WO2018024038A1 - 一种纹波电流产生电路 - Google Patents

一种纹波电流产生电路 Download PDF

Info

Publication number
WO2018024038A1
WO2018024038A1 PCT/CN2017/088006 CN2017088006W WO2018024038A1 WO 2018024038 A1 WO2018024038 A1 WO 2018024038A1 CN 2017088006 W CN2017088006 W CN 2017088006W WO 2018024038 A1 WO2018024038 A1 WO 2018024038A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
terminal
ripple current
diode
parallel
Prior art date
Application number
PCT/CN2017/088006
Other languages
English (en)
French (fr)
Inventor
王保均
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Priority to US16/313,011 priority Critical patent/US10679797B2/en
Priority to RU2019100014A priority patent/RU2704631C1/ru
Priority to GB1821320.7A priority patent/GB2567346B/en
Priority to DE112017003353.5T priority patent/DE112017003353T5/de
Publication of WO2018024038A1 publication Critical patent/WO2018024038A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/28Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices with other electric components not covered by this subclass

Definitions

  • the present invention relates to a ripple current generating circuit, and more particularly to a ripple current generating circuit for an aging test of an electrolytic lifetime.
  • the DC power source and the inductor are responsible for supplying power.
  • a transformer, a diode, a field effect transistor, and a pulse width modulation control circuit form a core body of the circuit according to the method of the claims, and the function thereof is to generate a ripple current and to generate electric energy when generating a ripple current,
  • the second winding is returned to the DC power supply or the electrolysis to be tested almost without loss.
  • this part of the circuit that generates ripple current and non-destructive return energy is called lossless ripple current generator circuit, which is simply referred to as lossless ripple current generation. Device.
  • the DC power source and the first inductor are responsible for supplying power.
  • a second inductor, a first diode, a second diode, two field effect transistors, and a pulse width modulation control circuit form a core body of the circuit according to the method of the claim, and the function thereof is to generate a ripple current, and The electric energy consumed when the ripple current is generated is returned to the DC power source or the electrolysis to be tested almost non-destructively through the second inductor, the first diode, and the second diode, and the ripple current and the non-destructive return are generated for convenience.
  • This part of the energy circuit also known as the lossless ripple current generator circuit, is also referred to as a lossless ripple current generator.
  • lossless ripple current generator appearing hereinafter and in the claims has the same meaning as the related circuits in the above-mentioned prior patents A and B, namely: generating ripple current and consuming the ripple current.
  • the electrical energy is returned to the DC power source or the circuit under test for almost no loss.
  • the problem is solved, and the technical solution to be solved is summarized as: inserting an indication circuit in the DC power supply U and the measured capacitance loop, the indication circuit is composed of the inductor L and the LED In parallel, the current direction of the DC power supply U through the inductor L is opposite to the forward conduction direction of the LED.
  • the excitation current of the switching transistor Q does not substantially appear in the inductor L, and the LED does not emit light;
  • the ESR of the measured capacitor rises large, the exciting current of Q appears in L, and Q is turned off.
  • the excitation current flowing through L cannot be abruptly changed, and the LED is continuously flowed through the illuminator, and the LED is driven to emit light, thereby reminding the user.
  • Inductor L is used to isolate the power supply and the measured capacitance, so that the DC power supply only provides DC current.
  • the measured capacitance provides high-frequency ripple current, which requires the inductance L to have a large inductance, but it is also used to implement the indication circuit.
  • the sense of sensitivity is relatively moderate, because the inductance assembly causes problems to the indicating circuit, that is, the ESR of the measured capacitor rises slightly, and the indicating circuit starts to indicate, which is inconvenient to use.
  • the present invention is to solve the deficiencies of the existing ripple current generating method and circuit, and provides a ripple current generating circuit, wherein the inductance L is only used to isolate the power supply, and the indication signal of the measured capacitor failure is indicated by other indicating circuits. It is provided with low cost, simple indication circuit and convenient use.
  • the present invention provides a ripple current generating circuit
  • a solution 1 includes a DC power supply, a first inductor, a lossless ripple current generator, and an output terminal connecting two pins of the measured capacitor, including a positive terminal and a negative terminal.
  • the output of the DC power supply has a positive pole and a negative pole, and the lossless ripple current generator includes at least a pulse width modulation control circuit;
  • the output terminal and the inductor are connected in series and connected in parallel with the DC power supply;
  • the non-destructive ripple current generator and the output terminal are connected in parallel for generating a ripple current, and returning the electric energy consumed when the ripple current is generated to the DC power source or the measured capacitance without loss;
  • the maximum duty cycle of the pulse width modulation control circuit is less than 0.5;
  • An indicating circuit is further connected in parallel between the positive terminal and the negative terminal, and the indicating circuit is characterized in that: the first resistor, the first capacitor, the first diode and the first light emitting diode, the first resistor and the first diode and the first A three-component LED is connected in parallel, wherein the first LED and the first diode are connected in anti-parallel, and the two-terminal network formed in parallel is referred to as a parallel network, and the terminal of the parallel network is an anode of the first diode, The cathode of a diode is distinguished, and the parallel network is connected in series with the first capacitor to form a two-terminal network in series.
  • the two-terminal network in series is simply referred to as a series network, and the two terminals of the series network are respectively indicating circuits.
  • the first terminal and the second terminal is simply referred to as a series network, and the two terminals of the series network are respectively indicating circuits. The first terminal and the second terminal
  • the invention provides a ripple current generating circuit
  • the second embodiment comprises: a DC power supply, a first inductor, a lossless ripple current generator, and an output terminal connecting two pins of the measured capacitor, including a positive terminal and a negative terminal.
  • said The output of the DC power source has a positive pole and a negative pole
  • the lossless ripple current generator includes at least a pulse width modulation control circuit
  • the output terminal and the inductor are connected in series and connected in parallel with the DC power supply;
  • the non-destructive ripple current generator and the output terminal are connected in parallel for generating a ripple current, and returning the electric energy consumed when the ripple current is generated to the DC power source or the measured capacitance without loss;
  • the maximum duty cycle of the pulse width modulation control circuit is less than 0.5;
  • An indicating circuit is further connected in parallel between the positive terminal and the negative terminal, and the indicating circuit is characterized in that: the first resistor and the second resistor are included; the first capacitor and the second capacitor; the first diode and the second diode, and the first a light emitting diode; the connection relationship is: the second resistor is connected in series with the first light emitting diode to form a first network having two terminals, and the first network and the second capacitor are simultaneously connected in parallel with the first resistor to form a second network having two terminals The second network is further connected in series with the second diode to form a third network having two terminals.
  • the third network is characterized in that the second diode and the first LED are in the same direction; the third network and the first two The pole tubes are connected in reverse parallel to form a fourth network having two terminals, and the fourth network is connected in series with the first capacitor, and forms a two-terminal network in series.
  • the two-terminal network in series is simply referred to as a serial network, and the serial network is The two terminals are a first terminal and a second terminal, respectively.
  • the first scheme and the second scheme are characterized in that: the first light emitting diode is an illuminator in the optocoupler, that is, the light emitting diode in the optocoupler.
