WO2018008220A1 - Elevator - Google Patents

Elevator Download PDF

Info

Publication number
WO2018008220A1
WO2018008220A1 PCT/JP2017/014787 JP2017014787W WO2018008220A1 WO 2018008220 A1 WO2018008220 A1 WO 2018008220A1 JP 2017014787 W JP2017014787 W JP 2017014787W WO 2018008220 A1 WO2018008220 A1 WO 2018008220A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
brake
brakes
braking force
control unit
Prior art date
Application number
PCT/JP2017/014787
Other languages
French (fr)
Japanese (ja)
Inventor
真輔 井上
智明 照沼
大沼 直人
達志 藪内
岩本 晃
直樹 高山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201780034736.2A priority Critical patent/CN109311631B/en
Publication of WO2018008220A1 publication Critical patent/WO2018008220A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator.
  • Conventional elevators enable the elevator connected to the rope to move up and down by rotating the electric motor from the power converter and moving the rope up and down via a sheave connected to the electric motor.
  • a part of the drive system such as the power converter, the electric motor, or the encoder connected to the electric motor breaks down, the elevator stops.
  • the position where the elevator car stops is between the floors, and confinement occurs when passengers are in the car at this time.
  • a maintenance worker As a method for rescuing a passenger trapped due to such a drive system failure, a maintenance worker generally performs the method. In particular, if the weight in the car is not balanced with the counterweight, you can manually release the brakes and use the imbalance with the counterweight to move the car to the nearest floor. Rescue. In addition, there is a method for early rescue by using a dedicated terminal that automatically releases the brake as described in Patent Document 1.
  • the present invention includes a plurality of brakes that apply braking force to the car and the movement of the car, and a controller that controls the braking force of the plurality of brakes.
  • the brake release control unit that releases one or more brakes among a plurality of brakes and releases the brakes so that no braking force is generated, and the braking force of the brakes that are not released among the plurality of brakes during rescue operation.
  • an elevator characterized by including a car movement control unit that controls a movement speed of a car and sets a car movement control state.
  • redundancy of the braking force of the brake can be ensured during the rescue operation.
  • FIG. 1 is an overall configuration diagram illustrating an embodiment of the present invention.
  • the block diagram which shows the process of the braking force control part in one Embodiment.
  • the figure which shows the outline
  • the flowchart figure in one embodiment.
  • FIG. 1 is an overall configuration diagram showing an elevator according to the present invention, and movement of an elevator car 104 is controlled by an elevator controller 100.
  • the elevator controller 100 includes a braking force control unit 20 in addition to the elevator control unit 2 that performs elevator operation control.
  • the car 104 moves between a plurality of floors in a hoistway formed in the building, and is connected to a counterweight 105 for balancing with the car 104 via a rope.
  • the car 104 is provided with a car-side door that engages and opens and closes the landing-side door.
  • the car 104 is moved when the sheave is driven by the electric motor 103.
  • the electric power is supplied to the electric motor 103 by the electric power converter 101.
  • the power converter 101 outputs electric power for controlling the electric motor according to the car position control command of the elevator controller 100.
  • a pulse generator such as a motor encoder is attached to the electric motor 103, and the elevator controller 100 counts the pulses generated by the rotation of the electric motor 103, so that the speed of the electric motor 103, the moving direction of the hoistway of the car 104, the position, Calculate the distance traveled.
  • the elevator controller wants to stop the car, it outputs a brake power stop command and a power power stop command (not shown).
  • the brake power supply operates to the first brake 102A and the second brake 102B, and the motive power power supply cuts the power supply to the power converter 101 to stop the car 104.
  • the brake power source and the power source are circuits composed of electromagnetic contactors called contactors.
  • the first brake 102A and the second brake 102B are composed of a brake pad for braking the sheave by friction sliding, a solenoid coil for lifting the brake pad to ensure a gap between the sheave and the brake pad, and an iron core (core). Is done. Normally, when electric power is supplied to the solenoid coil, the brake pad is pulled up by the electromagnetic force, and the sheave is not restricted by the brake pad and can freely rotate. Electric power is supplied to the solenoid coil via a relay from a brake power source.
  • the first brake 102A and the second brake 102B are mechanically independent from each other.
  • first brake 102A and the second brake 102B are controlled by a circuit that controls the current (brake current) flowing to the solenoid coil by the corresponding first brake current control circuit 21A and second brake current control circuit 21B, respectively. It is the structure which can be changed.
  • the first brake current control circuit 21A and the second brake current control circuit 21B are also independent of each other.
  • the first brake 102 ⁇ / b> A and the second brake 102 ⁇ / b> B each have a braking force sufficient to stop the car 104 and the counterweight 105.
  • the first brake current control circuit 21A and the second brake current control circuit 21B are composed of a converter for controlling current or voltage such as an inverter circuit and a chopper circuit, a hall CT for detecting the brake current, and a controller for controlling the brake current.
  • a converter for controlling current or voltage such as an inverter circuit and a chopper circuit
  • a hall CT for detecting the brake current
  • a controller for controlling the brake current.
  • the brake current is controlled to the command value.
  • the brake mechanism for changing the braking force according to the current using the solenoid coil is exemplified as a configuration for changing the braking force.
  • a brake that changes the braking force in response to this, or a brake (such as a shoe brake) that changes the braking force in accordance with the rotation angle by using a rotation mechanism may be used.
  • a brake such as a shoe brake
  • the scale sensor 4 is used to detect the number of passengers in the car. During normal operation, it is used to calculate the required torque to compensate for the weight difference between the car and the counterweight.
  • the scale sensor uses a method of estimating the weight from the amount of deflection of the car floor using a proximity sensor provided on the car frame.
  • the position sensor 5 is a door zone sensor that detects whether the elevator is at a position where the door can be opened by detecting the detection plate 6.
  • the safety controller 1 is a controller constituting a safety system that stops the car 104 by shutting off the brake power supply and the power supply power independently of the elevator controller 100.
  • the safety controller 1 has a configuration centering on a CPU (Central Processing Unit) that executes processing, and further includes a watchdog timer for detecting an abnormality of the CPU and a circuit for monitoring an abnormality of the power supply.
  • a CPU Central Processing Unit
  • a watchdog timer for detecting an abnormality of the CPU and a circuit for monitoring an abnormality of the power supply.
  • the input of the safety controller 1 includes a detection device 7 for detecting the position / speed / acceleration of the car, and means (not shown) for detecting the operation of the elevator safety device.
  • the detection device 7 for detecting the position / velocity / acceleration of the car is, for example, a pulse generator that outputs a pulse in accordance with the position of the car.
  • a governor with a governor encoder attached thereto is illustrated. Yes. This can be any means that can detect the absolute or relative position of the car, such as a type that detects the movement of the car by pressing the roller directly against the guide rail or a type that detects the magnet by magnetizing the rail. That's fine.
  • the output of the safety controller 1 is composed of brake power cutoff outputs 9A and 9B, a power source cutoff output 10, and a car position and speed information output 23 detected by the safety controller.
  • the brake power cut-off outputs 9A and 9B are outputs for cutting off the brake power and operating the first brake 102A and the second brake 102B, respectively.
  • the power supply cutoff output 10 is an output for stopping the electric motor 103 by shutting off the power source of the power converter 101. Either output is used to stop the car.
  • FIG. 2 is a block diagram of the braking force control unit 20, and an outline of the braking force control unit 20 will be described with reference to FIG.
  • the rescue operation start detection unit 30 of the braking force control unit 20 is a unit that detects a rescue operation start command transmitted from the elevator control unit 2 of the elevator controller 100, and starts the rescue operation identified by the rescue operation start command or A stop command is transmitted to the rescue operation control unit 32.
  • the car position / speed detection unit 31 receives the car position and speed information output 23 input from the safety controller 1, detects the car position and speed of its own machine in the current hoistway, and rescues the detected values. Output to the operation control unit 32.
  • the rescue operation control unit 32 performs rescue operation control based on the rescue operation start or stop command received from the rescue operation start detection unit 30 and the car position and speed information received from the car position / speed detection unit 31. To do.
  • the brake release control unit 33 is a control unit that creates a brake lifting command for lifting one brake (here, the first brake 102A as an example) based on a command from the rescue operation control unit 32.
