更に好ましくは5~7アミノ酸残基にする。 The peptide tag used in the present invention is composed of the amino acid sequence of SK, SKX, SKXX (SEQ ID NO: 8), AKXX (SEQ ID NO: 9) or KKXX (SEQ ID NO: 10) as described above, and typically 2-4 Consists of amino acid residues. However, other amino acid residues may be added to the N-terminal side and / or C-terminal side as long as the function (improving the expression level of the target protein) is not affected. In this embodiment, the total length is 5 to 13 amino acid residues, preferably 5 to 10 amino acid residues, more preferably 5 to 7 amino acid residues.
 上記のペプチドタグ(SK、SKX、SKXX(配列番号8)、AKXX(配列番号9)又はKKXX(配列番号10))を複数、用いることにしてもよい。一例として、上記のペプチドタグを2~5個、タンデムに連結させる態様を挙げることができる。また、上記のペプチドタグと他のタグ(例えば、Hisタグ、HAタグ、FLAGタグ等)を併用(連結)することにしてもよい。 A plurality of the above peptide tags (SK, SKX, SKXX (SEQ ID NO: 8), AKXX (SEQ ID NO: 9) or KKXX (SEQ ID NO: 10)) may be used. As an example, there can be mentioned an embodiment in which 2 to 5 peptide tags are linked in tandem. Further, the above peptide tag and other tags (for example, His tag, HA tag, FLAG tag, etc.) may be used in combination (linked).
2.標識タンパク質融合Fab抗体の調製法
 本発明の第2の局面は、上記標識タンパク質融合Fab抗体の調製法を提供する。本発明の調製法は、VH領域(重鎖可変領域)とCH1領域(重鎖定常領域1)をコードする抗体H鎖遺伝子と、VL領域(軽鎖可変領域)とCL領域(軽鎖定常領域)をコードする抗体L鎖遺伝子を発現させるステップを含む。一態様では、抗体H鎖遺伝子と抗体L鎖遺伝子を共発現させる(ステップ(A)。以下、「共発現ステップ」と呼称する)。即ち、同一の発現系で抗体H鎖遺伝子と抗体L鎖遺伝子を発現させる。一方、別の態様では、抗体H鎖遺伝子と抗体L鎖遺伝子を各々発現させる。この態様では、発現後に発現産物を混合し、抗体H鎖と抗体L鎖を会合させる。
2. Preparation method of labeled protein fusion Fab antibody The second aspect of the present invention provides a preparation method of the labeled protein fusion Fab antibody. The preparation method of the present invention comprises antibody H chain gene encoding VH region (heavy chain variable region) and CH1 region (heavy chain constant region 1), VL region (light chain variable region) and CL region (light chain constant region). And expressing an antibody L chain gene encoding). In one embodiment, the antibody H chain gene and the antibody L chain gene are coexpressed (step (A), hereinafter referred to as “coexpression step”). That is, the antibody H chain gene and the antibody L chain gene are expressed in the same expression system. On the other hand, in another embodiment, the antibody H chain gene and the antibody L chain gene are each expressed. In this embodiment, the expression product is mixed after expression, and the antibody H chain and the antibody L chain are associated.
 本発明の調製法では、ロイシンジッパーが付加されるとともに標識タンパク質が融合したFab抗体を得るために、特徴的な構造の抗体H鎖遺伝子と抗体L鎖遺伝子を発現に供する。即ち、発現ステップに用いる抗体遺伝子として、ロイシンジッパーを構成する一対のペプチドの内、片方(ロイシンジッパーペプチドA)をコードする塩基配列(第1タグ配列)が付加されたHc遺伝子と、他方(ロイシンジッパーペプチドB)をコードする塩基配列(第2タグ配列)が付加されたLc遺伝子を使用する。Hc遺伝子又はLc遺伝子、或いはこの両者には、ロイシンジッパーペプチドをコードする塩基配列(Hc遺伝子の場合は第1タグ配列、Lc遺伝子の場合は第2タグ配列)を介して、標識タンパク質をコードする遺伝子を連結しておく。このような特徴的なHc遺伝子発現コンストラクトと、Lc遺伝子発現コンストラクトを発現させ、ロイシンジッパーが付加されるとともに、H鎖又はL鎖、或いはこの両者に標識タンパク質が融合したFab抗体を得る。 In the preparation method of the present invention, in order to obtain a Fab antibody to which a leucine zipper is added and a labeled protein is fused, a characteristic antibody H chain gene and antibody L chain gene are subjected to expression. That is, as an antibody gene used in the expression step, an Hc gene to which a base sequence (first tag sequence) encoding one (leucine zipper peptide A) of a pair of peptides constituting leucine zipper is added, and the other (leucine) An Lc gene to which a base sequence (second tag sequence) encoding zipper peptide B) has been added is used. The Hc gene and / or Lc gene, or both, encodes a labeled protein via a base sequence encoding a leucine zipper peptide (first tag sequence in the case of Hc gene, second tag sequence in the case of Lc gene) Keep the genes linked. Such a characteristic Hc gene expression construct and Lc gene expression construct are expressed, and a leucine zipper is added, and a Fab antibody in which a labeled protein is fused to the H chain, the L chain, or both is obtained.
 第1タグ配列の付加位置はHc遺伝子の3'末端である。第2タグ配列の付加位置も同様であり、Lc遺伝子の3'末端に付加する。 The addition position of the first tag sequence is the 3 ′ end of the Hc gene. The addition position of the second tag sequence is the same, and is added to the 3 ′ end of the Lc gene.
 第1タグ配列及び第2タグ配列は直接又はリンカー配列(リンカーをコードする配列)を介して抗体遺伝子に連結される。後者の場合には、ロイシンジッパーがリンカーで連結されたFab抗体が得られることになる。 The first tag sequence and the second tag sequence are linked to the antibody gene directly or via a linker sequence (sequence encoding the linker). In the latter case, a Fab antibody in which leucine zippers are linked by a linker is obtained.
 標識タンパク質をコードする遺伝子は、直接又はリンカー配列(リンカーをコードする配列)を介して、ロイシンジッパーペプチドをコードする塩基配列(Hc遺伝子の場合は第1タグ配列、Lc遺伝子の場合は第2タグ配列)に連結される。 The gene encoding the tag protein is a base sequence encoding the leucine zipper peptide (first tag sequence in the case of the Hc gene, second tag in the case of the Lc gene), either directly or via a linker sequence (sequence encoding the linker). Array).
 ペプチドタグがH鎖及びL鎖のN末端に連結した標識タンパク質融合Fab抗体を調製する場合には、ペプチドタグをコードする配列が直接又は他の配列を介して抗体遺伝子(Hc遺伝子、Lc遺伝子)に連結した構造を備える発現コンストラクトを用いる。ペプチドタグをコードする限り、様々な配列を採用することができる。例えば、ペプチドタグがSKの場合であれば、tctaaaやtcg aagの配列など、ペプチドタグがSKIの場合であれば、tct aaa ataやtcg aag atcの配列など、ペプチドタグがSKIKの場合であれば、tct aaa ata aaa(配列番号18)やtcg aag atc aag(配列番号19)の配列など、ペプチドタグがSKKKの場合であれば、tct aaa aaa aaa(配列番号20)の配列、ペプチドタグがSKIIの場合であれば、tct aaa att att(配列番号21)の配列、ペプチドタグがAKIKの場合であれば、gca aaa att aaa(配列番号22)の配列、ペプチドタグがAKIIの場合であれば、gca aaa att att(配列番号23)の配列、ペプチドタグがKKKKの場合であれば、aaa aaa aaa aaa(配列番号24)の配列、を用いることができる。 When preparing a labeled protein fusion Fab antibody in which a peptide tag is linked to the N-terminus of the H chain and L chain, the antibody gene (Hc gene, Lc gene) can be directly or via a sequence encoding the peptide tag. An expression construct comprising a structure linked to is used. As long as it encodes a peptide tag, various sequences can be employed. For example, if the peptide tag is SK, tctaaa or tcg aag sequence, etc. If the peptide tag is SKI, tct な ど aaa ata or tcg aag atc sequence, etc., if the peptide tag is SKIK If the peptide tag is SKKK, such as the sequence of tct aaa ata aaa (SEQ ID NO: 18) or tcg aag atc aag (SEQ ID NO: 19), the sequence of tct aaa aaa aaa (SEQ ID NO: 20), the peptide tag is SKII In the case of tct aaa att att (SEQ ID NO: 21), if the peptide tag is AKIK, if gca aaa att aaa (SEQ ID NO: 22), if the peptide tag is AKII, The sequence of gca の aaa att att (SEQ ID NO: 23) and the sequence of aaa aaa aaa aaa (SEQ ID NO: 24) can be used when the peptide tag is KKKK.
 ペプチドタグをコードする配列と抗体遺伝子との間に介在し得る「他の配列」の例として、プロテアーゼ認識配列をコードする配列を挙げることができる。プロテアーゼ認識配列とは、特定のプロテアーゼにより認識され、当該プロテアーゼによるタンパク質の切断に必要なアミノ酸配列である。例えばソルターゼ認識配列、HRV3C認識配列、TEVプロテアーゼ認識配列を用いることができる。プロテアーゼ認識配列をコードする配列のような機能配列ではなく、特定の機能を持たない配列を、ペプチドタグをコードする配列と抗体遺伝子の間に介在させてもよい。 Examples of “other sequences” that can intervene between a sequence encoding a peptide tag and an antibody gene include a sequence encoding a protease recognition sequence. The protease recognition sequence is an amino acid sequence that is recognized by a specific protease and necessary for cleavage of the protein by the protease. For example, a sortase recognition sequence, an HRV3C recognition sequence, or a TEV protease recognition sequence can be used. Instead of a functional sequence such as a sequence encoding a protease recognition sequence, a sequence not having a specific function may be interposed between the sequence encoding the peptide tag and the antibody gene.
 Hc遺伝子とLc遺伝子は任意の方法によって用意することができる。本発明者らの研究グループは、SICREX法(Single Cell RT-PCR Linked in Vitro Expression)と呼称されるFab抗体の取得法を開発した。SICREX法は抗体産生細胞から短時間で所望の抗体を取得することを可能にする。本発明の好ましい一態様では、SICREX法を利用することによって、Hc遺伝子とLc遺伝子を簡便且つ短時間で調製するとともに、一連の操作の迅速化を図る。SICREX法(Biotechnol Prog. 2006 Jul-Aug;22(4):979-88.)の典型的な操作では、まず、ある特定の抗原に対して免疫性を与えられた非ヒト動物(例えばマウス、ラット、ウサギ)の脾臓や末梢血、或いはヒト末梢血等からB細胞を単離する。細胞数が1細胞/ウェルとなるように、単離したB細胞を含む溶液を希釈する。或いは、マイクロマニュピレーター等を用いてB細胞を単離する。次に、逆転写PCR(RT-PCR)を用い、B細胞中のmRNAからcDNAを合成する。続いて、2段階PCRによりHc遺伝子とLc遺伝子をそれぞれ別々に増幅する。2段階PCRの1段階目では、同一のタグ配列が5'末端に付加された複数のcDNA特異的プライマー(第1プライマーセット)を用いる。1段階目のPCRの増幅産物を鋳型として2段階目のPCRを行う。2段階目のPCRでは、第1プライマーセットに用いたタグ配列と同一のタグ配列が5'末端に付加された単一のプライマーを用い、1段階目のPCRの増幅産物を特異的且つ効率的に増幅する。2段階目のPCRに使用する単一プライマーは、1段階目のPCRで得られる増幅産物の5'末端部分及び3'末端部分に相補的である。従って、単一のプライマーによる特異的な増幅が可能になる。以上の操作によって得られたHc遺伝子とLc遺伝子に対して、無細胞タンパク質合成系での発現に必要な要素(プロモーター、ターミネータなど)をオーバーラップPCRで結合させた後、必要な試薬を添加した一つの容器内でin vitro合成(転写及び翻訳)する。このようにして合成したFab抗体の抗原に対する結合能はELISA法等によって確認することができる。また、必要に応じて、結合能の高いものについてシークエンス解析を行う。尚、SICREX法の操作手順、条件、応用などについては、Biotechnol Prog. 2006 Jul-Aug;22(4):979-88.、J Biosci Bioeng. 2010 Jan;109(1):75-82等を参照することができる。また、以下に示す各ステップ(ステップ(i)~(viii)、ステップ(a)及び(b)、ステップ(I)~(IV))の詳細については、特許文献1を参考にすることができる。 Hc gene and Lc gene can be prepared by any method. Our research group has developed a method for obtaining Fab antibodies called the SICREX method (Single-Cell RT-PCR Linked In Vitro Expression). The SICREX method makes it possible to obtain a desired antibody from antibody-producing cells in a short time. In a preferred embodiment of the present invention, by using the SICREX method, the Hc gene and the Lc gene are prepared easily and in a short time, and the series of operations is accelerated. In a typical operation of the SICREX method (Biotechnol Prog. 2006 Jul-Aug; 22 (4): 979-88.), First a non-human animal immunized against a particular antigen (eg, a mouse, B cells are isolated from spleen and peripheral blood of rats and rabbits) or human peripheral blood. Dilute the solution containing the isolated B cells so that the cell count is 1 cell / well. Alternatively, B cells are isolated using a micromanipulator or the like. Next, cDNA is synthesized from mRNA in B cells using reverse transcription PCR (RT-PCR). Subsequently, the Hc gene and the Lc gene are amplified separately by two-step PCR. In the first step of the two-step PCR, a plurality of cDNA-specific primers (first primer set) having the same tag sequence added to the 5 ′ end are used. The second stage PCR is performed using the amplification product of the first stage PCR as a template. In the second stage PCR, a single primer with the same tag sequence added to the 5 'end as the tag sequence used for the first primer set is used, and the amplification product of the first stage PCR is specifically and efficiently used. Amplify to. The single primer used for the second stage PCR is complementary to the 5 ′ end part and the 3 ′ end part of the amplification product obtained by the first stage PCR. Therefore, specific amplification with a single primer becomes possible. Elements necessary for expression in the cell-free protein synthesis system (promoter, terminator, etc.) were combined by overlap PCR to the Hc gene and Lc gene obtained by the above operation, and then necessary reagents were added. In vitro synthesis (transcription and translation) in one container. The binding ability of the Fab antibody thus synthesized to the antigen can be confirmed by ELISA or the like. If necessary, sequence analysis is performed for those with high binding ability. For the procedure, conditions, application, etc. of SICREX method, Biotechnol Prog. 2006 Jul-Aug; 22 (4): 979-88., J Biosci Bioeng. 2010 Jan; 109 (1): 75-82 etc. You can refer to it. For details of each step shown below (steps (i) to (viii), steps (a) and (b), steps (I) to (IV)), Patent Document 1 can be referred to. .
 SICREX法を利用して、本発明に用いるHc遺伝子とLc遺伝子を用意する場合には、例えば、以下のステップ(i)~(viii)を行うことになる。
 (i)単一のB細胞に由来するmRNAを用意するステップ
 (ii)前記mRNAを鋳型とした逆転写PCR法によりcDNAを調製するステップ
 (iii)5'末端に同一のタグ配列(第3タグ配列)を含む複数のプライマーからなり、VH領域とCH1領域をコードする抗体H鎖遺伝子(Hc遺伝子)を増幅可能なプライマーセットを用い、前記cDNAを鋳型としてPCRを実施するステップ
 (iv)5'末端に同一のタグ配列(第4タグ配列)を含む複数のプライマーからなり、VL領域とCL領域をコードする抗体L鎖遺伝子(Lc遺伝子)を増幅可能なプライマーセットを用い、前記cDNAを鋳型としてPCRを実施するステップ
 (v)前記第3タグ配列を含む単一のプライマーを用い、ステップ(iii)の増幅産物を鋳型としてPCRを実施するステップ
 (vi)前記第4タグ配列を含む単一のプライマーを用い、ステップ(iv)の増幅産物を鋳型としてPCRを実施するステップ
 (vii)ステップ(v)の増幅産物である抗体H鎖遺伝子(Hc遺伝子)に第1タグ配列(ロイシンジッパーペプチドAをコードする配列)を付加するステップ
 (viii)ステップ(vi)の増幅産物である抗体L鎖遺伝子(Lc遺伝子)に第2タグ配列(ロイシンジッパーペプチドBをコードする配列)を付加するステップ
When the Hc gene and Lc gene used in the present invention are prepared using the SICREX method, for example, the following steps (i) to (viii) are performed.
(i) Step of preparing mRNA derived from a single B cell (ii) Step of preparing cDNA by reverse transcription PCR using said mRNA as a template (iii) Tag sequence identical to the 5 ′ end (third tag) (Iv) performing PCR using a primer set that can amplify an antibody H chain gene (Hc gene) encoding a VH region and a CH1 region, and using the cDNA as a template. A primer set consisting of a plurality of primers containing the same tag sequence (4th tag sequence) at the end and capable of amplifying an antibody L chain gene (Lc gene) encoding VL region and CL region, and using the cDNA as a template (V) performing PCR using a single primer including the third tag sequence and using the amplification product of step (iii) as a template (vi) performing a single step including the fourth tag sequence Using the primers, the amplification product of step (iv) A step of performing PCR using as a template (vii) a step of adding a first tag sequence (sequence encoding leucine zipper peptide A) to the antibody H chain gene (Hc gene) which is an amplification product of step (v) (viii) A step of adding a second tag sequence (sequence encoding leucine zipper peptide B) to the antibody L chain gene (Lc gene) which is an amplification product of step (vi)
 以上のステップの中で、特にステップ(vii)及び(viii)は本発明に特徴的である。ステップ(vii)及び(viii)におけるタグ配列は、上記SICREX法における、無細胞タンパク質合成系での発現に必要な要素の付加と同様に、オーバーラップPCRにより付加することができる。 Of these steps, steps (vii) and (viii) are particularly characteristic of the present invention. The tag sequence in steps (vii) and (viii) can be added by overlap PCR in the same manner as the addition of elements necessary for expression in the cell-free protein synthesis system in the SICREX method.
 Hc遺伝子及びLc遺伝子の共発現に無細胞タンパク質合成系を用いる場合には、無細胞タンパク質合成系での発現に必要な要素の付加も行う。この操作は、ステップ(vii)及び(viii)の前又は後に行うことができる。或いは、第1タグ配列/第2タグ配列の付加と同時に行うことにしてもよい(即ち、無細胞タンパク質合成系での発現に必要な要素とタグ配列をまとめて付加する)。「無細胞タンパク質合成系での発現に必要な要素」としてプロモーターが用いられる。好ましくは、プロモーター及びターミネーターが併用される。更に好ましくは、プロモーター、ターミネーター及びリボソーム結合サイトが併用される。プロモーターとしては、T7プロモーター、T3プロモーター、SP6プロモーター等を用いることができる。また、ターミネーターとしては例えばT7ターミネーターを用いることができる。 When using a cell-free protein synthesis system for co-expression of Hc gene and Lc gene, elements necessary for expression in the cell-free protein synthesis system are also added. This operation can be performed before or after steps (vii) and (viii). Alternatively, it may be performed simultaneously with the addition of the first tag sequence / second tag sequence (that is, the elements necessary for expression in the cell-free protein synthesis system and the tag sequence are added together). A promoter is used as “an element necessary for expression in a cell-free protein synthesis system”. Preferably, a promoter and a terminator are used in combination. More preferably, a promoter, a terminator and a ribosome binding site are used in combination. As the promoter, T7 promoter, T3 promoter, SP6 promoter and the like can be used. As the terminator, for example, a T7 terminator can be used.
