WO2018021780A1 - Ophthalmic treatment device and method of controlling same - Google Patents

Ophthalmic treatment device and method of controlling same Download PDF

Info

Publication number
WO2018021780A1
WO2018021780A1 PCT/KR2017/007957 KR2017007957W WO2018021780A1 WO 2018021780 A1 WO2018021780 A1 WO 2018021780A1 KR 2017007957 W KR2017007957 W KR 2017007957W WO 2018021780 A1 WO2018021780 A1 WO 2018021780A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
light
monitoring unit
target position
ophthalmic
Prior art date
Application number
PCT/KR2017/007957
Other languages
French (fr)
Korean (ko)
Inventor
하태호
김종민
Original Assignee
주식회사 루트로닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루트로닉 filed Critical 주식회사 루트로닉
Publication of WO2018021780A1 publication Critical patent/WO2018021780A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00855Calibration of the laser system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00891Glaucoma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0645Applicators worn by the patient
    • A61N2005/0647Applicators worn by the patient the applicator adapted to be worn on the head
    • A61N2005/0648Applicators worn by the patient the applicator adapted to be worn on the head the light being directed to the eyes

Definitions

  • the present invention relates to an ophthalmic treatment apparatus and a control method thereof, and more particularly, to an ophthalmic treatment apparatus and a control method thereof for detecting the state of the target position during the treatment to control the treatment.
  • Such a treatment device delivers energy to a target location through light to induce a change in the state of the tissue to proceed with treatment.
  • damage occurs not only to the target tissue but also to adjacent tissues, and in particular, may cause damage to eyesight when treating an ocular lesion. Therefore, it is necessary to monitor the treatment status while the treatment is in progress, but there is a limit in detecting minute changes in tissues.
  • the present invention is to solve the above problems, and to provide an optical therapy apparatus and a driving method thereof that can monitor in real time the change of the state inside the tissue of the treatment area during treatment and proceed with the treatment based on this.
  • the setting unit is formed to set the treatment mode, the treatment light irradiation unit for performing treatment by irradiating the treatment light to the target position of the fundus a plurality of times, the treatment light is irradiated And a monitoring unit for monitoring state information of the target location by the treatment light, and whether the treatment intensity according to the treatment mode is reached using the information monitored by the monitoring unit, and based on the treatment light
  • a monitoring unit for monitoring state information of the target location by the treatment light, and whether the treatment intensity according to the treatment mode is reached using the information monitored by the monitoring unit, and based on the treatment light
  • the controller adjusts the parameter of the treatment light when it is determined that the information detected by the monitoring unit does not reach the set treatment intensity, and when it is determined that the set treatment intensity has been reached, the treatment light to the target position. Can be controlled to terminate the survey.
  • the treatment light is irradiated to have a spot size that can deliver energy to a plurality of RPE cells located in the target region, the plurality of RPE cells are a portion of the RPE cells as the treatment is irradiated with a plurality of treatment light
  • the therapeutic light may have a spot size for delivering energy to at least 50 or more RPE cells.
  • the treatment light may have a spot size of 50 ⁇ m or more in the fundus.
  • the monitoring unit may be configured to detect an amount of RPE cells whose state changes by treatment among a plurality of RPE cells disposed at a target location to which the treatment light is irradiated, and monitor the treatment intensity progressed at the target location. .
  • the monitoring unit may be configured using an optoacoustic sensor or a reflectometry sensor.
  • the monitoring unit may include a first monitoring unit composed of an optoacoustic sensor and a second monitoring unit composed of a reflectometry sensor, wherein the first monitoring unit and the second monitoring unit
  • the control may be controlled to terminate the irradiation of the treatment light to the target position.
  • the setting unit is configured to display a plurality of treatment intensities having different values, the user is configured to set the treatment mode by selecting the treatment intensity, or configured to display a plurality of treatment lesions, the user selects the treatment lesion to treat It can be configured to set the mode.
  • the above object of the present invention is to select a treatment intensity through a setting unit, irradiating the treatment light to a target position where a plurality of RPE cells are arranged, state change information of the RPE cells arranged at the target position through a monitoring unit Monitoring the; determining whether the set treatment intensity has been reached based on the monitored information; and if it is determined that the set treatment intensity has not been reached, the energy transmitted per unit area of the target location increases. It can also be achieved by a control method of an ophthalmic treatment device comprising adjusting the treatment light parameters.
  • the present invention provides a treatment light irradiation unit for irradiating the treatment light to a target position located in the fundus a plurality of times, the state information of the target position while the treatment light is irradiated
  • the first monitoring unit for measuring the second monitoring unit
  • the second monitoring unit for measuring the state information of the target position in a second manner different from the first method while the treatment light is irradiated
  • the ophthalmic treatment apparatus may include a controller configured to adjust a parameter of the treatment light or determine whether the treatment light is irradiated based on the information measured by the unit.
  • the first monitoring unit may measure information on the treatment progress state or the treatment end time for the target location
  • the second monitoring unit may measure information on whether an abnormality occurs during the treatment.
  • the present invention by delivering energy to a plurality of RPE cells located in the target region and progressing the treatment, there is an advantage that the treatment intensity can be effectively controlled.
  • FIG. 1 is a schematic diagram schematically showing an ophthalmic treatment device according to a first embodiment of the present invention
  • FIG. 2 is an enlarged cross-sectional view of region A of FIG. 1;
  • FIG. 3 is a block diagram schematically showing the configuration of a second monitoring unit
  • FIG. 4 is a view showing a state in which the treatment light is irradiated to the fundus
  • FIG. 5 is a graph showing the irradiation pattern of the treatment light and the measurement signal according to the monitoring unit
  • FIG. 6 is a view illustrating an example displayed through a display of a setting unit
  • FIG. 8 is a flow chart showing a control method of the ophthalmic treatment device of FIG.
  • FIG. 9 is a flowchart illustrating a control method of an ophthalmic treatment device according to a second embodiment of the present invention.
  • 10 to 12 is a graph showing the irradiation pattern of the treatment light according to the control method of FIG.
  • 13 to 15 are graphs showing another example of adjusting the treatment light parameter
  • 16 is a cross-sectional view showing the treatment of the anterior segment lesions using the present invention.
  • the ophthalmic treatment device described below is described as a device for treating an ocular fundus lesion, but the present invention may be applied to a treatment device for treating a lesion other than the ocular fundus lesion.
  • a treatment device for treating an anterior eye lesion such as glaucoma treatment
  • a treatment device for treating a lesion of skin tissue may be applied to a treatment device for treating a lesion of skin tissue.
  • the present invention is not limited to the ophthalmic treatment device described below, and it can be found that the present invention can be widely applied to a treatment device for optically treating other lesions.
  • the ophthalmic treatment apparatus 1 includes a treatment light generator 10 for generating a treatment beam and an aiming light generator for generating an aiming beam ( 20) and a beam delivery unit 30 forming a progress path of the treatment light and the aiming light.
  • the monitoring unit 40 for detecting the tissue state information of the target location to which the treatment light is irradiated, and a control unit 60 for controlling various components based on the information detected from the monitoring unit.
  • the treatment light generator 10 may include a treatment light source and various optical elements for processing characteristics of light generated by the treatment light source.
  • the treatment light is composed of a laser, and the treatment light source may include a laser medium or a laser diode such as Nd: YAG, Ho: YAG, etc. capable of oscillating the laser.
  • the therapeutic light source is configured to irradiate a laser whose lesion or energy has a suitable wavelength, pulse width, and output, taking into account the characteristics of the tissue at the target location.
  • various electric circuits for generating a laser, an optical filter, and various elements such as a shutter may be included.
  • the aiming light generator 20 generates an aiming beam irradiated to the treatment area.
  • Aim light is a configuration that displays the location so that the operator can determine the location to which the treatment light is irradiated before or while the treatment light is irradiated.
  • the aiming light has a wavelength of a visible light band, and the operator may identify the treatment area by the aiming light reflected from the treatment area.
  • the aiming light generator 20 irradiates the aiming light in the form of a single spot and may irradiate the target light through the same path as the irradiation path of the treatment light. Alternatively, it is also possible to irradiate in the form of a pattern composed of a plurality of spots so as to display a plurality of positions to which the treatment light is irradiated. In addition to this, the collimated light may be irradiated in the form of a lattice or boundary line to indicate an area to which the treatment light is irradiated.
  • the collimator may be omitted.
  • the beam delivery unit 30 is composed of a plurality of optical elements, and constitutes an optical path through which the treatment light travels.
  • the aiming light and the probe beam of the second monitoring unit to be described later may also travel along the beam delivery unit.
  • the optical path of the aiming light and / or the detection light is configured to share at least a part of the optical path of the treatment light, but may be configured to form a separate light path if necessary.
  • the beam delivery unit 30 includes a plurality of beam combiners 31.
  • the treatment light, the aiming light, and the detection light may be irradiated to the treatment area through the beam delivery unit 30 as shown in FIG. 1.
  • the aiming light and the detection light reflected from the treatment area may progress in the direction in which the operator's eyes are located through the beam delivery unit 30, or may be incident again to the second monitoring unit 42.
  • the beam delivery part 30 includes the scanner 32 which changes the position to which light is irradiated.
  • the scanner 32 includes at least one reflective mirror and a driver to rotate the mirror, and the light may change the irradiation position while the rotation position of the reflective mirror on which the light is reflected is changed.
  • the beam delivery unit may further include optical elements such as a plurality of optical lenses and optical filters for focusing or dispersing light.
  • the alternative unit 70 is a configuration in which the eye of the patient to be treated is located, and includes a contact lens in contact with the eye of the patient. Furthermore, it may be configured to include a suction device for inhaling and fixing the eyes of the patient so that the eyes of the patient can be fixed during the procedure.
  • the treatment light irradiator includes the treatment light generator 10 and the beam delivery unit 30, and the treatment light generated by the treatment light generator 10 includes the beam delivery unit 30 and the alternative unit 70. Irradiated to the treatment area of the fundus.
  • the aiming light irradiation unit includes the aiming light generating unit 20 and the beam delivery unit 30, and the aiming light generated by the aiming light generating unit is also provided through the beam delivery unit 30 and the alternative unit 70. Irradiated to the treatment area of the fundus.
  • FIG. 2 is an enlarged cross-sectional view of region A of FIG. 1.
  • 2A is a diagram showing retinal tissue of a patient corresponding to a treatment area.
  • Such retinal tissues are generally internal limiting layer, nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer reticular It consists of ten layers of outer plexiform layer, outer nuclear layer, external limiting layer, photoreceptor layer, and RPE layer (retinal pigment epithelial layer) (from retinal surface) Medial depth direction).
  • the RPE cell layer forms a boundary layer in the rear direction among the ten layers above, and is formed in a tight junction structure.
  • a Bruch's membrane is located below the RPE layer.
  • the RPE layer receives nutrients and oxygen from blood vessels located in the choroid to supply nutrients to the photoreceptor, and discharges waste products generated from the photoreceptor through the Bruch membrane.
  • the ophthalmic treatment device irradiates therapeutic light to the RPE cell layer to transfer energy, and induces new RPE cells to regenerate and proceed with treatment.
  • the treatment light generated by the treatment light generator 10 has a wavelength in the visible or near infrared region. Light of this wavelength is transmitted to the cell layer (first to ninth cell layers) located in front of the retina with little absorption, and then absorbed by melanosomes inside the RPE cells of the RPE cell layer.
  • the RPE cells change state with increasing temperature, whereby the changed RPE cells are replaced with healthy RPE cells. It is interpreted that as the temperature rises, micro bubbles are generated on the surface of the melanosome, and the RPE cells are selectively necrotic as the micro bubbles are gradually grown.
  • the ophthalmic treatment device of FIG. 1 includes a monitoring unit 40, and monitors the change in the state of the tissue during treatment through the monitoring unit to check the progress of the treatment in real time.
  • the monitoring unit 40 of the present embodiment may include a plurality of monitoring units 41 and 42 that independently perform the monitoring operation.
  • the monitoring unit 40 may include a first monitoring unit 41 and a second monitoring unit 42.
  • the first monitoring unit 41 may measure state information of the target location in a first manner
  • the second monitoring unit 42 may measure state information of the target location in a second manner. That is, the first monitoring unit 41 and the second monitoring unit 42 can compensate for the shortcomings of the respective measuring methods by monitoring the state information of the target position in different ways.
  • the first monitoring unit 41 may be configured by using an optoacoustic sensor.
  • Optoacoustic sensors are devices that measure acoustic signals generated by light absorption.
  • RPE cells at the target site absorb the treatment light and change state, and an acoustic signal is generated during this process. This acoustic signal is determined to occur in the process of generating microbubbles as the temperature of the RPE cells rises.
  • the first monitoring unit 41 measures this to measure the state change of the target position and the treatment progress.
  • the first monitoring unit 41 of the present embodiment may be installed in the contact lens of the alternative unit 70 to measure an acoustic signal transmitted from the patient's eye while in contact with the patient's eye.
  • the first monitoring unit is configured as a separate device from the contact lens, and may be installed to be in contact with the eye of the patient or an area adjacent to the eye.
  • the second monitoring unit 42 may be configured as a reflectometry sensor.
  • the second monitoring unit 42 may receive the reflected light reflected at the target location and analyze the reflected light to determine state information of the target location included in the reflected light. Thereby, it is possible to measure whether the state of the target position changes and the progress of treatment.
  • the second monitoring unit 42 of the present embodiment receives the light to which the treatment light irradiated to the target position is reflected. As shown in FIG. 2, a part of the treatment light irradiated to the target position is absorbed at the target position, and part is reflected and received by the sensor of the second monitoring unit 42 through the beam combiner 31.
  • the second monitoring unit 42 analyzes the parameter of the received reflected light and monitors state information of the target position. For example, as the microbubbles are generated in the RPE cells by the treatment light, the signal by the reflected light increases the frequency component of the 5 ⁇ 50MHz band, the second monitoring unit 42 is based on the state of the target position Measure changes and progress of treatment. However, various parameters may be used in addition to the frequency components included in the reflected light.
  • the second monitoring unit 42 monitors using the reflected treatment light, there is an advantage in that the change in the target position by each treatment light can be monitored in real time.
  • this is an example, and instead of receiving the treatment light, it is also possible to irradiate a separate detection light for monitoring to the target position, and to receive the detection light reflected from the target position to perform the monitoring.
  • the first monitoring unit of the present embodiment is composed of a photoacoustic sensor, and the second monitoring unit is configured using a reflectometer sensor.
  • the first monitoring unit or the second monitoring unit may be configured as an interferometry sensor instead of a reflectometry sensor.
  • FIG. 3 is a block diagram schematically illustrating a configuration of a second monitoring unit according to another example.
  • the second monitoring unit is configured as an interferometer sensor such as an OCT device
  • the second monitoring unit may use the interference information of the reflected light reflected from the target position.
  • various tomographic information including the temperature information of a target position, a state change, and a progress of treatment can be acquired.
  • the conventional OCT apparatus acquires a tomography image of a predetermined area while moving the irradiation position in the horizontal direction (relative to the retina plane of the fundus)
  • the second monitoring unit 142 of FIG While the process, tomographic information of the target position is acquired a plurality of times or continuously.
  • the interference information detected by the second monitoring unit 142 may change, and the change of the state of the target location may be detected by using the change.
  • the second monitoring unit 142 configured as an interferometer sensor includes a detection light source 143, a light splitter 144, a reference light reflector 145, and a detector 146. It is configured to include).
  • the detection light source 143 may be a light source for generating a low coherent beam in the case of the SD OCT, and may use a swept source light source capable of changing the wavelength of light in the case of the SS OCT.
  • the light emitted from the detection light source 143 passes through the light splitter 144 and is split into two lights, the detection light and the reference light.
  • the reference light travels along the first path P1 to reach the reference light reflector 145 and is then reflected by the reference light reflector 145.
  • the detection light travels along the second path P2, is irradiated to the target position through the beam delivery unit 30, and then is reflected at the target position.
  • the reflected detection light and the reference light are combined in the light splitter 144 again and proceed to the detector 146.
  • the detector 146 detects the state information of the target location by using the interference information by the received detection light and the reference light.
  • the detector 146 may be configured using an array detector in case of SD OCT, and may be configured using a photo diode in case of SS OCT.
  • the second monitoring unit 142 of FIG. 3 uses the interference information of the detection light by the interferometer to include a tissue including a temperature rise at a target location, a thickness change of a tissue, a change in refractive index, a movement of a tissue, and an abnormality occurrence. It is possible to grasp the microscopic state change.
  • FIG. 3 an example in which the second monitoring unit is replaced with the interferometer sensor has been described.
  • the monitoring unit may be configured by using the interferometer sensor and the reflectometer sensor by replacing the first monitoring sensor with the interferometer sensor.
  • the first monitoring unit 41 and the second monitoring unit 42 each measure a change in state of the target position in different ways, and transmit this information to the control unit 60.
  • the controller 60 may control the operation content of the treatment apparatus based on the information measured by the first monitoring unit 41 and the second monitoring unit 42.
  • the controller 60 is configured to control the operation of various components including the treatment light generator 10, the aiming light generator 20, and the beam delivery unit 30. Thereby, the treatment position, treatment time, parameters of treatment light, etc. can be variously controlled. In performing such control, the controller 60 controls various components in consideration of the information monitored by the above-described monitoring unit 40.
  • the controller 60 controls to irradiate the treatment light to the same target position a plurality of times while the treatment is performed for one target position. During this process, if it is detected that the treatment is not progressed at the treatment intensity set through the monitoring unit 40, the controller controls the treatment light irradiation unit to adjust the treatment light parameters. At this time, the parameter of the treatment light is adjusted to increase the energy delivered per unit area of the target position. For example, the controller 60 may control to sequentially increase the output of the treatment light until the treatment is finished. On the other hand, if it is detected through the monitoring unit that the treatment progresses to the set treatment intensity, the control unit 60 may terminate the treatment of the target position by terminating the irradiation of the treatment light to the target position. The control contents of the controller will be described in more detail below.
  • the controller 60 may utilize the information measured by the first monitoring unit 41 and the second monitoring unit 42 in various ways. For example, when the information measured by the first monitoring unit and the second monitoring unit both satisfy the first condition, it may be determined that the state of the target location has reached the first condition and perform the corresponding control. have. Alternatively, the state information of the target location is determined based on the information measured by either the first monitoring unit or the second monitoring unit, and when it is determined that the reliability of the target information is unsatisfactory due to an unexpected event, It is also possible to configure the status information by using the information measured in the other.
  • the controller 60 of the present embodiment determines that the treatment of the target position is finished and treats the corresponding position.
  • the irradiation of light is terminated.
  • a state in which microbubbles or the like change in state generates a sound wave signal, or a light path changes or scattered light occurs due to cell expansion or damage.
  • the sound wave signal strength may be weak, or the optical change may be minute (for example, when there is substantially no change in the optical path or the size of the reflected scattered light).