  • the car movement control unit 34 is a control unit that creates a brake car movement permission command to a brake (herein referred to as the second brake 102B) that moves the car by releasing the brake based on a command from the rescue operation control unit 32. .
  • the brake release control unit 33 outputs a current command for pulling up the first brake 102A to a release state to the first brake current control circuit 21A.
  • the car movement control unit 34 outputs a current command for moving the car to bring the second brake 102B into the car movement control state to the second brake current control circuit 21B.
  • the rescue operation control unit 32 stops lifting the brake of the first brake 102A when it detects overshoot or overspeed of the car position based on the car position / speed output from the car position / speed detection unit 31.
  • the brake command is output to the first brake current control circuit 21A in order to place the first brake 102A in the released state into a stop state in which a braking force is applied to stop the car.
  • the rescue operation control unit 32 outputs a braking command to the second brake current control circuit 21B in order to change the second brake 102B from the car movement control state to the braking state in which the car is stopped.
  • FIG. 3 shows a brake car movement permission command created by the car movement control unit 34, a brake lifting command (brake release command) created by the brake release control unit 33, an overspeed detection signal created by the rescue operation control unit 32, and car movement.
  • the relationship between the second brake current command which is a current command for moving the car created by the control unit 34, the first brake current command for releasing the brake created by the brake release control unit 33, and the car speed, It is shown in series.
  • the time axis is divided into four sections (a) to (d).
  • the brake car movement permission command is applied to the second brake 102B and the brake lifting command (brake release command) is applied to the first brake 102A, this relationship may be reversed.
  • the basic operation method will be described in order from the section (a).
  • the brake car movement permission command and the brake lifting command are zero, that is, the car is braked by both brakes and the car is stationary. As a result, the car speed is zero.
  • the brake release control unit 33 sets the brake release command to ON. Accordingly, the brake release control unit 33 transmits a first brake current command to the first brake current control circuit 21A. Electricity is supplied from the first brake current control circuit 21A to the first brake 102A, and the first brake 102A is pulled up from the sheave. At this time, since the second brake 102B is in contact with the sheave and the car is stopped by the braking force, the car speed is zero.
  • the car movement control unit 34 is in a state where the brake car movement permission command is turned ON and the car is being moved by the second brake 102B. At this time, the car movement control unit 34 outputs a second brake current command for causing the second brake current control circuit 21B to intermittently release the brake. In response to the command, the second brake current control circuit 21B intermittently releases the second brake 102B, so that the car moves. For this reason, the car speed is generated in the section (c). A state in which a mechanical or electrical failure of the second brake 102B has occurred and the speed of the car has increased is also illustrated. In this embodiment, the second brake current is changed to release the second brake 102B intermittently. However, the second brake current is made constant and a constant braking force is applied to the sheave by the second brake 102B. You can continue.
  • Section (d) shows a state where the rescue operation control unit 32 has detected an overspeed.
  • the car position / speed detector 31 detects the car position and speed of its own machine in the current hoistway and outputs the detected values. To do. If the detected value is an overspeed, the rescue operation control unit 32 activates an overspeed detection command and sets the brake car movement permission command and the brake lifting command to zero. Thus, the car is braked with the current command to the first brake current control circuit 21A and the second brake current control circuit 21B set to zero. At this time, there is a possibility that the second brake 102B cannot brake the car due to some trouble, but it is possible to brake the car more safely by performing the braking by the first brake 102A that has been waiting. Become.
  • FIG. 4 shows a flowchart of rescue operation control.
  • the rescue operation control unit 32 determines whether the rescue operation start command output from the rescue operation start detection unit 30 is ON (start) / OFF (stop). If the rescue operation start command is OFF, the process ends. If the rescue operation start command is ON, the process proceeds to step S102.
  • the condition for turning on the rescue operation start command is normally set when a passenger is trapped in the car and the motor cannot be driven due to some abnormality. Although referred to as rescue operation, the passenger does not necessarily have to be confined in the car, and this control may be performed in a state where the rescue operation is necessary if the passenger is on the vehicle.
  • the condition for the rescue operation start command to be turned off is set during normal operation or during rescue operation, when the door opening position on the nearest floor is reached or when a brake abnormality is detected.
  • step S102 it is determined whether the car speed V is zero. If the car speed V output by the car position / speed detection unit 31 is zero, the rescue operation control unit 32 determines that the car is in a stopped state and can start the rescue operation, and proceeds to step S104. If the car speed V is not zero, the car is moving for some reason, and the process proceeds to step S103 for stopping the car. In step S103, the rescue operation control unit 32 sets the brake car movement permission command and the brake lifting command to zero so that braking by two brakes is performed.
  • step S104 the brake release control unit 33 turns on a brake lifting command for releasing the brake on one side, and transmits a current command to the brake current control circuit to be released.
  • step S105 it is detected that the brake raised in step S104 is in the raised state.
  • the fact that the brake is lifted is usually detected using a switch for detecting mechanical movement of the brake such as a brake check switch.
  • the brake may be lifted either way, but for example, the first brake 102A may be switched alternately during the first driving, and the second brake 102B may be switched alternately during the next driving. By alternately switching in this way, wear of the first brake 102A and the second brake 102B can be leveled. If it is not detected in step S105 that the brake has been raised, normal operation of the brake that was scheduled to be raised cannot be expected, and the operation is stopped. More specifically, the process proceeds to step S103.
  • step S106 the car movement control unit 34 turns on the brake car movement permission command.
  • a current command is transmitted from the car movement control unit 34 to a brake current control circuit connected to a brake that controls the movement of the car.
  • the current command is set and transmitted as a target value to set the car to a predetermined speed.
  • the predetermined speed is a speed that is lower than the speed excess value described later and the detected speed.
  • step S107 based on the car speed calculated by the car position / speed detection unit 31, the rescue operation control unit 32 detects an overspeed of the car. If the current car speed is greater than the overspeed value, the process proceeds to step S108.
  • step S108 the rescue operation control unit 32 starts up the overspeed detection command, and sets the brake car movement permission command and the brake lifting command to zero.
  • the current command to each brake current control circuit becomes zero, and the brake is not sucked, and the car is braked by braking the sheave. In such a case, the car is stopped and rescued by calling maintenance personnel.
  • the setting of the overspeed value may be less than the speed at which the governor operates.
  • braking at a low speed is less affected by changes in acceleration on passengers, so it may be set in accordance with, for example, the maintenance operation speed or the operation speed during construction. .
  • this threshold value may be set to the car position, and braking may be applied in accordance with overshoot of the car. If the car speed is lower than the overspeed value, the process proceeds to step S109.
  • step S109 in response to the car position and speed information output 23 input from the safety controller 1, the car position / speed detector 31 detects the car position and speed of the own car in the current hoistway, and rescue operation control is performed. Part 32 determines that the car has arrived at the nearest floor. When it arrives at the nearest floor, it transfers to step S110. In step S110, the rescue operation control unit 32 sets the brake car movement permission command and the brake pull-up command to zero so that only the brakes are in a braking state and the car is stopped. The rescue operation control unit 32 releases the car door and completes the rescue operation. If it has not arrived at the nearest floor, the process returns to step S107.
  • the elevator controller can ensure the braking force of the brake that has been put on standby by preparing the brake in a standby state where the braking force does not act during the rescue operation. Therefore, even when the car is moved by controlling the braking force with other brakes, even if the car is overspeed and cannot be braked with the other brakes, By braking with, the car can be safely stopped.
  • the brakes are the first brake 102A and the second brake 102B has been described, but the present invention can also be implemented with three or more brakes. Even when one or more of the brakes are released, it is possible if the car can be stopped by the remaining other brakes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