  • High-frequency ripple current is provided at low cost and low power consumption; its inductance is only used to isolate the power supply, and is not responsible for providing an indication signal. It also realizes the light-emitting diode in the illuminator or the light-emitting diode in the optocoupler before the electrolysis fails. When a current flows, the optocoupler outputs an isolated signal to alert the user or the circuit, and the preset ESR before the electrolysis fails can be adjusted.
  • FIG. 1 is a schematic diagram of a first embodiment of a technical solution of the present invention
  • 2-1 is a schematic diagram of a first embodiment of an indication circuit corresponding to the first embodiment of the present invention
  • 2-3 is a schematic diagram of an equivalent implementation of the first embodiment of the indication circuit corresponding to the first embodiment of the present invention
  • 2-4 is a schematic diagram of an equivalent implementation of the first embodiment of the indication circuit corresponding to the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a path of a charging current generated by the DC power source U of FIG. 1;
  • FIG. 4 is a gate and source of the switching transistor Q of FIG electrode driving voltage Ugs, the main power stage of an exciting current I waveform and a measured capacitor current i out of work;
  • FIG 5 is a measured capacitance of FIG. 1 is a schematic diagram of the operating current i out of the drop is formed on the ESR measured capacitance;
  • Figure 6 is a schematic diagram of a second embodiment of the technical solution of the present invention.
  • 7-1 is a schematic diagram of a second embodiment of the indication circuit corresponding to the second embodiment of the present invention.
  • 7-2 is a schematic diagram of an equivalent implementation of a second embodiment of the indication circuit corresponding to the second embodiment of the present invention.
  • 7-3 is a schematic diagram showing an equivalent implementation of the second embodiment of the indication circuit corresponding to the second embodiment of the present invention.
  • 7-4 is a schematic diagram of an equivalent implementation of the second embodiment of the indication circuit corresponding to the second embodiment of the present invention.
  • a ripple current generating circuit corresponding to the first scheme, including a DC power source U, a first inductor L, a lossless ripple current generator 100, and an output terminal connecting two pins of the capacitor to be tested, including Positive terminal J+ And the negative terminal J-, the output of the DC power supply U has a positive pole and a negative pole, the lossless ripple current generator 100 includes at least a pulse width modulation control circuit P;
  • the output terminal and the inductor L are connected in series and connected to the DC power source U in parallel;
  • the lossless ripple current generator 100 and the output terminal are connected in parallel for generating a ripple current, and returning the electrical energy consumed when the ripple current is generated to the DC power source U or the measured capacitance without loss;
  • the maximum duty cycle of the pulse width modulation control circuit is less than 0.5;
  • a schematic circuit 200 is also connected in parallel between the positive terminal J+ and the negative terminal J-.
  • the schematic diagram of the indicating circuit 200 is independent. Referring to FIG. 2-1, the indicating circuit 200 is characterized by including a first resistor R1 and a first capacitor C1.
  • the two-terminal network formed in parallel and connected in parallel is referred to as parallel network 24, and the terminals of the parallel network 24 are distinguished by the anode of the first diode D1 and the cathode of the first diode D2, and the parallel network 24 is further connected with the first capacitor C1.
  • the two-terminal network in series is simply referred to as a series network, and the two terminals of the serial network are respectively the first terminal 1 and the second terminal 2 of the indicating circuit.
  • the first terminal 1 is connected to the positive terminal J+, and the second terminal 2 is connected to the negative terminal J-; if the first terminal 1 is connected to the negative terminal J- and the second terminal 2 is connected to the positive terminal J+, the circuit is also operable.
  • anti-parallel connection it is meant that the anode of the first diode D1 is connected to the cathode of the first LED, while the cathode of the first diode D1 is connected to the anode of the first LED.
  • the first capacitor C1 is hereinafter referred to as C1, and the first resistor R1 is hereinafter referred to as R1.
  • the first LED is hereinafter referred to as LED, and other devices are similar.
  • the scheme 1 includes a plurality of series methods, but the functions are the same, as follows:
  • the only effective connection method is only the above (a) of FIG. 2-1 and (b) of FIG. 2-2.
  • the capacitor C1 and the network 24 are connected in series. Since the circuit is a series circuit, the functions are the same after the device is interchanged.
  • the method of (b) of Fig. 2-2 is to interchange the position C1 of the mode (a) of Fig. 2-1 with the network 24, that is, essentially, (a) and Fig. 2-2 of Fig. 2-1.
  • the way (b) is equivalent. That is, the indicating circuit 200 in the first technical solution includes the above four connection modes.
  • the LED is ⁇ 3mm red highlighted.
  • the LED is referred to as the LED
  • the model is 3AR2UD
  • the capacitor C1 is 333/500V chip capacitor
  • the nominal capacity is 0.033uF
  • D1 is 1N4148
  • R1 is 22K chip resistor
  • the lossless ripple current generator 100 adopts the technical solution of the first embodiment in the prior patent A
  • the inductor An inductor with a value of 1 mH is wound with a wire diameter of 0.6 mm.
  • the measured capacitance is the electrolysis nominally 450BXC47MEFC18 ⁇ 25, the nominal withstand voltage is 450V, the ripple current is 1.2A, and the DC power supply U is adjusted to 311V DC.
  • the air gap of the magnetic core is adjusted. The size is such that the ripple current of the capacitor under test is 1.2A, and the LED does not emit light.
  • an adjustable resistor is inserted in series to simulate the electrolysis whose performance has been degraded.
  • the adjustable range of the adjustable resistor is 0-39 ⁇ , when the adjustable resistor is used When the resistance is adjusted to 5 ⁇ , the ESR equivalent to 47uF/400V is increased from 0.5 ⁇ to 5.5 ⁇ from the good product, and the performance of the electrolysis is close to the unusable edge.
  • the LED of FIG. 1 emits light, and the average value of the operating current is actually measured to be 1.6 mA.
  • the sensitivity of the indication is initially adjusted, the capacity of the capacitor C1 is small, and the sensitivity is low; the capacity of the capacitor C1 is large and the sensitivity is high.
  • the resistance R1 can be connected in parallel with the LED of the LED to adjust the sensitivity. In this example, if R1 uses a resistance of 1.6K, then 1mA or less. The peak current produces a voltage of less than 1.6V across R1, at which point the LEDs do not illuminate.
  • the conduction voltage drop of the white light-emitting tube is about 3.0V
  • the red color is different from the green color
  • the illuminator conduction voltage drop inside the photocoupler is about 1.1V.
  • the illuminator inside the optocoupler is also an illuminating tube.
  • the path of the charging current generated by the DC power source U is shown in the charging current path in Figure 4, which is pure DC, supplementing the loss of the lossless ripple current generator.
  • the charging current is DC, and at this time, the LED does not emit light due to the reverse bias.
  • C1 is 0.033uF, which has a small capacity, but its capacitance is 73.8 ⁇ at a frequency of 65KHz, which can provide sufficient operating current for the LED to emit light.
  • C1's value technique At the operating frequency of the lossless ripple current generator 100, its capacitive reactance is greater than five times the ESR expected to fail. This is because, if the capacitive reactance of C1 is close to the ESR, then C1 will share a large ripple current, so that the ripple current obtained by the measured capacitor is insufficient. If the capacitive reactance of C1 is greater than the expected ESR of the measured capacitor. 10 times, then, the ripple current obtained by the measured capacitance is closer to the design value.
  • the working principle of the invention is not complicated, the capacity of C1 is small, C1 has the function of passing high frequency and blocking low frequency; as the ESR of the measured capacitor rises, the voltage drop generated by the lossless ripple current generator 100 on the ESR rises synchronously. High, the high-frequency ripple voltage formed increases with the aging of the electrolysis, and C1 has a high-frequency effect.
  • the LED When the high-frequency ripple voltage on the ESR reaches a certain threshold, the LED will illuminate and illuminate, and R1 is adjusted.
  • the resistance can adjust the size of the threshold, ie high
  • the voltage of the frequency ripple voltage passing through the capacitor C1 is reduced at the voltage across the R1, and the LED is not turned on, and the LED cannot be shunted for R1 to emit light.
  • the LED of the LED is driven to achieve the purpose of the invention, and the user is reminded that the ESR of the measured capacitor has risen to the point of interest, so that the user can decide the next step.