  • the present embodiment can detect a change of state in different ways to determine when to end treatment, thereby preventing excessive energy from being delivered to the target location and damaging the tissue.
  • Figure 4 is a view showing a state that the treatment light is irradiated to the fundus.
  • the size of the spot of the treatment light irradiated to the target position may be formed such that the plurality of RPE cells C is located inside the boundary S of the spot based on the RPE cell layer. Therefore, while the treatment is performed for one target position, energy is delivered to the plurality of RPE cells positioned at the target position, and the treatment proceeds, and the monitoring unit 40 detects the state change of the plurality of RPE cells. The progress of the treatment can be monitored.
  • RPE cells exposed to therapeutic light either retain existing RPE cells if not enough energy is delivered, or regenerate into new RPE cells with state changes when sufficient energy is delivered.
  • one RPE cell follows one of two processes when irradiating the therapeutic light, and thus, when the spot size of the therapeutic light is focused on only one RPE cell, it is difficult to control the treatment intensity.
  • the treatment intensity can be adjusted by controlling the amount of RPE cells whose state changes by treatment among the plurality of RPE cells. . Therefore, according to the present embodiment, it is possible to proceed the treatment at the optimal treatment intensity according to the lesion, the treatment position, and the condition of the patient.
  • the spot size of the treatment light delivers energy to only one RPE cell, it is possible to adjust the treatment intensity in a manner that adjusts the interval of target positions to which the treatment light is irradiated.
  • the treatment time increases.
  • the size of RPE cells varies depending on the position of the retina (for example, the diameter of RPE cells at the center of the fundus is 10-15 ⁇ m, and the diameter of RPE cells at the periphery of the fundus is 50 ⁇ m or more).
  • additional considerations need to be taken into consideration, such as adjusting an interval between target positions according to the position of the treatment area.
  • the spot size (S) of the treatment light can be configured such that 10 to 1000 RPE cells (C) are located inside the boundary of the spot, based on the area irradiated to the RPE cells, preferably 50 to 500 Can be configured to position RPE cells (C).
  • the spot size S of the treatment light may be configured to have a diameter of 50 ⁇ m to 1000 ⁇ m.
  • the spot size of the treatment light can be configured to have a diameter of 100 ⁇ m to 400 ⁇ m. Furthermore, the spot size may be adjusted according to the position of the treatment area. For example, when the treatment area is located inside the fundus, the diameter of the spot may be controlled to 150 to 200 ⁇ m, and when the treatment area is located to the periphery of the fundus, the diameter of the spot may be controlled to 250 to 350 ⁇ m.
  • the monitoring unit 40 monitors the progress of treatment at the target position in real time.
  • the monitoring unit 40 monitors the progress of the treatment by detecting the amount or the ratio of the RPE cells in which the state change among the plurality of RPE cells in the region, and the control unit 60 proceeds to the target location based on the treatment intensity Can be determined.
  • the treatment light irradiation unit irradiates the treatment light to the target position a plurality of times, each treatment light is irradiated so that the output is sequentially increased.
  • the signal measured by the monitoring unit may appear as a graph shown in the lower side of FIG. 5 (showing a signal measured by the first monitoring unit of the monitoring unit for convenience of description).
  • the monitoring unit 40 detects a measured value equal to or less than the effective value.
  • the measured value detected in this section is the noise value detected in the steady state. Therefore, the controller 60 determines that the state change of the RPE cells does not occur while the measured value below the effective value is detected.
  • the monitoring unit 40 detects a measured value of more than an effective value, and the control unit 60 determines that some RPE cells of the target position have started to change state. .
  • the sixth treatment light T6 and the seventh treatment light T7 are irradiated, the value measured by the monitoring unit 40 also gradually increases, and the control unit 60 gradually changes the state of the RPE cells. I think it will increase.
  • the treatment intensity may be determined by the amount or ratio of the RPE cells whose state is changed among the plurality of RPE cells located at the target position.
  • the controller 60 may determine the treatment intensity by matching the data measured by the monitoring unit 40 with the previously stored data by referring to the data previously stored in the memory. As such, the controller 60 may determine in real time the progress of the treatment proceeding to the target position while the treatment light is irradiated. When the value measured by the monitoring unit 40 exceeds the value corresponding to the preset treatment intensity (measured value by T7 of FIG. 5), it is determined that the treatment is performed at the target set intensity at the corresponding position. End the treatment for that location.
  • the ophthalmic treatment device 1 may further include a setting unit 80 for the user to select a treatment mode.
  • the setting unit 80 includes a display and an operation button that can be operated by the user.
  • Each of the selected treatment modes includes information on treatment intensity, and may also include information on various parameters such as the irradiation pattern of the treatment light. Therefore, when the user selects the treatment mode through the setting unit 80, the controller 60 controls each component to proceed with the corresponding treatment based on this.
  • the setting unit 80 of FIG. 6 is a treatment mode and is configured to select treatment intensity for each target position.
  • the treatment intensity may be expressed as the ratio of RPE cells whose status changes by treatment among a plurality of RPE cells located at a target position.
  • ASV 20 (auto-set value 20) refers to the therapeutic intensity at which about 20% of the RPE cells change state among the RPE cells at the corresponding position
  • ASV 50 refers to the therapeutic intensity at which about 50% of the RPE cells change state. Means.
  • FIG. 7 illustrates another example displayed through the display of the setting unit.
  • the name of the lesion to be treated is displayed as a treatment mode.
  • fundus fundus lesions such as central serous chorioretinopathy (CSC), diabetic macular edema (DME), and dry age-related macular degeneration (Dry AMD).
  • CSC central serous chorioretinopathy
  • DME diabetic macular edema
  • Dry AMD dry age-related macular degeneration
  • the treatment mode of FIG. 7 may also include information about different treatment intensities. For example, as a result of clinical trials, CSCs showed that RPE cells were relatively healthy and could be treated with low therapeutic intensity, while DME had poor condition of RPE cells and had to be treated with high therapeutic intensity. Dry AMD has been shown to be curable with higher therapeutic strength than CSC and lower than DME. Therefore, when the user selects a treatment mode using the treatment lesion, the treatment is set to proceed according to the treatment intensity suitable for the lesion.
  • the treatment intensity when the CSC mode is selected, the treatment intensity may be set in the range of ASV 20 to 40, when the Dry AMD mode is selected, the treatment intensity may be set in the range of ASV 40 to 60, and the DME mode When is selected the treatment intensity can be set in the range of ASV 60 to 80.
  • the level of treatment intensity for each lesion is divided into high, medium, and low to further increase the treatment intensity within the range of treatment intensity according to each lesion. Can be set finely.
  • the ophthalmic treatment device 1 of the present embodiment is configured to irradiate the plurality of RPE cells with the spot size of the treatment light, and may proceed with treatment at various treatment intensities according to the user's selection.
  • the monitoring unit 40 may monitor the state information of the target location in different ways by using the plurality of monitoring units 41 and 42, thereby enabling safe and optimized treatment.
  • FIG. 8 is a flow chart illustrating a control method of the ophthalmic treatment device of FIG.
  • the control method of the ophthalmic treatment apparatus 1 described above will be described in detail.
  • the front part of the patient is fixed to the alternative part 70 and the treatment is performed.
  • the treatment is performed by irradiating the treatment light to a plurality of target positions distributed in the treatment area to proceed with the treatment.
  • the treatment is performed by irradiating a plurality of treatment lights to one target position, and when treatment of the target position is completed, the treatment is performed by changing the treatment light irradiation position to the next target position.
  • FIG. 8 for convenience of description, the process of treating the initial target position will be described.
  • the user selects the treatment mode through the setting unit 80 (S10), and the information about the selected treatment mode is transmitted to the controller 60.
  • the control unit 60 irradiates the treatment light by driving the treatment light irradiation unit based on the selected treatment mode (S20).
  • the monitoring unit 40 monitors the state information of the target location.
  • the first monitoring unit 41 and the second monitoring unit 42 each independently monitor the status information of the target position.
  • the control unit 60 determines whether the treatment has proceeded at the set treatment intensity based on the information monitored by the first monitoring unit 41 (S30). In addition, based on the information monitored by the second monitoring unit 42, it is determined whether or not the treatment has proceeded at the set treatment intensity (S40).
  • S30 the determination step S30 using the first monitoring unit and the determination step S40 using the second monitoring unit are performed sequentially, but are not limited thereto.
  • the two steps S30 and S40 may be simultaneously performed in cycles corresponding to the irradiation period of the treatment light, or may be continuously performed while the treatment is in progress.
  • the controller 60 determines that the treatment of the target position is not completed. Determine and adjust the parameters of the treatment light (S50).
  • the treatment light parameter is adjusted to sequentially increase the energy transmitted per unit area of the target position by the treatment light, for example, it is possible to increase the size of the output of the treatment light among the parameters. Thereafter, the controller 60 irradiates the treatment light having the adjusted parameter to the target position, and repeats the above-described steps.
  • the control unit 60 determines that treatment of the corresponding target position is performed. Judging by completion. Therefore, the irradiation of the treatment light to the target position is terminated (S60), the irradiation position of the treatment light is changed to another target position, and the aforementioned steps (S20 to S70) are repeated to proceed with the treatment.
  • FIGS. 9 to 12 an ophthalmic treatment apparatus and a control method thereof according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 12.
  • the same or similar configuration and steps as the first embodiment described above are replaced with the drawings and the description of the first embodiment to avoid duplication of description.
  • the monitoring unit of the first embodiment described above used both the first monitoring unit and the second monitoring unit for the purpose of monitoring the progress of treatment.
  • the information measured in each monitoring unit can be used for control of different purposes.
  • the first monitoring unit 41 is configured to receive a sound wave signal generated from the target position, convert it into an electrical signal, and transmit the converted signal to the control unit 60. It has a relatively quick advantage.
  • the information detected by the first monitoring unit 41 may also include a signal due to a separate event occurring at a location other than the target location, which has a disadvantage of relatively low accuracy.
  • the second monitoring unit 42 since the second monitoring unit 42 uses the reflected light reflected from the target position, the second monitoring unit 42 has an advantage of accurately determining the state information of the target position compared to the first monitoring unit.
  • the second monitoring unit 41 undergoes various calculation processes to detect the parameter change of the reflected light, the operation speed is slower than that of the first monitoring unit (in particular, as shown in FIG.
  • the processing speed is relatively delayed because the interference signal is analyzed through complex calculation process such as Fourier transform.
  • the ophthalmic treatment device of the present embodiment in consideration of the rapid calculation speed of the first monitoring unit 41, the information detected by the first monitoring unit 41, the treatment progress state or the treatment end point for the target position Can be used to determine In addition, in consideration of the accuracy of the second monitoring unit 42, the information detected by the second monitoring unit 42 may be used to determine whether an odd event occurs during treatment.
  • the controller 60 may proceed with the treatment based on the information measured by the first monitoring unit 41 (for example, whether microbubbles have started to occur among the RPE cells at the target location, and among the RPE cells at the target location). The percentage of RPE cells in which microbubbles have occurred, etc.) and the end of treatment.
  • the end point of treatment may be determined based on whether a value measured by the first monitoring unit (hereinafter, referred to as a first measurement value) reaches a predetermined first reference value (a value corresponding to the set treatment intensity). If it is determined that the treatment is completed, the controller may stop irradiating the treatment light to the corresponding target position and change the irradiation position of the treatment light to another target position to proceed with the treatment.
  • the first monitoring unit may grasp the change in the state of the target position by each treatment light in real time through a quick calculation and use it for control.
  • the second monitoring unit 42 may continuously monitor whether or not an abnormality occurs at the target position while the treatment is in progress.
  • the abnormal occurrence may include various events.
  • abnormalities may occur in retinal surface tissues, and the like.
  • the second monitoring unit 42 can obtain highly accurate information on the target position (particularly, when the second monitoring unit is configured as an interferometer sensor as shown in FIG. 3, the tissue of another depth as well as the RPE cell layer of the target position can be obtained. To identify events that occur in. Therefore, the controller 60 uses the information measured by the second monitoring unit 42 to determine whether the measured value (hereinafter, the second measured value) is greater than the second reference value (the value corresponding to the occurrence of the abnormality). It can be judged that it occurred.
  • the second measured value the measured value
  • the second reference value the value corresponding to the occurrence of the abnormality
  • the second measured value may be variously processed values from the information obtained by the second monitoring unit.
  • the second reference value may be a value itself obtained by the second monitoring unit.
  • the second monitoring unit may be a difference value from the previously measured value.
  • the controller 60 may control to immediately stop the treatment light irradiation irrespective of the information measured by the first monitoring unit 41. have. In addition, this may be displayed to the outside through a separate indicating unit 90 (see FIG. 1) to inform the user of an abnormality.
  • FIG. 9 is a flowchart illustrating a control method of an ophthalmic treatment device according to a second embodiment of the present invention.
  • the control method of the ophthalmic treatment apparatus 1 described above will be described in detail.
  • the treatment mode is selected (S110) and the treatment light is irradiated to the target position (S120).
  • the first monitoring unit 41 and the second monitoring unit 42 monitor state information of the target location (S130).
  • the monitoring step S130 is shown to be performed after the treatment light step S120, but is not limited to this order, and may be continuously performed while the treatment is in progress.
  • the controller 60 determines that the treatment of the target position is not completed and adjusts the parameter of the treatment light ( S140). For example, the size of the output of the treatment light among the parameters may be increased. Thereafter, the controller 60 controls the treatment light irradiation unit to irradiate the treatment light having the adjusted parameter to the target position (S120). Then, while the first measured value is lower than the first reference value, steps S120 to S140 are repeatedly performed, whereby the treatment light is irradiated to the target position a plurality of times.
  • the controller 60 determines that the treatment of the corresponding target position is completed. Therefore, the irradiation of the treatment light to the target position is terminated (S150), the treatment light irradiation position is changed to another target position, and the above-described steps are repeated to proceed with the treatment.
  • the second monitoring unit 42 continuously monitors whether or not an abnormality occurs, and when the second measurement value measured by the second monitoring unit 42 is smaller than the second reference value, and according to S120 to S160. Perform the steps.
  • the controller 60 determines that an abnormality has occurred and stops the treatment of the target position by immediately stopping the treatment light irradiation ( S170). This step is performed immediately after detecting whether an abnormality occurs, regardless of whether the first measured value is higher or lower than the first reference value. Then, the controller 60 displays the fact that the abnormality occurred to the user through the notification unit 90 (S180).
  • 10 to 12 are graphs showing the irradiation pattern of the treatment light according to the control method of FIG.
  • FIG. 10 it is detected that microbubbles are generated in RPE cells at a target position when the fifth treatment light is irradiated (ASV 0). Whether the fine bubbles are generated is determined based on the first measurement value measured by the first monitoring unit. As described above, when the first measured value is less than or equal to the effective value, it is determined that there is no change of state in which bubbles are generated in the RPE cells.
  • the controller 60 may determine, in real time, the specific gravity of the RPE cells in which the state change occurs in the RPE cells at the target location based on the first measured value measured in real time.
  • the controller 60 determines that the treatment is completed at the corresponding target position and stops irradiation of the treatment light. have.
  • FIG. 10 illustrates a case where an abnormal occurrence is not detected during treatment
  • FIG. 11 illustrates a case where an abnormal occurrence is detected during treatment.
  • FIG. 11 illustrates a case where an abnormal occurrence is detected through the second monitoring unit 42 at the time when the seventh treatment light is irradiated. In this case, the control unit immediately stops the treatment light irradiation and terminates the treatment at the time when the abnormality is detected.
  • Figures 10 and 11 in adjusting the parameters of the treatment light the output of the treatment light is adjusted to be ramped to the same magnitude.
  • this is an example.
  • FIG. 12 when bubbles are detected and the end point of treatment is determined to be close, it is possible to adjust the size of the output of the treatment light to be smaller than before the fine bubbles are detected.
  • 5 and 10 to 12 illustrate a method of increasing the output of the treatment light in controlling the parameter of the treatment light.
  • this is one example, and it is also possible to adjust other parameters other than the output so that the amount of energy delivered per unit area by the treatment light can be increased.
  • 13 to 15 are graphs showing another example of adjusting the treatment light parameter.
  • the treatment light generator generates treatment light having the same pulse duration time, but may adjust the parameter in such a manner as to gradually reduce the off time between the treatment lights.
  • a treatment light pulse having the same output may be generated, but the parameter may be adjusted so that the pulse duration of each treatment light gradually increases.
  • the treatment light is irradiated so that each treatment light includes a plurality of unit pulses Pu, and the parameter may be adjusted to sequentially increase the number of unit pulses constituting each treatment light. .
  • the present invention may be configured to be applicable to various ocular diseases by using as a target position various tissues in the eye as well as fundus lesions.
  • the present invention may be applied to a treatment apparatus for treating glaucoma in the anterior eye and a control method thereof, which will be described below with reference to FIG. 16.
  • Glaucoma is a lesion in which the optic nerve is damaged by an increase in intraocular pressure, and treatment is performed in such a manner as to maintain a proper intraocular pressure by securing a path through which intraocular fluid is discharged.
  • the ophthalmic treatment device according to the present invention can improve the characteristics of the fluid discharged by irradiating the treatment light on the trabecualr meshwork (TM) tissue located under the rimbus of the anterior eye. .
  • the ophthalmic treatment device proceeds to treatment using a treatment light of a wavelength selectively absorbed by the melanosome, similarly to the device for treating the ocular fundus lesion.
  • the trabecualr meshwork cell (TM cell) constituting the fibrotic tissue includes pigment components such as melanosomes, like RPE cells. Therefore, as the treatment light is irradiated, energy is transmitted to the cells of the fibrous stem tissue, thereby thermally damaging the fibrous stem cells and securing a discharge path of the fluid to maintain the intraocular pressure normally.
  • the ophthalmic treatment apparatus for treating the ocular fundus lesion is delivered to the plurality of RPE cells arranged at the target position using the retina as a target position, and the treatment is performed.
  • the treatment is performed by transferring energy to a plurality of fibrous stem cells arranged at the target position using the fibrous stem tissue as a target position.
  • the alternative portion 70 of the ophthalmic treatment device comprises a contact lens including a reflective member.
  • the paths of various light including the treatment light are irradiated to the fibrous stem tissue that is the target position through the reflective member, and the reflected light reflected from the target position can also enter the beam delivery portion of the ophthalmic treatment apparatus through the reflective member 71. have.
  • various control contents including the configuration and operation of the ophthalmic treatment device described in the above embodiments may be applied to the ophthalmic treatment device of FIG. 16. Therefore, during the treatment of glaucoma, the treatment intensity can be effectively controlled while irradiating the treatment light to a plurality of fibrotic stem cells, and the optimal treatment can be proceeded, and the monitoring unit monitors the status information in different ways to effectively check the status information. At the same time, it is possible to realize the advantage of stopping in an emergency.
  • the ophthalmic treatment device comprising two monitoring units and a control method thereof have been described in detail.
  • the above-described embodiment is a simplified description of the invention for the convenience of description, and of course, it can be modified in various ways.