The present invention solves the problem of being unable to ensure brake redundancy in a dual-brake system when disengaging the brakes. This elevator comprises an elevator car, a plurality of brakes that applies braking force to the movement of the elevator car, and a controller that controls the braking force of the plurality of brakes. The controller comprises a brake disengagement control unit that, during a rescue operation, puts one or more brakes among the plurality of brakes into a disengaged state in which said brakes are disengaged and no braking force is generated, and a car movement control unit that, during a rescue operation, puts, among the plurality of brakes, the brakes not in the disengaged state into a car movement control state in which the velocity of the elevator car movement is controlled by changing the braking force of said brakes.

Description

エレベーターElevator
 本発明はエレベーターに関する。 The present invention relates to an elevator.
 従来のエレベーターは、電力変換器から電動機を回転させ、電動機と連結しているシーブを介して、ロープを上下方向へ移動させることで、ロープと接続されているかごの昇降を可能としている。この電力変換器や電動機,電動機と接続したエンコーダ等,駆動システムの一部が故障した場合、エレベーターは停止する。エレベーターのかごの停止した位置が階と階の間であり、この時に乗客がかご内にいると閉じ込めが発生する。 Conventional elevators enable the elevator connected to the rope to move up and down by rotating the electric motor from the power converter and moving the rope up and down via a sheave connected to the electric motor. When a part of the drive system such as the power converter, the electric motor, or the encoder connected to the electric motor breaks down, the elevator stops. The position where the elevator car stops is between the floors, and confinement occurs when passengers are in the car at this time.
 このような駆動システムの故障により閉じ込められた乗客を救出するための方法としては、一般的には保守作業員により行われる。特に、かご内の重量がつり合い重りとつり合っていない場合には、ブレーキを手動で解放することにより、つり合い重りとのアンバランスを利用して、最寄階までかごを移動させることで乗客を救出する。また、特許文献1に記載のようなブレーキの解放を自動で行う専用の端末を利用することで、早期に救出する方法が存在する。 As a method for rescuing a passenger trapped due to such a drive system failure, a maintenance worker generally performs the method. In particular, if the weight in the car is not balanced with the counterweight, you can manually release the brakes and use the imbalance with the counterweight to move the car to the nearest floor. Rescue. In addition, there is a method for early rescue by using a dedicated terminal that automatically releases the brake as described in Patent Document 1.
国際公開第2009/013821号パンフレットInternational Publication No. 2009/013821 Pamphlet
 しかしながら、特許文献1に開示された救出運転の技術をはじめ、一般的なエレベーターのブレーキは二重化されているものの、ブレーキを作動させるための駆動回路は単一で運用している。このため、救出運転時にブレーキを断続的に解放してかごを移動させる場合、二重化されたブレーキ双方を断続して開閉するため、救出運転時にブレーキの冗長性が確保されない。 However, although a common elevator brake including the rescue operation technique disclosed in Patent Document 1 is duplicated, a single drive circuit is operated to operate the brake. For this reason, when the car is moved by intermittently releasing the brake during the rescue operation, both of the doubled brakes are intermittently opened and closed, so that the redundancy of the brake is not ensured during the rescue operation.
 上記課題を解決するため、本発明は、乗りかごと、乗りかごの移動に制動力を加える複数のブレーキと、複数のブレーキの制動力を制御するコントローラと、を備え、コントローラは、救出運転中に複数のブレーキのうち1以上のブレーキを解放し制動力を発生させない解放状態にするブレーキ解放制御部と、救出運転中に複数のブレーキのうち解放状態でないブレーキの制動力を変化させることにより乗りかごの移動速度を制御するかご移動制御状態にするかご移動制御部を備える、ことを特徴としたエレベーターを提供する。 In order to solve the above-described problems, the present invention includes a plurality of brakes that apply braking force to the car and the movement of the car, and a controller that controls the braking force of the plurality of brakes. The brake release control unit that releases one or more brakes among a plurality of brakes and releases the brakes so that no braking force is generated, and the braking force of the brakes that are not released among the plurality of brakes during rescue operation There is provided an elevator characterized by including a car movement control unit that controls a movement speed of a car and sets a car movement control state.
 本発明によれば、救出運転時にブレーキの制動力の冗長性を確保することができる。 According to the present invention, redundancy of the braking force of the brake can be ensured during the rescue operation.
本発明における一実施の形態を示す全体構成図。1 is an overall configuration diagram illustrating an embodiment of the present invention. 一実施の形態における制動力制御部の処理を示すブロック図。The block diagram which shows the process of the braking force control part in one Embodiment. 一実施の形態における動作の概要を示す図。The figure which shows the outline | summary of the operation | movement in one Embodiment. 一実施の形態におけるフローチャート図。The flowchart figure in one embodiment.
 以下、図面を参照して、一実施の形態について詳細を説明する。 Hereinafter, details of one embodiment will be described with reference to the drawings.
 [第一の実施形態]
 図1は、本発明におけるエレベーターを示す全体構成図であり、エレベーターのかご104の移動は、エレベーターコントローラ100によって制御される。エレベーターコントローラ100は、エレベーターの運行制御を行うエレベーター制御部2の他に、制動力制御部20を備えている。
[First embodiment]
FIG. 1 is an overall configuration diagram showing an elevator according to the present invention, and movement of an elevator car 104 is controlled by an elevator controller 100. The elevator controller 100 includes a braking force control unit 20 in addition to the elevator control unit 2 that performs elevator operation control.
 かご104は、建屋に形成された昇降路内を複数の階床間に渡って移動し、ロープを介してかご104とバランスを取るためのつり合い重り105に接続されている。かご104には、乗り場側扉を係合して開閉する乗りかご側扉が設けられている。かご104の移動は、電動機103によって綱車が駆動されることにより行われる。電動機103には、電力変換器101によって駆動用の電力の供給が行われる。電力変換器101は、エレベーターコントローラ100のかご位置制御指令に従って電動機を制御するための電力を出力する。また、モーターエンコーダなどのパルス発生器は電動機103に取り付けられており、エレベーターコントローラ100は電動機103の回転によって生じるパルスを計数することにより、電動機103の速度,かご104の昇降路移動方向,位置,移動距離などを計算する。エレベーターコントローラが乗りかごを制止させたい場合は、ブレーキ電源停止指令及び動力電源停止指令(図示せず)を出力する。これらの停止指令を受けて、ブレーキ電源は第1ブレーキ102A及び第2ブレーキ102Bへの作動を、動力電源は電力変換器101への電源供給のカットを行い、かご104を制止させる。ブレーキ電源及び動力電源は、コンタクタと呼ばれる電磁接触器で構成される回路である。 The car 104 moves between a plurality of floors in a hoistway formed in the building, and is connected to a counterweight 105 for balancing with the car 104 via a rope. The car 104 is provided with a car-side door that engages and opens and closes the landing-side door. The car 104 is moved when the sheave is driven by the electric motor 103. The electric power is supplied to the electric motor 103 by the electric power converter 101. The power converter 101 outputs electric power for controlling the electric motor according to the car position control command of the elevator controller 100. Further, a pulse generator such as a motor encoder is attached to the electric motor 103, and the elevator controller 100 counts the pulses generated by the rotation of the electric motor 103, so that the speed of the electric motor 103, the moving direction of the hoistway of the car 104, the position, Calculate the distance traveled. When the elevator controller wants to stop the car, it outputs a brake power stop command and a power power stop command (not shown). In response to these stop commands, the brake power supply operates to the first brake 102A and the second brake 102B, and the motive power power supply cuts the power supply to the power converter 101 to stop the car 104. The brake power source and the power source are circuits composed of electromagnetic contactors called contactors.
 第1ブレーキ102A及び第2ブレーキ102Bは、シーブを摩擦摺動で制動させるためのブレーキパッド、ブレーキパッドを引き上げてシーブとブレーキパッドのギャップを確保するためのソレノイドコイル及び鉄芯(コア)で構成される。通常、ソレノイドコイルに電力が供給されると、電磁力によりブレーキパッドが引き上げられ、シーブはブレーキパッドによる拘束がなくなり、自由に回転できるようになる。ソレノイドコイルへの給電はブレーキ電源からのリレーを介して行われる。また、第1ブレーキ102A及び第2ブレーキ102Bはそれぞれ機構的に独立した構成となっている。さらに、第1ブレーキ102A及び第2ブレーキ102Bは、それぞれ対応した第1ブレーキ電流制御回路21A及び第2ブレーキ電流制御回路21Bにより、ソレノイドコイルへ流れる電流(ブレーキ電流)を制御する回路により、制動力を変化させることが可能な構成となっている。また、これらの第1ブレーキ電流制御回路21A及び第2ブレーキ電流制御回路21Bも、互いに独立した構成となっている。第1ブレーキ102A及び第2ブレーキ102Bはそれぞれ単独でもかご104及び釣り合い錘105を止めておくのに十分な制動力を有している。 The first brake 102A and the second brake 102B are composed of a brake pad for braking the sheave by friction sliding, a solenoid coil for lifting the brake pad to ensure a gap between the sheave and the brake pad, and an iron core (core). Is done. Normally, when electric power is supplied to the solenoid coil, the brake pad is pulled up by the electromagnetic force, and the sheave is not restricted by the brake pad and can freely rotate. Electric power is supplied to the solenoid coil via a relay from a brake power source. The first brake 102A and the second brake 102B are mechanically independent from each other. Further, the first brake 102A and the second brake 102B are controlled by a circuit that controls the current (brake current) flowing to the solenoid coil by the corresponding first brake current control circuit 21A and second brake current control circuit 21B, respectively. It is the structure which can be changed. The first brake current control circuit 21A and the second brake current control circuit 21B are also independent of each other. The first brake 102 </ b> A and the second brake 102 </ b> B each have a braking force sufficient to stop the car 104 and the counterweight 105.
