WO2019203373A1 - Ophthalmic treatment apparatus and control method thereof - Google Patents
Ophthalmic treatment apparatus and control method thereof Download PDFInfo
- Publication number
- WO2019203373A1 WO2019203373A1 PCT/KR2018/004511 KR2018004511W WO2019203373A1 WO 2019203373 A1 WO2019203373 A1 WO 2019203373A1 KR 2018004511 W KR2018004511 W KR 2018004511W WO 2019203373 A1 WO2019203373 A1 WO 2019203373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- treatment
- intensity
- treatment light
- light
- irradiated
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
- A61B3/1241—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes specially adapted for observation of ocular blood flow, e.g. by fluorescein angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00844—Feedback systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00878—Planning
Definitions
- the present invention relates to an ophthalmic treatment device and a control method thereof, and more particularly, to an ophthalmic treatment device and a control method thereof for detecting the condition of the target tissue during the treatment process to control the treatment.
- This treatment device irradiates the laser to the target tissue to deliver energy, thereby inducing a change in the state of the tissue.
- damage may occur to adjacent tissues, and in particular, when treating an ophthalmic lesion, visual damage may occur, which may be fatal.
- the treatment is not made properly. Therefore, there is a need for a technique for precisely monitoring the condition of the target tissue during treatment so as to prevent unnecessary damage and proceed with appropriate treatment.
- An object of the present invention is to provide an ophthalmic treatment apparatus and a control method thereof that can monitor a change in the state of a treatment area in real time during treatment and proceed with the treatment based on this.
- the treatment light irradiation unit for irradiating the treatment light having a pattern consisting of a plurality of micro pulses of increasing intensity sequentially to the treatment position of the eye tissue, while the treatment light is irradiated
- the monitoring unit for monitoring the state information of the treatment position by the treatment light, the irradiation of the treatment light to the treatment position is automatically stopped when it is detected that a target state change has occurred in the treatment position based on the monitored state information.
- An ophthalmic treatment comprising a control unit configured to control the control unit, a guide unit for guiding a user to determine whether the treatment intensity is suitable based on a time point at which a state change of the treatment position is detected, and a setting unit for adjusting the treatment intensity by the user.
- a control unit configured to control the control unit
- a guide unit for guiding a user to determine whether the treatment intensity is suitable based on a time point at which a state change of the treatment position is detected
- a setting unit for adjusting the treatment intensity by the user.
- the guide unit may guide the user whether the treatment intensity is appropriate based on the number of micro pulses previously irradiated until the treatment light irradiation is automatically stopped.
- the treatment light is set to emit micro pulses N times at one treatment position
- the guide unit may increase the treatment intensity if the micro pulses irradiated until the treatment light is automatically stopped are n1 or more times n2 or less. If it is indicated as appropriate and the micropulse irradiated until the treatment light is automatically stopped is less than n1 times, the guide portion indicates that the treatment intensity is excessive and the irradiated micropulse is detected until the treatment light is automatically stopped. When n2 times is exceeded, the guide part may indicate that the treatment strength is weak.
- the setting unit is configured to allow the user to adjust the intensity of the micro pulse having the maximum intensity, if the intensity of the micro pulse having the maximum intensity is adjusted, the intensity of the remaining micro pulses is also adjusted in a predetermined manner so that the treatment intensity is It can be configured to be adjusted.
- the initial intensity of the micro pulse having the maximum intensity may be a minimum intensity value at which leakage is observed in the RPE region through fluorescein angiography when the micro pulse is irradiated to the test region.
- the monitoring unit may include a first monitoring unit and a second monitoring unit configured to detect a state change of the treatment position in a different manner from each other, and wherein the control unit is configured to monitor the first monitoring unit and the second monitoring while the treatment light is irradiated. If any one of the units is detected a change in the state of the treatment position may be controlled to automatically stop the treatment light.
- the controller may be configured to automatically adjust the treatment intensity to correspond to the appropriate treatment intensity based on the judgment of the guide.
- the object of the present invention irradiating the treatment light consisting of a plurality of micro pulses of increasing intensity sequentially through the treatment light irradiation to the treatment position of the eye tissue, the treatment light is irradiated through the monitoring unit Monitoring the change of state of the treatment position during the treatment, automatically stopping the treatment light when a change of state of the treatment position occurs while the treatment light is irradiated, based on a time point at which the change of state of the treatment position is detected. It may also be achieved by a control method of an ophthalmic treatment device comprising the step of guiding the user through the guide unit whether the treatment intensity is suitable.
- the object of the present invention described above is to set a treatment intensity by irradiating test pulses having different intensities to the test area of the eye tissue, consisting of a plurality of micro-pulse sequentially increasing the intensity based on the set treatment intensity Irradiating a treatment light to a treatment position of an eye tissue, monitoring a change in state of the treatment position while the treatment light is irradiated to the treatment position, and automatically stopping the treatment light when a change in state of the treatment position is detected.
- the treatment intensity information guided on the basis of the step of the step and the change in the state of the treatment position is detected it can also be achieved by a treatment method using an ophthalmic treatment device comprising the step of adjusting the treatment intensity.
- the setting of the treatment intensity may include irradiating a plurality of test pulses having different intensities to the test regions at different positions, and irradiating the plurality of test pulses using fluorescein angiography. And determining the treatment intensity using the lowest value of the intensities of the test pulses irradiated to the leaked position.
- the present invention even if the tissue characteristics for each treatment location is different, it is possible to confirm the suitability of the treatment intensity in real time, thereby minimizing the occurrence of undesirable damage or insufficient treatment.
- FIG. 1 is a schematic diagram schematically showing an ophthalmic treatment device according to an embodiment of the present invention
- FIG. 2 is a block diagram schematically showing the components of the ophthalmic treatment device of FIG.
- FIG. 3 is an enlarged cross-sectional view of region A of FIG. 2;
- FIG. 5 is a view showing an image of a fundus of a patient
- FIG. 6 is a graph showing a treatment light irradiation pattern irradiated to one treatment position and a monitoring value detected
- FIG. 7 is a graph for explaining a criterion for determining the treatment intensity of the guide unit of FIG.
- FIG. 8 to 10 are views illustrating various display examples of the guide part of FIG. 2;
- FIG. 11 is a flowchart illustrating a control method of an ophthalmic treatment apparatus according to the present embodiment
- FIG. 12 is a flowchart illustrating the initial treatment intensity setting step of FIG. 11 in more detail.
- the ophthalmic treatment device described below will be described with reference to a device for treating an ocular fundus lesion, but the present invention can be applied to a treatment device for treating ophthalmic lesions other than the ocular fundus lesion.
- a treatment device for treating ophthalmic lesions other than the ocular fundus lesion.
- it may be applied to a device for treating anterior eye lesions, such as glaucoma, or may be applied to a device for treating lesions occurring in the lens, such as cataracts.
- the present invention is found to be widely used in the treatment device for treating lesions of other medical subjects such as skin lesions as well as ophthalmic lesions.
- the term 'treatment area' may mean an area requiring treatment, and an area as a predetermined area or a predetermined length section.
- the "treatment position" is a position where treatment is performed in the treatment area, and may mean a position as a spot located at a specific coordinate.
- the 'target tissue' refers to the tissue to be treated. When a plurality of tissues form a layered structure according to the depth at a specific treatment position, the target tissue may be a tissue located at all or part of the depth section.
- treatment may be performed by sequentially irradiating light to a plurality of 'treatment locations' located in the treatment area.
- the 'test area' is an area to which the test light is irradiated to set a parameter of the treatment light.
- This test area refers to an area where a lesion is located and is separated from a treatment area requiring treatment.
- the ophthalmic treatment apparatus is a device for performing treatment by irradiating the treatment light on the fundus, and includes a slit lamp 10 and an interface unit 20 as shown in FIG. 1.
- the slit lamp 10 is a device for the user to observe the patient's eyes and proceed with treatment.
- One side of the main body of the slit lamp 10 is provided with an object part 180 for fixing the position of the eye of the patient.
- the other side is provided with an eyepiece part 170 on which the user's eye is located to observe the eye of the patient.
- various components for performing the treatment operation are provided in the slit lamp 10, which will be described in more detail below.
- the operation unit 30 for controlling the operation of the treatment device may be provided outside the slit lamp.
- the operation unit 30 is configured using a structure such as a keyboard, a joystick, a pedal, and the user can manipulate the operation unit 30 to manipulate the viewing direction of the slit lamp or the treatment operation of the treatment apparatus.
- the interface unit 20 is provided at a position adjacent to the slit lamp 10 and is configured to display various types of information necessary for the user during the treatment, or to allow the user to input / set commands and information. As shown in FIG. 1, the interface unit 20 includes a display device such as a monitor. The display device may be configured to input information through a touch screen function of the display device, or may include a separate input device such as a keyboard or a mouse.
- FIG. 2 is a block diagram schematically illustrating internal components of the ophthalmic treatment device of FIG. 1.
- the slit lamp 10 includes a treatment light irradiation unit for generating treatment light and irradiating the treatment light to the fundus.
- the treatment light irradiator includes a treatment light generator 110 for generating a treatment beam and a beam delivery unit 130 for delivering the treatment light generated by the treatment light generator to the fundus.
- it may further include a collimation light generating unit 120 for indicating a position to which the treatment light is irradiated.
- the apparatus further includes an imaging unit 140 for photographing a patient's fundus image, a monitoring unit 150 for sensing state change information of the tissue caused by the treatment light, and a controller 160 for controlling various components. can do.
- the treatment light generator 110 includes a treatment light source (not shown) and various optical elements (not shown) for modulating the characteristics of light generated by the treatment light source.
- the treatment light source of the present embodiment includes a laser medium or a laser diode such as Nd: YLF, Nd: YAG, Ho: YAG, and the like, to generate a laser as the treatment light.
- the treatment light generating unit of the present embodiment is configured to include a laser medium of Nd: YLF, and uses a laser having a wavelength of 527 nm as the treatment light.
- Such treatment light may be composed of a plurality of micro pulses irradiated with a predetermined time gap. However, specific details of the treatment light pattern will be described below.
- the beam delivery unit 130 includes a plurality of optical elements to form an optical path through which the treatment light travels. Therefore, the treatment light generated by the treatment light generator 110 travels along the beam delivery unit 130 and is irradiated in the fundus direction.
- the beam delivery unit 130 may form an optical path through which aiming light and / or photographing light, which will be described later, in addition to the treatment light.
- the beam delivery unit 130 includes at least one beam combiner 131 such that the aiming light and / or the imaging light are joined on the optical path, and the fundus direction Can be investigated.
- the collimated light and / or the photographed light reflected by the fundus may travel in the reverse direction through the beam delivery unit 130 to proceed to the eyepiece 170 or may be received by the imaging unit 140.
- the present invention is not limited thereto, and the aiming light and / or the photographing light may be implemented by forming or omitting a separate light path that is separated from the irradiation path of the treatment light.
- the beam delivery unit 130 includes a scanner 132 for changing the position at which light is irradiated.
- the scanner 132 includes at least one reflective member and a driving unit for rotating the scanner 132.
- the scanner 132 may change the irradiation position of the light reflected by the reflecting member while rotating the reflecting member.
- the beam delivery unit 130 may further include an optical element such as a plurality of optical lenses and an optical filter for focusing or dispersing light.
- the beam delivery unit 130 may adjust various parameters including the spot size at which the treatment light is irradiated onto the treatment area by using these optical elements.
- the alternative unit 180 is a configuration in which the eye of the patient to be treated is positioned, and includes an objective lens or a contact lens in contact with the eye of the patient. Furthermore, the alternative may further include a suction device for sucking and fixing the anterior part of the patient so as to fix the eye of the patient.
- the aiming light generation unit 120 generates an aiming light (aiming beam).
- the aiming light is configured to be irradiated to the treatment position to which the treatment light is irradiated and to indicate the position so that the operator can identify the position to which the treatment light is to be irradiated before or during the treatment light.
- the aiming light generated by the aiming light generating unit 120 is reflected after being irradiated to the treatment area of the fundus through the beam delivery unit 130.