  • the operating current of the lossless ripple current generator 100 is reduced to 30%, the LED is still illuminated, and the operating current is reduced to 0.36 mA.
  • the use of a high-brightness LED is still conspicuous.
  • the electrolysis can still work, but the excitation current of the main power level has a large calorific value on the ESR, which is 0.22 W in this example.
  • the electrolysis is already under high calorific value and is already accelerating aging. Under normal circumstances, In the tens of hours to hundreds of hours, the ESR rises rapidly, causing the heat to further increase until the failure, the capacity is lost, causing a series of failures such as the explosion of the switch tube.
  • circuit of FIG. 2-2, the circuit of 2-3, and the circuit of 2-4 can be replaced by the circuit 200 of FIG. 4, and it can be seen that the four circuits of the first embodiment can achieve the object of the invention.
  • the indication circuit 200 includes four implementation manners.
  • the ripple current generation circuit of the present invention has four implementation methods.
  • the prior patent A it has been given.
  • the invention of the present invention can be realized by adding the indication circuit 200 of the present invention to these different connection methods.
  • the present application is summarized only in one general "first embodiment".
  • the current flowing through the LED of the light-emitting tube is not a direct current, but a high-frequency current of the same frequency as the ripple current generator.
  • the lead of the LED is long, the electromagnetic radiation cannot be ignored; the LED of the light-emitting tube is replaced by light.
  • the output current of the optocoupler also appears periodically, not a stable signal, which causes trouble for subsequent circuits.
  • the second embodiment shows a solution.
  • a ripple current generating circuit including a DC power source U, a first inductor L, a lossless ripple current generator 100, and an output terminal connecting two pins of the measured capacitor, including Positive terminal J+ and negative terminal J-, the output of the DC power supply U has a positive pole and a negative pole, the lossless ripple current generator 100 includes at least a pulse width modulation control circuit P;
  • the output terminal and the inductor L are connected in series and connected to the DC power source U in parallel;
  • the lossless ripple current generator 100 and the output terminal are connected in parallel for generating a ripple current, and returning the electrical energy consumed when the ripple current is generated to the DC power source U or the measured capacitance without loss;
  • the maximum duty cycle of the pulse width modulation control circuit is less than 0.5;
  • a schematic circuit 200 is also connected in parallel between the positive terminal J+ and the negative terminal J-.
  • the schematic diagram of the indicating circuit 200 is independent.
  • the indicating circuit 200 is characterized by including a first resistor R1 and a second resistor R2. a capacitor C1, a second capacitor C2; a first diode D1 and a second diode D2, and a first LED; the second resistor R2 is connected in series with the first LED to form a first network having two terminals 21, the first network 21 and the second capacitor C2 are simultaneously connected in parallel with the first resistor R1 to form a second network 22 having two terminals, and the second network 22 is further connected in series with the second diode D2 to form a third terminal having two terminals.
  • the network 23, the third network 23 is characterized in that the second diode D2 and the first light emitting diode LED are in the same direction; the third network 23 is connected in anti-parallel with the first diode D1 to form a fourth network having two terminals. 24, the fourth network 24 is further connected in series with the first capacitor C1, and forms a two-terminal network in series, the serial two-terminal network is simply referred to as a series network, and the two terminals of the serial network are respectively the first terminal 1, the first Two terminals 2, the serial network is also indicating circuit 200 Body.
  • the first terminal 1 is connected to the positive terminal J+, and the second terminal 2 is connected to the negative terminal J-; if the first terminal 1 is connected to the negative terminal J- and the second terminal 2 is connected to the positive terminal J+, the circuit is also operable.
  • the second diode D2 and the first LED are in the same direction: in the third network 23, assuming that R1 is open, and capacitor C2 is equivalent to an open circuit for DC, then the current flowing from the lower end of the third network 23 passes through After the LED, it passes through D2 and flows out from the upper end of the third network 23.
  • D2 and the LED are both in a forward conduction state, and this serial connection is called the same direction. Both D2 and LED are in a forward conduction state, which is equivalent to a diode with a larger voltage drop.
  • Its cathode is the cathode of the third network 23.
  • the direct current can flow out from the cathode of the network, and its anode is the third network.
  • the anode, DC current can flow inward from the anode of the network.
  • the third network 23 is connected in anti-parallel with the first diode D1, that is, the third network 23 is connected to the anode of D1, and the anode of the third network 23 is connected to the cathode of D1.
  • Network 21 and C1 and R1 are simultaneously connected in parallel to form a network 22 having two terminals, and network 22 is connected in series with diode D2.
  • network 22 is connected in series with diode D2.
  • capacitor C2 is equivalent to an open circuit for direct current
  • network 22 is equivalent to one. Only the diode has unidirectional conductivity.
  • the side of the cathode of the LED is the cathode of the second network 22.
  • the direct current can flow out from the cathode of the network.
  • the anode on the side of the LED is the anode of the third network 23, and the DC current. It can flow inward from the anode of the network. Since it is limited to concatenation in the same direction, there are also two ways:
  • the fourth network 24 is in series with the first capacitor C1, and there are also two ways:
  • each series has two ways, a total of two 3 powers, a total of eight connection methods, in fact, they are also equivalent .
  • the lossless ripple current generator 100 adopts the technical solution of the first embodiment in the prior patent B, and the inductance of the inductor L is 1 mH, and is wound by a wire diameter of 0.6 mm.
  • the inductance L2 is a power inductor of about 1.3 mH, and the air gap is adjustable.
  • the measured capacitance is the electrolysis nominally 450BXC47MEFC18 ⁇ 25, the nominal withstand voltage is 450V, the ripple current is 1.2A, and the DC power supply U is adjusted to 420V DC.
  • the component parameters of the indication circuit 200 are: C1 is 473/500V patch Capacitor, nominal capacity is 0.047uF, C2 is 104/16V chip capacitor, D1 and D2 are 1N4148, R2 is 1K, R1 is 10K, LED is 3AR2UD.
  • the air gap of the magnetic core is adjusted so that the ripple current of the measured capacitor is 1.2 A, and the LED does not emit light.
  • the adjustable resistor Since the failed electrolysis is difficult to obtain, in the measured capacitance, the adjustable resistor is still connected in series to simulate the electrolysis whose performance has been degraded.
  • the adjustable range of the adjustable resistor here is 0-39 ⁇ , when the resistance of the adjustable resistor is When the value is adjusted to 4.5 ⁇ , the ESR equivalent to 47 uF/400 V of electrolysis has risen to about 5 ⁇ from about 0.5 ⁇ at the time of good product, and the performance of electrolysis is close to the edge that cannot be used.
  • the light-emitting tube LED in FIG. 7 emits light, and the average value of the operating current is actually measured to be 1.9 mA.
  • C1 is 0.047uF, its capacity is small, but its capacitance is 52.1 ⁇ at 65KHz, which can provide enough working current for LED to emit light.
  • C1's value technique At the operating frequency of the lossless ripple current generator 100, its capacitive reactance is greater than five times the ESR expected to fail. This is because, if the capacitive reactance of C1 is close to the ESR, then C1 will share a large ripple current, so that the ripple current obtained by the measured capacitor is insufficient. If the capacitive reactance of C1 is greater than the expected ESR of the measured capacitor. 10 times, then, the ripple current obtained by the measured capacitance is closer to the design value.
  • the circuit of FIG. 8-2, the circuit of FIG. 8-3, and the circuit of FIG. 8-4 are replaced by the indicating circuit 200 of FIG. 7, and it can be seen that the four circuits of the second embodiment can achieve the object of the invention.
  • the indication circuit 200 includes eight implementation manners.
  • the ripple current generation circuit of the present invention has eight implementation methods.
  • the prior patent B it has been given.
  • the original ripple current produces various changes in the connection relationship of the circuit, It is not repeated here, and the object of the present invention can be achieved by adding the indicating circuit 200 of the present invention to these different connection modes.
  • the present application is summarized only in one general "second embodiment".

