WO2018025408A1 - Safety monitoring device - Google Patents
Safety monitoring device Download PDFInfo
- Publication number
- WO2018025408A1 WO2018025408A1 PCT/JP2016/073137 JP2016073137W WO2018025408A1 WO 2018025408 A1 WO2018025408 A1 WO 2018025408A1 JP 2016073137 W JP2016073137 W JP 2016073137W WO 2018025408 A1 WO2018025408 A1 WO 2018025408A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- safety monitoring
- sleep
- unit
- monitoring unit
- signal
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/02—Control systems without regulation, i.e. without retroactive action
- B66B1/06—Control systems without regulation, i.e. without retroactive action electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B27/00—Indicating operating conditions of escalators or moving walkways
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B3/00—Applications of devices for indicating or signalling operating conditions of elevators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B31/00—Accessories for escalators, or moving walkways, e.g. for sterilising or cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0428—Safety, monitoring
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B9/00—Safety arrangements
- G05B9/02—Safety arrangements electric
Definitions
- This invention relates to a safety monitoring device.
- the operation mode of the elevator is switched to the pause mode every time the brake is braked.
- the sleep mode power supply to the control microcomputer is stopped to reduce standby power.
- the elevator operation mode when the elevator operation mode is the pause mode, if there is a registration on the destination floor registration button or the hall call registration button in the car, the elevator operation mode Is switched to the normal mode and the power supply to the control microcomputer is resumed.
- Patent Document 1 does not intend to perform self-diagnosis processing. For this reason, in the elevator control device described in Patent Document 1, if the self-diagnosis process is to be performed, the following problems occur.
- Patent Document 1 since the power supply to the control microcomputer is stopped during the sleep mode, the self-diagnosis process cannot be executed. Further, if the transition to the sleep mode is not performed in order to execute the self-diagnosis process, the energy saving effect cannot be obtained.
- the present invention has been made to solve such problems, and an object of the present invention is to obtain a safety monitoring device that performs self-diagnosis processing at a required self-diagnosis cycle while being conscious of energy saving.
- the present invention includes a pair of safety monitoring units that monitor a safety state of a target system, and each of the safety monitoring units periodically performs self-diagnosis processing of components of the target system based on a predetermined period. And a sleep command for outputting a sleep command for shifting the safety monitoring unit to a sleep state when no signal is input from the outside for a preset first set time. And a sleep execution unit that puts the safety monitoring unit into a sleep state for a preset second set time in accordance with the sleep command from the sleep command unit, and the second setting The time length of the time is a safety monitoring device shorter than the time length of the fixed period.
- the safety monitoring device of the present invention since the transition period to the sleep state having a length of time shorter than the fixed period for executing the self-diagnosis process is provided, the self-diagnosis process performed at the fixed period is hindered. Therefore, the self-diagnosis process can be surely performed at the required self-diagnosis cycle while saving energy.
- Embodiment 1 FIG.
- the safety monitoring device shuts down the safety circuit of the target system and forcibly stops the target system when the non-safety state is detected, thereby bringing the target system into the safe state.
- the non-safety state refers to a state other than the safety state of the target system defined for each safety monitoring device, or a state where the safety state cannot be monitored due to a failure of the safety monitoring device constituent device.
- the safety state of the target system is, for example, the safety state of the terminal floor forced reduction device is “below the speed at which braking is suddenly performed from the current car position and the vehicle can be decelerated to a safe speed near the terminal floor.
- the safe state of the door-opening travel protection device is “the door is closed, or the door is in the open state after landing and the door is open, and the car is in the door openable area (door zone or relevel zone). It is that you are.
- the safety monitoring device has a pair of safety monitoring units. Each safety monitoring unit is composed of a CPU. Each safety monitoring unit periodically performs self-diagnosis processing at a preset self-diagnosis cycle. In addition, each safety monitoring unit enters a sleep state during the sleep time set to a time length shorter than the self-diagnosis cycle. Thus, by setting the sleep time to a time length shorter than the self-diagnosis cycle, the self-diagnosis process can be surely performed regardless of the setting of the sleep time. Further, since the sleep time is provided between the self-diagnosis processes, the power consumption can be reduced by the amount of the sleep time provided.
- the safety monitoring apparatus according to Embodiment 1 will be described in detail with reference to the drawings.
- FIG. 1 is a configuration diagram showing a configuration of a target system equipped with a safety monitoring device 51 according to Embodiment 1 of the present invention.
- FIG. 1 shows a case where the target system is an elevator apparatus.
- the target system is not limited to the elevator apparatus. That is, the safety monitoring device 51 according to the first embodiment can be applied to various devices such as a passenger conveyor such as an escalator or an air conditioning system.
- FIG. 2 is a block diagram showing the configuration of the safety monitoring device 51 of FIG.
- the elevator apparatus includes a drive device 10, a brake device 20, a hoistway device 30, a landing device 40, an elevator safety monitoring unit 50, an elevator operation control unit 60, and a manual operation device 80. is doing.
- the driving device 10 includes a main circuit electromagnetic circuit breaker (power supply switching unit) 11 connected to the commercial power source 1, a power converter 12 including an inverter connected to the main circuit electromagnetic circuit breaker 11, and a power converter 12. And a sheave 14 that is rotated by driving of the motor 13.
- the drive of the motor 13 is controlled by the elevator operation control device 61 of the elevator operation control unit 60.
- the main circuit electromagnetic circuit breaker 11 is provided in the power line of the motor 13, that is, the main circuit.
- the main circuit electromagnetic circuit breaker 11 includes a #MC main contact 11a and a #MC coil 11c.
- the #MC coil 11c When the #MC coil 11c is in an energized state (excited state), the #MC main contact 11a is in a closed state.
- the #MC coil 11c when the #MC coil 11c is in the energization cut-off state (non-excitation state), the #MC main contact 11a is in the open state. In other words, the power supply to the motor 13 is switched between being opened and closed by closing and opening the #MC main contact 11 a of the main circuit electromagnetic circuit breaker 11.
- the brake device 20 includes a brake wheel (not shown) that rotates together with the sheave 14 by driving the motor 13, a first brake lining 21, a second brake lining 22, a first brake coil 23, and a second brake coil 24.
- the first brake lining 21 and the second brake lining 22 can be displaced between a braking position and a release position, respectively.
- the braking position is a position where the first brake lining 21 and the second brake lining 22 are in contact with the braking surface (for example, the outer peripheral surface) of the brake wheel.
- the release position is a position where the first brake lining 21 and the second brake lining 22 are spaced apart from the braking surface of the brake wheel. That is, the release position is a position where the first brake lining 21 and the second brake lining 22 are in a non-contact state with the braking surface of the brake wheel.
- the first brake lining 21 and the second brake lining 22 are urged toward the braking surface of the brake wheel by the first spring and the second spring, respectively. Accordingly, the first and second brake linings 21 and 22 are pressed against the braking surface of the rotating brake wheel by the first and second springs. A frictional force is generated between the braking surface of the wheel. This frictional force brakes the rotation of the brake wheel, that is, the rotation of the motor 13.
- the first brake lining 21 and the second brake lining 22 are moved to the release position against the biasing force of the first spring and the second spring by the electromagnetic force of the first brake coil 23 and the second brake coil 24, respectively. Displaced. Excitation / demagnetization of the first brake coil 23 and the second brake coil 24 is controlled by the elevator operation control unit 60 via the first brake chopper 25 and the second brake chopper 26, respectively.
- the brake electromagnetic circuit breaker 27 is interposed between the first brake coil 23 and the first brake chopper 25 and between the second brake coil 24 and the second brake chopper 26, respectively.
- the brake electromagnetic circuit breaker 27 includes a #BK main contact 27a, a #BK auxiliary contact 27b, and a #BK coil 27c.
- the #BK coil 27c When the #BK coil 27c is in an energized state (excited state), the #BK main contact 27a is in a closed state and the # BK27 auxiliary contact 27b is in an open state. On the other hand, when the #BK coil 27c is in the energization cut-off state (de-energized state), the #BK main contact 27a is in the open state and the #BK auxiliary contact 27b is in the closed state. In other words, the power supply / interruption to the first brake coil 23 and the second brake coil 24 is switched by closing / opening the #BK main contact 27a of the brake electromagnetic circuit breaker 27. The closed / open state of the #BK main contact 27a is input to the elevator operation control device 61 of the elevator operation control unit 60 as a brake release detection signal.
- the hoistway device 30 includes a car 31, a counterweight 32, a main rope 33, a warp 34, a car door 35 as an elevator door, a car door open detector 36, a weighing device 37, and a car.
- An internal operation panel 38, a door zone plate 81, and a door zone detector 82 are provided.
- the car door 35 is provided in the car 31.
- the car door 35 opens and closes the entrance / exit of the car 31 as an elevator entrance / exit.
- the main rope 33 is wound around the outer periphery of the sheave 14 and the curling wheel 34.
- the scale device 37 measures the load in the car 31.
- the load measured by the scale device 37 is input to the elevator operation control device 61 of the elevator operation control unit 60 as a scale detection signal.
- the in-car operation panel 38 constitutes a destination floor registration device for an elevator user to register a destination floor.
- the elevator user gets on the car 31, the elevator user performs destination floor registration on the operation panel 38 in the car.
- Information on the destination floor registration is input to the elevator operation control device 61.
- the car door open detector 36 outputs a signal corresponding to the open / closed state of the car door 35.
- the car door open detector 36 has a # main contact 36a. When the car door 35 is in the closed state, the # main contact 36a is in the closed state, and when the car door 35 is in the open state, the # main contact 36a is in the open state.
- the open / closed state of the main contact 36a is input to the elevator operation control device 61 of the elevator operation control unit 60 as a car door opening / closing detection signal.
- the door zone plate 81 is attached to the landing position of each floor.
- the door zone detector 82 is attached to the car 31 and detects the presence or absence of the door zone plate 81 at the car position.
- the elevator operation control device 61 of the elevator operation control unit 60 inputs the detection information of the door zone plate 81 from the door zone detector 82 and recognizes the landing position of each floor.
- the car 31 and the counterweight 32 are suspended in a hoistway by a main rope 33 so as to be lifted and lowered.
- the raising / lowering of the car 31 is driven by the motor 13 and braked by the brake device 20.
- the operation of the car 31 is controlled by the elevator operation control device 61.
- the hall device 40 is provided at the hall on each floor of the building.
- the landing device 40 includes a landing door 41 as an elevator door, a landing door open detector 42, and a landing button 43.
- the landing door 41 opens and closes a landing doorway as an elevator doorway.
- the landing button 43 has an upward button and a downward button.
- the landing button 43 constitutes a car call registration device for an elevator user to perform elevator call registration at the landing. When using the elevator, the elevator user performs call registration on the landing button 43 at the landing.
- the call registration information is input to the elevator operation control device 61.
- the landing door open detector 42 outputs a signal corresponding to the opening / closing state of the landing door 41.
- the landing door open detector 42 has a # main contact 42a.
- the # main contact 42a When the landing door 41 is in a closed state, the # main contact 42a is in a closed state, and when the landing door 41 is in an open state, the # main contact 42a is in an open state.
- #The open / closed state of the main contact 42a is input to the elevator operation control device 61 as a landing door opening / closing detection signal.
- the car door opening / closing detection signal and the landing door opening / closing detection signal are collectively referred to as a door opening / closing detection signal.
- the elevator safety monitoring unit 50 has a # SF1 main contact 70a, a # SF2 main contact 70b, a # SF1 coil 70c, and a # SF2 coil 70d.
- the # SF1 coil 70c is in an energized state (excited state)
- the # SF1 main contact 70a is in a closed state.
- the # SF1 coil 70c is in the energization cut-off state (non-excitation state)
- the # SF1 main contact 70a is in the open state.
- the # SF2 coil 70d is in an energized state (excited state)
- the # SF2 main contact 70b is in a closed state.
- # SF2 coil 70d when the # SF2 coil 70d is in the energization cutoff state (non-excitation state), the # SF2 main contact 70b is in the open state.
- # SF1 main contacts 70a and 70b are additionally inserted in series in the elevator safety circuit.
- the elevator safety circuit is a so-called safety chain, and various safety switches (work safety switch, governor switch, hoistway final limit switch, on the line supplying power to the main circuit of the target system and the relay that connects / disconnects the brake circuit, The other contacts are inserted in series, and when one of them is interrupted, the main circuit and the brake circuit are interrupted by the relay, and the target system is urgently stopped.
- the manual operation device 80 is provided in at least one of the car 31, the landing, the machine room at the upper end of the hoistway, or the pit at the lower end of the hoistway.
- a plurality of manual operation devices 80 may be provided.
- the manual operation device 80 is a device for the maintenance staff 81 to manually drive the car 31 when performing maintenance work.
- the manual operation device 80 includes a manual switching button for switching to / from manual operation, an upward button for moving the car 31 upward, and a button for moving the car 31 downward.
- a down button is provided.
- the manual switching button is set to the “manual” side, whereby the operation control by the elevator operation control device 61 is stopped and the operation mode is shifted to the manual operation mode.
- the maintenance staff 81 cancels the “manual” side setting of the manual switching button to shift from the manual operation mode to the normal mode, and the operation control by the elevator operation control device 61 resumes. Is done. Information on manual switching by operating the manual switching button is input to the elevator operation control device 61 as a manual switching signal.
- the elevator operation control unit 60 includes an elevator operation control device 61 and transistor elements 62 and 63.
- the elevator operation control device 61 receives various signals such as call registration, destination floor registration, scale detection signal, manual switching signal, brake release detection signal, door open / close detection signal, door zone detection signal, and abnormality detection signal.
- the elevator operation control device 61 includes car call registration, destination floor registration, scale (passenger) detection, manual operation mode, brake release, door opening, no door zone detection, failure of target system component equipment, or abnormal operation
- the elevator activation signal 61A is output to the safety monitoring device 51 of the elevator safety monitoring unit 50 by at least one event.
- the elevator operation control device 61 controls the operation of the car 31 based on the various signals.
- the elevator operation control device 61 When driving the car 31, the elevator operation control device 61 applies #MC drive voltage to the transistor element 62 for supplying power to the #MC coil 11c and also applies to the transistor element 63 for supplying power to the #BK coil 27c. #BK drive voltage is applied to each. Therefore, during the normal operation of the car 31, the switching operation of the main circuit electromagnetic circuit breaker 11 and the brake electromagnetic circuit breaker 27 is controlled by the elevator operation control device 61.
- the elevator operation control device 61 is configured by hardware (not shown) having an arithmetic processing unit (CPU), a storage unit (ROM, RAM, hard disk, etc.) and a signal input / output unit.
- the hardware storage unit stores a program for realizing each function of each component of the elevator operation control device 61.
- the elevator safety monitoring unit 50 further includes a safety monitoring device 51 and transistor elements 52 and 53.
- the safety monitoring device 51 receives an elevator activation signal 61 ⁇ / b> A from the elevator operation control device 61. Further, the safety monitoring device 51 has a pair of safety monitoring units as shown in FIG. Hereinafter, these safety monitoring units are referred to as a first safety monitoring unit 54 and a second safety monitoring unit 55.
- the safety monitoring device 51 outputs a sleep state signal 51 ⁇ / b> A to the elevator operation control device 61 when one of the first and second safety monitoring units 54 and 55 enters the sleep state.
- the sleep state signal 51A is a signal for notifying the transition to the sleep state.
- One of the first and second safety monitoring units 54 and 55 shifts to the sleep state when the elevator activation signal 61A is not input before the preset standby time TW elapses. Further, the safety monitoring device 51 applies the #SF drive voltage to the transistor element 52 or 53 for supplying power to the # SF1 coil 70c or the # SF2 coil 70d when the safety monitoring unit shifts to the sleep state. Stop. Thereby, an elevator safety circuit is interrupted
- the safety monitoring device 51 is composed of, for example, a microcomputer.
- the safety monitoring device 51 is configured by hardware (not shown) having an arithmetic processing unit (CPU), a storage unit (ROM, RAM, hard disk, etc.) and a signal input / output unit.
- the hardware storage unit stores a program for realizing each function of each component of the safety monitoring device.
- the safety monitoring device 51 includes the above-described pair of safety monitoring units, that is, a first safety monitoring unit 54 and a second safety monitoring unit 55.
- the safety monitoring device 51 further includes an OR circuit 56 and an OR circuit 57.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 are respectively configured from separate CPUs.
- the sleep state of the first safety monitoring unit 54 and the second safety monitoring unit 55 is a state in which each CPU is stopped and power consumption is reduced. That is, in the sleep state, power supply to the CPU is continued, and the arithmetic processing and peripheral functions of the CPU are stopped.
- the OR circuit 56 receives an elevator activation signal 61A from the elevator operation control device 61 and a wakeup signal 55A from the second safety monitoring unit 55.
- the OR circuit 56 outputs an OR signal when at least one of the elevator activation signal 61A and the wakeup signal 55A is input.