 第1ブレーキ電流制御回路21A及び第2ブレーキ電流制御回路21Bは、インバータ回路やチョッパ回路といった電流ないしは電圧を制御する変換器,ブレーキ電流を検出するホールCT,ブレーキ電流を制御するためのコントローラで構成され、エレベーターコントローラ100よりソレノイドコイルに流れる電流の指令値(ブレーキ電流指令)を受けて、その指令値にブレーキ電流を制御する。なお、本実施例では制動力を変化させるための構成として、ソレノイドコイルを用いた電流に応じた制動力を変化させるブレーキ機構を例示したが、たとえば直動式のアクチュエータを用いることによる、距離に応じて制動力を変化させるブレーキや、回転機構を用いることによる、回転角に応じて制動力を変化させるブレーキ(シューブレーキなど)でもよい。総じて、ある指令に応じてブレーキの制動力を変化させるものであればよく、ブレーキの種類には依存しない。 The first brake current control circuit 21A and the second brake current control circuit 21B are composed of a converter for controlling current or voltage such as an inverter circuit and a chopper circuit, a hall CT for detecting the brake current, and a controller for controlling the brake current. In response to the command value (brake current command) of the current flowing through the solenoid coil from the elevator controller 100, the brake current is controlled to the command value. In this embodiment, the brake mechanism for changing the braking force according to the current using the solenoid coil is exemplified as a configuration for changing the braking force. However, for example, by using a direct acting actuator, A brake that changes the braking force in response to this, or a brake (such as a shoe brake) that changes the braking force in accordance with the rotation angle by using a rotation mechanism may be used. In general, it is sufficient if the braking force of the brake is changed according to a certain command, and it does not depend on the type of the brake.
 秤センサ4はかご内の乗客の人数を検出するのに使用する。通常運転中であれば、かごとつり合い重りの重量差を補償するための必要トルクを計算するのに使用される。秤センサは、かご床面が金属である場合には、かご枠に設けられた近接センサなどでかご床面のたわみ量から重量を推定する方式が用いられる。位置センサ5は、検出板6を検出することで、エレベーターが戸開可能な位置にいるかどうかを検出する、ドアゾーンセンサである。 The scale sensor 4 is used to detect the number of passengers in the car. During normal operation, it is used to calculate the required torque to compensate for the weight difference between the car and the counterweight. When the car floor is a metal, the scale sensor uses a method of estimating the weight from the amount of deflection of the car floor using a proximity sensor provided on the car frame. The position sensor 5 is a door zone sensor that detects whether the elevator is at a position where the door can be opened by detecting the detection plate 6.
 安全コントローラ1は、エレベーターコントローラ100とは独立してブレーキ電源及び動力電源を遮断することでかご104を制止させる、安全システムを構成するコントローラである。安全コントローラ1は、処理を実行するCPU(Central Processing Unit)を中心とした構成であり、他にCPUの異常を検出するためのウォッチドッグタイマや、電源異常を監視する回路を有する。またCPUの処理異常を検出するために、CPUを2重化することによる相互比較を行う構成を持つ場合もある。 The safety controller 1 is a controller constituting a safety system that stops the car 104 by shutting off the brake power supply and the power supply power independently of the elevator controller 100. The safety controller 1 has a configuration centering on a CPU (Central Processing Unit) that executes processing, and further includes a watchdog timer for detecting an abnormality of the CPU and a circuit for monitoring an abnormality of the power supply. In addition, in order to detect processing abnormality of the CPU, there may be a configuration in which mutual comparison is performed by duplicating the CPU.
 安全コントローラ1の入力は、かごの位置・速度・加速度を検出するための検出装置7や、エレベーターの安全装置の作動を検出する手段(図示省略)、で構成される。かごの位置・速度・加速度を検出するための検出装置7は、たとえばかごの位置に応じてパルスを出力するパルス発生器であり、本実施例ではガバナにガバナエンコーダを取り付けたものを図示している。これは、他にガイドレールに直接的にローラーを押し付けて乗りかごの移動を検出するタイプや、レールを磁化して検出するタイプなど、かごの絶対的または相対的な位置を検出できる手段であればよい。 The input of the safety controller 1 includes a detection device 7 for detecting the position / speed / acceleration of the car, and means (not shown) for detecting the operation of the elevator safety device. The detection device 7 for detecting the position / velocity / acceleration of the car is, for example, a pulse generator that outputs a pulse in accordance with the position of the car. In this embodiment, a governor with a governor encoder attached thereto is illustrated. Yes. This can be any means that can detect the absolute or relative position of the car, such as a type that detects the movement of the car by pressing the roller directly against the guide rail or a type that detects the magnet by magnetizing the rail. That's fine.
 安全コントローラ1の出力は、ブレーキ電源遮断出力9A及び9Bと動力電源遮断出力10,及び安全コントローラで検出されるかご位置及び速度情報出力23で構成される。ブレーキ電源遮断出力9A及び9Bはそれぞれブレーキ電源を遮断し、第1ブレーキ102A及び第2ブレーキ102Bを作動させるための出力である。また同様に、動力電源遮断出力10は電力変換器101の電力源を遮断することで電動機103を停止させるための出力である。いずれの出力も、かごを制止するために使用される。 The output of the safety controller 1 is composed of brake power cutoff outputs 9A and 9B, a power source cutoff output 10, and a car position and speed information output 23 detected by the safety controller. The brake power cut- off outputs 9A and 9B are outputs for cutting off the brake power and operating the first brake 102A and the second brake 102B, respectively. Similarly, the power supply cutoff output 10 is an output for stopping the electric motor 103 by shutting off the power source of the power converter 101. Either output is used to stop the car.
 図2は制動力制御部20のブロック図であり、本図を用いて制動力制御部20の概要について説明する。制動力制御部20の救出運転開始検出部30は、エレベーターコントローラ100のエレベーター制御部2より送信される救出運転開始指令を検出する部であり、救出運転開始指令で識別される救出運転の開始または停止指令を救出運転制御部32へ送信する。かご位置・速度検出部31は、安全コントローラ1より入力されるかご位置及び速度情報出力23を受けて、現在の昇降路内における自号機のかご位置及び速度を検出し、その検出した値を救出運転制御部32へ出力する。救出運転制御部32は救出運転開始検出部30より受信した救出運転の開始または停止指令と、かご位置・速度検出部31より受信したる自号機のかご位置及び速度情報に基づき、救出運転制御をする。ブレーキ解放制御部33は救出運転制御部32からの指令に基づき片側のブレーキ(ここでは例として第1ブレーキ102Aとする)を引き上げるためのブレーキ引き上げ指令を作成する制御部である。かご移動制御部34は救出運転制御部32からの指令にもとづき、ブレーキの解放によるかご移動を行うブレーキ(ここでは第2ブレーキ102Bとする)へのブレーキかご移動許可指令を作成する制御部である。より具体的には、ブレーキ解放制御部33は、第1ブレーキ102Aを引き上げ解放状態にするための電流指令を第1ブレーキ電流制御回路21Aへ出力する。かご移動制御部34は、第2ブレーキ102Bをかご移動制御状態にするためにかごを移動させるための電流指令を第2ブレーキ電流制御回路21Bに出力する。 FIG. 2 is a block diagram of the braking force control unit 20, and an outline of the braking force control unit 20 will be described with reference to FIG. The rescue operation start detection unit 30 of the braking force control unit 20 is a unit that detects a rescue operation start command transmitted from the elevator control unit 2 of the elevator controller 100, and starts the rescue operation identified by the rescue operation start command or A stop command is transmitted to the rescue operation control unit 32. The car position / speed detection unit 31 receives the car position and speed information output 23 input from the safety controller 1, detects the car position and speed of its own machine in the current hoistway, and rescues the detected values. Output to the operation control unit 32. The rescue operation control unit 32 performs rescue operation control based on the rescue operation start or stop command received from the rescue operation start detection unit 30 and the car position and speed information received from the car position / speed detection unit 31. To do. The brake release control unit 33 is a control unit that creates a brake lifting command for lifting one brake (here, the first brake 102A as an example) based on a command from the rescue operation control unit 32. The car movement control unit 34 is a control unit that creates a brake car movement permission command to a brake (herein referred to as the second brake 102B) that moves the car by releasing the brake based on a command from the rescue operation control unit 32. . More specifically, the brake release control unit 33 outputs a current command for pulling up the first brake 102A to a release state to the first brake current control circuit 21A. The car movement control unit 34 outputs a current command for moving the car to bring the second brake 102B into the car movement control state to the second brake current control circuit 21B.