Abstract

一种纹波电流产生电路。在现有的纹波电流产生电路上,包括指示电路(200)。指示电路(200)包括电阻(R1)、电容(C1)、二极管(D1)和发光二极管(LED),发光二极管(LED)和二极管(D1)反向并联后与电阻(R1)并联,再与电容(C1)串联,形成指示电路(200)。电容(C1)的容量小,具有通高频、阻直流的作用。随着被测电容的ESR上升,高频激磁电流在ESR上产生的高频纹波电压随之升高,电容(C1)具有通高频的作用,在高频纹波电压到达一定的阈值时,发光二极管(LED)发光,调节电阻(R1)的阻值可以调节阈值的大小。这样能够提醒使用者被测电容的ESR已上升,开关电源已存在失效的风险,以避免损失,同时具有指示电路(200)独立、成本低和容易实施的特点。

Description

一种纹波电流产生电路 技术领域
本发明涉及一种纹波电流产生电路,特别涉及电解寿命的老化测试时的纹波电流产生电路。
背景技术
目前,开关电源应用很广,对于输入功率在75W以下,对功率因素(PF,Power Factor,也称功率因数)不作要求的场合,反激式(Fly-back)开关电源具有迷人的优势,这在中国申请号201510753470.X和201510753730.8的两份名称均为《一种纹波电流产生电路》的申请中均有介绍,同时也介绍了目前没有有效的测试方法、仪器来管控电解额定纹波电流,并给出了技术方案来提供一种纹波电流产生电路,低成本、低能耗地提供高频纹波电流来测试电解电容。为了方便,“电解电容”以下都简称为“电解”。
上述两份专利申请按在本文中出现的顺序分别简称为:现有专利A(201510753470.X)和现有专利B(201510753730.8)。上述两份专利申请的方案仍存在问题:当被测电解快要失效时,等效串联电阻(ESR,是Equivalent Series Resistance的缩写)上升较大时,电解的性能已接近不能使用的边缘,这时若不停机,电解处于加速失效模式,而电解一旦失效,电解本体可能炸毁,电解中电解质炸得到处都是,清理困难,将会引起很多连带失效,从而使得损失被扩大,如场效应管Q炸毁,也给试验设备的操作人员造成心里阴影,不敢上机操作。
在现有专利A中,直流电源和电感负责供电。一变压器、一二极管、一场效应管,一脉宽调制控制电路按权利要求的方法组成了电路的核心主体,它的作用是产生纹波电流,且把产生纹波电流时消耗的电能量,通过第二绕组几乎无损地返回给直流电源或被测电解,为了方便,把产生纹波电流及无损返回能量的这部分电路,称为无损纹波电流发生器电路,简称为无损纹波电流发生器。
在现有专利B中,直流电源和第一电感负责供电。第二电感、第一二极管、第二二极管、两只场效应管,一脉宽调制控制电路按权利要求的方法组成了电路的核心主体,它的作用是产生纹波电流,且把产生纹波电流时消耗的电能量,通过第二电感、第一二极管、第二二极管几乎无损地返回给直流电源或被测电解,为了方便,把产生纹波电流及无损返回能量的这部分电路,也称为无损纹波电流发生器电路,同样简称为无损纹波电流发生器。
下文及权利要求书中出现的技术术语“无损纹波电流发生器”的含义与上述现有专利A和B中相关电路相同,即为:产生纹波电流,且把产生纹波电流时消耗的电能量几乎无损地返回给直流电源或被测电解的电路。
进一步地,在申请号201610040377.9和201610040376.4的专利中,解决了这一问题,解决的技术方案概括为:在直流供电电源U与被测电容回路中插入指示电路,指示电路由电感L与发光二极管LED并联组成,直流供电电源U通过电感L对外供电的电流方向与LED的正向导通方向相反。当被测电容正常时,开关管Q的激磁电流基本上不出现在电感L中,LED不发光;当被测电容的ESR上升较大时,Q的激磁电流出现在L中,且Q关断时,流过L的激磁电流无法突变,经过发光器LED续流,同时驱动LED发光,这样来提醒使用者。
上述后引用的两份专利申请,按出现的顺序分别简称为:现有专利C(201610040377.9)和现有专利D(201610040376.4)。现有专利C和现有专利D也存在问题:
电感L是用来隔离电源与被测电容,使得直流电源只提供直流电流,被测电容提供高频纹波电流,要求电感L的感量大,但现还要用其实现指示电路,要求其感量较为适中,原因为电感量大会给指示电路带来问题,即被测电容ESR略有上升,指示电路就开始指示,使用起来不方便。
所以,我们希望有一种纹波电流产生电路,其电感L仅用来隔离电源,使得直流电源只提供直流电流,电感L不负责提供一个指示信号,电解失效的指示信号由其它电路提供,以供设备或操作人员及时停机。
发明内容
有鉴于此,本发明要解决现有的纹波电流产生方法与电路的不足,提供一种纹波电流产生电路,其电感L仅用来隔离电源,被测电容失效的指示信号由其它指示电路提供,并具有低成本、指示电路简单、使用方便的特点。
本发明提供的一种纹波电流产生电路,方案一:包括直流电源、第一电感、一无损纹波电流发生器,以及连接被测电容两只引脚的输出端子,包括正端子与负端子,所述的直流电源的输出有正极和负极,所述的无损纹波电流发生器至少包括一脉宽调制控制电路;
所述的输出端子和所述的电感串联后与所述的直流电源并联;
所述的无损纹波电流发生器和所述的输出端子并联,用于产生纹波电流,且把产生纹波电流时消耗的电能量无损地返回给直流电源或被测电容;
所述的脉宽调制控制电路的最大占空比小于0.5;
正端子与负端子之间还并联一个指示电路,指示电路的特征是:包括第一电阻、第一电容、第一二极管和第一发光二极管,第一电阻和第一二极管和第一发光二极管这个三个器件并联,其中第一发光二极管和第一二极管反向并联,并联后形成的两端子网络简称为并联网络,并联网络的端子以第一二极管的阳极、第一二极管的阴极进行区分,并联网络再与第一电容串联,并形成一个串联的两端子网络,所述的串联的两端子网络简称为串联网络,串联网络的两个端子分别为指示电路的第一端子、第二端子。
本发明提供的一种纹波电流产生电路,方案二:包括直流电源、第一电感、一无损纹波电流发生器,以及连接被测电容两只引脚的输出端子,包括正端子与负端子,所述 的直流电源的输出有正极和负极,所述的无损纹波电流发生器至少包括一脉宽调制控制电路;
所述的输出端子和所述的电感串联后与所述的直流电源并联;
所述的无损纹波电流发生器和所述的输出端子并联,用于产生纹波电流,且把产生纹波电流时消耗的电能量无损地返回给直流电源或被测电容;
所述的脉宽调制控制电路的最大占空比小于0.5;
正端子与负端子之间还并联一个指示电路,指示电路的特征是:包括第一电阻、第二电阻;第一电容、第二电容;第一二极管和第二二极管、以及第一发光二极管;其连接关系为:第二电阻与第一发光二极管串联,形成具有两端子的第一网络,第一网络与第二电容与第一电阻同时并联,形成具有两端子的第二网络,第二网络再与第二二极管串联,形成具有两端子的第三网络,第三网络的特征是,第二二极管和第一发光二极管为同向;第三网络与第一二极管反向并联,形成具有两端子的第四网络,第四网络再与第一电容串联,并形成一个串联的两端子网络,所述的串联的两端子网络简称为串联网络,串联网络的两个端子分别为第一端子、第二端子。
优选地,上述的方案一、方案二,其特征是:第一发光二极管为光耦中的发光器,即光耦中的发光二极管。
工作原理将结合实施例,进行详细的阐述。
本发明的有益效果为:
低成本、低能耗地提供高频纹波电流;其电感仅用来隔离电源,不负责提供一个指示信号,同样实现当电解失效前,该发光器中的发光二极管发光或光耦中的发光二极管有电流流过,光耦输出一个隔离的信号以提示使用者或电路,且电解失效前的预设ESR是可以调整的。
附图说明
图1为本发明技术方案第一实施例原理图;
图2-1为本发明方案一对应的指示电路第一实施例原理图;
图2-2为本发明方案一对应的指示电路第一实施例等效实施一原理图;
图2-3为本发明方案一对应的指示电路第一实施例等效实施二原理图;
图2-4为本发明方案一对应的指示电路第一实施例等效实施三原理图;
图3为图1直流电源U产生的充电电流的路径示意图;
图4为图1开关管Q的栅极与源极的驱动电压Ugs、主功率级的激磁电流i1和被测电容工作电流iout的波形图;