- the OR signal is input to the input terminal 90 of the first safety monitoring unit 54.
- the OR circuit 57 receives an elevator activation signal 61A from the elevator operation control device 61 and a wakeup signal 54A from the first safety monitoring unit 54.
- the OR circuit 57 outputs an OR signal when at least one of the elevator activation signal 61A and the wakeup signal 54A is input.
- the OR signal is input to the input terminal 91 of the second safety monitoring unit 55.
- the first safety monitoring unit 54 receives the elevator activation signal 61A from the elevator operation control device 61 and the OR signal from the OR circuit 56. Similarly, an elevator activation signal 61A from the elevator operation control device 61 and an OR signal from the OR circuit 57 are input to the second safety monitoring unit 55.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 alternately become a sleep execution side safety monitoring unit and a sleep non-execution side safety monitoring unit. That is, when the first safety monitoring unit 54 is the sleep execution side safety monitoring unit, the second safety monitoring unit 55 becomes the sleep non-execution side safety monitoring unit, and conversely, the first safety monitoring unit 54 sleeps. In the case of the non-execution side safety monitoring unit, the second safety monitoring unit 55 becomes the sleep execution side safety monitoring unit.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 exchange information 54C and 55C indicating which is the sleep execution side safety monitoring unit and which is the sleep non-execution side safety monitoring unit, and are shared with each other. is doing.
- FIG. 4 shows operations of the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring unit.
- the sleep execution side safety monitoring unit shifts to the sleep state when the elevator activation signal 61A is not input from the elevator operation control device 61 until the preset standby time TW elapses.
- the sleep state is continued for a preset sleep time TS.
- the sleep time TS is set to a time shorter than the first period P1 for performing the self-diagnosis process.
- the first cycle P1 is determined by the failure rate of each component device of the elevator safety monitoring unit and the combination thereof, and the self-diagnosis process is required to be performed at least at the time interval of the first cycle P1. .
- the first cycle P1 is set so that the function failure probability PFD is equal to or less than a specified value according to the following formula.
- PFD (1oo1) ⁇ _dd ⁇ MTTR + ⁇ _du ⁇ (T / 2 + MTTR)
- ⁇ _dd Dangerous failure rate that can be detected by self-diagnosis
- the sleep execution monitoring unit outputs a sleep state signal 51A to the elevator operation control device 61 and the sleep non-execution side safety monitoring unit when shifting to the sleep state.
- the sleep execution side safety monitoring unit opens the # SF1 main contact 70a or the # SF2 main contact 70b to shut off the elevator safety circuit.
- the elevator operation control device 61 receives the sleep state signal 51A
- the elevator operation control device 61 masks an abnormal shutdown of the elevator safety circuit.
- the sleep execution side safety monitoring unit cancels the sleep state and outputs the wakeup completion signals 54B and 55B to the sleep non-execution side safety monitoring unit.
- the self-diagnosis process is executed.
- the wake-up completion signal is a signal for notifying the cancellation of the sleep state.
- the self-diagnosis process is a process for checking whether each component device of the elevator safety monitoring unit operates correctly.
- the sleep non-execution side safety monitoring unit receives the sleep state signal 51A
- the # SF1 main contact 70a or the # SF2 main contact 70b is opened.
- the wakeup signals 54A and 55A are output to the OR circuits 56 and 57.
- the sleep non-execution side safety monitoring unit receives the wakeup completion signals 54B and 55B from the sleep execution side safety monitoring unit after outputting the wakeup signals 54A and 55A, the # SF1 main contact 70a or the # SF2 main contact 70b Is closed.
- the sleep execution side safety monitoring unit is set to “sleep abnormality”. It is determined that there is a sleep abnormality.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 operate alternately as a sleep execution side safety monitoring unit and a sleep non-execution side safety monitoring unit, respectively. Therefore, the first safety monitoring unit 54 and the second safety monitoring unit 55 are shown in FIG. 3 in order to execute the function as the sleep execution side safety monitoring unit and the function as the sleep non-execution side safety monitoring unit.
- a self-diagnosis processing execution unit 500, a sleep command unit 501, a sleep execution unit 502, a transmission / reception unit 503, a safety circuit cutoff unit 504, a wakeup signal output unit 505, and a sleep abnormality detection unit 506 It has. Each of these parts will be described below.
- the self-diagnosis processing execution unit 500 executes self-diagnosis processing when the sleep execution unit 502 receives the OR signal from the OR circuits 56 and 57 and the sleep state is released in addition to the regular periodic execution. To do.
- the sleep command unit 501 outputs a sleep command signal for shifting to the sleep state when the transmission / reception unit 503 does not receive the elevator activation signal 61A from the elevator operation control device 61 during the preset standby time TW.
- the standby time TW by the sleep command unit 501 may be measured by counting a timer with software or a logic circuit.
- the sleep execution unit 502 When the sleep execution unit 502 receives a sleep command signal from the sleep command unit 501, the sleep execution unit 502 shifts to a sleep state according to the sleep command signal. When the sleep execution unit 502 shifts to the sleep state, the sleep execution unit 502 outputs the sleep state signal 51A to the elevator operation control device 61 and the sleep non-execution side safety monitoring unit via the transmission / reception unit 503. When the sleep execution unit 502 receives the OR signal from the OR circuits 56 and 57, the sleep execution unit 502 cancels the sleep state of the sleep execution monitoring unit. Further, when canceling the sleep state, the sleep execution unit 502 outputs wakeup completion signals 54B and 55B to the sleep non-execution side safety monitoring unit via the transmission / reception unit 503. As described above, the sleep execution unit 502 shifts to the sleep state and cancels the sleep state, and also functions as an OR signal input unit, a sleep state signal output unit, and a wakeup completion signal output unit.
- the safety monitoring device 51 is composed of, for example, a microcomputer, and the microcomputer generally has a standby mode (power saving mode) function that stops built-in functions and reduces power consumption.
- the standby mode is enabled by, for example, a command from software, and the mode is canceled by an interrupt or the like by external terminal input.
- the sleep execution unit 502 includes the same function.
- the sleep state signal 51A is output, and the standby mode is set after the # SF1 main contact 70a or # SF2 main contact 70b is opened.
- the OR signal from the OR circuits 56 and 57 is input to the external terminal and the standby mode is canceled by an interrupt.
- the safety circuit interrupting unit 504 opens the # SF1 main contact 70a or the # SF2 main contact 70b to interrupt the elevator safety circuit.
- the transmission / reception unit 503 inputs the sleep state signal 51A from the execution side, the # SF1 main contact 70a or the # SF2 main contact 70b is opened, and the wakeup completion signals 54B and 55B are sent. When it is input, the contact is closed again.
- the wakeup signal output unit 505 outputs wakeup signals 54A and 55A to the OR circuits 56 and 57 when the sleep time TS elapses from the time when the transmission / reception unit 503 receives the sleep state signal 51A.
- the sleep abnormality detection unit 506 wakes up the transmission / reception unit 503 from the sleep execution side safety monitoring unit until the preset abnormality confirmation time TD elapses after the wakeup signals 54A and 55A are output from the wakeup signal output unit 505.
- the sleep execution side safety monitoring unit determines that the sleep is abnormal and detects the sleep abnormality.
- the safety circuit interrupting unit 504 continues the open state of the # SF1 main contact 70a or the # SF2 main contact 70b.
- an abnormality detection signal is transmitted to the elevator operation control device 61 via the transmission / reception unit 503.
- the self-diagnosis processing execution unit 500, the sleep command unit 501, the sleep execution unit 502, the transmission / reception unit 503, and the safety circuit blocking unit 504 are executed by the first and second safety monitoring units 54 and 55.
- This function operates in the case of the side safety monitoring unit.
- the transmission / reception unit 503, the wake-up signal output unit 505, the sleep abnormality detection unit 506, and the safety circuit cut-off unit 504 are the first and second safety monitoring units 54 and 55, the sleep non-execution side safety monitoring unit It is a function that operates in the case of
- the operation of the elevator operation control device 61 and the safety monitoring device 51 will be described with reference to FIGS.
- the first safety monitoring unit is a sleep execution side safety monitoring unit and the second safety monitoring unit 55 is a sleep non-execution side safety monitoring unit
- the operation is the same, and the description is omitted here.
- Elevator start signal 61A The wake state and sleep state of the sleep execution side safety monitoring unit, OR signal of the OR circuit connected to the sleep execution side safety monitoring unit, Wake-up completion signal of the safety monitoring unit on the sleep execution side, The wake state and sleep state of the sleep non-execution side safety monitoring unit, Wake-up signal of the sleep non-execution side safety monitoring unit, and It is a sleep abnormality detection signal of the sleep non-execution side safety monitoring unit.
- the first safety monitoring unit 54 sleeps when there is no input of the elevator activation signal 61A from the elevator operation control device 61 during the standby time TW from time 0 to time t1. Migrate to The sleep state continues for the sleep time TS.
- the sleep time TS is set to a time shorter than the first period P1, which is a required self-diagnosis period.
- the first safety monitoring unit 54 outputs a sleep state signal 51A to the elevator operation control device 61 and the second safety monitoring unit 55 when shifting to the sleep state. At the same time, the first safety monitoring unit 54 interrupts the elevator safety circuit.
- the second safety monitoring unit 55 receives the sleep state signal 51A from the first safety monitoring unit 54, the second safety monitoring unit 55 blocks the elevator safety circuit.
- the elevator operation control device 61 When the elevator operation control device 61 receives the sleep state signal 51A from the first safety monitoring unit 54, the elevator operation control device 61 masks an abnormal shutdown of the elevator safety circuit. That is, in normal times, when the elevator safety circuit is interrupted for some reason, the elevator operation control device 61 determines that the interruption is abnormal and outputs an abnormal signal. On the other hand, when the cutoff abnormality of the elevator safety circuit is masked, even when the elevator safety circuit is blocked, the elevator operation control device 61 does not determine that the cutoff is abnormal, and therefore does not output an abnormal signal.
- the second safety monitoring unit 55 outputs a wakeup signal 55A to the OR circuit 56 at time t2 after the elapse of the sleep time TS from time t1 when the sleep state signal 51A is received.
- the OR circuit 56 outputs an OR signal to the first safety monitoring unit 54 when receiving the wakeup signal 55A.
- the first safety monitoring unit 54 When the first safety monitoring unit 54 receives the OR signal from the OR circuit 56, the first safety monitoring unit 54 cancels the sleep state, outputs the wake-up completion signal 54B to the second safety monitoring unit 55, and executes self-diagnosis processing. To do.
- the second safety monitoring unit 55 receives the wake-up completion signal 54B from the first safety monitoring unit 54, the second safety monitoring unit 55 cancels the safety circuit.
- the elevator operation control device 61 has at least one signal including a call / destination floor registration, a scale detection signal, a manual switching signal, a brake release detection signal, a door open / close detection signal, and an abnormality detection signal. Is input, the elevator activation signal 61A is output to the safety monitoring device 51. In the example of FIG. 4, for example, it is assumed that an elevator activation signal 61A is input from the elevator operation control device 61 at time t6.
- the OR circuit 56 outputs an OR signal to the first safety monitoring unit 54 when the elevator activation signal 61A is received.
- the first safety monitoring unit 54 When the first safety monitoring unit 54 receives the OR signal from the OR circuit 56, the first safety monitoring unit 54 cancels the sleep state, outputs the wake-up completion signal 54B to the second safety monitoring unit 55, and executes self-diagnosis processing. To do.
- the second safety monitoring unit 55 receives the wake-up completion signal 54B from the first safety monitoring unit 54, the second safety monitoring unit 55 cancels the safety circuit.
- the second safety monitoring unit 55 performs the first safety monitoring from the time t11 to the time t12 after the abnormality confirmation time TD has elapsed. If the wakeup completion signal 54B from the first safety monitoring unit 54 is not received, the second safety monitoring unit 55 determines that the first safety monitoring unit 54 is “sleep abnormal” and sleep abnormal Set the detection signal to the “abnormal” side.
- the safety monitoring device 51 includes the first and second safety monitoring units 54 and 55, and the first and second safety monitoring units 54 and 55 alternately sleep. It was set as the structure which implements. If there is no input of the elevator activation signal 61A, the sleep execution side safety monitoring unit periodically performs self-diagnosis processing in the first cycle P1. Specifically, the sleep execution side safety monitoring unit enters a sleep state for a sleep time set to a time shorter than a self-diagnosis cycle for performing self-diagnosis processing. In this way, by setting the sleep time to a time shorter than the self-diagnosis cycle, the sleep time-side monitoring unit can reliably perform the self-diagnosis process regardless of the setting of the sleep time.
- the sleep time is provided between the self-diagnosis processes, the power can be reduced by the amount of the sleep time provided.
- the sleep state signal is transmitted to the other safety monitoring unit when shifting to the sleep state, and the wake-up completion signal is transmitted to the other safety monitoring unit when releasing the sleep state.
- the first and second safety monitoring units 54 and 55 can mutually confirm sleep transition / cancellation and can reduce power consumption while maintaining safety of the safety monitoring device 51. it can.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 perform the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring every predetermined period, for example, every day. An example of changing parts was described. However, the present invention is not limited to this. For example, for each first period P1, the first safety monitoring unit 54 and the second safety monitoring unit 55 are connected to the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring unit. And may be replaced.
- Embodiment 2 FIG.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 of the safety monitoring device 51 are alternately used as the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring unit. It was working.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 perform the transition to the sleep state and cancellation at the same time.
- FIG. 5 and 6 show the configuration of the safety monitoring device according to the second embodiment. As shown in FIG. 5, in the second embodiment, timers 58 and 59 are added to the configuration of the first embodiment shown in FIG. Further, as shown in FIG. 6, in the second embodiment, the wakeup signal output unit 505 shown in FIG. 3 is not provided in the first safety monitoring unit 54 and the second safety monitoring unit 55. .
- the timer 57 resets the timer count when the reset signal 54D from the first safety monitoring unit 54 is input, and measures the elapsed time until the sleep time TS elapses.
- the time-up signal 58A is output to the OR circuit 56.
- the timer 59 resets the timer count and measures the elapsed time until the sleep time TS elapses.
- a time-up signal 59A is output to the OR circuit 57.
- the OR circuit 56 receives the elevator start signal 61A from the elevator operation control device 61 and the time-up signal 58A from the timer 58.
- the OR circuit 56 outputs an OR signal when at least one of the elevator activation signal 61A and the time-up signal 58A is input.
- the OR circuit 57 receives the elevator start signal 61A from the elevator operation control device 61 and the time-up signal 59A from the timer 59.
- the OR circuit 57 outputs an OR signal when at least one of the elevator activation signal 61A and the time-up signal 59A is input.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 perform the sleep state transition and release in synchronization. Therefore, in the second embodiment, the first safety monitoring unit 54 and the second safety monitoring unit 55 do not transmit a wakeup signal.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 include a self-diagnosis processing execution unit 500, a sleep command unit 501, and a sleep execution unit 502. , A transmission / reception unit 503, a safety circuit cutoff unit 504, and a sleep abnormality detection unit 506 are provided.
- the self-diagnosis processing execution unit 500 executes self-diagnosis processing when the sleep execution unit 502 receives the OR signal from the OR circuits 56 and 57 and the sleep state is released in addition to the regular periodic execution. To do.
- the sleep command unit 501 is synchronized with the sleep command unit 501 of the other safety monitoring unit, Reset signals 54D and 55D are output to 59, and a sleep command signal for shifting to the sleep state is output to the sleep execution unit 502.
- the sleep execution unit 502 When the sleep execution unit 502 receives a sleep command signal from the sleep command unit 501, the sleep execution unit 502 shifts to a sleep state according to the sleep command signal.
- the sleep execution unit 502 outputs a sleep state signal 51A to the elevator operation control device 61 and the other safety monitoring unit via the transmission / reception unit 503 when shifting to the sleep state.
- the sleep execution unit 502 receives the OR signals from the OR circuits 56 and 57, the sleep execution unit 502 cancels the sleep state and sends the wakeup completion signals 54B and 55B to the other safety monitoring unit via the transmission / reception unit 503. Output.
- the safety circuit interrupting unit 504 opens the # SF1 main contact 70a or the # SF2 main contact 70b of the safety monitoring unit 70 when the sleep execution unit 502 executes the transition to the sleep state, and sets the elevator safety circuit. Cut off.
- the sleep abnormality detection unit 506 receives the wake-up completion signal 54B from the other safety monitoring unit until the preset abnormality confirmation time TD elapses after the time-up signals of the timers 58 and 59 are output.
- the sleep abnormality is detected, and the elevator operation control device 61 and the maintenance staff 81 are on standby via the transmission / reception unit 503.
- a sleep abnormality detection signal is transmitted to the management center.
- the timers 58 and 59 are provided.
- a sleep state is entered.
- the sleep state continues for the sleep time TS.