Abstract

The present invention relates to an ophthalmic treatment device and a method of controlling same, and provides an ophthalmic treatment device and a method of controlling same, the ophthalmic treatment device including: a setting unit formed to set a treatment mode; a treatment light irradiating unit for irradiating a target position of the eyeground a plurality of times with a treatment light to perform treatment; monitoring unit through which state information for the target position is monitored by means of the treatment light, while the treatment light is irradiated; and a control unit for determining whether a treatment strength according to the treatment mode is reached using the information monitored through the monitoring unit and, on the basis of this determination, controlling an operation of the treatment light irradiating unit.

Description

안과용 치료장치 및 이의 제어방법Ophthalmic treatment device and its control method
본 발명은 안과용 치료장치 및 이의 제어방법에 관한 것으로, 보다 상세하게는 치료가 진행되는 동안 타겟 위치의 상태를 감지하여 치료 내용을 제어하는 안과용 치료장치 및 이의 제어방법에 관한 것이다.The present invention relates to an ophthalmic treatment apparatus and a control method thereof, and more particularly, to an ophthalmic treatment apparatus and a control method thereof for detecting the state of the target position during the treatment to control the treatment.
최근 들어, 인체 조직에 에너지를 전달할 수 있도록 광을 조사하여 조직의 상태를 변화시키는 방식으로 치료하는 기술이 널리 적용되고 있다. 특히, 레이저를 이용한 변에 널리 사용되고 있다.In recent years, a technique for treating the tissue in a manner of changing the state of the tissue by irradiating light to deliver energy to human tissue has been widely applied. In particular, it is widely used for the edge using a laser.
레이저를 이용한 안과용 치료 장치는 각막 성형, 녹내장 또는 백내장 수술 등의 전안부 병변을 치료하는 장치가 다수 개발되고 있으며, 최근에는 황반 변성을 비롯한 안저 영역의 각종 병변을 치료하기 위한 장치가 개발되고 있다. 그리고, 이러한 수술 장치는 한국공개특허공보 제10-2014-0009846호에서도 개시되어 있다.In the ophthalmic treatment device using a laser, a number of devices for treating anterior eye lesions such as corneal plastic surgery, glaucoma, or cataract surgery have been developed. Recently, devices for treating various lesions of the fundus region including macular degeneration have been developed. . And, such a surgical device is also disclosed in Korea Patent Publication No. 10-2014-0009846.
이러한 치료장치는 광을 통해 타겟 위치로 에너지를 전달하여 조직의 상태 변화를 유도하여 치료를 진행한다. 다만, 타겟 위치로 에너지가 과다하게 전달되면 타겟 조직은 물론 인접한 조직까지 손상이 발생하며, 특히 안과 병변 치료시 시력 손상을 야기할 수 있다. 따라서, 치료가 진행되는 동안 치료 상태를 모니터링 하는 것이 필요하나, 조직의 미세한 변화를 감지하는데 한계가 있었다.Such a treatment device delivers energy to a target location through light to induce a change in the state of the tissue to proceed with treatment. However, when excessive energy is delivered to the target location, damage occurs not only to the target tissue but also to adjacent tissues, and in particular, may cause damage to eyesight when treating an ocular lesion. Therefore, it is necessary to monitor the treatment status while the treatment is in progress, but there is a limit in detecting minute changes in tissues.
본 발명은 상기한 문제점을 해결하기 위한 것으로, 치료 중 치료 영역의 조직 내부의 상태 변화를 실시간으로 모니터링하고 이에 근거하여 치료를 진행할 수 있는 광학 치료장치 및 이의 구동 방법을 제공하기 위함이다.The present invention is to solve the above problems, and to provide an optical therapy apparatus and a driving method thereof that can monitor in real time the change of the state inside the tissue of the treatment area during treatment and proceed with the treatment based on this.
상기한 목적을 달성하기 위해, 본 발명은, 치료 모드를 설정하도록 형성되는 설정부, 안저의 타겟 위치로 복수회에 걸쳐 치료광을 조사하여 치료를 수행하는 치료광 조사부, 상기 치료광이 조사되는 동안 상기 치료광에 의한 상기 타겟 위치의 상태 정보를 모니터링하는 모니터링부 및, 상기 모니터링부에서 모니터링된 정보를 이용하여 상기 치료 모드에 따른 치료 강도에 도달하였는지 여부를 판단하고, 이에 근거하여 상기 치료광 조사부의 동작을 제어하는 제어부를 포함하는 안과용 치료장치를 제공한다.In order to achieve the above object, the present invention, the setting unit is formed to set the treatment mode, the treatment light irradiation unit for performing treatment by irradiating the treatment light to the target position of the fundus a plurality of times, the treatment light is irradiated And a monitoring unit for monitoring state information of the target location by the treatment light, and whether the treatment intensity according to the treatment mode is reached using the information monitored by the monitoring unit, and based on the treatment light It provides an ophthalmic treatment device including a control unit for controlling the operation of the irradiation unit.
예를 들어, 제어부는 상기 모니터링부에서 감지되는 정보가 상기 설정된 치료 강도에 도달하지 못한 것으로 판단되면 상기 치료광의 파라미터를 조절하고, 상기 설정된 치료 강도에 도달한 것으로 판단되면 상기 타겟 위치로 상기 치료광을 조사하는 것을 종료하도록 제어할 수 있다.For example, the controller adjusts the parameter of the treatment light when it is determined that the information detected by the monitoring unit does not reach the set treatment intensity, and when it is determined that the set treatment intensity has been reached, the treatment light to the target position. Can be controlled to terminate the survey.
여기서, 상기 치료광은 상기 타겟 영역에 위치한 복수의 RPE 세포에 에너지를 전달할 수 있는 스팟 사이즈를 갖도록 조사되며, 상기 복수의 RPE 세포는 복수의 치료광이 조사되어 치료가 진행됨에 따라 일부의 RPE 세포의 상태가 변화된다. 구체적으로, 상기 치료광은 적어도 50개 이상의 RPE 세포에 에너지를 전달하는 스팟 사이즈를 갖을 수 있다. 또는, 상기 치료광은 안저에서 직경 50㎛ 이상의 스팟 사이즈를 갖을 수 있다.Here, the treatment light is irradiated to have a spot size that can deliver energy to a plurality of RPE cells located in the target region, the plurality of RPE cells are a portion of the RPE cells as the treatment is irradiated with a plurality of treatment light The state of is changed. Specifically, the therapeutic light may have a spot size for delivering energy to at least 50 or more RPE cells. Alternatively, the treatment light may have a spot size of 50 μm or more in the fundus.
그리고, 상기 모니터링부는 상기 치료광이 조사되는 타겟 위치에 배치된 복수의 RPE 세포 중 치료에 의해 상태가 변화하는 RPE 세포의 양을 감지하여, 상기 타겟 위치에 진행된 치료 강도를 모니터링하도록 구성될 수 있다.The monitoring unit may be configured to detect an amount of RPE cells whose state changes by treatment among a plurality of RPE cells disposed at a target location to which the treatment light is irradiated, and monitor the treatment intensity progressed at the target location. .
여기서, 모니터링부는 광음향센서(optoacoustic sensor) 또는 반사계센서(reflectometry sensor)를 이용하여 구성할 수 있다. 또는, 상기 모니터링부는 광음향센서(optoacoustic sensor)로 구성되는 제1 모니터링 유닛 및 반사계센서(reflectometry sensor)로 구성되는 제2 모니터링 유닛을 포함하여 구성되며, 상기 제1 모니터링 유닛 및 제2 모니터링 유닛에서 모니터링된 정보 중 적어도 하나에 의해 상기 설정된 치료 강도에 도달한 것으로 판단되면 상기 타겟 위치로 치료광을 조사하는 것을 종료하도록 제어될 수 있다.The monitoring unit may be configured using an optoacoustic sensor or a reflectometry sensor. Alternatively, the monitoring unit may include a first monitoring unit composed of an optoacoustic sensor and a second monitoring unit composed of a reflectometry sensor, wherein the first monitoring unit and the second monitoring unit In response to determining that the set treatment intensity is reached by at least one of the monitored information, the control may be controlled to terminate the irradiation of the treatment light to the target position.
한편, 설정부는 상이한 값을 갖는 복수의 치료 강도를 표시하도록 구성되어, 사용자가 치료 강도를 선택하여 치료 모드를 설정하도록 구성되거나, 복수의 치료 병변을 표시하도록 구성되어 사용자가 치료 병변을 선택하여 치료 모드를 설정하도록 구성될 수 있다.On the other hand, the setting unit is configured to display a plurality of treatment intensities having different values, the user is configured to set the treatment mode by selecting the treatment intensity, or configured to display a plurality of treatment lesions, the user selects the treatment lesion to treat It can be configured to set the mode.
전술한 본 발명의 목적은, 설정부를 통해 치료 강도를 선택하는 단계, 복수의 RPE 세포가 배치된 타겟 위치로 치료광을 조사하는 단계, 모니터링부를 통해 상기 타겟 위치에 배치된 RPE 세포의 상태 변화 정보를 모니터링하는 단계, 상기 모니터링된 정보에 근거하여 상기 설정된 치료 강도에 도달했는지 여부를 판단하는 단계 및 상기 설정된 치료 강도에 도달하지 못한 것으로 판단되면, 상기 타겟 위치의 단위 면적당 전달되는 에너지가 증가하도록 상기 치료광 파라미터를 조절하는 단계를 포함하는 안과용 치료장치의 제어방법에 의해서도 달성될 수 있다.The above object of the present invention is to select a treatment intensity through a setting unit, irradiating the treatment light to a target position where a plurality of RPE cells are arranged, state change information of the RPE cells arranged at the target position through a monitoring unit Monitoring the; determining whether the set treatment intensity has been reached based on the monitored information; and if it is determined that the set treatment intensity has not been reached, the energy transmitted per unit area of the target location increases. It can also be achieved by a control method of an ophthalmic treatment device comprising adjusting the treatment light parameters.
또한, 상기한 목적을 달성하기 위해, 본 발명은 안저에 위치하는 타겟 위치로 복수회에 걸쳐 치료광을 조사하는 치료광 조사부, 상기 치료광이 조사되는 동안 상기 타겟 위치의 상태 정보를 제1 방식으로 측정하는 제1 모니터링 유닛, 상기 치료광이 조사되는 동안 상기 타겟 위치의 상태 정보를 상기 제1 방식과는 상이한 제2 방식으로 측정하는 제2 모니터링 유닛 및 상기 제1 모니터링 유닛 및 상기 제2 모니터링 유닛에서 측정된 정보에 근거하여 상기 치료광의 파라미터를 조절하거나 상기 치료광의 조사 여부를 결정하는 제어부를 포함하는 안과용 치료장치를 제공할 수 있다.In addition, in order to achieve the above object, the present invention provides a treatment light irradiation unit for irradiating the treatment light to a target position located in the fundus a plurality of times, the state information of the target position while the treatment light is irradiated The first monitoring unit for measuring the second monitoring unit, the second monitoring unit for measuring the state information of the target position in a second manner different from the first method while the treatment light is irradiated and the first monitoring unit and the second monitoring The ophthalmic treatment apparatus may include a controller configured to adjust a parameter of the treatment light or determine whether the treatment light is irradiated based on the information measured by the unit.
여기서, 제1 모니터링 유닛은 상기 타겟 위치에 대한 치료 진행 상태 또는 치료 종료 시점에 관한 정보를 측정하고, 상기 제2 모니터링 유닛은 치료 중 이상 발생 여부에 관한 정보를 측정할 수 있다.Here, the first monitoring unit may measure information on the treatment progress state or the treatment end time for the target location, and the second monitoring unit may measure information on whether an abnormality occurs during the treatment.
본 발명에 의할 경우, 타겟 영역에 위치하는 복수의 RPE 세포에 에너지를 전달하고 치료 진행함으로서, 치료 강도를 효과적으로 제어할 수 있는 장점이 있다.According to the present invention, by delivering energy to a plurality of RPE cells located in the target region and progressing the treatment, there is an advantage that the treatment intensity can be effectively controlled.
그리고, 치료가 진행되는 동안 치료 진행 정도를 실시간으로 모니터링하면서 치료 종료 시점을 결정하여, 최적의 치료를 진행할 수 있는 장점이 있다.In addition, by determining the end point of treatment while monitoring the progress of treatment in real time while the treatment is in progress, there is an advantage that the optimal treatment can proceed.
또한, 서로 상이한 방식으로 조직의 상태 정보를 측정하는 모니터링부를 구비함으로서, 치료가 진행되는 동안 상태의 변화 정보를 효과적으로 모니터링할 수 있다.In addition, by providing a monitoring unit for measuring the state information of the tissue in a different way from each other, it is possible to effectively monitor the change information of the state during the treatment.
나아가, 치료 중 이상 발생 여부를 판단하여 이상 발생시 긴급하게 정지할 수 있도록 구성함으로서, 치료 중 발생되는 돌발 상황에도 효과적으로 대응할 수 있는 장점이 있다.Furthermore, by determining whether an abnormality occurs during the treatment and configured to stop in an emergency, there is an advantage that can effectively cope with the sudden situation generated during the treatment.
도 1은 본 발명의 제1 실시예에 따른 안과용 치료장치를 개략적으로 도시한 개략도, 1 is a schematic diagram schematically showing an ophthalmic treatment device according to a first embodiment of the present invention,
도 2는 도 1의 A 영역을 확대하여 그린 단면도,2 is an enlarged cross-sectional view of region A of FIG. 1;
도 3은 제2 모니터링 유닛의 구성을 개략적으로 도시한 블록도,3 is a block diagram schematically showing the configuration of a second monitoring unit;
도 4는 치료광이 안저에 조사되는 모습을 도시한 도면,4 is a view showing a state in which the treatment light is irradiated to the fundus,
도 5는 치료광의 조사 패턴 및 이에 따른 모니터링부의 측정 신호를 도시한 그래프,5 is a graph showing the irradiation pattern of the treatment light and the measurement signal according to the monitoring unit,
도 6은 설정부의 디스플레이를 통해 표시되는 일 예를 도시한 도면,6 is a view illustrating an example displayed through a display of a setting unit;
도 7은 설정부의 디스플레이를 통해 표시되는 다른 예를 도시한 도면,7 is a view showing another example displayed on the display of the setting unit;
도 8은 도 1의 안과용 치료장치의 제어방법을 도시한 순서도,8 is a flow chart showing a control method of the ophthalmic treatment device of FIG.
도 9는 본 발명의 제2 실시예에 따른 안과용 치료장치의 제어방법을 도시한 순서도,9 is a flowchart illustrating a control method of an ophthalmic treatment device according to a second embodiment of the present invention;
도 10 내지 도 12는 도 9의 제어방법에 따른 치료광의 조사 패턴을 도시한 그래프,10 to 12 is a graph showing the irradiation pattern of the treatment light according to the control method of FIG.
도 13 내지 도 15은 치료광 파라미터를 조절하는 다른 예를 도시한 그래프이고,13 to 15 are graphs showing another example of adjusting the treatment light parameter,
도 16는 본 발명을 이용하여 전안부 병면을 치료하는 모습을 도시한 단면도이다.16 is a cross-sectional view showing the treatment of the anterior segment lesions using the present invention.
이하에서는 도면을 참고하여 본 발명의 일 실시예에 따른 안과용 치료장치에 대해 구체적으로 설명한다. 아래의 설명에서 각 구성요소의 위치 관계는 원칙적으로 도면을 기준으로 설명한다. 도면은 설명의 편의를 위해 발명의 구조를 단순화하거나 필요할 경우 과장하여 표시될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며 이 이외에도 각종 장치를 부가하거나, 변경 또는 생략하여 실시될 수 있다.Hereinafter, with reference to the drawings will be described in detail for the ophthalmic treatment device according to an embodiment of the present invention. In the following description, the positional relationship of each component is explained based on the drawings in principle. The drawings may be displayed to simplify the structure of the invention or to exaggerate if necessary for the convenience of description. However, the present invention is not limited thereto, and various other devices may be added, modified, or omitted.
이하에서 설명되는 안과용 치료장치는 안저 병변을 치료하는 장치로 설명되나, 본 발명은 안저 병변 이외의 다른 병변을 치료하는 치료 장치에도 적용될 수 있다. 예를 들어, 녹내장 치료와 같은 전안부 병변을 치료하는 치료 장치에 적용될 수 있으며, 피부 조직의 병변을 치료하는 치료 장치에 적용될 수도 있다. 이처럼, 이하에서 설명하는 안과용 치료장치에 본 발명이 한정되는 것은 아니며, 다른 병변을 광학적으로 치료하는 치료장치에도 널리 활용될 수 있음을 밝혀둔다.The ophthalmic treatment device described below is described as a device for treating an ocular fundus lesion, but the present invention may be applied to a treatment device for treating a lesion other than the ocular fundus lesion. For example, it may be applied to a treatment device for treating an anterior eye lesion, such as glaucoma treatment, or may be applied to a treatment device for treating a lesion of skin tissue. As such, the present invention is not limited to the ophthalmic treatment device described below, and it can be found that the present invention can be widely applied to a treatment device for optically treating other lesions.
도 1은 본 발명의 제1 실시예에 따른 안과용 치료장치를 개략적으로 도시한 개략도이다. 도 1에 도시된 바와 같이 본 발명에 따른 안과용 치료장치(1)는 치료광(treatment beam)을 발생하는 치료광 발생부(10), 조준광(aiming beam)을 발생시키는 조준광 발생부(20), 그리고 치료광 및 조준광의 진행 경로 형성하는 빔 딜리버리부(30)를 포함한다. 또한, 치료광이 조사되는 타겟 위치의 조직 상태 정보를 감지하기 위한 모니터링부(40) 및 모니터링부로부터 감지되는 정보에 근거하여 각종 구성요소를 제어하는 제어부(60)를 포함한다.1 is a schematic diagram schematically showing an ophthalmic treatment device according to a first embodiment of the present invention. As shown in FIG. 1, the ophthalmic treatment apparatus 1 according to the present invention includes a treatment light generator 10 for generating a treatment beam and an aiming light generator for generating an aiming beam ( 20) and a beam delivery unit 30 forming a progress path of the treatment light and the aiming light. In addition, the monitoring unit 40 for detecting the tissue state information of the target location to which the treatment light is irradiated, and a control unit 60 for controlling various components based on the information detected from the monitoring unit.
치료광 발생부(10)는 치료광 광원 및 치료광 광원에서 생성되는 광의 특성을 가공하는 각종 광학 소자를 포함하여 구성될 수 있다. 치료광은 레이저로 구성되며, 치료광 광원은 레이저를 발진할 수 있는 Nd:YAG, Ho:YAG 등과 같은 레이저 매질 또는 레이저 다이오드를 포함하여 구성될 수 있다. 치료광 광원은 병변 또는 에너지가 타겟 위치의 조직의 특성을 고려하여 적합한 파장, 펄스폭(pulse width), 출력을 갖는 레이저를 조사하도록 구성된다. 그리고, 레이저를 발생시키기 위한 각종 전기 회로, 광학 필터, 그리고 셔터 등의 다양한 소자들을 포함할 수 있다.The treatment light generator 10 may include a treatment light source and various optical elements for processing characteristics of light generated by the treatment light source. The treatment light is composed of a laser, and the treatment light source may include a laser medium or a laser diode such as Nd: YAG, Ho: YAG, etc. capable of oscillating the laser. The therapeutic light source is configured to irradiate a laser whose lesion or energy has a suitable wavelength, pulse width, and output, taking into account the characteristics of the tissue at the target location. In addition, various electric circuits for generating a laser, an optical filter, and various elements such as a shutter may be included.
조준광 발생부(20)는 치료 영역에 조사되는 조준광(aiming beam)을 발생시킨다. 조준광은 치료광을 조사하기 이전 또는 치료광이 조사되는 동안 시술자가 치료광이 조사되는 위치를 확인할 수 있도록, 해당 위치를 표시하는 구성이다. 일 예로, 조준광은 가시광 대역의 파장을 갖고, 시술자는 치료 영역에서 반사된 조준광에 의해 치료 영역을 확인할 수 있다.The aiming light generator 20 generates an aiming beam irradiated to the treatment area. Aim light is a configuration that displays the location so that the operator can determine the location to which the treatment light is irradiated before or while the treatment light is irradiated. For example, the aiming light has a wavelength of a visible light band, and the operator may identify the treatment area by the aiming light reflected from the treatment area.
조준광 발생부(20)는 단일 스팟(spot) 형태로 조준광을 조사하며, 치료광의 조사 경로와 동일한 경로를 통해 타겟 위치로 조사할 수 있다. 또는 치료광이 조사되는 복수의 위치를 표시할 수 있도록, 복수의 스팟으로 구성되는 패턴 형태로 조사하는 것도 가능하다. 이 이외에도, 조준광은 격자 형태 또는 경계선 형태로 조사되어, 치료광이 조사되는 영역을 표시할 수 있다.The aiming light generator 20 irradiates the aiming light in the form of a single spot and may irradiate the target light through the same path as the irradiation path of the treatment light. Alternatively, it is also possible to irradiate in the form of a pattern composed of a plurality of spots so as to display a plurality of positions to which the treatment light is irradiated. In addition to this, the collimated light may be irradiated in the form of a lattice or boundary line to indicate an area to which the treatment light is irradiated.
다만, 시술자가 모니터와 같은 별도의 인터페이스를 통해 치료 영역을 확인하는 것이 가능한 경우, 조준광 발생부를 생략하여 실시할 수도 있다.However, when the operator can identify the treatment area through a separate interface such as a monitor, the collimator may be omitted.
한편, 빔 딜리버리부(30)는 복수의 광학 소자로 구성되며, 치료광이 진행하는 광 경로를 구성한다. 조준광 및 후술할 제2 모니터링 유닛의 검측광(probe beam) 또한 빔 딜리버리부를 따라 진행할 수 있다. 여기서, 조준광 및/또는 검측광의 광 경로는 치료광의 광 경로 중 적어도 일부를 공유하도록 구성되나, 필요한 경우 별도의 광 경로를 형성하도록 구성하는 것도 가능하다.On the other hand, the beam delivery unit 30 is composed of a plurality of optical elements, and constitutes an optical path through which the treatment light travels. The aiming light and the probe beam of the second monitoring unit to be described later may also travel along the beam delivery unit. Here, the optical path of the aiming light and / or the detection light is configured to share at least a part of the optical path of the treatment light, but may be configured to form a separate light path if necessary.
구체적으로, 빔 딜리버리부(30)는 복수개의 빔 컴바이너(beam combiner)(31)를 구비한다. 이에 의해, 치료광, 조준광 및 검측광은 도 1에 도시된 바와 같이 각각 빔 딜리버리부(30)를 통과하여 치료 영역으로 조사될 수 있다. 그리고, 치료 영역으로부터 반사되는 조준광과 검측광은 각각 빔 딜리버리부(30)를 통해 시술자의 눈이 위치하는 방향으로 진행하거나, 제2 모니터링 유닛(42)로 다시 입사될 수 있다. Specifically, the beam delivery unit 30 includes a plurality of beam combiners 31. As a result, the treatment light, the aiming light, and the detection light may be irradiated to the treatment area through the beam delivery unit 30 as shown in FIG. 1. In addition, the aiming light and the detection light reflected from the treatment area may progress in the direction in which the operator's eyes are located through the beam delivery unit 30, or may be incident again to the second monitoring unit 42.
빔 딜리버리부(30)는 광이 조사되는 위치를 변경시키는 스캐너(32)를 포함한다. 스캐너(32)는 적어도 하나 이상의 반사거울 및 이를 회전시키는 구동부를 포함하여 구성되며, 광이 반사되는 반사거울의 회전 위치가 바뀌면서 광이 조사 위치를 변경시킬 수 있다.The beam delivery part 30 includes the scanner 32 which changes the position to which light is irradiated. The scanner 32 includes at least one reflective mirror and a driver to rotate the mirror, and the light may change the irradiation position while the rotation position of the reflective mirror on which the light is reflected is changed.
이 이외에도, 도면에서는 구체적으로 도시되지 않았으나, 빔 딜리버리부는 광을 집속시키거나 분산시키기 위한 복수개의 광학 렌즈 및 광학 필터 등의 광학 소자를 더 포함하여 구성될 수 있다.In addition, although not specifically illustrated in the drawings, the beam delivery unit may further include optical elements such as a plurality of optical lenses and optical filters for focusing or dispersing light.
빔 딜리버리부(30)의 말단에는 대안부(object part)(70)가 구비된다. 대안부(70)는 치료 대상이 되는 환자의 눈이 위치하는 구성으로, 환자의 눈과 접촉하는 컨택트 렌즈(contact lens)를 포함한다. 나아가, 시술 중 환자의 눈을 고정시킬 수 있도록, 환자의 눈을 흡입하여 고정시키는 석션 장치를 포함하여 구성할 수도 있다.An end part of the beam delivery part 30 is provided with an object part 70. The alternative unit 70 is a configuration in which the eye of the patient to be treated is located, and includes a contact lens in contact with the eye of the patient. Furthermore, it may be configured to include a suction device for inhaling and fixing the eyes of the patient so that the eyes of the patient can be fixed during the procedure.