 ところで、1段階目のPCRと2段階目のPCRに使用するプライマーを所定の量比で同時に使用することにより、2段階PCRを一つの操作(1段階PCR)で行うという、SICREX法の改良技術の報告(J. Biosci. Bioeng.,Vol. 101, No.3, 284-286, 2006)もある。この報告に準じ、本発明の別の態様では、従来の2段階PCRに代え、1段階PCRによって抗体遺伝子を増幅させる。この態様の場合、上記ステップ(iii)~(vi)に代えて、以下のステップ(a)及び(b)を行うことになる。
 (a) 5'末端に同一のタグ配列(第5タグ配列)を含む複数のプライマーからなり、VH領域とCH1領域をコードする抗体H鎖遺伝子(Hc遺伝子)を増幅可能なプライマーセットと、該プライマーセットよりも高濃度で使用される、前記第5タグ配列を含む単一のプライマーとを用い、前記cDNAを鋳型としてPCRを実施するステップ
 (b) 5'末端に同一のタグ配列(第6タグ配列)を含む複数のプライマーからなり、VL領域とCL領域をコードする抗体L鎖遺伝子(Lc遺伝子)を増幅可能なプライマーセットと、該プライマーセットよりも高濃度で使用される、前記第6タグ配列を含む単一のプライマーを用い、前記cDNAを鋳型としてPCRを実施するステップ
By the way, an improved technique of SICREX method that uses two-step PCR in one operation (one-step PCR) by simultaneously using the primers used for the first-step PCR and the second-step PCR at a predetermined quantitative ratio. (J. Biosci. Bioeng., Vol. 101, No. 3, 284-286, 2006). In accordance with this report, in another embodiment of the present invention, the antibody gene is amplified by one-step PCR instead of the conventional two-step PCR. In this embodiment, the following steps (a) and (b) are performed in place of the steps (iii) to (vi).
(a) a primer set comprising a plurality of primers containing the same tag sequence (fifth tag sequence) at the 5 ′ end and capable of amplifying an antibody H chain gene (Hc gene) encoding a VH region and a CH1 region; (B) performing PCR using a single primer containing the fifth tag sequence used at a higher concentration than the primer set and using the cDNA as a template (b) A primer set that can amplify an antibody L chain gene (Lc gene) encoding a VL region and a CL region, and a primer set that is used at a higher concentration than the primer set. A step of performing PCR using a single primer including a tag sequence and using the cDNA as a template.
 プライマーセットと単一プライマーの量比は例えば1:2~1:50、好ましくは1:5~1:20、更に好ましくは1:8~1:15である。 The amount ratio of the primer set to the single primer is, for example, 1: 2 to 1:50, preferably 1: 5 to 1:20, more preferably 1: 8 to 1:15.
 上記の方法(ステップ(i)~(viii))ではなく、外側のプライマーと内側のプライマーを使って2段階のPCRを行う方法(nested PCR法)によって抗体cDNAを特異的に増幅させることにしてもよい。この場合には、例えば、以下の(I)~(IV)のステップを行うことになる。
 (I)単一のB細胞に由来するmRNAを用意するステップ;
 (II)前記mRNAを鋳型とした逆転写PCR法によりcDNAを調製するステップ;
 (III)前記cDNAを鋳型としたnested PCR法により前記抗体H鎖遺伝子を増幅させるステップ、
 (IV)前記cDNAを鋳型としたnested PCR法により前記抗体L鎖遺伝子を増幅させるステップ。
Instead of the above method (steps (i) to (viii)), the antibody cDNA is specifically amplified by a two-step PCR method (nested PCR method) using an outer primer and an inner primer. Also good. In this case, for example, the following steps (I) to (IV) are performed.
(I) providing mRNA derived from a single B cell;
(II) preparing cDNA by reverse transcription PCR using the mRNA as a template;
(III) amplifying the antibody H chain gene by a nested PCR method using the cDNA as a template,
(IV) Amplifying the antibody L chain gene by a nested PCR method using the cDNA as a template.
 ところで、Hc遺伝子(第1タグ配列が付加されている。また、態様によっては、標識タンパク質遺伝子も連結されている。)とLc遺伝子(第1タグ配列が付加されている。また、態様によっては、標識タンパク質遺伝子も連結されている。)の共発現ステップは、宿主細胞を用いた発現系又は無細胞タンパク質合成系で行うことができる。前者の場合、Hc遺伝子を発現可能に保持した発現ベクターと、Lc遺伝子を発現可能に保持した発現ベクターを用意し、これらの発現ベクターで適当な宿主を形質転換する。或いは、Hc遺伝子とLc遺伝子を共発現可能な発現ベクターによって宿主を形質転換する。そして、得られた形質転換体を、発現ベクターからの抗体遺伝子が発現可能な条件下で培養した後、形質転換体内又は培養液から、発現産物の会合体である標識タンパク質融合Fab抗体を回収する。 By the way, the Hc gene (the first tag sequence is added. In some embodiments, the tag protein gene is also linked.) And the Lc gene (the first tag sequence is added. The co-expression step of the labeled protein gene is also performed in an expression system using a host cell or a cell-free protein synthesis system. In the former case, an expression vector holding the Hc gene so that it can be expressed and an expression vector holding the Lc gene so that it can be expressed are prepared, and an appropriate host is transformed with these expression vectors. Alternatively, the host is transformed with an expression vector capable of co-expressing the Hc gene and the Lc gene. The obtained transformant is cultured under conditions that allow expression of the antibody gene from the expression vector, and then the labeled protein-fused Fab antibody, which is an aggregate of expression products, is recovered from the transformant or culture medium .
 Hc遺伝子とLc遺伝子を各々発現させた後、発現産物を混合するステップを行う態様の場合には、Hc遺伝子を発現可能に保持した発現ベクターで適当な宿主を形質転換する一方で、Lc遺伝子を発現可能に保持した発現ベクターで適当な宿主を形質転換する。得られた各形質転換体を培養した後、形質転換体内又は培養液から発現産物を回収する。その後、発現産物を混合して会合させ、標識タンパク質融合Fab抗体を得る。 In the embodiment in which the expression product is mixed after expressing each of the Hc gene and the Lc gene, an appropriate host is transformed with an expression vector that holds the Hc gene so that the Lc gene can be expressed. An appropriate host is transformed with an expression vector retained so as to allow expression. After each obtained transformant is cultured, the expression product is recovered from the transformant or the culture solution. Thereafter, the expression products are mixed and associated to obtain a labeled protein fusion Fab antibody.
 宿主としては、細菌細胞(例えば大腸菌)、酵母細胞(例えばSaccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris)、糸状菌細胞(例えばAspergillus oryzae, Aspergillus niger)、哺乳動物細胞(例えばCHO細胞、Sp2/0細胞、NS0細胞)等を例示することができる。好ましくは、宿主として大腸菌を採用する。大腸菌は目的タンパク質の効率的且つ大量の調製に適する。T7プロモーター、lacプロモーター、tacプロモーター、trpプロモーター、T3プロモーター、SP6プロモーター、低温発現プロモーター(コールドショック遺伝子cspAのプロモーター)等を用いた各種発現系を利用可能である。但し、T7プロモーター及び低温発現プロモーターは誘導が容易であり強力な発現制御が可能という利点を有し、特に好ましいプロモーターである。従って、T7プロモーター又は低温発現プロモーターを用いた発現系を用いることが好ましい。尚、本明細書では、宿主として大腸菌を用いた発現系(慣例に従い、「大腸菌発現系」と呼ぶ)と大腸菌由来成分を用いた無細胞タンパク質合成系(後述)を包括的に「大腸菌を利用した発現系」と表現する。 As a host, bacterial cells (for example, E. coli), yeast cells (for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris), filamentous fungi cells (for example, Aspergillus oryzae, Aspergillus niger), mammalian cells (for example, CHO cells, Sp2 / 0 cells, NS0 cells) and the like. Preferably, E. coli is employed as the host. E. coli is suitable for the efficient and large-scale preparation of the target protein. Various expression systems using T7 promoter, lac promoter, tac promoter, trp promoter, T3 promoter, SP6 promoter, low-temperature expression promoter (cold shock gene cspA promoter) and the like can be used. However, the T7 promoter and the low-temperature expression promoter are particularly preferred promoters because they have the advantages of being easily induced and capable of strong expression control. Therefore, it is preferable to use an expression system using a T7 promoter or a low temperature expression promoter. In this specification, the expression system using E. coli as a host (according to convention, called “E. coli expression system”) and the cell-free protein synthesis system using E. coli-derived components (described later) are comprehensively used. Expression system ".
 発現ベクターは宿主との関係を考慮して選択すればよい。形質転換、培養、回収等の各操作及び条件は常法に従えばよい。或いは、過去の報告に準じて各操作を行えばよい。 The expression vector may be selected in consideration of the relationship with the host. Each operation and conditions such as transformation, culture, and recovery may be in accordance with conventional methods. Alternatively, each operation may be performed according to past reports.
 無細胞タンパク質合成系とは、生細胞を用いるのではく、生細胞由来の(或いは遺伝子工学的手法で得られた)リボソームや転写・翻訳因子などを用いて、鋳型である核酸からタンパク質をin vitroで合成することをいう。無細胞タンパク質合成系では一般に、細胞破砕液を必要に応じて精製して得られる細胞抽出液が使用される。細胞抽出液には一般に、タンパク質合成に必要なリボソーム、開始因子などの各種因子、tRNAなどの各種酵素が含まれる。タンパク質の合成を行う際には、この細胞抽出液に各種アミノ酸、ATP、GTPなどのエネルギー源、クレアチンリン酸など、タンパク質の合成に必要なその他の物質を添加する。勿論、タンパク質合成の際に、別途用意したリボソームや各種因子、及び/又は各種酵素などを必要に応じて補充してもよい。 The cell-free protein synthesis system does not use living cells, but uses ribosomes derived from living cells (or obtained by genetic engineering techniques), transcription / translation factors, etc. It means to synthesize in vitro. In a cell-free protein synthesis system, a cell extract obtained by purifying a cell disruption solution as needed is generally used. Cell extracts generally contain ribosomes necessary for protein synthesis, various factors such as initiation factors, and various enzymes such as tRNA. When protein is synthesized, other substances necessary for protein synthesis such as various amino acids, energy sources such as ATP and GTP, and creatine phosphate are added to the cell extract. Of course, a ribosome, various factors, and / or various enzymes prepared separately may be supplemented as necessary during protein synthesis.
 タンパク質合成に必要な各分子(因子)を再構成した転写/翻訳系の開発も報告されている(Shimizu, Y. et al.: Nature Biotech., 19, 751-755, 2001)。この合成系では、バクテリアのタンパク質合成系を構成する3種類の開始因子、3種類の伸長因子、終結に関与する4種類の因子、各アミノ酸をtRNAに結合させる20種類のアミノアシルtRNA合成酵素、及びメチオニルtRNAホルミル転移酵素からなる31種類の因子の遺伝子を大腸菌ゲノムから増幅し、これらを用いてタンパク質合成系をin vitroで再構成している。本発明ではこのような再構成した合成系を利用してもよい。 Development of a transcription / translation system that reconstitutes each molecule (factor) necessary for protein synthesis has also been reported (Shimizu, Y. et al .: Nature Biotech., 19, 751-755, 2001). In this synthesis system, three types of initiation factors constituting bacterial protein synthesis system, three types of elongation factors, four types of factors involved in termination, 20 types of aminoacyl-tRNA synthetases that bind each amino acid to tRNA, and Genes of 31 kinds of factors consisting of methionyl tRNA formyltransferase are amplified from the Escherichia coli genome, and the protein synthesis system is reconstructed in vitro using these genes. In the present invention, such a reconstructed synthesis system may be used.
 無細胞タンパク質合成系には以下の利点がある。まず第1に、生細胞を維持する必要がないため操作性が良好で系の自由度も高い。したがって、目的のタンパク質の性質に応じて様々な修正や修飾を施した合成系を設計することが可能となる。次に、細胞系の合成では使用する細胞に毒性のあるタンパク質の合成は基本的にできないが、無細胞系ではそのような毒性のタンパク質であっても生産することができる。さらに、多種類のタンパク質を同時にかつ迅速に合成できることからハイスループット化が容易である。生産されるタンパク質の分離・精製が容易であるという利点も備え、これはハイスループット化に有利に働く。加えて、非天然型のアミノ酸を取り込ませるなどして非天然型タンパク質を合成することも可能であるという利点も併せ持つ。 The cell-free protein synthesis system has the following advantages. First, since there is no need to maintain live cells, operability is good and the degree of freedom of the system is high. Therefore, it is possible to design a synthetic system with various modifications and modifications according to the properties of the target protein. Next, in the synthesis of cell systems, it is basically impossible to synthesize proteins that are toxic to the cells used, but in the cell-free system, even such toxic proteins can be produced. In addition, high throughput can be easily achieved because many types of proteins can be synthesized simultaneously and rapidly. It also has the advantage that the produced protein can be easily separated and purified, which is advantageous for high throughput. In addition, it also has the advantage that non-natural proteins can be synthesized by incorporating non-natural amino acids.
 無細胞タンパク質合成系を採用することにすれば、本発明の調製法の一連の操作をSICREX法に準じて行うことができ、効率的且つ迅速に標識タンパク質融合Fab抗体を調製することができる。 If a cell-free protein synthesis system is adopted, a series of operations of the preparation method of the present invention can be performed according to the SICREX method, and a labeled protein-fused Fab antibody can be prepared efficiently and rapidly.
 現在広く利用されている無細胞タンパク質合成系には以下のものがある。即ち、大腸菌S30抽出液の系(原核細胞の系)、コムギ胚芽抽出液の系(真核細胞の系)、及びウサギ網状赤血球可溶化物の系(真核細胞の系)である。これらの系はキットとしても市販されており、容易に利用することが可能である。 Currently, the following cell-free protein synthesis systems are widely used. That is, an E. coli S30 extract system (prokaryotic cell system), a wheat germ extract system (eukaryotic cell system), and a rabbit reticulocyte lysate system (eukaryotic cell system). These systems are also commercially available as kits and can be used easily.
 歴史的には大腸菌S30抽出液の系の開発が最も古く、この系を利用して様々なタンパク質の合成が試みられてきた。大腸菌30S画分は、大腸菌の集菌、菌体破砕、精製の工程を経て調製される。大腸菌30S画分の調製及び、無細胞転写・翻訳共役反応はPrattらの方法(Pratt, J. M.: Chapter 7, in “Transcription and Translation: A practical approach”, ed. by B. D. Hames & S. J. Higgins, pp. 179-209, IRL Press, New York (1984))やEllmanらの方法(Ellman, J. et al.: Methods Enzymol., 202, 301-336(1991))を参考にして行うことができる。 Historically, the development of the E. coli S30 extract system has been the oldest, and attempts have been made to synthesize various proteins using this system. The E. coli 30S fraction is prepared through steps of E. coli collection, cell disruption, and purification. The preparation of the 30S fraction of E. coli and the cell-free transcription / translation coupling reaction were performed by the method of Pratt et al. (Pratt, J. M .: Chapter 7, in “Transcription and Translation: A practical approach”, ed. By B. D. Hames & S. J. Higgins, pp. 179-209, IRL Press, New York (1984)) and Ellman et al. (Ellman, llJ. Et al .: Methods Enzymol., 202, 301-336 (1991)) This can be done with reference.
 コムギ胚芽抽出液の系は、高品質の真核生物タンパク質を効率的に合成できるという利点を有し、大腸菌S30抽出液の系では合成が困難な真核生物のタンパク質を合成する際によく利用される。最近になって、種子胚乳成分を洗浄除去した胚芽から抽出液を調製することによって高効率かつ安定な合成系が構築されることが報告され注目を集めている(Madin, K. et al.: Proc. Natl. Acad. Sci. USA, 97: 559-564, 2000)。その後、高翻訳促進能を有するmRNA非翻訳配列、PCRを利用した多品目機能解析用のタンパク質合成法、専用高発現ベクターの構築などの技術開発が行われ(Sawasaki, T. et al.: Proc. Natl. Acad. Sci. USA, 99: 14652-14657, 2002)、様々な分野への応用が期待されている。 The wheat germ extract system has the advantage of efficiently synthesizing high-quality eukaryotic proteins, and is often used to synthesize eukaryotic proteins that are difficult to synthesize using the E. coli S30 extract system. Is done. Recently, it has been reported that a highly efficient and stable synthetic system is constructed by preparing an extract from germs from which seed endosperm components have been washed away (Madin, K. et al .: Proc. Natl. Acad. Sci. USA, 97: 559-564, 2000). After that, technical developments such as mRNA untranslated sequence with high translation promoting ability, protein synthesis method for multi-item function analysis using PCR, construction of dedicated high expression vector, etc. were carried out (Sawasaki, T. et al .: Proc Natl. Acad. Sci. USA, 99: 14652-14657, 2002), is expected to be applied in various fields.
 コムギ胚芽抽出液は、コムギ胚芽をすり潰して遠心分離した後、上澄み液をゲルろ過で分離することによって得ることができる。翻訳反応については、Andersonらの方法(Anderson, C. W. et al.: Methods Enzymol., 101, 638-644(1983))を参考にできる。改良法についても報告されており、例えば河原崎らの方法(Kawarasaki, Y. et al.: Biotechnol. Prog., 16, 517-521(2000))やMadinらの方法(Madin, K. et al.: Proc. Natl. Acad. Sci. USA, 97: 559-564, 2000)等を参考にできる。その他、コムギ胚芽抽出液の系についてはWO 00/68412 A1、WO 01/27260 A1、WO 2002/024939 A1、WO 2005/063979 A1、特開平6-7134号公報、特開2002-529531号公報、特開2005-355513号公報、特開2006-042601号公報、特開2007-097438号公報、特開2008-029203号公報等が参考になる。 The wheat germ extract can be obtained by grinding and centrifuging wheat germ and then separating the supernatant by gel filtration. Regarding the translation reaction, the method of Anderson et al. (Anderson, C. W. et al .: Methods Enzymol., 101, 638-644 (1983)) can be referred to. Improved methods have also been reported, such as the method of Kawarazaki et al. (Kawarasaki, Y. et al .: Biotechnol. Prog., 16, 517-521 (2000)) and the method of Madin et al. (Madin, K. et al. : Proc. Natl. Acad. Sci. USA, 97: -559-564, 2000). In addition, for wheat germ extract system, WO 00 / 68412684A1, WO 01/27260 A1, WO 2002/024939 A1, WO 2005/063979 A1, JP-A-6-7134, JP-A-2002-529531, Reference can be made to JP-A-2005-355513, JP-A-2006-042601, JP-A-2007-097438, JP-A-2008-029203, and the like.
 ウサギ網状赤血球可溶化物の系はグロブリン生産に適する。ウサギ網状赤血球可溶化物は、ウサギにフェニルヒドラジンを数日間静脈注射して貧血状態とし、所定期間後(例えば第8日目)に採血し、その後溶血させた液から超遠心分離処理などを経て得られる。ウサギ網状赤血球可溶化物の調製法は、JacksonとHuntの方法(Jackson, R. J. and Hunt, T.: Methods Enzymol., 96, 50-74(1983))を参考にして行うことができる。 Rabbit reticulocyte lysate system is suitable for globulin production. Rabbit reticulocyte lysate is made anemic by injecting phenylhydrazine intravenously into rabbits for several days, blood is collected after a predetermined period (for example, day 8), and then subjected to ultracentrifugation from the hemolyzed solution. can get. The preparation of rabbit reticulocyte lysate can be performed with reference to the method of Jackson and Hunt (Jackson, R. J. and Hunt, T .: Methods Enzymol., 96, 50-74 (1983)). .
 本発明の実施に際して利用できる無細胞タンパク質合成系は上記のものに限られるものではなく、例えば大腸菌以外のバクテリアやコムギ以外の植物の抽出液、昆虫由来の抽出液、動物細胞由来の抽出液、又はゲノム情報を基に構築した系などを利用してもよい。好ましくは、大腸菌S30抽出液の系(原核細胞の系)、又は上記の如き大腸菌ゲノムを基に再構成した系を用いる。これらの系はキットとしても市販されており、容易に利用することが可能である。 The cell-free protein synthesis system that can be used in the practice of the present invention is not limited to the above-described ones, for example, bacterial extracts other than E. coli and plant extracts other than wheat, insect-derived extracts, animal cell-derived extracts, Alternatively, a system constructed based on genome information may be used. Preferably, an E. coli S30 extract system (prokaryotic cell system) or a system reconstituted based on the E. coli genome as described above is used. These systems are also commercially available as kits and can be used easily.