- the sleep time TS is set to a time shorter than the first period P1 for performing the self-diagnosis process.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 output a sleep state signal 51A to the elevator operation control device 61 and the other safety monitoring unit when shifting to the sleep state. At the same time, the first safety monitoring unit 54 and the second safety monitoring unit 55 block the elevator safety circuit.
- the elevator operation control device 61 When the elevator operation control device 61 receives the sleep state signal 51A from the first safety monitoring unit 54 and the second safety monitoring unit 55, the elevator operation control device 61 masks an abnormal shutdown of the elevator safety circuit.
- the timers 58 and 59 output time-up signals 58A and 59A to the OR circuits 56 and 57 when the sleep time TS elapses.
- OR circuits 56 and 57 when receiving time-up signals 58A and 59A, output OR signals to first safety monitoring unit 54 and second safety monitoring unit 55.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 receive the OR signal from the OR circuit 56, the first safety monitoring unit 54 and the second safety monitoring unit 55 cancel the sleep state and output the wakeup completion signals 54B and 55B to the other safety monitoring unit. Then, the self-diagnosis process is executed.
- the elevator operation control device 61 receives at least one signal including a call / destination floor registration, a scale detection signal, a manual switching signal, a brake release detection signal, a door open / close detection signal, and an abnormality detection signal
- the elevator activation signal 61A is output to the safety monitoring device 51.
- the OR circuits 56 and 57 output an OR signal to the first safety monitoring unit 54 and the second safety monitoring unit 55 when the elevator activation signal 61A is received.
- the first safety monitoring unit 54 and the second safety monitoring unit 55 When the first safety monitoring unit 54 and the second safety monitoring unit 55 receive the OR signals from the OR circuits 56 and 57, the first safety monitoring unit 54 and the second safety monitoring unit 55 cancel the sleep state and send the wake-up completion signals 54B and 55B to the other safety monitoring unit. Output to.
- the OR circuits 56 and 57 transmit the OR signal, the first safety monitoring unit 54 or the second safety monitoring unit 55 receives the wake-up completion signal 54B from the other safety monitoring unit. , 55B is not received.
- the second safety monitoring unit 55 receives the wake-up completion signal 54B from the first safety monitoring unit 54 until the abnormality confirmation time TD elapses even though the OR circuits 56 and 57 transmit the OR signal. Or when the first safety monitoring unit 54 does not receive the wakeup completion signal 55B from the second safety monitoring unit 55, the first safety monitoring unit 54 or the second safety monitoring unit 54 The monitoring unit 55 determines that the other safety monitoring unit is “sleep abnormality” and sets the sleep abnormality detection signal to the “abnormal” side.
- the same effect as in the first embodiment can be obtained.
- the first and second safety monitoring units 54 and 55 can sleep simultaneously, further improvement in energy saving effect can be expected.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Maintenance And Inspection Apparatuses For Elevators (AREA)
- Elevator Control (AREA)
Abstract
This safety monitoring device comprises a pair of safety monitoring units 54, 55 which monitor a system to be monitored for safety. Each of the safety monitoring units 54, 55 has: a self-diagnostic processing execution unit 500 which periodically executes the self-diagnostic processing of components of the system to be monitored, on the basis of a preset constant period; a sleep instruction unit 501 which outputs a sleep instruction if there is no external signal input during a preset first setting time; and a sleep execution unit 502 which brings the safety monitoring units 54, 55 into a sleep state during a preset second setting time according to the sleep instruction from the sleep instruction unit 501. The length of the second setting time is set shorter than that of the constant period.
Description
この発明は、安全監視装置に関する。
This invention relates to a safety monitoring device.
近年、省エネルギーへの関心が高まり、特に、エレベーター等の大型の装置においては、消費する電力が大きいため、省エネルギーを考慮した運転を行うことが望ましい。
In recent years, interest in energy conservation has increased, and in particular, large-scale devices such as elevators consume a large amount of power, so it is desirable to perform operation in consideration of energy conservation.
そのため、例えば特許文献1に記載のエレベーターの制御装置においては、ブレーキが制動するたびに、エレベーターの運転モードを休止モードに切り替えている。休止モードにおいては、制御マイコンへの電力供給を停止し、待機電力の削減を実現している。
Therefore, for example, in the elevator control device described in Patent Document 1, the operation mode of the elevator is switched to the pause mode every time the brake is braked. In the sleep mode, power supply to the control microcomputer is stopped to reduce standby power.
また、当該エレベーターの制御装置においては、エレベーターの運転モードが休止モードになっている場合において、かご内の行先階登録ボタン、または、乗場呼び登録ボタンへの登録があった場合、エレベーターの運転モードを通常モードに切り替え、制御マイコンへの電力供給を再開する。
In addition, in the elevator control device, when the elevator operation mode is the pause mode, if there is a registration on the destination floor registration button or the hall call registration button in the car, the elevator operation mode Is switched to the normal mode and the power supply to the control microcomputer is resumed.
上述した特許文献1に記載のエレベーターの制御装置においては、エレベーターの待機時においては、運転モードを休止モードに切り替え、制御マイコンへの電力供給も停止している。しかしながら、近年、安全対策のために、稼動中の構成機器に対して、最低限必要な周期で、自己診断処理を実施することが求められている。
In the elevator control device described in Patent Document 1 described above, when the elevator is on standby, the operation mode is switched to the pause mode, and the power supply to the control microcomputer is also stopped. However, in recent years, as a safety measure, it has been required to perform self-diagnosis processing at minimum necessary intervals for operating components.
しかしながら、特許文献1においては、自己診断処理を実施することについては意図されていない。そのため、特許文献1に記載のエレベーターの制御装置において、自己診断処理を実施しようとすると、以下のような不具合が生じてしまう。
However, Patent Document 1 does not intend to perform self-diagnosis processing. For this reason, in the elevator control device described in Patent Document 1, if the self-diagnosis process is to be performed, the following problems occur.
特許文献1においては、休止モード中には、制御マイコンへの電力供給が停止するため、自己診断処理を実行することができない。また、自己診断処理を実行するために、休止モードへの移行を行わないようにすると、省エネルギー効果が得られない。
In Patent Document 1, since the power supply to the control microcomputer is stopped during the sleep mode, the self-diagnosis process cannot be executed. Further, if the transition to the sleep mode is not performed in order to execute the self-diagnosis process, the energy saving effect cannot be obtained.
この発明は、かかる問題点を解決するためになされたものであり、省エネルギーを意識しながら、必要とされる自己診断周期で自己診断処理を実施する、安全監視装置を得ることを目的とする。
The present invention has been made to solve such problems, and an object of the present invention is to obtain a safety monitoring device that performs self-diagnosis processing at a required self-diagnosis cycle while being conscious of energy saving.
この発明は、対象システムの安全状態を監視する一対の安全監視部を備え、各前記安全監視部は、予め設定された一定周期に基づいて、前記対象システムの構成機器の自己診断処理を周期的に実行する自己診断処理実行部と、予め設定された第1の設定時間の間、外部からの信号の入力がない場合に、前記安全監視部をスリープ状態に移行させるスリープ指令を出力するスリープ指令部と、前記スリープ指令部からの前記スリープ指令に従って、前記安全監視部を、予め設定された第2の設定時間の間、スリープ状態にする、スリープ実行部とを有し、前記第2の設定時間の時間長は、前記一定周期の時間長より短い、安全監視装置である。
The present invention includes a pair of safety monitoring units that monitor a safety state of a target system, and each of the safety monitoring units periodically performs self-diagnosis processing of components of the target system based on a predetermined period. And a sleep command for outputting a sleep command for shifting the safety monitoring unit to a sleep state when no signal is input from the outside for a preset first set time. And a sleep execution unit that puts the safety monitoring unit into a sleep state for a preset second set time in accordance with the sleep command from the sleep command unit, and the second setting The time length of the time is a safety monitoring device shorter than the time length of the fixed period.
この発明に係る安全監視装置によれば、自己診断処理を実行する一定周期よりも短い時間長のスリープ状態への移行期間を設けるようにしたので、一定周期で実施される自己診断処理を妨げることなく、スリープ状態への移行を行うことができるので、省エネルギーを図りながら、必要とされる自己診断周期で確実に自己診断処理を実施することができる。
According to the safety monitoring device of the present invention, since the transition period to the sleep state having a length of time shorter than the fixed period for executing the self-diagnosis process is provided, the self-diagnosis process performed at the fixed period is hindered. Therefore, the self-diagnosis process can be surely performed at the required self-diagnosis cycle while saving energy.
実施の形態1.
この発明の実施の形態1に係る安全監視装置は、非安全状態を検出した場合に、対象システムの安全回路を遮断して、当該対象システムを強制停止させることで、当該対象システムを安全状態に移行させるための装置である。なお、ここで、非安全状態とは、安全監視装置毎に定義された対象システムの安全状態以外の状態、または安全監視装置構成機器の故障等により同安全状態の監視ができない状態を指す。なお、対象システムの安全状態とは、例えば、終端階強制減速装置の安全状態は、「現在のかご位置から急制動して終端階付近で確実に安全な速度まで減速可能となる速度以下であること」であり、戸開走行保護装置の安全状態は、「戸閉していること、または、着床及び戸開後に戸開状態でかごが戸開可能エリア(ドアゾーンまたはリレベルゾーン)内にいること」である。安全監視装置は、1対の安全監視部を有している。各安全監視部はそれぞれCPUから構成されている。各安全監視部は、予め設定された自己診断周期で、自己診断処理を周期的に行う。また、各安全監視部は、自己診断周期よりも短い時間長に設定されたスリープ時間の間、スリープ状態となる。このように、スリープ時間を自己診断周期より短い時間長に設定することで、スリープ時間の設置にかかわらず、自己診断処理を確実に実施することができる。また、自己診断処理の合間に、スリープ時間を設けるようにしたので、スリープ時間を設けた分だけ、消費電力の削減が図れる。以下、実施の形態1に係る安全監視装置について図面を用いて詳細に説明する。 Embodiment 1 FIG.
The safety monitoring device according to Embodiment 1 of the present invention shuts down the safety circuit of the target system and forcibly stops the target system when the non-safety state is detected, thereby bringing the target system into the safe state. It is an apparatus for shifting. Here, the non-safety state refers to a state other than the safety state of the target system defined for each safety monitoring device, or a state where the safety state cannot be monitored due to a failure of the safety monitoring device constituent device. Note that the safety state of the target system is, for example, the safety state of the terminal floor forced reduction device is “below the speed at which braking is suddenly performed from the current car position and the vehicle can be decelerated to a safe speed near the terminal floor. The safe state of the door-opening travel protection device is “the door is closed, or the door is in the open state after landing and the door is open, and the car is in the door openable area (door zone or relevel zone). It is that you are. The safety monitoring device has a pair of safety monitoring units. Each safety monitoring unit is composed of a CPU. Each safety monitoring unit periodically performs self-diagnosis processing at a preset self-diagnosis cycle. In addition, each safety monitoring unit enters a sleep state during the sleep time set to a time length shorter than the self-diagnosis cycle. Thus, by setting the sleep time to a time length shorter than the self-diagnosis cycle, the self-diagnosis process can be surely performed regardless of the setting of the sleep time. Further, since the sleep time is provided between the self-diagnosis processes, the power consumption can be reduced by the amount of the sleep time provided. Hereinafter, the safety monitoring apparatus according to Embodiment 1 will be described in detail with reference to the drawings.
この発明の実施の形態1に係る安全監視装置は、非安全状態を検出した場合に、対象システムの安全回路を遮断して、当該対象システムを強制停止させることで、当該対象システムを安全状態に移行させるための装置である。なお、ここで、非安全状態とは、安全監視装置毎に定義された対象システムの安全状態以外の状態、または安全監視装置構成機器の故障等により同安全状態の監視ができない状態を指す。なお、対象システムの安全状態とは、例えば、終端階強制減速装置の安全状態は、「現在のかご位置から急制動して終端階付近で確実に安全な速度まで減速可能となる速度以下であること」であり、戸開走行保護装置の安全状態は、「戸閉していること、または、着床及び戸開後に戸開状態でかごが戸開可能エリア(ドアゾーンまたはリレベルゾーン)内にいること」である。安全監視装置は、1対の安全監視部を有している。各安全監視部はそれぞれCPUから構成されている。各安全監視部は、予め設定された自己診断周期で、自己診断処理を周期的に行う。また、各安全監視部は、自己診断周期よりも短い時間長に設定されたスリープ時間の間、スリープ状態となる。このように、スリープ時間を自己診断周期より短い時間長に設定することで、スリープ時間の設置にかかわらず、自己診断処理を確実に実施することができる。また、自己診断処理の合間に、スリープ時間を設けるようにしたので、スリープ時間を設けた分だけ、消費電力の削減が図れる。以下、実施の形態1に係る安全監視装置について図面を用いて詳細に説明する。 Embodiment 1 FIG.
The safety monitoring device according to Embodiment 1 of the present invention shuts down the safety circuit of the target system and forcibly stops the target system when the non-safety state is detected, thereby bringing the target system into the safe state. It is an apparatus for shifting. Here, the non-safety state refers to a state other than the safety state of the target system defined for each safety monitoring device, or a state where the safety state cannot be monitored due to a failure of the safety monitoring device constituent device. Note that the safety state of the target system is, for example, the safety state of the terminal floor forced reduction device is “below the speed at which braking is suddenly performed from the current car position and the vehicle can be decelerated to a safe speed near the terminal floor. The safe state of the door-opening travel protection device is “the door is closed, or the door is in the open state after landing and the door is open, and the car is in the door openable area (door zone or relevel zone). It is that you are. The safety monitoring device has a pair of safety monitoring units. Each safety monitoring unit is composed of a CPU. Each safety monitoring unit periodically performs self-diagnosis processing at a preset self-diagnosis cycle. In addition, each safety monitoring unit enters a sleep state during the sleep time set to a time length shorter than the self-diagnosis cycle. Thus, by setting the sleep time to a time length shorter than the self-diagnosis cycle, the self-diagnosis process can be surely performed regardless of the setting of the sleep time. Further, since the sleep time is provided between the self-diagnosis processes, the power consumption can be reduced by the amount of the sleep time provided. Hereinafter, the safety monitoring apparatus according to Embodiment 1 will be described in detail with reference to the drawings.
図1は、この発明の実施の形態1に係る安全監視装置51が搭載された対象システムの構成を示した構成図である。図1においては、対象システムが、エレベーター装置の場合を示している。しかしながら、対象システムは、エレベーター装置に限定されることはない。すなわち、実施の形態1に係る安全監視装置51は、エスカレータ等の乗客コンベア、あるいは、空調システムなど、種々の装置に適用可能である。また、図2は、図1の安全監視装置51の構成を示すブロック図である。
FIG. 1 is a configuration diagram showing a configuration of a target system equipped with a safety monitoring device 51 according to Embodiment 1 of the present invention. FIG. 1 shows a case where the target system is an elevator apparatus. However, the target system is not limited to the elevator apparatus. That is, the safety monitoring device 51 according to the first embodiment can be applied to various devices such as a passenger conveyor such as an escalator or an air conditioning system. FIG. 2 is a block diagram showing the configuration of the safety monitoring device 51 of FIG.
図1に示されるように、エレベーター装置は、駆動装置10、ブレーキ装置20、昇降路内機器30、乗場機器40、エレベーター安全監視ユニット50、エレベーター運転制御ユニット60、および、手動運転装置80を有している。
As shown in FIG. 1, the elevator apparatus includes a drive device 10, a brake device 20, a hoistway device 30, a landing device 40, an elevator safety monitoring unit 50, an elevator operation control unit 60, and a manual operation device 80. is doing.
駆動装置10は、商用電源1に接続された主回路用電磁遮断器(給電切換部)11と、主回路用電磁遮断器11に接続されたインバータからなる電力変換機12と、電力変換機12から電力を受けるモータ13と、モータ13の駆動によって回転されるシーブ14とを有している。モータ13の駆動は、エレベーター運転制御ユニット60のエレベーター運転制御装置61によって制御される。
The driving device 10 includes a main circuit electromagnetic circuit breaker (power supply switching unit) 11 connected to the commercial power source 1, a power converter 12 including an inverter connected to the main circuit electromagnetic circuit breaker 11, and a power converter 12. And a sheave 14 that is rotated by driving of the motor 13. The drive of the motor 13 is controlled by the elevator operation control device 61 of the elevator operation control unit 60.
