WO2018024050A1 - 一种双电机复合转子双轴传动设备 - Google Patents

一种双电机复合转子双轴传动设备 Download PDF

Info

Publication number
WO2018024050A1
WO2018024050A1 PCT/CN2017/090483 CN2017090483W WO2018024050A1 WO 2018024050 A1 WO2018024050 A1 WO 2018024050A1 CN 2017090483 W CN2017090483 W CN 2017090483W WO 2018024050 A1 WO2018024050 A1 WO 2018024050A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
vacuum pump
rotors
composite
Prior art date
Application number
PCT/CN2017/090483
Other languages
English (en)
French (fr)
Inventor
徐曦
朱红梅
Original Assignee
北京朗禾科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610639358.8A external-priority patent/CN106050664A/zh
Priority claimed from CN201611225441.7A external-priority patent/CN106762646A/zh
Application filed by 北京朗禾科技有限公司 filed Critical 北京朗禾科技有限公司
Publication of WO2018024050A1 publication Critical patent/WO2018024050A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the invention relates to a double motor composite rotor double shaft transmission device. Especially for a vacuum pump and air compressor, a two-motor composite rotor double-shaft transmission equipment.
  • vacuum pumps and air compressors are commonly used in the industrial field. Roots vacuum pumps, claw-type dry vacuum pumps, and screw dry vacuum pumps are commonly used double-pole vacuum pumps, and air compressors are commonly used mechanical equipment. For equipment that requires dual-axis synchronous transmission, it is everywhere in the industrial field.
  • the basic principles of the above several vacuum pumps and air compressors are the same. Both of the two rotating shafts are rotated by the motor and the gear set, and the air is discharged through the upper meshing section to form an evacuated exhaust.
  • this method has a great problem, and since the structure is particularly complicated and the sealing portion is numerous, the reliability is low.
  • the coupling and the gear will cause a lot of energy consumption; when the gears are in operation, the mutual meshing will generate huge noise, and at the same time, the vacuum pump oil lubrication is required, and the vacuum pump oil consumption is large, so the running cost is high.
  • the object of the present invention is to provide a dual-motor composite rotor biaxial transmission device for a device requiring a dual-shaft transmission such as a vacuum pump or an air compressor, to solve the technical problem that the conventional equipment has a complicated structure, a large gear transmission noise, and high fuel consumption.
  • the object of the present invention is also to provide a composite rotor vacuum pump to solve the technical problem that the conventional vacuum pump has complicated structure, large gear transmission noise, high fuel consumption, large oil leakage rate and high sealing cost.
  • a dual-motor composite rotor biaxial transmission device comprises a cavity (1) and a pair of rotors, the rotor pair being two rotors (2) that cooperate with each other to rotate at a high speed synchronously, and the pair of rotors are built in a hollow In the cavity (1), the rotor (2) is matched with the cavity (1), and both ends of the rotor are integrally formed rotor shafts, and seals are arranged at both ends of the cavity (1)
  • the rotor shaft extends out of the cavity and is supported by a bearing; each of the rotors (2) is fixedly sleeved with a motor rotor (3) at the same end of the rotor shaft, and each of the motor rotors (3) They are respectively arranged in the respective motor stators (4), and the motor stators (4) and motor rotors (3) of the rotor pair are controlled by the encoder and the frequency converter to synchronize the frequency and the rotational speed.
  • the rotors (2) are in mesh with each other, and the motor rotor (3) and the motor stator (4) are hollow cylindrical bodies, and the rotor shaft penetrates and is fixedly connected to a center hole of the motor rotor (3).
  • the motor rotor (3) is nested within the motor stator (4).
  • the inner end of the bearing at both ends of the cavity (1) is provided with a sealing member.
  • the device for the two-shaft transmission is a vacuum pump or an air compressor.
  • the vacuum pump is a Roots vacuum pump or a claw type dry vacuum pump or a screw dry vacuum pump.
  • the meshing section of the air compressor rotor is a variable pitch screw rotor, and the pitch is divided into five progressive pitches from top to bottom and sequentially decreased, and the pitch ratio from top to bottom is 1:0.6:0.3:0.3: 0.3.
  • a composite rotor vacuum pump comprising: a pump chamber (1), an air inlet (11), an exhaust port (12), a bearing; a rotor (2) in the pump chamber (1), the rotor (2) Both ends of the pump are supported by the rotor shaft (21), and one end of the pump chamber (1) is provided with a motor stator (4), and the motor stator (4) is provided with a motor rotor (3).
  • the motor The rotor (3) is connected to fix the rotor shaft (21).
  • rotors (2) there are two rotors (2) in the pump chamber (1), and both ends of the rotor (2) are supported on the bearing through respective rotor shafts (21), outside the pump chamber (1)
  • One motor stator (4) is arranged at one end, and two high-speed, synchronous reverse-rotating motor rotors (3) are arranged in the motor stator (4), and the two motor rotors (3) share one of the motors.
  • a stator (4); two of the motor rotors (3) are respectively connected to fix the rotor shaft (21).
  • the motor rotor (3) is a hollow cylindrical body, and the rotor shaft (21) penetrates and is fixedly connected to a central hole of the motor rotor (3).