 発現ないし合成された標識タンパク質融合Fab抗体は、常法(遠心分離、濾過、アフィニティクロマトグラフィなど)によって回収することができる。Hc遺伝子及びLc遺伝子に回収用のタグ配列(例えばヒスチジンタグ)を組み込んでおけば、当該タグ配列を利用して容易かつ簡便に回収することが可能である。 The expressed or synthesized labeled protein-fused Fab antibody can be recovered by conventional methods (centrifugation, filtration, affinity chromatography, etc.). If a collection tag sequence (for example, histidine tag) is incorporated into the Hc gene and the Lc gene, the tag sequence can be used for easy and simple collection.
 発現後にリフォールディングの操作を行うことにしてもよい。リフォールディングとは、活性のある天然型構造へと巻き戻す操作であり、大別して希釈法と透析法が頻用されている。希釈法では、塩酸グアニジンなどの変性剤で発現産物を可溶化した後(ジスルフィド結合の形成のためにDDTやβ-メルカプトエタノールなどの還元剤を併用する)、リフォールディング緩衝液に希釈する。他方、透析法では、変性剤処理の後、変性剤濃度を段階的に減少させた透析液を用いて透析し、変性剤を除去する。 Refolding operation may be performed after expression. Refolding is an operation of rewinding to an active natural structure, and is roughly divided into a dilution method and a dialysis method. In the dilution method, the expression product is solubilized with a denaturing agent such as guanidine hydrochloride (in combination with a reducing agent such as DDT or β-mercaptoethanol to form a disulfide bond), and then diluted in a refolding buffer. On the other hand, in the dialysis method, after treatment with a denaturant, dialysis is performed using a dialysis solution in which the concentration of the denaturant is reduced stepwise to remove the denaturant.
 プロテアーゼ認識配列が介在した状態でペプチドタグがH鎖及びL鎖のN末端に連結した標識タンパク質融合Fab抗体を発現ないし合成した場合には、発現産物をプロテーゼ処理することにより、ペプチドタグが切断(分離)された標識タンパク質融合Fab抗体を得ることが可能である。 When expressing or synthesizing a labeled protein fusion Fab antibody in which the peptide tag is linked to the N-terminus of the H chain and L chain with the protease recognition sequence interposed, the peptide tag is cleaved by prosthesis treatment ( It is possible to obtain a labeled protein-fused Fab antibody that has been separated.
3.標識タンパク質融合Fab抗体調製用のベクター
 本発明は標識タンパク質融合Fab抗体調製用のベクターも提供する。本発明のベクターの第1態様では、プロモーターと、Fab抗体を構成する片方の抗体鎖をコードする遺伝子用の第1クローニング部位と、一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、前記Fab抗体を構成する他方の抗体鎖をコードする遺伝子用の第2クローニング部位と、前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有するとともに、前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている。この態様の場合、第1クローニング部位と第2クローニング部位にHc遺伝子とLc遺伝子を挿入することにより(第2クローニング部位には、第1クローニング部位に挿入しなかった方の抗体遺伝子が挿入される)、所望の標識タンパク質融合Fab抗体を発現するベクターが完成することになる。従って、汎用性に優れたベクターといえる。
3. Vector for preparing labeled protein-fused Fab antibody The present invention also provides a vector for preparing labeled protein-fused Fab antibody. In the first aspect of the vector of the present invention, a promoter, a first cloning site for a gene encoding one antibody chain constituting a Fab antibody, and a first leucine zipper sequence encoding one of a pair of leucine zipper peptides, A second cloning site for a gene encoding the other antibody chain constituting the Fab antibody, and a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and the first leucine zipper A sequence encoding a labeled protein is arranged downstream of the sequence and / or the second leucine zipper sequence. In this embodiment, the Hc gene and the Lc gene are inserted into the first cloning site and the second cloning site (the antibody gene that has not been inserted into the first cloning site is inserted into the second cloning site). ), A vector expressing the desired labeled protein-fused Fab antibody is completed. Therefore, it can be said that it is a versatile vector.
 本発明のベクターの第2態様では、プロモーターと、Fab抗体を構成する片方の抗体鎖をコードする第1抗体遺伝子と、一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、前記Fab抗体を構成する他方の抗体鎖をコードする第2抗体遺伝子と、前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有するとともに、前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている。この態様は、Fab抗体に対応する一対の抗体遺伝子(Hc遺伝子とLc遺伝子)が組み込まれたものであり、例えば、上記第1態様のベクターに対して一対の抗体遺伝子を挿入することにより得ることができる。 In the second embodiment of the vector of the present invention, a promoter, a first antibody gene encoding one antibody chain constituting a Fab antibody, a first leucine zipper sequence encoding one of a pair of leucine zipper peptides, and the Fab A second antibody gene encoding the other antibody chain constituting the antibody and a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and the first leucine zipper sequence and / or the first leucine zipper sequence A sequence encoding a labeled protein is arranged downstream of the 2 leucine zipper sequence. In this embodiment, a pair of antibody genes (Hc gene and Lc gene) corresponding to the Fab antibody are incorporated. For example, the antibody gene is obtained by inserting a pair of antibody genes into the vector of the first embodiment. Can do.
 本発明のベクターは、例えば、大腸菌を宿主とするベクター又は酵母を宿主とするベクターとして構築することができる。大腸菌を宿主とする場合、大腸菌での抗体遺伝子の発現が可能なように、大腸菌で機能するプロモーター、例えば、T7プロモーター、lacプロモーター、tacプロモーター、trpプロモーター、T3プロモーター、SP6プロモーター、低温発現プロモーター(コールドショック遺伝子cspAのプロモーター)等が用いられる。また、通常、プロモーターの下流(第1態様の場合はプロモーターと第1クローニング部位の間、第2態様の場合はプロモーターと第1抗体遺伝子の間)にはリボソーム結合部位が組み込まれる。リボソーム結合部位は、リポソームが結合する配列(SD配列)を含む。SD配列はアデニン及びグアニンに富んだ配列であり、例えば、AGGAGGの配列からなる。尚、典型的には、発現ベクターはプラスミドの形態である。 The vector of the present invention can be constructed, for example, as a vector using E. coli as a host or a vector using yeast as a host. When Escherichia coli is used as a host, a promoter that functions in Escherichia coli, such as T7 promoter, lac promoter, tac promoter, trp promoter, T3 promoter, SP6 promoter, cold expression promoter ( Cold shock gene cspA promoter) and the like. Further, a ribosome binding site is usually incorporated downstream of the promoter (between the promoter and the first cloning site in the first embodiment and between the promoter and the first antibody gene in the second embodiment). The ribosome binding site contains a sequence (SD sequence) to which the liposome binds. The SD sequence is a sequence rich in adenine and guanine, and consists of, for example, the AGGAGG sequence. Typically, the expression vector is in the form of a plasmid.
 酵母を宿主とするベクターとして本発明のベクターを構築する場合、典型的には、プラスミドの形態をとる。大腸菌で複製可能な複製開始点を有するシャトルベクターとしてもよい。また、プロモーターとしては例えばGAL1、GAL10、AOX1、pTEF1、pADH1、pTPI1、pHXT7、pTDH3、pPGK1又はpPYK1等を用いることができる。栄養相補遺伝子(例えばURA3遺伝子、HIS3遺伝子、LYS2遺伝子、LEU2遺伝子等)等をベクター内に組み込むこともできる。 When constructing the vector of the present invention as a vector using yeast as a host, it typically takes the form of a plasmid. A shuttle vector having an origin of replication capable of replicating in E. coli may be used. Examples of promoters that can be used include GAL1, GAL10, AOX1, pTEF1, pADH1, pTPI1, pHXT7, pTDH3, pPGK1, or pPYK1. Nutritional complement genes (eg, URA3 gene, HIS3 gene, LYS2 gene, LEU2 gene, etc.) can also be incorporated into the vector.
 本発明のベクターは、上記の各要素の他、宿主大腸菌内での増殖に必要な要素、抗体遺伝子の発現に必要又は有用な要素、検出や識別などに有用な要素等を含むことができる。本発明のベクターに組み込むことが可能な要素を例示すれば、複製起点、ターミネーター(例えばT7ターミネーター)、薬剤耐性遺伝子(アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、クロラムフェニコール耐性遺伝子、ストレプトマイシン耐性遺伝子等)である。 The vector of the present invention may contain, in addition to the above-described elements, elements necessary for propagation in host E. coli, elements necessary or useful for expression of antibody genes, elements useful for detection and identification, and the like. Examples of elements that can be incorporated into the vector of the present invention include replication origin, terminator (eg, T7 terminator), drug resistance gene (ampicillin resistance gene, kanamycin resistance gene, chloramphenicol resistance gene, streptomycin resistance gene, etc.) It is.
 ペプチドタグが各抗体鎖に連結したタンパク質(タグ付加タンパク質)として抗体が発現するように、ベクター内にペプチドタグをコードする配列を組み込んでおいてもよい。この場合、第1態様のベクターでは、第1クローニング部位の直前と第2クローニング部位の直前に、開始コドン及び当該開始コドンの直後に配置された、SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグをコードする配列が配置されることになる。第2態様のベクターでは、第1抗体遺伝子の直前と第2抗体遺伝子の直前に同様の配列が配置されることになる。尚、ペプチドタグをコードする配列と、第1及び第2クローニング部位(第1態様の場合)、或いは第1及び第2抗体遺伝子をコードする配列(第2態様の場合)は直接又は他の配列を介して連結される。 A sequence encoding a peptide tag may be incorporated in the vector so that the antibody is expressed as a protein (tag added protein) in which a peptide tag is linked to each antibody chain. In this case, in the vector of the first aspect, the amino acid sequence of SK, SKX, SKXX, AKXX, or KKXX arranged immediately before the first cloning site and immediately before the second cloning site and immediately after the start codon. A sequence encoding a peptide tag consisting of (wherein X represents any amino acid residue) is arranged. In the vector of the second aspect, similar sequences are arranged immediately before the first antibody gene and immediately before the second antibody gene. The sequence encoding the peptide tag and the first and second cloning sites (in the first embodiment), or the sequences encoding the first and second antibody genes (in the second embodiment) are directly or other sequences. It is connected via.
 以上の第1態様及び第2態様の場合、一つのベクターでHc及びLcを発現させることになるが、HcとLcを別々のベクターで発現させることもできる。本発明の更なる態様(第3態様及び第4態様)は、このような発現に用いられるベクターのセットを提供する。尚、特に説明しない事項については、第1態様又は第2態様の対応する説明が援用される。 In the case of the first aspect and the second aspect described above, Hc and Lc are expressed by one vector, but Hc and Lc can also be expressed by separate vectors. Further aspects of the invention (third and fourth aspects) provide a set of vectors used for such expression. In addition, about the matter which is not demonstrated especially, the corresponding description of a 1st aspect or a 2nd aspect is used.
 詳細には、本発明の第3態様は、プロモーターと、Fab抗体を構成する片方の抗体鎖をコードする遺伝子用の第1クローニング部位と、一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、を有する第1ベクターと、プロモーターと、Fab抗体を構成する片方の抗体鎖をコードする遺伝子用の第2クローニング部位と、前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有する第2ベクターと、からなるベクターセットであって、前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている。第4態様は、プロモーターと、Fab抗体を構成する片方の抗体鎖をコードする第1抗体遺伝子と、一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、を有する第1ベクターと、プロモーターと、Fab抗体を構成する片方の抗体鎖をコードする第2抗体遺伝子と、前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有する第2ベクターと、からなるベクターセットであって、前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている。 Specifically, in the third aspect of the present invention, a promoter, a first cloning site for a gene encoding one antibody chain constituting a Fab antibody, and a first leucine zipper encoding one of a pair of leucine zipper peptides are provided. A first vector having a sequence, a promoter, a second cloning site for a gene encoding one antibody chain constituting a Fab antibody, and a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides And a sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence. In a fourth embodiment, a first vector having a promoter, a first antibody gene encoding one antibody chain constituting a Fab antibody, and a first leucine zipper sequence encoding one of a pair of leucine zipper peptides, A vector set comprising a second vector having a promoter, a second antibody gene encoding one of the antibody chains constituting the Fab antibody, and a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides In addition, a sequence encoding a labeled protein is disposed downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
 第3態様及び第4態様においても、第1態様及び第2態様と同様に、ペプチドタグをコードする配列を組み込むことができる。 In the third and fourth aspects, a sequence encoding a peptide tag can be incorporated as in the first and second aspects.
4.標識タンパク質融合Fab抗体の用途
 本発明の更なる局面は、標識タンパク質融合Fab抗体の用途に関する。本発明の標識タンパク質融合Fab抗体は、抗体としての機能、即ち特定の抗原に対する親和性を備えるとともに、標識タンパク質が融合されていることによる標識能を備えるものであり、特定の標的(抗原)を特異的に検出又は測定するための試薬として有用である。例えば、各種免疫学的方法(例えばELISA法)や、細胞、組織又は器官/臓器の標識化、染色又は可視化(例えば生体内イメージング)に適用され得る。一方、特定の被検者(例えば、特定の疾患に罹患した患者)に由来する標識タンパク質融合Fab抗体の場合、診断(病態や治療効果の評価など)への適用も可能である。また、抗がん活性を示す酵素など、治療効果を発揮し得るタンパク質を標識タンパク質とした場合、標識タンパク質融合Fab抗体を治療用抗体として利用することも可能である。
4). Use of Labeled Protein Fusion Fab Antibody A further aspect of the present invention relates to use of the labeled protein fusion Fab antibody. The labeled protein-fused Fab antibody of the present invention has a function as an antibody, that is, an affinity for a specific antigen, and also has a labeling ability due to fusion of the labeled protein, and a specific target (antigen) It is useful as a reagent for specific detection or measurement. For example, it can be applied to various immunological methods (for example, ELISA method), labeling, staining or visualization (for example, in vivo imaging) of cells, tissues or organs / organs. On the other hand, in the case of a labeled protein-fused Fab antibody derived from a specific subject (for example, a patient suffering from a specific disease), it can also be applied to diagnosis (evaluation of disease state and therapeutic effect). In addition, when a protein capable of exerting a therapeutic effect, such as an enzyme exhibiting anticancer activity, is used as a labeled protein, the labeled protein-fused Fab antibody can be used as a therapeutic antibody.
 本発明は更に、本発明の試薬を含む検出キットも提供する。当該キットによれば、より簡便に本発明の試薬を利用した検出や測定が可能になる。本発明のキットには、主要構成成分として本発明の試薬が含まれる。検出や測定に必要なその他の試薬、反応液、容器・器具などを本発明のキットに含めてもよい。尚、通常、本発明のキットには取り扱い説明書が添付される。 The present invention further provides a detection kit containing the reagent of the present invention. According to the kit, detection and measurement using the reagent of the present invention can be performed more easily. The kit of the present invention contains the reagent of the present invention as a main component. Other reagents, reaction solutions, containers / equipment necessary for detection and measurement may be included in the kit of the present invention. Usually, an instruction manual is attached to the kit of the present invention.
 本発明者らの研究グループでは、Fab抗体のHcとLcにロイシンジッパー(LZ)を付加することにより、E. coli無細胞タンパク質合成系やE. coli細胞内発現系において、効率よくフォールドする抗体分子を開発し、それをZipbodyと名付けている。LZは、Fab抗体のHcとLcの会合を促す役割を果たしていると考えられている。ZipbodyのC末端に標識タンパク質(例えば酵素)を遺伝子的に融合すれば、LZが存在することにより、構造が安定したFab抗体-標識タンパク質融合体を作製できる可能性がある。そこで、マウス由来抗E. coli O157 Fab抗体、ウサギ由来抗L. monocytogenes Fab抗体にそれぞれLZを付加してZipbodyとしたもの(m6Fab LZ、r4Fab LZ)にL. cruciata由来Green Luc (Kajiyama N, Nakano E. 1993. Thermostabilization of firefly luciferase by a single amino-acid substitution at position-217. Biochemistry 32(50):13795-13799.)を融合させたZipbody-LucのE. coli細胞質内での発現を試みた(図1)。続いて、この融合タンパク質のLuc部分の発光を指標としたELISAが行えるか検討した。(図2)さらに、Zipbodyにsuperfolder GFP (Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology 24(1):79-88.)を融合したZipbody-GFPの発現も試みた。 In our research group, antibodies that efficiently fold in E.Lcoli cell-free protein synthesis system and E. coli intracellular expression system by adding leucine zipper (LZ) to Hc and Lc of Fab antibody We have developed a molecule and named it Zipbody. LZ is thought to play a role in facilitating the association between Fab antibody Hc and Lc. If a labeled protein (eg, an enzyme) is genetically fused to the C-terminus of Zipbody, the presence of LZ may produce a Fab antibody-labeled protein fusion with a stable structure. Therefore, LZ was added to the mouse-derived anti-E. 由来 coli O157 Fab antibody and rabbit-derived anti-L.cytomonocytogenes Fab antibody to form Zipbody (m6Fab LZ, r4Fab LZ), and L. cruciata-derived Green Luc (Kajiyama N, Nakano E. 1993. Thermostabilization of firefly luciferase by a single amino-acid substitution at position-217. Biochemistry 32 (50): 13795-13799.) Was attempted to express in the E. coli cytoplasm. (FIG. 1). Subsequently, it was examined whether ELISA using the light emission of the Luc part of the fusion protein as an index could be performed. (Figure 2) Furthermore, superfolder GFP (Pedelacq JD, CabantousabS, Tran T, Terwilliger TC, Waldo GS. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology 24 (1): 79-88 We also tried to express Zipbody-GFP fused with.
1.材料及び方法
(1) 菌株及び培養条件
 遺伝子操作の際の宿主菌株としてE. coli DH5αを用いた。融合タンパク質発現の宿主として、E. coli SHuffle(登録商標) T7 express (New England biolabs, fhuA2 lacZ::T7 gene1 [lon] ompT ahpC gal λatt::pNEB3-r1-cDsbC (SpecR, lacIq) ΔtrxB sulA11 R(mcr-73::miniTn10--TetS)2 [dcm] R(zgb-210::Tn10 --TetS) endA1 Δgor Δ(mcrC-mrr)114::IS10)、E. coli BL21(DE3) pLysS (Promega, F-, ompT, hsdS (rB-, mB-), dcm, gal, λ(DE3), pLysS, Cmr)、E. coli Rosetta-gamiTM 2 (DE3) pLysS (Merck Millipore, Δ(ara-leu)7697 ΔlacX74 ΔphoA PvuII phoR araD139 ahpC galE galK rpsL (DE3) F'[lac+ lacIq pro] gor522::Tn10 trxB pLysSRARE2 (CamR, StrR, TetR))を用いた。E. coliの培養はLB培地を用い、37℃又は16℃で行った。選択マーカーとしてアンピシリンを100μg/mLなるように適宜添加した。
1. Materials and methods
(1) Strain and culture conditions E. coli DH5α was used as a host strain for gene manipulation. E. coli SHuffle (registered trademark) T7 express (New England biolabs, fhuA2 lacZ :: T7 gene1 [lon] ompT ahpC gal λatt :: pNEB3-r1-cDsbC (Spec R , lacI q ) ΔtrxB sulA11 R (mcr-73 :: miniTn10--Tet S ) 2 [dcm] R (zgb-210 :: Tn10 --Tet S ) endA1 Δgor Δ (mcrC-mrr) 114 :: IS10), E. coli BL21 ( DE3) pLysS (Promega, F - , ompT, hsdS (r B -, m B -)., dcm, gal, λ (DE3), pLysS, Cm r), E coli Rosetta-gami TM 2 (DE3) pLysS ( Merck Millipore, Δ (ara-leu) 7697 ΔlacX74 ΔphoA PvuII phoR araD139 ahpC galE galK rpsL (DE3) F ′ [lac + lacIq pro] gor522 :: Tn10 trxB pLysSRARE2 (CamR, StrR, TetR)) was used. E. coli was cultured at 37 ° C. or 16 ° C. using LB medium. Ampicillin was appropriately added as a selection marker so as to be 100 μg / mL.