主回路用電磁遮断器11は、モータ13の電源ライン、すなわち、主回路に設けられている。また、主回路用電磁遮断器11は、#MC主接点11a及び#MCコイル11cを有している。#MCコイル11cが通電状態(励磁状態)のときには、#MC主接点11aが閉極状態である。これに対して、#MCコイル11cが通電遮断状態(非励磁状態)のときには、#MC主接点11aが開極状態である。即ち、主回路用電磁遮断器11の#MC主接点11aの閉極・開極によって、モータ13への給電・遮断が切り換えられる。
The main circuit electromagnetic circuit breaker 11 is provided in the power line of the motor 13, that is, the main circuit. The main circuit electromagnetic circuit breaker 11 includes a #MC main contact 11a and a #MC coil 11c. When the #MC coil 11c is in an energized state (excited state), the #MC main contact 11a is in a closed state. On the other hand, when the #MC coil 11c is in the energization cut-off state (non-excitation state), the #MC main contact 11a is in the open state. In other words, the power supply to the motor 13 is switched between being opened and closed by closing and opening the #MC main contact 11 a of the main circuit electromagnetic circuit breaker 11.
ブレーキ装置20は、モータ13の駆動によってシーブ14とともに回転するブレーキホイール(図示せず)と、第1ブレーキライニング21と、第2ブレーキライニング22と、第1ブレーキコイル23と、第2ブレーキコイル24と、第1ばね(図示せず)と、第2ばね(図示せず)と、第1ブレーキチョッパ25と、第2ブレーキチョッパ26と、ブレーキ用電磁遮断器(給電切換手段)27とを有している。
The brake device 20 includes a brake wheel (not shown) that rotates together with the sheave 14 by driving the motor 13, a first brake lining 21, a second brake lining 22, a first brake coil 23, and a second brake coil 24. A first spring (not shown), a second spring (not shown), a first brake chopper 25, a second brake chopper 26, and a brake electromagnetic circuit breaker (power supply switching means) 27. is doing.
第1ブレーキライニング21及び第2ブレーキライニング22は、それぞれ制動位置と解放位置との間で変位可能になっている。制動位置とは、第1ブレーキライニング21及び第2ブレーキライニング22がブレーキホイールの制動面(例えば外周面)と接触する位置である。解放位置とは、第1ブレーキライニング21及び第2ブレーキライニング22がブレーキホイールの制動面から間隔をおいて離れる位置である。つまり、解放位置とは、第1ブレーキライニング21及び第2ブレーキライニング22がブレーキホイールの制動面と非接触状態になる位置である。
The first brake lining 21 and the second brake lining 22 can be displaced between a braking position and a release position, respectively. The braking position is a position where the first brake lining 21 and the second brake lining 22 are in contact with the braking surface (for example, the outer peripheral surface) of the brake wheel. The release position is a position where the first brake lining 21 and the second brake lining 22 are spaced apart from the braking surface of the brake wheel. That is, the release position is a position where the first brake lining 21 and the second brake lining 22 are in a non-contact state with the braking surface of the brake wheel.
第1ブレーキライニング21及び第2ブレーキライニング22は、それぞれ第1ばね及び第2ばねによって、ブレーキホイールの制動面へ向けて付勢されている。従って、第1ばね及び第2ばねによって、第1ブレーキライニング21及び第2ブレーキライニング22が回転中のブレーキホイールの制動面に押し付けられることにより、第1ブレーキライニング21及び第2ブレーキライニング22とブレーキホイールの制動面との間で摩擦力が生じる。この摩擦力によって、ブレーキホイールの回転、即ちモータ13の回転が制動される。
The first brake lining 21 and the second brake lining 22 are urged toward the braking surface of the brake wheel by the first spring and the second spring, respectively. Accordingly, the first and second brake linings 21 and 22 are pressed against the braking surface of the rotating brake wheel by the first and second springs. A frictional force is generated between the braking surface of the wheel. This frictional force brakes the rotation of the brake wheel, that is, the rotation of the motor 13.
また、第1ブレーキライニング21及び第2ブレーキライニング22は、それぞれ第1ブレーキコイル23及び第2ブレーキコイル24の電磁力によって、第1ばね及び第2ばねの付勢力に抗して、解放位置へ変位される。第1ブレーキコイル23及び第2ブレーキコイル24の励磁・消磁は、それぞれ第1ブレーキチョッパ25及び第2ブレーキチョッパ26を介して、エレベーター運転制御ユニット60によって制御される。
The first brake lining 21 and the second brake lining 22 are moved to the release position against the biasing force of the first spring and the second spring by the electromagnetic force of the first brake coil 23 and the second brake coil 24, respectively. Displaced. Excitation / demagnetization of the first brake coil 23 and the second brake coil 24 is controlled by the elevator operation control unit 60 via the first brake chopper 25 and the second brake chopper 26, respectively.
ブレーキ用電磁遮断器27は、第1ブレーキコイル23と第1ブレーキチョッパ25との間、及び、第2ブレーキコイル24と第2ブレーキチョッパ26との間にそれぞれ介在されている。また、ブレーキ用電磁遮断器27は、#BK主接点27a、#BK補助接点27b、及び、#BKコイル27cを有している。
The brake electromagnetic circuit breaker 27 is interposed between the first brake coil 23 and the first brake chopper 25 and between the second brake coil 24 and the second brake chopper 26, respectively. The brake electromagnetic circuit breaker 27 includes a #BK main contact 27a, a #BK auxiliary contact 27b, and a #BK coil 27c.
#BKコイル27cが通電状態(励磁状態)のときには、#BK主接点27aが閉極状態であり、#BK27補助接点27bが開極状態である。これに対して、#BKコイル27cが通電遮断状態(非励磁状態)のときには、#BK主接点27aが開極状態であり、#BK補助接点27bが閉極状態である。即ち、ブレーキ用電磁遮断器27の#BK主接点27aの閉極・開極によって、第1ブレーキコイル23及び第2ブレーキコイル24への給電・遮断が切り換えられる。なお、#BK主接点27aの閉極・開極の状態は、ブレーキ解放検出信号として、エレベーター運転制御ユニット60のエレベーター運転制御装置61に入力される。
When the #BK coil 27c is in an energized state (excited state), the #BK main contact 27a is in a closed state and the # BK27 auxiliary contact 27b is in an open state. On the other hand, when the #BK coil 27c is in the energization cut-off state (de-energized state), the #BK main contact 27a is in the open state and the #BK auxiliary contact 27b is in the closed state. In other words, the power supply / interruption to the first brake coil 23 and the second brake coil 24 is switched by closing / opening the #BK main contact 27a of the brake electromagnetic circuit breaker 27. The closed / open state of the #BK main contact 27a is input to the elevator operation control device 61 of the elevator operation control unit 60 as a brake release detection signal.
昇降路内機器30は、かご31と、釣合おもり32と、主索33と、反らせ車34と、エレベータードアとしてのかごドア35と、かご戸開検出器36と、秤装置37と、かご内操作盤38と、ドアゾーンプレート81と、ドアゾーン検出器82とを有している。かごドア35は、かご31に設けられている。また、かごドア35は、エレベーター出入口としてのかご31の出入口を開閉する。主索33は、シーブ14及び反らせ車34の外周に巻き掛けられている。また、秤装置37は、かご31内の荷重を測定する。秤装置37で測定された荷重は、秤検出信号として、エレベーター運転制御ユニット60のエレベーター運転制御装置61に入力される。また、かご内操作盤38は、エレベーター利用者が行先階を登録するための行先階登録装置を構成している。エレベーター利用者は、かご31に乗車したときに、かご内操作盤38に対して行先階登録を行う。当該行先階登録の情報は、エレベーター運転制御装置61に入力される。かご戸開検出器36は、かごドア35の開閉状態に応じた信号を出力する。かご戸開検出器36は、#主接点36aを有している。かごドア35が閉状態のときに、#主接点36aは閉極状態であり、かごドア35が開状態のときに、#主接点36aは開極状態である。#主接点36aの開極/閉極の状態は、かご戸開閉検出信号として、エレベーター運転制御ユニット60のエレベーター運転制御装置61に入力される。
ドアゾーンプレート81は各階床の着床位置に取り付けられる。ドアゾーン検出器82は、かご31に取り付けられ、かご位置におけるドアゾーンプレート81の有無を検出する。エレベーター運転制御ユニット60のエレベーター運転制御装置61は、ドアゾーン検出器82から、ドアゾーンプレート81の検出情報を入力して、各階床の着床位置を認識する。 Thehoistway device 30 includes a car 31, a counterweight 32, a main rope 33, a warp 34, a car door 35 as an elevator door, a car door open detector 36, a weighing device 37, and a car. An internal operation panel 38, a door zone plate 81, and a door zone detector 82 are provided. The car door 35 is provided in the car 31. The car door 35 opens and closes the entrance / exit of the car 31 as an elevator entrance / exit. The main rope 33 is wound around the outer periphery of the sheave 14 and the curling wheel 34. The scale device 37 measures the load in the car 31. The load measured by the scale device 37 is input to the elevator operation control device 61 of the elevator operation control unit 60 as a scale detection signal. The in-car operation panel 38 constitutes a destination floor registration device for an elevator user to register a destination floor. When the elevator user gets on the car 31, the elevator user performs destination floor registration on the operation panel 38 in the car. Information on the destination floor registration is input to the elevator operation control device 61. The car door open detector 36 outputs a signal corresponding to the open / closed state of the car door 35. The car door open detector 36 has a # main contact 36a. When the car door 35 is in the closed state, the # main contact 36a is in the closed state, and when the car door 35 is in the open state, the # main contact 36a is in the open state. #The open / closed state of the main contact 36a is input to the elevator operation control device 61 of the elevator operation control unit 60 as a car door opening / closing detection signal.
Thedoor zone plate 81 is attached to the landing position of each floor. The door zone detector 82 is attached to the car 31 and detects the presence or absence of the door zone plate 81 at the car position. The elevator operation control device 61 of the elevator operation control unit 60 inputs the detection information of the door zone plate 81 from the door zone detector 82 and recognizes the landing position of each floor.
ドアゾーンプレート81は各階床の着床位置に取り付けられる。ドアゾーン検出器82は、かご31に取り付けられ、かご位置におけるドアゾーンプレート81の有無を検出する。エレベーター運転制御ユニット60のエレベーター運転制御装置61は、ドアゾーン検出器82から、ドアゾーンプレート81の検出情報を入力して、各階床の着床位置を認識する。 The
The
かご31及び釣合おもり32は、主索33によって昇降路内に昇降可能に吊り下げられている。かご31の昇降は、モータ13によって駆動され、ブレーキ装置20によって制動される。また、かご31の運転は、エレベーター運転制御装置61によって制御される。
The car 31 and the counterweight 32 are suspended in a hoistway by a main rope 33 so as to be lifted and lowered. The raising / lowering of the car 31 is driven by the motor 13 and braked by the brake device 20. The operation of the car 31 is controlled by the elevator operation control device 61.
乗場機器40は、建物の各階の乗場に設けられている。また、乗場機器40は、エレベータードアとしての乗場ドア41と、乗場戸開検出器42と、乗場釦43とを有している。乗場ドア41は、エレベーター出入口としての乗場出入口を開閉する。なお、乗場釦43は、上方向釦と下方向釦とを有する。乗場釦43は、エレベーター利用者が、乗場で、エレベーターの呼び登録を行うための、かご呼び登録装置を構成している。エレベーター利用者は、エレベーターを利用する際に、乗場において、乗場釦43に対して、呼び登録を行う。当該呼び登録の情報は、エレベーター運転制御装置61に入力される。乗場戸開検出器42は、乗場ドア41の開閉状態に応じた信号を出力する。乗場戸開検出器42は、#主接点42aを有している。乗場ドア41が閉状態のときに、#主接点42aは閉極状態であり、乗場ドア41が開状態のときに、#主接点42aは開極状態である。#主接点42aの開極/閉極の状態は、乗場戸開閉検出信号として、エレベーター運転制御装置61に入力される。なお、以下では、かご戸開閉検出信号および乗場戸開閉検出信号を、まとめて、戸開閉検出信号と呼ぶ。
The hall device 40 is provided at the hall on each floor of the building. The landing device 40 includes a landing door 41 as an elevator door, a landing door open detector 42, and a landing button 43. The landing door 41 opens and closes a landing doorway as an elevator doorway. The landing button 43 has an upward button and a downward button. The landing button 43 constitutes a car call registration device for an elevator user to perform elevator call registration at the landing. When using the elevator, the elevator user performs call registration on the landing button 43 at the landing. The call registration information is input to the elevator operation control device 61. The landing door open detector 42 outputs a signal corresponding to the opening / closing state of the landing door 41. The landing door open detector 42 has a # main contact 42a. When the landing door 41 is in a closed state, the # main contact 42a is in a closed state, and when the landing door 41 is in an open state, the # main contact 42a is in an open state. #The open / closed state of the main contact 42a is input to the elevator operation control device 61 as a landing door opening / closing detection signal. Hereinafter, the car door opening / closing detection signal and the landing door opening / closing detection signal are collectively referred to as a door opening / closing detection signal.
エレベーター安全監視ユニット50は、#SF1主接点70a、#SF2主接点70b、#SF1コイル70c、及び、#SF2コイル70dを有している。#SF1コイル70cが通電状態(励磁状態)のときには、#SF1主接点70aが閉極状態である。これに対して、#SF1コイル70cが通電遮断状態(非励磁状態)のときには、#SF1主接点70aが開極状態である。また、同様に、#SF2コイル70dが通電状態(励磁状態)のときには、#SF2主接点70bが閉極状態である。これに対して、#SF2コイル70dが通電遮断状態(非励磁状態)のときには、#SF2主接点70bが開極状態である。#SF1主接点70a,70bはエレベーター安全回路に直列に追加挿入されている。
The elevator safety monitoring unit 50 has a # SF1 main contact 70a, a # SF2 main contact 70b, a # SF1 coil 70c, and a # SF2 coil 70d. When the # SF1 coil 70c is in an energized state (excited state), the # SF1 main contact 70a is in a closed state. On the other hand, when the # SF1 coil 70c is in the energization cut-off state (non-excitation state), the # SF1 main contact 70a is in the open state. Similarly, when the # SF2 coil 70d is in an energized state (excited state), the # SF2 main contact 70b is in a closed state. On the other hand, when the # SF2 coil 70d is in the energization cutoff state (non-excitation state), the # SF2 main contact 70b is in the open state. # SF1 main contacts 70a and 70b are additionally inserted in series in the elevator safety circuit.
エレベーター安全回路はいわゆるセーフティ・チェーンであり、対象システムの主回路、およびブレーキ回路を接続/遮断するリレーに給電するライン上に各種安全スイッチ(作業用安全スイッチ、ガバナスイッチ、昇降路ファイナルリミットスイッチ、他)の接点が直列に挿入されており、いずれかが遮断されると上記リレーにより主回路、およびブレーキ回路が遮断されて対象システムが緊急停止する。
The elevator safety circuit is a so-called safety chain, and various safety switches (work safety switch, governor switch, hoistway final limit switch, on the line supplying power to the main circuit of the target system and the relay that connects / disconnects the brake circuit, The other contacts are inserted in series, and when one of them is interrupted, the main circuit and the brake circuit are interrupted by the relay, and the target system is urgently stopped.
手動運転装置80は、かご31、乗場、昇降路上端の機械室、あるいは、昇降路下端のピット内の少なくともいずれか1箇所に設けられている。手動運転装置80は、複数個設けてもよい。手動運転装置80は、保守員81が、保守作業を行う際に、手動で、かご31を駆動するための装置である。手動運転装置80には、手動運転への移行/解除の切換を行うための手動切換釦と、かご31を上方向に移動させるための上方向釦と、かご31を下方向に移動させるための下方向釦とが設けられている。保守員81が、保守作業を開始するときに、手動切換釦を「手動」側に設定することにより、エレベーター運転制御装置61による運行制御が停止され、手動運転モードに移行される。また、保守作業が終了したときに、保守員81が、手動切換釦の「手動」側設定を解除することにより、手動運転モードから通常モードに移行され、エレベーター運転制御装置61による運行制御が再開される。手動切換釦の操作による手動切換の情報は、手動切換信号として、エレベーター運転制御装置61に入力される。
The manual operation device 80 is provided in at least one of the car 31, the landing, the machine room at the upper end of the hoistway, or the pit at the lower end of the hoistway. A plurality of manual operation devices 80 may be provided. The manual operation device 80 is a device for the maintenance staff 81 to manually drive the car 31 when performing maintenance work. The manual operation device 80 includes a manual switching button for switching to / from manual operation, an upward button for moving the car 31 upward, and a button for moving the car 31 downward. A down button is provided. When the maintenance worker 81 starts the maintenance work, the manual switching button is set to the “manual” side, whereby the operation control by the elevator operation control device 61 is stopped and the operation mode is shifted to the manual operation mode. Further, when the maintenance work is completed, the maintenance staff 81 cancels the “manual” side setting of the manual switching button to shift from the manual operation mode to the normal mode, and the operation control by the elevator operation control device 61 resumes. Is done. Information on manual switching by operating the manual switching button is input to the elevator operation control device 61 as a manual switching signal.