  • the motor stator (4) is in the shape of a hollow cylinder.
  • the bottom of the motor rotor (3) and the motor stator (4) are adjacent to one end of the pump chamber, and one end of the pump chamber is blocked.
  • the two motor rotors (3) are hollow cylindrical bodies of the same structure, the motor stator (4) has a "8" shape in cross section, and the two motor rotors (3) are symmetrically arranged side by side to the motor.
  • the motor rotors (3) are respectively disposed concentrically with two circles of the motor stator (4) having a "8" shape in cross section, and the rotor shaft (21) penetrates into the motor rotor ( 3) The center hole is fixedly connected.
  • the inner end of the bearing at both ends of the pump chamber is provided with a seal.
  • the vacuum pump is a Roots vacuum pump or a claw type dry vacuum pump or a screw dry vacuum pump.
  • the rotor is a Roots vacuum pump rotor or a claw type dry vacuum pump rotor or a screw dry vacuum pump rotor.
  • the utility model relates to a composite rotor vacuum pump, which is used in an oil-free twin-screw air compressor or a synchronous reverse biaxial mechanical mechanism.
  • the rotor of the pump chamber is directly driven by the stator of the motor and the rotor of the motor, which greatly simplifies the transmission structure, reduces the sealing structure and improves the reliability of the equipment.
  • the whole machine has high safety performance, can achieve zero leakage, and there is no hidden danger of leakage.
  • FIG. 1 is a cross-sectional structural view showing a motor rotor and a motor stator at a lower end of a pump chamber according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional structural view showing a motor rotor and a motor stator at an upper end of a pump chamber according to an embodiment of the present invention
  • Figure 3 is a schematic cross-sectional view of the A-A of Figure 1 of the present invention.
  • Figure 4 is a schematic cross-sectional view of the B-B of Figure 1 of the present invention.
  • FIG. 5 is a cross-sectional structural view showing the rotor of the motor and the stator of the motor at the lower end of the pump chamber according to the second embodiment of the present invention
  • FIG. 6 is a cross-sectional structural view showing the rotor of the motor and the stator of the motor at the upper end of the pump chamber according to the second embodiment of the present invention
  • Figure 7 is a schematic cross-sectional view of the C-C of Figure 6 of the present invention.
  • Figure 8 is a schematic cross-sectional view of the D-D of Figure 6 of the present invention.
  • FIG. 9 is a cross-sectional structural view showing a rotor of the motor and a stator of the motor at a lower end of the pump chamber according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional structural view showing the rotor of the three motor and the stator of the motor at the upper end of the pump chamber according to the embodiment of the present invention
  • Figure 11 is a schematic cross-sectional view of the B-B of Figure 10 of the present invention.
  • Figure 12 is a schematic cross-sectional view of the A-A of Figure 10 of the present invention.
  • FIG. 13 is a cross-sectional structural view showing a rotor of the motor and a stator of the motor at an upper end of the pump chamber according to an embodiment of the present invention
  • FIG. 14 is a cross-sectional structural view showing a rotor of the motor and a stator of the motor at a lower end of the pump chamber according to an embodiment of the present invention
  • Figure 15 is a schematic cross-sectional view of the D-D of Figure 13 of the present invention.
  • Figure 16 is a cross-sectional view showing the structure of the C-C of Figure 13 of the present invention.
  • FIGS. 5-8 are the drawings of the second embodiment.
  • the technical solutions are as follows: a dual-motor composite rotor biaxial transmission device, including a cavity 1 and a rotor
  • the pair of rotors are two rotors 2 that cooperate with each other in a high-speed synchronous reverse rotation.
  • the pair of rotors are built in the cavity 1 which is hollow, and the rotor 2 cooperates with the cavity 1
  • the rotor shaft 21 is integrally formed at both ends of the rotor.
  • the two ends of the cavity 1 are provided with a seal sealing cavity.
  • the rotor shaft extends out of the cavity and is supported by bearings.
  • Each of the rotors 2 is on the same side.
  • the rotor shaft ends are respectively fixedly sleeved with a motor rotor 3.
  • a motor rotor 3 As shown in FIG. 1, FIG. 2, FIG. 5 and FIG. 6, each of the motor rotors 3 are respectively disposed in the respective motor stators 4 as shown in FIGS. 4 and 8.
  • the motor stator 4 and the motor rotor 3 of the rotor pair are synchronized by the encoder and the inverter to control the frequency and the rotational speed.
  • the rotors 2 are mutually intermeshed as shown in FIG. 3 and FIG. 7.
  • the motor rotor 3 and the motor stator 4 are hollow cylindrical bodies, and the rotor shaft 21 penetrates the center hole of the motor rotor 3 to be fixedly connected.
  • the motor rotor 3 is housed inside the motor stator 4.
  • the inner end of the bearing at both ends of the cavity 1 is provided with a sealing member.
  • the biaxially driven device can be a vacuum pump or an air compressor.
  • the vacuum pump may be a Roots vacuum pump or a claw type dry vacuum pump or a screw dry vacuum pump;
  • the rotor pair is correspondingly a Roots vacuum pump rotor or a claw type dry vacuum pump rotor or a screw dry vacuum pump rotor.