- the aiming light has a wavelength of the visible light band, the user can confirm the position of the aiming light by checking it through the eyepiece.
- the collimation light generating unit may be omitted.
- the imaging unit 140 is configured to obtain an image of the treatment area of the patient.
- the imaging unit 140 includes an imaging device, and acquires a fundus image by receiving photographed light emitted from a photographing light source (not shown) reflected from the fundus.
- the imaging unit 140 according to the present exemplary embodiment is configured to acquire a fundus image including the entire treatment area.
- the irradiation position of the photographing light may be configured to be changed through the scanner, such as the treatment light, and may be configured to acquire an image of an area adjacent to the treatment light irradiation position.
- an ophthalmic treatment apparatus including an imaging unit is described, but the present invention is not limited thereto, and a configuration corresponding to the imaging unit may be omitted.
- the monitoring unit 150 is configured to detect the state change information of the target tissue located at the treatment position by the treatment light when the treatment light irradiation.
- the monitoring unit may be configured using at least one of various devices such as an optical acoustic sensor, a reflectometry sensor, a temperature sensor, an optical detector, an optical coherence tomography (OCT), and an ultrasonic sensor. Therefore, while the treatment light is irradiated to the treatment position, the state change information of the treatment position may be detected in real time, and whether the target state change has occurred therefrom.
- the monitoring unit 150 of the present embodiment may include a plurality of monitoring units that independently perform the monitoring operation.
- the monitoring unit 150 may include a first monitoring unit and a second monitoring unit measuring a change in the state of the treatment location in different ways. As such, the monitoring unit configures two monitoring units to perform monitoring, thereby making it possible to compensate for the disadvantages of the respective measurement methods.
- the first monitoring unit (not shown) is composed of an optoacoustic sensor for measuring optoacoustic.
- the photoacoustic sensor is provided in the eyepiece 170 in contact with the eye of the patient, and detects the state change of the tissue by measuring the photoacoustic signal generated when the state of the target tissue at the treatment position is made when the treatment light irradiation.
- the second monitoring unit (not shown) is composed of a reflectometer sensor. The second monitoring unit receives the reflected treatment light irradiated to the treatment position, analyzes the parameter of the received light, and monitors state information of the treatment position.
- the second monitoring unit does not receive the reflected treatment light, but has a separate detection light source to irradiate the detection light to the treatment position during the treatment, and to analyze the reflected detection light to monitor the change of the state of the treatment position. It is also possible to configure. As described above, in the present embodiment, the monitoring unit is configured by using the photoacoustic sensor and the reflectometer sensor, but this is an example and various sensors may be used in combination.
- the controller 160 is configured to control various components including the treatment light generator 110, the aiming light generator 120, the beam delivery unit 130, the imaging unit 140, and the like. Control various components based on the content to be operated through the) or the content input or set through the interface unit 20. In addition, based on the information detected by the monitoring unit during the treatment, the aforementioned various components may be controlled to adjust / stop the treatment operation. In addition, the controller 160 receives image information captured by the imaging unit 140, information detected by the monitoring unit 150, and the like, processes and calculates the information, and delivers the information to other components.
- the interface unit 20 includes a display unit 210 and an input unit 220.
- the display unit 210 is a component for displaying and transmitting various types of information to the user
- the input unit 220 is a component that allows the user to input and transmit information and commands to the device.
- the display unit 210 is configured as a display device capable of displaying various information including an image.
- the fundus image photographed by the above-described imaging unit 140 or the fundus image previously photographed by a separate fundus camera is transmitted through the controller 160 to be displayed on the display unit 210, and the user is displayed on the display unit 210.
- the patient's fundus image can be checked.
- the fundus image may be used in various ways to confirm the location of the lesion before treatment, to set the irradiation position of the treatment light, or to confirm the treatment result.
- various information may be displayed to the user through the display unit.
- the input unit 220 is a component in which the user transmits various information or commands to the treatment apparatus. Accordingly, the user may input patient information and treatment information through the input unit 220, instruct a treatment operation, and select a desired one from various options provided by the treatment apparatus. For example, the user may set the treatment area on the fundus image displayed on the display unit 210 using the input unit 220, select one of the treatment modes proposed by the treatment device, or store the treatment stored in the treatment device. It is also possible to select any one of the position patterns irradiated with light.
- the input unit 220 may be configured to input various information by using a separate input device such as a keyboard or a mouse, or by using a touch screen function of a display forming the display unit 210.
- the guide unit 230 provides guide information for the user to refer to while performing a treatment operation based on the state change information detected by the monitoring unit 150 during the treatment.
- the guide unit 230 may display to the user whether the intensity of the treatment light irradiated to the corresponding position during the treatment is appropriate.
- the user may adjust the treatment light intensity by referring to the information on whether the treatment light intensity is provided by the guide unit 230.
- the treatment light intensity may mean a pulse energy value of the treatment light.
- the suitability of the treatment light intensity may be determined in consideration of whether a target tissue state change is caused at the corresponding position, safety in consideration of tissue specificity, and possibility of incomplete treatment.
- Guide unit 230 of the present embodiment is configured to be displayed to the user through the display device of the interface unit 20.
- it may be configured to be displayed through a separate display provided inside the slit lamp so that the user can check through the eyepiece 170 during treatment.
- specific guide content of these guide units will be described separately below.
- the ophthalmic treatment device further includes a setting unit 240 that can set the irradiation intensity of the treatment light.
- the setting unit 240 may be a component provided in the interface unit 20.
- the user may set the intensity of the treatment light through the setting unit 240 in consideration of patient information, lesion location and condition.
- the setting unit 240 and the input unit 220 are shown to be separate components, but the setting unit 240 and the input unit 220 are shown separately based on the contents input to the apparatus. It is also possible.
- 3 is an enlarged cross-sectional view of region A of FIG. 2.
- 3A illustrates fundus tissue, particularly retinal tissue, of a patient corresponding to a treatment area.
- retinal tissues generally have an internal limiting layer, a nerve fiber layer, a ganglion cell layer, an inner plexiform layer, an inner nuclear layer, and an outer reticular layer. It consists of 10 layers (outer plexiform layer, outer nuclear layer, external limiting layer, photoreceptor layer, and RPE layer (retinal pigment epithelial layer) (inner depth from retinal surface) direction).
- the RPE cell layer forms a boundary layer in the rear direction among the ten layers above, and is formed in a tight junction structure.
- a Bruch's membrane is located below the RPE layer.
- the RPE layer receives nutrients and oxygen from blood vessels located in the choroid, and supplies nutrients to the photoreceptor, and discharges waste products generated from the photoreceptor through the Bruch membrane.
- the ophthalmic treatment device proceeds the treatment of inducing the activation of new RPE cells by delivering energy to the RPE cell layer by selectively irradiating the therapeutic light.
- the treatment light has a wavelength in the visible or near infrared region.
- This therapeutic light is transmitted to the cell layer (first cell layer to the ninth cell layer) located in front of the retina with little absorption, and then absorbed by the melanosomes present inside the RPE cells.
- the target state change is a state in which the temperature of the RPE cells rises and a predetermined level of microbubbles are generated on the surface of the melanosome, in which case the RPE cells are selectively necrotic to induce new RPE cells. I judge it.
- the present invention controls the treatment contents by monitoring the state information of the treatment position while the treatment light is irradiated to one treatment position, and further, the guide unit 230 continuously receives information on whether the intensity of the treatment light is appropriate. Display to the user so that the user can adjust and treat the treatment light intensity.
- FIG. 4 is a diagram illustrating an irradiation pattern of treatment light.
- one treatment light is configured in a pattern in which N micro pulses P irradiated at predetermined periods are combined and set to irradiate N micro pulses at one treatment position.
- Each of the micro pulses P has a form in which pulse energy, that is, intensity, increases sequentially in the order of irradiation.
- the intensity of each micro pulse may be in the range of 50 ⁇ J to 200J.
- the treatment light is configured to consist of 15 micro pulses.
- Each micro pulse is irradiated at a period of 100 Hz, and the duration of each micro pulse may be 1.7 ms.
- the intensity of the first micropulse corresponds to 50% of the intensity of the fifteenth micropulse, and each micropulse may be configured to increase evenly by about 3.57% of the fifteenth micropulse intensity.
- the intensity of the treatment light may refer to the intensity distribution of the micro pulses constituting the treatment light.
- the intensity setting of the treatment light can be set in various ways, and in this embodiment, the intensity of the treatment light is set by setting the intensity of the fifteenth micro pulse P15 having the maximum intensity.
- the intensity of the initial treatment light can be set based on the user's experience or information previously stored in the in-device database.
- the intensity of the treatment light may be determined by performing a test step of irradiating the test light to a separate test area before treatment so that the patient-specific treatment may be performed.
- the test area C for performing the test step may be selected as an area separate from the treatment area B in which the lesion is located.
- the test area C is an area where no lesion is located, and may select a location adjacent to the treatment area.
- the test light is irradiated to the plurality of test positions T0 located in the test area. Since the test step is for selecting the intensity of the treatment light, the test light may use light irradiated through the treatment light irradiation unit.
- the test light irradiated to each test position is irradiated with different output intensities.
- the position where the test light is irradiated is confirmed by fluorescein angiography.
- the leakage observed by fundus fluorescein angiography is due to a change in the state of RPE cells (steps that change beyond the level at which microblasts occur). Therefore, the intensity of the micro pulse P15 having the maximum intensity among the treatment light patterns may be set using the lowest intensity value among the test lights causing leakage in the RPE layer.
- the intensity of the fifteenth micro pulse is set, the intensity of the remaining micro pulses is also set automatically according to the above-described ratio, thereby setting the intensity of all the treated light. Then, the treatment proceeds while the treatment light is irradiated to the treatment position at the intensity set as described above.
- FIG. 6 is a graph showing a treatment light irradiation pattern irradiated to one treatment position and a monitored monitoring value. As shown in FIG. 6, while the plurality of micro pulses P are in progress to one treatment position, the monitoring unit 150 detects a state change of the treatment position. In addition, when a signal of more than the reference value V1 is detected from the monitoring unit 150 to detect that a target state change of the target tissue has occurred, the controller 160 automatically stops the treatment light irradiation and ends.
- the micropulse does not proceed N times in every treatment position. If it is determined that the treatment is completed by monitoring the condition of the tissue in real time, the treatment for the position is terminated without irradiating the remaining micro pulses. Thereby, it is possible to prevent unnecessary tissue damage.
- the change in state of the target tissue tends to depend on whether micropulses of sufficient intensity are irradiated, rather than the cumulative amount of energy delivered by the plurality of micropulses. Therefore, in the case of the irradiation pattern of the treatment light and the automatic stop method according to the present embodiment, it is possible to proceed with the treatment using the micro pulse of the minimum intensity causing the state change of the tissue.
- FIG. 6 shows only signals detected by one monitoring unit of the monitoring unit. However, this is for convenience of description, when using two monitoring units at the same time as in the present embodiment, if any one of the first, second monitoring unit detects a change in the position of the treatment position and determines that a change in state It is also possible to configure the algorithm to automatically terminate the treatment light.
- the treatment proceeds at a plurality of treatment locations within the treatment area.
- the treatment light intensity required to reach a change in the state of the tissue may be different. Therefore, even if irradiated with the treatment light of the same intensity, the condition change can be sensed after the micro pulses are irradiated twice at some positions, and the treatment light irradiation can be terminated, and at some positions, the micro pulses are irradiated with all 15 times (automatic The state change may not be detected even if it is not stopped.
- the treatment light intensity is set higher than that of the corresponding tissue characteristics, and there is a possibility that overtreatment occurs at a specific position.
- the treatment light intensity is set lower than that of the corresponding tissue characteristic, so that treatment may not be performed properly at a specific position.
- the guide unit 230 determines whether the set treatment light intensity is appropriate based on the time point at which the state change of the treatment position is detected while the treatment for one treatment position is in progress. Provide information to the user.
- the time point may mean the number of micro pulses (n, the number of micro pulses irradiated to the treatment position) irradiated until the time when the state change of the tissue is automatically stopped.