エレベーター運転制御ユニット60は、エレベーター運転制御装置61と、トランジスタ素子62,63とから構成されている。エレベーター運転制御装置61は、呼び登録、行先階登録、秤検出信号、手動切換信号、ブレーキ解放検出信号、戸開閉検出信号、ドアゾーン検出信号、及び、異常検出信号などの各種信号が入力される。エレベーター運転制御装置61は、かご呼び登録、行先階登録、秤(乗客)検出が有り、手動運転モード、ブレーキ解放、戸開、ドアゾーン検出が無し、対象システム構成機器の故障、または動作異常を含む少なくとも1つのイベントにより、エレベーター起動信号61Aを、エレベーター安全監視ユニット50の安全監視装置51に出力する。また、エレベーター運転制御装置61は、上記各種信号に基づいて、かご31の運行を制御する。エレベーター運転制御装置61は、かご31を駆動する場合には、#MCコイル11cへ給電するためのトランジスタ素子62に#MC駆動電圧を、また、#BKコイル27cへ給電するためのトランジスタ素子63に#BK駆動電圧を、それぞれ印加する。従って、かご31の通常運転中は、主回路用電磁遮断器11及びブレーキ用電磁遮断器27のそれぞれの切換動作は、エレベーター運転制御装置61によって制御される。
The elevator operation control unit 60 includes an elevator operation control device 61 and transistor elements 62 and 63. The elevator operation control device 61 receives various signals such as call registration, destination floor registration, scale detection signal, manual switching signal, brake release detection signal, door open / close detection signal, door zone detection signal, and abnormality detection signal. The elevator operation control device 61 includes car call registration, destination floor registration, scale (passenger) detection, manual operation mode, brake release, door opening, no door zone detection, failure of target system component equipment, or abnormal operation The elevator activation signal 61A is output to the safety monitoring device 51 of the elevator safety monitoring unit 50 by at least one event. The elevator operation control device 61 controls the operation of the car 31 based on the various signals. When driving the car 31, the elevator operation control device 61 applies #MC drive voltage to the transistor element 62 for supplying power to the #MC coil 11c and also applies to the transistor element 63 for supplying power to the #BK coil 27c. #BK drive voltage is applied to each. Therefore, during the normal operation of the car 31, the switching operation of the main circuit electromagnetic circuit breaker 11 and the brake electromagnetic circuit breaker 27 is controlled by the elevator operation control device 61.
ここで、エレベーター運転制御装置61は、演算処理部(CPU)、記憶部(ROM,RAM及びハードディスク等)及び信号入出力部を持ったハードウエア(図示せず)により構成される。ハードウエアの記憶部は、エレベーター運転制御装置61の各構成のそれぞれの機能を実現するためのプログラムを格納している。
Here, the elevator operation control device 61 is configured by hardware (not shown) having an arithmetic processing unit (CPU), a storage unit (ROM, RAM, hard disk, etc.) and a signal input / output unit. The hardware storage unit stores a program for realizing each function of each component of the elevator operation control device 61.
エレベーター安全監視ユニット50は、さらに、安全監視装置51と、トランジスタ素子52,53とを有している。安全監視装置51は、エレベーター運転制御装置61からエレベーター起動信号61Aが入力される。また、安全監視装置51は、図2に示すように、一対の安全監視部を有している。これらの安全監視部を、以下では、第1の安全監視部54及び第2の安全監視部55と呼ぶ。安全監視装置51は、第1及び第2の安全監視部54,55のうちの1つがスリープ状態になるときに、エレベーター運転制御装置61に対して、スリープ状態信号51Aを出力する。スリープ状態信号51Aは、スリープ状態へ移行することを通知する信号である。第1及び第2の安全監視部54,55のうちの一方は、予め設定された待機時間TWが経過するまでに、エレベーター起動信号61Aが入力されない場合に、スリープ状態に移行する。さらに、安全監視装置51は、当該安全監視部がスリープ状態に移行するときに、#SF1コイル70cまたは#SF2コイル70dへ給電するためのトランジスタ素子52または53に対し、#SF駆動電圧の印加を停止する。これにより、エレベーター安全回路が遮断される。
The elevator safety monitoring unit 50 further includes a safety monitoring device 51 and transistor elements 52 and 53. The safety monitoring device 51 receives an elevator activation signal 61 </ b> A from the elevator operation control device 61. Further, the safety monitoring device 51 has a pair of safety monitoring units as shown in FIG. Hereinafter, these safety monitoring units are referred to as a first safety monitoring unit 54 and a second safety monitoring unit 55. The safety monitoring device 51 outputs a sleep state signal 51 </ b> A to the elevator operation control device 61 when one of the first and second safety monitoring units 54 and 55 enters the sleep state. The sleep state signal 51A is a signal for notifying the transition to the sleep state. One of the first and second safety monitoring units 54 and 55 shifts to the sleep state when the elevator activation signal 61A is not input before the preset standby time TW elapses. Further, the safety monitoring device 51 applies the #SF drive voltage to the transistor element 52 or 53 for supplying power to the # SF1 coil 70c or the # SF2 coil 70d when the safety monitoring unit shifts to the sleep state. Stop. Thereby, an elevator safety circuit is interrupted | blocked.
ここで、安全監視装置51は、例えば、マイクロコンピュータで構成されている。安全監視装置51は、演算処理部(CPU)、記憶部(ROM,RAM及びハードディスク等)及び信号入出力部を持ったハードウエア(図示せず)により構成される。ハードウエアの記憶部は、安全監視装置の各構成のそれぞれの機能を実現するためのプログラムを格納している。
Here, the safety monitoring device 51 is composed of, for example, a microcomputer. The safety monitoring device 51 is configured by hardware (not shown) having an arithmetic processing unit (CPU), a storage unit (ROM, RAM, hard disk, etc.) and a signal input / output unit. The hardware storage unit stores a program for realizing each function of each component of the safety monitoring device.
図2を用いて、安全監視装置51の構成について、さらに詳細に説明する。図2に示すように、安全監視装置51は、上述した、一対の安全監視部、すなわち、第1の安全監視部54と第2の安全監視部55とを備えている。安全監視装置51は、さらに、OR回路56と、OR回路57とを備えている。第1の安全監視部54と第2の安全監視部55とは、別個のCPUからそれぞれ構成されている。第1の安全監視部54及び第2の安全監視部55のスリープ状態とは、各CPUを停止し、消費電力の削減を実施する状態のことである。すなわち、スリープ状態においては、CPUへの給電は継続したままで、CPUの演算処理および周辺機能を停止させている。
The configuration of the safety monitoring device 51 will be described in further detail with reference to FIG. As shown in FIG. 2, the safety monitoring device 51 includes the above-described pair of safety monitoring units, that is, a first safety monitoring unit 54 and a second safety monitoring unit 55. The safety monitoring device 51 further includes an OR circuit 56 and an OR circuit 57. The first safety monitoring unit 54 and the second safety monitoring unit 55 are respectively configured from separate CPUs. The sleep state of the first safety monitoring unit 54 and the second safety monitoring unit 55 is a state in which each CPU is stopped and power consumption is reduced. That is, in the sleep state, power supply to the CPU is continued, and the arithmetic processing and peripheral functions of the CPU are stopped.
OR回路56には、エレベーター運転制御装置61からのエレベーター起動信号61Aが入力されるとともに、第2の安全監視部55からのウエイクアップ信号55Aが入力される。OR回路56は、エレベーター起動信号61Aまたはウエイクアップ信号55Aの少なくともいずれか一方が入力された場合に、OR信号を出力する。OR信号は、第1の安全監視部54の入力端子90に入力される。
The OR circuit 56 receives an elevator activation signal 61A from the elevator operation control device 61 and a wakeup signal 55A from the second safety monitoring unit 55. The OR circuit 56 outputs an OR signal when at least one of the elevator activation signal 61A and the wakeup signal 55A is input. The OR signal is input to the input terminal 90 of the first safety monitoring unit 54.
OR回路57には、エレベーター運転制御装置61からのエレベーター起動信号61Aが入力されるとともに、第1の安全監視部54からのウエイクアップ信号54Aが入力される。OR回路57は、エレベーター起動信号61Aまたはウエイクアップ信号54Aの少なくともいずれか一方が入力された場合に、OR信号を出力する。OR信号は、第2の安全監視部55の入力端子91に入力される。
The OR circuit 57 receives an elevator activation signal 61A from the elevator operation control device 61 and a wakeup signal 54A from the first safety monitoring unit 54. The OR circuit 57 outputs an OR signal when at least one of the elevator activation signal 61A and the wakeup signal 54A is input. The OR signal is input to the input terminal 91 of the second safety monitoring unit 55.
第1の安全監視部54には、エレベーター運転制御装置61からのエレベーター起動信号61Aが入力されるとともに、OR回路56からのOR信号が入力される。同様に、第2の安全監視部55には、エレベーター運転制御装置61からのエレベーター起動信号61Aが入力されるとともに、OR回路57からのOR信号が入力される。
The first safety monitoring unit 54 receives the elevator activation signal 61A from the elevator operation control device 61 and the OR signal from the OR circuit 56. Similarly, an elevator activation signal 61A from the elevator operation control device 61 and an OR signal from the OR circuit 57 are input to the second safety monitoring unit 55.
第1の安全監視部54と第2の安全監視部55とは、交互に、スリープ実行側安全監視部とスリープ非実行側安全監視部になる。すなわち、第1の安全監視部54がスリープ実行側安全監視部のときは、第2の安全監視部55がスリープ非実行側安全監視部になり、逆に、第1の安全監視部54がスリープ非実行側安全監視部のときは、第2の安全監視部55がスリープ実行側安全監視部になる。第1の安全監視部54と第2の安全監視部55とは、どちらがスリープ実行側安全監視部で、どちらがスリープ非実行側安全監視部であるかを示す情報54C,55Cをやりとりし、互いに共有している。
The first safety monitoring unit 54 and the second safety monitoring unit 55 alternately become a sleep execution side safety monitoring unit and a sleep non-execution side safety monitoring unit. That is, when the first safety monitoring unit 54 is the sleep execution side safety monitoring unit, the second safety monitoring unit 55 becomes the sleep non-execution side safety monitoring unit, and conversely, the first safety monitoring unit 54 sleeps. In the case of the non-execution side safety monitoring unit, the second safety monitoring unit 55 becomes the sleep execution side safety monitoring unit. The first safety monitoring unit 54 and the second safety monitoring unit 55 exchange information 54C and 55C indicating which is the sleep execution side safety monitoring unit and which is the sleep non-execution side safety monitoring unit, and are shared with each other. is doing.
図4に、スリープ実行側安全監視部およびスリープ非実行側安全監視部の動作を示す。
FIG. 4 shows operations of the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring unit.
まずはじめに、スリープ実行側安全監視部の動作について説明する。
スリープ実行側安全監視部は、予め設定された待機時間TWが経過するまでに、エレベーター運転制御装置61からエレベーター起動信号61Aが入力されない場合に、スリープ状態に移行する。スリープ状態は、予め設定されたスリープ時間TSの間、継続される。スリープ時間TSは、自己診断処理を実施する第1の周期P1よりも短い時間に設定されている。第1の周期P1は、エレベーター安全監視ユニットの各構成機器の故障率と、その組み合わせにより決定され、自己診断処理は、少なくとも第1の周期P1の時間間隔で実施されることが求められている。 First, the operation of the sleep execution side safety monitoring unit will be described.
The sleep execution side safety monitoring unit shifts to the sleep state when theelevator activation signal 61A is not input from the elevator operation control device 61 until the preset standby time TW elapses. The sleep state is continued for a preset sleep time TS. The sleep time TS is set to a time shorter than the first period P1 for performing the self-diagnosis process. The first cycle P1 is determined by the failure rate of each component device of the elevator safety monitoring unit and the combination thereof, and the self-diagnosis process is required to be performed at least at the time interval of the first cycle P1. .
スリープ実行側安全監視部は、予め設定された待機時間TWが経過するまでに、エレベーター運転制御装置61からエレベーター起動信号61Aが入力されない場合に、スリープ状態に移行する。スリープ状態は、予め設定されたスリープ時間TSの間、継続される。スリープ時間TSは、自己診断処理を実施する第1の周期P1よりも短い時間に設定されている。第1の周期P1は、エレベーター安全監視ユニットの各構成機器の故障率と、その組み合わせにより決定され、自己診断処理は、少なくとも第1の周期P1の時間間隔で実施されることが求められている。 First, the operation of the sleep execution side safety monitoring unit will be described.
The sleep execution side safety monitoring unit shifts to the sleep state when the
第1の周期P1は、例えば、以下の定式により機能失敗確率PFDが規定値以下となるように設定される。
PFD(1oo1)=λ_dd×MTTR+λ_du×(T/2+MTTR)
ここで、以下の各値は機器固有のもので、適合表より取得する。
λ_dd:自己診断により検出できる危険側故障率
λ_du:自己診断により検出できない危険側故障率
MTTR:平均故障修理時間(=機器が故障したまま稼働し続ける時間) For example, the first cycle P1 is set so that the function failure probability PFD is equal to or less than a specified value according to the following formula.
PFD (1oo1) = λ_dd × MTTR + λ_du × (T / 2 + MTTR)
Here, the following values are device-specific and are obtained from the compatibility table.
λ_dd: Dangerous failure rate that can be detected by self-diagnosis λ_du: Dangerous failure rate that cannot be detected by self-diagnosis MTTR: Average failure repair time (= time for which the device continues to operate with a failure)
PFD(1oo1)=λ_dd×MTTR+λ_du×(T/2+MTTR)
ここで、以下の各値は機器固有のもので、適合表より取得する。
λ_dd:自己診断により検出できる危険側故障率
λ_du:自己診断により検出できない危険側故障率
MTTR:平均故障修理時間(=機器が故障したまま稼働し続ける時間) For example, the first cycle P1 is set so that the function failure probability PFD is equal to or less than a specified value according to the following formula.
PFD (1oo1) = λ_dd × MTTR + λ_du × (T / 2 + MTTR)
Here, the following values are device-specific and are obtained from the compatibility table.
λ_dd: Dangerous failure rate that can be detected by self-diagnosis λ_du: Dangerous failure rate that cannot be detected by self-diagnosis MTTR: Average failure repair time (= time for which the device continues to operate with a failure)
スリープ実行監視部は、スリープ状態に移行するときに、エレベーター運転制御装置61およびスリープ非実行側安全監視部に対して、スリープ状態信号51Aを出力する。また、それと同時に、スリープ実行側安全監視部は、#SF1主接点70aまたは#SF2主接点70bを開極状態にして、エレベーター安全回路を遮断する。エレベーター運転制御装置61は、スリープ状態信号51Aを受信すると、エレベーター安全回路の遮断異常をマスクする。また、スリープ実行側安全監視部は、OR回路56,57からのOR信号が入力された場合に、スリープ状態を解除して、ウエイクアップ完了信号54B,55Bをスリープ非実行側安全監視部に出力するとともに、自己診断処理を実行する。なお、ここで、ウエイクアップ完了信号は、スリープ状態の解除を通知する信号である。また、自己診断処理とは、エレベーター安全監視ユニットの各構成機器が正しく動作するかチェックする処理である。
The sleep execution monitoring unit outputs a sleep state signal 51A to the elevator operation control device 61 and the sleep non-execution side safety monitoring unit when shifting to the sleep state. At the same time, the sleep execution side safety monitoring unit opens the # SF1 main contact 70a or the # SF2 main contact 70b to shut off the elevator safety circuit. When the elevator operation control device 61 receives the sleep state signal 51A, the elevator operation control device 61 masks an abnormal shutdown of the elevator safety circuit. Further, when the OR signal from the OR circuits 56 and 57 is input, the sleep execution side safety monitoring unit cancels the sleep state and outputs the wakeup completion signals 54B and 55B to the sleep non-execution side safety monitoring unit. In addition, the self-diagnosis process is executed. Here, the wake-up completion signal is a signal for notifying the cancellation of the sleep state. The self-diagnosis process is a process for checking whether each component device of the elevator safety monitoring unit operates correctly.
次に、スリープ非実行側安全監視部の動作について説明する。
スリープ非実行側安全監視部は、スリープ状態信号51Aを受信すると、#SF1主接点70aまたは#SF2主接点70bを開極状態にする。また、スリープ状態信号51Aを受信した時刻からスリープ時間TSが経過したときに、OR回路56,57に対して、ウエイクアップ信号54A,55Aを出力する。また、スリープ非実行側安全監視部は、ウエイクアップ信号54A,55Aの出力後、スリープ実行側安全監視部からウエイクアップ完了信号54B,55Bを受信すると、#SF1主接点70aまたは#SF2主接点70bを閉極状態にする。また、予め設定された異常確認時間TDが経過するまでに、スリープ実行側安全監視部からウエイクアップ完了信号54B,55Bを受信しなかった場合に、スリープ実行側安全監視部が「スリープ異常」であると判定して、スリープ異常を検出する。 Next, the operation of the sleep non-execution side safety monitoring unit will be described.