  • the meshing section of the air compressor rotor may be a variable pitch screw rotor, the pitch series is not limited to three or six stages, the pitch may be gradual, the gradation ratio is not limited, and the pitch may also be an equal pitch, the pitch in the embodiment. From top to bottom, it is divided into five grades of progressive pitch and is successively reduced. The pitch ratio from top to bottom is 1:0.6:0.3:0.3:0.3.
  • the two stators of the motor are energized, and after the energization, the rotor of the motor on the inner rotor of the pump cavity forms an induced electromotive force, and the rotor of the motor is rotated at the same frequency by a frequency converter and an encoder, and the rotor is controlled separately during the rotation.
  • the angular velocity during rotation it completely synchronizes the corresponding position, and drives the rotor in the pump chamber to rotate at high speed and reverse synchronously. This meets the requirements of the synchronous and reverse rotation of the rotor shaft of the vacuum pump, replacing the traditional motor, Couplings, gear sets.
  • Roots vacuum pump is also driven by a double rotor, so the technical solution of the invention is also applicable.
  • the specific technical solutions are as described above, and are not described herein again;
  • the invention is applied to a Roots vacuum pump whose Roots rotor can be a two-bladed Roots rotor, a three-bladed or four-leaf Roots rotor.
  • the structure of the invention overcomes all the above disadvantages and can be used in a design structure of a plurality of double shafts such as a Roots vacuum pump, a claw type dry vacuum pump, a screw dry vacuum pump, and an air compressor.
  • This technical solution can also be used for oil-free twin-screw air compressors or all synchronous two-axis mechanical mechanisms.
  • the technical solution of the present invention is applicable as long as the technical problems solved are the same.
  • FIGS. 13-16 are the drawings of the fourth embodiment.
  • the technical solution is as follows: a composite rotor vacuum pump, which comprises: a pump chamber 1, an air inlet 11, and a row. a gas port 12, a bearing; a rotor 2 in the pump chamber 1, two ends of the rotor 2 are supported on the bearing by a rotor shaft 21; and an outer end of the pump chamber 1 is provided with a motor stator 4,
  • the motor stator 3 is disposed in the motor stator 4, and the motor rotor 3 is connected to the rotor shaft 21 of the rotor 2 in the pump chamber.
  • the motor rotor 3 is a hollow cylindrical body, and the rotor shaft 21 penetrates and is fixedly connected to a center hole of the motor rotor 3.
  • the motor stator 4 is in the form of a hollow cylinder.
  • the bottom of the motor rotor 3 and the motor stator 4 is adjacent to one end of the pump chamber, and one end of the pump chamber is blocked.
  • the two motor rotors 3 are hollow cylindrical bodies of the same structure, the motor stator 4 has a "8" shape in cross section, and the two motor rotors 3 are symmetrically arranged side by side in the motor stator 4, The motor rotors 3 are respectively disposed concentrically with two circles of the motor stator 4 having a "8" shape in cross section, and the rotor shaft 21 penetrates into the center hole of the motor rotor 3 The connection is fixed; see Figures 11 and 16.
  • the inner end of the bearing at both ends of the pump chamber is provided with a seal.
  • the vacuum pump may be a Roots vacuum pump or a claw type dry vacuum pump or a screw dry vacuum pump.
  • the rotor is correspondingly a Roots vacuum pump rotor or a claw type dry vacuum pump rotor or a screw dry vacuum pump rotor.
  • 9-12 is a schematic view showing the structure after applying the present invention to a screw dry vacuum pump; the specific technical solution is as described above. I will not repeat them here.
  • the motor stator is energized, and after the energization, the motor rotor on the inner rotor of the pump chamber forms an induced electromotive force. Since the motor stators are a common one, the two motor rotors have the same frequency. The rotor of the motor will rotate at the same frequency and drive the rotor in the pump chamber to rotate at high speed and reverse synchronously. This meets the requirements of the synchronous and reverse rotation of the rotor shaft of the vacuum pump, replacing the traditional motor, coupling and gear set. .
  • 11-16 is a schematic view showing the structure after applying the present invention to a Roots vacuum pump. Since it is also driven by a double rotor, the technical solution of the present invention is also applicable. The specific technical solutions are as described above, and are not described herein again;
  • the invention is applied to a Roots vacuum pump whose Roots rotor can be a two-bladed Roots rotor, a three-bladed or four-leaf Roots rotor.
  • the structure of the present invention overcomes all of the above disadvantages and can be used in a design structure of a plurality of double shafts such as a Roots vacuum pump, a claw type dry vacuum pump, and a screw dry vacuum pump.
  • This technical solution can also be used for oil-free twin-screw air compressors or all synchronous two-axis mechanical mechanisms.
  • the technical solution of the present invention is applicable as long as the technical problems solved are the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种双电机复合转子双轴传动设备,包括泵腔(1)、转子(2),转子(2)通过变频器和编码器控制,同步且相互反向旋转,并带动两根转子轴(21)旋转,转子轴(21)两端通过设置在泵腔(1)内两端的轴承支撑,泵腔(1)上设置有进气口(11)和排气口(12),还包括电机转子(3)和电机定子(4),转子轴(21)上固定有电子转子(3),位于泵腔(1)内的电机转子(3)对应位置设置有一个共同的电机定子(4)。该传动设备具有结构简化,密封机构缩减,可靠性提高的优点。