이처럼, 치료광 조사부는 치료광 발생부(10) 및 빔 딜리버리부(30)를 포함하여 구성되며, 치료광 발생부(10)에서 발생된 치료광이 빔 딜리버리부(30) 및 대안부(70)를 통해 안저의 치료 영역으로 조사된다. 그리고, 조준광 조사부는 조준광 발생부(20) 및 빔 딜리버리부(30)를 포함하여 구성되며, 조준광 발생부에서 발생된 조준광 또한 빔 딜리버리부(30) 및 대안부(70)를 통해 안저의 치료 영역으로 조사된다.As such, the treatment light irradiator includes the treatment light generator 10 and the beam delivery unit 30, and the treatment light generated by the treatment light generator 10 includes the beam delivery unit 30 and the alternative unit 70. Irradiated to the treatment area of the fundus. In addition, the aiming light irradiation unit includes the aiming light generating unit 20 and the beam delivery unit 30, and the aiming light generated by the aiming light generating unit is also provided through the beam delivery unit 30 and the alternative unit 70. Irradiated to the treatment area of the fundus.
도 2는 도 1의 A 영역을 확대하여 그린 단면도이다. 도 2의 A는 치료 영역에 해당하는 환자의 망막 조직을 도시한 도면이다. 이러한 망막의 조직은 일반적으로 내경계층(internal limiting layer), 신경 섬유층(nerve fiber layer), 신경절세포층(ganglion cell layer), 내망상층(inner plexiform layer), 내과립층(inner nuclear layer), 외망상층(outer plexiform layer), 외과립층(outer nuclear layer), 외경계층(external limiting layer), 광수용 세포층(photo receptor layer), RPE 층(retinal pigment epithelial layer)의 10개의 층으로 이루어진다(망막 표면으로부터 내측 깊이 방향). FIG. 2 is an enlarged cross-sectional view of region A of FIG. 1. 2A is a diagram showing retinal tissue of a patient corresponding to a treatment area. Such retinal tissues are generally internal limiting layer, nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer reticular It consists of ten layers of outer plexiform layer, outer nuclear layer, external limiting layer, photoreceptor layer, and RPE layer (retinal pigment epithelial layer) (from retinal surface) Medial depth direction).
이 중 RPE 세포층은 위의 10개의 층 중 후측 방향의 경계층을 형성하며, 타이트 정션(tight junction)구조로 형성된다. 그리고 RPE 층의 하측으로는 브루크 막(Bruch's membrane)이 위치한다. 이러한 RPE 층은 맥락막(choroid)에 위치하는 혈관 등으로부터 영양분 및 산소를 공급받아 광 수용체(photo receptor)에 영양분을 공급하고, 광 수용체로부터 생성되는 노폐물을 브루크 막을 통해 배출하는 역할을 진행한다.Among them, the RPE cell layer forms a boundary layer in the rear direction among the ten layers above, and is formed in a tight junction structure. A Bruch's membrane is located below the RPE layer. The RPE layer receives nutrients and oxygen from blood vessels located in the choroid to supply nutrients to the photoreceptor, and discharges waste products generated from the photoreceptor through the Bruch membrane.
RPE 층을 형성하는 RPE 세포의 일부가 정상적인 기능을 수행하지 못하게 되면, 해당 RPE 세포의 전방에 위치하는 광 수용체들은 정상적으로 영양 공급 또는 산소 공급이 제대로 되지 않아 괴사하게 된다. 이를 해결하기 위해, 본 실시예에 따른 안과용 치료장치는 RPE 세포층에 치료광을 조사하여 에너지를 전달하고, 새로운 RPE 세포가 재생하도록 유도하여 치료를 진행한다.When some of the RPE cells forming the RPE layer fail to perform their normal functions, photoreceptors located in front of the RPE cells are necrotic due to poor nutrition or oxygen supply. In order to solve this problem, the ophthalmic treatment device according to the present embodiment irradiates therapeutic light to the RPE cell layer to transfer energy, and induces new RPE cells to regenerate and proceed with treatment.
보다 구체적으로 설명하면, 치료광 발생부(10)에서 발생되는 치료광은 가시광선 또는 근적외선 영역의 파장을 갖는다. 이러한 파장의 광은 망막의 전방에 위치하는 세포층(첫 번째 세포층 내지 아홉번째 세포층) 에는 거의 흡수되지 않고 투과한 후, RPE 세포층의 RPE 세포 내부에 존재하는 멜라노좀에 흡수된다. 따라서, 멜라노좀에 흡수되는 에너지의 양이 증가함에 따라 RPE 세포는 온도가 상승하면서 상태가 변화하고, 이에 의해 상태가 변화된 RPE 세포는 건강한 RPE 세포로 대체된다. 이는, 온도가 상승함에 따라 멜라노좀의 표면에서 미세기포(micro bubble)이 발생하게 되고, 미세기포가 점차적으로 성장하면서 RPE 세포가 선택적으로 괴사되는 것으로 해석되고 있다.In more detail, the treatment light generated by the treatment light generator 10 has a wavelength in the visible or near infrared region. Light of this wavelength is transmitted to the cell layer (first to ninth cell layers) located in front of the retina with little absorption, and then absorbed by melanosomes inside the RPE cells of the RPE cell layer. Thus, as the amount of energy absorbed by the melanosomes increases, the RPE cells change state with increasing temperature, whereby the changed RPE cells are replaced with healthy RPE cells. It is interpreted that as the temperature rises, micro bubbles are generated on the surface of the melanosome, and the RPE cells are selectively necrotic as the micro bubbles are gradually grown.
이러한 치료 과정 중, 치료광에 의해 지나치게 많은 양의 에너지가 전달되면, 타겟 위치의 RPE 세포 뿐 아니라 인접한 광 수용체가 손상될 우려가 있으며, 심한 경우 시력에 손상을 미칠 수 있다. 따라서, 도 1의 안과용 치료장치는 모니터링부(40)를 구비하고, 모니터링부를 통해 치료 중 조직의 상태 변화를 모니터링하여 치료 경과를 실시간으로 확인한다.During this treatment, if too much energy is delivered by the therapeutic light, there is a risk that the adjacent photoreceptor as well as the RPE cells in the target position may be damaged, and in severe cases, may damage the vision. Therefore, the ophthalmic treatment device of FIG. 1 includes a monitoring unit 40, and monitors the change in the state of the tissue during treatment through the monitoring unit to check the progress of the treatment in real time.
본 실시예의 모니터링부(40)은 독립적으로 모니터링 작업을 수행하는 복수의 모니터링 유닛(41, 42)을 포함하여 구성될 수 있다. 구체적으로, 모니터링부(40)은 제1 모니터링 유닛(41) 및 제2 모니터링 유닛(42)을 포함할 수 있다. 제1 모니터링 유닛(41)은 제1 방식으로 타겟 위치의 상태 정보를 측정하고, 제2 모니터링 유닛(42)은 제2 방식으로 타겟 위치의 상태 정보를 측정할 수 있다. 즉, 제1 모니터링 유닛(41) 및 제2 모니터링 유닛(42)은 상이한 방식으로 타겟 위치의 상태 정보를 모니터링함으로써, 각 측정 방식의 단점을 보완하는 것이 가능하다.The monitoring unit 40 of the present embodiment may include a plurality of monitoring units 41 and 42 that independently perform the monitoring operation. In detail, the monitoring unit 40 may include a first monitoring unit 41 and a second monitoring unit 42. The first monitoring unit 41 may measure state information of the target location in a first manner, and the second monitoring unit 42 may measure state information of the target location in a second manner. That is, the first monitoring unit 41 and the second monitoring unit 42 can compensate for the shortcomings of the respective measuring methods by monitoring the state information of the target position in different ways.
일 예로, 제1 모니터링 유닛(41)은 광음향 센서(optoacoustic sensor)를 이용하여 구성할 수 있다. 광음향 센서는 광 흡수에 의해 발생되는 음향 신호를 측정하는 장치이다. 전술한 바와 같이, 치료가 진행되는 동안 타겟 위치의 RPE 세포는 치료광을 흡수하여 상태가 변화하고, 이러한 과정에서 음향 신호가 발생한다. 이러한 음향 신호는 RPE 세포의 온도가 상승함에 따라 미세 기포가 발생되는 과정에서 발생되는 것으로 판단된다. 제1 모니터링 유닛(41)은 이를 측정하여 타겟 위치의 상태 변화 및 치료 진행 상황을 측정한다.For example, the first monitoring unit 41 may be configured by using an optoacoustic sensor. Optoacoustic sensors are devices that measure acoustic signals generated by light absorption. As mentioned above, during treatment, RPE cells at the target site absorb the treatment light and change state, and an acoustic signal is generated during this process. This acoustic signal is determined to occur in the process of generating microbubbles as the temperature of the RPE cells rises. The first monitoring unit 41 measures this to measure the state change of the target position and the treatment progress.
본 실시예의 제1 모니터링 유닛(41)은 대안부(70)의 컨택트 렌즈에 설치되어, 환자의 눈과 접촉한 상태에서 환자의 눈으로부터 전달되는 음향 신호를 측정할 수 있다. 다만, 이는 일 예이며, 제1 모니터링 유닛은 컨택트 렌즈와 별도의 장치로 구성되어, 환자의 눈 또는 눈과 인접한 부위에 접촉되도록 설치될 수 있다.The first monitoring unit 41 of the present embodiment may be installed in the contact lens of the alternative unit 70 to measure an acoustic signal transmitted from the patient's eye while in contact with the patient's eye. However, this is an example, and the first monitoring unit is configured as a separate device from the contact lens, and may be installed to be in contact with the eye of the patient or an area adjacent to the eye.
한편, 제2 모니터링 유닛(42)은 반사계 센서(reflectometry sensor)로 구성될 수 있다. 제2 모니터링 유닛(42)은 타겟 위치에서 반사되는 반사광을 수광하고, 이를 분석하여 반사광에 포함된 타겟 위치의 상태 정보를 판단할 수 있다. 이에 의해, 타겟 위치의 상태 변화 여부 및 치료 진행 상황을 측정할 수 있다.The second monitoring unit 42 may be configured as a reflectometry sensor. The second monitoring unit 42 may receive the reflected light reflected at the target location and analyze the reflected light to determine state information of the target location included in the reflected light. Thereby, it is possible to measure whether the state of the target position changes and the progress of treatment.
본 실시예의 제2 모니터링 유닛(42)은 타겟 위치로 조사된 치료광이 반사되는 광을 수광한다. 도 2에 도시된 바와 같이, 타겟 위치로 조사된 치료광의 일부는 타겟 위치에 흡수되며, 일부는 반사되어 빔 컨바이너(31)를 통해 제2 모니터링 유닛(42)의 센서로 수광된다. 제2 모니터링 유닛(42)은 수광된 반사광의 파라미터를 분석하여 타겟 위치의 상태 정보를 모니터링한다. 예를 들어, 치료광에 의해 RPE 세포에서 미세기포가 발생됨에 따라, 반사광에 의한 신호는 5~50MHz 대역의 주파수 성분이 증가하게 되며, 제2 모니터링 유닛(42)은 이에 근거하여 타겟 위치의 상태 변화 여부 및 치료 진행 상황을 측정한다. 다만, 반사광에 포함된 주파수 성분 이외에도 다양한 파라미터를 이용할 수 있다.The second monitoring unit 42 of the present embodiment receives the light to which the treatment light irradiated to the target position is reflected. As shown in FIG. 2, a part of the treatment light irradiated to the target position is absorbed at the target position, and part is reflected and received by the sensor of the second monitoring unit 42 through the beam combiner 31. The second monitoring unit 42 analyzes the parameter of the received reflected light and monitors state information of the target position. For example, as the microbubbles are generated in the RPE cells by the treatment light, the signal by the reflected light increases the frequency component of the 5 ~ 50MHz band, the second monitoring unit 42 is based on the state of the target position Measure changes and progress of treatment. However, various parameters may be used in addition to the frequency components included in the reflected light.
본 실시예와 같이, 제2 모니터링 유닛(42)은 반사되는 치료광을 이용하여 모니터링을 진행하므로, 각각의 치료광에 의한 타겟 위치의 변화를 실시간으로 모니터링할 수 있는 장점이 있다. 다만, 이는 일 예이며, 치료광을 수광하는 것이 아니라, 모니터링을 위한 별도의 검측광을 타겟 위치로 조사하고, 타겟 위치로부터 반사되는 검측광을 수광하여 모니터링을 진행하는 것도 가능하다.As in the present embodiment, since the second monitoring unit 42 monitors using the reflected treatment light, there is an advantage in that the change in the target position by each treatment light can be monitored in real time. However, this is an example, and instead of receiving the treatment light, it is also possible to irradiate a separate detection light for monitoring to the target position, and to receive the detection light reflected from the target position to perform the monitoring.
전술한 바와 같이, 본 실시예의 제1 모니터링 유닛은 광 음향 센서로 구성되고, 제2 모니터링 유닛은 반사계 센서를 이용하여 구성된다. 다만, 이 이외에도 다양한 센서를 이용하여 제1 모니터링 유닛 또는 제2 모니터링 유닛을 구성하는 것도 가능하다. 다른 일 예로서, 도 3과 같이 제2 모니터링 유닛을 반사계 센서(reflectometry sensor)가 아닌 간섭계 센서(interferometry sensor)로 구성하는 것도 가능하다. As described above, the first monitoring unit of the present embodiment is composed of a photoacoustic sensor, and the second monitoring unit is configured using a reflectometer sensor. However, in addition to this, it is also possible to configure the first monitoring unit or the second monitoring unit using various sensors. As another example, as shown in FIG. 3, the second monitoring unit may be configured as an interferometry sensor instead of a reflectometry sensor.
도 3은 다른 예에 따른 제2 모니터링 유닛의 구성을 개략적으로 도시한 블록도이다. 제2 모니터링 유닛이 OCT 장치와 같은 간섭계 센서로 구성되는 경우, 제2 모니터링 유닛은 타겟 위치로부터 반사되는 반사광의 간섭 정보를 이용할 수 있다. 이에 의해, 타겟 위치의 온도 정보, 상태 변화, 치료 진행 상황을 포함한 각종 단층 정보를 취득할 수 있다. 종래의 OCT 장치는 수평 방향(안저의 망막 평면 기준)으로 조사 위치를 이동하면서 소정 영역의 단층 이미지를 획득하는 것에 비해, 도 3의 제2 모니터링 유닛(142)은 하나의 타겟 위치에 대해 치료가 진행되는 동안, 복수회에 걸쳐 또는 연속적으로 해당 타겟 위치의 단층 정보를 취득한다. 그리고, 타겟 위치의 조직의 상태 변화에 따라 광 경로가 변화함에 따라, 제2 모니터링 유닛(142)에서 감지되는 간섭 정보가 변화하고, 이를 이용하여 타겟 위치의 상태 변화를 감지할 수 있다.3 is a block diagram schematically illustrating a configuration of a second monitoring unit according to another example. When the second monitoring unit is configured as an interferometer sensor such as an OCT device, the second monitoring unit may use the interference information of the reflected light reflected from the target position. Thereby, various tomographic information including the temperature information of a target position, a state change, and a progress of treatment can be acquired. While the conventional OCT apparatus acquires a tomography image of a predetermined area while moving the irradiation position in the horizontal direction (relative to the retina plane of the fundus), the second monitoring unit 142 of FIG. During the process, tomographic information of the target position is acquired a plurality of times or continuously. As the optical path changes according to the change of the state of the tissue of the target location, the interference information detected by the second monitoring unit 142 may change, and the change of the state of the target location may be detected by using the change.
도 3에 도시된 바와 같이, 간섭계 센서로 구성되는 제2 모니터링 유닛(142)는 검측광원(143), 광 분배기(beam splitter)(144), 기준광 반사부(reflector)(145) 및 검출부(146)를 포함하여 구성된다. As shown in FIG. 3, the second monitoring unit 142 configured as an interferometer sensor includes a detection light source 143, a light splitter 144, a reference light reflector 145, and a detector 146. It is configured to include).
검측광원(143)은 SD OCT의 경우 저 간섭광(low coherent beam)을 발생시키는 광원일 수 있고, SS OCT의 경우 광의 파장을 변화시킬 수 있는 스웹트 소스(swept source) 광원을 이용할 수 있다.The detection light source 143 may be a light source for generating a low coherent beam in the case of the SD OCT, and may use a swept source light source capable of changing the wavelength of light in the case of the SS OCT.
검측광원(143)부터 나온 광은 광 분배기(144)를 통과하면서 검측광과 기준광의 2개의 광으로 분할된다. 기준광은 제1 경로(P1)를 따라 진행하여 기준광 반사부(145)에 도달한 후, 기준광 반사부(145)에서 반사된다. 검측광은 제2 경로(P2)를 따라 진행하여 빔 딜리버리부(30)를 통해 타겟 위치로 조사된 후, 타겟 위치에서 반사된다. 반사된 검측광과 기준광은 광 분배기(144)에서 다시 결합되어 검출부(146)로 진행한다.The light emitted from the detection light source 143 passes through the light splitter 144 and is split into two lights, the detection light and the reference light. The reference light travels along the first path P1 to reach the reference light reflector 145 and is then reflected by the reference light reflector 145. The detection light travels along the second path P2, is irradiated to the target position through the beam delivery unit 30, and then is reflected at the target position. The reflected detection light and the reference light are combined in the light splitter 144 again and proceed to the detector 146.
여기서, 광 분배기(144)를 통해 다시 결합되는 검측광과 기준광은 간섭이 발생되며, 검출부(146)는 수광되는 검측광과 기준광에 의한 간섭 정보를 이용하여 타겟 위치의 상태 정보를 감지한다. 검출부(146)는 SD OCT의 경우 어레이 디텍터(array detector)를 이용하여 구성되며, SS OCT의 경우 포토다이오드(photo diode)를 이용하여 구성될 수 있다.Here, interference between the detection light and the reference light coupled back through the light splitter 144 is generated, and the detector 146 detects the state information of the target location by using the interference information by the received detection light and the reference light. The detector 146 may be configured using an array detector in case of SD OCT, and may be configured using a photo diode in case of SS OCT.
이처럼, 도 3의 제2 모니터링 유닛(142)은 간섭계에 의한 검측광의 간섭 정보를 이용하여 타겟 위치의 온도 상승, 조직의 두께 변화, 굴절율의 변화, 조직의 이동, 이상 발생 여부 등을 포함하는 조직의 미세한 상태 변화를 파악하는 것이 가능하다. 다만, 도 3에서는 제2 모니터링 유닛을 간섭계 센서로 대체하는 예를 설명하였으나, 제1 모니터링 센서를 간섭계 센서로 대체하여, 간섭계 센서와 반사계 센서를 이용하여 모니터링부를 구성하는 것도 가능하다.As described above, the second monitoring unit 142 of FIG. 3 uses the interference information of the detection light by the interferometer to include a tissue including a temperature rise at a target location, a thickness change of a tissue, a change in refractive index, a movement of a tissue, and an abnormality occurrence. It is possible to grasp the microscopic state change. In FIG. 3, an example in which the second monitoring unit is replaced with the interferometer sensor has been described. However, the monitoring unit may be configured by using the interferometer sensor and the reflectometer sensor by replacing the first monitoring sensor with the interferometer sensor.
이상에서 설명한 바와 같이, 제1 모니터링 유닛(41) 및 제2 모니터링 유닛(42)은 각각 상이한 방식으로 타겟 위치의 상태 변화를 측정하고, 이러한 정보를 제어부(60)로 전달한다. 그리고, 제어부(60)는 제1 모니터링 유닛(41) 및 제2 모니터링 유닛(42)에서 측정한 정보에 근거하여 치료 장치의 운전 내용을 제어할 수 있다.As described above, the first monitoring unit 41 and the second monitoring unit 42 each measure a change in state of the target position in different ways, and transmit this information to the control unit 60. The controller 60 may control the operation content of the treatment apparatus based on the information measured by the first monitoring unit 41 and the second monitoring unit 42.
제어부(60)는 치료광 발생부(10), 조준광 발생부(20), 빔 딜리버리부(30)를 비롯한 각종 구성요소들의 동작을 제어하는 구성이다. 이에 의해, 치료 위치, 치료 시간, 치료광의 파라미터 등이 다양하게 제어될 수 있다. 이러한 제어를 수행함에 있어, 제어부(60)은 전술한 모니터링부(40)에서 모니터링 된 정보를 고려하여 각종 구성요소를 제어한다.The controller 60 is configured to control the operation of various components including the treatment light generator 10, the aiming light generator 20, and the beam delivery unit 30. Thereby, the treatment position, treatment time, parameters of treatment light, etc. can be variously controlled. In performing such control, the controller 60 controls various components in consideration of the information monitored by the above-described monitoring unit 40.
구체적으로, 제어부(60)은 하나의 타겟 위치에 대해 치료를 진행하는 동안, 동일한 타겟 위치로 복수회에 걸쳐 치료광을 조사하도록 제어한다. 이러한 과정 중, 모니터링부(40)을 통해 설정된 치료 강도로 치료가 진행되지 않은 것으로 감지되면, 제어부는 치료광 조사부를 제어하여 치료광 파라미터를 조절한다. 이때, 치료광의 파라미터는 타겟 위치의 단위 면적당 전달되는 에너지가 증가하도록 조절된다. 일 예로, 제어부(60)은 치료가 종료되기 전까지 치료광의 출력을 순차적으로 증가시키도록 제어할 수 있다. 반면, 모니터링부를 통해 타겟 위치가 설정된 치료 강도로 치료가 진행된 것으로 감지되면, 제어부(60)은 치료광이 타겟 위치에 조사되는 것을 종료함으로써 해당 타겟 위치의 치료를 종료할 수 있다. 이러한 제어부의 제어 내용에 대해서는 아래에서 보다 구체적으로 설명하도록 한다.In detail, the controller 60 controls to irradiate the treatment light to the same target position a plurality of times while the treatment is performed for one target position. During this process, if it is detected that the treatment is not progressed at the treatment intensity set through the monitoring unit 40, the controller controls the treatment light irradiation unit to adjust the treatment light parameters. At this time, the parameter of the treatment light is adjusted to increase the energy delivered per unit area of the target position. For example, the controller 60 may control to sequentially increase the output of the treatment light until the treatment is finished. On the other hand, if it is detected through the monitoring unit that the treatment progresses to the set treatment intensity, the control unit 60 may terminate the treatment of the target position by terminating the irradiation of the treatment light to the target position. The control contents of the controller will be described in more detail below.
여기서, 제어부(60)는 제1 모니터링 유닛(41) 및 제2 모니터링 유닛(42)에서 측정된 정보를 다양한 방식으로 활용할 수 있다. 예를 들어, 제1 모니터링 유닛 및 제2 모니터링 유닛에서 측정된 정보가 모두 제1 조건을 만족하는 경우에, 타겟 위치의 상태가 제1 조건에 도달한 것으로 판단하고 이에 상응하는 제어를 수행할 수 있다. 또는, 제1 모니터링 유닛과 제2 모니터링 유닛 중 어느 하나에서 측정된 정보를 기준으로 타겟 위치의 상태 정보를 판단하고, 기준이 되는 정보가 예상치 못한 이벤트에 의해 신뢰도가 떨어지는 것으로 판단되는 경우 예비적으로 나머지 하나에서 측정된 정보를 이용하여 상태 정보를 판단하도록 구성하는 것도 가능하다.Here, the controller 60 may utilize the information measured by the first monitoring unit 41 and the second monitoring unit 42 in various ways. For example, when the information measured by the first monitoring unit and the second monitoring unit both satisfy the first condition, it may be determined that the state of the target location has reached the first condition and perform the corresponding control. have. Alternatively, the state information of the target location is determined based on the information measured by either the first monitoring unit or the second monitoring unit, and when it is determined that the reliability of the target information is unsatisfactory due to an unexpected event, It is also possible to configure the status information by using the information measured in the other.
다만, 본 실시예의 제어부(60)는, 두 개의 모니터링 유닛(41, 42) 중 어느 하나를 통해 타겟 위치의 치료가 종료된 것으로 감지되면, 타겟 위치의 치료가 종료된 것으로 판단하고 해당 위치로 치료광을 조사하는 것을 종료한다. 전술한 것과 같이, RPE 세포는 상태가 변화하면서 미세 기포 등이 발생하면서 음파 신호가 발생하거나, 세포 팽창 또는 손상으로 인해 광 경로가 변화하거나 산란광이 발생하는 것이 일반적이다. 다만, 예외적으로, 상태 변화시 음파 신호 강도가 약하거나, 광학적인 변화가 미세하게 나타날 수 있다(예를 들어, 광 경로에의 변화가 실질적으로 거의 없거나, 반사되는 산란광의 크기가 경우). 이러한 예외적인 경우에도, 본 실시예는 서로 상이한 방식으로 상태 변화를 감지하여 치료를 종료 시점을 판단함으로써, 타겟 위치에 과도한 에너지가 전달되어 조직이 손상되는 것을 방지할 수 있다.However, if it is detected that the treatment of the target position is finished through any one of the two monitoring units 41 and 42, the controller 60 of the present embodiment determines that the treatment of the target position is finished and treats the corresponding position. The irradiation of light is terminated. As described above, in RPE cells, a state in which microbubbles or the like change in state generates a sound wave signal, or a light path changes or scattered light occurs due to cell expansion or damage. However, exceptionally, when the state changes, the sound wave signal strength may be weak, or the optical change may be minute (for example, when there is substantially no change in the optical path or the size of the reflected scattered light). Even in this exceptional case, the present embodiment can detect a change of state in different ways to determine when to end treatment, thereby preventing excessive energy from being delivered to the target location and damaging the tissue.