图5为图1被测电容的工作电流为iout在被测电容的ESR上形成压降的示意图;
图6为本发明技术方案第二实施例原理图;
图7-1为本发明方案二对应的指示电路第二实施例原理图;
图7-2为本发明方案二对应的指示电路第二实施例等效实施一原理图;
图7-3为本发明方案二对应的指示电路第二实施例等效实施二原理图;
图7-4为本发明方案二对应的指示电路第二实施例等效实施三原理图。
具体实施方式
第一实施例
请见图1,一种纹波电流产生电路,对应方案一,包括直流电源U、第一电感L、一无损纹波电流发生器100,以及连接被测电容两只引脚的输出端子,包括正端子J+ 与负端子J-,所述的直流电源U的输出有正极和负极,所述的无损纹波电流发生器100至少包括一脉宽调制控制电路P;
所述的输出端子和所述的电感L串联后与所述的直流电源U并联;
所述的无损纹波电流发生器100和所述的输出端子并联,用于产生纹波电流,且把产生纹波电流时消耗的电能量无损地返回给直流电源U或被测电容;
所述的脉宽调制控制电路的最大占空比小于0.5;
正端子J+与负端子J-之间还并联一个指示电路200,指示电路200独立出去的原理图参见图2-1,指示电路200的特征是:包括第一电阻R1、第一电容C1、第一二极管D1和第一发光二极管LED,第一电阻R1和第一二极管D1和第一发光二极管LED这个三个器件并联,其中第一发光二极管LED和第一二极管D1反向并联,并联后形成的两端子网络简称为并联网络24,并联网络24的端子以第一二极管D1的阳极、第一二极管D2的阴极进行区分,并联网络24再与第一电容C1串联,并形成一个串联的两端子网络,所述的串联的两端子网络简称为串联网络,串联网络的两个端子分别为指示电路的第一端子1、第二端子2。
显然,第一端子1连接正端子J+、第二端子2连接负端子J-;若第一端子1连接负端子J-、第二端子2连接正端子J+,电路也是可以工作的。
反向并联:指第一二极管D1的阳极与第一发光二极管LED的阴极连接,同时第一二极管D1的阴极与第一发光二极管LED的阳极连接。
第一电容C1以下简称为C1,第一电阻R1以下简称为R1,第一发光二极管LED以下简称为LED,其它器件相似。
C1和并联网络24串联,形成指示电路200,由于是串联回路,互换位置后功能相同,所以方案一包括的串联方式有多种,但功能都相同,如下述:
(a)D1的阴极向下,C1在上边,如图2-1所示,D1的阳极连接C1的一端,C1的另一端为指示电路的第一端子1,D1的阴极为指示电路的第二端子2;
(b)D1的阴极向下,C1在下边,如图2-2所示,D1的阴极连接C1的一端,D1的阳极为指示电路的第一端子1,C1的另一端为指示电路的第二端子2;
(c)D1的阴极向上,C1在上边,如图2-3所示,D1的阴极连接C1的一端,C1的另一端为指示电路的端子1;D1的阳极为指示电路的端子2;事实上,这与上述(b)的图2-2的方式是完全相同的,(b)方式的端子1等于(c)的端子2,(b)方式的端子2等于(c)的端子1,即把图2-3的端子1和2互换一下,完全与图2-2的(b)相同;
(d)D1的阴极向上,C1在下边,如图2-4所示,D1的阳极连接C1的一端,C1的另一端为指示电路的端子2;D1的阴极为指示电路的端子1;事实上,这与上述的图2-1的(a)方式是完全相同的,(a)方式的端子1等于(d)的端子2,(a)方式的端子2等于(d)的端子1,即把(d)方式的1和2互换一下,完全与图2-1的(a)相同。
即真正有效的连接方式只有上述的图2-1的(a)和图2-2的(b)方式,电容C1和网络24串联,由于是串联回路,器件互换位置后功能相同,这是公知技术,图2-2的(b)方式就是把图2-1的(a)方式的C1和网络24互换位置而已,即本质上,图2-1的(a)和图2-2的(b)方式是等效的。即技术方案一中指示电路200包括了上述的四种连接方式。
发光二极管LED采用Φ3mm红色高亮的,为了方便,发光二极管简称为发光管,型号为3AR2UD,电容C1为333/500V的贴片电容,标称容量为0.033uF,D1为 1N4148,R1为22K的贴片电阻,按图2-1组成开关电源用指示电路并装入图1中,无损纹波电流发生器100采用现有专利A中第一实施例的技术方案,电感L取值1mH的电感,采用线径0.6mm绕制。
被测电容为标称为450BXC47MEFC18×25的电解,标称耐压450V,纹波电流为1.2A,直流电源U调节为311V直流,第一实施例的电路搭好后,调节磁芯的气隙大小,使得被测电容的纹波电流为1.2A,此时LED不发光。
由于失效的电解难以觅得,在上述的被测电容中,串入可调电阻,来模拟性能已经下降的电解,可调电阻的在这里的可调范围是0-39Ω,当把可调电阻的阻值调到5Ω时,相当于47uF/400V的电解的ESR从良品时的0.5Ω左右已上升至5.5Ω,电解的性能已接近不能使用的边缘。
此时,图1中的发光管LED发光,且工作电流的平均值实测为1.6mA。通过选取不同容量的电容C1,初步调节指示的灵敏度,电容C1的容量小,灵敏度低;电容C1的容量大,灵敏度高。由于发光管在发光时,存在1.6V至2.2V的正向压降,可以在发光管LED两端并联电阻R1来调节灵敏度,如本例中,R1若采用1.6K的电阻,那么,1mA以下的峰值电流在R1两端产生的电压在1.6V以下,这时发光管LED不发光。
注:白光发光管的导通压降为3.0V左右,红色的与绿色的也不同,而光耦内部的发光器导通压降为1.1V左右。光耦内部的发光器也是一种发光管。
工作原理:参见图4,当电解正常时,那么其ESR为0.5Ω,被测电容两端的纹波电压只有一种,以无损纹波电流发生器100满载工作时为例说明,占空比接近0.5时说明。
直流电源U产生的充电电流的路径见图4中充电电流路径,为纯直流,补充无损纹波电流发生器的损耗。这个过程中,充电电流为直流,这时,LED因为反偏而不发光。
当被测电容正常时,如上述的47uF/400V的电解,其在65KHz下的ESR为0.5Ω,即开关管Q正常工作时,主功率级的激磁电流i1如图5所示,其中,Ugs为开关管Q的栅极与源极的驱动电压,D3的去磁电流为i2;被测电容的工作电流为iout;这个电流在被测电容的ESR上形成的压降,参见图6,端子1和2之间存在一个波动的高频纹波,其波形形状同图5中iout的波形,当被测电容的ESR较小时,高频纹波峰值也较小,适当选取合适的R1,不足以让LED导通而发光。
当被测电容的ESR从良品时的0.5Ω左右已上升至5.5Ω,即被测电容已接近失效边缘。iout在ESR上形成的压降增大,端子1和2之间存在一个波动的、幅值较大的高频纹波电压,足以让LED导通而发光。
C1为0.033uF,其容量较小,但在65KHz的频率下,其容抗为73.8Ω,可以为LED提供足够的工作电流而发光。C1的取值技巧:在无损纹波电流发生器100的工作频率下,其容抗要大于被测电容预期失效的ESR的5倍。这是因为,若C1的容抗接近ESR了,那么,C1会分担很大的纹波电流,从而使得被测电容得到的纹波电流不足,若C1的容抗大于被测电容预期失效的ESR的10倍,那么,被测电容得到的纹波电流更接近设计值。
本发明的工作原理不算复杂,C1的容量小,C1具有通高频、阻低频的作用;随着被测电容的ESR上升,无损纹波电流发生器100在ESR上产生的压降同步升高,形成的高频纹波电压随着电解的老化而升高,C1具有通高频的作用,ESR上的高频纹波电压到达一定的阀值时,会点亮LED而发光,调节R1的阻值可以调节阀值的大小,即高 频纹波电压通过电容C1的电流在R1两端形成的压降低于LED的导通电压,LED不导通,LED也无法为R1分流从而不发光。
这样驱动发光管LED发光来实现发明目的,提醒使用者:该被测电容的ESR已上升至关注点,以便使用者决定下一步的措施。本例中,把无损纹波电流发生器100的工作电流降至30%,LED仍发光,工作电流降至0.36mA,使用高亮度的发光管仍然很醒目。
此时,电解仍能工作,但由于主功率级的激磁电流在ESR上存在较大发热量,本例中为0.22W,该电解已处于高发热量下,已在加速衰老中,一般情况下,会在几十小时至几百小时中,ESR快速上升,引起发热进一步加大,直至失效,容量丧失,从而引起如开关管炸毁等一系列失效。