Description

一种双电机复合转子双轴传动设备 技术领域
本发明涉及一种双电机复合转子双轴传动设备。特别是针对真空泵和空压机的一种双电机复合转子双轴传动设备。
背景技术
目前,真空泵和空压机是工业领域普遍使用的设备,罗茨真空泵、爪型干式真空泵、螺杆干式真空泵是比较常用的几种双杆性的真空泵,而空压机是常用的机械设备,对于需要双轴同步传动的设备在工业领域内比比皆是。上述几种真空泵及空压机的基本原理相同,都是通过电机和齿轮组配合带动其中两根转动轴旋转,并通过上面的啮合段进行空气的排挤从而形成抽真空排气。但是这种方式存在很大的问题,由于其结构特别复杂,密封部位繁多,所以可靠性低。传动过程中,联轴器、齿轮会造成大量的能耗;齿轮在运行过程中,相互啮合会产生巨大的噪音,同时需要真空泵油润滑,真空泵油消耗较大,所以运行成本高。
发明内容
本发明的目的在于针对真空泵或空压机等需要双轴传动的设备提供一种双电机复合转子双轴传动设备,来解决传统设备结构复杂,齿轮传动噪音大、油耗高的技术问题。
本发明的目的还在于提供一种复合转子真空泵,来解决传统真空泵结构复杂,齿轮传动噪音大、油耗高,漏油机率大且密封成本高的技术问题。
本发明采用以下的技术方案:
一种双电机复合转子双轴传动设备,包括腔体(1)、转子对,所述转子对为两个相互配合高速同步反向旋转的转子(2),所述转子对内置在中空的所述腔体(1)内,所述转子(2)与所述的腔体(1)相配合,所述转子两端为一体形成的转子轴,所述腔体(1)两端设置密封件,所述转子轴伸出所述腔体外并通过轴承支撑;各所述转子(2)在同侧的转子轴端部分别固定套接有一电机转子(3),各所述电机转子(3)分别配合设置在各自的电机定子(4)内,所述转子对的各电机定子(4)、电机转子(3)通过编码器和变频器控制频率和转速的同步。
所述转子(2)相互啮合,所述电机转子(3)、电机定子(4)均为中空的圆柱状体,所述转子轴穿入所述的电机转子(3)的中心孔连接固定,所述电机转子(3)内套在所述电机定子(4)内。
所述的腔体(1)两端轴承内端设有密封件。
所述双轴传动的设备为真空泵或者空压机。
所述真空泵为罗茨真空泵或爪型干式真空泵或螺杆干式真空泵。
所述空压机转子的啮合段为变螺距螺杆转子,所述螺距由上至下分为五级渐变螺距并且依次减小,由上至下五级螺距比值为1:0.6:0.3:0.3:0.3。
一种复合转子真空泵,它包括:泵腔(1)、进气口(11)、排气口(12)、轴承;所述泵腔(1)内有转子(2),所述转子(2)的两端通过转子轴(21)支撑在所述的轴承上,所述泵腔(1)外的一端设置电机定子(4),所述电机定子(4)内配置电机转子(3),所述电机 转子(3)连接固定所述转子轴(21)。
所述泵腔(1)内有两个转子(2),所述转子(2)的两端通过各自的转子轴(21)支撑在所述的轴承上,所述泵腔(1)外的一端设置一个电机定子(4),所述的电机定子(4)内配置两个高速、同步反向旋转的电机转子(3),两个所述的电机转子(3)共用一个所述的电机定子(4);两个所述的电机转子(3)分别连接固定所述转子轴(21)。
所述电机转子(3)为中空的圆柱状体,所述的转子轴(21)穿入所述的电机转子(3)的中心孔连接固定。
所述的电机定子(4)为中空柱状。
所述的电机转子(3)、电机定子(4)底部紧邻所述的泵腔一端,并封堵所述的泵腔一端。
两个所述电机转子(3)为结构相同的中空圆柱状体,所述电机定子(4)的截面为“8”字形,两个所述电机转子(3)对称且并排设置于所述电机定子(4)内,所述电机转子(3)分别与所述电机定子(4)截面“8”字形的两个圆同心设置,所述的转子轴(21)穿入所述的电机转子(3)的中心孔连接固定。
所述的泵腔两端轴承内端设有密封。
所述真空泵为罗茨真空泵或爪型干式真空泵或螺杆干式真空泵。
所述转子为罗茨真空泵转子或爪型干式真空泵转子或螺杆干式真空泵转子。
所述的一种复合转子真空泵,在无油双螺杆空压机或同步反向的双轴机械机构中的应用。
本发明的优点如下:
1.通过电机定子、电机转子直接带动泵腔转子旋转,大幅简化了传动结构,同时缩减了密封结构,提高了设备的可靠性。
2.取代了之前的齿轮传动方式,噪音产生的最大根源得以消除。
3.配件数量减少三分之二,真空泵油消耗降低,制造成本降低。
4.整机安全性能高,可以做到零泄漏,不存在泄露的安全隐患。
附图说明:
图1为本发明实施例一电机转子、电机定子位于泵腔下端时的剖视结构示意图;
图2为本发明实施例一电机转子、电机定子位于泵腔上端时的剖视结构示意图;
图3为本发明图1的A-A剖面结构示意图;
图4为本发明图1的B-B剖面结构示意图;
图5为本发明实施例二电机转子、电机定子位于泵腔下端时的剖视结构示意图;
图6为本发明实施例二电机转子、电机定子位于泵腔上端时的剖视结构示意图;
图7为本发明图6的C-C剖面结构示意图;
图8为本发明图6的D-D剖面结构示意图;
图9为本发明实施例三电机转子、电机定子位于泵腔下端时的剖视结构示意图;
图10为本发明实施例三电机转子、电机定子位于泵腔上端时的剖视结构示意图;
图11为本发明图10的B-B剖面结构示意图;
图12为本发明图10的A-A剖面结构示意图;
图13为本发明实施例四电机转子、电机定子位于泵腔上端时的剖视结构示意图;
图14为本发明实施例四电机转子、电机定子位于泵腔下端时的剖视结构示意图;
图15为本发明图13的D-D剖面结构示意图;
图16为本发明图13的C-C剖面结构示意图;
附图编号说明:泵腔或腔体1、进气口11、排气口12、转子2、转子轴21、电机转子3、电机定子4;
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
以下实施例仅是为清楚的发明本所作的举例,而并非对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在下述说明的基础上还可以做出其他不同形式的变化或变动,而这些属于本发明精神所引出的显而易见的变化或变动仍处于本发明的保护范围之中。
实施例一、二,
参见图1-4为本发明实施例一各附图,图5-8为实施例二各附图,技术方案详述如下:一种双电机复合转子双轴传动设备,包括腔体1、转子对,所述转子对为两个相互配合高速同步反向旋转的转子2,所述转子对内置在中空的所述腔体1内,所述转子2与所述的腔体1相配合,所述转子两端为一体形成的转子轴21,所述腔体1两端设置密封件密封腔体,所述转子轴伸出所述腔体外并通过轴承支撑;各所述转子2在同侧的转子轴端部分别固定套接有一电机转子3见图1、图2、图5、图6所示,各所述电机转子3分别配合设置在各自的电机定子4内见图4、8所示,所述转子对的各电机定子4、电机转子3通过编码器和变频器控制频率和转速的同步。
所述转子2相互啮合见图3、图7所示,所述电机转子3、电机定子4均为中空的圆柱状体,所述转子轴21穿入所述的电机转子3的中心孔连接固定见图4、图8所示,所述电机转子3内套在所述电机定子4内。
所述的腔体1两端轴承内端设有密封件。
所述双轴传动的设备可以为真空泵或者空压机。
所述真空泵可为罗茨真空泵或爪型干式真空泵或螺杆干式真空泵;
所述转子对相应为罗茨真空泵转子或爪型干式真空泵转子或螺杆干式真空泵转子。
所述空压机转子的啮合段可为变螺距螺杆转子,螺距级数不限于三级或六级,螺距可渐变,渐变比值不限,同时螺距也可为等螺距,实施例中所述螺距由上至下分为五级渐变螺距并且依次减小,由上至下五级螺距比值为1:0.6:0.3:0.3:0.3。
其工作原理如下:
对两个所述电机定子进行通电,通电后所述泵腔内转子上的所述电机转子形成感应电动势,通过变频器及编码器使电机转子以同样的频率转动,还分别控制转动过程中转子对转动时的角速度,其使对应的位置完全同步,并带动泵腔内转子对高速、反向同步旋转,这样就符合了真空泵转子轴同步且相互反向旋转的要求,取代了传统的电机、联轴器、齿轮组。
从而,淘汰了传统的电机带动齿轮组,带动泵腔转子进行旋转的复杂结构。大幅缩减了结构的复杂性,同时制造成本也大幅缩减。由于没有齿轮等传动部件,原来繁多的密封部件也得以简化。简化后的结构可靠性也随之增强。