When the sleep non-execution side safety monitoring unit receives thesleep state signal 51A, the # SF1 main contact 70a or the # SF2 main contact 70b is opened. In addition, when the sleep time TS has elapsed from the time when the sleep state signal 51A is received, the wakeup signals 54A and 55A are output to the OR circuits 56 and 57. When the sleep non-execution side safety monitoring unit receives the wakeup completion signals 54B and 55B from the sleep execution side safety monitoring unit after outputting the wakeup signals 54A and 55A, the # SF1 main contact 70a or the # SF2 main contact 70b Is closed. Further, if the wakeup completion signals 54B and 55B are not received from the sleep execution side safety monitoring unit before the preset abnormality confirmation time TD elapses, the sleep execution side safety monitoring unit is set to “sleep abnormality”. It is determined that there is a sleep abnormality.
スリープ非実行側安全監視部は、スリープ状態信号51Aを受信すると、#SF1主接点70aまたは#SF2主接点70bを開極状態にする。また、スリープ状態信号51Aを受信した時刻からスリープ時間TSが経過したときに、OR回路56,57に対して、ウエイクアップ信号54A,55Aを出力する。また、スリープ非実行側安全監視部は、ウエイクアップ信号54A,55Aの出力後、スリープ実行側安全監視部からウエイクアップ完了信号54B,55Bを受信すると、#SF1主接点70aまたは#SF2主接点70bを閉極状態にする。また、予め設定された異常確認時間TDが経過するまでに、スリープ実行側安全監視部からウエイクアップ完了信号54B,55Bを受信しなかった場合に、スリープ実行側安全監視部が「スリープ異常」であると判定して、スリープ異常を検出する。 Next, the operation of the sleep non-execution side safety monitoring unit will be described.
When the sleep non-execution side safety monitoring unit receives the
以上のように、第1の安全監視部54と第2の安全監視部55とは、それぞれ、スリープ実行側安全監視部およびスリープ非実行側安全監視部として交互に動作する。そのため、第1の安全監視部54と第2の安全監視部55とは、スリープ実行側安全監視部としての機能とスリープ非実行側安全監視部としての機能とを実行するために、図3に示すように、自己診断処理実行部500と、スリープ指令部501と、スリープ実行部502と、送受信部503と、安全回路遮断部504と、ウエイクアップ信号出力部505と、スリープ異常検出部506とを備えている。これらの各部について、以下に説明する。
As described above, the first safety monitoring unit 54 and the second safety monitoring unit 55 operate alternately as a sleep execution side safety monitoring unit and a sleep non-execution side safety monitoring unit, respectively. Therefore, the first safety monitoring unit 54 and the second safety monitoring unit 55 are shown in FIG. 3 in order to execute the function as the sleep execution side safety monitoring unit and the function as the sleep non-execution side safety monitoring unit. As shown, a self-diagnosis processing execution unit 500, a sleep command unit 501, a sleep execution unit 502, a transmission / reception unit 503, a safety circuit cutoff unit 504, a wakeup signal output unit 505, and a sleep abnormality detection unit 506 It has. Each of these parts will be described below.
自己診断処理実行部500は、通常の定期的な実行に加え、スリープ実行部502がOR回路56,57からのOR信号を受信して、スリープ状態が解除されたときに、自己診断処理を実行する。
The self-diagnosis processing execution unit 500 executes self-diagnosis processing when the sleep execution unit 502 receives the OR signal from the OR circuits 56 and 57 and the sleep state is released in addition to the regular periodic execution. To do.
スリープ指令部501は、予め設定された待機時間TWの間、送受信部503がエレベーター運転制御装置61からエレベーター起動信号61Aを受信しない場合に、スリープ状態に移行するためのスリープ指令信号を出力する。なお、ここで、スリープ指令部501による待機時間TWについては、ソフトウェアやロジック回路にてタイマをカウントして測定すればよい。
The sleep command unit 501 outputs a sleep command signal for shifting to the sleep state when the transmission / reception unit 503 does not receive the elevator activation signal 61A from the elevator operation control device 61 during the preset standby time TW. Here, the standby time TW by the sleep command unit 501 may be measured by counting a timer with software or a logic circuit.
スリープ実行部502は、スリープ指令部501からのスリープ指令信号を受信した場合に、当該スリープ指令信号に従ってスリープ状態に移行する。スリープ実行部502は、スリープ状態に移行するときに、送受信部503を介して、エレベーター運転制御装置61およびスリープ非実行側安全監視部に対して、スリープ状態信号51Aを出力する。また、スリープ実行部502はOR回路56,57からのOR信号を受信した場合に、スリープ実行監視部のスリープ状態を解除する。また、スリープ実行部502は、スリープ状態を解除するときに、ウエイクアップ完了信号54B,55Bを、送受信部503を介して、スリープ非実行側安全監視部に出力する。このように、スリープ実行部502は、スリープ状態への移行およびスリープ状態の解除を行うとともに、OR信号入力部、スリープ状態信号出力部、およびウエイクアップ完了信号出力部としても機能する。
When the sleep execution unit 502 receives a sleep command signal from the sleep command unit 501, the sleep execution unit 502 shifts to a sleep state according to the sleep command signal. When the sleep execution unit 502 shifts to the sleep state, the sleep execution unit 502 outputs the sleep state signal 51A to the elevator operation control device 61 and the sleep non-execution side safety monitoring unit via the transmission / reception unit 503. When the sleep execution unit 502 receives the OR signal from the OR circuits 56 and 57, the sleep execution unit 502 cancels the sleep state of the sleep execution monitoring unit. Further, when canceling the sleep state, the sleep execution unit 502 outputs wakeup completion signals 54B and 55B to the sleep non-execution side safety monitoring unit via the transmission / reception unit 503. As described above, the sleep execution unit 502 shifts to the sleep state and cancels the sleep state, and also functions as an OR signal input unit, a sleep state signal output unit, and a wakeup completion signal output unit.
安全監視装置51は、例えばマイクロコンピュータで構成されており、一般的にマイクロコンピュータは内蔵機能を停止させて消費電力を低減させるスタンバイモード(省電力モード)機能を備えている。スタンバイモードは、例えばソフトウェアからの指令により有効となり、外部端子入力による割込み等でモードを解除する。上記スリープ実行部502は同機能を包含して構成する。スリープ移行時はスリープ状態信号51Aを出力し、#SF1主接点70aまたは#SF2主接点70bを開極状態にしてからスタンバイモードを設定する。また、ウエイクアップ時は、OR回路56,57からのOR信号を外部端子に入力して割込みによりスタンバイモードを解除する。
The safety monitoring device 51 is composed of, for example, a microcomputer, and the microcomputer generally has a standby mode (power saving mode) function that stops built-in functions and reduces power consumption. The standby mode is enabled by, for example, a command from software, and the mode is canceled by an interrupt or the like by external terminal input. The sleep execution unit 502 includes the same function. At the time of transition to sleep, the sleep state signal 51A is output, and the standby mode is set after the # SF1 main contact 70a or # SF2 main contact 70b is opened. At the wake-up, the OR signal from the OR circuits 56 and 57 is input to the external terminal and the standby mode is canceled by an interrupt.
安全回路遮断部504は、スリープ実行部502がスリープ状態への移行を実行したときに、#SF1主接点70aまたは#SF2主接点70bを開極状態にして、エレベーター安全回路を遮断する。
スリープ非実行側安全監視部においては、実行側から送受信部503がスリープ状態信号51Aを入力すると#SF1主接点70aまたは#SF2主接点70bを開極状態にして、ウエイクアップ完了信号54B,55Bを入力すると、再び閉極状態にする。 When thesleep execution unit 502 executes the transition to the sleep state, the safety circuit interrupting unit 504 opens the # SF1 main contact 70a or the # SF2 main contact 70b to interrupt the elevator safety circuit.
In the sleep non-execution side safety monitoring unit, when the transmission /reception unit 503 inputs the sleep state signal 51A from the execution side, the # SF1 main contact 70a or the # SF2 main contact 70b is opened, and the wakeup completion signals 54B and 55B are sent. When it is input, the contact is closed again.
スリープ非実行側安全監視部においては、実行側から送受信部503がスリープ状態信号51Aを入力すると#SF1主接点70aまたは#SF2主接点70bを開極状態にして、ウエイクアップ完了信号54B,55Bを入力すると、再び閉極状態にする。 When the
In the sleep non-execution side safety monitoring unit, when the transmission /
ウエイクアップ信号出力部505は、送受信部503がスリープ状態信号51Aを受信した時刻からスリープ時間TSが経過したときに、OR回路56,57に対してウエイクアップ信号54A,55Aを出力する。
The wakeup signal output unit 505 outputs wakeup signals 54A and 55A to the OR circuits 56 and 57 when the sleep time TS elapses from the time when the transmission / reception unit 503 receives the sleep state signal 51A.
スリープ異常検出部506は、ウエイクアップ信号出力部505のウエイクアップ信号54A,55Aの出力後、予め設定された異常確認時間TDが経過するまでに、送受信部503がスリープ実行側安全監視部からウエイクアップ完了信号54B,55Bを受信しなかった場合に、スリープ実行側安全監視部が「スリープ異常」であると判定して、スリープ異常を検出する。スリープ異常を検出した場合、安全回路遮断部504は#SF1主接点70aまたは#SF2主接点70bの開極状態を継続する。また、送受信部503を介して、エレベーター運転制御装置61に対して、異常検出信号を送信する。
The sleep abnormality detection unit 506 wakes up the transmission / reception unit 503 from the sleep execution side safety monitoring unit until the preset abnormality confirmation time TD elapses after the wakeup signals 54A and 55A are output from the wakeup signal output unit 505. When the up completion signals 54B and 55B are not received, the sleep execution side safety monitoring unit determines that the sleep is abnormal and detects the sleep abnormality. When the sleep abnormality is detected, the safety circuit interrupting unit 504 continues the open state of the # SF1 main contact 70a or the # SF2 main contact 70b. In addition, an abnormality detection signal is transmitted to the elevator operation control device 61 via the transmission / reception unit 503.
なお、自己診断処理実行部500と、スリープ指令部501と、スリープ実行部502と、送受信部503と、安全回路遮断部504とは、第1および第2の安全監視部54,55がスリープ実行側安全監視部の場合に動作する機能である。一方、送受信部503と、ウエイクアップ信号出力部505と、スリープ異常検出部506と、安全回路遮断部504とは、第1および第2の安全監視部54,55がスリープ非実行側安全監視部の場合に動作する機能である。
The self-diagnosis processing execution unit 500, the sleep command unit 501, the sleep execution unit 502, the transmission / reception unit 503, and the safety circuit blocking unit 504 are executed by the first and second safety monitoring units 54 and 55. This function operates in the case of the side safety monitoring unit. On the other hand, the transmission / reception unit 503, the wake-up signal output unit 505, the sleep abnormality detection unit 506, and the safety circuit cut-off unit 504 are the first and second safety monitoring units 54 and 55, the sleep non-execution side safety monitoring unit It is a function that operates in the case of
次に、エレベーター運転制御装置61と安全監視装置51との動作について、図1~図4に基づいて説明する。なお、以下では、第1の安全監視部がスリープ実行側安全監視部で、第2の安全監視部55がスリープ非実行側安全監視部の場合を例にして説明する。逆の場合については、同様の動作となるため、ここでは説明を省略する。
Next, the operation of the elevator operation control device 61 and the safety monitoring device 51 will be described with reference to FIGS. In the following description, a case where the first safety monitoring unit is a sleep execution side safety monitoring unit and the second safety monitoring unit 55 is a sleep non-execution side safety monitoring unit will be described as an example. In the opposite case, the operation is the same, and the description is omitted here.
図4において、横軸は時間である。
また、図4において、縦軸は、上から順に、
エレベーター起動信号61A、
スリープ実行側安全監視部のウエイク状態およびスリープ状態の別、
スリープ実行側安全監視部に接続されたOR回路のOR信号、
スリープ実行側安全監視部のウエイクアップ完了信号、
スリープ非実行側安全監視部のウエイク状態およびスリープ状態の別、
スリープ非実行側安全監視部のウエイクアップ信号、および、
スリープ非実行側安全監視部のスリープ異常検出信号
である。 In FIG. 4, the horizontal axis is time.
Moreover, in FIG. 4, the vertical axis represents the order from the top.
Elevator start signal 61A,
The wake state and sleep state of the sleep execution side safety monitoring unit,
OR signal of the OR circuit connected to the sleep execution side safety monitoring unit,
Wake-up completion signal of the safety monitoring unit on the sleep execution side,
The wake state and sleep state of the sleep non-execution side safety monitoring unit,
Wake-up signal of the sleep non-execution side safety monitoring unit, and
It is a sleep abnormality detection signal of the sleep non-execution side safety monitoring unit.
また、図4において、縦軸は、上から順に、
エレベーター起動信号61A、
スリープ実行側安全監視部のウエイク状態およびスリープ状態の別、
スリープ実行側安全監視部に接続されたOR回路のOR信号、
スリープ実行側安全監視部のウエイクアップ完了信号、
スリープ非実行側安全監視部のウエイク状態およびスリープ状態の別、
スリープ非実行側安全監視部のウエイクアップ信号、および、
スリープ非実行側安全監視部のスリープ異常検出信号
である。 In FIG. 4, the horizontal axis is time.
Moreover, in FIG. 4, the vertical axis represents the order from the top.
The wake state and sleep state of the sleep execution side safety monitoring unit,
OR signal of the OR circuit connected to the sleep execution side safety monitoring unit,
Wake-up completion signal of the safety monitoring unit on the sleep execution side,
The wake state and sleep state of the sleep non-execution side safety monitoring unit,
Wake-up signal of the sleep non-execution side safety monitoring unit, and
It is a sleep abnormality detection signal of the sleep non-execution side safety monitoring unit.
図4に示すように、まず、第1の安全監視部54は、時刻0から時刻t1までの待機時間TWの間、エレベーター運転制御装置61からのエレベーター起動信号61Aの入力がない場合、スリープ状態に移行する。スリープ状態は、スリープ時間TSの間、継続される。スリープ時間TSは、必要とされる自己診断周期である第1の周期P1よりも短い時間に設定されている。
As shown in FIG. 4, first, the first safety monitoring unit 54 sleeps when there is no input of the elevator activation signal 61A from the elevator operation control device 61 during the standby time TW from time 0 to time t1. Migrate to The sleep state continues for the sleep time TS. The sleep time TS is set to a time shorter than the first period P1, which is a required self-diagnosis period.
第1の安全監視部54は、スリープ状態に移行するときに、エレベーター運転制御装置61および第2の安全監視部55に対して、スリープ状態信号51Aを出力する。また、それと同時に、第1の安全監視部54は、エレベーター安全回路を遮断する。第2の安全監視部55は、第1の安全監視部54からスリープ状態信号51Aを入力すると、エレベーター安全回路を遮断する。
The first safety monitoring unit 54 outputs a sleep state signal 51A to the elevator operation control device 61 and the second safety monitoring unit 55 when shifting to the sleep state. At the same time, the first safety monitoring unit 54 interrupts the elevator safety circuit. When the second safety monitoring unit 55 receives the sleep state signal 51A from the first safety monitoring unit 54, the second safety monitoring unit 55 blocks the elevator safety circuit.
エレベーター運転制御装置61は、第1の安全監視部54からスリープ状態信号51Aを受信すると、エレベーター安全回路の遮断異常をマスクする。すなわち、通常時においては、何らかの要因で、エレベーター安全回路が遮断された場合に、エレベーター運転制御装置61は、当該遮断を異常として判定し、異常信号を出力する。一方、エレベーター安全回路の遮断異常がマスクされた場合には、エレベーター安全回路が遮断された場合にも、エレベーター運転制御装置61は、当該遮断を異常として判定しないため、異常信号を出力しない。
When the elevator operation control device 61 receives the sleep state signal 51A from the first safety monitoring unit 54, the elevator operation control device 61 masks an abnormal shutdown of the elevator safety circuit. That is, in normal times, when the elevator safety circuit is interrupted for some reason, the elevator operation control device 61 determines that the interruption is abnormal and outputs an abnormal signal. On the other hand, when the cutoff abnormality of the elevator safety circuit is masked, even when the elevator safety circuit is blocked, the elevator operation control device 61 does not determine that the cutoff is abnormal, and therefore does not output an abnormal signal.
第2の安全監視部55は、スリープ状態信号51Aを受信した時刻t1からスリープ時間TS経過後の時刻t2に、OR回路56に対して、ウエイクアップ信号55Aを出力する。
The second safety monitoring unit 55 outputs a wakeup signal 55A to the OR circuit 56 at time t2 after the elapse of the sleep time TS from time t1 when the sleep state signal 51A is received.
OR回路56は、ウエイクアップ信号55Aを受信すると、第1の安全監視部54に対して、OR信号を出力する。
The OR circuit 56 outputs an OR signal to the first safety monitoring unit 54 when receiving the wakeup signal 55A.