한편, 도 4는 치료광이 안저에 조사되는 모습을 도시한 도면이다. 도 4에 도시된 것과 같이, 타겟 위치로 조사되는 치료광의 스팟의 사이즈는, RPE 세포층을 기준으로 스팟의 경계(S) 내부에 복수의 RPE 세포(C)가 위치하도록 형성될 수 있다. 따라서, 하나의 타겟 위치에 대해 치료가 진행되는 동안, 해당 타겟 위치에 위치한 복수개의 RPE 세포로 에너지가 전달되어 치료가 진행되며, 모니터링부(40)은 상기 복수의 RPE 세포의 상태 변화를 감지하여 치료 진행 경과를 모니터링할 수 있다.On the other hand, Figure 4 is a view showing a state that the treatment light is irradiated to the fundus. As shown in FIG. 4, the size of the spot of the treatment light irradiated to the target position may be formed such that the plurality of RPE cells C is located inside the boundary S of the spot based on the RPE cell layer. Therefore, while the treatment is performed for one target position, energy is delivered to the plurality of RPE cells positioned at the target position, and the treatment proceeds, and the monitoring unit 40 detects the state change of the plurality of RPE cells. The progress of the treatment can be monitored.
치료광에 노출되는 RPE 세포는, 충분한 에너지가 전달되지 않은 경우 기존의 RPE 세포를 유지하거나, 충분한 에너지가 전달된 경우 상태 변화가 이루어져 새로운 RPE 세포로 재생된다. 이처럼 하나의 RPE 세포는 치료광 조사시 둘 중 하나의 프로세스를 따르므로, 치료광의 스팟 사이즈가 하나의 RPE 세포에만 포커스 되는 경우, 치료 강도를 조절하는 것이 곤란하다. 이에 비해, 본 실시예와 같이, 치료광이 복수의 RPE 세포에 에너지를 전달하도록 구성하는 경우, 복수의 RPE 세포 중 치료에 의해 상태가 변화하는 RPE 세포의 양을 조절함으로써 치료 강도를 조절할 수 있다. 따라서, 본 실시예에 의할 경우, 병변, 치료 위치, 환자의 상태에 따라 최적의 치료 강도로 치료를 진행하는 것이 가능하다. 물론, 치료광의 스팟 사이즈가 하나의 RPE 세포에만 에너지를 전달하는 경우에도, 치료광이 조사되는 타겟 위치들의 간격을 조절하는 방식으로 치료 강도를 조절하는 것은 가능하다. 다만, 이 경우 치료 시간이 증가하는 단점이 있다. 또한, RPE 세포의 크기가 망막의 위치에 따라 다르기 때문에(예를 들어, 안저 중심부의 RPE 세포의 직경은 10~15㎛, 안저 주변부의 RPE 세포의 직경은 50㎛ 이상), 균일한 치료 강도를 유지하기 위해서는 치료 영역의 위치에 따라 타겟 위치간 간격을 조절해야하는 등 제어시 추가적으로 고려해야 할 사항이 많아지는 단점이 있다.RPE cells exposed to therapeutic light either retain existing RPE cells if not enough energy is delivered, or regenerate into new RPE cells with state changes when sufficient energy is delivered. As such, one RPE cell follows one of two processes when irradiating the therapeutic light, and thus, when the spot size of the therapeutic light is focused on only one RPE cell, it is difficult to control the treatment intensity. On the other hand, when the therapeutic light is configured to deliver energy to the plurality of RPE cells as in the present embodiment, the treatment intensity can be adjusted by controlling the amount of RPE cells whose state changes by treatment among the plurality of RPE cells. . Therefore, according to the present embodiment, it is possible to proceed the treatment at the optimal treatment intensity according to the lesion, the treatment position, and the condition of the patient. Of course, even when the spot size of the treatment light delivers energy to only one RPE cell, it is possible to adjust the treatment intensity in a manner that adjusts the interval of target positions to which the treatment light is irradiated. However, in this case, there is a disadvantage in that the treatment time increases. In addition, since the size of RPE cells varies depending on the position of the retina (for example, the diameter of RPE cells at the center of the fundus is 10-15 μm, and the diameter of RPE cells at the periphery of the fundus is 50 μm or more). In order to maintain, there is a disadvantage in that additional considerations need to be taken into consideration, such as adjusting an interval between target positions according to the position of the treatment area.
이처럼, 치료광의 스팟 사이즈가 작은 경우, 치료 시간이 증가하고, 치료 강도를 다양하게 조절할 수 없다. 반면, 치료광의 스팟 사이즈가 과도하게 큰 경우, 국소 병변 치료가 곤란하고, 혈관이나 황반과 인접한 타겟 위치의 치료가 곤란하다. 따라서, 치료광의 스팟 사이즈(S)는 RPE 세포에 조사되는 영역을 기준으로, 스팟의 경계 내측으로 10개 내지 1000개의 RPE 세포(C)가 위치하도록 구성할 수 있고, 바람직하게는 50개 내지 500개의 RPE 세포(C)가 위치하도록 구성할 수 있다. 또는, 치료광의 스팟 사이즈(S)는 50㎛ 내지 1000㎛의 직경을 갖도록 구성할 수 있다.As such, when the spot size of the treatment light is small, treatment time increases, and treatment intensity cannot be variously adjusted. On the other hand, when the spot size of the treatment light is excessively large, it is difficult to treat a local lesion and to treat a target position adjacent to the blood vessel or the macula. Therefore, the spot size (S) of the treatment light can be configured such that 10 to 1000 RPE cells (C) are located inside the boundary of the spot, based on the area irradiated to the RPE cells, preferably 50 to 500 Can be configured to position RPE cells (C). Alternatively, the spot size S of the treatment light may be configured to have a diameter of 50 μm to 1000 μm.
본 실시예에서는 치료광의 스팟 사이즈가 100㎛ 내지 400㎛의 직경을 갖도록 구성할 수 있다. 나아가, 치료 영역의 위치에 따라서 스팟 사이즈가 조절되도록 구성할 수 있다. 예를 들어, 치료 영역이 안저의 내측에 위치하는 경우 스팟의 직경은 150~200㎛로 제어하고, 치료 영역이 안저의 주변부에 위치하는 경우 스팟의 직경은 250~350㎛으로 제어할 수 있다.In this embodiment, the spot size of the treatment light can be configured to have a diameter of 100㎛ to 400㎛. Furthermore, the spot size may be adjusted according to the position of the treatment area. For example, when the treatment area is located inside the fundus, the diameter of the spot may be controlled to 150 to 200 μm, and when the treatment area is located to the periphery of the fundus, the diameter of the spot may be controlled to 250 to 350 μm.
이처럼, 치료광이 타겟 위치에 위치한 복수의 RPE 세포로 치료광을 조사되는 동안, 모니터링부(40)은 타겟 위치의 치료 경과를 실시간으로 모니터링한다. 여기서, 모니터링부(40)은 해당 영역의 복수의 RPE 세포 중 상태 변화가 발생한 RPE 세포의 양 또는 비율을 감지하여 치료 경과를 모니터링하고, 제어부(60)은 이에 근거하여 타겟 위치에 진행되는 치료 강도를 판단할 수 있다.As such, while the treatment light is irradiated with the treatment light to the plurality of RPE cells positioned at the target position, the monitoring unit 40 monitors the progress of treatment at the target position in real time. Here, the monitoring unit 40 monitors the progress of the treatment by detecting the amount or the ratio of the RPE cells in which the state change among the plurality of RPE cells in the region, and the control unit 60 proceeds to the target location based on the treatment intensity Can be determined.
도 5는 치료광의 조사 패턴 및 이에 따른 모니터링부의 측정 신호를 도시한 그래프이다. 도 5의 상측에 도시된 그래프와 같이, 치료광 조사부는 타겟 위치에 복수회에 걸쳐 치료광을 조사하며, 각 치료광은 출력이 순차적으로 증가하도록 조사된다. 그 동안, 모니터링부에서 측정되는 신호는 도 5의 하측에 도시된 그래프와 같이 나타날 수 있다(설명의 편의상 모니터링부 중 제1 모니터링 유닛에서 측정되는 신호를 도시).5 is a graph showing a radiation pattern of the treatment light and a measurement signal according to the monitoring unit. As shown in the graph shown in the upper side of Figure 5, the treatment light irradiation unit irradiates the treatment light to the target position a plurality of times, each treatment light is irradiated so that the output is sequentially increased. In the meantime, the signal measured by the monitoring unit may appear as a graph shown in the lower side of FIG. 5 (showing a signal measured by the first monitoring unit of the monitoring unit for convenience of description).
도 5에 도시된 것과 같이, 치료광이 4회(T1 내지 T4)에 걸쳐 조사되는 동안, 모니터링부(40)에서는 유효값 이하의 측정값이 검출된다. 이 구간에서 감지되는 측정값은 정상 상태에서 감지되는 노이즈 값이다. 따라서, 제어부(60)은 유효값 이하의 측정값이 감지되는 동안, RPE 세포의 상태 변화가 발생하지 않은 것으로 판단한다.As shown in FIG. 5, while the treatment light is irradiated four times (T1 to T4), the monitoring unit 40 detects a measured value equal to or less than the effective value. The measured value detected in this section is the noise value detected in the steady state. Therefore, the controller 60 determines that the state change of the RPE cells does not occur while the measured value below the effective value is detected.
5번째 치료광(T5)이 조사된 시점에서, 모니터링부(40)은 유효값 이상의 측정값이 검출되며, 제어부(60)은 이를 통해 타겟 위치 중 일부의 RPE 세포가 상태 변화하기 시작한 것으로 판단한다. 그리고, 6번째 치료광(T6) 및 7번째 치료광(T7)이 조사되면, 모니터링부(40)에서 측정되는 값 또한 점차적으로 증가하며, 제어부(60)은 이를 통해 상태 변화된 RPE 세포가 점차적으로 증가하는 것으로 판단한다.At the time point when the fifth treatment light T5 is irradiated, the monitoring unit 40 detects a measured value of more than an effective value, and the control unit 60 determines that some RPE cells of the target position have started to change state. . When the sixth treatment light T6 and the seventh treatment light T7 are irradiated, the value measured by the monitoring unit 40 also gradually increases, and the control unit 60 gradually changes the state of the RPE cells. I think it will increase.
이처럼, 치료광의 출력을 높아질수록 상태가 변화하는 RPE 세포의 양 또는 비율이 증가하고, 이에 의해 모니터링부(40)에서 측정되는 값도 증가한다. 여기서, 치료 강도는 타겟 위치에 위치하는 복수개의 RPE 세포 중 상태 변화한 RPE 세포의 양 또는 비율로 판단할 수 있다. 제어부(60)은 메모리에 기 저장된 데이터를 참고하여, 모니터링부(40)에서 측정되는 값을 기 저장된 데이터와 매칭시켜 치료 강도를 판단할 수 있다. 이처럼, 제어부(60)은 치료광이 조사되는 동안 타겟 위치에 진행되는 치료 경과를 실시간으로 판단할 수 있다. 그리고, 모니터링부(40)에서 측정되는 값이 기 설정된 치료 강도에 상응하는 값을 초과할 경우(도 5의 T7에 의한 측정값), 해당 위치에서 목표한 설정 강도로 치료가 이루어진 것으로 판단하고, 해당 위치에 대한 치료를 종료한다.As such, as the output of the treatment light increases, the amount or ratio of RPE cells whose state changes is increased, thereby increasing the value measured by the monitoring unit 40. Here, the treatment intensity may be determined by the amount or ratio of the RPE cells whose state is changed among the plurality of RPE cells located at the target position. The controller 60 may determine the treatment intensity by matching the data measured by the monitoring unit 40 with the previously stored data by referring to the data previously stored in the memory. As such, the controller 60 may determine in real time the progress of the treatment proceeding to the target position while the treatment light is irradiated. When the value measured by the monitoring unit 40 exceeds the value corresponding to the preset treatment intensity (measured value by T7 of FIG. 5), it is determined that the treatment is performed at the target set intensity at the corresponding position. End the treatment for that location.
한편, 도 1에 도시된 바와 같이, 안과용 치료장치(1)는 사용자가 치료 모드를 선택하는 설정부(80)을 더 포함할 수 있다. 설정부(80)는 사용자가 조작할 수 있는 디스플레이 및 조작 버튼을 포함하여 구성된다. 선택된 치료 모드는 각각 치료 강도에 대한 정보를 포함하며, 이 이외에도 치료광의 조사 패턴 등 다양한 파라미터에 대한 정보를 포함할 수 있다. 따라서, 사용자가 설정부(80)을 통해 치료 모드를 선택하면, 제어부(60)는 이에 근거하여 상응하는 치료를 진행하도록 각 구성요소를 제어한다.On the other hand, as shown in Figure 1, the ophthalmic treatment device 1 may further include a setting unit 80 for the user to select a treatment mode. The setting unit 80 includes a display and an operation button that can be operated by the user. Each of the selected treatment modes includes information on treatment intensity, and may also include information on various parameters such as the irradiation pattern of the treatment light. Therefore, when the user selects the treatment mode through the setting unit 80, the controller 60 controls each component to proceed with the corresponding treatment based on this.
도 6은 설정부의 디스플레이를 통해 표시되는 일 예를 도시한 것이다. 도 6의 설정부(80)는 치료 모드로서, 각 타겟 위치에 대한 치료 강도를 선택하도록 구성된다. 일 예로, 치료 강도는 타겟 위치에 위치하는 복수의 RPE 세포 중 치료에 의해 상태가 변화하는 RPE 세포의 비율로 나타낼 수 있다.6 illustrates an example displayed through the display of the setting unit. The setting unit 80 of FIG. 6 is a treatment mode and is configured to select treatment intensity for each target position. For example, the treatment intensity may be expressed as the ratio of RPE cells whose status changes by treatment among a plurality of RPE cells located at a target position.
도 6에서 ASV 20(auto-set value 20)은 해당 위치의 RPE 세포 중 약 20%의 RPE 세포가 상태 변화하는 치료 강도를 의미하며, ASV 50은 약 50%의 RPE 세포가 상태 변화하는 치료 강도를 의미한다. 이와 같이 치료 강도가 설정되면, 제어부(60)는 모니터링부(40)을 통해 각각의 타겟 위치에서 설정된 치료 강도로 치료가 진행할 때까지 치료광을 조사한다.In FIG. 6, ASV 20 (auto-set value 20) refers to the therapeutic intensity at which about 20% of the RPE cells change state among the RPE cells at the corresponding position, and ASV 50 refers to the therapeutic intensity at which about 50% of the RPE cells change state. Means. When the treatment intensity is set in this way, the control unit 60 irradiates the treatment light until the treatment proceeds at the treatment intensity set at each target position through the monitoring unit 40.
도 7은 설정부의 디스플레이를 통해 표시되는 다른 예를 도시한 것이다. 도 7의 설정부(80)는 치료하고자 하는 병변의 명칭이 치료 모드로서 표시된다. 예를 들어, 중심성 장액 맥락망막병증(CSC, central serous chorioretinopathy), 당뇨병성 황반부종(DME, diabetic macular edema) 및 건성 연령관련황반변성(Dry AMD, dry age-related macular degeneration)과 같은 대표적인 안저 병변이 표시될 수 있다. 따라서, 사용자는 치료하고자 하는 환자의 병변에 따라 치료 모드를 선택할 수 있다.7 illustrates another example displayed through the display of the setting unit. In the setting unit 80 of FIG. 7, the name of the lesion to be treated is displayed as a treatment mode. For example, fundus fundus lesions such as central serous chorioretinopathy (CSC), diabetic macular edema (DME), and dry age-related macular degeneration (Dry AMD). Can be displayed. Thus, the user can select a treatment mode according to the lesion of the patient to be treated.
도 7의 치료 모드 또한 각각 상이한 치료 강도에 대한 정보를 포함할 수 있다. 예를 들어, 임상 실험 결과, CSC는 RPE 세포가 상대적으로 건강하여 낮은 치료 강도로도 치료가 가능한 것으로 나타났으며, DME는 RPE 세포의 상태가 불량하여 높은 치료 강도로 치료해야하는 것으로 나타났다. 그리고, Dry AMD는 CSC 보다 높고 DME 보다 낮은 치료 강도로 치료가 가능한 것으로 나타났다. 따라서, 사용자가 치료 병변을 이용하여 치료 모드를 선택하면, 해당 병변에 적합한 치료 강도에 따라 치료가 진행되도록 설정된다. The treatment mode of FIG. 7 may also include information about different treatment intensities. For example, as a result of clinical trials, CSCs showed that RPE cells were relatively healthy and could be treated with low therapeutic intensity, while DME had poor condition of RPE cells and had to be treated with high therapeutic intensity. Dry AMD has been shown to be curable with higher therapeutic strength than CSC and lower than DME. Therefore, when the user selects a treatment mode using the treatment lesion, the treatment is set to proceed according to the treatment intensity suitable for the lesion.
예를 들어, CSC 모드가 선택될 경우, 치료 강도는 ASV 20 내지 40의 범위로 설정될 수 있고, Dry AMD 모드가 선택될 경우 치료 강도는 ASV 40 내지 60의 범위로 설정될 수 있으며, DME 모드가 선택될 경우 치료 강도는 ASV 60 내지 80의 범위로 설정될 수 있다. 나아가, 도 7에 도시된 바와 같이, 각 병변에 대해 치료 강도의 레벨을 높음(high), 중간(Medium) 및 낮음(low)으로 구분하여, 각 병변에 따른 치료 강도 범위 내에서 치료 강도를 더욱 세분화하여 설정할 수 있다.For example, when the CSC mode is selected, the treatment intensity may be set in the range of ASV 20 to 40, when the Dry AMD mode is selected, the treatment intensity may be set in the range of ASV 40 to 60, and the DME mode When is selected the treatment intensity can be set in the range of ASV 60 to 80. Furthermore, as shown in FIG. 7, the level of treatment intensity for each lesion is divided into high, medium, and low to further increase the treatment intensity within the range of treatment intensity according to each lesion. Can be set finely.
이처럼, 본 실시예의 안과용 치료장치(1)는 치료광의 스팟 사이즈가 복수의 RPE 세포들에 조사되도록 구성하여, 사용자의 선택에 따라 다양한 치료 강도로 치료를 진행할 수 있다. 또한, 모니터링부(40)은 복수의 모니터링 유닛(41, 42)을 이용하여 서로 다른 방식으로 타겟 위치의 상태 정보를 모니터링함으로써, 안전하고 최적화된 치료를 진행하는 것이 가능하다.As such, the ophthalmic treatment device 1 of the present embodiment is configured to irradiate the plurality of RPE cells with the spot size of the treatment light, and may proceed with treatment at various treatment intensities according to the user's selection. In addition, the monitoring unit 40 may monitor the state information of the target location in different ways by using the plurality of monitoring units 41 and 42, thereby enabling safe and optimized treatment.
도 8은 도 1의 안과용 치료장치의 제어방법을 도시한 순서도이다. 이하에서는, 도 8을 참조하여, 전술한 안과용 치료장치(1)의 제어방법을 구체적으로 설명한다.8 is a flow chart illustrating a control method of the ophthalmic treatment device of FIG. Hereinafter, referring to FIG. 8, the control method of the ophthalmic treatment apparatus 1 described above will be described in detail.
환자의 병변에 따라 치료 영역이 결정되면, 환자의 전안부를 대안부(70)에 고정시키고 치료를 진행한다. 치료는 치료 영역 내에 분포하는 복수의 타겟 위치로 치료광을 조사하여 치료를 진행하는 방식으로 진행된다. 여기서, 하나의 타겟 위치에 복수의 치료광을 조사하여 치료를 진행하고, 해당 타겟 위치의 치료가 완료되면 다음 타겟 위치로 치료광 조사 위치를 변경하여 치료를 진행한다. 다만, 도 8에서는 설명의 편의상, 최초 타겟 위치를 치료하는 과정을 중심으로 설명한다.When the treatment area is determined according to the patient's lesion, the front part of the patient is fixed to the alternative part 70 and the treatment is performed. The treatment is performed by irradiating the treatment light to a plurality of target positions distributed in the treatment area to proceed with the treatment. Here, the treatment is performed by irradiating a plurality of treatment lights to one target position, and when treatment of the target position is completed, the treatment is performed by changing the treatment light irradiation position to the next target position. However, in FIG. 8, for convenience of description, the process of treating the initial target position will be described.
치료를 진행하기 위해, 사용자는 설정부(80)를 통해 치료 모드를 선택하며(S10), 선택된 치료 모드에 대한 정보는 제어부(60)로 전달된다. 제어부(60)는 선택된 치료 모드에 근거하여, 치료광 조사부를 구동하여 치료광을 조사한다(S20). In order to proceed with the treatment, the user selects the treatment mode through the setting unit 80 (S10), and the information about the selected treatment mode is transmitted to the controller 60. The control unit 60 irradiates the treatment light by driving the treatment light irradiation unit based on the selected treatment mode (S20).
치료광이 조사되면 모니터링부(40)은 타겟 위치의 상태 정보를 모니터링하는 단계를 수행한다. 이 때, 제1 모니터링 유닛(41) 및 제2 모니터링 유닛(42)은 각각 독립적으로 타겟 위치의 상태정보를 모니터링한다.When the treatment light is irradiated, the monitoring unit 40 monitors the state information of the target location. At this time, the first monitoring unit 41 and the second monitoring unit 42 each independently monitor the status information of the target position.
상기 단계가 진행되는 동안, 제어부(60)은 제1 모니터링 유닛(41)에서 모니터링 된 정보에 근거하여, 설정된 치료 강도로 치료가 진행되었는지 여부를 판단한다(S30). 또한, 제2 모니터링 유닛(42)에서 모니터링 된 정보에 근거하여, 설정된 치료 강도로 치료가 진행되었는지 여부를 판단한다(S40). 도 8에서는 제1 모니터링 유닛을 이용한 판단 단계(S30) 및 제2 모니터링 유닛을 이용한 판단 단계(S40)가 순차적으로 진행되는 것으로 도시되었으나, 이러한 순서에 국한되는 것은 아니다. 두 단계(S30, S40)는 치료광의 조사 주기에 상응하는 주기로 동시에 진행될 수 있으며, 치료가 진행되는 동안 연속적으로 수행될 수도 있다.While the step is in progress, the control unit 60 determines whether the treatment has proceeded at the set treatment intensity based on the information monitored by the first monitoring unit 41 (S30). In addition, based on the information monitored by the second monitoring unit 42, it is determined whether or not the treatment has proceeded at the set treatment intensity (S40). In FIG. 8, it is shown that the determination step S30 using the first monitoring unit and the determination step S40 using the second monitoring unit are performed sequentially, but are not limited thereto. The two steps S30 and S40 may be simultaneously performed in cycles corresponding to the irradiation period of the treatment light, or may be continuously performed while the treatment is in progress.
제1 모니터링 유닛을 이용한 판단 단계(S30) 및 제2 모니터링 유닛을 이용한 판단 단계(S40)에서 모두 설정된 치료 강도에 도달하지 못한 것으로 판단되면, 제어부(60)는 타겟 위치의 치료가 완료되지 않은 것으로 판단하고 치료광의 파라미터를 조절한다(S50). 여기서, 치료광 파라미터는 치료광에 의해 타겟 위치의 단위 면적당 전달되는 에너지가 순차적으로 커지도록 조절되며, 일 예로 파라미터 중 치료광의 출력의 크기를 높일 수 있다. 이후, 제어부(60)는 조절된 파라미터를 갖는 치료광을 타겟 위치로 조사하며, 전술한 단계들을 반복한다. If it is determined that the treatment intensity set in both the determination step S30 using the first monitoring unit and the determination step S40 using the second monitoring unit has not been reached, the controller 60 determines that the treatment of the target position is not completed. Determine and adjust the parameters of the treatment light (S50). Here, the treatment light parameter is adjusted to sequentially increase the energy transmitted per unit area of the target position by the treatment light, for example, it is possible to increase the size of the output of the treatment light among the parameters. Thereafter, the controller 60 irradiates the treatment light having the adjusted parameter to the target position, and repeats the above-described steps.
다만, 제1 모니터링 유닛을 이용한 판단 단계(S30)와 제2 모니터링 유닛을 이용한 판단 단계(S40) 중 어느 하나에서라도 설정된 치료 강도에 도달한 것으로 판단되면, 제어부(60)은 해당 타겟 위치의 치료가 완료된 것으로 판단한다. 따라서, 해당 타겟 위치로 치료광을 조사하는 것을 종료하고(S60), 다른 타겟 위치로 치료광의 조사위치를 변경한 후, 전술한 단계(S20 내지 S70)를 반복하여 치료를 진행한다.However, when it is determined that the treatment intensity set in any one of the determination step S30 using the first monitoring unit and the determination step S40 using the second monitoring unit is reached, the control unit 60 determines that treatment of the corresponding target position is performed. Judging by completion. Therefore, the irradiation of the treatment light to the target position is terminated (S60), the irradiation position of the treatment light is changed to another target position, and the aforementioned steps (S20 to S70) are repeated to proceed with the treatment.
이하에서는, 도 9 내지 도 12를 이용하여 본 발명의 제2 실시예에 따른 안과용 치료 장치 및 이의 제어방법에 대해서 설명한다. 다만, 본 실시예를 설명함에 있어, 전술한 제1 실시예와 동일하거나 유사한 구성 및 단계는, 설명의 중복을 피하기 위해 제1 실시예에 관한 도면 및 설명으로 갈음한다.Hereinafter, an ophthalmic treatment apparatus and a control method thereof according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 12. However, in describing the present embodiment, the same or similar configuration and steps as the first embodiment described above are replaced with the drawings and the description of the first embodiment to avoid duplication of description.
전술한 제1 실시예의 모니터링부는 제1 모니터링 유닛 및 제2 모니터링 유닛을 모두 치료 진행 경과를 모니터링하는 목적으로 활용하였다. 이에 비해, 본 실시예에서는 제1 모니터링 유닛(41) 및 제2 모니터링 유닛(42)의 측정 방식의 특성을 고려하여, 각각의 모니터링 유닛에서 측정된 정보를 서로 다른 목적의 제어에 활용할 수 있다.The monitoring unit of the first embodiment described above used both the first monitoring unit and the second monitoring unit for the purpose of monitoring the progress of treatment. On the other hand, in the present embodiment, in consideration of the characteristics of the measurement method of the first monitoring unit 41 and the second monitoring unit 42, the information measured in each monitoring unit can be used for control of different purposes.