传统的电机传动过程中,经常通过联轴器连接电机、齿轮组,产生大量的能耗。另外,齿轮啮合传动过程中,噪音巨大。同时齿轮传动需要真空泵油润滑,密封结构复杂,导致运行成本升高。采用本发明技术方案的方式使得以上问题都得到了彻底解决,大幅缩小了能耗。
罗茨真空泵同样是通过双转子进行传动,所以同样也是适用本发明技术方案。具体技术方案如前所述,在此不再赘述;
将本发明应用到罗茨真空泵,其罗茨转子可以是两叶罗茨转子、三叶或四叶罗茨转子。
本发明结构克服了上述所有的缺点,可用在罗茨真空泵、爪型干式真空泵、螺杆干式真空泵、空压机等多种双转轴的设计结构中。该技术方案推而广之还可以用于无油双螺杆空压机或一切同步反方向的双轴机械机构。只要解决的技术问题相同,都适用本发明的技术方案。
实施例三、四,
下面结合附图对本发明的具体实施方式做进一步说明。
参见图9-12为实施例三各附图,图13-16为实施例四各附图,技术方案详述如下:一种复合转子真空泵,它包括:泵腔1、进气口11、排气口12、轴承;所述泵腔1内有转子2,所述转子2的两端通过转子轴21支撑在所述的轴承上;所述泵腔1外的一端设置电机定子4,所述的电机定子4内配置电机转子3,所述的电机转子3连接固定所述的泵腔内的转子2的转子轴21。
参见图9、10、13、14所示,所述泵腔1内有两个转子2,所述转子2的两端通过各自的转子轴21支撑在所述的轴承上:所述泵腔1外的一端设置一个电机定子4,所述的电机定子4内配置两个高速、同步反向旋转的电机转子3,两个所述的电机转子3共用一个所述的电机定子4;两个所述的电机转子3分别连接固定所述的泵腔内的两个转子2的转子轴21。
所述电机转子3为中空的圆柱状体,所述的转子轴21穿入所述的电机转子3的中心孔连接固定。
所述的电机定子4为中空柱状。
所述的电机转子3、电机定子4底部紧邻所述的泵腔一端,并封堵所述的泵腔一端。
两个所述电机转子3为结构相同的中空圆柱状体,所述电机定子4的截面为“8”字形,两个所述电机转子3对称且并排设置于所述电机定子4内,所述电机转子3分别与所述电机定子4截面“8”字形的两个圆同心设置,所述的转子轴21穿入所述的电机转子3的中心孔 连接固定;参见图11、16所示。
所述的泵腔两端轴承内端设有密封。
所述真空泵可以为罗茨真空泵或爪型干式真空泵或螺杆干式真空泵。
所述转子相应为罗茨真空泵转子或爪型干式真空泵转子或螺杆干式真空泵转子。
如图9-12所示为将本发明应用到螺杆干式真空泵后的结构示意图;具体技术方案如前所述。在此不再赘述。
其工作原理如下:
对所述电机定子进行通电,通电后所述泵腔内转子上的所述电机转子形成感应电动势,由于所述电机定子为共同的一个,所以两个电机转子频率相同。电机转子会以同样的频率转动,并带动泵腔内转子高速、反向同步旋转,这样就符合了真空泵转子轴同步且相互反向旋转的要求,取代了传统的电机、联轴器、齿轮组。
从而,淘汰了传统的电机带动齿轮组,带动泵腔转子进行旋转的复杂结构。大幅缩减了结构的复杂性,同时制造成本也大幅缩减。由于没有齿轮等传动部件,原来繁多的密封部件也得以简化。简化后的结构可靠性也随之增强。
传统的电机传动过程中,经常通过联轴器连接电机、齿轮组,产生大量的能耗。另外,齿轮啮合传动过程中,噪音巨大。同时齿轮传动需要真空泵油润滑,真空泵油润滑消耗也很大,导致运行成本升高。采用本发明技术方案的方式使得以上问题都得到了彻底解决,大幅缩小了能耗。
如图11-16示为将本发明应用到罗茨真空泵后的结构示意图,由于其同样是通过双转子进行传动,所以同样也是适用本发明技术方案。具体技术方案如前所述,在此不再赘述;
将本发明应用到罗茨真空泵,其罗茨转子可以是两叶罗茨转子、三叶或四叶罗茨转子。
本发明结构克服了上述所有的缺点,可用在罗茨真空泵、爪型干式真空泵、螺杆干式真空泵等多种双转轴的设计结构中。该技术方案推而广之还可以用于无油双螺杆空压机或一切同步反方向的双轴机械机构。只要解决的技术问题相同,都适用本发明的技术方案。