(2) 発現プラスミドの構築
(2-1) Orange Lucの配列と発現ベクターへのクローニング
 Masudaらによって報告されているL. cruciata由来Luc遺伝子を参考に、耐熱性に関わる217 ThrをIleに、発光波長に関わる257 TyrをArgに置換したOrange Lucの遺伝子を、IDT社の人工遺伝子合成サービスにより合成した(Masuda T, Tatsumi H, Nakano E. 1989. Cloning and sequence-analysis of cdna for luciferase of a japanese firefly, Luciola cruciata. Gene 77(2):265-270.; Kajiyama N, Nakano E. 1993. Thermostabilization of firefly luciferase by a single amino-acid substitution at position-217. Biochemistry 32(50):13795-1379.; Wang Y, Akiyama H, Terakado K, Nakatsu T. 2013. Impact of Site-Directed Mutant Luciferase on Quantitative Green and Orange/Red Emission Intensities in Firefly Bioluminescence. Scientific Reports 3.)。合成した遺伝子配列及びpCold IをNde I(タカラバイオ)、Xba I(タカラバイオ)により制限酵素処理し、得られたDNA断片をTakara DNA ligation kit ver. 2(タカラバイオ)により融合してE. coli DH5αに導入した。発生したコロニーからプラスミドを抽出し、BigDye Terminator v3.1 cycle sequencing kit及びABI PRISM 3100 genetic analyzerによりDNA配列解析を行った。作製したプラスミドをpCold orange Lucとした。
(2) Construction of expression plasmid
(2-1) Orange Luc sequence and cloning into expression vector With reference to L. cruciata-derived Luc gene reported by Masuda et al., 217 Thr related to heat resistance was changed to Ile, and 257 Tyr related to emission wavelength was changed to Arg. The gene for Orange Luc was replaced by the artificial gene synthesis service of IDT (Masuda T, Tatsumi H, Nakano E. 1989. Cloning and sequence-analysis of cdna for luciferase of a japanese firefly, Luciola cruciata. Gene 77 (2): 265-270 .; Kajiyama N, Nakano E. 1993.Thermostabilization of firefly luciferase by a single amino-acid substitution at position-217. Biochemistry 32 (50): 13795-1379 .; Wang Y, Akiyama H, Terakado K, Nakatsu T. 2013. Impact of Site-Directed Mutant Luciferase on Quantitative Green and Orange / Red Emission Intensities in Firefly Bioluminescence. Scientific Reports 3.). The synthesized gene sequence and pCold I were subjected to restriction enzyme treatment with Nde I (Takara Bio) and Xba I (Takara Bio), and the resulting DNA fragment was fused with Takara DNA ligation kit ver. 2 (Takara Bio). It was introduced into E. coli DH5α. Plasmids were extracted from the generated colonies, and DNA sequence analysis was performed using BigDye Terminator v3.1 cycle sequencing kit and ABI PRISM 3100 genetic analyzer. The prepared plasmid was designated as pCold orange Luc.
(2-2) Green Luc発現プラスミドの構築
 (2-1)で作製したプラスミドpCold Orange LucのOrange Lucの遺伝子の257 Argを、Quickchange法によりTyrに置換した。プライマー257th Y Luc for QC F (GGCATGTTCACCACTCTGGGTTATCTGATCTGCGGCTTCC:配列番号25)、257th Y Luc for QC R (GGAAGCCGCAGATCAGATAACCCAGAGTGGTGAACATGCC:配列番号26)を用いて、pCold orange Lucのプラスミドを鋳型として増幅し[95℃で2分 ; 95℃で10秒, 55℃で15秒, 72℃で6分を20サイクル ; 72℃で20分 ; Pfu turbo DNA polymerase (Agilent technologies)]、Dpn I処理を行った。E. coli DH5αへ導入し、発生したコロニーからプラスミドを抽出後、配列を確認した。作製したプラスミドをpCold green Lucとした。
(2-2) Construction of Green Luc expression plasmid The 257 Arg of the Orange Luc gene of the plasmid pCold Orange Luc prepared in (2-1) was replaced with Tyr by the Quickchange method. Using the primers 257th Y Luc for QC F (GGCATGTTCACCACTCTGGGTTATCTGATCTGCGGCTTCC: SEQ ID NO: 25) and 257th Y Luc for QC R (GGAAGCCGCAGATCAGATAACCCAGAGTGGTGAACATGCC: SEQ ID NO: 26), the pCold orange Luc plasmid was amplified as a template [95 ° C. for 2 minutes; 95 20 cycles of 10 seconds at ℃, 15 seconds at 55 ℃, 6 minutes at 72 ℃; 20 minutes at 72 ℃; Pfu turbo DNA polymerase (Agilent technologies)] and Dpn I treatment. After introducing into E. coli DH5α and extracting the plasmid from the generated colonies, the sequence was confirmed. The prepared plasmid was designated as pCold green Luc.
(2-3) pET22 m6Fab LZ Hc-Luc
 m6Fab LZのHcのC末端にLucを融合させたタンパク質m6Fab LZ Hc-Lucを発現させるためのプラスミドpET22m6Fab LZ Hc-Lucを作製した(図3)。L. cruciata由来Luc遺伝子を、(2-2)で構築したプラスミド pCold Green Lucを鋳型として、プライマーL. cruciata Luc F及びL. cruciata Luc R (図13)を用いてPCR [94℃で2分 ; 94℃で10秒, 55℃で30秒, 68℃で1分40秒を25サイクル ; 68℃で8分20秒 ; KOD plus ver. 2]により増幅した。m6Fab LZの遺伝子を含む線状化ベクターを作製するため、プラスミドpET22 m6Fab LZ (特許文献1を参照)を、Hcの終始コドンの前後にアニーリングするプライマーVector for Hc-Luc F及びVector for Hc-Luc R (図13)を用いてinverse PCR [94℃で2分 ; 94℃で10秒, 50℃で30秒, 68℃で7分40秒を25サイクル ; 68℃で40分; KOD plus ver. 2]により増幅した。各DNA増幅産物をDpn I (Takara)により処理後、FastGene Gel/PCR Extraction Kit (日本ジェネティクス(株))により精製し、Gibson Assembly (New England BioLabs)により、Luc遺伝子をm6Fab LZのHcのC末端に融合した。融合した各DNAをE. coli DH5αに導入し、発生した各コロニーをLB培地で一晩培養し、FastGene Plasmid Mini Kit](日本ジェネティクス(株))によりプラスミドを抽出した。各プラスミドの配列を、DNA配列解析サービス((株)ファスマック)により確認した。DNA断片増幅後の操作は、以後のプラスミド構築実験(2-4)~(2-9)でも同様に実施した。
(2-3) pET22 m6Fab LZ Hc-Luc
Plasmid pET22m6Fab LZ Hc-Luc for expressing the protein m6Fab LZ Hc-Luc in which Luc was fused to the C-terminus of Hc of m6Fab LZ was prepared (FIG. 3). Using the plasmid pCold Green Luc constructed in (2-2) as a template, primers L. cruciata Luc F and L. cruciata Luc R (FIG. 13) were used for PCR [2 minutes at 94 ° C. ; 94 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 1 minute 40 seconds 25 cycles; 68 ° C for 8 minutes 20 seconds; Amplified by KOD plus ver. 2] Primers Vector for Hc-Luc F and Vector for Hc-Luc for annealing the plasmid pET22 m6Fab LZ (see Patent Document 1) before and after the stop codon of Hc to prepare a linearized vector containing the gene of m6Fab LZ Inverse PCR using R (Fig. 13) [94 ° C for 2 minutes; 94 ° C for 10 seconds, 50 ° C for 30 seconds, 68 ° C for 7 minutes 40 seconds 25 cycles; 68 ° C for 40 minutes; KOD plus ver. 2]. Each DNA amplification product was treated with Dpn I (Takara), then purified with FastGene Gel / PCR Extraction Kit (Nippon Genetics Co., Ltd.), and Luc gene was converted to Hc C of m6Fab LZ with Gibson Assembly (New England BioLabs). Fused to the ends. Each fused DNA was introduced into E. coli DH5α, the generated colonies were cultured overnight in LB medium, and the plasmid was extracted with FastGene Plasmid Mini Kit] (Nippon Genetics). The sequence of each plasmid was confirmed by a DNA sequence analysis service (Fusmac Co., Ltd.). The operation after amplification of the DNA fragment was carried out in the same manner in the subsequent plasmid construction experiments (2-4) to (2-9).
(2-4) pET22 m6Fab Hc-Luc
 LZの効果を調べるため、LZなしのm6Fab抗体のHcに、Lucを融合させたタンパク質Fab Hc-Lucを発現させるためのプラスミドpET22 m6Fab Hc-Lucを作製した。(2-3)と同様にLuc遺伝子を増幅した。m6Fabの遺伝子を含む線状化ベクターを作製するため、プラスミドpET22 m6Fab (特許文献1を参照)のHcの終始コドン前後にアニーリングするプライマーVector for Hc-Luc F及びVector for Hc-Luc R (図13)を用いてinverse PCR [94℃で2分 ; 94℃で10秒, 50℃で30秒, 68℃で7分40秒を25サイクル ; 68℃で40分 ; KOD plus ver. 2]により増幅した。以降、(2-3)と同様に2つのDNA断片を融合した。
(2-4) pET22 m6Fab Hc-Luc
In order to examine the effect of LZ, a plasmid pET22 m6Fab Hc-Luc for expressing a protein Fab Hc-Luc in which Luc was fused to Hc of m6 Fab antibody without LZ was prepared. The Luc gene was amplified as in (2-3). In order to prepare a linearized vector containing the gene of m6Fab, primers Vector for Hc-Luc F and Vector for Hc-Luc R that anneal before and after the stop codon of Hc of plasmid pET22 m6Fab (see Patent Document 1) (FIG. 13). ) Using inverse PCR [94 ° C for 2 minutes; 94 ° C for 10 seconds, 50 ° C for 30 seconds, 68 ° C for 7 minutes and 40 seconds for 25 cycles; 68 ° C for 40 minutes; KOD plus ver. 2] did. Thereafter, the two DNA fragments were fused in the same manner as in (2-3).
(2-5) pET22 m6Fab LZ Lc-Luc
 m6Fab LZのLcにLucを融合させたタンパク質m6Fab LZ Lc-Lucを発現させるためのプラスミドpET22m6Fab LZ Lc-Lucを作製した(図3)。L. cruciata由来Luc遺伝子を(2-3)と同様の鋳型DNA及びプライマーを用いてPCR [94℃で2分 ; 94℃で10秒, 55℃で15秒, 68℃で50秒を20サイクル ; 68℃で4分10秒 ; tks Gflex DNA polymerase]により増幅した。m6Fab LZの遺伝子を含む線状化ベクターを作製するため、プラスミドpET22 m6Fab LZを、Lcの終始コドンの前後にアニーリングするプライマーVector for Lc-Luc F及びVector for Lc-Luc R (図13)を用いてinverse PCR [94℃で2分 ; 94℃で10秒, 50℃で15秒, 68℃で3分50秒を20サイクル ; 68℃で20分; tks Gflex DNA polymerase]により増幅した。以降、(2-3)と同様に2つのDNA断片を融合した。
(2-5) pET22 m6Fab LZ Lc-Luc
Plasmid pET22m6Fab LZ Lc-Luc for expressing the protein m6Fab LZ Lc-Luc in which Luc was fused to Lc of m6Fab LZ was prepared (FIG. 3). PCR of L. cruciata-derived Luc gene using the same template DNA and primers as in (2-3) [94 ° C for 2 minutes; 94 ° C for 10 seconds, 55 ° C for 15 seconds, 68 ° C for 50 seconds for 20 cycles Amplified at 68 ° C. for 4 minutes and 10 seconds; tks Gflex DNA polymerase]. In order to prepare a linearized vector containing the gene of m6Fab LZ, primers Vector for Lc-Luc F and Vector for Lc-Luc R (FIG. 13) that anneal the plasmid pET22 m6Fab LZ before and after the Lc stop codon were used. Inverse PCR [94 ° C. for 2 minutes; 94 ° C. for 10 seconds, 50 ° C. for 15 seconds, 68 ° C. for 3 minutes 50 seconds for 20 cycles; 68 ° C. for 20 minutes; tks Gflex DNA polymerase] was amplified. Thereafter, the two DNA fragments were fused in the same manner as in (2-3).
(2-6) pET22 m6Fab LZ W-Luc
 m6Fab LZのHcとLcの両方にLucが融合されたタンパク質m6Fab LZ W-Lucを発現させるためのプラスミドpET22 m6Fab LZ W-Lucを作製した。(2-3)と同様にLuc遺伝子を増幅した。m6Fab LZ Hc-Lucの遺伝子を含む線状化ベクターを作製するため、プラスミドpET22 m6Fab LZ Hc-Lucを鋳型として、Lcの終始コドンの前後にアニーリングするプライマーVector for Lc-Luc F及びVector for Lc-Luc R (図13)を用いてinverse PCR [94℃で2分 ; 94℃で10秒, 53℃で30秒, 68℃で9分20秒を25サイクル ; 68℃で50分; KOD plus ver. 2] により増幅した。以降、(2-3)と同様に2つのDNA断片を融合した。
(2-6) pET22 m6Fab LZ W-Luc
Plasmid pET22 m6Fab LZ W-Luc for expressing the protein m6Fab LZ W-Luc in which Luc was fused to both Hc and Lc of m6Fab LZ was prepared. The Luc gene was amplified as in (2-3). In order to prepare a linearized vector containing the m6Fab LZ Hc-Luc gene, primers Vector for Lc-Luc F and Vector for Lc- that anneal before and after the start codon of Lc using plasmid pET22 m6Fab LZ Hc-Luc as a template Inverse PCR using Luc R (Fig. 13) [94 ° C for 2 minutes; 94 ° C for 10 seconds, 53 ° C for 30 seconds, 68 ° C for 9 minutes 20 seconds 25 cycles; 68 ° C for 50 minutes; KOD plus ver Amplified by 2]. Thereafter, the two DNA fragments were fused in the same manner as in (2-3).
(2-7) pET22 m6Fab LZ Hc-GFP
 m6Fab LZのHcにGFPが融合されているタンパク質(m6Fab LZ Hc-GFP)を発現させるためのプラスミドpET22 m6Fab LZ Hc-GFPを作製した。Pedelacqらによって報告されているGFP遺伝子を、プライマーとしてsfGFP F、sfGFP R (図13)を用いてPCR [94℃で2分 ; 94℃で10秒, 50℃で15秒, 68℃で20秒を25サイクル ; 68℃で1分40秒; tks Gflex DNA polymerase]により増幅した。m6Fab LZの遺伝子を含む線状化ベクターを作製するため、プラスミドpET22 m6Fab LZを、Hcの終始コドンの前後にアニーリングするプライマーVector for Hc-GFP F及びVector for Hc-GFP Rを用いてinverse PCR [94℃で2分 ; 94℃で10秒, 50℃で30秒, 68℃で7分40秒を25サイクル ; 68℃で40分 ; KOD plus ver. 2] により増幅した。以降、(2-3)と同様に2つのDNA断片を融合した。
(2-7) pET22 m6Fab LZ Hc-GFP
Plasmid pET22 m6Fab LZ Hc-GFP for expressing a protein (m6Fab LZ Hc-GFP) in which GFP was fused to Hc of m6Fab LZ was prepared. PCR using the GFP gene reported by Pedelacq et al. With sfGFP F and sfGFP R (Fig. 13) as primers [94 ° C for 2 minutes; 94 ° C for 10 seconds, 50 ° C for 15 seconds, 68 ° C for 20 seconds For 25 cycles; 68 ° C. for 1 minute 40 seconds; tks Gflex DNA polymerase]. In order to construct a linearized vector containing the gene for m6Fab LZ, inverse PCR using primers Vector for Hc-GFP F and Vector for Hc-GFP R that anneal the plasmid pET22 m6Fab LZ before and after the stop codon of Hc [ 94 ° C for 2 minutes; 94 ° C for 10 seconds, 50 ° C for 30 seconds, 68 ° C for 7 minutes and 40 seconds for 25 cycles; 68 ° C for 40 minutes; KOD plus ver. 2] Thereafter, the two DNA fragments were fused in the same manner as in (2-3).
(2-8) pET22 r4Fab LZ Hc-Luc
 r4Fab LZのC末端にHcにLucが融合されているタンパク質(r4Fab LZ Hc-Luc)を発現させるためのプラスミドpET22 r4Fab LZ Hc-Lucを作製した。(2-3)と同様にLuc遺伝子を増幅した。r4Fab LZの遺伝子を含む線状化ベクターを作製するため、プラスミドpET22 r4Fab LZを鋳型として、Hcの終始コドンの前後にアニーリングするプライマーVector for Hc-Luc F及びVector for Hc-Luc R (図13)を用いてinverse PCR [94℃で2分 ; 94℃で10秒, 50℃で30秒, 68℃で7分40秒を25サイクル ; 68℃で40分 ; KOD plus ver. 2]により増幅した。以降、(2-3)と同様に2つのDNA断片を融合した。
(2-8) pET22 r4Fab LZ Hc-Luc
Plasmid pET22 r4Fab LZ Hc-Luc for expressing a protein (r4Fab LZ Hc-Luc) in which Luc was fused to Hc at the C-terminus of r4Fab LZ was prepared. The Luc gene was amplified as in (2-3). Primer Vector for Hc-Luc F and Vector for Hc-Luc R that anneal before and after the stop codon of Hc using plasmid pET22 r4Fab LZ as a template to prepare a linearized vector containing the r4Fab LZ gene (FIG. 13) Amplified by inverse PCR [94 ° C for 2 minutes; 94 ° C for 10 seconds, 50 ° C for 30 seconds, 68 ° C for 7 minutes 40 seconds; 68 ° C for 40 minutes; KOD plus ver. 2] . Thereafter, the two DNA fragments were fused in the same manner as in (2-3).
(2-9) pET22 r4Fab LZ Hc-GFP
 r4Fab LZのC末端にHcにGFPが融合されているタンパク質(r4Fab LZ Hc-GFP)を発現させるためのプラスミドpET22 r4Fab LZ Hc-GFPを作製した。(2-7)と同様にGFP遺伝子を増幅した。r4Fab LZの遺伝子を含む線状化ベクターを作製するため、プラスミドpET22 r4Fab LZを鋳型として、Hcの終始コドンの前後にアニーリングするプライマーVector for Hc-GFP F及びVector for Hc-GFP R (図13)を用いてinverse PCR [94℃で2分 ; 94℃で10秒, 50℃で30秒, 68℃で7分40秒を25サイクル ; 68℃で40分; KOD plus ver. 2]により増幅した。以降、(2-3)と同様に2つのDNA断片を融合した。
(2-9) pET22 r4Fab LZ Hc-GFP
Plasmid pET22 r4Fab LZ Hc-GFP for expressing a protein (r4Fab LZ Hc-GFP) in which GFP was fused to Hc at the C-terminus of r4Fab LZ was prepared. The GFP gene was amplified as in (2-7). In order to prepare a linearized vector containing the r4Fab LZ gene, primers Vector for Hc-GFP F and Vector for Hc-GFP R that anneal before and after the stop codon of Hc using plasmid pET22 r4Fab LZ as a template (FIG. 13) Amplified by inverse PCR [94 ° C for 2 minutes; 94 ° C for 10 seconds, 50 ° C for 30 seconds, 68 ° C for 7 minutes 40 seconds; 68 ° C for 40 minutes; KOD plus ver. 2] . Thereafter, the two DNA fragments were fused in the same manner as in (2-3).