전술한 바와 같이, 제1 모니터링 유닛(41)은 타겟 위치로부터 발생되는 음파 신호를 수신하여 이를 전기적 신호로 변환하여 제어부(60)로 전달하는 구성으로, 별도의 복잡한 연산이 요구되지 않으므로 처리 속도가 상대적으로 빠른 장점이 있다. 다만, 제1 모니터링 유닛(41)에서 감지되는 정보는 타겟 위치 이외의 다른 위치에서 발생한 별도의 이벤트에 의한 신호 또한 포함될 수 있어, 정확도가 상대적으로 낮은 단점이 있다.As described above, the first monitoring unit 41 is configured to receive a sound wave signal generated from the target position, convert it into an electrical signal, and transmit the converted signal to the control unit 60. It has a relatively quick advantage. However, the information detected by the first monitoring unit 41 may also include a signal due to a separate event occurring at a location other than the target location, which has a disadvantage of relatively low accuracy.
이에 비해, 제2 모니터링 유닛(42)는 타겟 위치로부터 반사되는 반사광을 이용하므로, 제1 모니터링부에 비해 타겟 위치의 상태 정보를 정확하게 판단할 수 있는 장점이 있다. 다만, 제2 모니터링 유닛(41)은 반사광의 파라미터 변화를 검출하기 위해 다양한 연산 과정을 거치므로, 연산 속도가 제1 모니터링부에 비해 늦은 단점이 있다(특히, 도 3과 같이 제2 모니터링 유닛을 간섭계 센서로 구성하는 경우, 간섭 신호를 푸리에 변환 등의 복잡한 연산 과정을 통해 분석하므로 처리 속도가 상대적으로 지연).On the other hand, since the second monitoring unit 42 uses the reflected light reflected from the target position, the second monitoring unit 42 has an advantage of accurately determining the state information of the target position compared to the first monitoring unit. However, since the second monitoring unit 41 undergoes various calculation processes to detect the parameter change of the reflected light, the operation speed is slower than that of the first monitoring unit (in particular, as shown in FIG. When configured as an interferometer sensor, the processing speed is relatively delayed because the interference signal is analyzed through complex calculation process such as Fourier transform.
따라서, 본 실시예의 안과용 치료장치는, 제1 모니터링 유닛(41)의 빠른 연산 속도를 고려하여, 제1 모니터링 유닛(41)에서 감지되는 정보를 치료 진행 상태 또는 해당 타겟 위치에 대한 치료 종료 시점을 판단하는데 이용할 수 있다. 그리고, 제2 모니터링 유닛(42)의 정확도를 고려하여, 제2 모니터링 유닛(42)에서 감지되는 정보를 치료 중 이상(odd event) 발생 여부를 판단하는데 이용할 수 있다.Therefore, the ophthalmic treatment device of the present embodiment, in consideration of the rapid calculation speed of the first monitoring unit 41, the information detected by the first monitoring unit 41, the treatment progress state or the treatment end point for the target position Can be used to determine In addition, in consideration of the accuracy of the second monitoring unit 42, the information detected by the second monitoring unit 42 may be used to determine whether an odd event occurs during treatment.
제어부(60)는 제1 모니터링 유닛(41)에서 측정되는 정보에 근거하여 치료 진행 경과(예를 들어, 타겟 위치의 RPE 세포들 중 미세기포가 발생하기 시작하였는지 여부, 타겟 위치의 RPE 세포들 중 미세기포가 발생한 RPE 세포의 비율 등) 및 치료 종료 시점을 판단한다. 치료 종료 시점은 제1 모니터링부에서 측정된 값(이하, 제1 측정값)이 기 설정된 제1 기준값(설정된 치료 강도에 상응하는 값)에 도달하였는지 여부를 기준으로 판단할 수 있다. 제어부는, 치료가 완료된 것으로 판단되면 해당 타겟 위치로 치료광을 조사하는 것을 중지하고, 치료광의 조사 위치를 다른 타겟 위치로 변경하여 치료를 진행할 수 있다. 이처럼, 제1 모니터링부는, 빠른 연산을 통해 각 치료광에 의한 타겟 위치의 상태 변화를 실시간으로 파악하여 제어에 활용할 수 있다.The controller 60 may proceed with the treatment based on the information measured by the first monitoring unit 41 (for example, whether microbubbles have started to occur among the RPE cells at the target location, and among the RPE cells at the target location). The percentage of RPE cells in which microbubbles have occurred, etc.) and the end of treatment. The end point of treatment may be determined based on whether a value measured by the first monitoring unit (hereinafter, referred to as a first measurement value) reaches a predetermined first reference value (a value corresponding to the set treatment intensity). If it is determined that the treatment is completed, the controller may stop irradiating the treatment light to the corresponding target position and change the irradiation position of the treatment light to another target position to proceed with the treatment. As such, the first monitoring unit may grasp the change in the state of the target position by each treatment light in real time through a quick calculation and use it for control.
한편, 전술한 바와 같이 제2 모니터링 유닛(42)는 치료가 진행되는 동안 타겟 위치에서의 이상 발생 여부를 지속적으로 모니터링할 수 있다. 여기서, 이상 발생은 다양한 이벤트를 포함할 수 있다. 예를 들어, 치료광에 의해 RPE 세포가 정상적인 메커니즘이 아닌 방식으로 변성되는 경우, 망막 표면 조직에 이상이 발생하는 경우 등을 포함할 수 있다. Meanwhile, as described above, the second monitoring unit 42 may continuously monitor whether or not an abnormality occurs at the target position while the treatment is in progress. Here, the abnormal occurrence may include various events. For example, when the RPE cells are denatured by a treatment light in a manner other than a normal mechanism, abnormalities may occur in retinal surface tissues, and the like.
제2 모니터링 유닛(42)은 타겟 위치에 대한 정확도 높은 정보의 획득이 가능하다(특히, 도 3과 같이 제2 모니터링 유닛을 간섭계 센서로 구성하는 경우, 타겟 위치의 RPE 세포층 뿐 아니라 다른 깊이의 조직에서 발생되는 이벤트까지 구분하여 파악 가능). 따라서, 제어부(60)는 제2 모니터링 유닛(42)에서 측정되는 정보를 이용하여, 측정된 값(이하, 제2 측정값)이 제2 기준값(이상 발생에 상응하는 값)보다 큰 경우 이상이 발생한 것으로 판단할 수 있다. The second monitoring unit 42 can obtain highly accurate information on the target position (particularly, when the second monitoring unit is configured as an interferometer sensor as shown in FIG. 3, the tissue of another depth as well as the RPE cell layer of the target position can be obtained. To identify events that occur in. Therefore, the controller 60 uses the information measured by the second monitoring unit 42 to determine whether the measured value (hereinafter, the second measured value) is greater than the second reference value (the value corresponding to the occurrence of the abnormality). It can be judged that it occurred.
여기서, 제2 측정값은 제2 모니터링부에 의해 획득되는 정보로부터 다양하게 가공된 값일 수 있다. 예를 들어, 제2 기준값은 제2 모니터링부에 의해 얻어지는 값 자체일 수 있다. 또는, 제2 모니터링부가 복수회에 걸쳐 측정하는 동안, 앞서 측정된 값과의 차이값일 수 있다.Here, the second measured value may be variously processed values from the information obtained by the second monitoring unit. For example, the second reference value may be a value itself obtained by the second monitoring unit. Alternatively, while the second monitoring unit measures a plurality of times, the second monitoring unit may be a difference value from the previously measured value.
제2 모니터링 유닛(42)에서 측정된 정보를 통해 이상이 발생한 것으로 판단되면, 제어부(60)는 제1 모니터링 유닛(41)에서 측정된 정보와 상관없이, 치료광 조사를 즉시 중단하도록 제어할 수 있다. 그리고, 이를 별도의 표시부(indicating unit)(90, 도 1 참조)를 통해 외부에 표시하여, 사용자에게 이상 발생 사실을 알릴 수 있다.If it is determined that the abnormality has occurred through the information measured by the second monitoring unit 42, the controller 60 may control to immediately stop the treatment light irradiation irrespective of the information measured by the first monitoring unit 41. have. In addition, this may be displayed to the outside through a separate indicating unit 90 (see FIG. 1) to inform the user of an abnormality.
도 9는 본 발명의 제2 실시예에 따른 안과용 치료장치의 제어방법을 도시한 순서도이다. 이하에서는 도 9를 참조하여, 전술한 안과용 치료장치(1)의 제어방법을 구체적으로 설명한다. 9 is a flowchart illustrating a control method of an ophthalmic treatment device according to a second embodiment of the present invention. Hereinafter, referring to FIG. 9, the control method of the ophthalmic treatment apparatus 1 described above will be described in detail.
본 실시예에 따른 안과용 치료장치의 제어방법 또한, 제1 실시예와 마찬가지로 치료 모드를 선택(S110)하고, 타겟 위치로 치료광을 조사하는 단계(S120)를 수행한다.In the control method of the ophthalmic treatment apparatus according to the present embodiment, as in the first embodiment, the treatment mode is selected (S110) and the treatment light is irradiated to the target position (S120).
치료광이 조사되면 제1 모니터링 유닛(41) 및 제2 모니터링 유닛(42)은 타겟 위치의 상태 정보를 모니터링한다(S130). 도 9에서는 모니터링 단계(S130)가 치료광 단계(S120) 이후에 수행되는 것으로 도시되어 있으나, 이러한 순서에 국한되는 것은 아니며, 치료가 진행되는 동안 연속적으로 수행될 수도 있다.When the treatment light is irradiated, the first monitoring unit 41 and the second monitoring unit 42 monitor state information of the target location (S130). In FIG. 9, the monitoring step S130 is shown to be performed after the treatment light step S120, but is not limited to this order, and may be continuously performed while the treatment is in progress.
본 단계를 통해, 제1 모니터링 유닛(41)에서 측정된 제1 측정값이 제1 기준값보다 낮으면, 제어부(60)는 타겟 위치의 치료가 완료되지 않은 것으로 판단하고 치료광의 파라미터를 조절한다(S140). 일 예로 파라미터 중 치료광의 출력의 크기를 높일 수 있다. 이후, 제어부(60)는 조절된 파라미터를 갖는 치료광을 타겟 위치로 조사하도록 치료광 조사부를 제어한다(S120). 그리고, 제1 측정값이 제1 기준값보다 낮은 동안, S120 내지 S140 단계를 반복적하여 수행하고, 이에 의해 타겟 위치로 복수회에 걸쳐 치료광이 조사된다. Through this step, if the first measured value measured by the first monitoring unit 41 is lower than the first reference value, the controller 60 determines that the treatment of the target position is not completed and adjusts the parameter of the treatment light ( S140). For example, the size of the output of the treatment light among the parameters may be increased. Thereafter, the controller 60 controls the treatment light irradiation unit to irradiate the treatment light having the adjusted parameter to the target position (S120). Then, while the first measured value is lower than the first reference value, steps S120 to S140 are repeatedly performed, whereby the treatment light is irradiated to the target position a plurality of times.
그리고, 제1 모니터링 유닛(41)에서 측정된 제1 측정값이 제1 기준값 보다 크면, 제어부(60)는 해당 타겟 위치의 치료가 완료된 것으로 판단한다. 따라서, 해당 타겟 위치로 치료광을 조사하는 것을 종료하고(S150), 다른 타겟 위치로 치료광 조사위치를 변경한 후, 전술한 단계를 반복하여 치료를 진행한다.When the first measured value measured by the first monitoring unit 41 is greater than the first reference value, the controller 60 determines that the treatment of the corresponding target position is completed. Therefore, the irradiation of the treatment light to the target position is terminated (S150), the treatment light irradiation position is changed to another target position, and the above-described steps are repeated to proceed with the treatment.
전술한 과정에서, 제2 모니터링 유닛(42)는 지속적으로 이상 발생 여부를 모니터링하며, 제2 모니터링 유닛(42)에서 측정된 제2 측정값이 제2 기준값보다 작은 경우에 위와 S120 내지 S160에 따른 단계를 수행한다.In the above-described process, the second monitoring unit 42 continuously monitors whether or not an abnormality occurs, and when the second measurement value measured by the second monitoring unit 42 is smaller than the second reference value, and according to S120 to S160. Perform the steps.
다만, 제2 모니터링 유닛(42)에서 측정된 측정값이 제2 기준값보다 큰 경우, 제어부(60)는 이상이 발생한 것으로 판단하고, 치료광 조사를 중단하여 타겟 위치에 대한 치료를 즉시 중지한다(S170). 본 단계는, 제1 측정값이 제1 기준값 대비 높거나 낮은 것과 무관하게, 이상 여부를 감지한 즉시 수행된다. 그리고, 제어부(60)는 알림부(90)를 통해 이상 발생 사실을 사용자에게 표시한다(S180).However, when the measured value measured by the second monitoring unit 42 is larger than the second reference value, the controller 60 determines that an abnormality has occurred and stops the treatment of the target position by immediately stopping the treatment light irradiation ( S170). This step is performed immediately after detecting whether an abnormality occurs, regardless of whether the first measured value is higher or lower than the first reference value. Then, the controller 60 displays the fact that the abnormality occurred to the user through the notification unit 90 (S180).
도 10 내지 도 12는 도 9의 제어방법에 따른 치료광의 조사 패턴을 도시한 그래프이다. 도 10에서는, 5번째 치료광이 조사된 시점에서 타겟 위치의 RPE 세포에서 미세 기포가 발생한 것이 감지된다(ASV 0). 미세 기포 발생 여부는 제1 모니터링 유닛에서 측정된 제1 측정값을 기준으로 판단한다. 전술한 바와 같이, 제1 측정값이 유효값 이하이면 RPE 세포에서 기포가 발생하는 상태 변화가 없는 것으로 판단하고, 유효값 이상이면 적어도 하나의 RPE 세포에서 상태 변화가 시작된 것으로 판단된다.10 to 12 are graphs showing the irradiation pattern of the treatment light according to the control method of FIG. In FIG. 10, it is detected that microbubbles are generated in RPE cells at a target position when the fifth treatment light is irradiated (ASV 0). Whether the fine bubbles are generated is determined based on the first measurement value measured by the first monitoring unit. As described above, when the first measured value is less than or equal to the effective value, it is determined that there is no change of state in which bubbles are generated in the RPE cells.
한편, 사용자가 ASV30의 치료 강도로 치료 모드를 선택한 경우, 치료광은 제1 측정값이 ASV30에 상응하는 기준값을 초과할 때까지 S120 내지 S140 단계를 반복하여 수행한다. 이 과정에서, 제어부(60)는 실시간으로 측정되는 제1 측정값에 근거하여, 타겟 위치의 RPE 세포 중 상태 변화가 일어난 RPE 세포의 비중을 실시간으로 판단할 수 있다. On the other hand, when the user selects the treatment mode with the treatment intensity of the ASV30, the treatment light repeatedly performs steps S120 to S140 until the first measurement value exceeds the reference value corresponding to the ASV30. In this process, the controller 60 may determine, in real time, the specific gravity of the RPE cells in which the state change occurs in the RPE cells at the target location based on the first measured value measured in real time.
도 10에서는 9번째 치료광이 조사된 후 제1 측정값이 ASV30에 상응하는 기준값을 초과하는 것으로 측정되었고, 제어부(60)는 해당 타겟 위치에 치료가 완료된 것으로 판단하고 치료광의 조사를 중지할 수 있다.In FIG. 10, after the ninth treatment light is irradiated, the first measurement value is measured to exceed a reference value corresponding to ASV30, and the controller 60 determines that the treatment is completed at the corresponding target position and stops irradiation of the treatment light. have.
다만, 도 10은 치료 중 이상 발생이 감지되지 않은 경우를 도시한 것이고, 도 11은 치료 중 이상 발생이 감지된 경우를 도시한 것이다. 구체적으로, 도 11은 7번째 치료광이 조사된 시점에서, 제2 모니터링 유닛(42)을 통해 이상 발생이 감지된 경우이다. 이 경우, 제어부는 이상이 감지된 시점에서 즉각적으로 치료광 조사를 중단하고 치료를 종료한다.However, FIG. 10 illustrates a case where an abnormal occurrence is not detected during treatment, and FIG. 11 illustrates a case where an abnormal occurrence is detected during treatment. In detail, FIG. 11 illustrates a case where an abnormal occurrence is detected through the second monitoring unit 42 at the time when the seventh treatment light is irradiated. In this case, the control unit immediately stops the treatment light irradiation and terminates the treatment at the time when the abnormality is detected.
한편, 도 10 및 도 11은 치료광의 파라미터를 조절함에 있어, 치료광의 출력이 동일한 크기로 램핑되도록 조절된다. 다만, 이는 일 예이며, 도 12와 같이, 기포가 감지되어 치료 종료 시점이 근접한 것으로 판단되면, 치료광의 출력이 램핑되는 크기를 미세 기포가 감지되기 이전 보다 작게 조절하는 것도 가능하다.On the other hand, Figures 10 and 11 in adjusting the parameters of the treatment light, the output of the treatment light is adjusted to be ramped to the same magnitude. However, this is an example. As shown in FIG. 12, when bubbles are detected and the end point of treatment is determined to be close, it is possible to adjust the size of the output of the treatment light to be smaller than before the fine bubbles are detected.
한편, 도 5, 도 10 내지 도 12에서는 치료광의 파라미터를 제어함에 있어, 치료광의 출력을 증가시키는 방식을 도시하고 있다. 다만, 이는 일 예이며, 치료광에 의해 단위 면적당 전달되는 에너지의 크기가 증가할 수 있도록, 출력 이외의 다른 파라미터를 조절하는 것도 가능하다.5 and 10 to 12 illustrate a method of increasing the output of the treatment light in controlling the parameter of the treatment light. However, this is one example, and it is also possible to adjust other parameters other than the output so that the amount of energy delivered per unit area by the treatment light can be increased.
도 13 내지 15는 치료광 파라미터를 조절하는 다른 예를 도시한 그래프이다. 도 13과 같이 치료광 발생부가 동일한 펄스 지속 시간(pulse duration time)을 갖는 치료광을 발생시키되, 각 치료광 사이의 오프 시간(off time)을 점차적으로 줄이는 방식으로 파라미터를 조절할 수 있다. 또는 도 14와 같이 동일한 출력의 치료광 펄스를 발생시키되, 각 치료광의 펄스 지속 시간이 점차적으로 증가하도록 파라미터를 조절할 수 있다. 이 이외에도, 도 15와 같이 각 치료광이 복수개의 단위 펄스(Pu)로 구성되도록 치료광을 조사하되, 각 치료광을 구성하는 단위 펄스의 개수를 순차적으로 증가시키도록 파라미터를 조절하는 것도 가능하다.13 to 15 are graphs showing another example of adjusting the treatment light parameter. As shown in FIG. 13, the treatment light generator generates treatment light having the same pulse duration time, but may adjust the parameter in such a manner as to gradually reduce the off time between the treatment lights. Alternatively, as shown in FIG. 14, a treatment light pulse having the same output may be generated, but the parameter may be adjusted so that the pulse duration of each treatment light gradually increases. In addition to this, as shown in FIG. 15, the treatment light is irradiated so that each treatment light includes a plurality of unit pulses Pu, and the parameter may be adjusted to sequentially increase the number of unit pulses constituting each treatment light. .
한편, 이상에서는 망막과 같은 안저 병변을 치료하는 안과용 치료장치 및 이의 제어방법을 중심으로 설명하였다. 다만, 본 발명은 안저 병변 뿐만 아니라 안구 내의 다양한 조직을 타겟 위치로 하여 다양한 안질환에 적용할 수 있도록 구성될 수 있다. 일 예로서, 본 발명은 전안부의 녹내장을 치료하기 위한 치료장치 및 이의 제어방법에 적용될 수 있으며, 이하에서는 도 16을 이용하여 설명한다.On the other hand, it has been described above with an ophthalmic treatment device and a control method for treating an ocular fundus lesion, such as the retina. However, the present invention may be configured to be applicable to various ocular diseases by using as a target position various tissues in the eye as well as fundus lesions. As an example, the present invention may be applied to a treatment apparatus for treating glaucoma in the anterior eye and a control method thereof, which will be described below with reference to FIG. 16.
도 16은 본 발명을 이용하여 전안부 병면을 치료하는 모습을 도시한 단면도이다. 녹내장은 안압의 상승에 의한 시신경의 손상되는 병변으로, 안내(intraocular) 유체가 배출되는 경로를 확보하여 적정 안압을 유지시키는 방식으로 치료가 진행된다. 이를 위해, 본 발명에 따른 안과용 치료장치는 전안부의 림버스(Limbus) 하측에 위치하는 섬유주대(trabecualr meshwork, TM) 조직 상에 치료광을 조사하여 유체가 배출되는 특성을 개선시킬 수 있다.16 is a cross-sectional view showing the treatment of the anterior segment lesions using the present invention. Glaucoma is a lesion in which the optic nerve is damaged by an increase in intraocular pressure, and treatment is performed in such a manner as to maintain a proper intraocular pressure by securing a path through which intraocular fluid is discharged. To this end, the ophthalmic treatment device according to the present invention can improve the characteristics of the fluid discharged by irradiating the treatment light on the trabecualr meshwork (TM) tissue located under the rimbus of the anterior eye. .
도 16에 따른 안과용 치료 장치는 전술한 안저 병변을 치료하는 장치와 마찬가지로, 멜라노좀에 선택적으로 흡수되는 파장의 치료광을 이용하여 치료를 진행한다. 섬유주대 조직을 구성하는 섬유 주대 세포(trabecualr meshwork cell, TM cell)는 RPE 세포와 마찬가지로 멜라노좀과 같은 색소 성분을 포함한다. 따라서, 치료광이 조사됨에 따라 섬유주대 조직의 세포에 에너지가 전달되며, 이에 의해 섬유 주대 세포에 열적 손상이 발생하면서 유체의 배출 경로가 확보되어 안압을 정상적으로 유지시킬 수 있다.The ophthalmic treatment device according to FIG. 16 proceeds to treatment using a treatment light of a wavelength selectively absorbed by the melanosome, similarly to the device for treating the ocular fundus lesion. The trabecualr meshwork cell (TM cell) constituting the fibrotic tissue includes pigment components such as melanosomes, like RPE cells. Therefore, as the treatment light is irradiated, energy is transmitted to the cells of the fibrous stem tissue, thereby thermally damaging the fibrous stem cells and securing a discharge path of the fluid to maintain the intraocular pressure normally.
전술한 안저 병변 치료를 위한 안과용 치료 장치는 망막을 타겟 위치으로 하여 타겟 위치에 배치된 복수의 RPE 세포에 에너지를 전달하여 치료를 진행하는 것에 비해, 도 16에 따른 안과용 치료장치는 전안부의 섬유 주대 조직을 타겟 위치로 하여 타겟 위치에 배치된 복수의 섬유 주대 세포에 에너지를 전달하여 치료를 진행한다.The ophthalmic treatment apparatus for treating the ocular fundus lesion is delivered to the plurality of RPE cells arranged at the target position using the retina as a target position, and the treatment is performed. The treatment is performed by transferring energy to a plurality of fibrous stem cells arranged at the target position using the fibrous stem tissue as a target position.
이를 위해, 안과용 치료장치의 대안부(70)는 반사부재를 포함한 컨택트 렌즈를 포함하여 구성된다. 이에 의해, 치료광을 비롯한 각종 광의 경로는 반사 부재를 통해 타겟 위치인 섬유 주대 조직으로 조사되며, 타겟 위치로부터 반사되는 반사광 또한 반사 부재(71)를 통해 안과용 치료장치의 빔 딜리버리부로 진입할 수 있다.To this end, the alternative portion 70 of the ophthalmic treatment device comprises a contact lens including a reflective member. As a result, the paths of various light including the treatment light are irradiated to the fibrous stem tissue that is the target position through the reflective member, and the reflected light reflected from the target position can also enter the beam delivery portion of the ophthalmic treatment apparatus through the reflective member 71. have.
다만, 대안부(70)의 구조 이외에, 전술한 실시예들에서 설명한 안과용 치료장치의 구성과 동작을 비롯한 각종 제어 내용은 도 16의 안과용 치료장치에도 실질적으로 동일하게 적용될 수 있다. 이로 인해, 녹내장 치료를 진행시 복수의 섬유 주대 세포에 치료광을 조사하면서 치료 강도를 효과적으로 제어하여 최적의 치료를 진행할 수 있고, 모니터링부는 서로 상이한 방식으로 상태 정보를 모니터링하여 효과적으로 상태 정보를 확인함과 동시에 이상 발생시 긴급하게 정지할 수 있는 장점을 구현할 수 있다.However, in addition to the structure of the alternative unit 70, various control contents including the configuration and operation of the ophthalmic treatment device described in the above embodiments may be applied to the ophthalmic treatment device of FIG. 16. Therefore, during the treatment of glaucoma, the treatment intensity can be effectively controlled while irradiating the treatment light to a plurality of fibrotic stem cells, and the optimal treatment can be proceeded, and the monitoring unit monitors the status information in different ways to effectively check the status information. At the same time, it is possible to realize the advantage of stopping in an emergency.
이상에서는, 두 개의 모니터링부를 포함하는 안과용 치료장치 및 이의 제어방법에 대해 상세하게 설명하였다. 다만, 전술한 실시예는 설명의 편의를 위해 발명을 단순화시켜 설명한 것이며, 이 외에도 다양한 방식으로 변형하여 실시할 수 있음은 물론이다.In the above, the ophthalmic treatment device comprising two monitoring units and a control method thereof have been described in detail. However, the above-described embodiment is a simplified description of the invention for the convenience of description, and of course, it can be modified in various ways.