第1の安全監視部54は、OR回路56からのOR信号を受信すると、スリープ状態を解除して、ウエイクアップ完了信号54Bを第2の安全監視部55に出力して、自己診断処理を実行する。第2の安全監視部55は、第1の安全監視部54よりウエイクアップ完了信号54Bを入力すると、安全回路の遮断を解除する。
When the first safety monitoring unit 54 receives the OR signal from the OR circuit 56, the first safety monitoring unit 54 cancels the sleep state, outputs the wake-up completion signal 54B to the second safety monitoring unit 55, and executes self-diagnosis processing. To do. When the second safety monitoring unit 55 receives the wake-up completion signal 54B from the first safety monitoring unit 54, the second safety monitoring unit 55 cancels the safety circuit.
このように、エレベーター運転制御装置61からのエレベーター起動信号61Aの入力がなければ、上記の処理を繰り返し、第1の周期P1で、第1の安全監視部54は、自己診断処理を周期的に繰り返し実行する。
Thus, if there is no input of the elevator activation signal 61A from the elevator operation control device 61, the above processing is repeated, and the first safety monitoring unit 54 periodically performs self-diagnosis processing in the first cycle P1. Run repeatedly.
一方、エレベーター運転制御装置61からのエレベーター起動信号61Aの入力があった場合には、以下の動作となる。
On the other hand, when an elevator activation signal 61A is input from the elevator operation control device 61, the following operation is performed.
上述したように、エレベーター運転制御装置61は、呼び/行先階登録、秤検出信号、手動切換信号、ブレーキ解放検出信号、戸開閉検出信号、および、異常検出信号を含む、少なくとも1つ以上の信号が入力されたときに、エレベーター起動信号61Aを安全監視装置51に対して出力する。図4の例では、例えば、時刻t6で、エレベーター運転制御装置61からのエレベーター起動信号61Aの入力があったとする。
As described above, the elevator operation control device 61 has at least one signal including a call / destination floor registration, a scale detection signal, a manual switching signal, a brake release detection signal, a door open / close detection signal, and an abnormality detection signal. Is input, the elevator activation signal 61A is output to the safety monitoring device 51. In the example of FIG. 4, for example, it is assumed that an elevator activation signal 61A is input from the elevator operation control device 61 at time t6.
OR回路56は、エレベーター起動信号61Aを受信すると、第1の安全監視部54に対して、OR信号を出力する。
The OR circuit 56 outputs an OR signal to the first safety monitoring unit 54 when the elevator activation signal 61A is received.
第1の安全監視部54は、OR回路56からのOR信号を受信すると、スリープ状態を解除して、ウエイクアップ完了信号54Bを第2の安全監視部55に出力して、自己診断処理を実行する。第2の安全監視部55は、第1の安全監視部54よりウエイクアップ完了信号54Bを入力すると、安全回路の遮断を解除する。
When the first safety monitoring unit 54 receives the OR signal from the OR circuit 56, the first safety monitoring unit 54 cancels the sleep state, outputs the wake-up completion signal 54B to the second safety monitoring unit 55, and executes self-diagnosis processing. To do. When the second safety monitoring unit 55 receives the wake-up completion signal 54B from the first safety monitoring unit 54, the second safety monitoring unit 55 cancels the safety circuit.
もし、ここで、OR回路56がOR信号を送信したにもかかわらず、第2の安全監視部55が、第1の安全監視部54からのウエイクアップ完了信号54Bを受信しなかった場合について説明する。
Here, the case where the second safety monitoring unit 55 has not received the wake-up completion signal 54B from the first safety monitoring unit 54 even though the OR circuit 56 has transmitted the OR signal will be described. To do.
図4に示すように、時刻t11で、OR回路56がOR信号を送信したにもかかわらず、時刻t11から異常確認時間TD経過後の時刻t12までに、第2の安全監視部55が、第1の安全監視部54からのウエイクアップ完了信号54Bを受信しなかった場合、第2の安全監視部55は、第1の安全監視部54が「スリープ異常」であると判定して、スリープ異常検出信号を「異常」側に設定する。
As shown in FIG. 4, even though the OR circuit 56 transmits the OR signal at time t11, the second safety monitoring unit 55 performs the first safety monitoring from the time t11 to the time t12 after the abnormality confirmation time TD has elapsed. If the wakeup completion signal 54B from the first safety monitoring unit 54 is not received, the second safety monitoring unit 55 determines that the first safety monitoring unit 54 is “sleep abnormal” and sleep abnormal Set the detection signal to the “abnormal” side.
以上のように、実施の形態1においては、安全監視装置51が、第1及び第2の安全監視部54,55を有し、第1及び第2の安全監視部54,55が交互にスリープを実施する構成とした。スリープ実行側安全監視部は、エレベーター起動信号61Aの入力がなければ、第1の周期P1で、自己診断処理を周期的に行う。具体的には、スリープ実行側安全監視部は、自己診断処理を行う自己診断周期よりも短い時間に設定されたスリープ時間の間、スリープ状態となる。このように、スリープ時間を自己診断周期より短い時間に設定することで、スリープ時間の設置にかかわらず、スリープ時間側監視部は、自己診断処理を確実に実施することができる。また、自己診断処理の合間に、スリープ時間を設けるようにしたので、スリープ時間を設けた分だけ、電力の削減が図れる。また、実施の形態1においては、スリープ状態に移行するときに、他方の安全監視部にスリープ状態信号を送信し、かつ、スリープ状態を解除するときに、他方の安全監視部にウエイクアップ完了信号を送信するようにした。これにより、第1及び第2の安全監視部54,55で、スリープ移行/解除を相互に確認することができ、安全監視装置51の安全性を維持しつつ、消費電力の削減を図ることができる。
As described above, in the first embodiment, the safety monitoring device 51 includes the first and second safety monitoring units 54 and 55, and the first and second safety monitoring units 54 and 55 alternately sleep. It was set as the structure which implements. If there is no input of the elevator activation signal 61A, the sleep execution side safety monitoring unit periodically performs self-diagnosis processing in the first cycle P1. Specifically, the sleep execution side safety monitoring unit enters a sleep state for a sleep time set to a time shorter than a self-diagnosis cycle for performing self-diagnosis processing. In this way, by setting the sleep time to a time shorter than the self-diagnosis cycle, the sleep time-side monitoring unit can reliably perform the self-diagnosis process regardless of the setting of the sleep time. Further, since the sleep time is provided between the self-diagnosis processes, the power can be reduced by the amount of the sleep time provided. In the first embodiment, the sleep state signal is transmitted to the other safety monitoring unit when shifting to the sleep state, and the wake-up completion signal is transmitted to the other safety monitoring unit when releasing the sleep state. Was sent. As a result, the first and second safety monitoring units 54 and 55 can mutually confirm sleep transition / cancellation and can reduce power consumption while maintaining safety of the safety monitoring device 51. it can.
上記の実施の形態1では、第1の安全監視部54と第2の安全監視部55とが、一定期間ごと、例えば、一日ごとに、スリープ実行側安全監視部とスリープ非実行側安全監視部とを交代する例について説明した。しかしながら、その場合に限らず、例えば、第1の周期P1ごとに、第1の安全監視部54と第2の安全監視部55とが、スリープ実行側安全監視部とスリープ非実行側安全監視部とを交代するようにしてもよい。
In the first embodiment, the first safety monitoring unit 54 and the second safety monitoring unit 55 perform the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring every predetermined period, for example, every day. An example of changing parts was described. However, the present invention is not limited to this. For example, for each first period P1, the first safety monitoring unit 54 and the second safety monitoring unit 55 are connected to the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring unit. And may be replaced.
実施の形態2.
上述の実施の形態1においては、安全監視装置51の第1の安全監視部54と第2の安全監視部55とが、交互に、スリープ実行側安全監視部とスリープ非実行側安全監視部として動作していた。これに対し、実施の形態2においては、第1の安全監視部54と第2の安全監視部55とが、同期して、同時に、スリープ状態への移行及び解除を行う。 Embodiment 2. FIG.
In the first embodiment described above, the firstsafety monitoring unit 54 and the second safety monitoring unit 55 of the safety monitoring device 51 are alternately used as the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring unit. It was working. On the other hand, in the second embodiment, the first safety monitoring unit 54 and the second safety monitoring unit 55 perform the transition to the sleep state and cancellation at the same time.
上述の実施の形態1においては、安全監視装置51の第1の安全監視部54と第2の安全監視部55とが、交互に、スリープ実行側安全監視部とスリープ非実行側安全監視部として動作していた。これに対し、実施の形態2においては、第1の安全監視部54と第2の安全監視部55とが、同期して、同時に、スリープ状態への移行及び解除を行う。 Embodiment 2. FIG.
In the first embodiment described above, the first
図5および図6に、実施の形態2に係る安全監視装置の構成を示す。図5に示すように、実施の形態2においては、図2に示す実施の形態1の構成に対して、タイマ58,59が追加されている。また、図6に示すように、実施の形態2においては、第1の安全監視部54と第2の安全監視部55とにおいて、図3に示したウエイクアップ信号出力部505が設けられていない。
5 and 6 show the configuration of the safety monitoring device according to the second embodiment. As shown in FIG. 5, in the second embodiment, timers 58 and 59 are added to the configuration of the first embodiment shown in FIG. Further, as shown in FIG. 6, in the second embodiment, the wakeup signal output unit 505 shown in FIG. 3 is not provided in the first safety monitoring unit 54 and the second safety monitoring unit 55. .
タイマ57は、第1の安全監視部54からのリセット信号54Dが入力されたときに、タイマカウントをリセットし、スリープ時間TSが経過するまで、経過時間の計測を行う。スリープ時間TSが経過したら、タイムアップ信号58AをOR回路56に出力する。
The timer 57 resets the timer count when the reset signal 54D from the first safety monitoring unit 54 is input, and measures the elapsed time until the sleep time TS elapses. When the sleep time TS elapses, the time-up signal 58A is output to the OR circuit 56.
同様に、タイマ59は、第2の安全監視部55からのリセット信号55Dが入力されたときに、タイマカウントをリセットし、スリープ時間TSが経過するまで、経過時間の計測を行う。スリープ時間TSが経過したら、タイムアップ信号59AをOR回路57に出力する。
Similarly, when the reset signal 55D from the second safety monitoring unit 55 is input, the timer 59 resets the timer count and measures the elapsed time until the sleep time TS elapses. When the sleep time TS elapses, a time-up signal 59A is output to the OR circuit 57.
また、OR回路56には、エレベーター運転制御装置61からのエレベーター起動信号61Aが入力されるとともに、タイマ58からのタイムアップ信号58Aが入力される。OR回路56は、エレベーター起動信号61Aまたはタイムアップ信号58Aの少なくともいずれか一方が入力された場合に、OR信号を出力する。
Further, the OR circuit 56 receives the elevator start signal 61A from the elevator operation control device 61 and the time-up signal 58A from the timer 58. The OR circuit 56 outputs an OR signal when at least one of the elevator activation signal 61A and the time-up signal 58A is input.
同様に、OR回路57には、エレベーター運転制御装置61からのエレベーター起動信号61Aが入力されるとともに、タイマ59からのタイムアップ信号59Aが入力される。OR回路57は、エレベーター起動信号61Aまたはタイムアップ信号59Aの少なくともいずれか一方が入力された場合に、OR信号を出力する。
Similarly, the OR circuit 57 receives the elevator start signal 61A from the elevator operation control device 61 and the time-up signal 59A from the timer 59. The OR circuit 57 outputs an OR signal when at least one of the elevator activation signal 61A and the time-up signal 59A is input.
他の構成および動作については、実施の形態1と基本的に同じであるため、ここでは、説明を省略する。
Other configurations and operations are basically the same as those in the first embodiment, and thus description thereof is omitted here.
上述したように、実施の形態2では、第1の安全監視部54と第2の安全監視部55とが、同期して、スリープ状態移行および解除を行う。そのため、実施の形態2では、第1の安全監視部54及び第2の安全監視部55は、ウエイクアップ信号を送信しない。
As described above, in the second embodiment, the first safety monitoring unit 54 and the second safety monitoring unit 55 perform the sleep state transition and release in synchronization. Therefore, in the second embodiment, the first safety monitoring unit 54 and the second safety monitoring unit 55 do not transmit a wakeup signal.
実施の形態2では、図6に示すように、第1の安全監視部54と第2の安全監視部55とが、自己診断処理実行部500と、スリープ指令部501と、スリープ実行部502と、送受信部503と、安全回路遮断部504と、スリープ異常検出部506とを備えている。
In the second embodiment, as illustrated in FIG. 6, the first safety monitoring unit 54 and the second safety monitoring unit 55 include a self-diagnosis processing execution unit 500, a sleep command unit 501, and a sleep execution unit 502. , A transmission / reception unit 503, a safety circuit cutoff unit 504, and a sleep abnormality detection unit 506 are provided.
自己診断処理実行部500は、通常の定期的な実行に加え、スリープ実行部502がOR回路56,57からのOR信号を受信して、スリープ状態が解除されたときに、自己診断処理を実行する。
The self-diagnosis processing execution unit 500 executes self-diagnosis processing when the sleep execution unit 502 receives the OR signal from the OR circuits 56 and 57 and the sleep state is released in addition to the regular periodic execution. To do.
スリープ指令部501は、予め設定された待機時間TWの間、エレベーター運転制御装置61からエレベーター起動信号61Aが入力されない場合に、他方の安全監視部のスリープ指令部501と同期して、タイマ58,59に対して、リセット信号54D,55Dを出力するとともに、スリープ実行部502に対して、スリープ状態に移行するためのスリープ指令信号を出力する。
When the elevator activation signal 61A is not input from the elevator operation control device 61 during the preset standby time TW, the sleep command unit 501 is synchronized with the sleep command unit 501 of the other safety monitoring unit, Reset signals 54D and 55D are output to 59, and a sleep command signal for shifting to the sleep state is output to the sleep execution unit 502.
スリープ実行部502は、スリープ指令部501からのスリープ指令信号を受信した場合に、当該スリープ指令信号に従って、スリープ状態に移行する。スリープ実行部502は、スリープ状態に移行するときに、送受信部503を介して、エレベーター運転制御装置61および他方の安全監視部に対して、スリープ状態信号51Aを出力する。また、スリープ実行部502は、OR回路56,57からのOR信号を受信した場合に、スリープ状態を解除して、ウエイクアップ完了信号54B,55Bを送受信部503を介して他方の安全監視部に出力する。
When the sleep execution unit 502 receives a sleep command signal from the sleep command unit 501, the sleep execution unit 502 shifts to a sleep state according to the sleep command signal. The sleep execution unit 502 outputs a sleep state signal 51A to the elevator operation control device 61 and the other safety monitoring unit via the transmission / reception unit 503 when shifting to the sleep state. When the sleep execution unit 502 receives the OR signals from the OR circuits 56 and 57, the sleep execution unit 502 cancels the sleep state and sends the wakeup completion signals 54B and 55B to the other safety monitoring unit via the transmission / reception unit 503. Output.
安全回路遮断部504は、スリープ実行部502がスリープ状態への移行を実行したときに、安全監視ユニット70の#SF1主接点70aまたは#SF2主接点70bを開極状態にして、エレベーター安全回路を遮断する。
The safety circuit interrupting unit 504 opens the # SF1 main contact 70a or the # SF2 main contact 70b of the safety monitoring unit 70 when the sleep execution unit 502 executes the transition to the sleep state, and sets the elevator safety circuit. Cut off.
スリープ異常検出部506は、タイマ58,59のタイムアップ信号の出力後、予め設定された異常確認時間TDが経過するまでに、送受信部503が他方の安全監視部からのウエイクアップ完了信号54B,55Bを受信しなかった場合に、他方の安全監視部が「スリープ異常」であると判定して、スリープ異常を検出し、送受信部503を介して、エレベーター運転制御装置61および保守員81が待機する管理センターに対して、スリープ異常検出信号を送信する。
The sleep abnormality detection unit 506 receives the wake-up completion signal 54B from the other safety monitoring unit until the preset abnormality confirmation time TD elapses after the time-up signals of the timers 58 and 59 are output. When 55B is not received, it is determined that the other safety monitoring unit is “sleep abnormality”, the sleep abnormality is detected, and the elevator operation control device 61 and the maintenance staff 81 are on standby via the transmission / reception unit 503. A sleep abnormality detection signal is transmitted to the management center.
次に、エレベーター運転制御装置61と安全監視装置51との動作について、図5,図6に基づいて説明する。
Next, operations of the elevator operation control device 61 and the safety monitoring device 51 will be described with reference to FIGS.