(3) 各Zipbody、Zipbody-Luc、Zipbody-GFPの発現条件
 各プラスミドを保持するSHuffle(登録商標) T7 expressを37℃で一晩前培養した。20mLのLB培地に500μLの前培養液を加えてOD600が0.4~0.5になるまで37℃で培養し、氷上に30分静置した。Isopropyl-β-D-thiogalactopyranoside (IPTG) (和光純薬工業(株))を1mMになるように添加し、16℃で24時間培養した。培養終了後、8000 x gで遠心分離して菌体を回収し、5mLのPBSで2回洗浄した。2mLのPBSで菌体を懸濁し、ジルコニア/シリカビーズ 0.1mm (家田貿易(株))とビーズ式細胞破砕装置Micro SmashTM MS 100Rにより菌体を破砕した。14,000 x g, 10分, 4℃で遠心分離した。得られた上清を可溶性画分とした。また、沈殿を2mLのPBSで懸濁し、不溶性画分とした。
(3) Expression conditions of each Zipbody, Zipbody-Luc, Zipbody-GFP SHuffle (registered trademark) T7 express retaining each plasmid was pre-cultured overnight at 37 ° C. 500 μL of the preculture was added to 20 mL of LB medium and cultured at 37 ° C. until the OD 600 reached 0.4 to 0.5, and left on ice for 30 minutes. Isopropyl-β-D-thiogalactopyranoside (IPTG) (Wako Pure Chemical Industries, Ltd.) was added to 1 mM, and the cells were cultured at 16 ° C. for 24 hours. After completion of the culture, the cells were collected by centrifugation at 8000 × g and washed twice with 5 mL of PBS. The cells were suspended in 2 mL of PBS, and the cells were crushed with zirconia / silica beads 0.1 mm (Ieda Trading Co., Ltd.) and a bead-type cell crusher Micro Smash MS 100R. Centrifuged at 14,000 x g for 10 minutes at 4 ° C. The obtained supernatant was used as a soluble fraction. The precipitate was suspended in 2 mL of PBS to obtain an insoluble fraction.
(4) ウェスタンブロッティング
 サンプルに、4X Bolt(登録商標) LDS Sample Buffer (Thermo Fisher Scientific Inc.)及び10X Bolt(登録商標) Sample Reducing Agent (Thermo Fisher Scientific Inc.)を、それぞれ全体の1/4量及び1/10量になるように混合して95℃で3分加熱して変性させ、氷上で急冷した。12.5%ポリアクリルアミドゲル (ATTO)およびラピダス・ミニスラブ電気泳動槽(ATTO)により20mAで70分電気泳動した。分子量マーカーとしてプレシジョンPlusプロテイン2色スタンダード(BioRad)を使用した。泳動後のポリアクリルアミドゲルをiBlot(登録商標) Dry Blotting System (Thermo Fisher Scientific Inc.)及びiBlot(登録商標) Gel Transfer Stacks Nitrocellulose, Mini (Thermo Fisher Scientific Inc.)を用いてニトロセルロース膜に転写した。0.4% BSAを用いて30分以上ブロッキング後、PBS-Tにより5分洗浄した。2,000倍希釈抗ヘマグルチニン、モノクローナル抗体、ペルオキシダーゼ結合(和光純薬) あるいは5,000倍希釈のAnti-Flag、chicken-Poly、HRP (GeneTex, Inc.)を加えて30分振盪した。PBS-Tによる5分の洗浄を4回繰り返したのち、Pierce 1-StepTM Ultra TMB Blotting Solution (Thermo Fisher scientific Inc.)により呈色させた。miliQ水で洗浄後、ニトロセルロース膜をChemiDocTM XRS+ (BioRad)により撮影した。
(4) Western Blotting Samples, 4X Bolt (registered trademark) LDS Sample Buffer (Thermo Fisher Scientific Inc.) and 10X Bolt (registered trademark) Sample Reducing Agent (Thermo Fisher Scientific Inc.), each 1/4 volume The mixture was denatured by heating at 95 ° C. for 3 minutes and rapidly cooled on ice. Electrophoresis was performed at 20 mA for 70 minutes using a 12.5% polyacrylamide gel (ATTO) and a rapidus mini slab electrophoresis tank (ATTO). Precision Plus Protein 2 Color Standard (BioRad) was used as a molecular weight marker. The polyacrylamide gel after electrophoresis was transferred to a nitrocellulose membrane using iBlot (registered trademark) Dry Blotting System (Thermo Fisher Scientific Inc.) and iBlot (registered trademark) Gel Transfer Stacks Nitrocellulose, Mini (Thermo Fisher Scientific Inc.) . After blocking with 0.4% BSA for 30 minutes or more, the plate was washed with PBS-T for 5 minutes. 2,000-fold diluted anti-hemagglutinin, monoclonal antibody, peroxidase binding (Wako Pure Chemical Industries) or 5,000-fold diluted Anti-Flag, chicken-Poly, HRP (GeneTex, Inc.) were added and shaken for 30 minutes. Washing with PBS-T for 5 minutes was repeated 4 times, and color was developed with Pierce 1-Step Ultra TMB Blotting Solution (Thermo Fisher scientific Inc.). After washing with miliQ water, the nitrocellulose membrane was photographed with ChemiDoc XRS + (BioRad).
(5) ELISA
 nuncイムノプレート マキシソープ(Thermo Fisher Scientific Inc.)の各ウェルにE. coli O157 GTC03904 (OD600= 0.1) あるいはL. monocytogenes (OD600= 1.0)を50μL加え、一晩4℃でインキュベートした。0.4% BSA(PBSで希釈)を用いて、各ウェルを一晩ブロッキングした。PBS-T 400μLで各ウェルを2回洗浄し、25μLの各サンプルを加え、1時間室温でインキュベートした。PBS-T 400μLで各ウェルを3回洗浄し、2次抗体としてCan Get SignalTM Immunoreaction Enhancer Solution Solution 2により10,000倍希釈したAnti-Fab, Mouse, Goat-poly, HRP (Bethyl Laboratories, inc)あるいは2,000倍希釈したANTI RABBIT IG(G+M) -HRP (Sothern Biotechnology Associates Inc.)を加え、1時間室温でインキュベートした。PBS-T 400μLで各ウェルを3回洗浄し、SureBlueTM TMB Microwell Peroxidase Substrate (1-component) (Kirkegaard & Perry Laboratories, Inc.)を各25μL加えて、室温で5分インキュベートし、1M H2SO4を25μL加えた後、450nmの吸光度をマイクロプレートリーダーinfinite 200 PRO (TECAN)によって測定した。
(5) ELISA
50 μL of E. coli O157 GTC03904 (OD 600 = 0.1) or L. monocytogenes (OD 600 = 1.0) was added to each well of nunc immunoplate maxi soap (Thermo Fisher Scientific Inc.) and incubated overnight at 4 ° C. Each well was blocked overnight with 0.4% BSA (diluted in PBS). Each well was washed twice with 400 μL of PBS-T, 25 μL of each sample was added and incubated for 1 hour at room temperature. Wash each well 3 times with PBS-T 400μL and dilute 10,000 times with Can Get Signal Immunoreaction Enhancer Solution Solution 2 as secondary antibody Anti-Fab, Mouse, Goat-poly, HRP (Bethyl Laboratories, Inc) or 2,000 Double diluted ANTI RABBIT IG (G + M) -HRP (Sothern Biotechnology Associates Inc.) was added and incubated for 1 hour at room temperature. Washing each well three times with PBS-T 400μL, SureBlue TM TMB Microwell Peroxidase Substrate (1-component) (Kirkegaard & Perry Laboratories, Inc.) was added each 25 [mu] L, and incubated for 5 minutes at room temperature, 1M H 2 SO After adding 25 μL of 4 , the absorbance at 450 nm was measured with a microplate reader infinite 200 PRO (TECAN).
(6) Luc活性測定
 96ウェルの白色マイクロプレート(Greiner Bio-One International GmbH)に、各サンプル25μLと、ONE-GloTM Luciferase Assay System (Promega)25μLを室温にて混合して反応させ、infinite 200 PRO (TECAN)により1秒あたりの発光を測定した。
(6) a white microplate Luc activity measurement 96-well (Greiner Bio-One International GmbH) , and each sample 25 [mu] L, the ONE-Glo TM Luciferase Assay System ( Promega) 25μL reacted by mixing at room temperature, infinite 200 Luminescence per second was measured by PRO (TECAN).
(7) 発光-ELISA
 Zipbody-Lucを1次抗体として用いて、その発光を指標として、2次抗体を用いずにELISAを行った。(5)と同様に、96ウェルのnunc白色イムノプレートマキシソープ (Thermo scientific, Inc.)に抗原のコーティング及びブロッキング、ウェルの洗浄を行い、各サンプルを加えた。さらにウェルを洗浄後、PBSとONE-GloTM Luciferase Assay Systemを等量混合したものを20μL加えた。発光をマイクロプレートリーダーによって1秒あたりの発光を測定した。
(7) Emission-ELISA
Zipbody-Luc was used as a primary antibody, and its luminescence was used as an index, and ELISA was performed without using a secondary antibody. In the same manner as in (5), 96-well nunc white immunoplate maxi soap (Thermo scientific, Inc.) was coated with antigen, blocked, washed wells, and each sample was added. After further washing the wells, 20 μL of an equal volume of PBS and ONE-Glo Luciferase Assay System was added. Luminescence was measured per second with a microplate reader.
(8) GFP活性測定
 96ウェルの黒色マイクロプレート(Greiner Bio-One International GmbH))にサンプル25μLをPBS 25μLと混合して加え、マイクロプレートリーダーにより488nmの励起光に対する530nmの20μsあたりの蛍光を測定した。
(8) Measurement of GFP activity To a 96-well black microplate (Greiner Bio-One International GmbH)), add 25 μL of sample mixed with 25 μL of PBS, and measure fluorescence per 20 μs of 530 nm against excitation light of 488 nm using a microplate reader did.
(9) 蛍光-ELISA
 Zipbody-GFPを1次抗体として用いて、その発光を指標として、2次抗体を用いずにELISAを行った。(5)と同様に、96ウェルのnunc黒色イムノプレートマキシソープ(Thermo Fisher Scientific Inc.)に抗原のコーティング及びブロッキング、ウェルの洗浄を行い、各サンプルを加えた。さらにウェルを洗浄後、PBSを20μL加えた。マイクロプレートリーダーにより488nmの励起光に対する530nmの20μsあたりの蛍光を測定した。
(9) Fluorescence-ELISA
Zipbody-GFP was used as a primary antibody, and its luminescence was used as an index, and ELISA was performed without using a secondary antibody. In the same manner as in (5), 96-well nunc black immunoplate maxisorp (Thermo Fisher Scientific Inc.) was coated with antigen, blocked, washed wells, and each sample was added. After further washing the wells, 20 μL of PBS was added. The fluorescence per 20 μs at 530 nm with respect to the excitation light at 488 nm was measured with a microplate reader.
(10) Zipbodyzymeのリフォールディング(Refolding)
 プラスミドpET22 m6Fab Hc-GFPで形質転換した大腸菌SHuffle T7 expressを37℃で前培養した。前培養液を200mL LB培地に植菌し、OD600が0.4~0.5に達するまで37℃で培養した。1mMになるように、IPTGを添加した後、37℃で3時間培養した。培養終了後、8000 x g、4℃で遠心分離して菌を回収した。2mL PBSで懸濁し、ビーズショッカーで菌を破砕した。3000 x g、4℃、5分で遠心分離して破砕できていない菌を除去し、さらに14,000 gで5分遠心分離することにより不溶性画分を回収した。
(10) Zipbodyzyme refolding
E. coli SHuffle T7 express transformed with the plasmid pET22 m6 Fab Hc-GFP was pre-cultured at 37 ° C. The preculture was inoculated into 200 mL LB medium and cultured at 37 ° C. until OD 600 reached 0.4 to 0.5. After adding IPTG to 1 mM, the cells were cultured at 37 ° C. for 3 hours. After completion of the culture, the bacteria were collected by centrifugation at 8000 × g and 4 ° C. The suspension was suspended in 2 mL PBS, and the bacteria were crushed with a bead shocker. Centrifugation was performed at 3000 × g and 4 ° C. for 5 minutes to remove undisrupted bacteria, and the insoluble fraction was recovered by further centrifuging at 14,000 g for 5 minutes.
 1mLの6M GuHCl、10mMメルカプトエタノールを含む100mM Tris HCl (pH 7.5)で不溶性画分を溶解し、4℃で1晩インキュベートした。続いて、透析チューブに移し、6M GuHClを含む100mM Tris HCl (pH 7.5)を透析バッファーとして用いて12時間透析した。以降12時間ごとに、透析バッファーを3、2、1、0.5、0 Mの各濃度のGuHClを含む100mM Tris HCl (pH 7.5)に交換した(1Mの透析のみ375μM GSSGを含む)。14,000 g, 5分で上清を回収し、蛍光ELISAによって活性の保持を確認した。 The insoluble fraction was dissolved in 100 mM Tris HCl (pH 7.5) containing 1 mL of 6 M GuHCl and 10 mM mercaptoethanol, and incubated overnight at 4 ° C. Subsequently, the mixture was transferred to a dialysis tube and dialyzed for 12 hours using 100 mM Tris HCl (pH 7.5) containing 6M GuHCl as a dialysis buffer. Thereafter, every 12 hours, the dialysis buffer was replaced with 100 mM Tris HCl (pH 7.5) containing GuHCl at concentrations of 3, 2, 1, 0.5, and 0 M (pH 7.5) only (1M dialysis contains 375 μM の み GSSG). The supernatant was collected at 14,000 μg for 5 minutes, and the retention of activity was confirmed by fluorescence ELISA.
 Ni-sepharose 6 Fast Flow(GE Health care)を用いて、リフォールディング後のZipbodyzymeをマニュアルに従って精製した。続いて、BLitzにより、Aminopropylsilaneセンサーを用いて、精製後m6Fab LZ Hc-GFPの抗体価を調べた。プログラムは以下の通りである
 Initial Baseline 30秒、Loading 120秒、Baseline 30秒、Association 120秒、Dissociation 120秒。
The refolded Zipbodyzyme was purified using Ni-sepharose 6 Fast Flow (GE Health care) according to the manual. Subsequently, the antibody titer of m6Fab LZ Hc-GFP after purification was examined by BLitz using an Aminopropylsilane sensor. The program is as follows: Initial Baseline 30 seconds, Loading 120 seconds, Baseline 30 seconds, Association 120 seconds, Dissociation 120 seconds.
2.結果
(1) 宿主菌株の選択
 融合タンパク質の発現に用いる宿主をE. coli SHuffle(登録商標) T7 express、E. coli BL21(DE3) pLysS、E. coli Rosetta-gamiTM 2 (DE3) pLysSから選択した。融合タンパク質のモデルとしてm6Fab LZを各菌株で発現させ、ウェスタンブロッティングにより発現量の解析を行った(図4A)。その結果、E. coli SHuffle(登録商標) T7 express及び、E. coli BL21(DE3) pLysSの可溶性画分及び不溶性画分にHc (30.5 kDa)及びLc (29.5 kDa)の発現がそれぞれ確認され、とりわけ、E. coli SHuffle(登録商標) T7 expressにおいて両画分で高い発現が見られた。一方で、E. coli Rosetta-gamiTM 2 (DE3)からは発現は確認されなかった。
2. result
(1) Selection of host strain The host used for expression of the fusion protein was selected from E. coli SHuffle (registered trademark) T7 express, E. coli BL21 (DE3) pLysS, E. coli Rosetta-gami TM 2 (DE3) pLysS . As a fusion protein model, m6Fab LZ was expressed in each strain, and the expression level was analyzed by Western blotting (FIG. 4A). As a result, expression of Hc (30.5 kDa) and Lc (29.5 kDa) was confirmed in the soluble fraction and the insoluble fraction of E. coli SHuffle (registered trademark) T7 express and E. coli BL21 (DE3) pLysS, In particular, high expression was observed in both fractions in E. coli SHuffle (registered trademark) T7 express. On the other hand, expression was not confirmed from E. coli Rosetta-gami TM 2 (DE3).
 続いて、ELISAにより各菌株の可溶性画分の抗原親和性を測定した(図4B)。E. coli SHuffle(登録商標) T7 expressを用いた場合は、ネガティブコントロールであるpET22bを導入したクローンと比較して、18.4倍のシグナルを示した。E. coli BL21 (DE3) pLysS、E. coli Rosetta-gamiTM 2 (DE3)を用いた場合、ネガティブコントロールであるpET22bを導入したクローンと同程度の活性しか示さなかった。この結果から、E. coli SHuffle(登録商標) T7 expressを以降の実験に用いることとした。 Subsequently, the antigen affinity of the soluble fraction of each strain was measured by ELISA (FIG. 4B). When E. coli SHuffle (registered trademark) T7 express was used, a signal 18.4 times as high as that of the clone into which pET22b, which was a negative control, was introduced. When E. coli BL21 (DE3) pLysS and E. coli Rosetta-gami 2 (DE3) were used, the activity was only as high as that of the clone into which the negative control pET22b was introduced. From this result, E. coli SHuffle (registered trademark) T7 express was used for the subsequent experiments.
(2) LZの有無による融合タンパク質の抗原親和性及びLuc活性の比較
 マウス由来抗E. coli O157Fab抗体であるm6Fab、同Zipbodyであるm6Fab LZのHcに遺伝子的にLucを融合させたm6Fab Hc-Luc、m6Fab LZ Hc-LucをE. coli SHuffle(登録商標) T7 expressで発現させた。m6Fab Hc-Lucでは、LucがHcに直接融合しているのに対し、m6Fab LZ Hc-Lucは、LucがLZを介してHcに融合されている。
(2) Comparison of antigen affinity and Luc activity of fusion protein with and without LZ m6Fab, a mouse-derived anti-E. Coli O157 Fab antibody, m6Fab, a Zipbody, m6Fab Hc- Luc, m6Fab LZ Hc-Luc was expressed in E. coli SHuffle (registered trademark) T7 express. In m6Fab Hc-Luc, Luc is fused directly to Hc, whereas in m6Fab LZ Hc-Luc, Luc is fused to Hc via LZ.
 各可溶性画分における融合タンパク質の発現をウェスタンブロッティングにより調べた(図5)。その結果、m6Fab Hc-Luc (Hc 87.3 kDa、Lc 25.6 kDa)、m6Fab LZ Hc-Luc (Hc 91.3 kDa、Lc 29.5 kDa)が、LZの有無に関係なく融合タンパク質として発現することを確認した。 The expression of the fusion protein in each soluble fraction was examined by Western blotting (FIG. 5). As a result, it was confirmed that m6Fab Hc-Luc (Hc 87.3 kDa, Lc 25.6 kDa) and m6Fab LZ Hc-Luc (Hc 91.3 kDa, Lc 29.5 kDa) were expressed as fusion proteins regardless of the presence or absence of LZ.
 融合タンパク質の各可溶性画分のLuc活性を調べたところ、m6Fab Hc-Lucが1.7×106、m6Fab LZ Hc-Lucが2.4×106の有意なシグナルを示した(図6)。続いて、融合タンパク質の抗体部分の抗原結合活性の有無を調べるため、これら融合タンパク質の各可溶性画分をELISAに供したところ、Lucを融合していないm6Fab LZ、m6Fab LZ Hc-Luc及びm6Fab Hc-Lucがいずれもほぼ同等なシグナルを示した(図7)。これらの結果から、LZの付加の有無にかかわらず、Luc活性及び、抗原結合活性を保持することがわかった。 When the Luc activity of each soluble fraction of the fusion protein was examined, m6Fab Hc-Luc showed a significant signal of 1.7 × 10 6 and m6Fab LZ Hc-Luc showed a significant signal of 2.4 × 10 6 (FIG. 6). Subsequently, in order to examine the presence or absence of antigen-binding activity of the antibody portion of the fusion protein, each soluble fraction of these fusion proteins was subjected to ELISA, and m6Fab LZ, m6Fab LZ Hc-Luc, and m6Fab Hc not fused with Luc. -Luc showed almost the same signal (FIG. 7). From these results, it was found that the Luc activity and the antigen binding activity were retained regardless of the presence or absence of LZ addition.