Claims (45)

  1. 치료 모드를 설정하도록 형성되는 설정부;A setting unit configured to set a treatment mode;
    안구 내 타겟 위치로 복수회에 걸쳐 치료광을 조사하여 치료를 수행하는 치료광 조사부;A therapeutic light irradiation unit for performing treatment by irradiating the therapeutic light to the target location in the eye a plurality of times;
    상기 치료광이 조사되는 동안 상기 치료광에 의한 상기 타겟 위치의 상태 정보를 모니터링하는 모니터링부; 및,A monitoring unit for monitoring state information of the target position by the treatment light while the treatment light is irradiated; And,
    상기 모니터링부에서 모니터링된 정보를 이용하여 상기 치료 모드에 따른 치료 강도에 도달하였는지 여부를 판단하고, 이에 근거하여 상기 치료광 조사부의 동작을 제어하는 제어부;를 포함하는 안과용 치료장치.And a controller configured to determine whether the treatment intensity according to the treatment mode is reached by using the information monitored by the monitoring unit, and to control the operation of the treatment light irradiator based on the treatment intensity.
  2. 제1항에 있어서,The method of claim 1,
    상기 제어부는 상기 모니터링부에서 감지되는 정보가 상기 설정된 치료 강도에 도달하지 못한 것으로 판단되면 상기 치료광의 파라미터를 조절하고, 상기 설정된 치료 강도에 도달한 것으로 판단되면 상기 타겟 위치로 상기 치료광을 조사하는 것을 종료하는 것을 특징으로 하는 안과용 치료장치.The control unit adjusts a parameter of the treatment light when it is determined that the information detected by the monitoring unit does not reach the set treatment intensity, and irradiates the treatment light to the target position when it is determined that the set treatment intensity has been reached. An ophthalmic treatment device, characterized in that to terminate.
  3. 제2항에 있어서,The method of claim 2,
    상기 제어부는 상기 모니터링부에서 감지되는 정보가 상기 설정된 치료 강도에 도달하지 못한 것으로 판단되면, 상기 치료광에 의해 상기 타겟 위치의 단위 면적당 전달되는 에너지가 증가하도록 상기 치료광 파라미터를 제어하는 것을 특징으로 하는 안과용 치료장치.If it is determined that the information detected by the monitoring unit does not reach the set treatment intensity, the control unit controls the treatment light parameter to increase the energy transmitted per unit area of the target position by the treatment light. Ophthalmic treatment device.
  4. 제1항에 있어서,The method of claim 1,
    상기 치료광은 상기 타겟 위치에 위치한 복수의 세포에 에너지를 전달할 수 있는 스팟 사이즈를 갖도록 조사되며, 상기 복수의 세포은 복수의 치료광이 조사되어 치료가 진행됨에 따라 일부의 세포의 상태가 변화되는 것을 특징으로 하는 안과용 치료장치.The treatment light is irradiated to have a spot size that can deliver energy to a plurality of cells located at the target location, the plurality of cells is a plurality of treatment light is irradiated with the treatment proceeds that the state of some cells is changed An ophthalmic treatment device characterized in that.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 치료광은 적어도 10개 이상의 세포에 에너지를 전달하는 스팟 사이즈를 갖도록 조사되는 것을 특징으로 하는 안과용 치료장치.The therapeutic light is an ophthalmic treatment device, characterized in that irradiated to have a spot size for delivering energy to at least 10 or more cells.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 치료광은 상기 타겟 위치에서 직경 50㎛ 이상의 스팟 사이즈를 갖도록 조사되는 것을 특징으로 하는 안과용 치료장치.The treatment light is an ophthalmic treatment device, characterized in that irradiated to have a spot size of 50㎛ or more in diameter at the target position.
  7. 제4항에 있어서, The method of claim 4, wherein
    상기 치료광은 안저로 조사되며 상기 복수의 세포은 망막에 위치하는 복수의 RPE 세포인 것을 특징으로 하는 안과용 치료장치.The therapeutic light is irradiated with the eye fundus and the plurality of cells are ophthalmic treatment device, characterized in that a plurality of RPE cells located in the retina.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 치료광은 전안부의 림버스(limbus) 하측으로 조사되며, 상기 복수의 세포는 섬유 주대 세포(Trabecular meshwork cell, TM cell)인 것을 특징으로 하는 안과용 치료장치.The therapeutic light is irradiated under the limbus (limbus) of the anterior part, the plurality of cells are ophthalmic treatment device, characterized in that the trabecular meshwork cell (TM cell).
  9. 제1항에 있어서,The method of claim 1,
    상기 모니터링부는 상기 치료광이 조사되는 타겟 위치에 배치된 복수의 세포 또는 조직 중 치료에 의해 상태가 변화하는 세포 또는 조직의 감지하여, 상기 타겟 위치에 진행된 치료 강도를 모니터링하는 것을 특징으로 하는 안과용 치료장치.The monitoring unit detects a cell or tissue whose state changes by treatment among a plurality of cells or tissues disposed at a target location to which the treatment light is irradiated, and monitors the treatment intensity progressed at the target location. Treatment device.
  10. 제1항에 있어서,The method of claim 1,
    상기 모니터링부는 상기 치료광에 의해 상기 타겟 위치의 조직 상태가 변하면서 발생되는 음향 신호를 측정하여 상기 타겟 위치에 진행된 치료 강도를 측정하는 것을 특징으로 하는 안과용 치료장치.The monitoring unit is an ophthalmic treatment device, characterized in that for measuring the intensity of the treatment proceeded to the target position by measuring the acoustic signal generated when the tissue state of the target position is changed by the treatment light.
  11. 제1항에 있어서,The method of claim 1,
    상기 모니터링부는 반사계(reflectometry) 센서를 포함하여, 상기 타겟 위치로부터 반사되는 반사광의 정보를 이용하여 상기 타겟 위치에 진행된 치료 강도를 측정하는 것을 특징으로 하는 안과용 치료장치.The monitoring unit includes a reflectometry (reflectometry) sensor, the ophthalmic treatment device characterized in that for measuring the intensity of the treatment proceeded to the target location using the information of the reflected light reflected from the target location.
  12. 제1항에 있어서,The method of claim 1,
    상기 모니터링부는 상기 치료광이 조사되는 상기 타겟 위치로 검측광을 조사하고 상기 타겟 위치로부터 반사되는 검측광을 수광하며, 상기 검측광에 의한 간섭 정보를 이용하여 상기 타겟 위치에 진행된 치료 강도를 측정하는 것을 특징으로 하는 안과용 치료장치.The monitoring unit irradiates the detection light to the target position to which the treatment light is irradiated, receives the detection light reflected from the target position, and measures the treatment intensity progressed to the target position using the interference information by the detection light. An ophthalmic treatment device, characterized in that.
  13. 제1항에 있어서,The method of claim 1,
    상기 모니터링부는 서로 다른 방식으로 상기 타겟 위치의 상태 정보를 모니터링하는 제1 모니터링 유닛 및 제2 모니터링 유닛을 포함하여 구성되며,The monitoring unit includes a first monitoring unit and a second monitoring unit for monitoring the state information of the target location in different ways,
    상기 제1 모니터링 유닛 및 제2 모니터링 유닛에서 모니터링된 정보 중 적어도 하나에 의해 상기 설정된 치료 강도에 도달한 것으로 판단되면 상기 타겟 위치로 치료광을 조사하는 것을 종료하는 것을 특징으로 하는 안과용 치료장치.And irradiating treatment light to the target position when it is determined that the set treatment intensity is reached by at least one of the information monitored by the first monitoring unit and the second monitoring unit.
  14. 제13항에 있어서,The method of claim 13,
    상기 제1 모니터링 유닛은 광음향센서(optoacoustic sensor)이고, 상기 제2 모니터링 유닛은 반사계 센서(reflectometry sensor) 또는 간섭계 센서(interferometry sensor)인 것을 특징으로 하는 안과용 치료장치.Wherein said first monitoring unit is an optoacoustic sensor and said second monitoring unit is a reflectometry sensor or an interferometry sensor.
  15. 제1항에 있어서,The method of claim 1,
    상기 설정부는 상이한 값을 갖는 복수의 치료 강도를 표시하도록 구성되어, 사용자가 치료 강도를 선택하여 치료 모드를 설정하도록 구성되며,The setting unit is configured to display a plurality of treatment intensities having different values, so that the user selects the treatment intensity to set the treatment mode,
    상기 설정부에 표시되는 치료 강도는, 상기 타겟 위치에 배치되는 복수의 세포 또는 조직 중 상태 변화가 발생되는 세포 또는 조직의 비율을 나타내는 것을 특징으로 하는 안과용 치료장치.The therapeutic intensity displayed on the setting unit indicates the ratio of cells or tissues in which a change of state occurs among a plurality of cells or tissues arranged at the target position.
  16. 제1항에 있어서,The method of claim 1,
    상기 설정부는 복수의 치료 병변을 표시하도록 구성되어 사용자가 치료 병변을 선택하여 치료 모드를 설정하도록 구성되며, 상기 복수의 치료 병변에 상응하는 치료 모드 중 적어도 두 개의 치료 모드는 각각 상이한 치료 강도를 갖도록 구성되는 것을 특징으로 하는 안과용 치료장치.The setting unit is configured to display a plurality of treatment lesions so that a user selects a treatment lesion to set a treatment mode, and at least two treatment modes among treatment modes corresponding to the plurality of treatment lesions have different treatment intensities, respectively. An ophthalmic treatment device, characterized in that configured.
  17. 제16항에 있어서,The method of claim 16,
    상기 설정부는 중심성 장액 맥락망막병증(CSC, central serous chorioretinopathy)에 대한 치료 모드 및 당뇨병성 황반부종(DME, diabetic macular edema)에 대한 치료 모드를 사용자에게 표시하도록 구성되며,The setting unit is configured to display a treatment mode for central serous chorioretinopathy (CSC) and a treatment mode for diabetic macular edema (DME),
    상기 중심성 장액선 막락망막병증에 대한 치료 모드는 상기 당뇨병성 황반부종에 대한 치료 모드보다 낮은 치료 강도를 갖도록 구성되는 것을 특징으로 하는 안과용 치료장치.The treatment mode for central serous mesenchymal retinopathy is an ophthalmic treatment device, characterized in that configured to have a lower treatment intensity than the treatment mode for diabetic macular edema.
  18. 설정부를 통해 치료 강도를 선택하는 단계;Selecting a treatment intensity through the setting unit;
    안구 내 복수의 세포들이 배치된 타겟 위치로 치료광을 조사하는 단계;Irradiating the therapeutic light to a target location where a plurality of cells in the eye are placed;
    모니터링부를 통해 상기 타겟 위치에 배치된 상기 복수의 세포의 상태 변화 정보를 모니터링하는 단계;Monitoring state change information of the plurality of cells arranged at the target location through a monitoring unit;
    상기 모니터링된 정보에 근거하여 상기 설정된 치료 강도에 도달했는지 여부를 판단하는 단계; 및Determining whether the set treatment intensity has been reached based on the monitored information; And
    상기 설정된 치료 강도에 도달하지 못한 것으로 판단되면, 상기 타겟 위치의 단위 면적당 전달되는 에너지가 증가하도록 상기 치료광 파라미터를 조절하는 단계;를 포함하는 안과용 치료장치의 제어방법.If it is determined that the set treatment intensity is not reached, adjusting the treatment light parameter to increase energy transmitted per unit area of the target position.
  19. 제18항에 있어서,The method of claim 18,
    상기 치료광은 조사시 상기 타겟 위치에 위치한 상기 복수의 세포에 에너지를 전달할 수 있는 스팟 사이즈를 갖도록 조사되며, 상기 치료광에 의한 치료가 진행됨에 따라 상기 복수의 세포 중 일부의 세포의 상태가 변화하는 것을 특징으로 하는 안과용 치료장치의 제어방법.The therapeutic light is irradiated to have a spot size that can deliver energy to the plurality of cells located at the target position when irradiated, and the state of the cells of some of the plurality of cells changes as the treatment by the therapeutic light progresses. Control method of an ophthalmic treatment device, characterized in that.
  20. 제19항에 있어서,The method of claim 19,
    상기 치료광은 적어도 10개 이상의 세포에 에너지를 전달하는 스팟 사이즈를 갖도록 조사되는 것을 특징으로 하는 안과용 치료장치의 제어방법.The treatment light is irradiated to have a spot size for transmitting energy to at least 10 or more cells, the control method of the ophthalmic treatment device.
  21. 제19항에 있어서,The method of claim 19,
    상기 치료광은 상기 타겟 위치에 직경 50㎛ 이상의 스팟 사이즈를 갖도록 조사되는 것을 특징으로 하는 안과용 치료장치의 제어방법.The treatment light is controlled to the ophthalmic treatment device, characterized in that irradiated to have a spot size of 50㎛ or more in diameter to the target position.
  22. 제18항에 있어서,The method of claim 18,
    상기 치료 강도는 상기 타겟 위치에 위치하는 복수의 세포 중 치료에 의해 상태가 변화하는 세포의 비율을 의미하는 것을 특징으로 하는 안과용 치료장치의 제어방법.The treatment intensity is a control method of the ophthalmic treatment device, characterized in that the ratio of the cells whose state is changed by the treatment of the plurality of cells located in the target position.
  23. 제18항에 있어서,The method of claim 18,
    상기 모니터링하는 단계는 상기 타겟 위치에 위치하는 복수의 세포 중 치료에 의해 상태가 변화하는 세포의 양을 모니터링하는 것을 특징으로 하는 안과용 치료장치의 제어방법.The monitoring step is a control method of the ophthalmic treatment device, characterized in that for monitoring the amount of cells whose state changes by treatment of a plurality of cells located in the target position.
  24. 제18항에 있어서,The method of claim 18,
    상기 설정부는 상이한 값을 갖는 복수의 치료 강도를 표시하도록 구성되어, 사용자가 치료 강도를 선택하여 치료 모드를 설정하도록 구성되며,The setting unit is configured to display a plurality of treatment intensities having different values, so that the user selects the treatment intensity to set the treatment mode,
    상기 설정부에 표시되는 치료 강도는, 상기 타겟 위치에 배치되는 복수의 세포 중 상태 변화가 발생되는 세포의 비율을 나타내는 것을 특징으로 하는 안과용 치료장치의 제어방법.The treatment intensity displayed on the setting unit indicates a ratio of cells in which a state change occurs among a plurality of cells arranged at the target position.
  25. 제18항에 있어서,The method of claim 18,
    상기 치료광은 안저로 조사되며 상기 복수의 세포은 망막에 위치하는 복수의 RPE 세포인 것을 특징으로 하는 안과용 치료장치의 제어방법.The treatment light is irradiated with the fundus and the plurality of cells is a control method of the ophthalmic treatment device, characterized in that the plurality of RPE cells located in the retina.
  26. 제18항에 있어서,The method of claim 18,
    상기 치료광은 전안부의 림버스(limbus) 하측으로 조사되며, 상기 복수의 세포는 섬유 주대 세포(Trabecular meshwork cell, TM cell)인 것을 특징으로 하는 안과용 치료장치의 제어방법.The treatment light is irradiated under the limbus (limbus) of the anterior part, the plurality of cells are control cells of the ophthalmic treatment device, characterized in that the trabecular meshwork cell (TM cell).
  27. 안구 내 복수의 세포들이 배치된 타겟 위치로 치료광을 조사하는 단계;Irradiating the therapeutic light to a target location where a plurality of cells in the eye are placed;
    모니터링부를 통해 상기 타겟 위치에 배치된 상기 복수의 세포의 상태 변화 정보를 모니터링하는 단계;Monitoring state change information of the plurality of cells arranged at the target location through a monitoring unit;
    상기 모니터링된 정보에 근거하여 설정된 치료 강도에 도달했는지 여부를 판단하는 단계; 및Determining whether a set treatment intensity has been reached based on the monitored information; And
    상기 설정된 치료 강도에 도달하지 못한 것으로 판단되면, 상기 타겟 위치의 단위 면적당 전달되는 에너지가 증가하도록 상기 치료광 파라미터를 조절하여 치료광을 조사하는 단계;를 포함하는 안과용 병변 치료 방법.If it is determined that the set treatment intensity has not been reached, irradiating the treatment light by adjusting the treatment light parameter such that energy delivered per unit area of the target position is increased.
  28. 안구 내 위치하는 타겟 위치로 복수회에 걸쳐 치료광을 조사하는 치료광 조사부;A therapeutic light irradiation unit for irradiating the therapeutic light to the target position located in the eye a plurality of times;
    상기 치료광이 조사되는 동안 상기 타겟 위치의 상태 정보를 제1 방식으로 측정하는 제1 모니터링 유닛; A first monitoring unit measuring state information of the target position in a first manner while the treatment light is irradiated;
    상기 치료광이 조사되는 동안 상기 타겟 위치의 상태 정보를 상기 제1 방식과는 상이한 제2 방식으로 측정하는 제2 모니터링 유닛; 및A second monitoring unit which measures the state information of the target position in a second manner different from the first manner while the treatment light is irradiated; And
    상기 제1 모니터링 유닛 및 상기 제2 모니터링 유닛에서 측정된 정보에 근거하여, 상기 치료광의 파라미터를 조절하거나, 상기 치료광의 조사 여부를 결정하는 제어부;를 포함하는 안과용 치료장치.And a controller configured to adjust a parameter of the treatment light or determine whether the treatment light is irradiated based on the information measured by the first monitoring unit and the second monitoring unit.
  29. 제28항에 있어서,The method of claim 28,
    상기 제1 모니터링 유닛은 상기 타겟 위치에 대한 치료 진행 상태 또는 치료 종료 시점에 관한 정보를 측정하고, 상기 제2 모니터링 유닛은 치료 중 이상 발생 여부에 관한 정보를 측정하는 것을 특징으로 하는 안과용 치료장치.The first monitoring unit measures the information on the progress of treatment or the end point of treatment for the target location, the second monitoring unit measures ophthalmic treatment device, characterized in that for measuring information about whether or not abnormality during treatment .
  30. 제28항에 있어서,The method of claim 28,
    상기 제1 모니터링 유닛은 상기 치료광에 의해 상기 타겟 위치의 조직 상태가 변하면서 발생되는 음향 신호를 측정하여 상기 타겟 위치의 상태 정보를 측정하고,The first monitoring unit measures the state information of the target position by measuring an acoustic signal generated while the tissue state of the target position is changed by the treatment light,
    상기 제2 모니터링 유닛은 상기 타겟 위치로부터 반사되는 반사광을 수광하여 치료 중 이상 발생 여부를 판단하는 것을 특징으로 하는 안과용 치료장치.And the second monitoring unit receives reflected light reflected from the target position to determine whether an abnormality occurs during treatment.
  31. 제28항에 있어서,The method of claim 28,
    상기 제어부는 상기 제1 모니터링 유닛에서 감지되는 정보가 제1 기준값보다 작으면 상기 치료광의 파라미터를 조절하고, 상기 제1 기준값보다 크면 상기 타겟 위치로 상기 치료광을 조사하는 것을 종료하는 것을 특징으로 하는 안과용 치료장치.The control unit adjusts a parameter of the treatment light when the information detected by the first monitoring unit is less than a first reference value, and ends irradiating the treatment light to the target position when the information is greater than the first reference value. Ophthalmic treatment device.
  32. 제31항에 있어서,The method of claim 31, wherein
    상기 제어부는 상기 제1 모니터링 유닛에서 감지되는 정보가 상기 제1 기준값보다 크면, 상기 타겟 위치의 치료를 종료하고, 다른 타겟 위치로 상기 치료광을 조사하여 치료를 진행하는 것을 특징으로 하는 안과용 치료장치. The control unit, if the information detected by the first monitoring unit is greater than the first reference value, the end of the treatment of the target position, the ophthalmic treatment characterized in that to proceed with the treatment by irradiating the treatment light to another target position Device.
  33. 제31항에 있어서,The method of claim 31, wherein
    상기 제어부는 상기 제2 모니터링 유닛에서 감지되는 정보가 제2 기준값보다 크면, 상기 제1 모니터링 유닛에서 감지되는 정보와 상관없이, 상기 치료광을 조사하는 것을 즉시 중단시키는 것을 특징으로 하는 안과용 치료장치.The control unit, if the information detected by the second monitoring unit is greater than a second reference value, irrespective of the information detected by the first monitoring unit, irradiating the treatment light immediately, characterized in that the ophthalmic treatment device .
  34. 제33항에 있어서,The method of claim 33, wherein
    상기 제어부는 상기 제2 모니터링 유닛에서 감지되는 정보가 상기 제2 기준값보다 크면, 알림부를 통해 이상 발생 사실을 외부에 표시하는 것을 특징으로 하는 안과용 치료장치.The control unit, if the information detected by the second monitoring unit is greater than the second reference value, the ophthalmic treatment device, characterized in that to display the fact that the abnormal occurrence through the notification unit.
  35. 제33항에 있어서,The method of claim 33, wherein
    상기 제1 기준값은 사용자가 선택하는 치료 모드에 따라 조절되며, 상기 제2 기준값은 고정된 값인 것을 특징으로 하는 안과용 치료장치.The first reference value is adjusted according to the treatment mode selected by the user, the second reference value is an ophthalmic treatment device, characterized in that the fixed value.
  36. 제29항에 있어서,The method of claim 29,
    상기 제어부는 상기 제1 모니터링 유닛에서 감지되는 정보가 제1 기준값보다 작으면 상기 치료광에 의해 상기 타겟 위치의 단위 면적당 전달되는 에너지가 증가하도록 상기 치료광의 파라미터를 제어하고, 상기 제1 기준값보다 크면 상기 치료광을 조사하는 것을 중지하여 상기 타겟 위치의 치료를 종료하는 것을 특징으로 하는 안과용 치료장치.The controller controls a parameter of the treatment light to increase energy transmitted per unit area of the target position by the treatment light when the information detected by the first monitoring unit is smaller than a first reference value, and when the information is greater than the first reference value. The ophthalmic treatment device, characterized in that to stop the irradiation of the treatment light to terminate the treatment of the target position.
  37. 제36항에 있어서,The method of claim 36,
    상기 제어부는 상기 제1 모니터링 유닛에서 감지되는 정보가 상기 제1 기준값 보다 작으면, 상기 조사되는 치료광의 출력을 순차적으로 증가시키도록 제어하는 것을 특징으로 하는 안과용 치료장치.And the control unit controls to sequentially increase the output of the irradiated treatment light when the information detected by the first monitoring unit is smaller than the first reference value.
  38. 타겟 위치로 치료광을 조사하는 단계;Irradiating therapeutic light to a target location;
    제1 모니터링 유닛을 통해 상기 타겟 위치의 상태 정보를 감지하는 단계;Sensing state information of the target location via a first monitoring unit;
    상기 제1 모니터링 유닛에서 감지된 값이 제1 기준값 이하이면 상기 타겟 위치로 조사되는 치료광의 파라미터를 조절하는 단계;Adjusting a parameter of the treatment light irradiated to the target position when the value detected by the first monitoring unit is equal to or less than a first reference value;
    제2 모니터링 유닛을 통해 이상 여부를 감지하는 단계; 및Detecting whether an abnormality is detected through the second monitoring unit; And
    상기 제2 모니터링 유닛에서 감지된 값이 제2 기준값 이상이면 상기 치료광을 조사하는 것을 즉시 중단하는 단계;를 포함하는 안과용 치료장치의 제어방법.And immediately stopping irradiating the treatment light when a value detected by the second monitoring unit is equal to or greater than a second reference value.
  39. 제38항에 있어서,The method of claim 38,
    상기 제2 모니터링 유닛에서 감지된 값이 제2 기준값 이하이면, 상기 조절된 파라미터를 갖는 치료광을 상기 타겟 위치로 조사하는 단계를 더 포함하는 것을 특징으로 하는 안과용 치료장치의 제어방법.And if the value detected by the second monitoring unit is equal to or less than a second reference value, irradiating a treatment light having the adjusted parameter to the target position.
  40. 제38항에 있어서,The method of claim 38,
    상기 제1 모니터링 유닛은 상기 치료광에 의해 상기 타겟 위치의 조직 상태가 변화함에 따라 발생되는 음향 신호를 측정하고,The first monitoring unit measures an acoustic signal generated as the tissue state of the target position is changed by the treatment light,
    상기 제2 모니터링 유닛은 상기 타겟 위치로부터 반사되는 반사광을 수광하여 치료 중 이상 발생 여부를 판단하는 것을 특징으로 하는 안과용 치료장치의 제어 방법.And the second monitoring unit receives reflected light reflected from the target position to determine whether abnormality occurs during treatment.
  41. 제38항에 있어서,The method of claim 38,
    상기 제1 모니터링 유닛에서 감지되는 정보가 상기 제1 기준값보다 크면 상기 타겟 위치로 상기 치료광을 조사하는 것을 중단하고, 다른 타겟 위치로 상기 치료광을 조사하는 단계를 더 포함하는 것을 특징으로 하는 안과용 치료장치의 제어방법.And if the information detected by the first monitoring unit is greater than the first reference value, stopping the irradiation of the treatment light to the target position, and irradiating the treatment light to another target position. Method of controlling the therapeutic device.
  42. 제38항에 있어서,The method of claim 38,
    상기 제2 모니터링 유닛에서 감지된는 정보가 상기 제2 기준값보다 크면, 상기 제1 모니터링 유닛에서 감지된 정보와 상관없이, 상기 치료광을 조사하는 것을 즉시 중단시키고, If the information detected by the second monitoring unit is greater than the second reference value, irradiating the treatment light immediately stops irrespective of the information detected by the first monitoring unit,
    이상 발생 사실을 외부에 표시하는 단계를 더 포함하는 것을 특징으로 하는 안과용 치료장치의 제어방법.The control method of the ophthalmic treatment device further comprising the step of displaying the fact that the abnormal occurrence.
  43. 제38항에 있어서,The method of claim 38,
    사용자가 치료 모드를 설정하는 단계를 더 포함하고, 상기 제1 기준값은 사용자가 설정한 치료 모드에 의해 결정되는 것을 특징으로 하는 안과용 치료장치의 제어방법.And setting a treatment mode by the user, wherein the first reference value is determined by the treatment mode set by the user.
  44. 제38항에 있어서,The method of claim 38,
    상기 치료광의 파라미터를 조절하는 단계는 상기 치료광에 의해 상기 타겟 위치의 단위 면적당 전달되는 에너지가 증가하도록 상기 치료광의 파라미터를 조절하는 것을 특징으로 하는 안과용 치료장치의 제어방법.Adjusting the parameter of the treatment light is a control method of the ophthalmic treatment device, characterized in that for adjusting the parameter of the treatment light to increase the energy transmitted per unit area of the target position by the treatment light.
  45. 제44항에 있어서,The method of claim 44,
    상기 치료광의 파라미터를 조절하는 단계는 상기 치료광의 출력값이 증가하도록 조절하는 것을 특징으로 하는 안과용 치료장치의 제어방법.Adjusting the parameter of the treatment light is a control method of the ophthalmic treatment device, characterized in that for adjusting the output value of the treatment light increases.
PCT/KR2017/007957 2016-07-27 2017-07-24 Ophthalmic treatment device and method of controlling same WO2018021780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0095481 2016-07-27
KR1020160095481A KR101902862B1 (en) 2016-07-27 2016-07-27 An ophthalmic treatment apparatus and method for controlling that