Claims (16)

  1. 一种双电机复合转子双轴传动设备,包括腔体(1)、转子对,所述转子对为两个相互配合高速同步反向旋转的转子(2),所述转子对内置在中空的所述腔体(1)内,所述转子(2)与所述的腔体(1)相配合,所述转子两端为一体形成的转子轴,所述腔体(1)两端设置密封件,所述转子轴伸出所述腔体外并通过轴承支撑;其特征在于:各所述转子(2)在同侧的转子轴端部分别固定套接有一电机转子(3),各所述电机转子(3)分别配合设置在各自的电机定子(4)内,所述转子对的各电机定子(4)、电机转子(3)通过编码器和变频器控制频率和转速的同步。
  2. 根据权利要求1所述的一种双电机复合转子双轴传动设备,其特征在于:所述转子(2)相互啮合,所述电机转子(3)、电机定子(4)均为中空的圆柱状体,所述转子轴穿入所述的电机转子(3)的中心孔连接固定,所述电机转子(3)内套在所述电机定子(4)内。
  3. 根据权利要求1所述的一种双电机复合转子双轴传动设备,其特征在于:所述的腔体(1)两端轴承内端设有密封件。
  4. 根据权利要求1所述的一种双电机复合转子双轴传动设备,其特征在于:所述双轴传动的设备为真空泵或者空压机。
  5. 根据权利要求4所述的一种双电机复合转子双轴传动设备,其特征在于:所述真空泵为罗茨真空泵或爪型干式真空泵或螺杆干式真空泵。
  6. 根据权利要求4所述的一种双电机复合转子双轴传动设备,其特征在于:所述空压机转子的啮合段为变螺距螺杆转子,所述螺距由上至下分为五级渐变螺距并且依次减小,由上至下五级螺距比值为1:0.6:0.3:0.3:0.3。
  7. 一种复合转子真空泵,它包括:泵腔(1)、进气口(11)、排气口(12)、轴承;所述泵腔(1)内有转子(2),所述转子(2)的两端通过转子轴(21)支撑在所述的轴承上,其特征在于:所述泵腔(1)外的一端设置电机定子(4),所述电机定子(4)内配置电机转子(3),所述电机转子(3)连接固定所述转子轴(21)。
  8. 根据权利要求7所述的一种复合转子真空泵,其特征在于:所述泵腔(1)内有两个转子(2),所述转子(2)的两端通过各自的转子轴(21)支撑在所述的轴承上,所述泵腔(1)外的一端设置一个电机定子(4),所述的电机定子(4)内配置两个高速、同步反向旋转的电机转子(3),两个所述的电机转子(3)共用一个所述的电机定子(4);两个所述的电机转子(3)分别连接固定所述转子轴(21)。
  9. 根据权利要求8所述的一种复合转子真空泵,其特征在于:所述电机转子(3)为中空的圆柱状体,所述的转子轴(21)穿入所述的电机转子(3)的中心孔连接固定。
  10. 根据权利要求8所述的一种复合转子真空泵,其特征在于:所述的电机定子(4)为中空柱状。
  11. 根据权利要求8所述的一种复合转子真空泵,其特征在于:所述的电机转子(3)、电机定子(4)底部紧邻所述的泵腔一端,并封堵所述的泵腔一端。
  12. 根据权利要求7所述的一种复合转子真空泵,其特征在于:两个所述电机转子(3)为结 构相同的中空圆柱状体,所述电机定子(4)的截面为“8”字形,两个所述电机转子(3)对称且并排设置于所述电机定子(4)内,所述电机转子(3)分别与所述电机定子(4)截面“8”字形的两个圆同心设置,所述的转子轴(21)穿入所述的电机转子(3)的中心孔连接固定。
  13. 根据权利要求8所述的一种复合转子真空泵,其特征在于:所述的泵腔两端轴承内端设有密封。
  14. 根据权利8所述的一种复合转子真空泵,其特征在于:所述真空泵为罗茨真空泵或爪型干式真空泵或螺杆干式真空泵。
  15. 根据权利要求8所述的一种复合转子真空泵,其特征在于:所述转子为罗茨真空泵转子或爪型干式真空泵转子或螺杆干式真空泵转子。
  16. 权利要求8所述的一种复合转子真空泵,其特征在于:在无油双螺杆空压机或同步反向的双轴机械机构中的应用。
PCT/CN2017/090483 2016-08-05 2017-06-28 一种双电机复合转子双轴传动设备 WO2018024050A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610639358.8A CN106050664A (zh) 2016-08-05 2016-08-05 一种复合转子真空泵
CN201610639358.8 2016-08-05
CN201611225441.7 2016-12-27
CN201611225441.7A CN106762646A (zh) 2016-12-27 2016-12-27 一种双电机复合转子双轴传动设备

Publications (1)

Publication Number Publication Date
WO2018024050A1 true WO2018024050A1 (zh) 2018-02-08