- the guide unit 230 is It may be determined that the treatment light intensity is excessively set in an appropriate range. In this case, an automatic stop may occur by the first micropulse at another adjacent position, since excessive damage may also be caused by the intensity of the first micropulse.
- the guide unit 230 may determine that the treatment light intensity is set to fall within an appropriate range. have. In this case, the automatic stop may not be made while all N micropulses are irradiated at other adjacent positions, because the treatment is not properly performed.
- n1 and n2 may be set in consideration of the margin of safety and the possibility of incomplete treatment.
- n1 may be a value of 20% or more of N
- n2 may be a value of 80% or less of N (n1, n2 ⁇ N).
- the treatment light irradiation is terminated after three or less micropulses are irradiated, it is determined that the set treatment light intensity is excessive, and when the treatment light irradiation is finished after 13 or more micro pulses are irradiated, the set treatment light intensity is weak. You can judge.
- the guide unit 230 determines whether the treatment light intensity setting is appropriate based on the treatment progressed at each treatment position, and guides it to the user.
- the guide unit 230 may be configured in various ways to indicate whether the treatment light intensity is suitable for the user.
- 8 to 10 are views illustrating various display examples of the guide unit of FIG. 2, and various examples of the guide unit will be described below with reference to FIGS. 8 to 10.
- the guide unit may be configured to selectively display or alternatively light three arrow icons representing different directions.
- the arrow displayed downward is selectively displayed / lighted so that the user can adjust the treatment light intensity low.
- the user selectively displays / lights the arrow displayed upward in order to increase the treatment light intensity.
- the horizontal arrow is selectively displayed / lit.
- an icon in the form of an arrow is displayed to the user, but this is an example and may be displayed using various shapes, colors, and characters.
- such a display may be displayed through the display unit 210 of the interface unit, and may be displayed using a display element provided inside the slit lamp so that the user can check it while using the slit lamp 10. It is possible.
- the guide unit may indicate whether the treatment light intensity of each treatment position is appropriate on the fundus image. That is, as shown in FIG. 9, the treatment position of the fundus image displayed on the display unit 210 may be displayed, and spots of each treatment position may be differently displayed according to excessive treatment intensity, proper treatment intensity, and insufficient treatment intensity. . For example, spots may be displayed differently using colors, shades, shapes, or the like, or it is possible to display the treatment light intensity in a manner of describing a numerical value adjacent to the spots.
- the guide unit may directly display a phrase suggesting treatment light intensity control to the user.
- the treatment operation may be guided by directly suggesting to the user to lower the treatment light intensity.
- the display example of the guide unit described with reference to FIGS. 8 to 10 may alternatively be implemented. Alternatively, the guide unit may be simultaneously displayed using a separate window. Meanwhile, in the above-described example, it is described that the determination of the suitability of the treatment light intensity for one treatment position is indicated. However, the determination that the set treatment light intensity is excessive or insufficient appears to be above a certain specific gravity. For example, it can be controlled to be displayed to the user only when it appears continuously.
- the user is provided with information on whether the treatment light intensity is suitable while the treatment is in progress from the guide unit 230, if it is determined that it is necessary to adjust the treatment light intensity through the setting unit 240 to proceed with the treatment Can be. If the indication that the treatment light intensity set by the guide unit 230 is excessive is repeated, the user may adjust the intensity of the maximum micro pulse by 10 ⁇ J through the setting unit 240. Alternatively, when the indication that the set treatment light intensity is weak is repeated, the user may adjust the intensity of the maximum micro pulse by 10 ⁇ J through the setting unit 240.
- control unit itself may be configured to automatically adjust and control the treatment light intensity based on the information determined by the guide unit.
- FIG. 11 is a flowchart illustrating a control method of an ophthalmic treatment apparatus according to the present embodiment
- FIG. 12 is a flowchart illustrating the initial treatment light intensity setting step of FIG. 11 in more detail.
- the treatment area of the fundus is determined, and various modes necessary for treatment and input of information are performed.
- the step of setting the initial treatment light intensity may be set using the result of irradiating the test light to a test region which is separated from the treatment region.
- the test light is irradiated to the test area C of the fundus, which is distinguished from the treatment area B.
- FIG. 11 the test light is irradiated to each of 5 to 18 test positions T0 in the test region in the form of a single micro pulse, and the intensity of the micro pulses irradiated to each position is set differently.
- the test light may use the light generated from the treatment light generator 110 (S11).
- the initial treatment light intensity is set by setting the intensity to the intensity of the micro pulse (the 15th pulse) having the maximum intensity among the treatment lights (S13).
- the treatment light is irradiated to the first treatment position positioned in the treatment region at the set intensity (S20).
- the treatment light is composed of N (15) micro pulses of sequentially increasing intensity.
- the monitoring unit 150 detects a signal generated from the treatment position, and detects whether the target tissue state changes (S30).
- the algorithm for detecting the change in the tissue state in the monitoring unit 150 is replaced with the above-described parts.
- the treatment light irradiation step (S20) and the step (S30) of detecting the state change is shown as being a step that proceeds sequentially, but this is for convenience of description, the two steps are the treatment for the treatment location It runs in parallel at the same time until it is finished.
- the controller 160 automatically stops the treatment light irradiation without irradiating the remaining micro pulses to the first treatment position. End the treatment (S40).
- the set N micro pulses are irradiated, and then the treatment for the first treatment position is terminated.
- the user performs the step of adjusting the treatment light intensity by referring to the information guided by the guide unit 230 (S60). For example, when the treatment light intensity irradiated to the first treatment position is guided to be excessive, the treatment light intensity, ie, the intensity of the maximum micro pulse, may be adjusted to lower the guide, and the treatment light intensity irradiated to the first treatment position is insufficient. Treatment light intensity can be increased. However, this step is not necessarily a step to be performed, and if the therapeutic light intensity is guided to an appropriate level or if the user determines that the therapeutic light intensity is guided to be excessive or insufficient, the treatment light will not be affected. The following steps can be performed without adjusting the intensity.
- the steps corresponding to S20 to S60 can be repeated at the treatment position. Thereafter, the treatment may proceed in the same manner with respect to the third and fourth treatment positions. At this time, in each treatment position, the treatment can be performed with the adjusted treatment light intensity reflecting the treatment result of the previously treated position, so that it is possible to proceed with the appropriate treatment.
- the treatment light automatically stops and proceeds to the optimal treatment, while continually guiding the optimal treatment light intensity considering the characteristics of the tissue
- the therapeutic effect can be improved by improving safety and preventing the treatment from being omitted.
- the damage information of the tissue according to the irradiation of each treatment light is guided so that the user can perform the treatment with reference thereto, thereby minimizing the difference in treatment result according to the user's skill level.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Laser Surgery Devices (AREA)
Abstract
The present invention relates to an ophthalmic treatment apparatus and a control method thereof. More particularly, the present invention provides an ophthalmic treatment apparatus and a control method thereof, the ophthalmic treatment apparatus comprising: a treatment light irradiation unit for irradiating treatment light having a pattern composed of a plurality of pulses increasing in intensity sequentially to a treatment position of an intraocular tissue; a monitoring unit for monitoring state information of the treatment position by the treatment light while the treatment light is being irradiated; a control unit for controlling the irradiation of treatment light to the treatment position to be automatically stopped when an intended change in the state of the treatment position is detected on the basis of the monitored state information; a guide unit for guiding a user on whether the intensity of the treatment light is appropriate on the basis of a point in time when the change in the state of the treatment position is detected; and a setting unit in which a user can adjust the intensity of the treatment light.
Description
본 발명은 안과용 치료장치 및 이의 제어방법에 관한 것으로, 보다 상세하게는 치료가 진행되는 동안 타겟 조직의 상태를 감지하여 치료 내용을 제어하는 안과용 치료장치 및 이의 제어방법에 관한 것이다.The present invention relates to an ophthalmic treatment device and a control method thereof, and more particularly, to an ophthalmic treatment device and a control method thereof for detecting the condition of the target tissue during the treatment process to control the treatment.
최근 들어, 인체 조직에 광을 조사하여 조직의 상태를 변화시켜 병변을 치료하는 기술이 널리 적용되고 있다. 특히, 레이저를 이용한 치료 기술은 다양한 안과 관련 병변에 널리 사용되고 있다. 예를 들어, 각막 성형, 녹내장 치료 및 백내장 수술 등의 전안부 병변을 치료하는 장치가 널리 상용화되었으며, 최근에는 황반 변성 등의 안저 영역에 발생하는 병변을 치료하는 장치가 개발되고 있다. Recently, technology for treating lesions by changing the state of tissues by irradiating human tissues with light has been widely applied. In particular, laser treatment techniques are widely used in a variety of ophthalmic related lesions. For example, devices for treating anterior eye lesions such as corneal plastic surgery, glaucoma treatment, and cataract surgery have been widely commercialized, and recently, apparatuses for treating lesions occurring in the fundus region such as macular degeneration have been developed.
이러한 치료장치는 레이저를 타겟 조직으로 조사하여 에너지를 전달하고, 이에 의해 조직의 상태 변화를 유도한다. 다만, 타겟 조직으로 에너지가 과다하게 전달되면 인접한 조직까지 손상이 발생하는 문제가 발생하게 되며, 특히 안과 병변 치료시에는 시력 손상까지 야기할 수 있어 치명적일 수 있다. 반면, 타겟 조직에 충분한 에너지가 전달되지 않을 경우, 치료가 제대로 이루어지지 않는 문제점이 있다. 따라서, 불필요한 손상을 방지하고 적합한 치료를 진행할 수 있도록, 치료 중 타겟 조직의 상태를 정밀하게 모니터링하는 기술이 필요하다.This treatment device irradiates the laser to the target tissue to deliver energy, thereby inducing a change in the state of the tissue. However, when excessive energy is delivered to the target tissue, damage may occur to adjacent tissues, and in particular, when treating an ophthalmic lesion, visual damage may occur, which may be fatal. On the other hand, if not enough energy is delivered to the target tissue, there is a problem that the treatment is not made properly. Therefore, there is a need for a technique for precisely monitoring the condition of the target tissue during treatment so as to prevent unnecessary damage and proceed with appropriate treatment.
본 발명은 치료 중 치료 영역의 상태 변화를 실시간으로 모니터링하고, 이에 근거하여 치료를 진행할 수 있는 안과용 치료장치 및 이의 제어방법을 제공하기 위함이다.An object of the present invention is to provide an ophthalmic treatment apparatus and a control method thereof that can monitor a change in the state of a treatment area in real time during treatment and proceed with the treatment based on this.
상기한 목적을 달성하기 위해, 본 발명은, 순차적으로 강도가 증가하는 복수의 마이크로 펄스로 구성되는 패턴을 갖는 치료광을 안조직의 치료 위치로 조사하는 치료광 조사부, 상기 치료광이 조사되는 동안 상기 치료광에 의한 상기 치료 위치의 상태 정보를 모니터링하는 모니터링부, 상기 모니터링된 상태 정보에 근거하여 상기 치료 위치에 목표한 상태 변화가 발생한 것으로 감지되면 상기 치료 위치로의 상기 치료광 조사가 자동 멈춤되게 제어하는 제어부, 상기 치료 위치의 상태 변화가 감지된 시점에 근거하여, 치료 강도가 적합한지 여부를 사용자에게 가이드하는 가이드부 및, 사용자가 상기 치료 강도를 조절할 수 있는 설정부를 포함하는 안과용 치료장치를 제공한다.In order to achieve the above object, the present invention, the treatment light irradiation unit for irradiating the treatment light having a pattern consisting of a plurality of micro pulses of increasing intensity sequentially to the treatment position of the eye tissue, while the treatment light is irradiated The monitoring unit for monitoring the state information of the treatment position by the treatment light, the irradiation of the treatment light to the treatment position is automatically stopped when it is detected that a target state change has occurred in the treatment position based on the monitored state information. An ophthalmic treatment comprising a control unit configured to control the control unit, a guide unit for guiding a user to determine whether the treatment intensity is suitable based on a time point at which a state change of the treatment position is detected, and a setting unit for adjusting the treatment intensity by the user. Provide the device.