 また、救出運転制御部32は、かご位置・速度検出部31より出力されるかご位置・速度を元に、かご位置の行き過ぎまたは速度超過を検出した場合に、第1ブレーキ102Aのブレーキ引き上げをやめさせ、解放状態の第1ブレーキ102Aを、かごを制止させるために制動力を働かせる制止状態にするために、制動指令を第1ブレーキ電流制御回路21Aに出力する。また、救出運転制御部32は、第2ブレーキ102Bもかご移動制御状態からかごを停止させる制動状態にするため、制動指令を第2ブレーキ電流制御回路21Bに出力する。 Also, the rescue operation control unit 32 stops lifting the brake of the first brake 102A when it detects overshoot or overspeed of the car position based on the car position / speed output from the car position / speed detection unit 31. The brake command is output to the first brake current control circuit 21A in order to place the first brake 102A in the released state into a stop state in which a braking force is applied to stop the car. Further, the rescue operation control unit 32 outputs a braking command to the second brake current control circuit 21B in order to change the second brake 102B from the car movement control state to the braking state in which the car is stopped.
 図3は、かご移動制御部34が作成するブレーキかご移動許可指令、ブレーキ解放制御部33が作成するブレーキ引き上げ指令(ブレーキ解放指令)、救出運転制御部32が作成する速度超過検出信号、かご移動制御部34が作成するかごを移動させるための電流指令である第2ブレーキ電流指令、ブレーキ解放制御部33が作成するブレーキを解放するための第1ブレーキ電流指令、及びかご速度の関係を、時系列で示したものである。また、説明の便宜上、時間軸を(a)から(d)の4区間に分割している。また、ブレーキかご移動許可指令を第2ブレーキ102B、ブレーキ引き上げ指令(ブレーキ解放指令)を第1ブレーキ102Aに充当させているが、この関係が逆であってもよい。以下、基本の動作方法について、区間(a)から順に説明する。 FIG. 3 shows a brake car movement permission command created by the car movement control unit 34, a brake lifting command (brake release command) created by the brake release control unit 33, an overspeed detection signal created by the rescue operation control unit 32, and car movement. The relationship between the second brake current command, which is a current command for moving the car created by the control unit 34, the first brake current command for releasing the brake created by the brake release control unit 33, and the car speed, It is shown in series. For convenience of explanation, the time axis is divided into four sections (a) to (d). Further, although the brake car movement permission command is applied to the second brake 102B and the brake lifting command (brake release command) is applied to the first brake 102A, this relationship may be reversed. Hereinafter, the basic operation method will be described in order from the section (a).
 区間(a)は、ブレーキかご移動許可指令及びブレーキ引き上げ指令はゼロの状態であり、つまりかごが両ブレーキにより制動が働いておりかごは静止している状態となっている。これより、かご速度は零となっている。 In section (a), the brake car movement permission command and the brake lifting command are zero, that is, the car is braked by both brakes and the car is stationary. As a result, the car speed is zero.
 区間(b)は、ブレーキ解放制御部33がブレーキ解放指令をONの状態としている。これに伴いブレーキ解放制御部33は、第1ブレーキ電流制御回路21Aに第1ブレーキ電流指令を送信する。第1ブレーキ電流制御回路21Aから第1ブレーキ102Aに電気が供給され、第1ブレーキ102Aがシーブより引き上げられた状態となる。このとき、第2ブレーキ102Bはシーブと接しており、その制動力によってかごは制止しているため、かご速度の状態は零となっている。 In the section (b), the brake release control unit 33 sets the brake release command to ON. Accordingly, the brake release control unit 33 transmits a first brake current command to the first brake current control circuit 21A. Electricity is supplied from the first brake current control circuit 21A to the first brake 102A, and the first brake 102A is pulled up from the sheave. At this time, since the second brake 102B is in contact with the sheave and the car is stopped by the braking force, the car speed is zero.
 区間(c)は、かご移動制御部34はブレーキかご移動許可指令をONの状態とし、第2ブレーキ102Bによるかご移動を行っている状態となっている。このとき、かご移動制御部34は第2ブレーキ電流制御回路21Bに断続的にブレーキを解放させるための第2ブレーキ電流指令を出力する。その指令を受けて、第2ブレーキ電流制御回路21Bが第2ブレーキ102Bを断続的に解放させることで、かごが移動する。このため、区間(c)ではかご速度が発生する。第2ブレーキ102Bの機構的または電気的な不具合が生じ、かごが増速してしまっている状態も合わせて例示している。なお、本実施例では第2ブレーキ電流を変化させ第2ブレーキ102Bを断続的に解放しているが、第2ブレーキ電流を一定の電流にして第2ブレーキ102Bによりシーブに一定の制動力をかけ続けても良い。 In the section (c), the car movement control unit 34 is in a state where the brake car movement permission command is turned ON and the car is being moved by the second brake 102B. At this time, the car movement control unit 34 outputs a second brake current command for causing the second brake current control circuit 21B to intermittently release the brake. In response to the command, the second brake current control circuit 21B intermittently releases the second brake 102B, so that the car moves. For this reason, the car speed is generated in the section (c). A state in which a mechanical or electrical failure of the second brake 102B has occurred and the speed of the car has increased is also illustrated. In this embodiment, the second brake current is changed to release the second brake 102B intermittently. However, the second brake current is made constant and a constant braking force is applied to the sheave by the second brake 102B. You can continue.
 区間(d)は、救出運転制御部32が、速度超過を検出した状態を示している。安全コントローラ1より入力されるかご位置及び速度情報出力23を受けて、かご位置・速度検出部31は、現在の昇降路内における自号機のかご位置及び速度を検出し、その検出した値を出力する。この検出した値が速度超過の場合、救出運転制御部32が速度超過検出指令を立ち上げ、ブレーキかご移動許可指令及びブレーキ引き上げ指令を零にする。こうすることで、第1ブレーキ電流制御回路21Aおよび第2ブレーキ電流制御回路21Bへの電流指令を零として、かごを制動させる。このとき、第2ブレーキ102Bは何らかの不具合でかごを制動させることができない可能性があるが、待機させていた第1ブレーキ102Aによる制動を行うことで、より安全にかごを制動させることが可能となる。 Section (d) shows a state where the rescue operation control unit 32 has detected an overspeed. In response to the car position and speed information output 23 input from the safety controller 1, the car position / speed detector 31 detects the car position and speed of its own machine in the current hoistway and outputs the detected values. To do. If the detected value is an overspeed, the rescue operation control unit 32 activates an overspeed detection command and sets the brake car movement permission command and the brake lifting command to zero. Thus, the car is braked with the current command to the first brake current control circuit 21A and the second brake current control circuit 21B set to zero. At this time, there is a possibility that the second brake 102B cannot brake the car due to some trouble, but it is possible to brake the car more safely by performing the braking by the first brake 102A that has been waiting. Become.
 図4は、救出運転制御のフローチャートを示す。ステップS101では、救出運転制御部32は、救出運転開始検出部30より出力された救出運転開始指令のON(開始)/OFF(停止)を判断する。救出運転開始指令がOFFであった場合には、処理を終了する。救出運転開始指令がONであった場合には、ステップS102へ移行する。救出運転開始指令がONとなる条件は、かご内に乗客が閉じ込められ、かつモータなどがなんらかの異常により駆動できない場合などに通常は設定される。なお、救出運転と呼称しているが、必ずしもかご内に乗客が閉じ込められている必要はなく、もし乗客が乗っていた場合には救出運転が必要となる状態で本制御を行っても良い。 FIG. 4 shows a flowchart of rescue operation control. In step S101, the rescue operation control unit 32 determines whether the rescue operation start command output from the rescue operation start detection unit 30 is ON (start) / OFF (stop). If the rescue operation start command is OFF, the process ends. If the rescue operation start command is ON, the process proceeds to step S102. The condition for turning on the rescue operation start command is normally set when a passenger is trapped in the car and the motor cannot be driven due to some abnormality. Although referred to as rescue operation, the passenger does not necessarily have to be confined in the car, and this control may be performed in a state where the rescue operation is necessary if the passenger is on the vehicle.
 なお、この時の動作条件として、ブレーキが正常動作することも必要となる。救出運転開始指令がOFFとなる条件は、平常運転中、あるいは救出運転を実施中に、最寄階の戸開可能位置に到達したとき又はブレーキの異常を検知しているときに設定される。 In addition, as an operating condition at this time, it is necessary that the brake operates normally. The condition for the rescue operation start command to be turned off is set during normal operation or during rescue operation, when the door opening position on the nearest floor is reached or when a brake abnormality is detected.
 ステップS102では、かご速度Vが零であるかどうかを判定する。かご位置・速度検出部31が出力したかご速度Vが零であった場合、救出運転制御部32はかごが停止状態にあり救出運転を開始可能と判断し、ステップS104へ進む。かご速度Vが零でない場合には、何らかの原因でかごが移動しているので、かごの停止を行うためのステップS103へ進む。 