 続いて、1次抗体としてm6Fab LZ Hc-Lucを用いLucの発光を指標とした発光ELISAにより、2次抗体を用いず抗原検出を行うことができるか検討した(図8)。その結果、LZを持たないm6Fab Hc-Lucに対し、LZを持つm6Fab LZ Hc-Lucは14倍のシグナルを示した。また、抗原とBSAをそれぞれコートしたウェルのシグナル強度から算出したS/N比はm6Fab LZ Hc-Lucが41、m6Fab Hc-Lucが7.2であり、ZipbodyにLucを付加させたm6Fab LZ Hc-Lucの方が、検出感度が優れていることがわかった。 Subsequently, using m6Fab LZ ず Hc-Luc as the primary antibody, it was investigated whether antigen detection could be performed without using the secondary antibody by luminescence ELISA using Luc luminescence as an index (FIG. 8). As a result, m6Fab Hc-Luc with LZ showed 14 times as much signal as m6Fab Hc-Luc without LZ. The S / N ratio calculated from the signal intensity of each well coated with antigen and BSA was 41 for m6Fab LZ Hc-Luc, 7.2 for m6Fab Hc-Luc, and m6Fab LZ Hc-Luc with Luc added to the Zipbody. It was found that the detection sensitivity was superior.
(3) ZipbodyへのLucの融合箇所の検討
 LucのZipbodyへの融合箇所を最適化するため、LcにLucを付加したm6Fab LZ Lc-Luc、Hc及びLcの両方にLucを付加したm6Fab LZ W-LucをコードするプラスミドpET22 m6Fab Lc-Luc、pET22 m6Fab W-Lucを作製し、それぞれE. coli SHuffle(登録商標) T7 expressで発現させた(図3)。
(3) Examination of the fusion site of Luc to Zipbody m6Fab LZ with Luc added to Lc Lc-Luc, m6Fab LZ W with Luc added to both Hc and Lc to optimize the fusion site to Luc Zipbody Plasmids pET22 m6Fab Lc-Luc and pET22 m6Fab W-Luc encoding -Luc were prepared and expressed in E. coli SHuffle (registered trademark) T7 express (FIG. 3).
 可溶性画分をウェスタンブロッティングに供した結果、m6Fab LZ Lc-LucのHc (30.5 kDa)は発現が確認されたのに対し、Lucが融合されたLc (90.4 kDa)は発現が確認されなかった(図5)。また、m6Fab LZ W-LucのHc (91.3 kDa)は発現を示すバンドがかすかに検出されたのに対し、Lc (90.4 kDa)は発現が確認されなかった。 As a result of subjecting the soluble fraction to Western blotting, expression of m6Fab LZ Lc-Luc Hc (30.5 kDa) was confirmed, whereas expression of Lc fused with Luc (90.4 kDa) was not confirmed ( (Figure 5). In addition, Hc (91.3 kDa) of m6Fab LZ W-Luc was faintly detected, whereas Lc (90.4 kDa) was not expressed.
 これら融合タンパク質のLuc発光活性を調べた結果、いずれの融合体からも有意な活性が認められたものの、m6Fab LZ Hc-Lucに対し、m6Fab LZ Lc-Lucは0.36倍、m6Fab LZ W-Lucは0.39倍であり、いずれもm6Fab LZ Hc-Lucの値を下回った(図5)。発色を指標とした一般的なELISAの結果、Lucを融合していないm6Fab LZのAbs. 450 nmが0.75、m6Fab Hc-Lucが0.80であったのに対し、m6Fab LZ Lc-Lucが0.13、m6Fab LZ W-Lucが0.19であり、LcにLucを融合したクローンでは著しく抗原親和性が低下した(図7)。発光ELISAではm6Fab Lc- LZ Luc、m6Fab LZ W-Lucの発光シグナルは、m6Fab Hc-Luc と比較して3.3%および14%にとどまった(図8)。m6Fab LZへのLucの融合は、Lcのみ、Hc及びLcの両方に融合した場合と比較してHcのみに融合した場合が最も高効率であることが分かった。 As a result of investigating the Luc luminescence activity of these fusion proteins, although significant activity was observed from any of the fusions, m6Fab LZ Lc-Luc was 0.36 times that of m6Fab LZ Hc-Luc, and m6Fab LZ W-Luc was It was 0.39 times, and both were lower than the value of m6Fab LZ Hc-Luc (FIG. 5). As a result of a general ELISA using color development as an index, m6Fab LZ not fused with Luc had Abs.A450 nm of 0.75 and m6Fab Hc-Luc of 0.80, whereas m6Fab LZ Lc-Luc was 0.13, m6Fab LZ W-Luc was 0.19, and the antigen affinity was significantly reduced in the clones in which Luc was fused to Lc (FIG. 7). In the luminescence ELISA, the luminescence signals of m6Fab Lc- LZ Luc and m6Fab LZ W-Luc were 3.3% and 14% compared to m6Fab Hc-Luc (FIG. 8). The fusion of Luc to m6Fab mLZ was found to be most efficient when fused only to Hc compared to fused to Lc alone, both Hc and Lc.
(4) ウサギ由来ZipbodyへのLucの融合
 マウス以外の生物種由来のZipbodyにもLucを融合できるか調べるため、ウサギ由来ZipbodyのHcのC末端にLucを遺伝子的に融合させたプラスミドpET22 r4Fab LZ Hc-Lucを作製し、E. coli SHuffle(登録商標) T7 expressで発現させた(図3)。
(4) Fusion of Luc to a rabbit-derived Zipbody Plasmid pET22 r4Fab LZ in which Luc is genetically fused to the C-terminal of the Hc of a rabbit-derived Zipbody in order to investigate whether Luc can be fused to a Zipbody derived from a species other than a mouse. Hc-Luc was prepared and expressed in E. coli SHuffle (registered trademark) T7 express (FIG. 3).
 可溶性画分をウェスタンブロッティングに供した結果、Lucが付加されたHc (90.2 kDa)、Lc (28.4 kDa)の発現が確認された(図5)。続いて可溶性画分のLuc活性測定を行ったところ、有意なシグナルを検出することができた(図6)。さらに可溶性画分の抗原親和性をELISAにより調べた。Lucが融合されていないr4Fab LZ、r4Fab LZ Hc-Lucは、ネガティブコントロールであるpET22bと比較し、優位なシグナルは見られなかった(図9)。しかしながら、可溶性画分を、Luc部分の活性及び抗体部分の抗原親和性の両方を用いて抗原検出を行う発光ELISAを行ったところ、r4Fab LZ Hc-Lucを用いた場合はネガティブコントロールである抗原としてBSAを用いた場合と比較して2.5倍のシグナルを示した(図10)。 As a result of subjecting the soluble fraction to Western blotting, expression of Hc (90.2 kDa) and Lc (28.4 kDa) to which Luc was added was confirmed (Fig. 5). Subsequently, the Luc activity of the soluble fraction was measured, and a significant signal could be detected (FIG. 6). Furthermore, the antigen affinity of the soluble fraction was examined by ELISA. R4Fab LZ and r4Fab LZ Hc-Luc to which Luc was not fused did not show a superior signal compared to pET22b which is a negative control (FIG. 9). However, when the soluble fraction was subjected to luminescence ELISA to detect the antigen using both the activity of the Luc part and the antigen affinity of the antibody part, when r4Fab LZ Hc-Luc was used, the antigen was a negative control. The signal was 2.5 times that of the case using BSA (FIG. 10).
(5) ZipbodyへのGFPの融合
 ZipbodyへのLuc以外のタンパク質の融合を検討するためにm6Fab LZ、r4Fab LZのHcにそれぞれGFPを遺伝子的に融合させた、m6Fab LZ Hc-GFP、r4Fab LZ Hc-GFPをE. coli SHuffle(登録商標) T7 expressにて発現させた。
(5) Fusion of GFP to Zipbody m6Fab LZ Hc-GFP and r4Fab LZ Hc, in which GFP was genetically fused to Hc of m6Fab LZ and r4Fab LZ to examine the fusion of proteins other than Luc to Zipbody. -GFP was expressed in E. coli SHuffle (registered trademark) T7 express.
 ウェスタンブロッティングによって可溶性画分における発現を調べた結果、m6Fab Hc-GFPのHc (58.1 kDa)及びLc (29.5 kDa)、r4Fab Hc-GFPのHc(56. 9 kDa)及びLc (28.4 kDa)のバンドが確認された(図5)。可溶性画分のGFP活性を調べたところ、m6Fab LZ Hc-GFPは、1.2×103、r4Fab LZ Hc-GFPは1.1×103の有意な蛍光シグナルを示した(図11)。抗体の抗原親和性を調べるためにELISAを行ったところ、m6Fab LZ Hc-GFPはm6FabLZと同等のシグナルを示したものの、r4Fab LZ Hc-GFPは有意なシグナルを示さなかった(図7、11)。 As a result of examining the expression in the soluble fraction by Western blotting, Hc (58.1 kDa) and Lc (29.5 kDa) of m6Fab Hc-GFP, Hc (56.9 kDa) and Lc (28.4 kDa) of r4Fab Hc-GFP Was confirmed (FIG. 5). When the GFP activity of the soluble fraction was examined, m6Fab LZ Hc-GFP showed a significant fluorescent signal of 1.2 × 10 3 and r4Fab LZ Hc-GFP showed a significant fluorescent signal of 1.1 × 10 3 (FIG. 11). When ELISA was conducted to examine the antigen affinity of the antibody, m6Fab LZ Hc-GFP showed a signal equivalent to m6FabLZ, but r4Fab LZ Hc-GFP showed no significant signal (FIGS. 7 and 11). .
 GFPの蛍光を指標とする蛍光ELISAに可溶性画分を供した結果、m6Fab Hc-GFPから検出された蛍光は抗原としてBSAを用いたネガティブコントロールと比較して3.0倍のシグナルを示した。Luc同様に、GFP融合Zipbodyにおいても、免疫測定法が可能であることが示された(図12)。一方、r4Fab LZ Hc-GFPのシグナルは、ネガティブコントロールであるr4Fab LZと比較して同程度にとどまった。 As a result of subjecting the soluble fraction to a fluorescence ELISA using the fluorescence of GFP as an indicator, the fluorescence detected from m6FabcHc-GFP showed a signal 3.0 times that of the negative control using BSA as an antigen. Similar to Luc, it was shown that immunoassay is possible with GFP-fused Zipbody (FIG. 12). On the other hand, the r4FabFLZ Hc-GFP signal remained at the same level as that of the negative control r4Fab LZ.
(6) Zipbodyzymeのリフォールディング(Refolding)
 リフォールディング後のm6Fab LZ Hc-GFPを用いて、大腸菌O157に対して蛍光ELISAを行った結果、抗原なしと比較して5.6倍のシグナルが得られた(図14)。この結果から、リフォールディングにより活性を保持したZipbodyzymeを生産できることがわかった。精製後のm6Fab LZ Hc-GFPの抗体価をBLitzにより測定したところ、19 nMであり、m6Fab LZの20 nMとほぼ一致した。ZipbodyへのGFPの融合により、抗体価が損なわれないことが見出された。
(6) Zipbodyzyme refolding
As a result of performing fluorescence ELISA on E. coli O157 using m6Fab LZ Hc-GFP after refolding, a signal 5.6 times higher than that without antigen was obtained (FIG. 14). From this result, it was found that a Zipbodyzyme retaining the activity could be produced by refolding. The antibody titer of m6Fab LZ Hc-GFP after purification was measured by BLitz and found to be 19 nM, which almost coincided with 20 nM of m6Fab LZ. It was found that the antibody titer was not impaired by the fusion of GFP to Zipbody.
3.考察
 抗体に遺伝子的に酵素を融合させることができれば、化学修飾の実験が必要なくなる、抗体に修飾する酵素を定量的にコントロールすることができる、などの利点があるものの、その報告は少ない。本研究では、Fab抗体のHcとLcにLZを付加することにより安定して活性をもたせたものであるZipbodyにさらにLucを融合し、これにより免疫学的検出が可能か検討した(図1)。
3. Discussion If an enzyme can be genetically fused to an antibody, chemical modification experiments are not necessary, and the enzyme modifying the antibody can be quantitatively controlled. However, there are few reports. In this study, Lucbody was further fused to Zipbody, which had been stabilized by adding LZ to Hc and Lc of Fab antibody, and it was examined whether immunological detection was possible by this (Fig. 1). .
 まず、Zipbody-Lucの発現に適した宿主を選択するため、E. coli SHuffle(登録商標) T7 express、E. coli BL21(DE3) pLysS、E. coli Rosetta-gamiTM 2 (DE3) pLysSによりZipbodyの生産性を比較した(図4)。E. coli SHuffle(登録商標) T7 expressは本来ペリプラズムに存在するジスルフィド結合を最適化するシャペロンDsbCが細胞質内で高発現しており、細胞質内が還元状態である特徴を持つ。BL21 (DE3) pLysSは、T7 RNAポリメラーゼの転写を阻害するT7リゾチームの遺伝子をコードするプラスミドpLysS保持しており、IPTGによる厳密な発現制御が可能である菌株である。Rosetta-gamiTM 2 (DE3) pLysSはプラスミドpLysSを保持するのに加えて、2種の還元酵素変異によって細胞質が酸化状態となっていることよりジスルフィド結合の形成を強化できる。また、E. coliでは存在量の少ないコドンに対応するtRNAを保持しており生物種差に関係ないタンパク質発現できる宿主である。 First, in order to select a suitable host for the expression of Zipbody-Luc, Zipbody was analyzed using E. coli SHuffle (registered trademark) T7 express, E. coli BL21 (DE3) pLysS, E. coli Rosetta-gami TM 2 (DE3) pLysS. The productivity was compared (Fig. 4). E. coli SHuffle (registered trademark) T7 express is characterized in that the chaperone DsbC that optimizes the disulfide bond originally present in the periplasm is highly expressed in the cytoplasm and the cytoplasm is in a reduced state. BL21 (DE3) pLysS holds a plasmid pLysS encoding a T7 lysozyme gene that inhibits transcription of T7 RNA polymerase, and is a strain capable of strict expression control by IPTG. In addition to retaining plasmid pLysS, Rosetta-gami 2 (DE3) pLysS can enhance disulfide bond formation due to the cytoplasm being oxidized by two types of reductase mutations. In addition, E. coli has a tRNA corresponding to a codon having a small abundance and is a host capable of expressing a protein regardless of species differences.
 ウェスタンブロッティングによる発現量、ELISAによる抗原親和性の評価の結果、E. coli SHuffle(登録商標) T7 expressが最も発現量が多く、また可溶性画分の抗原親和性が高かった。一方、E. coli Rosetta-gamiTM 2 (DE3)も細胞質内が酸化的条件であり、ジスルフィド結合形成には適した条件であるものの、発現量、ELISAシグナル共に低かった。この結果から、E. coli SHuffle(登録商標) T7 expressの細胞質内で発現されているDsbCが、m6Fab LZの正しい折りたたみに重要であるためだと考えられる。E. coli SHuffle(登録商標) T7 expressは、Robinsonらによって細胞質内での全長抗体の発現も報告されており、様々な抗体を発現できることが示唆される(Robinson MP, Ke N, Lobstein J, Peterson C, Szkodny A, Mansell TJ, Tuckey C, Riggs PD, Colussi PA, Noren CJ and others. 2015. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nature Communications 6.)。 As a result of evaluation of the expression level by Western blotting and antigen affinity by ELISA, E. coli SHuffle (registered trademark) T7 express had the highest expression level and the antigen affinity of the soluble fraction was high. On the other hand, E. coli Rosetta-gami 2 (DE3) was also oxidative in the cytoplasm and suitable for disulfide bond formation, but both the expression level and ELISA signal were low. From this result, it is considered that DsbC expressed in the cytoplasm of E. coli SHuffle (registered trademark) T7 express is important for correct folding of m6Fab LZ. E. coli SHuffle (registered trademark) T7 express has been reported by Robinson et al. To express full-length antibodies in the cytoplasm, suggesting that various antibodies can be expressed (Robinson MP, Ke N, Lobstein J, Peterson C. Szkodny A, Mansell TJ, Tuckey C, Riggs PD, Colussi PA, Noren CJ and others. 2015. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nature Communications 6.).
 次に、Zipbodyであるm6Fab LZのHcに遺伝子的にLucを融合させたm6Fab LZ Hc-LucをE. coli SHuffle(登録商標) T7 expressの細胞質内で発現させた。なおこの際、m6Fab LZ Hc-Lucに付加されているLZの必要性を確認するため、LZを持たないm6FabのHcにLucを融合させたm6Fab Hc-Lucも比較した。可溶性画分の検討の結果、それぞれの融合タンパク質はウェスタンブロッティングで発現が確認され、ほぼ同等のLuc活性及び抗原親和性を保持した(図5~7)。しかしながら、融合タンパク質を1次抗体として抗原検出を行う発光ELISAに供したところ、m6Fab LZ Hc-Lucは、m6Fab Hc-Lucよりも約15倍高いシグナルが見られた(図8)。この結果から、LZを有するZipbodyに酵素を融合した複合体であればLuc部分を用いた高感度な抗原検出で可能であることがわかった。この主な要因として、LZが存在することによって融合タンパク質が安定化したことが挙げられる。 Next, m6Fab LZ Hc-Luc, in which Luc was genetically fused to the Hc of Zipbody m6Fab あ る LZ, was expressed in the cytoplasm of E. coli SHuffle (registered trademark) T7 express. At this time, in order to confirm the necessity of LZ added to m6Fab LZ Hc-Luc, m6Fab Hc-Luc in which Luc was fused to Hc of m6Fab without LZ was also compared. As a result of examination of the soluble fraction, the expression of each fusion protein was confirmed by Western blotting and retained almost the same Luc activity and antigen affinity (FIGS. 5 to 7). However, when the fusion protein was used as a primary antibody and subjected to luminescence ELISA for antigen detection, m6Fab LZ Hc-Luc showed a signal about 15 times higher than m6Fab Hc-Luc (FIG. 8). From this result, it was found that a complex in which an enzyme is fused to a Zipbody having LZ can be detected by highly sensitive antigen detection using the Luc moiety. The main factor is that the fusion protein is stabilized by the presence of LZ.
 さらに、LucのZipbodyへの融合箇所を最適化するため、m6Fab LZ Hc-Lucに加えて、Lcに融合したm6Fab LZ Lc-Luc、Hc及びLc両方に融合したm6Fab LZ W-Lucを検討した。ウェスタンブロッティングにおいて、m6Fab LZ Lc-Luc及びm6Fab LZ W-Lucの、Lucが融合されたLcのバンドはいずれも検出されず、m6Fab LZ W-Lucについては、Hc-Luc融合体に相当するバンドがわずかに検出されたのにとどまった(図5)。このことから、LcにLucを融合したことにより発現量が低下することが分かった。m6Fab LZ Lc-Luc及びm6Fab LZ W-Luc のLuc部分の活性、抗原親和性、発光ELISAの検出値は、いずれもm6Fab LZ Hc-Lucの場合を下回った(図6~8)。 In addition to m6FabLLZ Hc-Luc, m6Fab LZ Lc-Luc fused to Lc and m6Fab LZ W-Luc fused to both Hc and Lc were examined in order to optimize the fusion site of Luc to Zipbody. In Western blotting, m6Fab LZ Lc-Luc and m6Fab LZ W-Luc were not detected in any of the Lc bands fused to Luc, and m6Fab LZ W-Luc had a band corresponding to the Hc-Luc fusion. Only a small amount was detected (FIG. 5). From this, it was found that the expression level was decreased by fusion of Luc to Lc. The activity, antigen affinity, and detection value of the luminescence ELISA of the Luc part of m6Fab LZ Lc-Luc and m6Fab LZ W-Luc were all lower than those of m6Fab LZ Hc-Luc (FIGS. 6 to 8).