여기서, 가이드부는 상기 치료광 조사가 자동 멈춤될 때까지 기 조사된 마이크로 펄스의 수에 근거하여 상기 치료 강도가 적합한지 여부를 사용자에게 가이드할 수 있다.Here, the guide unit may guide the user whether the treatment intensity is appropriate based on the number of micro pulses previously irradiated until the treatment light irradiation is automatically stopped.
일 예로서, 상기 치료광은 하나의 치료 위치에 마이크로 펄스를 N회 조사하도록 설정되며, 상기 치료광이 자동 멈춤될 때까지 조사된 마이크로 펄스가 n1회 이상 n2 이하이면 상기 가이드부는 상기 치료 강도가 적합한 것으로 표시하고, 상기 치료광이 자동 멈춤될 때까지 조사된 마이크로 펄스가 n1회 미만이면, 상기 가이드부는 상기 치료 강도가 과도한 것으로 표시하고, 상기 치료광이 자동 멈춤될 때까지 조사된 마이크로 펄스가 n2회를 초과하면, 상기 가이드부는 상기 치료 강도가 약한 것으로 표시할 수 있다.As an example, the treatment light is set to emit micro pulses N times at one treatment position, and the guide unit may increase the treatment intensity if the micro pulses irradiated until the treatment light is automatically stopped are n1 or more times n2 or less. If it is indicated as appropriate and the micropulse irradiated until the treatment light is automatically stopped is less than n1 times, the guide portion indicates that the treatment intensity is excessive and the irradiated micropulse is detected until the treatment light is automatically stopped. When n2 times is exceeded, the guide part may indicate that the treatment strength is weak.
한편, 상기 설정부는 사용자가 최대 강도를 갖는 마이크로 펄스의 강도를 조절할 수 있도록 구성되며, 상기 최대 강도를 갖는 마이크로 펄스의 강도가 조절되면 나머지 마이크로 펄스의 강도 또한 기 설정된 방식으로 조절되어 상기 치료 강도가 조절되도록 구성될 수 있다.On the other hand, the setting unit is configured to allow the user to adjust the intensity of the micro pulse having the maximum intensity, if the intensity of the micro pulse having the maximum intensity is adjusted, the intensity of the remaining micro pulses is also adjusted in a predetermined manner so that the treatment intensity is It can be configured to be adjusted.
이때, 상기 최대 강도를 갖는 마이크로 펄스의 초기 강도는 테스트 영역에 마이크로 펄스를 조사하였을 때 형광 안저 혈관조영술(Fluorescein Angiography)을 통해 RPE 영역에서 누출(leakage)이 관찰되는 최소 강도값일 수 있다.In this case, the initial intensity of the micro pulse having the maximum intensity may be a minimum intensity value at which leakage is observed in the RPE region through fluorescein angiography when the micro pulse is irradiated to the test region.
그리고, 모니터링부는 서로 상이한 방식으로 상기 치료 위치의 상태 변화를 감지하는 제1 모니터링 유닛 및 제2 모니터링 유닛을 포함하고, 상기 제어부는 상기 치료광이 조사되는 동안 상기 제1 모니터링 유닛과 상기 제2 모니터링 유닛 중 어느 하나에서 상기 치료 위치의 상태 변화가 감지되면 상기 치료광을 자동 멈춤시키도록 제어할 수 있다.The monitoring unit may include a first monitoring unit and a second monitoring unit configured to detect a state change of the treatment position in a different manner from each other, and wherein the control unit is configured to monitor the first monitoring unit and the second monitoring while the treatment light is irradiated. If any one of the units is detected a change in the state of the treatment position may be controlled to automatically stop the treatment light.
이때, 가이드부를 통해 상기 치료 강도가 적합한지 여부가 결정되면, 상기 제어부는 상기 가이드의 판단에 근거하여 적합한 치료 강도에 해당하도록 상기 치료 강도를 자동적으로 조절하도록 구성하는 것도 가능하다.In this case, when it is determined whether the treatment intensity is suitable through the guide unit, the controller may be configured to automatically adjust the treatment intensity to correspond to the appropriate treatment intensity based on the judgment of the guide.
한편, 상기한 본 발명의 목적은, 치료광 조사부를 통해 순차적으로 강도가 증가하는 복수의 마이크로 펄스로 구성된 치료광을 안조직의 치료 위치로 조사하는 단계, 상기 모니터링부를 통해 상기 치료광이 조사되는 동안 상기 치료 위치의 상태 변화를 모니터링하는 단계, 상기 치료광이 조사되는 동안 상기 치료 위치의 상태 변화가 발생하면 상기 치료광을 자동 멈춤시키는 단계, 상기 치료 위치의 상태 변화가 감지된 시점에 근거하여, 상기 치료 강도가 적합한지 여부를 가이드부를 통해 사용자에게 가이드하는 단계를 포함하는 안과용 치료장치의 제어방법에 의해서도 달성될 수 있다.On the other hand, the object of the present invention, irradiating the treatment light consisting of a plurality of micro pulses of increasing intensity sequentially through the treatment light irradiation to the treatment position of the eye tissue, the treatment light is irradiated through the monitoring unit Monitoring the change of state of the treatment position during the treatment, automatically stopping the treatment light when a change of state of the treatment position occurs while the treatment light is irradiated, based on a time point at which the change of state of the treatment position is detected. It may also be achieved by a control method of an ophthalmic treatment device comprising the step of guiding the user through the guide unit whether the treatment intensity is suitable.
나아가, 상기한 본 발명의 목적은, 안조직의 테스트 영역에 상이한 강도를 갖는 테스트 펄스를 조사하여 치료 강도를 설정하는 단계, 설정된 치료 강도에 근거하여 순차적으로 강도가 증가하는 복수의 마이크로 펄스로 구성된 치료광을 안조직의 치료 위치로 조사하는 단계, 상기 치료광이 상기 치료 위치로 조사되는 동안 상기 치료 위치의 상태 변화를 모니터링하는 단계, 상기 치료 위치의 상태 변화가 감지되면 상기 치료광을 자동 멈춤시키는 단계 및 상기 치료 위치의 상태 변화가 감지된 시점에 근거하여 가이드 되는 치료 강도 정보에 따라, 상기 치료 강도를 조절하는 단계를 포함하는 안과용 치료장치를 이용한 치료방법에 의해서도 달성될 수 있다.Furthermore, the object of the present invention described above is to set a treatment intensity by irradiating test pulses having different intensities to the test area of the eye tissue, consisting of a plurality of micro-pulse sequentially increasing the intensity based on the set treatment intensity Irradiating a treatment light to a treatment position of an eye tissue, monitoring a change in state of the treatment position while the treatment light is irradiated to the treatment position, and automatically stopping the treatment light when a change in state of the treatment position is detected. According to the treatment intensity information guided on the basis of the step of the step and the change in the state of the treatment position is detected, it can also be achieved by a treatment method using an ophthalmic treatment device comprising the step of adjusting the treatment intensity.
여기서, 상기 치료 강도를 설정하는 단계는, 상기 테스트 영역에 상이한 강도를 갖는 복수의 테스트 펄스를 각각 상이한 위치에 조사하는 단계, 형광 안저 혈관 조영술(Fluorescein Angiography)을 이용하여 상기 복수의 테스트 펄스가 조사된 위치의 누출(leakage) 여부를 확인하는 단계 및 상기 누출이 있는 위치로 조사된 테스트 펄스들의 강도 중 최저값을 이용하여 상기 치료 강도를 설정하는 단계를 포함할 수 있다.The setting of the treatment intensity may include irradiating a plurality of test pulses having different intensities to the test regions at different positions, and irradiating the plurality of test pulses using fluorescein angiography. And determining the treatment intensity using the lowest value of the intensities of the test pulses irradiated to the leaked position.
본 발명에 의할 경우, 치료 위치별 조직 특성이 상이한 경우에도 실시간으로 치료 강도의 적합 여부를 확인할 수 있어, 바람직하지 않은 손상이 발생하거나 치료가 충분히 이루어지지 않는 경우를 최소화할 수 있다.According to the present invention, even if the tissue characteristics for each treatment location is different, it is possible to confirm the suitability of the treatment intensity in real time, thereby minimizing the occurrence of undesirable damage or insufficient treatment.
또한, 치료 중 실시간으로 치료 강도에 대한 정보가 사용자에게 가이드되므로, 사용자의 숙련도와 관계없이 균질한 수준의 치료를 제공하는 것이 가능하다.In addition, since information about the treatment intensity is guided to the user in real time during the treatment, it is possible to provide a homogeneous level of treatment regardless of the user's skill.
도 1은 본 발명의 일 실시예에 따른 안과용 치료장치를 개략적으로 도시한 개략도,1 is a schematic diagram schematically showing an ophthalmic treatment device according to an embodiment of the present invention,
도 2는 도 1의 안과용 치료장치의 구성요소를 개략적으로 도시한 블록도,2 is a block diagram schematically showing the components of the ophthalmic treatment device of FIG.
도 3은 도 2의 A 영역을 확대하여 그린 단면도,3 is an enlarged cross-sectional view of region A of FIG. 2;
도 4는 치료광의 조사 패턴을 도시한 그래프,4 is a graph showing the irradiation pattern of the treatment light,
도 5는 환자의 안저 이미지를 표시한 도면,5 is a view showing an image of a fundus of a patient,
도 6은 하나의 치료 위치에 조사되는 치료광 조사 패턴 및 감지되는 모니터링값을 도시한 그래프,6 is a graph showing a treatment light irradiation pattern irradiated to one treatment position and a monitoring value detected;
도 7은 도 2의 가이드부가 치료 강도를 판단하는 기준을 설명하기 위한 그래프, 7 is a graph for explaining a criterion for determining the treatment intensity of the guide unit of FIG.
도 8 내지 도 10은 도 2의 가이드부의 다양한 표시예를 도시한 도면,8 to 10 are views illustrating various display examples of the guide part of FIG. 2;
도 11은 본 실시예에 따른 안과용 치료장치의 제어방법을 도시한 순서도이이고, 11 is a flowchart illustrating a control method of an ophthalmic treatment apparatus according to the present embodiment,
도 12는 도 11의 초기 치료 강도 설정 단계를 보다 상세하게 나타낸 순서도이다. 12 is a flowchart illustrating the initial treatment intensity setting step of FIG. 11 in more detail.
이하에서는 도면을 참고하여 본 발명의 실시예에 따른 안과용 치료장치 및 이의 제어방법에 대해 구체적으로 설명한다. 아래의 설명에서 각 구성요소의 위치 관계는 원칙적으로 도면을 기준으로 설명한다. 도면은 설명의 편의를 위해 발명의 구조를 단순화하거나 필요할 경우 과장하여 표시될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며 이 이외에도 각종 장치를 부가하거나, 변경 또는 생략하여 실시할 수 있음은 물론이다.Hereinafter, an ophthalmic treatment apparatus and a control method thereof according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the positional relationship of each component is explained based on the drawings in principle. The drawings may be displayed to simplify the structure of the invention or to exaggerate if necessary for the convenience of description. However, the present invention is not limited thereto, and various other devices may be added, changed, or omitted.
이하에서 설명되는 안과용 치료장치는 안저 병변을 치료하는 장치를 중심으로 설명되나, 본 발명은 안저 병변 이외의 다른 안과 병변을 치료하는 치료 장치에도 적용될 수 있다. 예를 들어, 녹내장과 같은 전안부 병변을 치료하는 장치에 적용될 수 있으며, 백내장과 같은 수정체에 발생하는 병변을 치료하는 장치에 적용될 수도 있다. 나아가, 본 발명은 안과 병변 이외에도 피부 병변과 같은 다른 진료과목의 병변을 치료하는 치료장치에도 널리 활용될 수 있음을 밝혀둔다.The ophthalmic treatment device described below will be described with reference to a device for treating an ocular fundus lesion, but the present invention can be applied to a treatment device for treating ophthalmic lesions other than the ocular fundus lesion. For example, it may be applied to a device for treating anterior eye lesions, such as glaucoma, or may be applied to a device for treating lesions occurring in the lens, such as cataracts. Furthermore, the present invention is found to be widely used in the treatment device for treating lesions of other medical subjects such as skin lesions as well as ophthalmic lesions.