 ステップS103では、救出運転制御部32がブレーキかご移動許可指令及びブレーキ引き上げ指令を零にすることで、二個のブレーキによる制動を行うようにする。
In step S102, it is determined whether the car speed V is zero. If the car speed V output by the car position / speed detection unit 31 is zero, the rescue operation control unit 32 determines that the car is in a stopped state and can start the rescue operation, and proceeds to step S104. If the car speed V is not zero, the car is moving for some reason, and the process proceeds to step S103 for stopping the car.
In step S103, the rescue operation control unit 32 sets the brake car movement permission command and the brake lifting command to zero so that braking by two brakes is performed.
 ステップS104では、ブレーキ解放制御部33は片側のブレーキを解放させるためのブレーキ引き上げ指令をONにし、解放したい方のブレーキ電流制御回路に電流指令を送信する。
 ステップS105では、ステップS104により引き上げられるブレーキが、引き上げられた状態であることを検出する。ブレーキが引き上げられたことは、通常ブレーキチェックスイッチなどブレーキの機械的な動きを検出するためのスイッチを用いて検出される。また、ブレーキの引き上げはどちらでもよいが、たとえば1回目の運転のときは第1ブレーキ102A、次の運転のときは第2ブレーキ102B、といったように交互に切り替えてもよい。このように交互に切り替える事で第1ブレーキ102Aと第2ブレーキ102Bの摩耗を平準化することができる。なお、ステップS105にてブレーキが引き上がったことを検出できなかった場合には、引き上げる予定であったブレーキの正常動作が期待できないため、本運転は中止とする。より具体的には、ステップS103に移行する。
In step S104, the brake release control unit 33 turns on a brake lifting command for releasing the brake on one side, and transmits a current command to the brake current control circuit to be released.
In step S105, it is detected that the brake raised in step S104 is in the raised state. The fact that the brake is lifted is usually detected using a switch for detecting mechanical movement of the brake such as a brake check switch. The brake may be lifted either way, but for example, the first brake 102A may be switched alternately during the first driving, and the second brake 102B may be switched alternately during the next driving. By alternately switching in this way, wear of the first brake 102A and the second brake 102B can be leveled. If it is not detected in step S105 that the brake has been raised, normal operation of the brake that was scheduled to be raised cannot be expected, and the operation is stopped. More specifically, the process proceeds to step S103.
 ステップS106では、かご移動制御部34がブレーキかご移動許可指令をONにする。かご移動制御部34からかごの移動を制御させるブレーキに接続されるブレーキ電流制御回路に電流指令を送信する。この時、電流指令はかごを既定の速度にすることを目標値として設定され送信される。なお、既定速度は後述の速度超過値と検出する速度よりは低い速度である。 
 ステップS107では、かご位置・速度検出部31より演算されたかごの速度に基づき、救出運転制御部32がかごの速度超過を検出する。現在のかご速度が速度超過値よりも大きい場合、ステップS108に移行する。 
 ステップS108では救出運転制御部32は速度超過検出指令を立ち上げ、ブレーキかご移動許可指令及びブレーキ引き上げ指令を零にする。これに応じて各ブレーキ電流制御回路への電流指令は零となりブレーキは吸引されずシーブを制動することでかごの制動が実施される。この様な場合はかごを制止し、保守員を呼ぶことで救出をはかる。なお速度超過値の設定は、ガバナが作動する速度以下であればよい。更には、より安全を期す場合には、速度が低い状態での制動のほうが乗客に対する加速度の変化の影響が小さいため、たとえば保守運転速度や、工事時の運転速度に合わせて設定してもよい。また、本ステップでは速度超過の例を示したが、たとえばこの閾値をかご位置にして、かごの行き過ぎに応じて制動をかけてもよい。かごの速度が速度超過値よりも低い場合、ステップS109に移行する。
In step S106, the car movement control unit 34 turns on the brake car movement permission command. A current command is transmitted from the car movement control unit 34 to a brake current control circuit connected to a brake that controls the movement of the car. At this time, the current command is set and transmitted as a target value to set the car to a predetermined speed. The predetermined speed is a speed that is lower than the speed excess value described later and the detected speed.
In step S107, based on the car speed calculated by the car position / speed detection unit 31, the rescue operation control unit 32 detects an overspeed of the car. If the current car speed is greater than the overspeed value, the process proceeds to step S108.
In step S108, the rescue operation control unit 32 starts up the overspeed detection command, and sets the brake car movement permission command and the brake lifting command to zero. In response to this, the current command to each brake current control circuit becomes zero, and the brake is not sucked, and the car is braked by braking the sheave. In such a case, the car is stopped and rescued by calling maintenance personnel. Note that the setting of the overspeed value may be less than the speed at which the governor operates. Furthermore, for safety, braking at a low speed is less affected by changes in acceleration on passengers, so it may be set in accordance with, for example, the maintenance operation speed or the operation speed during construction. . In this step, an example of excessive speed is shown. However, for example, this threshold value may be set to the car position, and braking may be applied in accordance with overshoot of the car. If the car speed is lower than the overspeed value, the process proceeds to step S109.
 ステップS109では、安全コントローラ1より入力されるかご位置及び速度情報出力23を受けて、かご位置・速度検出部31は現在の昇降路内における自号機のかご位置及び速度を検出し、救出運転制御部32はかごが最寄階に到着したことを判断する。最寄階に到着した場合にはステップS110に移行する。 
 ステップS110では、救出運転制御部32はブレーキかご移動許可指令及びブレーキ引き上げ指令を零にすることで、両ブレーキを制動状態にしかごを静止させる。救出運転制御部32はかごドアを解放して救出運転を完了する。最寄階に到着していない場合には、ステップS107に戻る処理となる。 
 以上の構成によれば、エレベーターコントローラは救出運転中に制動力が作用しない待機状態のブレーキを用意することで、待機させたブレーキの制動力を確保することができる。このため、その他のブレーキで制動力を制御することでかごを移動させている時に、かごが過速状態となりその他のブレーキで制動させることができない場合でも、制動力が確保された待機させたブレーキで制動することで、かごを安全に停止することができる。
In step S109, in response to the car position and speed information output 23 input from the safety controller 1, the car position / speed detector 31 detects the car position and speed of the own car in the current hoistway, and rescue operation control is performed. Part 32 determines that the car has arrived at the nearest floor. When it arrives at the nearest floor, it transfers to step S110.
In step S110, the rescue operation control unit 32 sets the brake car movement permission command and the brake pull-up command to zero so that only the brakes are in a braking state and the car is stopped. The rescue operation control unit 32 releases the car door and completes the rescue operation. If it has not arrived at the nearest floor, the process returns to step S107.
According to the above configuration, the elevator controller can ensure the braking force of the brake that has been put on standby by preparing the brake in a standby state where the braking force does not act during the rescue operation. Therefore, even when the car is moved by controlling the braking force with other brakes, even if the car is overspeed and cannot be braked with the other brakes, By braking with, the car can be safely stopped.
 また、二重化されたブレーキ双方を断続して開閉することで、ブレーキのシュー部分の摩耗が同時に進行する。摩耗により、ブレーキの制動力が低下するため、摩耗の進行状況によっては、かごの速度が想定していたよりも速く移動してしまい、ブレーキの解放の繰り返しによるかごの速度制御を行うことが難しくなることや、最終的にはブレーキのシューがシーブを制動できなくなり、かごが所定の位置に停止できなくなることがある。本実施例では、上述したように、救出運転時にもブレーキの制動力の冗長性を確保することができるので、このような状況の発生を抑制できる。 In addition, by opening and closing both the doubled brakes intermittently, wear of the shoe part of the brakes progresses simultaneously. Due to wear, the braking force of the brake is reduced. Depending on the progress of wear, the speed of the car moves faster than expected, making it difficult to control the speed of the car by repeatedly releasing the brake. Eventually, the brake shoe may not be able to brake the sheave and the car may not be able to stop in place. In the present embodiment, as described above, since the redundancy of the braking force of the brake can be ensured even during the rescue operation, the occurrence of such a situation can be suppressed.
 本実施例では、ブレーキが第1ブレーキ102Aと第2ブレーキ102Bの二つの場合で説明したが、3以上でも実施可能である。ブレーキのうち1以上のブレーキを解放した場合であっても、残りの他のブレーキでかごを制止させる事ができれば実施可能である。 In the present embodiment, the case where the brakes are the first brake 102A and the second brake 102B has been described, but the present invention can also be implemented with three or more brakes. Even when one or more of the brakes are released, it is possible if the car can be stopped by the remaining other brakes.
1・・・安全コントローラ、2・・・エレベーター制御部、4・・・秤センサ、5・・・位置センサ、7・・・かごの位置・速度・加速度を検出するための検出装置、20・・・制動力制御部、100・・・エレベーターコントローラ、102A・・・第1ブレーキ、102B・・・第2ブレーキ。 DESCRIPTION OF SYMBOLS 1 ... Safety controller, 2 ... Elevator control part, 4 ... Scale sensor, 5 ... Position sensor, 7 ... Detection apparatus for detecting the position / speed / acceleration of a car, ..Brake force control unit, 100... Elevator controller, 102A... First brake, 102B.