 これまでにFab抗体はアルカリホスファターゼとの融合タンパク質の作製が報告されているが(Weiss E, Orfanoudakis G. 1994. Application of an alkaline-phosphatase fusion protein system suitable for efficient screening and production of fab-enzyme conjugates in Escherichia coli. Journal of Biotechnology 33(1):43-53.; Carrier A, Ducancel F, Settiawan NB, Cattolico L, Maillere B, Leonetti M, Drevet P, Menez A, Boulain JC. 1995. Recombinant antibody-alkaline phosphatase conjugates for diagnosis of human iggs - application to anti-hbsag detection. Journal of Immunological Methods 181(2):177-186.)、いずれもHcのC末端に付加された報告であり、Lcへの融合は検討していない。今回の検討において、HcにLucを付加した場合のみ、抗体および酵素両方の活性を保持したまま融合タンパク質を作製できた。この結果より、LZ付加Fab抗体への遺伝子的な酵素の融合は、LcよりもHcが適している可能性が初めて実験的に示唆された。 To date, Fab antibodies have been reported to produce fusion proteins with alkaline phosphatase (Weiss E, Orfanoudakis G. 1994. Application of an alkaline-phosphatase fusion protein system suitable for efficient screening and production of fab-enzyme conjugates in Escherichia coli. Journal of Biotechnology 33 (1): 43-53 .; Carrier A, Ducancel F, Settiawan NB, Cattolico L, Maillere B, Lreonetti M, Drevet P, Menez A, Boulain Jcomant conjugates for diagnosis of human iggs-application to anti-hbsag detection. Journal of Immunological Methods 181 (2): 177-186.), both reports were added to the C-terminus of Hc, and fusion to Lc was examined. Not. In this study, only when Luc was added to Hc, a fusion protein could be produced while retaining both antibody and enzyme activities. This result experimentally suggested for the first time that Hc may be more suitable than Lc for genetic enzyme fusion to LZ-added Fab antibodies.
 m6Fab LZ以外のZipbodyでもLucとの融合タンパク質を作製可能か検討するため、ウサギ由来抗L. monocytogenes抗体であるr4Fab LZのHcにLucを付加したr4Fab LZ Hc-Lucを発現させた。発明者らの事前検討によると、r4Fab LZではELISAを行うためには精製が必要であることがわかっている。本検討においても、精製前の可溶性画分のELISAでは有意なシグナルは検出できなかったが、同画分を用いた発光ELISAでは有意なシグナルを検出することができた(図9、10)。このことから、ウサギ由来Zibpdoyから作製した、Zipbdy-Luc融合体でも発光ELISAを行えることがわかった。また、発光ELISAの感度が、2次抗体を用いた一般的なELISAよりも検出感度が高いことを意味する。マウス由来抗体であるm6Fab LZと、ウサギ由来抗体であるr4Fab LZの両方から、活性を保持するZipbody-Lucの作製に成功したことから、様々な生物種由来のZipbodyに汎用的にLucを融合できる可能性が示唆される。 R4Fab か LZ Hc-Luc, in which Luc was added to the Hc of r4Fab LZ, a rabbit-derived anti-L. Monocytogenes antibody, was expressed in order to investigate whether a fusion protein with Luc could be produced using a Zipbody other than m6Fab LZ. According to prior studies by the inventors, it has been known that r4Fab LZ requires purification in order to perform ELISA. Also in this study, a significant signal could not be detected by ELISA before the soluble fraction before purification, but a significant signal could be detected by luminescence ELISA using the same fraction (FIGS. 9 and 10). From this, it was found that a luminescence ELISA can be performed even with a Zipbdy-Luc fusion produced from a rabbit-derived Zibpdoy. Moreover, it means that the sensitivity of the luminescence ELISA is higher than that of a general ELISA using a secondary antibody. Because of the successful production of Zipbody-Luc that retains activity from both mouse-derived antibody m6Fab LZ and rabbit-derived antibody r4Fab LZ, Luc can be fused universally to Zipbody derived from various species. The possibility is suggested.
 また、同様にマウスおよびウサギ由来ZipbodyのHcにGFPを融合させm6Fab LZ Hc-GFP及びr4Fab LZ Hc-GFPを作製した。可溶性画分を用いて蛍光ELISAを行ったところ、m6Fab LZ Hc-GFPでは有意なシグナルが得られた(図11)。一方で、r4Fab LZ Hc-GFPでは有意なシグナルが得られなかった。ウェスタンブロッティングによる解析では、r4Fab LZ Hc-GFPのHc-LZ-GFP及びLc-LZの発現が示されていることから(図5)、r4Fab LZ Hc-GFPについては、精製物による蛍光-ELISAの検討が必要である。また、GFP-ELISAは、LucやHRP、アルカリホスファターゼと異なり、基質を必要とせずに検出が可能であるメリットがあり、低ランニングコストでのアッセイが期待される。LucだけでなくGFPとZipbodyを遺伝子的に融合させることに成功したことから、Zipbodyを様々な酵素などと遺伝子的に融合し大腸菌にて発現可能であると考えられる。 Similarly, m6Fab に LZ の Hc-GFP and r4Fab LZ Hc-GFP were prepared by fusing GFP with mouse and rabbit-derived Zipbody Hc. When fluorescent ELISA was performed using the soluble fraction, a significant signal was obtained with m6Fab LZ Hc-GFP (FIG. 11). On the other hand, no significant signal was obtained with r4Fab LZ Hc-GFP. Western blotting analysis shows the expression of r4Fab LZ Hc-GFP in Hc-LZ-GFP and Lc-LZ (Fig. 5). Consideration is necessary. Unlike Luc, HRP, and alkaline phosphatase, GFP-ELISA has the merit that it can be detected without the need for a substrate, and an assay at a low running cost is expected. Since GFP and Zipbody were successfully genetically fused not only with Luc, it is considered that Zipbody can be genetically fused with various enzymes and expressed in E. coli.
 一方、37℃で発現させた不溶性のm6Fab LZ Hc-GFPをリフォールディングし、抗体およびGFP両方活性を保持した融合体の調製に成功した。本分子の抗体価はGFPを融合していないものと同等であった。 On the other hand, insoluble m6Fab LZ Hc-GFP expressed at 37 ° C was refolded to successfully prepare a fusion that retained both antibody and GFP activity. The antibody titer of this molecule was equivalent to that without GFP fusion.
 本研究では、マウス及びウサギ由来のZipbodyを用い、酵素融合体を作製可能であることを示した。以上より、今後、様々なの生物種(ヒト、ヤギ、ラット等)由来のZipbodyと、様々な種類の酵素(ホースラディシュペルオキシダーゼやアルカリホスファターゼ等)との組み合わせによる融合タンパク質の作製が可能であると考えられる。 In this study, it was shown that an enzyme fusion can be produced using a Zipbody derived from mouse and rabbit. Based on the above, it is considered that fusion proteins can be produced in the future by combining Zipbody derived from various biological species (human, goat, rat, etc.) and various types of enzymes (horseradish peroxidase, alkaline phosphatase, etc.). It is done.
<汎用性の検証>
 Zipbodyを用いた酵素融合体の汎用性が高いことを、別の酵素(アルカリホスファターゼ)を融合させた実験によって検証した。
<Verification of versatility>
The versatility of the enzyme fusion using Zipbody was verified by an experiment in which another enzyme (alkaline phosphatase) was fused.
(1)プラスミドの調製
 まず、発現ベクターpET22bのNdeIサイトにm6Fab LZの遺伝子が導入されたpET22 m6Fab LZ (プラスミド1)との重鎖と軽鎖それぞれの開始コドンの直後にアミノ酸Ser-Lys-Ile-Lys (SKIK) をコードするDNA配列5’-TCTAAAATAAAA-3’(配列番号18)が挿入されたpET22 SKIKm6Fab LZ(プラスミド2)を調製した。次に、プラスミド2の重鎖側抗体遺伝子のC末端に大腸菌由来アルカリホスファターゼ(AP)遺伝子をIn-fusion cloning法で融合し、マウス由来の抗E. coli O157抗体とAPからなるZipbodyzyme(SKIK m6FabLZ-APということがある)発現用プラスミドpET22b SKIK m6FabLZ-AP(プラスミド3)を作製した。プラスミド3には、T7プロモーターとT7ターミネーター間に重鎖-LZA-AP-His tag(アミノ酸配列を配列番号35に示す)と、軽鎖-LZB-FLAG tag(アミノ酸配列を配列番号36に示す)の遺伝子が直列に位置しており、両ポリペプチド鎖が発現できるようになっている。尚、pET22b SKIK m6FabLZ-AP(プラスミド3)の遺伝子コード領域の配列を配列番号37に示す。
(1) Preparation of plasmid First, the amino acid Ser-Lys-Ile immediately after the start codon of heavy chain and light chain of pET22 m6Fab LZ (plasmid 1) in which the gene of m6Fab LZ was introduced into the NdeI site of the expression vector pET22b PET22 SKIKm6Fab LZ (plasmid 2) into which the DNA sequence 5′-TCTAAAATAAAA-3 ′ (SEQ ID NO: 18) encoding -Lys (SKIK) was inserted was prepared. Next, an alkaline phosphatase (AP) gene derived from E. coli was fused to the C-terminus of the heavy chain side antibody gene of plasmid 2 by the in-fusion cloning method, and a Zipbodyzyme (SKIK m6 FabLZ consisting of mouse-derived anti-E. Coli O157 antibody and AP was used. An expression plasmid pET22b SKIK m6FabLZ-AP (plasmid 3) was prepared. Plasmid 3 includes a heavy chain-LZA-AP-His tag (amino acid sequence shown in SEQ ID NO: 35) and a light chain-LZB-FLAG tag (amino acid sequence shown in SEQ ID NO: 36) between the T7 promoter and T7 terminator. These genes are located in series so that both polypeptide chains can be expressed. The sequence of the gene coding region of pET22b SKIK m6FabLZ-AP (plasmid 3) is shown in SEQ ID NO: 37.
(2)発現と精製
 プラスミド3で大腸菌Shuffle T7 Expressを形質転換し、Zipbodyzymeの発現実験に使用した。発現条件は、Zipbody、Zipbody-LucおよびZipbody-GFPと同様であり、誘導時の条件は、アンピシリン含有LB培地250 mLを用い16℃で20時間培養とした。菌体を回収・洗浄し、超音波破砕により破砕した後、遠心分離で可溶性画分と不溶性画分に分離し以後の評価に用いた。
(2) Expression and purification Escherichia coli Shuffle T7 Express was transformed with plasmid 3 and used for the expression experiment of Zipbodyzyme. The expression conditions were the same as those for Zipbody, Zipbody-Luc and Zipbody-GFP, and the conditions for induction were culture at 16 ° C. for 20 hours using 250 mL of ampicillin-containing LB medium. The cells were collected and washed, disrupted by ultrasonic disruption, and then separated into a soluble fraction and an insoluble fraction by centrifugation and used for subsequent evaluation.
 破砕物のSDS-PAGE解析の結果、可溶性および不溶性の両画分において、目的サイズのタンパク質バンド(重鎖-AP[約80 kDa]、軽鎖[約30 kDa])がはっきりと検出された(図15A)。可溶性画分にAP活性と抗体活性が認められたため(データ非掲載)、本画分に含まれるZipbodyzyme(SKIK m6FabLZ-APと記載することがある)を以下の通り精製した。まず、Ni-NTA アフィニティクロマトグラフィ(和光純薬、結合緩衝液:50 mM TrisHCl(pH 8.0), 500mM NaCl, 20mM Imidazole, 洗浄液:50 mM TrisHCl(pH 8.0), 500mM NaCl, 50mM Imidazole、溶出液: 50 mM TrisHCl(pH 8.0), 500mM NaCl, 500mM Imidazole)にかけ、回収した画分を限外ろ過Amicon centrifugal filter (10KDa cut-off)により濃縮し、タンパク質濃度0.13 mg/mLの溶液を1.2 mL得た。これをゲルろ過クロマトグラフィ(担体: Superdex200 10/30 GL、溶出液: 50 mM TrisHCl (pH 8.0), 500mM NaCl、流速: 0.5mL/min)により精製し、タンパク質濃度0.032 mg/mLの溶液を1.5mL得た(図15B)。以後の実験には本精製品を用いた。 As a result of SDS-PAGE analysis of the crushed material, protein bands of the desired size (heavy chain-AP [about 80 kDa], light chain [about 30 kDa]) were clearly detected in both the soluble and insoluble fractions ( FIG. 15A). Since AP activity and antibody activity were observed in the soluble fraction (data not shown), the Zipbodyzyme (sometimes referred to as SKIK m6FabLZ-AP) contained in this fraction was purified as follows. First, Ni-NTA affinity chromatography (Wako Pure Chemicals, binding buffer: 50 mM TrisHCl (pH 8.0), 500 mM NaCl, 20 mM Imidazole, washing solution: 50 mM TrisHCl (pH 8.0), 500 mM NaCl, 50 mM Imidazole, eluent: 50 The collected fraction was applied to mM TrisHCl (pH 8.0), 500 mM NaCl, 500 mM Imidazole), and the collected fraction was concentrated by ultrafiltration Amicon centrifugal filter (10 KDa cut-off) to obtain 1.2 liter of a solution having a protein concentration of 0.13 mg / mL. This was purified by gel filtration chromatography (carrier: Superdex200 10/30 GL, eluent: 50 mM TrisHCl (pH 8.0), 500mM NaCl, flow rate: 0.5mL / min), and 1.5mL of a solution with a protein concentration of 0.032 mg / mL Obtained (FIG. 15B). This product was used for the subsequent experiments.
(3)AP活性測定
 APの活性測定法は下記の通りである。パラニトロフェニルリン酸(pNPP)を含む基質溶液(0.1 M Tris-HCl(pH 8.0), 5 mM pNPP)を500μLずつ分注し、そこに酵素液を5μLずつ加え、37℃で30分インキュベートした。2 M NaOHを50μL加え反応を停止させた後、410 nmの吸光を測定した。1%BSAを酵素液としたものをネガティブコントロールとした。
(3) AP activity measurement The AP activity measurement method is as follows. A substrate solution containing paranitrophenyl phosphate (pNPP) (0.1 M Tris-HCl (pH 8.0), 5 mM pNPP) was dispensed in 500 μL aliquots, 5 μL of enzyme solution was added thereto, and incubated at 37 ° C. for 30 minutes. . After 50 μL of 2 M NaOH was added to stop the reaction, absorbance at 410 nm was measured. An enzyme solution containing 1% BSA was used as a negative control.
 SKIK m6FabLZ-AP精製物を段階希釈しAP活性測定した結果、図16Aに示すように活性が認められた。 As a result of serially diluting the SKIK 6FabLZ-AP purified product and measuring AP activity, activity was recognized as shown in FIG. 16A.
(4)ELISAとAP-ELISA
 SKIK m6FabLZ-APが抗体として機能するかを調べるために、段階希釈した精製タンパク質サンプルを用い、通常のELISAとAP活性を指標としたAP-ELISAを行った。なお、通常のELISAでは二次抗体としてanti-HIS-HRP(MBL)を使用し、酵素反応の基質溶液として、TMB 溶液(41 mM TMB (in DMSO) 62.5μL、30% 過酸化水素0.875μL、solutionI (0.2M citrate buffer, pH 4.0) 5 mLを混合したもの,要時調製)を用いた。
(4) ELISA and AP-ELISA
In order to examine whether SKIK m6FabLZ-AP functions as an antibody, a purified protein sample diluted serially was used to perform normal ELISA and AP-ELISA using AP activity as an index. In normal ELISA, anti-HIS-HRP (MBL) is used as the secondary antibody, and the TMB solution (41 mM TMB (in DMSO) 62.5 μL, 30% hydrogen peroxide 0.875 μL, SolutionI (0.2M citrate buffer, pH 4.0) mixed with 5 mL was used.
 AP-ELISAは、透明のMaxisorpプレートを使用し発色を指標とする以外は、発光ELISAと同様の方法である。詳述すると、Zipbodyzyme溶液の洗浄後、pNPPを含む基質溶液を350μL加え、37℃で30分反応させた。2 M NaOHを35μL加え反応を停止させた後、410 nmの吸光を測定した。 AP-ELISA is the same method as the light-emitting ELISA except that a transparent Maxisorp plate is used and color development is used as an index. Specifically, after washing the Zipbodyzyme solution, 350 μL of a substrate solution containing pNPP was added and reacted at 37 ° C. for 30 minutes. After 35 μL of 2M NaOH was added to stop the reaction, the absorbance at 410 nm was measured.
 通常のELISAおよびAP-ELISAの結果をそれぞれ図16B及び図16Cに示す。通常ELISAでは320 ng/mL以上のサンプル濃度、AP-ELISAにおいては、32000 ng/mLの濃度で抗原E. coli O157に対する特異的ELISAシグナルが検出された。 The results of normal ELISA and AP-ELISA are shown in FIGS. 16B and 16C, respectively. In general ELISA, a specific ELISA signal for the antigen E. coli O157 was detected at a sample concentration of 320 通常 ng / mL or more and in AP-ELISA at a concentration of 32000 ng / mL.
(5)まとめ
 APを融合したZipbodyzymeを、大腸菌の可溶性画分に大量発現させ、精製した。精製品を用い、通常のELISAとAP-ELISAを行うことができた。
(5) Summary The Zipbodyzyme fused with AP was expressed in a large amount in the soluble fraction of Escherichia coli and purified. Using the purified product, normal ELISA and AP-ELISA could be performed.
 本発明の抗体は安定した構造を備え、抗原に対する高い親和性を示す。しかも、融合した標識タンパク質(例えば酵素)が十分な機能を発揮する。このように優れた特性を備えた本発明の抗体には、ELISAに代表される各種検出法、細胞又は組織の染色、生体内イメージングへの利用、更には疾患の診断、治療への利用・応用が期待される。 The antibody of the present invention has a stable structure and exhibits high affinity for an antigen. Moreover, the fused labeled protein (for example, an enzyme) exhibits a sufficient function. The antibody of the present invention having such excellent characteristics includes various detection methods represented by ELISA, staining of cells or tissues, use for in vivo imaging, and further use / application for diagnosis and treatment of diseases. There is expected.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.
 配列番号1:人工配列の説明:pET22 m6Fab LZ Hc-Luc
 配列番号2:人工配列の説明:pET22 r4Fab LZ Hc-Luc
 配列番号3:人工配列の説明:pET22 m6Fab LZ Hc-GFP
 配列番号4:人工配列の説明:pET22 r4Fab LZ Hc-GFP
 配列番号5:人工配列の説明:LZA
 配列番号6:人工配列の説明:LZB
 配列番号7:人工配列の説明:リンカー
 配列番号8~24:人工配列の説明:タグ配列
 配列番号25~34:人工配列の説明:プライマー
 配列番号35:人工配列の説明:重鎖-LZA-AP-His tag
 配列番号36:人工配列の説明:軽鎖-LZB-FLAG tag
 配列番号37:人工配列の説明:pET22b SKIK m6FabLZ-APの遺伝子コード領域
SEQ ID NO: 1 Description of artificial sequence: pET22 m6Fab LZ Hc-Luc
SEQ ID NO: 2 Description of artificial sequence: pET22 r4Fab LZ Hc-Luc
SEQ ID NO: 3 Description of artificial sequence: pET22 m6Fab LZ Hc-GFP
SEQ ID NO: 4: Description of artificial sequence: pET22 r4Fab LZ Hc-GFP
Sequence number 5: Description of artificial sequence: LZA
Sequence number 6: Description of artificial sequence: LZB
SEQ ID NO: 7: description of artificial sequence: linker SEQ ID NO: 8-24: description of artificial sequence: tag sequence SEQ ID NO: 25-34: description of artificial sequence: primer SEQ ID NO: 35: description of artificial sequence: heavy chain-LZA-AP -His tag
SEQ ID NO: 36: Description of artificial sequence: light chain-LZB-FLAG tag
SEQ ID NO: 37: Description of artificial sequence: gene coding region of pET22b SKIK m6FabLZ-AP

Claims (27)

  1.  ロイシンジッパーを構成する一対のペプチドの片方がH鎖のC末端に、他方がL鎖のC末端にそれぞれ付加されており、
     前記H鎖及び/又は前記L鎖には、前記ペプチドを介して標識タンパク質が連結している、
     標識タンパク質融合Fab抗体。
    One of the pair of peptides constituting the leucine zipper is added to the C terminus of the H chain, and the other is added to the C terminus of the L chain,
    A labeled protein is linked to the H chain and / or the L chain via the peptide,
    Labeled protein fusion Fab antibody.