그리고, 이하에서 '치료 영역'이라함은 치료가 필요한 영역으로서, 소정 면적 또는 소정 길이 구간으로서의 영역을 의미할 수 있다. 그리고, '치료 위치'는 치료 영역 내에 치료가 이루어지는 위치로, 특정 좌표에 위치하는 스팟으로서의 위치를 의미할 수 있다. 나아가, '타겟 조직'은 치료의 대상이 되는 조직을 의미한다. 특정 치료 위치에 깊이에 따라 복수의 조직이 층별 구조를 형성하고 있는 경우, 타겟 조직은 전부 또는 일부 깊이 구간에 위치하는 조직일 수 있다. In addition, hereinafter, the term 'treatment area' may mean an area requiring treatment, and an area as a predetermined area or a predetermined length section. In addition, the "treatment position" is a position where treatment is performed in the treatment area, and may mean a position as a spot located at a specific coordinate. Further, the 'target tissue' refers to the tissue to be treated. When a plurality of tissues form a layered structure according to the depth at a specific treatment position, the target tissue may be a tissue located at all or part of the depth section.
즉, 광이 스팟 형태로 특정 '치료 위치'로 조사되면, 해당 치료 위치의 특정 깊이 구간에 위치하는 '타겟 조직'으로 대부분의 에너지가 전달될 수 있다. 또한, 소정 면적의 '치료 영역'을 치료하기 위해, 치료 영역 내에 위치하는 복수의 '치료 위치'에 순차적으로 광을 조사하여 치료를 진행할 수 있다.That is, when light is irradiated to a specific 'treatment position' in the form of a spot, most energy may be transmitted to the 'target tissue' positioned at a specific depth section of the treatment position. In addition, in order to treat a 'treatment area' of a predetermined area, treatment may be performed by sequentially irradiating light to a plurality of 'treatment locations' located in the treatment area.
그리고, 이하에서 '테스트 영역'이라함은 치료광의 파라미터를 설정하기 위해 테스트 광이 조사되는 영역이다. 이러한 테스트 영역은, 병변이 위치하여 치료가 필요한 치료 영역과 구분되는 영역을 의미한다.In addition, hereinafter, the 'test area' is an area to which the test light is irradiated to set a parameter of the treatment light. This test area refers to an area where a lesion is located and is separated from a treatment area requiring treatment.
도 1은 본 발명의 일 실시예에 따른 안과용 치료장치를 개략적으로 도시한 사시도이다. 본 실시예에 따른 안과용 치료장치는 안저에 치료광을 조사하여 치료를 수행하는 장치로, 도 1에 도시된 바와 같이 슬릿 램프(10) 및 인터페이스부(20)를 포함하여 구성된다.1 is a perspective view schematically showing an ophthalmic treatment device according to an embodiment of the present invention. The ophthalmic treatment apparatus according to the present embodiment is a device for performing treatment by irradiating the treatment light on the fundus, and includes a slit lamp 10 and an interface unit 20 as shown in FIG. 1.
슬릿 램프(10)는 사용자가 환자의 눈을 관찰하며 치료를 진행하는 장치이다. 슬릿 램프(10)의 본체 일측에는 환자의 눈의 위치를 고정시키기 위한 대안부(object part)(180)가 구비된다. 그리고, 타측에는 환자의 눈을 관찰하기 위해 사용자의 눈이 위치하는 접안부(eyepiece part)(170)가 구비된다. 그리고, 슬릿 램프(10) 내부에는 치료 동작을 수행하기 위한 다양한 구성요소가 구비되며, 이에 대해서는 아래에서 보다 구체적으로 설명한다. 그리고, 슬릿 램프의 외부에는 치료 장치의 동작을 제어하기 위한 조작부(30)가 구비될 수 있다. 조작부(30)는 키보드, 조이스틱, 페달 등의 구조를 이용하여 구성되며, 사용자는 조작부(30)를 조작하여 슬릿 램프의 시야 방향 또는 치료 장치의 치료 동작 등을 조작할 수 있다.The slit lamp 10 is a device for the user to observe the patient's eyes and proceed with treatment. One side of the main body of the slit lamp 10 is provided with an object part 180 for fixing the position of the eye of the patient. The other side is provided with an eyepiece part 170 on which the user's eye is located to observe the eye of the patient. In addition, various components for performing the treatment operation are provided in the slit lamp 10, which will be described in more detail below. And, the operation unit 30 for controlling the operation of the treatment device may be provided outside the slit lamp. The operation unit 30 is configured using a structure such as a keyboard, a joystick, a pedal, and the user can manipulate the operation unit 30 to manipulate the viewing direction of the slit lamp or the treatment operation of the treatment apparatus.
인터페이스부(20)는 슬릿 램프(10)와 인접한 위치에 구비되어, 치료 중 사용자에게 필요한 각종 정보를 표시하거나, 사용자가 명령 및 정보를 입력/설정하도록 구성된다. 도 1에 도시된 바와 같이, 인터페이스부(20)는 모니터와 같은 디스플레이 장치를 포함하여 구성된다. 그리고, 디스플레이 장치의 터치 스크린 기능을 통해 정보를 입력하도록 구성되거나, 키보드나 마우스와 같은 별도의 입력장치를 구비할 수 있다.The interface unit 20 is provided at a position adjacent to the slit lamp 10 and is configured to display various types of information necessary for the user during the treatment, or to allow the user to input / set commands and information. As shown in FIG. 1, the interface unit 20 includes a display device such as a monitor. The display device may be configured to input information through a touch screen function of the display device, or may include a separate input device such as a keyboard or a mouse.
도 2는 도 1의 안과용 치료장치의 내부 구성요소를 개략적으로 도시한 블록도이다. 슬릿 램프(10)는 치료광을 발생시켜 안저로 치료광을 조사하는 치료광 조사부를 포함한다. 치료광 조사부는 치료광(treatment beam)을 발생시키는 치료광 발생부(110) 및 치료광 발생부에서 발생된 치료광을 안저로 전달하기 위한 빔 딜리버리부(130)를 포함하여 구성된다. 또한, 치료광이 조사되는 위치를 표시하기 위한 조준광 발생부(120)를 더 포함할 수 있다. 나아가, 환자의 안저 이미지를 촬영하기 위한 촬상부(140), 치료광에 의한 조직의 상태 변화 정보를 감지하기 위한 모니터링부(150) 및 각종 구성요소를 제어하기 위한 제어부(160) 등을 더 포함할 수 있다.FIG. 2 is a block diagram schematically illustrating internal components of the ophthalmic treatment device of FIG. 1. The slit lamp 10 includes a treatment light irradiation unit for generating treatment light and irradiating the treatment light to the fundus. The treatment light irradiator includes a treatment light generator 110 for generating a treatment beam and a beam delivery unit 130 for delivering the treatment light generated by the treatment light generator to the fundus. In addition, it may further include a collimation light generating unit 120 for indicating a position to which the treatment light is irradiated. Furthermore, the apparatus further includes an imaging unit 140 for photographing a patient's fundus image, a monitoring unit 150 for sensing state change information of the tissue caused by the treatment light, and a controller 160 for controlling various components. can do.
치료광 발생부(110)는 치료광 광원(미도시) 및 치료광 광원에서 생성되는 광의 특성을 가공(modulation)하는 각종 광학 소자(미도시)를 포함하여 구성된다. 본 실시예의 치료광 광원은 Nd:YLF, Nd:YAG, Ho:YAG 등과 같은 레이저 매질 또는 레이저 다이오드를 포함하여 구성되어, 치료광으로서 레이저를 발생시킨다. 일 예로서, 본 실시예의 치료광 발생부는 Nd:YLF의 레이저 매질을 포함하도록 구성되어, 치료광으로서 527nm의 파장의 레이저를 이용한다. 이러한 치료광은 소정의 시간 갭을 두고 조사되는 복수의 마이크로 펄스로 구성될 수 있다. 다만, 이러한 치료광 패턴의 구체적인 내용은 이하에서 별도로 설명한다.The treatment light generator 110 includes a treatment light source (not shown) and various optical elements (not shown) for modulating the characteristics of light generated by the treatment light source. The treatment light source of the present embodiment includes a laser medium or a laser diode such as Nd: YLF, Nd: YAG, Ho: YAG, and the like, to generate a laser as the treatment light. As an example, the treatment light generating unit of the present embodiment is configured to include a laser medium of Nd: YLF, and uses a laser having a wavelength of 527 nm as the treatment light. Such treatment light may be composed of a plurality of micro pulses irradiated with a predetermined time gap. However, specific details of the treatment light pattern will be described below.
빔 딜리버리부(130)는 복수의 광학소자로 구성되어, 치료광이 진행하는 광 경로를 형성한다. 따라서, 치료광 발생부(110)에서 발생된 치료광은 빔 딜리버리부(130)를 따라 진행하여 안저 방향으로 조사된다.The beam delivery unit 130 includes a plurality of optical elements to form an optical path through which the treatment light travels. Therefore, the treatment light generated by the treatment light generator 110 travels along the beam delivery unit 130 and is irradiated in the fundus direction.
이러한 빔 딜리버리부(130)는 치료광 이외에도 후술할 조준광 및/또는 촬영광이 진행하는 광 경로를 형성할 수 있다. 도 2에 도시된 바와 같이, 빔 딜리버리부(130)는 적어도 하나 이상의 빔 컴바이너(beam combiner)(131)를 구비하여, 조준광 및/또는 촬영광은 광 경로상에 합류되고, 안저 방향으로 조사될 수 있다. 그리고, 안저에서 반사되는 조준광 및/또는 촬영광은 빔 딜리버리부(130)를 통해 역 방향으로 진행하여, 접안부(170)로 진행하거나 촬상부(140)로 수광될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 조준광 및/또는 촬영광은 치료광의 조사 경로와 구분되는 별도의 광 경로를 형성하거나, 생략하여 실시할 수 있다.The beam delivery unit 130 may form an optical path through which aiming light and / or photographing light, which will be described later, in addition to the treatment light. As shown in FIG. 2, the beam delivery unit 130 includes at least one beam combiner 131 such that the aiming light and / or the imaging light are joined on the optical path, and the fundus direction Can be investigated. The collimated light and / or the photographed light reflected by the fundus may travel in the reverse direction through the beam delivery unit 130 to proceed to the eyepiece 170 or may be received by the imaging unit 140. However, the present invention is not limited thereto, and the aiming light and / or the photographing light may be implemented by forming or omitting a separate light path that is separated from the irradiation path of the treatment light.
빔 딜리버리부(130)는 광이 조사되는 위치를 변경시키는 스캐너(132)를 포함한다. 스캐너(132)는 적어도 하나 이상의 반사부재 및 이를 회전시키는 구동유닛을 포함하여 구성된다. 스캐너(132)는 반사부재를 회전시키면서, 반사부재에 의해 반사되는 광의 조사 위치를 변경시킬 수 있다. 또한, 도 2에 도시되지는 않았으나, 빔 딜리버리부(130)는 광을 집속시키거나 분산시키기 위한 복수의 광학 렌즈, 광학 필터 등의 광학 소자를 더 포함할 수 있다. 빔 딜리버리부(130)는 이러한 광학 소자들을 이용하여 치료광이 치료 영역 상에 조사되는 스팟 사이즈를 비롯하여 다양한 파라미터를 조절할 수 있다.The beam delivery unit 130 includes a scanner 132 for changing the position at which light is irradiated. The scanner 132 includes at least one reflective member and a driving unit for rotating the scanner 132. The scanner 132 may change the irradiation position of the light reflected by the reflecting member while rotating the reflecting member. In addition, although not shown in FIG. 2, the beam delivery unit 130 may further include an optical element such as a plurality of optical lenses and an optical filter for focusing or dispersing light. The beam delivery unit 130 may adjust various parameters including the spot size at which the treatment light is irradiated onto the treatment area by using these optical elements.