Claims (6)

  1.  乗りかごと、前記乗りかごの移動に制動力を加える複数のブレーキと、前記複数のブレーキの制動力を制御するコントローラと、を備え、
     前記コントローラは、救出運転中に前記複数のブレーキのうち1以上のブレーキを解放し制動力を発生させない解放状態にするブレーキ解放制御部と、救出運転中に前記複数のブレーキのうち解放状態でないブレーキの制動力を変化させることにより前記乗りかごの移動速度を制御するかご移動制御状態にするかご移動制御部を備える、ことを特徴としたエレベーター。
    A car, a plurality of brakes for applying braking force to the movement of the car, and a controller for controlling the braking force of the plurality of brakes,
    The controller includes a brake release control unit configured to release one or more brakes among the plurality of brakes during the rescue operation so as not to generate a braking force, and a brake that is not released among the plurality of brakes during the rescue operation. An elevator, comprising: a car movement control unit configured to control a movement speed of the car by changing a braking force of the car to a car movement control state.
  2.  請求項1に記載のエレベーターにおいて、前記乗りかごの移動を検出する移動検出手段と、を備え、前記コントローラは、前記移動検出手段に基づき前記乗りかごの移動速度を検出するかご位置・速度検出部と、前記かご位置・速度検出部から送信される前記乗りかごの移動速度に基づいて、前記救出運転を制御する救出運転制御部を備え、
     前記救出運転制御部は、前記かご位置・速度検出部により検出された前記乗りかごの移動速度が閾値を超えた場合、前記解放状態のブレーキを、かごを停止させるよう制動力を発生させる制止状態にする、ことを特徴とするエレベーター。
    The elevator according to claim 1, further comprising movement detection means for detecting movement of the car, wherein the controller detects a movement speed of the car based on the movement detection means. And a rescue operation control unit that controls the rescue operation based on the moving speed of the car transmitted from the car position / speed detection unit,
    The rescue operation control unit is a stopped state in which the brake in the released state is caused to generate a braking force to stop the car when the moving speed of the car detected by the car position / speed detection unit exceeds a threshold value. An elevator characterized by that.
  3.  請求項2に記載のエレベーターにおいて、前記かご位置・速度検出部により検出された前記乗りかごの移動速度が閾値を超えた場合、前記救出運転制御部は、前記かご移動制御状態のブレーキを前記制止状態にする、ことを特徴とするエレベーター。 3. The elevator according to claim 2, wherein when the moving speed of the car detected by the car position / speed detecting unit exceeds a threshold, the rescue operation control unit stops the brake in the car moving control state. An elevator characterized by being in a state.
  4.  請求項2に記載のエレベーターにおいて、
     前記救出運転制御部は、前記かご位置・速度検出部により検出された前記乗りかごの位置が着床位置になった場合、前記複数のブレーキ全てを前記制止状態にする、ことを特徴とするエレベーター。
    In the elevator according to claim 2,
    The rescue operation control unit sets all of the plurality of brakes to the stopped state when the position of the car detected by the car position / speed detection unit is a landing position. .
  5.  請求項2に記載のエレベーターにおいて、前記複数のブレーキの制動力は、すくなくとも前記複数のブレーキうち1つのブレーキを解放しても前記乗りかごを制止可能な制動力を備えることを特徴とするエレベーター。 3. The elevator according to claim 2, wherein the braking force of the plurality of brakes includes at least a braking force capable of stopping the car even when one of the plurality of brakes is released.
  6.  請求項5に記載のエレベーターにおいて、
     前記複数のブレーキは二つのブレーキであり、前記二つのブレーキはそれぞれ単独で乗りかごを制止可能な制動力を備えることを特徴とするエレベーター。
    In the elevator according to claim 5,
    The elevator is characterized in that the plurality of brakes are two brakes, and each of the two brakes has a braking force capable of stopping the car alone.
PCT/JP2017/014787 2016-07-06 2017-04-11 Elevator WO2018008220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780034736.2A CN109311631B (en) 2016-07-06 2017-04-11 Elevator with a movable elevator car