まず、第1の安全監視部54及び第2の安全監視部55は、予め設定された待機時間TWの間、エレベーター運転制御装置61からのエレベーター起動信号61Aの入力がない場合、タイマ58,59に対してリセット信号を出力するとともに、スリープ状態に移行する。スリープ状態は、スリープ時間TSの間、継続される。スリープ時間TSは、自己診断処理を実施する第1の周期P1よりも短い時間に設定されている。
First, when the first safety monitoring unit 54 and the second safety monitoring unit 55 do not input the elevator activation signal 61A from the elevator operation control device 61 during the preset standby time TW, the timers 58 and 59 are provided. In response to the reset signal, a sleep state is entered. The sleep state continues for the sleep time TS. The sleep time TS is set to a time shorter than the first period P1 for performing the self-diagnosis process.
第1の安全監視部54及び第2の安全監視部55は、スリープ状態に移行するときに、エレベーター運転制御装置61および他方の安全監視部に対して、スリープ状態信号51Aを出力する。また、それと同時に、第1の安全監視部54及び第2の安全監視部55は、エレベーター安全回路を遮断する。
The first safety monitoring unit 54 and the second safety monitoring unit 55 output a sleep state signal 51A to the elevator operation control device 61 and the other safety monitoring unit when shifting to the sleep state. At the same time, the first safety monitoring unit 54 and the second safety monitoring unit 55 block the elevator safety circuit.
エレベーター運転制御装置61は、第1の安全監視部54及び第2の安全監視部55からスリープ状態信号51Aを受信すると、エレベーター安全回路の遮断異常をマスクする。
When the elevator operation control device 61 receives the sleep state signal 51A from the first safety monitoring unit 54 and the second safety monitoring unit 55, the elevator operation control device 61 masks an abnormal shutdown of the elevator safety circuit.
タイマ58,59は、スリープ時間TSが経過したときに、OR回路56,57に対して、タイムアップ信号58A,59Aを出力する。
The timers 58 and 59 output time-up signals 58A and 59A to the OR circuits 56 and 57 when the sleep time TS elapses.
OR回路56,57は、タイムアップ信号58A,59Aを受信すると、第1の安全監視部54及び第2の安全監視部55に対して、OR信号を出力する。
OR circuits 56 and 57, when receiving time-up signals 58A and 59A, output OR signals to first safety monitoring unit 54 and second safety monitoring unit 55.
第1の安全監視部54及び第2の安全監視部55は、OR回路56からのOR信号を受信すると、スリープ状態を解除して、ウエイクアップ完了信号54B、55Bを他方の安全監視部に出力して、自己診断処理を実行する。
When the first safety monitoring unit 54 and the second safety monitoring unit 55 receive the OR signal from the OR circuit 56, the first safety monitoring unit 54 and the second safety monitoring unit 55 cancel the sleep state and output the wakeup completion signals 54B and 55B to the other safety monitoring unit. Then, the self-diagnosis process is executed.
このように、エレベーター運転制御装置61からのエレベーター起動信号61Aの入力がなければ、上記の処理を繰り返し、第1の周期P1で、第1の安全監視部54及び第2の安全監視部55は、自己診断処理を周期的に繰り返し実行する。
Thus, if there is no input of the elevator activation signal 61A from the elevator operation control device 61, the above process is repeated, and the first safety monitoring unit 54 and the second safety monitoring unit 55 are in the first cycle P1. The self-diagnosis process is periodically repeated.
一方、エレベーター運転制御装置61からのエレベーター起動信号61Aの入力があった場合には、以下の動作となる。
On the other hand, when an elevator activation signal 61A is input from the elevator operation control device 61, the following operation is performed.
エレベーター運転制御装置61は、呼び/行先階登録、秤検出信号、手動切換信号、ブレーキ解放検出信号、戸開閉検出信号、および、異常検出信号を含む、少なくとも1つ以上の信号が入力されたときに、エレベーター起動信号61Aを安全監視装置51に対して出力する。
When the elevator operation control device 61 receives at least one signal including a call / destination floor registration, a scale detection signal, a manual switching signal, a brake release detection signal, a door open / close detection signal, and an abnormality detection signal The elevator activation signal 61A is output to the safety monitoring device 51.
OR回路56,57は、エレベーター起動信号61Aを受信すると、第1の安全監視部54及び第2の安全監視部55に対して、OR信号を出力する。
The OR circuits 56 and 57 output an OR signal to the first safety monitoring unit 54 and the second safety monitoring unit 55 when the elevator activation signal 61A is received.
第1の安全監視部54及び第2の安全監視部55は、OR回路56,57からのOR信号を受信すると、スリープ状態を解除して、ウエイクアップ完了信号54B、55Bを他方の安全監視部に出力する。
When the first safety monitoring unit 54 and the second safety monitoring unit 55 receive the OR signals from the OR circuits 56 and 57, the first safety monitoring unit 54 and the second safety monitoring unit 55 cancel the sleep state and send the wake-up completion signals 54B and 55B to the other safety monitoring unit. Output to.
もし、ここで、OR回路56,57がOR信号を送信したにもかかわらず、第1の安全監視部54または第2の安全監視部55が、他方の安全監視部からのウエイクアップ完了信号54B,55Bを受信しなかった場合について説明する。
If the OR circuits 56 and 57 transmit the OR signal, the first safety monitoring unit 54 or the second safety monitoring unit 55 receives the wake-up completion signal 54B from the other safety monitoring unit. , 55B is not received.
すなわち、OR回路56,57がOR信号を送信したにもかかわらず、異常確認時間TDが経過するまでに、第2の安全監視部55が第1の安全監視部54からのウエイクアップ完了信号54Bを受信しなかった場合、あるいは、第1の安全監視部54が第2の安全監視部55からのウエイクアップ完了信号55Bを受信しなかった場合、第1の安全監視部54または第2の安全監視部55は、他方の安全監視部が「スリープ異常」であると判定して、スリープ異常検出信号を「異常」側に設定する。
That is, the second safety monitoring unit 55 receives the wake-up completion signal 54B from the first safety monitoring unit 54 until the abnormality confirmation time TD elapses even though the OR circuits 56 and 57 transmit the OR signal. Or when the first safety monitoring unit 54 does not receive the wakeup completion signal 55B from the second safety monitoring unit 55, the first safety monitoring unit 54 or the second safety monitoring unit 54 The monitoring unit 55 determines that the other safety monitoring unit is “sleep abnormality” and sets the sleep abnormality detection signal to the “abnormal” side.
以上のように、実施の形態2においては、上記の実施の形態1と同様の効果を得ることができる。また、実施の形態2においては、第1及び第2の安全監視部54,55を同時にスリープできるので、さらなる省エネルギー効果の向上が期待できる。
As described above, in the second embodiment, the same effect as in the first embodiment can be obtained. In the second embodiment, since the first and second safety monitoring units 54 and 55 can sleep simultaneously, further improvement in energy saving effect can be expected.
Claims (6)
- 対象システムの安全状態を監視する一対の安全監視部を備え、
各前記安全監視部は、
予め設定された一定周期に基づいて、前記対象システムの構成機器の自己診断処理を周期的に実行する自己診断処理実行部と、
予め設定された第1の設定時間の間、外部からの信号の入力がない場合に、前記安全監視部をスリープ状態に移行させるスリープ指令を出力するスリープ指令部と、
前記スリープ指令部からの前記スリープ指令に従って、前記安全監視部を、予め設定された第2の設定時間の間、スリープ状態にする、スリープ実行部と
を有し、
前記第2の設定時間の時間長は、前記一定周期の時間長より短い、
安全監視装置。 It has a pair of safety monitoring units that monitor the safety status of the target system,
Each said safety monitoring unit
A self-diagnosis process execution unit that periodically executes a self-diagnosis process of the constituent devices of the target system based on a predetermined constant period;
A sleep command unit that outputs a sleep command that causes the safety monitoring unit to transition to a sleep state when there is no input of an external signal during a preset first setting time;
A sleep execution unit that puts the safety monitoring unit into a sleep state for a preset second set time in accordance with the sleep command from the sleep command unit;
The time length of the second set time is shorter than the time length of the fixed period,
Safety monitoring device. - 各前記安全監視部は、
前記スリープ実行部により前記スリープ状態に移行されるときに、他方の前記安全監視部に対して、前記スリープ状態への移行を通知するスリープ状態信号を出力するスリープ状態信号出力部と、
前記第2の設定時間が経過して前記スリープ実行部により前記スリープ状態が解除されるときに、他方の前記安全監視部に対して、前記スリープ状態の解除を通知するウエイクアップ完了信号を出力するウエイクアップ完了信号出力部と
をさらに有する、
請求項1に記載の安全監視装置。 Each said safety monitoring unit
A sleep state signal output unit that outputs a sleep state signal notifying the other safety monitoring unit of the transition to the sleep state when the sleep execution unit shifts to the sleep state;
When the sleep state is canceled by the sleep execution unit after the second set time has elapsed, a wakeup completion signal for notifying the release of the sleep state is output to the other safety monitoring unit A wake-up completion signal output unit;
The safety monitoring device according to claim 1. - 各前記安全監視部は、一方が、前記スリープ状態への移行を実行するスリープ実行側安全監視部になったときに、他方が、前記スリープ状態への移行を実行しないスリープ非実行側安全監視部となることで、交互に前記スリープ状態への移行を実行するものであって、
各前記安全監視部は、
前記スリープ状態への移行から前記第2の設定時間が経過したときに、他方の前記安全監視部に対して、ウエイクアップ信号を出力するウエイクアップ信号出力部
をさらに有し、
前記スリープ実行側安全監視部における前記スリープ実行部は、前記スリープ非実行側安全監視部における前記ウエイクアップ信号出力部からの前記ウエイクアップ信号を受信したときに、自身の前記安全監視部の前記スリープ状態を解除する、
請求項1または2に記載の安全監視装置。 Each of the safety monitoring units, when one becomes a sleep execution side safety monitoring unit that executes the transition to the sleep state, the other does not execute the transition to the sleep state. So that the transition to the sleep state is executed alternately,
Each said safety monitoring unit
A wake-up signal output unit that outputs a wake-up signal to the other safety monitoring unit when the second set time has elapsed from the transition to the sleep state;
When the sleep execution unit in the sleep execution side safety monitoring unit receives the wakeup signal from the wakeup signal output unit in the sleep non-execution side safety monitoring unit, the sleep execution unit's own safety monitoring unit Cancel the state,
The safety monitoring device according to claim 1 or 2. - 各前記安全監視部は、予め設定された期間ごとに、前記スリープ実行側安全監視部と前記スリープ非実行側安全監視部との切換えを行う、
請求項3に記載の安全監視装置。 Each of the safety monitoring units performs switching between the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring unit for each preset period.
The safety monitoring device according to claim 3. - 各前記安全監視部は、前記一定周期ごとに、前記スリープ実行側安全監視部と前記スリープ非実行側安全監視部との切換えを行う、
請求項3に記載の安全監視装置。 Each of the safety monitoring units performs switching between the sleep execution side safety monitoring unit and the sleep non-execution side safety monitoring unit for each predetermined period.
The safety monitoring device according to claim 3. - 各前記安全監視部は、互いに同期して、前記スリープ状態への移行および前記スリープ状態の解除を同時に実行するものであって、
前記安全監視装置は、
各前記安全監視部に接続され、前記スリープ状態への移行の時点から前記第2の設定時間が経過したときに、タイムアップ信号を出力するタイマ
をさらに備え、
各前記安全監視部の前記スリープ実行部は、前記タイマから出力された前記タイムアップ信号が入力されたときに、自身の前記安全監視部の前記スリープ状態を解除する、
請求項1または2に記載の安全監視装置。 Each of the safety monitoring units executes the transition to the sleep state and the release of the sleep state simultaneously in synchronization with each other,
The safety monitoring device is:
A timer that is connected to each safety monitoring unit and that outputs a time-up signal when the second set time has elapsed from the time of transition to the sleep state;
The sleep execution unit of each safety monitoring unit cancels the sleep state of its safety monitoring unit when the time-up signal output from the timer is input.
The safety monitoring device according to claim 1 or 2.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/073137 WO2018025408A1 (en) | 2016-08-05 | 2016-08-05 | Safety monitoring device |
CN201680088090.1A CN109562908B (en) | 2016-08-05 | 2016-08-05 | Safety monitoring device |
DE112016007120.5T DE112016007120T5 (en) | 2016-08-05 | 2016-08-05 | Security Monitor |
JP2018531716A JP6570753B2 (en) | 2016-08-05 | 2016-08-05 | Safety monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/073137 WO2018025408A1 (en) | 2016-08-05 | 2016-08-05 | Safety monitoring device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018025408A1 true WO2018025408A1 (en) | 2018-02-08 |
Family
ID=61072926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073137 WO2018025408A1 (en) | 2016-08-05 | 2016-08-05 | Safety monitoring device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6570753B2 (en) |
CN (1) | CN109562908B (en) |
DE (1) | DE112016007120T5 (en) |
WO (1) | WO2018025408A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11535487B2 (en) | 2018-11-23 | 2022-12-27 | Otis Elevator Company | Elevator safety system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007176618A (en) * | 2005-12-27 | 2007-07-12 | Toshiba Elevator Co Ltd | Remote monitoring system for lifter |
JP2008201537A (en) * | 2007-02-20 | 2008-09-04 | Mitsubishi Electric Corp | Self-power generation type inspection device and method, and escalator system |
JP2013119467A (en) * | 2011-12-07 | 2013-06-17 | Mitsubishi Electric Corp | Elevator equipment |
JP2013142015A (en) * | 2012-01-10 | 2013-07-22 | Toshiba Elevator Co Ltd | Security device and security system of passenger conveyer |
JP2014172721A (en) * | 2013-03-08 | 2014-09-22 | Toshiba Elevator Co Ltd | Wireless sensor network system for elevator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011132014A (en) | 2009-12-25 | 2011-07-07 | Toshiba Elevator Co Ltd | Elevator control device |
CN102998625B (en) * | 2011-09-09 | 2017-05-24 | 株式会社杰士汤浅国际 | Monitor |
-
2016
- 2016-08-05 CN CN201680088090.1A patent/CN109562908B/en active Active
- 2016-08-05 JP JP2018531716A patent/JP6570753B2/en active Active
- 2016-08-05 DE DE112016007120.5T patent/DE112016007120T5/en active Pending
- 2016-08-05 WO PCT/JP2016/073137 patent/WO2018025408A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007176618A (en) * | 2005-12-27 | 2007-07-12 | Toshiba Elevator Co Ltd | Remote monitoring system for lifter |
JP2008201537A (en) * | 2007-02-20 | 2008-09-04 | Mitsubishi Electric Corp | Self-power generation type inspection device and method, and escalator system |
JP2013119467A (en) * | 2011-12-07 | 2013-06-17 | Mitsubishi Electric Corp | Elevator equipment |
JP2013142015A (en) * | 2012-01-10 | 2013-07-22 | Toshiba Elevator Co Ltd | Security device and security system of passenger conveyer |
JP2014172721A (en) * | 2013-03-08 | 2014-09-22 | Toshiba Elevator Co Ltd | Wireless sensor network system for elevator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11535487B2 (en) | 2018-11-23 | 2022-12-27 | Otis Elevator Company | Elevator safety system |
Also Published As
Publication number | Publication date |
---|---|
JP6570753B2 (en) | 2019-09-04 |
DE112016007120T5 (en) | 2019-04-25 |
CN109562908A (en) | 2019-04-02 |
CN109562908B (en) | 2020-06-16 |
JPWO2018025408A1 (en) | 2018-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5816102B2 (en) | Electronic safety elevator | |
JP5355543B2 (en) | Elevator equipment | |
JPWO2009157085A1 (en) | Elevator apparatus and operation method thereof | |
WO2015093217A1 (en) | Elevator controller and method for controlling same | |
JP6393633B2 (en) | Elevator | |
JP2008207898A (en) | Control device for elevator | |
WO2008062509A1 (en) | Elevator controller | |
JP6570753B2 (en) | Safety monitoring device | |
JP5349590B2 (en) | Elevator equipment | |
JP5360225B2 (en) | Elevator equipment | |
JP2014091594A (en) | Door opening and closing device for elevator | |
JP5525347B2 (en) | Inspection method for elevator opening prevention device and elevator monitoring device | |
WO2011010356A1 (en) | Control device for elevator | |
CN112010137B (en) | Elevator device and control method thereof | |
JP2009263109A (en) | Elevator brake control device | |
WO2018008220A1 (en) | Elevator | |
KR19990020585A (en) | Rescue operation method using motor drive controller | |
JP6821086B2 (en) | Elevator control device and elevator control method | |
JP6456267B2 (en) | Elevator door device and elevator confinement rescue method | |
JP2012184052A (en) | Elevator control apparatus | |
JP2011020786A (en) | Rescue operation device of elevator | |
WO2018235156A1 (en) | Elevator device | |
JP2015003803A (en) | Elevator safety device and elevator control method | |
JP2015101423A (en) | Rescue operation device for elevator and rescue operation method for elevator | |
JP2009137715A (en) | Elevator control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018531716 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16911667 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16911667 Country of ref document: EP Kind code of ref document: A1 |