빔 딜리버리부(130)의 말단에는 대안부(object part)(180)가 구비된다. 대안부(180)는 치료 대상이 되는 환자의 눈이 위치되는 구성으로, 대물렌즈 또는 환자의 눈과 접촉하는 컨택트 렌즈를 포함하여 구성된다. 나아가, 대안부는 환자의 눈을 고정시킬 수 있도록, 환자의 전안부를 흡입하여 고정시키는 석션 장치를 더 포함할 수 있다.An end part of the beam delivery part 130 is provided with an object part 180. The alternative unit 180 is a configuration in which the eye of the patient to be treated is positioned, and includes an objective lens or a contact lens in contact with the eye of the patient. Furthermore, the alternative may further include a suction device for sucking and fixing the anterior part of the patient so as to fix the eye of the patient.
한편, 조준광 발생부(120)는 조준광(aiming beam)을 발생시킨다. 조준광은 치료광을 조사하기 이전, 또는 치료광이 조사되는 동안 시술자가 치료광이 조사되는 위치를 확인할 수 있도록, 치료광이 조사되는 치료 위치로 조사되어 해당 위치를 표시하는 구성이다. 조준광 발생부(120)에서 발생된 조준광은 빔 딜리버리부(130)를 통해 안저의 치료 영역으로 조사된 후 반사된다. 이때, 조준광은 가시광 대역의 파장을 갖고, 사용자는 접안부를 통해 이를 확인하여 조준광의 위치를 확인할 수 있다. 다만, 치료광이 조사되는 위치를 인터페이스부에 표시된 안저 이미지 상에서 확인이 가능한 경우, 조준광 발생부를 생략하여 실시하는 것도 가능하다.On the other hand, the aiming light generation unit 120 generates an aiming light (aiming beam). The aiming light is configured to be irradiated to the treatment position to which the treatment light is irradiated and to indicate the position so that the operator can identify the position to which the treatment light is to be irradiated before or during the treatment light. The aiming light generated by the aiming light generating unit 120 is reflected after being irradiated to the treatment area of the fundus through the beam delivery unit 130. At this time, the aiming light has a wavelength of the visible light band, the user can confirm the position of the aiming light by checking it through the eyepiece. However, when the position where the treatment light is irradiated can be confirmed on the fundus image displayed on the interface unit, the collimation light generating unit may be omitted.
한편, 촬상부(140)는 환자의 치료 영역의 이미지를 획득하는 구성이다. 촬상부(140)는 촬상 소자를 포함하여 구성되며, 촬영 광원(미도시)에서 조사되는 촬영광이 안저로부터 반사되는 것을 수광하여 안저 이미지를 획득한다. 본 실시예에 따른 촬상부(140)는 치료 영역을 전체를 포함하는 안저 이미지를 획득하도록 구성된다. 다만, 이 이외에도 촬영광의 조사 위치가 치료광과 같이 스캐너를 통해 변경되도록 구성되어, 치료광 조사 위치와 인접한 영역의 이미지를 획득하도록 구성하는 것도 가능하다. 또한, 본 실시예에서는 촬상부를 포함하는 안과용 치료장치를 설명하고 있으나, 이에 한정되는 것은 아니며 촬상부에 상응하는 구성을 생략하여 실시하는 것도 가능하다.On the other hand, the imaging unit 140 is configured to obtain an image of the treatment area of the patient. The imaging unit 140 includes an imaging device, and acquires a fundus image by receiving photographed light emitted from a photographing light source (not shown) reflected from the fundus. The imaging unit 140 according to the present exemplary embodiment is configured to acquire a fundus image including the entire treatment area. However, in addition to this, the irradiation position of the photographing light may be configured to be changed through the scanner, such as the treatment light, and may be configured to acquire an image of an area adjacent to the treatment light irradiation position. In addition, in the present embodiment, an ophthalmic treatment apparatus including an imaging unit is described, but the present invention is not limited thereto, and a configuration corresponding to the imaging unit may be omitted.
그리고, 모니터링부(150)는 치료광 조사시 치료광에 의한 치료 위치에 위치하는 타겟 조직의 상태 변화 정보를 감지하는 구성이다. 모니터링부는 광 음향센서(optoacoustic sensor), 반사계 센서(reflectometry sensor), 온도 센서, 광 검출기, 광 간섭 단층영상 촬영창지(OCT), 초음파 센서 등 다양한 장치 중 적어도 하나를 이용하여 구성될 수 있다. 따라서, 치료 위치에 치료광이 조사되는 동안 실시간으로 치료 위치의 상태 변화 정보를 감지하고, 이로부터 목표한 상태변화가 발생했는지 여부를 감지할 수 있다. In addition, the monitoring unit 150 is configured to detect the state change information of the target tissue located at the treatment position by the treatment light when the treatment light irradiation. The monitoring unit may be configured using at least one of various devices such as an optical acoustic sensor, a reflectometry sensor, a temperature sensor, an optical detector, an optical coherence tomography (OCT), and an ultrasonic sensor. Therefore, while the treatment light is irradiated to the treatment position, the state change information of the treatment position may be detected in real time, and whether the target state change has occurred therefrom.
본 실시예의 모니터링부(150)는 독립적으로 모니터링 작업을 수행하는 복수의 모니터링 유닛을 포함하여 구성될 수 있다. 구체적으로, 모니터링부(150)는 서로 상이한 방식으로 치료 위치의 상태 변화를 측정하는 제1 모니터링 유닛 및 제2 모니터링 유닛을 포함할 수 있다. 이처럼, 모니터링부는 2개의 모니터링 유닛을 구성하여 모니터링을 진행함으로써, 각 측정 방식의 단점을 보완하는 것이 가능하다.The monitoring unit 150 of the present embodiment may include a plurality of monitoring units that independently perform the monitoring operation. In detail, the monitoring unit 150 may include a first monitoring unit and a second monitoring unit measuring a change in the state of the treatment location in different ways. As such, the monitoring unit configures two monitoring units to perform monitoring, thereby making it possible to compensate for the disadvantages of the respective measurement methods.
구체적으로, 제1 모니터링 유닛(미도시)은 광음향(optoacoustic)를 측정하는 광음향 센서(optoacoustic sensor)로 구성된다. 이러한 광음향 센서는 환자의 눈과 접촉하는 접안부(170)에 구비되어, 치료광 조사시 치료 위치의 타겟 조직의 상태 변화가 이루어지면서 발생하는 광음향 신호를 측정하여 조직의 상태 변화를 감지한다. 그리고, 제2 모니터링 유닛(미도시)은 반사계 센서로 구성된다. 제2 모니터링 유닛은 치료 위치로 조사된 치료광이 반사되는 것을 수광하여, 수광된 광의 파라미터를 분석하여 치료 위치의 상태 정보를 모니터링 한다. 다만, 제2 모니터링 유닛은 반사되는 치료광을 수광하는 것이 아니라, 별도의 검측광원을 구비하여 치료 중 치료 위치로 검측광을 조사하고, 반사되는 검측광을 분석하여 치료 위치의 상태 변화를 모니터링하도록 구성하는 것도 가능하다. 전술한 바와 같이, 본 실시예에서는 광음향 센서와 반사계 센서를 이용하여 모니터링부를 구성하고 있으나, 이는 일 예이며 이외에도 다양한 센서를 조합하여 이용할 수 있다.Specifically, the first monitoring unit (not shown) is composed of an optoacoustic sensor for measuring optoacoustic. The photoacoustic sensor is provided in the eyepiece 170 in contact with the eye of the patient, and detects the state change of the tissue by measuring the photoacoustic signal generated when the state of the target tissue at the treatment position is made when the treatment light irradiation. The second monitoring unit (not shown) is composed of a reflectometer sensor. The second monitoring unit receives the reflected treatment light irradiated to the treatment position, analyzes the parameter of the received light, and monitors state information of the treatment position. However, the second monitoring unit does not receive the reflected treatment light, but has a separate detection light source to irradiate the detection light to the treatment position during the treatment, and to analyze the reflected detection light to monitor the change of the state of the treatment position. It is also possible to configure. As described above, in the present embodiment, the monitoring unit is configured by using the photoacoustic sensor and the reflectometer sensor, but this is an example and various sensors may be used in combination.
제어부(160)은 치료광 발생부(110), 조준광 발생부(120), 빔 딜리버리부(130), 촬상부(140) 등을 비롯한 각종 구성요소를 제어하는 구성으로, 사용자가 조작부(30)을 통해 조작하는 내용 또는 인터페이스부(20)을 통해 입력되거나 설정되는 내용에 근거하여 각종 구성요소를 제어한다. 그리고, 치료 중 모니터링부에서 감지되는 정보에 근거하여, 전술한 각종 구성요소를 제어하여 치료 동작을 조절/중단시킬 수 있다. 또한, 제어부(160)는 촬상부(140)에서 촬상된 이미지 정보 및 모니터링부(150)에서 감지되는 정보 등을 전달받고, 이러한 정보들을 가공 및 연산하여 다른 구성요소로 전달하는 역할을 수행한다. The controller 160 is configured to control various components including the treatment light generator 110, the aiming light generator 120, the beam delivery unit 130, the imaging unit 140, and the like. Control various components based on the content to be operated through the) or the content input or set through the interface unit 20. In addition, based on the information detected by the monitoring unit during the treatment, the aforementioned various components may be controlled to adjust / stop the treatment operation. In addition, the controller 160 receives image information captured by the imaging unit 140, information detected by the monitoring unit 150, and the like, processes and calculates the information, and delivers the information to other components.
한편, 인터페이스부(20)는 표시부(210) 및 입력부(220)를 포함하여 구성된다. 여기서, 표시부(210)는 사용자에게 각종 정보를 표시 전달하기 위한 구성이며, 입력부(220)는 사용자가 정보 및 명령을 장치로 입력하여 전달할 수 있는 구성이다. Meanwhile, the interface unit 20 includes a display unit 210 and an input unit 220. Here, the display unit 210 is a component for displaying and transmitting various types of information to the user, and the input unit 220 is a component that allows the user to input and transmit information and commands to the device.
여기서, 표시부(210)는 이미지를 비롯한 각종 정보를 표시할 수 있는 디스플레이 장치로 구성된다. 전술한 촬상부(140)에서 촬영된 안저 이미지, 또는 별도의 안저 카메라 등에서 앞서 촬영된 안저 이미지는 제어부(160)를 통해 전달되어 표시부(210) 상에 표시되고, 사용자는 표시부(210)를 통해 환자의 안저 이미지를 확인할 수 있다. 이러한 안저 이미지는 치료 전 병변 위치를 확인하거나, 치료광의 조사 위치를 설정하거나, 치료 결과를 확인하는데 다양하게 활용될 수 있다. 그리고, 안저 이미지 이외에도 다양한 정보들이 표시부를 통해 사용자에게 표시될 수 있다.Here, the display unit 210 is configured as a display device capable of displaying various information including an image. The fundus image photographed by the above-described imaging unit 140 or the fundus image previously photographed by a separate fundus camera is transmitted through the controller 160 to be displayed on the display unit 210, and the user is displayed on the display unit 210. The patient's fundus image can be checked. The fundus image may be used in various ways to confirm the location of the lesion before treatment, to set the irradiation position of the treatment light, or to confirm the treatment result. In addition to the fundus image, various information may be displayed to the user through the display unit.
입력부(220)는 사용자가 치료 장치로 각종 정보 또는 명령을 전달하는 구성이다. 따라서, 사용자는 입력부(220)를 통해 환자 정보, 치료 정보를 입력하고, 치료 동작을 명령하고, 치료 장치에서 제공하는 다양한 옵션 중 원하는 것을 선택하는 것이 가능하다. 예를 들어, 사용자는 입력부(220)를 이용하여 표시부(210)에 표시된 안저 이미지 상의 치료 영역을 설정하는 것도 가능하며, 치료 장치에서 제안하는 치료 모드 중 어느 하나를 선택하거나, 치료 장치에 저장된 치료광 조사되는 위치 패턴 중 중 어느 하나를 선택하는 것도 가능하다. 입력부(220)는 키보드 또는 마우스 등과 같은 별도의 입력 장치를 이용하거나, 표시부(210)를 형성하는 디스플레이의 터치 스크린 기능을 이용하여 각종 정보를 입력하도록 구성하는 것도 가능하다.The input unit 220 is a component in which the user transmits various information or commands to the treatment apparatus. Accordingly, the user may input patient information and treatment information through the input unit 220, instruct a treatment operation, and select a desired one from various options provided by the treatment apparatus. For example, the user may set the treatment area on the fundus image displayed on the display unit 210 using the input unit 220, select one of the treatment modes proposed by the treatment device, or store the treatment stored in the treatment device. It is also possible to select any one of the position patterns irradiated with light. The input unit 220 may be configured to input various information by using a separate input device such as a keyboard or a mouse, or by using a touch screen function of a display forming the display unit 210.