Publications (1)

Publication Number Publication Date
WO2018021780A1 true WO2018021780A1 (en) 2018-02-01

Family

ID=61016174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007957 WO2018021780A1 (en) 2016-07-27 2017-07-24 Ophthalmic treatment device and method of controlling same

Country Status (2)

Country Link
KR (1) KR101902862B1 (en)
WO (1) WO2018021780A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048723A1 (en) * 2019-09-12 2021-03-18 Belkin Laser Ltd. Selective laser stimulation of corneal stem cells
WO2022130137A1 (en) * 2020-12-16 2022-06-23 Alcon Inc. Adjusting laser pulses to compensate for interfering objects
US11382794B2 (en) 2018-07-02 2022-07-12 Belkin Laser Ltd. Direct selective laser trabeculoplasty
US11564836B2 (en) 2010-05-10 2023-01-31 Ramot At Tel Aviv University Ltd. System and method for treating an eye
US11771596B2 (en) 2010-05-10 2023-10-03 Ramot At Tel-Aviv University Ltd. System and method for treating an eye

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102038008B1 (en) * 2018-04-03 2019-10-29 주식회사 루트로닉 An ophthalmic treatment apparatus and method for controlling that
KR102191631B1 (en) * 2018-12-18 2020-12-16 주식회사 루트로닉 An ophthalmic treatment apparatus and method for controlling that
KR102191633B1 (en) * 2019-02-08 2020-12-16 주식회사 루트로닉 An ophthalmic treatment apparatus and method for controlling that
KR102191632B1 (en) * 2019-02-08 2020-12-16 주식회사 루트로닉 An ophthalmic treatment apparatus and method for controlling that
KR102408763B1 (en) * 2019-09-03 2022-06-14 주식회사 루트로닉 An treatment apparatus for dry eye syndrome and a method for controlling that
KR102577406B1 (en) * 2021-02-25 2023-09-12 부산대학교 산학협력단 Apparatus of high-resolution visual prosthesis based on adaptive optics and operating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065923A1 (en) * 2003-01-16 2004-08-05 Medizinisches Laserzentrum Lübeck GmbH Method and device for contactless temperature monitoring and temperature adjustment
JP2008161226A (en) * 2006-12-26 2008-07-17 Nidek Co Ltd Ophthalmic laser treatment apparatus
JP2008183247A (en) * 2007-01-30 2008-08-14 Nidek Co Ltd Ophthalmic laser therapy apparatus
KR20150128624A (en) * 2014-05-09 2015-11-18 주식회사 루트로닉 Ocular treatment apparatus
KR20160015044A (en) * 2014-07-30 2016-02-12 주식회사 루트로닉 Ocular treatment apparatus and method for operating that

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065923A1 (en) * 2003-01-16 2004-08-05 Medizinisches Laserzentrum Lübeck GmbH Method and device for contactless temperature monitoring and temperature adjustment
JP2008161226A (en) * 2006-12-26 2008-07-17 Nidek Co Ltd Ophthalmic laser treatment apparatus
JP2008183247A (en) * 2007-01-30 2008-08-14 Nidek Co Ltd Ophthalmic laser therapy apparatus
KR20150128624A (en) * 2014-05-09 2015-11-18 주식회사 루트로닉 Ocular treatment apparatus
KR20160015044A (en) * 2014-07-30 2016-02-12 주식회사 루트로닉 Ocular treatment apparatus and method for operating that

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564836B2 (en) 2010-05-10 2023-01-31 Ramot At Tel Aviv University Ltd. System and method for treating an eye
US11771596B2 (en) 2010-05-10 2023-10-03 Ramot At Tel-Aviv University Ltd. System and method for treating an eye
US11382794B2 (en) 2018-07-02 2022-07-12 Belkin Laser Ltd. Direct selective laser trabeculoplasty
WO2021048723A1 (en) * 2019-09-12 2021-03-18 Belkin Laser Ltd. Selective laser stimulation of corneal stem cells
CN114206436A (en) * 2019-09-12 2022-03-18 贝尔金视觉有限公司 Selective laser stimulation of corneal stem cells
CN114206436B (en) * 2019-09-12 2024-03-08 贝尔金视觉有限公司 Selective laser stimulation of corneal stem cells
WO2022130137A1 (en) * 2020-12-16 2022-06-23 Alcon Inc. Adjusting laser pulses to compensate for interfering objects

Also Published As

Publication number Publication date
KR20180012524A (en) 2018-02-06
KR101902862B1 (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2018021780A1 (en) Ophthalmic treatment device and method of controlling same
WO2018021781A1 (en) Ophthalmic treatment device and control method therefor
WO2015170947A1 (en) Ophthalmic treatment device
WO2016018099A1 (en) Ophthalmic treatment device and method for driving same
WO2015088226A1 (en) Ophthalmic treatment device, method for controlling ophthalmic treatment device, and fundus lesion treatment method
KR101107482B1 (en) Method and apparatus for eye alignment
JP5563488B2 (en) Ophthalmic devices and methods for eye observation, examination, diagnosis and / or treatment
JP2022551172A (en) Apparatus for laser vitreolysis
JP2009189624A (en) Ophthalmologic apparatus
WO2017034048A1 (en) Optical treatment apparatus and control method therefor
WO2016024841A1 (en) Ophthalmic treatment device and control method therefor
JP2023513178A (en) Direct laser trabeculoplasty method and apparatus
WO2019194519A1 (en) Ophthalmic treatment apparatus and control method therefor
WO2019203373A1 (en) Ophthalmic treatment apparatus and control method thereof
WO2019031846A1 (en) Ophthalmic treatment device and control method therefor
WO2020130449A1 (en) Ophthalmic therapeutic device and control method therefor
KR102191632B1 (en) An ophthalmic treatment apparatus and method for controlling that
WO2014116045A1 (en) Drugen treatment method and method for controlling drugen treatment device
KR102191633B1 (en) An ophthalmic treatment apparatus and method for controlling that
KR102020841B1 (en) An ophthalmic treatment apparatus and method for controlling that
JP2024046746A (en) Laser system and method for detecting and processing information - Patents.com
EP2805128A1 (en) Speckle interferometric method and system for detecting a movement of a surface
Bliedtner et al. Temperature induced tissue deformation monitored by dynamic speckle interferometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834722

Country of ref document: EP

Kind code of ref document: A1