把图2-2的电路、2-3的电路、2-4的电路替换图4中指示电路200,都可以正常工作,可见,第一实施例的四个电路可以实现发明目的。
其实第一实施例的内容中,指示电路200就包括了4种实施方式,对应地,本发明的纹波电流产生电路也就有4种实施方法,在现有专利A中,已经给出了原有连接关系的各种变化,这里也不再复述,这些不同的连接方式中,加入本发明的指示电路200,都可以实现本发明的发明目。为了节约篇幅,本申请仅以一个总的“第一实施例”来概括。第一实施例中流过发光管LED的电流不是直流电,而是与纹波电流发生器同频的高频电流,当LED的引线较长时,其电磁辐射不容忽视;把发光管LED换成光耦中的发光器时,光耦的输出电流也是周期性出现,不是一个稳定的信号,这会给后续的电路造成麻烦。第二实施例示出了解决方案。
第二实施例
请见图7,对应方案二,一种纹波电流产生电路,包括直流电源U、第一电感L、一无损纹波电流发生器100,以及连接被测电容两只引脚的输出端子,包括正端子J+与负端子J-,所述的直流电源U的输出有正极和负极,所述的无损纹波电流发生器100至少包括一脉宽调制控制电路P;
所述的输出端子和所述的电感L串联后与所述的直流电源U并联;
所述的无损纹波电流发生器100和所述的输出端子并联,用于产生纹波电流,且把产生纹波电流时消耗的电能量无损地返回给直流电源U或被测电容;
所述的脉宽调制控制电路的最大占空比小于0.5;
正端子J+与负端子J-之间还并联一个指示电路200,指示电路200独立出去的原理图参见图8-1,指示电路200的特征是:包括第一电阻R1、第二电阻R2;第一电容C1、第二电容C2;第一二极管D1和第二二极管D2、以及第一发光二极管LED;第二电阻R2与第一发光二极管LED串联,形成具有两端子的第一网络21,第一网络21与第二电容C2与第一电阻R1同时并联,形成具有两端子的第二网络22,第二网络22再与第二二极管D2串联,形成具有两端子的第三网络23,第三网络23的特征是,第二二极管D2和第一发光二极管LED为同向;第三网络23与第一二极管D1反向并联,形成具有两端子的第四网络24,第四网络24再与第一电容C1串联,并形成一个串联的两端子网络,所述的串联的两端子网络简称为串联网络,串联网络的两个端子分别为第一端子1、第二端子2,该串联网络也是指示电路200的主体。
显然,第一端子1连接正端子J+、第二端子2连接负端子J-;若第一端子1连接负端子J-、第二端子2连接正端子J+,电路也是可以工作的。
第二二极管D2和第一发光二极管LED为同向:第三网络23中,假设R1开路,电容C2对于直流来说,相当于开路,那么,从第三网络23下端流入的电流,经过LED后,再经过D2,从第三网络23上端流出,D2和LED都处于正向导通状态,这种串联方式,叫同向。D2和LED都处于正向导通状态,相当于压降更大的一个二极管,它的阴极就是第三网络23的阴极,直流电流可以从网络的阴极向外流出,它的阳极就是第三网络23的阳极,直流电流可以从网络的阳极向内流入。
第三网络23与第一二极管D1反向并联,就是指:第三网络23阴极连接D1的阳极,第三网络23的阳极连接D1的阴极。
上述中的技术方案二中,包括了多种连接关系,如下文所述,
R2与LED串联存在两种连接方式:
(a)LED的阴极与R2的一端相连接,参见图8-1中的网络21中所示;
(b)LED的阳极与R2的一端相连接,参见图8-2中的网络21中所示;
这两种是等效的。网络21与C1与R1同时并联,形成具有两端子的网络22,网络22再与二极管D2串联,网络22中,假设R1开路,电容C2对于直流来说,相当于开路,那么网络22相当于一只二极管,具有单向导电性能,LED的阴极所在一侧就是第二网络22的阴极,直流电流可以从网络的阴极向外流出,LED的阳极所在一侧就是第三网络23的阳极,直流电流可以从网络的阳极向内流入。由于限定为同向串联,也存在两种方式:
(a)网络22的阴极与D2的阳相连接,参见图8-1所示;
(b)网络22的阳极与D2的阴相连接,参见图8-3所示;
第四网络24再与第一电容C1串联,也存在两种方式:
(a)网络24的D1阳极与C1一端相连,参见图8-1所示;
(b)网络24的D1阴极与C1一端相连,参见图8-2所示;
和第一实施例一样,第二实施例中,3个独立的串联,每个串联都有两种方式,共2的3次方,共8种连接方式,事实上,它们同样是等效的。
无损纹波电流发生器100采用现有专利B中第一实施例的技术方案,电感L取值1mH的电感,采用线径0.6mm绕制。电感L2为1.3mH左右的功率电感,且气隙可调。
被测电容为标称为450BXC47MEFC18×25的电解,标称耐压450V,纹波电流为1.2A,直流电源U调节为420V直流,指示电路200的元件参数为:C1为473/500V的贴片电容,标称容量为0.047uF,C2为104/16V的贴片电容,D1和D2均为1N4148,R2为1K,R1为10K,LED为3AR2UD。
第二实施例的电路搭好后,调节磁芯的气隙大小,使得被测电容的纹波电流为1.2A,此时LED不发光。
由于失效的电解难以觅得,在被测电容中,仍串入可调电阻,来模拟性能已经下降的电解,可调电阻在这里的可调范围是0-39Ω,当把可调电阻的阻值调到4.5Ω时,相当于47uF/400V的电解的ESR从良品时的0.5Ω左右已上升至5Ω,电解的性能已接近不能使用的边缘。
此时,图7中的发光管LED发光,且工作电流的平均值实测为1.9mA。
工作原理:参见图7,当被测电容正常时,那么其ESR为0.5Ω,被测电容两端的纹波电压只有一种,直流电源U产生的充电电流的路径见图4中充电电流路径,为纯直 流,补充无损纹波电流发生器的损耗。这个过程中,充电电流为直流,这时,LED因为反偏而不发光。
当被测电容正常时,如上述的47uF/450V的电解,其在65KHz下的ESR为0.5Ω,即开关管Q1和Q2正常工作时,主功率级的激磁电流i1如图5所示,其中,Ugs为开关管Q1和Q2的栅极与源极的驱动电压,D3和D4的去磁电流为i2;被测电容的工作电流为iout;这个电流在被测电容的ESR上形成的压降,参见图6,端子1和2之间存在一个波动的高频纹波,其波形形状同图5中iout的波形,当被测电容的ESR较小时,高频纹波峰值也较小,适当选取合适的R1,不足以让LED导通而发光。
当被测电容的ESR从良品时的0.5Ω左右已上升至5.0Ω,即被测电容已接近失效边缘。iout在ESR上形成的压降增大,端子1和2之间存在一个波动的、幅值较大的高频纹波电压,足以让LED导通而发光。
C1为0.047uF,其容量较小,但在65KHz的频率下,其容抗为52.1Ω,可以为LED提供足够的工作电流而发光。C1的取值技巧:在无损纹波电流发生器100的工作频率下,其容抗要大于被测电容预期失效的ESR的5倍。这是因为,若C1的容抗接近ESR了,那么,C1会分担很大的纹波电流,从而使得被测电容得到的纹波电流不足,若C1的容抗大于被测电容预期失效的ESR的10倍,那么,被测电容得到的纹波电流更接近设计值。
把图8-2的电路、图8-3的电路、图8-4的电路替换图7中指示电路200,都可以正常工作,可见,第二实施例的四个电路可以实现发明目的。其实第二实施例的内容中,指示电路200就包括了8种实施方式,对应地,本发明的纹波电流产生电路也就有8种实施方法,在现有专利B中,已经给出了原有纹波电流产生电路连接关系的各种变化, 这里也不再复述,这些不同的连接方式中,加入本发明的指示电路200,都可以实现本发明的发明目的。为了节约篇幅,本申请仅以一个总的“第二实施例”来概括。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,如在第一二极管中也串入电阻;将图8-1、图8-2、图8-3及图8-4中的电阻R1改为直接和二极管D1并联。再如,在直流供电电源中直接串入电流表,机械式电流表无法对外输出电信号,不适用;而数字式电流表本身比本发明要复杂,成本也高,不符合TRIZ的理想解原则。这些改进和润饰也应视为本发明的保护范围,这里不再用实施例赘述,本发明的保护范围应当以权利要求所限定的范围为准。