한편, 가이드부(230)는 치료 중 모니터링부(150)에서 감지되는 상태 변화 정보에 근거하여, 사용자가 치료 동작을 수행하면서 참고할 수 있는 가이드 정보를 제공한다. 일 예로, 가이드부(230)는 치료 중 해당 위치로 조사되는 치료광의 강도가 적합한지 여부를 사용자에게 표시할 수 있다. 사용자는 가이드부(230)에서 제공되는 치료광 강도의 적합여부에 대한 정보를 통해, 이를 참고하여 치료광 강도를 조절할 수 있다. 여기서, 치료광 강도라함은 치료광의 펄스 에너지 값을 의미할 수 있다. 그리고, 치료광 강도의 적합 여부는, 해당 위치에서 목표한 조직 상태 변화를 야기하는지 여부, 조직 특이성을 고려한 안전도 및 불완전 치료 가능성을 고려하여 적합성 여부를 판단할 수 있다.Meanwhile, the guide unit 230 provides guide information for the user to refer to while performing a treatment operation based on the state change information detected by the monitoring unit 150 during the treatment. For example, the guide unit 230 may display to the user whether the intensity of the treatment light irradiated to the corresponding position during the treatment is appropriate. The user may adjust the treatment light intensity by referring to the information on whether the treatment light intensity is provided by the guide unit 230. Here, the treatment light intensity may mean a pulse energy value of the treatment light. The suitability of the treatment light intensity may be determined in consideration of whether a target tissue state change is caused at the corresponding position, safety in consideration of tissue specificity, and possibility of incomplete treatment.
본 실시예의 가이드부(230)는, 도 2에 도시된 바와 같이, 인터페이스부(20)의 디스플레이 장치를 통해 사용자에게 표시되도록 구성된다. 또는, 사용자가 치료 중 접안부(170)를 통해 확인할 수 있도록, 슬릿 램프 내측에 구비되는 별도의 디스플레이를 통해 표시되도록 구성될 수도 있다. 이 이외에도, 시각적인 방식이 아니라 음성 또는 햅틱 방식으로 가이드 정보를 사용자에게 제공하도록 구성하는 것도 가능하다. 다만, 이러한 가이드부의 구체적인 가이드 내용은 아래에서 별도로 설명한다. Guide unit 230 of the present embodiment, as shown in Figure 2, is configured to be displayed to the user through the display device of the interface unit 20. Alternatively, it may be configured to be displayed through a separate display provided inside the slit lamp so that the user can check through the eyepiece 170 during treatment. In addition, it is also possible to configure the guide information to be provided to the user in a voice or haptic manner rather than in a visual manner. However, specific guide content of these guide units will be described separately below.
한편, 본 실시예에 따른 안과용 치료장치는 치료광의 조사 강도를 설정할 수 있는 설정부(240)를 더 포함한다. 도 2에 도시된 바와 같이, 설정부(240)는 인터페이스부(20)에 구비되는 구성일 수 있다. 사용자는 환자 정보, 병변 위치 및 상태 등을 고려하여 설정부(240)를 통해 치료광의 강도를 설정할 수 있다. 또한, 치료 중 가이드부(230)에서 제공하는 치료광 강도의 적합 여부에 대한 정보에 근거하여, 치료광의 강도를 조절하는 것도 가능하다. 다만, 도 2에서는 설정부(240)와 입력부(220)가 서로 별개의 구성인 것으로 도시되어 있으나, 이는 장치에 입력되는 내용을 중심으로 구분하여 도시한 것이며, 실질적으로는 하나의 구성으로 실시하는 것도 가능하다.On the other hand, the ophthalmic treatment device according to the present embodiment further includes a setting unit 240 that can set the irradiation intensity of the treatment light. As shown in FIG. 2, the setting unit 240 may be a component provided in the interface unit 20. The user may set the intensity of the treatment light through the setting unit 240 in consideration of patient information, lesion location and condition. In addition, it is also possible to adjust the intensity of the treatment light based on the information on whether the treatment light intensity provided by the guide unit 230 during the treatment. In FIG. 2, the setting unit 240 and the input unit 220 are shown to be separate components, but the setting unit 240 and the input unit 220 are shown separately based on the contents input to the apparatus. It is also possible.
도 3은 도 2의 A 영역을 확대하여 그린 단면도이다. 도 3의 A는 치료 영역에 해당하는 환자의 안저 조직, 특히 망막 조직을 도시한 도면이다. 이러한 망막의 조직은 일반적으로 내경계층(internal limiting layer), 신경 섬유층(nerve fiber layer), 신경절세포층(ganglion cell layer), 내망상층(inner plexiform layer), 내과립층(inner nuclearlayer), 외망상층(outer plexiform layer), 외과립층(outer nuclearlayer), 외경계층(external limiting layer), 광수용 세포층(photo receptor layer), RPE 층(retinal pigment epithelial layer)의 10개의 층으로 이루어진다(망막 표면으로부터 내측 깊이 방향).3 is an enlarged cross-sectional view of region A of FIG. 2. 3A illustrates fundus tissue, particularly retinal tissue, of a patient corresponding to a treatment area. Such retinal tissues generally have an internal limiting layer, a nerve fiber layer, a ganglion cell layer, an inner plexiform layer, an inner nuclear layer, and an outer reticular layer. It consists of 10 layers (outer plexiform layer, outer nuclear layer, external limiting layer, photoreceptor layer, and RPE layer (retinal pigment epithelial layer) (inner depth from retinal surface) direction).
이 중 RPE 세포층은 위의 10개의 층 중 후측 방향의 경계층을 형성하며, 타이트 정션(tight junction)구조로형성된다. 그리고 RPE 층의 하측으로는 브루크 막(Bruch's membrane)이 위치한다. 이러한 RPE 층은 맥락막(choroid)에 위치하는 혈관 등으로부터 영양분 및 산소를 공급받아 광 수용체(photo receptor)에 영양분을 공급하고, 광 수용체로부터 생성되는 노폐물을 브루크 막을 통해 배출하는 역할을 수행한다.Among them, the RPE cell layer forms a boundary layer in the rear direction among the ten layers above, and is formed in a tight junction structure. A Bruch's membrane is located below the RPE layer. The RPE layer receives nutrients and oxygen from blood vessels located in the choroid, and supplies nutrients to the photoreceptor, and discharges waste products generated from the photoreceptor through the Bruch membrane.
RPE 층을 형성하는 PRE 세포의 일부가 정상적인 기능을 수행하지 못하게 되면, 해당 RPE 세포의 전방에 위치하는 광 수용체들은 정상적으로 영양 및 산소가 공급되지 않아 괴사할 수 있다. 이를 치료하기 위해, 본 실시예에 따른 안과용 치료장치는 RPE 세포층에 선택적으로 치료광을 조사하여 에너지를 전달함으로써, 새로운 RPE 세포의 활성화를 유도하는 치료를 진행한다.If some of the PRE cells forming the RPE layer fail to perform their normal function, photoreceptors located in front of the RPE cells may necrosis because they are not supplied with nutrition and oxygen normally. In order to treat this, the ophthalmic treatment device according to the present embodiment proceeds the treatment of inducing the activation of new RPE cells by delivering energy to the RPE cell layer by selectively irradiating the therapeutic light.
보다 구체적으로 설명하면, 치료광은 가시광선 또는 근적외선 영역의 파장을 갖는다. 이러한 치료광은 망막의 전방에 위치하는 세포층(첫 번째 세포층 내지 아홉 번째 세포층)에는 거의 흡수되지 않고 투과한 후, RPE 세포 내부에 존재하는 멜라노좀에 흡수된다. 멜라노좀에 흡수되는 에너지의 양이 증가함에 따라 RPE 세포는 온도가 상승하면서 상태가 변화하고, 목표한 상태 변화에 도달한 RPE 세포는 건강한 RPE 세포로 대체된다. 여기서, 목표한 상태 변화는 RPE 세포의 온도가 상승하여 멜라노좀 표면에 기 설정된 수준의 미세기포(microbubble)이 발생하여 성장한 상태로, 이 경우 해당 RPE 세포가 선택적으로 괴사되어 새로운 RPE 세포가 유도되는 것으로 판단하고 있다.More specifically, the treatment light has a wavelength in the visible or near infrared region. This therapeutic light is transmitted to the cell layer (first cell layer to the ninth cell layer) located in front of the retina with little absorption, and then absorbed by the melanosomes present inside the RPE cells. As the amount of energy absorbed by the melanosomes increases, RPE cells change state with increasing temperature, and RPE cells that reach the desired state change are replaced with healthy RPE cells. Here, the target state change is a state in which the temperature of the RPE cells rises and a predetermined level of microbubbles are generated on the surface of the melanosome, in which case the RPE cells are selectively necrotic to induce new RPE cells. I judge it.
다만, 치료광에 의해 RPE 세포에 지나치게 많은 양의 에너지가 전달되면, 타겟 조직에 해당하는 RPE 세포 뿐 아니라 인접한 광 수용체까지 손상되어 시력 손상을 야기할 수 있다. 반면, 치료광에 의해 RPE 세포에 전달되는 에너지가 충분하지 않은 경우, RPE 세포의 상태가 변화하지 않으면서 치료가 이루어지지 않을 수 있다. 즉, 치료 위치의 타겟 조직에서 원하는 수준의 상태 변화가 야기될 수 있도록, 치료광의 강도를 적절하게 선택하는 것이 중요하다. 따라서, 본 발명은 하나의 치료 위치에 치료광이 조사되는 동안 치료 위치의 상태 정보를 모니터링하여 치료 내용을 제어하고, 나아가 가이드부(230)는 치료광의 강도가 적합한지 여부에 대한 정보를 지속적으로 사용자에게 표시하여 사용자가 치료광 강도를 조절하며 치료할 수 있도록 구성한다. 이하에서는, 도 4 내지 도 10을 참조하여, 치료 중 각 구성요소의 동작 내용을 보다 구체적으로 설명한다.However, if too much energy is delivered to the RPE cells by the treatment light, not only the RPE cells corresponding to the target tissues but also the adjacent photoreceptors may damage the eyesight. On the other hand, if the energy delivered to the RPE cells by the therapeutic light is not sufficient, the treatment may not be made without changing the state of the RPE cells. That is, it is important to properly select the intensity of the treatment light so that a desired level of state change in the target tissue at the treatment site can be caused. Therefore, the present invention controls the treatment contents by monitoring the state information of the treatment position while the treatment light is irradiated to one treatment position, and further, the guide unit 230 continuously receives information on whether the intensity of the treatment light is appropriate. Display to the user so that the user can adjust and treat the treatment light intensity. In the following, with reference to Figures 4 to 10, the operation of each component during the treatment will be described in more detail.
도 4는 치료광의 조사 패턴을 도시한 도면이다. 도 4에 도시된 바와 같이, 하나의 치료광은 기 설정된 주기로 조사되는 N개의 마이크로 펄스(P)가 조합된 패턴으로 구성되며, 하나의 치료 위치에 N개의 마이크로 펄스를 조사하도록 설정된다. 그리고, 각각의 마이크로 펄스(P)는 조사되는 순서에 따라 펄스 에너지, 즉 강도가 순차적으로 증가하는 형태를 갖는다. 이때, 각각의 마이크로 펄스의 강도는 50μJ 내지 200J 범위일 수 있다.4 is a diagram illustrating an irradiation pattern of treatment light. As shown in FIG. 4, one treatment light is configured in a pattern in which N micro pulses P irradiated at predetermined periods are combined and set to irradiate N micro pulses at one treatment position. Each of the micro pulses P has a form in which pulse energy, that is, intensity, increases sequentially in the order of irradiation. At this time, the intensity of each micro pulse may be in the range of 50μJ to 200J.