Family

ID=61073351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090483 WO2018024050A1 (zh) 2016-08-05 2017-06-28 一种双电机复合转子双轴传动设备

Country Status (1)

Country Link
WO (1) WO2018024050A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544358A (zh) * 2018-12-18 2021-10-22 阿特拉斯·科普柯空气动力股份有限公司 用于排出介质的诸如压缩机、膨胀机、泵等的容积式机器以及由其使用的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU764062B2 (en) * 1999-05-18 2003-08-07 Sterling Fluid Systems (Germany) Gmbh Displacement machine for compressible media
EP2532895A1 (de) * 2011-06-06 2012-12-12 Vacuubrand Gmbh + Co Kg Vakuumpumpe mit einseitiger Lagerung der Pumpenrotoren
CN103625544A (zh) * 2013-11-04 2014-03-12 北京理工大学 电动液压助力转向油泵双电机驱动装置
CN204941949U (zh) * 2015-09-06 2016-01-06 石家庄佳信汽车制动系统有限公司 一种车用电动叶片泵
CN205260308U (zh) * 2015-12-07 2016-05-25 台州鑫宇真空设备制造有限公司 一种罗茨泵
CN106050664A (zh) * 2016-08-05 2016-10-26 北京朗禾科技有限公司 一种复合转子真空泵
CN205955993U (zh) * 2016-08-05 2017-02-15 北京朗禾科技有限公司 一种复合转子真空泵
CN106762646A (zh) * 2016-12-27 2017-05-31 北京朗禾科技有限公司 一种双电机复合转子双轴传动设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU764062B2 (en) * 1999-05-18 2003-08-07 Sterling Fluid Systems (Germany) Gmbh Displacement machine for compressible media
EP2532895A1 (de) * 2011-06-06 2012-12-12 Vacuubrand Gmbh + Co Kg Vakuumpumpe mit einseitiger Lagerung der Pumpenrotoren
CN103625544A (zh) * 2013-11-04 2014-03-12 北京理工大学 电动液压助力转向油泵双电机驱动装置
CN204941949U (zh) * 2015-09-06 2016-01-06 石家庄佳信汽车制动系统有限公司 一种车用电动叶片泵
CN205260308U (zh) * 2015-12-07 2016-05-25 台州鑫宇真空设备制造有限公司 一种罗茨泵
CN106050664A (zh) * 2016-08-05 2016-10-26 北京朗禾科技有限公司 一种复合转子真空泵
CN205955993U (zh) * 2016-08-05 2017-02-15 北京朗禾科技有限公司 一种复合转子真空泵
CN106762646A (zh) * 2016-12-27 2017-05-31 北京朗禾科技有限公司 一种双电机复合转子双轴传动设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544358A (zh) * 2018-12-18 2021-10-22 阿特拉斯·科普柯空气动力股份有限公司 用于排出介质的诸如压缩机、膨胀机、泵等的容积式机器以及由其使用的方法
CN113544358B (zh) * 2018-12-18 2023-09-01 阿特拉斯·科普柯空气动力股份有限公司 用于排出介质的诸如压缩机、膨胀机、泵等的容积式机器以及由其使用的方法

Similar Documents

Publication Publication Date Title
US3396632A (en) Volumetric maching suitable for operation as pump, engine, or motor pump
US11441564B2 (en) Driving structure of three-axis multi-stage roots pump
AU2018406349B2 (en) Multi-stage roots dry vacuum pump
CN106762646A (zh) 一种双电机复合转子双轴传动设备
CN103291607A (zh) 不完全齿轮机构驱动的叶片差速泵
CN106050664A (zh) 一种复合转子真空泵
CN206360891U (zh) 一种双电机复合转子双轴传动设备
WO2018024050A1 (zh) 一种双电机复合转子双轴传动设备
CN1862020A (zh) 爪型干式真空泵
CN203297094U (zh) 一种不完全齿轮机构驱动的叶片差速泵
CN114320917A (zh) 一种直排式罗茨泵
CN109944792A (zh) 一种双压双向齿轮泵
CN103206258A (zh) 新形式气动马达
CN205955993U (zh) 一种复合转子真空泵
CN109931262B (zh) 一种非圆齿轮驱动的同步回转式压缩机
CN110307079A (zh) 基于流体容积变化的能量转换装置
CN208651160U (zh) 一种齿轮传动涡旋压气机
WO2023280183A1 (zh) 分腔转子容积机构
JPH01267384A (ja) 勾配歯を有するスクリューロータ
CN206801869U (zh) 一种不对称的螺杆转子
CN211975392U (zh) 一种复合转子压缩机
CN112797001A (zh) 转子组件、压缩机及空调
CN106151031A (zh) 一种无油螺杆空压机
CN109026707B (zh) 爪式泵与滑阀泵组合的复合泵
CN212837965U (zh) 基于流体容积变化的能量转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836233

Country of ref document: EP

Kind code of ref document: A1