Claims (5)

  1. 一种纹波电流产生电路,包括直流电源、第一电感、一无损纹波电流发生器,以及连接被测电容两只引脚的输出端子,包括正端子与负端子,所述的直流电源的输出有正极和负极,所述的无损纹波电流发生器至少包括一脉宽调制控制电路;
    所述的输出端子和所述的电感串联后与所述的直流电源并联;
    所述的无损纹波电流发生器和所述的输出端子并联,用于产生纹波电流,且把产生纹波电流时消耗的电能量无损地返回给直流电源或被测电容;
    所述的脉宽调制控制电路的最大占空比小于0.5;
    其特征在于:正端子与负端子之间还并联一个指示电路,指示电路的特征是:包括第一电阻、第一电容、第一二极管和第一发光二极管,第一电阻和第一二极管和第一发光二极管这个三个器件并联,其中第一发光二极管和第一二极管反向并联,并联后形成的两端子网络简称为并联网络,并联网络的端子以第一二极管的阳极、第一二极管的阴极进行区分,并联网络再与第一电容串联,并形成一个串联的两端子网络,所述的串联的两端子网络简称为串联网络,串联网络的两个端子分别为指示电路的第一端子、第二端子。
  2. 一种纹波电流产生电路,包括直流电源、第一电感、一无损纹波电流发生器,以及连接被测电容两只引脚的输出端子,包括正端子与负端子,所述的直流电源的输出有正极和负极,所述的无损纹波电流发生器至少包括一脉宽调制控制电路;
    所述的输出端子和所述的电感串联后与所述的直流电源并联;
    所述的无损纹波电流发生器和所述的输出端子并联,用于产生纹波电流,且把产生纹波电流时消耗的电能量无损地返回给直流电源或被测电容;
    所述的脉宽调制控制电路的最大占空比小于0.5;
    其特征在于:正端子与负端子之间还并联一个指示电路,指示电路的特征是:包括第一电阻、第二电阻;第一电容、第二电容;第一二极管和第二二极管、以及第一发光二极管;其连接关系为:第二电阻与第一发光二极管串联,形成具有两端子的第一网络,第一网络与第二电容与第一电阻同时并联,形成具有两端子的第二网络,第二网络再与第二二极管串联,形成具有两端子的第三网络,第三网络的特征是,第二二极管和第一发光二极管为同向;第三网络与第一二极管反向并联,形成具有两端子的第四网络,第四网络再与第一电容串联,并形成一个串联的两端子网络,所述的串联的两端子网络简称为串联网络,串联网络的两个端子分别为第一端子、第二端子。
  3. 根据权利要求2所述的纹波电流产生电路,其特征在于:将第一电阻改为和第一二极管并联。
  4. 根据权利要求1至3任一项所述的纹波电流产生电路,其特征在于:还包括另一与第一二极管串联的电阻。
  5. 根据权利要求1至3任一项所述的纹波电流产生电路,其特征在于:第一发光二极管为光耦中的发光器,即光耦中的发光二极管。
PCT/CN2017/088006 2016-08-05 2017-06-13 一种纹波电流产生电路 WO2018024038A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/313,011 US10679797B2 (en) 2016-08-05 2017-06-13 Ripple current generating circuit
RU2019100014A RU2704631C1 (ru) 2016-08-05 2017-06-13 Цепь генерирования пульсирующего тока
GB1821320.7A GB2567346B (en) 2016-08-05 2017-06-13 Ripple current generating circuit
DE112017003353.5T DE112017003353T5 (de) 2016-08-05 2017-06-13 Eine Welligkeitsstrom erzeugende Schaltung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610639668.X 2016-08-05
CN201610639668.XA CN106292820B (zh) 2016-08-05 2016-08-05 一种纹波电流产生电路