  2.  前記標識タンパク質が前記H鎖にのみ連結している、請求項1に記載の標識タンパク質融合Fab抗体。 The labeled protein fusion Fab antibody according to claim 1, wherein the labeled protein is linked only to the H chain.
  3.  前記標識タンパク質が蛍光タンパク質又は発光酵素である、請求項1又は2に記載の標識タンパク質融合Fab抗体。 The labeled protein-fused Fab antibody according to claim 1 or 2, wherein the labeled protein is a fluorescent protein or a luminescent enzyme.
  4.  前記蛍光タンパク質がGFPであり、前記発光酵素がルシフェラーゼである、請求項3に記載の標識タンパク質融合Fab抗体。 The labeled protein-fused Fab antibody according to claim 3, wherein the fluorescent protein is GFP and the luminescent enzyme is luciferase.
  5.  SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグが前記H鎖及び前記L鎖のN末端にそれぞれ連結している、請求項1~4のいずれか一項に記載の標識タンパク質融合Fab抗体。 The peptide tag which consists of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (where X represents any amino acid residue) is linked to the N-terminus of the H chain and the L chain, respectively. 5. The labeled protein fusion Fab antibody according to any one of 1 to 4.
  6.  リフォールディングされたものであることを特徴とする、請求項1~5のいずれか一項に記載の標識タンパク質融合Fab抗体。 The labeled protein-fused Fab antibody according to any one of claims 1 to 5, wherein the antibody is a refolded antibody.
  7.  大腸菌の細胞質内で合成されたものであることを特徴とする、請求項1~5のいずれか一項に記載の標識タンパク質融合Fab抗体。 The labeled protein-fused Fab antibody according to any one of claims 1 to 5, which is synthesized in the cytoplasm of E. coli.
  8.  請求項1~7のいずれか一項に記載の標識タンパク質融合Fab抗体を含む検出試薬。 A detection reagent comprising the labeled protein-fused Fab antibody according to any one of claims 1 to 7.
  9.  請求項8に記載の検出試薬を含む検出キット。 A detection kit comprising the detection reagent according to claim 8.
  10.  以下のステップ、即ち、
     (A)VH領域とCH1領域をコードする抗体H鎖遺伝子と、VL領域とCL領域をコードする抗体L鎖遺伝子を共発現させるステップ、又は
     (B)VH領域とCH1領域をコードする抗体H鎖遺伝子と、VL領域とCL領域をコードする抗体L鎖遺伝子を各々発現させた後、発現産物を混合するステップ、
     を含み、
     ロイシンジッパーを構成する一対のペプチドの内、片方をコードする第1タグ配列が前記抗体H鎖遺伝子の3'末端に、他方をコードする第2タグ配列が前記抗体L鎖遺伝子の3'末端にそれぞれ付加されており、
     前記抗体H鎖遺伝子及び/又は前記抗体L鎖遺伝子には、前記第1又は第2タグ配列を介して標識タンパク質遺伝子が連結している、
     標識タンパク質融合Fab抗体の調製法。
    The following steps:
    (A) co-expressing antibody H chain gene encoding VH region and CH1 region and antibody L chain gene encoding VL region and CL region, or (B) antibody H chain encoding VH region and CH1 region A gene and an antibody L chain gene encoding a VL region and a CL region, respectively, and then mixing the expression product,
    Including
    Of the pair of peptides constituting the leucine zipper, the first tag sequence encoding one of them is at the 3 ′ end of the antibody H chain gene, and the second tag sequence encoding the other is at the 3 ′ end of the antibody L chain gene. Each has been added,
    A labeled protein gene is linked to the antibody H chain gene and / or the antibody L chain gene via the first or second tag sequence,
    Preparation method of labeled protein fusion Fab antibody.
  11.  前記標識タンパク質遺伝子が前記抗体H鎖遺伝子にのみ連結している、請求項10に記載の調製法。 The preparation method according to claim 10, wherein the marker protein gene is linked only to the antibody H chain gene.
  12.  宿主細胞を用いた発現系又は無細胞タンパク質合成系を用いて前記ステップを行う、請求項10又は11に記載の調製法。 The preparation method according to claim 10 or 11, wherein the step is performed using an expression system using a host cell or a cell-free protein synthesis system.
  13.  前記発現系が、大腸菌を利用した発現系であり、前記抗体H鎖遺伝子及び前記抗体L鎖遺伝子の5'末端側には、SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグをコードする配列が付加されており、
     該ペプチドタグがN末端に連結したタグ付加タンパク質として前記標識タンパク質融合Fab抗体が発現する、請求項12に記載の調製法。
    The expression system is an expression system using E. coli, and the amino acid sequence of SK, SKX, SKXX, AKXX or KKXX is provided on the 5 ′ end side of the antibody H chain gene and the antibody L chain gene (where X is A sequence encoding a peptide tag consisting of any amino acid residue) is added,
    The preparation method according to claim 12, wherein the labeled protein fusion Fab antibody is expressed as a tagged protein in which the peptide tag is linked to the N-terminus.
  14.  前記ペプチドタグが、SKI、SKIK、SKKK、SKII、AKIK、AKII又はKKKKのアミノ酸配列からなる、請求項13に記載の調製法。 The preparation method according to claim 13, wherein the peptide tag consists of an amino acid sequence of SKI, SKIK, SKKK, SKII, AKIK, AKII or KKKK.
  15.  前記ペプチドタグをコードする配列と前記抗体H鎖遺伝子の間、及び前記ペプチドタグをコードする配列と前記抗体L鎖遺伝子の間に、プロテアーゼ認識配列が介在する、請求項13又は14に記載の調製法。 The preparation according to claim 13 or 14, wherein a protease recognition sequence is interposed between the sequence encoding the peptide tag and the antibody heavy chain gene, and between the sequence encoding the peptide tag and the antibody light chain gene. Law.
  16.  大腸菌を利用した前記発現系が、T7プロモーターを用いた発現系、又は低温発現プロモーターを用いた発現系である、請求項13~15のいずれか一項に記載の調製法。 The preparation method according to any one of claims 13 to 15, wherein the expression system using E. coli is an expression system using a T7 promoter or an expression system using a low-temperature expression promoter.
  17.  大腸菌を利用した前記発現系が、大腸菌由来成分を用いた無細胞タンパク質合成系である、請求項13~15のいずれか一項に記載の調製法。 The preparation method according to any one of claims 13 to 15, wherein the expression system using E. coli is a cell-free protein synthesis system using E. coli-derived components.
  18.  前記抗体H鎖遺伝子と前記抗体L鎖遺伝子が、以下のステップ(i)~(viii)によって調製される、請求項10~17のいずれか一項に記載の調製法:
     (i)単一のB細胞に由来するmRNAを用意するステップ;
     (ii)前記mRNAを鋳型とした逆転写PCR法によりcDNAを調製するステップ;
     (iii)5'末端に同一の第3タグ配列を含む複数のプライマーからなり、VH領域とCH1領域をコードする抗体H鎖遺伝子を増幅可能なプライマーセットを用い、前記cDNAを鋳型としてPCRを実施するステップ;
     (iv)5'末端に同一の第4タグ配列を含む複数のプライマーからなり、VL領域とCL領域をコードする抗体L鎖遺伝子を増幅可能なプライマーセットを用い、前記cDNAを鋳型としてPCRを実施するステップ;
     (v)前記第3タグ配列を含む単一のプライマーを用い、ステップ(iii)の増幅産物を鋳型としてPCRを実施するステップ;
     (vi)前記第4タグ配列を含む単一のプライマーを用い、ステップ(iv)の増幅産物を鋳型としてPCRを実施するステップ;
     (vii)ステップ(v)の増幅産物である抗体H鎖遺伝子に前記第1タグ配列を付加するステップ;
     (viii)ステップ(vi)の増幅産物である抗体L鎖遺伝子に前記第2タグ配列を付加するステップ。
    The preparation method according to any one of claims 10 to 17, wherein the antibody H chain gene and the antibody L chain gene are prepared by the following steps (i) to (viii):
    (i) providing mRNA derived from a single B cell;
    (ii) preparing cDNA by reverse transcription PCR using the mRNA as a template;
    (iii) PCR is performed using a primer set consisting of multiple primers containing the same third tag sequence at the 5 ′ end and capable of amplifying the antibody H chain gene encoding the VH region and CH1 region, and using the cDNA as a template. Step to do;
    (iv) PCR is performed using a primer set consisting of multiple primers containing the same fourth tag sequence at the 5 'end and capable of amplifying the antibody L chain gene encoding the VL region and CL region, and using the cDNA as a template Step to do;
    (v) performing PCR using a single primer containing the third tag sequence and using the amplification product of step (iii) as a template;
    (vi) performing PCR using a single primer containing the fourth tag sequence and using the amplification product of step (iv) as a template;
    (vii) adding the first tag sequence to the antibody heavy chain gene that is the amplification product of step (v);
    (viii) A step of adding the second tag sequence to the antibody L chain gene that is the amplification product of step (vi).
  19.  前記抗体H鎖遺伝子と前記抗体L鎖遺伝子が、以下のステップ(I)~(IV)によって調製される、請求項10~17のいずれか一項に記載の調製法:
     (I)単一のB細胞に由来するmRNAを用意するステップ;
     (II)前記mRNAを鋳型とした逆転写PCR法によりcDNAを調製するステップ;
     (III)前記cDNAを鋳型としたnested PCR法により前記抗体H鎖遺伝子を増幅させるステップ、
     (IV)前記cDNAを鋳型としたnested PCR法により前記抗体L鎖遺伝子を増幅させるステップ。
    The preparation method according to any one of claims 10 to 17, wherein the antibody H chain gene and the antibody L chain gene are prepared by the following steps (I) to (IV):
    (I) providing mRNA derived from a single B cell;
    (II) preparing cDNA by reverse transcription PCR using the mRNA as a template;
    (III) amplifying the antibody H chain gene by a nested PCR method using the cDNA as a template,
    (IV) Amplifying the antibody L chain gene by a nested PCR method using the cDNA as a template.
  20.  プロモーターと、
     Fab抗体を構成する片方の抗体鎖をコードする遺伝子用の第1クローニング部位と、
     一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、
     前記Fab抗体を構成する他方の抗体鎖をコードする遺伝子用の第2クローニング部位と、
     前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有するとともに、
     前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている、
     標識タンパク質融合Fab抗体を調製するためのベクター。
    A promoter,
    A first cloning site for a gene encoding one of the antibody chains constituting the Fab antibody;
    A first leucine zipper sequence encoding one of a pair of leucine zipper peptides;
    A second cloning site for a gene encoding the other antibody chain constituting the Fab antibody;
    A second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and
    A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
    Vector for preparing labeled protein fusion Fab antibody.
  21.  前記プロモーターが、大腸菌で機能するプロモーターであり、
     前記プロモーターと前記第1クローニング部位との間にはリボソーム結合部位が配置される、請求項20に記載のベクター。
    The promoter is a promoter that functions in E. coli;
    21. The vector of claim 20, wherein a ribosome binding site is disposed between the promoter and the first cloning site.
  22.  前記第1クローニング部位の直前と前記第2クローニング部位の直前に、
     開始コドン及び該開始コドンの直後に配置された、SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグをコードする配列が配置されている、請求項20又は21に記載のベクター。
    Immediately before the first cloning site and immediately before the second cloning site,
    A sequence encoding a peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (X represents an arbitrary amino acid residue) arranged immediately after the initiation codon is arranged. The vector according to claim 20 or 21, wherein
  23.  プロモーターと、
     Fab抗体を構成する片方の抗体鎖をコードする第1抗体遺伝子と、
     一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、
     前記Fab抗体を構成する他方の抗体鎖をコードする第2抗体遺伝子と、
     前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有するとともに、
     前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている、
     標識タンパク質融合Fab抗体を調製するためのベクター。
    A promoter,
    A first antibody gene encoding one of the antibody chains constituting the Fab antibody;
    A first leucine zipper sequence encoding one of a pair of leucine zipper peptides;
    A second antibody gene encoding the other antibody chain constituting the Fab antibody;
    A second leucine zipper sequence encoding the other of the pair of leucine zipper peptides, and
    A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
    Vector for preparing labeled protein fusion Fab antibody.
  24.  前記プロモーターが、大腸菌で機能するプロモーターであり、
     前記プロモーターと前記第1抗体遺伝子との間にはリボソーム結合部位が配置される、請求項23に記載のベクター。
    The promoter is a promoter that functions in E. coli;
    24. The vector according to claim 23, wherein a ribosome binding site is disposed between the promoter and the first antibody gene.
  25.  前記第1抗体遺伝子の直前と前記第2抗体遺伝子の直前に、
     開始コドン及び該開始コドンの直後に配置された、SK、SKX、SKXX、AKXX又はKKXXのアミノ酸配列(但し、Xは任意のアミノ酸残基を表す)からなるペプチドタグをコードする配列が配置されている、請求項23又は24に記載のベクター。
    Immediately before the first antibody gene and immediately before the second antibody gene,
    A sequence encoding a peptide tag consisting of an amino acid sequence of SK, SKX, SKXX, AKXX or KKXX (X represents an arbitrary amino acid residue) arranged immediately after the initiation codon is arranged. The vector according to claim 23 or 24.
  26.  プロモーターと、
     Fab抗体を構成する片方の抗体鎖をコードする遺伝子用の第1クローニング部位と、
     一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、を有する第1ベクターと、
     プロモーターと、
     Fab抗体を構成する片方の抗体鎖をコードする遺伝子用の第2クローニング部位と、
     前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有する第2ベクターと、からなり、
     前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている、
     標識タンパク質融合Fab抗体を調製するためのベクターセット。
    A promoter,
    A first cloning site for a gene encoding one of the antibody chains constituting the Fab antibody;
    A first vector having a first leucine zipper sequence encoding one of a pair of leucine zipper peptides;
    A promoter,
    A second cloning site for a gene encoding one of the antibody chains constituting the Fab antibody;
    A second vector having a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides,
    A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
    A vector set for preparing a labeled protein-fused Fab antibody.
  27.  プロモーターと、
     Fab抗体を構成する片方の抗体鎖をコードする第1抗体遺伝子と、
     一対のロイシンジッパーペプチドの片方をコードする第1ロイシンジッパー配列と、を有する第1ベクターと、
     プロモーターと、
     Fab抗体を構成する片方の抗体鎖をコードする第2抗体遺伝子と、
     前記一対のロイシンジッパーペプチドの他方をコードする第2ロイシンジッパー配列と、を有する第2ベクターと、からなり、
     前記第1ロイシンジッパー配列及び/又は前記第2ロイシンジッパー配列の下流には、標識タンパク質をコードする配列が配置されている、
     標識タンパク質融合Fab抗体を調製するためのベクターセット。
    A promoter,
    A first antibody gene encoding one of the antibody chains constituting the Fab antibody;
    A first vector having a first leucine zipper sequence encoding one of a pair of leucine zipper peptides;
    A promoter,
    A second antibody gene encoding one of the antibody chains constituting the Fab antibody;
    A second vector having a second leucine zipper sequence encoding the other of the pair of leucine zipper peptides,
    A sequence encoding a labeled protein is arranged downstream of the first leucine zipper sequence and / or the second leucine zipper sequence.
    A vector set for preparing a labeled protein-fused Fab antibody.
PCT/JP2017/027791 2016-08-03 2017-08-01 Antibody fused with labeling protein WO2018025826A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531899A JPWO2018025826A1 (en) 2016-08-03 2017-08-01 Antibody fused with labeled protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152447 2016-08-03
JP2016-152447 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018025826A1 true WO2018025826A1 (en) 2018-02-08

Family

ID=61072877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027791 WO2018025826A1 (en) 2016-08-03 2017-08-01 Antibody fused with labeling protein

Country Status (2)

Country Link
JP (1) JPWO2018025826A1 (en)
WO (1) WO2018025826A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035821A1 (en) * 2005-08-30 2009-02-05 Novo Nordisk A/S Expression of Proteins in E.Coli
JP2010519894A (en) * 2007-03-01 2010-06-10 ノボ・ノルデイスク・エー/エス Protein expression in E. coli
JP2016002009A (en) * 2014-06-13 2016-01-12 国立大学法人名古屋大学 Tagged antibody
WO2016204198A1 (en) * 2015-06-16 2016-12-22 国立大学法人名古屋大学 Protein expression method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035821A1 (en) * 2005-08-30 2009-02-05 Novo Nordisk A/S Expression of Proteins in E.Coli
JP2010519894A (en) * 2007-03-01 2010-06-10 ノボ・ノルデイスク・エー/エス Protein expression in E. coli
JP2016002009A (en) * 2014-06-13 2016-01-12 国立大学法人名古屋大学 Tagged antibody
WO2016204198A1 (en) * 2015-06-16 2016-12-22 国立大学法人名古屋大学 Protein expression method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIVONA, L. ET AL.: "Influence of the second amino acid on recombinant protein expression", PROTEIN EXPRESSION AND PURIFICATION, vol. 74, 2010, pages 248 - 256, XP027394798, DOI: doi:10.1016/j.pep.2010.06.005 *
HIDEO NAKANO ET AL.,: "Zipbody: Leucine Zipper o Mochiita Fab Kotai to Sono Riyo", DAI 5 KAI NEO BIO BUNSHI KENKYUKAI YOSHISHU, 10 June 2016 (2016-06-10), Retrieved from the Internet <URL:https://www.sci.kagoshima-u.ac.jp/yito/Neobio/NBKagoshima_201606.pdf> [retrieved on 20170831] *
OJIMA-KATO TERUYO. ET AL.: "`Zipbody' leucine zipper-fused Fab in E.coli in vitro and in vivo expression systems", PROTEIN ENGINEERING, DESIGN AND SELECTION, vol. 29, 21 February 2016 (2016-02-21), pages 149 - 157, XP055604740 *

Also Published As

Publication number Publication date
JPWO2018025826A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
Nallamsetty et al. Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners
Vera Rodriguez et al. Engineered SUMO/protease system identifies Pdr6 as a bidirectional nuclear transport receptor
Al-Homsi et al. Construction of pRSET-sfGFP plasmid for fusion-protein expression, purification and detection
US20200393458A1 (en) Engineered red blood cell-based biosensors
CN111269324B (en) Fusion protein of Gauss luciferase and digoxin single-chain antibody and application thereof
US8541558B2 (en) Fluorescent proteins and uses thereof
US11572547B2 (en) Fusion proteins for the detection of apoptosis
EP3750911A1 (en) Cysteine-free inteins
WO2018025826A1 (en) Antibody fused with labeling protein
Luria et al. Fluorescent IgG fusion proteins made in E. coli
US11524996B2 (en) Method for producing refolded recombinant humanized ranibizumab
US10093920B2 (en) Protein display
CN111073925B (en) High-efficiency polypeptide-polypeptide coupling system and method based on disordered protein coupling enzyme
Haas et al. Fluorescent Citrine-IgG fusion proteins produced in mammalian cells
WO2016209869A1 (en) Quantitative fret-based interaction assay
WO2013177201A2 (en) Detection of biopolymer interactions, cancer cells, and pathogens using split-supercharged gfp
KR20220023985A (en) Efficient method for constructing blood protein and its use
Nguyen et al. Numaswitch, a biochemical platform for the efficient production of disulfide-rich pepteins
WO2024000408A1 (en) Luciferase mutant and use thereof
Frank Recombinant hybrid proteins as biospecific reporters for bioluminescent microassay
CN110636859B (en) Methods for producing refolded recombinant humanized ranibizumab
Petrovskaya et al. Fluorescent fusion proteins derived from the tenth human fibronectin domain
Turgimbayeva et al. Preparation of rabbit polyclonal antibodies against GFP and mCherry proteins
WO2022263644A1 (en) Thermostable affinity polypeptides
JP2024517633A (en) Novel luciferases with improved properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836931

Country of ref document: EP

Kind code of ref document: A1