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016133860A JP6655489B2 (en) 2016-07-06 2016-07-06 Elevator
JP2016-133860 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018008220A1 true WO2018008220A1 (en) 2018-01-11

Family

ID=60901643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014787 WO2018008220A1 (en) 2016-07-06 2017-04-11 Elevator

Country Status (3)

Country Link
JP (1) JP6655489B2 (en)
CN (1) CN109311631B (en)
WO (1) WO2018008220A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261390A1 (en) * 2019-06-25 2020-12-30 三菱電機株式会社 Elevator device
US20220055861A1 (en) * 2018-12-20 2022-02-24 Inventio Ag Method for moving an elevator car of an elevator for evacuating passengers and brake opening device for moving an elevator car of an elevator for evacuating passengers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965628A (en) * 1982-10-07 1984-04-13 Mitsubishi Electric Corp Braking device
JP2005247512A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Rescue operation device at failure of elevator
WO2008136114A1 (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corporation Elevator device
JP2010208778A (en) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd Elevator
US20160152440A1 (en) * 2013-06-13 2016-06-02 Inventio Ag Braking method and control for passenger transportation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2030184U (en) * 1987-12-14 1989-01-04 沈阳机床齿轮厂 Emergency device for lift
US6196355B1 (en) * 1999-03-26 2001-03-06 Otis Elevator Company Elevator rescue system
CN101531310A (en) * 2009-01-23 2009-09-16 浙江屹立电梯有限公司 A control method and control device of remote switching-off of elevator without machine room
CN102390772B (en) * 2011-11-04 2014-11-26 上海微频莱机电科技有限公司 Elevator self-help system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965628A (en) * 1982-10-07 1984-04-13 Mitsubishi Electric Corp Braking device
JP2005247512A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Rescue operation device at failure of elevator
WO2008136114A1 (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corporation Elevator device
JP2010208778A (en) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd Elevator
US20160152440A1 (en) * 2013-06-13 2016-06-02 Inventio Ag Braking method and control for passenger transportation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220055861A1 (en) * 2018-12-20 2022-02-24 Inventio Ag Method for moving an elevator car of an elevator for evacuating passengers and brake opening device for moving an elevator car of an elevator for evacuating passengers
US11787661B2 (en) * 2018-12-20 2023-10-17 Inventio Ag Method for moving an elevator car of an elevator for evacuating passengers and brake opening device for moving an elevator car of an elevator for evacuating passengers
WO2020261390A1 (en) * 2019-06-25 2020-12-30 三菱電機株式会社 Elevator device
JPWO2020261390A1 (en) * 2019-06-25 2020-12-30
CN113993807A (en) * 2019-06-25 2022-01-28 三菱电机株式会社 Elevator device
JP7188590B2 (en) 2019-06-25 2022-12-13 三菱電機株式会社 elevator equipment
CN113993807B (en) * 2019-06-25 2023-01-10 三菱电机株式会社 Elevator device

Also Published As

Publication number Publication date
JP6655489B2 (en) 2020-02-26
CN109311631A (en) 2019-02-05
CN109311631B (en) 2020-06-23
JP2018002436A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US20120073909A1 (en) Elevator device
JP4987074B2 (en) Elevator equipment
JP6325575B2 (en) Elevator control device and control method thereof
JP5114972B2 (en) Elevator control device
CN108698790B (en) Elevator and rescue operation control method
JP6393633B2 (en) Elevator
WO2010058453A1 (en) Elevator device
JP5031767B2 (en) Elevator equipment
JP7212201B2 (en) elevator equipment
CN107697752B (en) Elevator device
WO2018008220A1 (en) Elevator
JP5143454B2 (en) Elevator control device
EP3495302B1 (en) Elevator apparatus and method
JP5511810B2 (en) Elevator equipment
US20210114841A1 (en) Method for monitoring brake dragging of an elevator
WO2009153882A1 (en) Elevator device
WO2021176547A1 (en) Elevator safety control system and elevator using same
JP7188590B2 (en) elevator equipment
JP5829869B2 (en) Elevator emergency stop device
WO2018235216A1 (en) Electromagnetic brake testing method and elevator apparatus
WO2018020542A1 (en) Elevator control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823828

Country of ref document: EP

Kind code of ref document: A1