Publications (1)

Publication Number Publication Date
WO2018024038A1 true WO2018024038A1 (zh) 2018-02-08

Family

ID=57665674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088006 WO2018024038A1 (zh) 2016-08-05 2017-06-13 一种纹波电流产生电路

Country Status (6)

Country Link
US (1) US10679797B2 (zh)
CN (1) CN106292820B (zh)
DE (1) DE112017003353T5 (zh)
GB (1) GB2567346B (zh)
RU (1) RU2704631C1 (zh)
WO (1) WO2018024038A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292820B (zh) 2016-08-05 2017-09-08 广州金升阳科技有限公司 一种纹波电流产生电路
CN107918050A (zh) * 2017-12-18 2018-04-17 云丁网络技术(北京)有限公司 一种功耗测试系统及方法
US20210074880A1 (en) * 2018-12-18 2021-03-11 Bolb Inc. Light-output-power self-awareness light-emitting device
CN110460377B (zh) * 2019-07-25 2020-10-13 浙江大学 一种利用驱动电路开关纹波进行led光通信的装置
CN111693888A (zh) * 2020-08-04 2020-09-22 上海钧正网络科技有限公司 一种电源性能检测装置
CN114264937A (zh) * 2021-12-28 2022-04-01 厦门市三安集成电路有限公司 一种半导体器件测试电路及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335244A (ja) * 1993-05-20 1994-12-02 Cosel Usa Inc スイッチングレギュレータ
CN103954821A (zh) * 2014-04-30 2014-07-30 上海电力学院 一种滤波电容等效串联电阻的纹波电压检测方法
WO2016055515A1 (de) * 2014-10-07 2016-04-14 Thomas Betz Verfahren zum ermitteln von kenngroessen eines teilentladungsvorgangs
CN105676937A (zh) * 2016-01-21 2016-06-15 广州金升阳科技有限公司 一种纹波电流产生电路
CN106093665A (zh) * 2016-08-05 2016-11-09 广州金升阳科技有限公司 一种开关电源用指示电路及其使用方法
CN106292820A (zh) * 2016-08-05 2017-01-04 广州金升阳科技有限公司 一种纹波电流产生电路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712763B1 (fr) * 1993-11-15 1996-02-02 Moulinex Sa Générateur de courant ondulé à self saturable.
US6628089B2 (en) * 2002-02-01 2003-09-30 Electronic Theatre Controls, Inc. Extraction of accessory power from a signal supplied to a luminaire from a phase angle dimmer
CN101404446B (zh) * 2008-11-11 2011-02-16 珠海格力电器股份有限公司 单周期功率因数校正方法
JP5293820B2 (ja) * 2009-07-08 2013-09-18 トヨタ自動車株式会社 二次電池の昇温装置およびそれを備える車両
JP5747656B2 (ja) * 2011-05-24 2015-07-15 日亜化学工業株式会社 発光ダイオード駆動装置
JP5783928B2 (ja) * 2012-02-15 2015-09-24 日立オートモティブシステムズ株式会社 車載用降圧スイッチング電源、車載用電子制御装置、およびアイドルストップシステム
KR102105241B1 (ko) * 2013-01-28 2020-04-27 닛뽕소다 가부시키가이샤 코팅제
CN105302217B (zh) 2015-11-06 2016-11-30 广州金升阳科技有限公司 一种纹波电流产生方法与电路
CN105242737B (zh) * 2015-11-06 2016-08-17 广州金升阳科技有限公司 一种纹波电流产生方法与电路
CN105577003B (zh) * 2016-01-21 2017-12-29 广州金升阳科技有限公司 一种带有源功率因数校正的开关电源
CN105491728B (zh) * 2016-01-21 2017-05-24 广州金升阳科技有限公司 一种直接滤波式开关电源
CN105527524B (zh) * 2016-01-21 2018-03-27 广州金升阳科技有限公司 一种开关电源用指示电路及其使用方法
CN105676936B (zh) * 2016-01-21 2017-03-22 广州金升阳科技有限公司 一种纹波电流产生电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335244A (ja) * 1993-05-20 1994-12-02 Cosel Usa Inc スイッチングレギュレータ
CN103954821A (zh) * 2014-04-30 2014-07-30 上海电力学院 一种滤波电容等效串联电阻的纹波电压检测方法
WO2016055515A1 (de) * 2014-10-07 2016-04-14 Thomas Betz Verfahren zum ermitteln von kenngroessen eines teilentladungsvorgangs
CN105676937A (zh) * 2016-01-21 2016-06-15 广州金升阳科技有限公司 一种纹波电流产生电路
CN106093665A (zh) * 2016-08-05 2016-11-09 广州金升阳科技有限公司 一种开关电源用指示电路及其使用方法
CN106292820A (zh) * 2016-08-05 2017-01-04 广州金升阳科技有限公司 一种纹波电流产生电路

Also Published As

Publication number Publication date
GB2567346A (en) 2019-04-10
GB201821320D0 (en) 2019-02-13
US10679797B2 (en) 2020-06-09
CN106292820B (zh) 2017-09-08
US20190221373A1 (en) 2019-07-18
GB2567346B (en) 2022-02-16
RU2704631C1 (ru) 2019-10-30
CN106292820A (zh) 2017-01-04
DE112017003353T5 (de) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2018024038A1 (zh) 一种纹波电流产生电路
TWI404452B (zh) 發光二極體之電流供電電路以及電流控制電路
US8421360B2 (en) Load determination device and illumination apparatus using same
US20110260648A1 (en) Light source module, lighting apparatus, and illumination device using the same
KR101719474B1 (ko) 적어도 하나의 반도체 광원을 동작시키기 위한 회로 어레인지먼트
CN106604444B (zh) 电压控制装置
CN102804917B (zh) 用于交变电流三极管调光器的具有led的电源接口
WO2016045644A1 (zh) 一种母线电流控制电路、恒流驱动控制器及led光源
CN107071985B (zh) 一种控制电路和灯具
CN105676936B (zh) 一种纹波电流产生电路
US20120081040A1 (en) Light emitting diode driving circuit
CN105676937B (zh) 一种纹波电流产生电路
TWI492660B (zh) 發光二極體負載驅動裝置
WO2018024035A1 (zh) 一种开关电源用指示电路及其使用方法
WO2018024037A1 (zh) 一种直接滤波式开关电源
CN106353953B (zh) 闪光灯模组与闪光灯电源模组
TWI449458B (zh) 發光二極體驅動系統
CN106797686A (zh) 升压转换级开关控制器
TWI551025B (zh) Lighting power conversion device
CN103313461B (zh) 替换式电子式安定器灯管
KR101518554B1 (ko) 다수의 led 모듈을 구동하는 전원 공급 장치와 이를 구비하는 led 조명 장치
JP2016170975A (ja) 点灯回路及び照明システム
CN205336586U (zh) 照明电路和遥控器
CN103269554B (zh) 一种通用型气体灯启动电路及其实现方法
CN107249235B (zh) 一种兼容带指示灯开关的led驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201821320

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170613

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17836221

Country of ref document: EP

Kind code of ref document: A1