일 예로서, 본 실시예에서는 치료광이 15개의 마이크로 펄스로 구성되도록 구성된다. 각각의 마이크로 펄스는 100Hz의 주기로 조사되며, 각 마이크로 펄스의 지속시간(duration)은 1.7㎲일 수 있다. 1번째 마이크로 펄스의 강도는 15번째 마이크로 펄스의 강도의 50%에 해당하며, 각 마이크로 펄스는 15번째 마이크로 펄스 강도의 약 3.57%씩 균등하게 증가하도록 구성될 수 있다.As an example, in the present embodiment, the treatment light is configured to consist of 15 micro pulses. Each micro pulse is irradiated at a period of 100 Hz, and the duration of each micro pulse may be 1.7 ms. The intensity of the first micropulse corresponds to 50% of the intensity of the fifteenth micropulse, and each micropulse may be configured to increase evenly by about 3.57% of the fifteenth micropulse intensity.
한편, 사용자는 설정부(240)를 통해 치료광의 강도를 설정할 수 있다. 치료광의 강도는 치료광을 구성하는 마이크로 펄스의 강도 분포를 의미할 수 있다. 치료광의 강도 설정은 다양한 방식으로 설정될 수 있으며, 본 실시예에서는 최대 강도를 갖는 15번째 마이크로 펄스(P15)의 강도를 설정하여, 치료광의 강도를 설정하도록 구성된다.Meanwhile, the user may set the intensity of the treatment light through the setting unit 240. The intensity of the treatment light may refer to the intensity distribution of the micro pulses constituting the treatment light. The intensity setting of the treatment light can be set in various ways, and in this embodiment, the intensity of the treatment light is set by setting the intensity of the fifteenth micro pulse P15 having the maximum intensity.
치료를 시작함에 있어, 최초 치료광의 강도는 장치내 데이터베이스에 기 저장된 정보 또는 사용자의 경험을 토대로 설정할 수 있다. 다만, 환자 맞춤형 치료를 진행할 수 있도록, 본 실시예에서는 치료 전 별도의 테스트 영역에 테스트 광을 조사하는 테스트 단계를 진행하여 치료광의 강도를 결정할 수 있다.In starting the treatment, the intensity of the initial treatment light can be set based on the user's experience or information previously stored in the in-device database. However, in this embodiment, the intensity of the treatment light may be determined by performing a test step of irradiating the test light to a separate test area before treatment so that the patient-specific treatment may be performed.
도 5는 환자의 안저 이미지를 표시한 도면이다. 테스트 단계를 수행하기 위한 테스트 영역(C)은 병변이 위치하는 치료 영역(B)과 별도의 영역으로 선택할 수 있다. 이때, 테스트 영역(C)은 병변이 위치하지 않는 영역으로, 치료 영역과 인접한 위치를 선택할 수 있다. 그리고, 테스트 영역에 위치한 복수의 테스트 위치(T0)로 테스트 광을 조사한다. 본 테스트 단계는 치료광의 강도를 선택하기 위한 것이므로, 테스트 광은 치료광 조사부를 통해 조사되는 광을 이용할 수 있다.5 is a diagram showing an image of a fundus of a patient. The test area C for performing the test step may be selected as an area separate from the treatment area B in which the lesion is located. In this case, the test area C is an area where no lesion is located, and may select a location adjacent to the treatment area. The test light is irradiated to the plurality of test positions T0 located in the test area. Since the test step is for selecting the intensity of the treatment light, the test light may use light irradiated through the treatment light irradiation unit.
각 테스트 위치에 조사되는 테스트 광은 상이한 출력 강도로 조사된다. 그리고, 테스트 광이 조사된 후 대략 1시간 정도가 경과한 후 안저형광 혈관촬영(fluorescein angiography)을 통해 테스트 광이 조사된 위치를 확인한다. 이때, 안저형광 혈관촬영에 의해 관찰되는 누수(leakage)는 RPE 세포의 상태 변화에 의한 것이다(미세기포가 발생하는 수준을 초과하여 변화한 단계). 따라서, RPE 층에서 누수(leakage)를 야기한 테스트 광 중 최저 강도값을 이용하여, 치료광 패턴 중 최대 강도를 갖는 마이크로 펄스(P15)의 강도를 설정할 수 있다. 이에 의해, 15번째 마이크로 펄스의 강도가 설정되면, 이에 의해 나머지 마이크로 펄스의 강도 또한 전술한 비율에 따라 자동적으로 설정되어, 전체 치료광의 강도가 설정된다. 그리고, 이와 같이 설정된 강도로 치료광은 치료 위치로 조사되면서 치료가 진행된다.The test light irradiated to each test position is irradiated with different output intensities. In addition, after about 1 hour after the test light is irradiated, the position where the test light is irradiated is confirmed by fluorescein angiography. At this time, the leakage observed by fundus fluorescein angiography is due to a change in the state of RPE cells (steps that change beyond the level at which microblasts occur). Therefore, the intensity of the micro pulse P15 having the maximum intensity among the treatment light patterns may be set using the lowest intensity value among the test lights causing leakage in the RPE layer. Thereby, when the intensity of the fifteenth micro pulse is set, the intensity of the remaining micro pulses is also set automatically according to the above-described ratio, thereby setting the intensity of all the treated light. Then, the treatment proceeds while the treatment light is irradiated to the treatment position at the intensity set as described above.
도 6은 하나의 치료 위치에 조사되는 치료광 조사 패턴 및 감지되는 모니터링값을 도시한 그래프이다. 도 6에 도시된 바와 같이, 하나의 치료 위치로 복수의 마이크로 펄스(P)가 진행되는 동안, 모니터링부(150)는 치료 위치의 상태 변화를 감지한다. 그리고, 모니터링부(150)로부터 기준값(V1) 이상의 신호가 감지되어 타겟 조직의 목표한 상태 변화가 발생한 것으로 감지하면, 제어부(160)는 치료광 조사를 자동 멈춤(auto-stop)시켜 종료한다.6 is a graph showing a treatment light irradiation pattern irradiated to one treatment position and a monitored monitoring value. As shown in FIG. 6, while the plurality of micro pulses P are in progress to one treatment position, the monitoring unit 150 detects a state change of the treatment position. In addition, when a signal of more than the reference value V1 is detected from the monitoring unit 150 to detect that a target state change of the target tissue has occurred, the controller 160 automatically stops the treatment light irradiation and ends.
즉, 치료광 패턴이 N개의 마이크로 펄스 조합으로 설정되어 있다고 하더라도, 모든 치료 위치에 N회에 걸쳐 마이크로 펄스가 진행되는 것은 아니다. 실시간으로 조직의 상태를 모니터링하여 치료가 완료된 것으로 판단하면, 잔여 마이크로 펄스를 조사하지 않고 해당 위치에 대한 치료를 종료한다. 이에 의해, 불필요한 조직의 손상을 방지하는 것이 가능하다. 특히, 타겟 조직의 상태 변화는 복수의 마이크로 펄스에 의해 전달되는 에너지의 누적량보다는, 충분한 강도의 마이크로 펄스가 조사되는지 여부에 의존하는 경향이 있다. 따라서, 본 실시예에 따른 치료광의 조사 패턴 및 자동 멈춤 방식에 의할 경우, 조직의 상태 변화를 야기하는 최소 강도의 마이크로 펄스를 이용하여 치료를 진행하는 것이 가능하다.That is, even if the treatment light pattern is set to N micropulse combinations, the micropulse does not proceed N times in every treatment position. If it is determined that the treatment is completed by monitoring the condition of the tissue in real time, the treatment for the position is terminated without irradiating the remaining micro pulses. Thereby, it is possible to prevent unnecessary tissue damage. In particular, the change in state of the target tissue tends to depend on whether micropulses of sufficient intensity are irradiated, rather than the cumulative amount of energy delivered by the plurality of micropulses. Therefore, in the case of the irradiation pattern of the treatment light and the automatic stop method according to the present embodiment, it is possible to proceed with the treatment using the micro pulse of the minimum intensity causing the state change of the tissue.
한편, 도 6에서는 모니터링부 중 하나의 모니터링 유닛에서 감지되는 신호만을 표시하였다. 다만, 이는 설명의 편의를 위한 것으로, 본 실시예와 같이 두 개의 모니터링 유닛을 동시에 이용하는 경우, 제1, 제2 모니터링 유닛 중 어느 하나에서 치료 위치의 상태 변화를 감지하면 상태 변화가 발생한 것으로 판단하고, 치료광을 자동 종료하도록 알고리즘을 구성하는 것도 가능하다.6 shows only signals detected by one monitoring unit of the monitoring unit. However, this is for convenience of description, when using two monitoring units at the same time as in the present embodiment, if any one of the first, second monitoring unit detects a change in the position of the treatment position and determines that a change in state It is also possible to configure the algorithm to automatically terminate the treatment light.
전술한 방식으로, 치료 영역 내의 복수의 치료 위치에서 치료를 진행한다. 다만, 각각의 치료 위치마다 조직의 특성이 상이하기 때문에, 조직의 상태 변화에 도달하는데 필요한 치료광 강도가 상이할 수 있다. 따라서, 동일한 강도의 치료광을 조사하더라도, 어떤 위치에서는 마이크로 펄스가 2회 조사된 후 상태 변화가 감지되어 치료광 조사가 종료될 수 있고, 어떤 위치에서는 마이크로 펄스가 15회 모두 조사된 상태(자동 멈춤이 되지 않은 경우)에서도 상태 변화가 감지되지 않을 수 있다. 이때, 지나치게 적은 마이크로 펄스에 의해 상태 변화가 감지되는 경우, 해당 조직 특성에 비해 치료광 강도가 높게 설정되어 있어 특정 위치에서는 과치료(overtreatment)가 발생할 우려가 있다. 또한, 13~15회의 마이크로 펄스가 조사된 상태에서 상태 변화가 감지되는 경우, 해당 조직 특성에 비해 치료광 강도가 낮게 설정되어 있어 특정 위치에서는 치료가 제대로 이루어지지 않을 우려가 있다.In the manner described above, the treatment proceeds at a plurality of treatment locations within the treatment area. However, since the characteristics of the tissue are different for each treatment position, the treatment light intensity required to reach a change in the state of the tissue may be different. Therefore, even if irradiated with the treatment light of the same intensity, the condition change can be sensed after the micro pulses are irradiated twice at some positions, and the treatment light irradiation can be terminated, and at some positions, the micro pulses are irradiated with all 15 times (automatic The state change may not be detected even if it is not stopped. At this time, when the state change is detected by too few micro pulses, the treatment light intensity is set higher than that of the corresponding tissue characteristics, and there is a possibility that overtreatment occurs at a specific position. In addition, when a state change is detected in a state in which 13 to 15 times of micro pulses are irradiated, the treatment light intensity is set lower than that of the corresponding tissue characteristic, so that treatment may not be performed properly at a specific position.
따라서, 본 실시예에 따른 가이드부(230)는 하나의 치료 위치에 대한 치료가 진행되는 동안 치료 위치의 상태 변화가 감지된 시점에 근거하여 설정된 치료광 강도가 적합한지 여부를 판단하고, 이에 대한 정보를 사용자에게 제공한다. 이때, 시점은 조직의 상태 변화가 감지되어 자동 멈춤이 된 시점까지 조사된 마이크로 펄스의 개수(n, 해당 치료 위치로 조사된 마이크로펄스의 개수)를 의미할 수 있다.Therefore, the guide unit 230 according to the present exemplary embodiment determines whether the set treatment light intensity is appropriate based on the time point at which the state change of the treatment position is detected while the treatment for one treatment position is in progress. Provide information to the user. In this case, the time point may mean the number of micro pulses (n, the number of micro pulses irradiated to the treatment position) irradiated until the time when the state change of the tissue is automatically stopped.
구체적으로, 하나의 치료광이 순차적으로 강도가 증가하는 N개의 마이크로 펄스로 구성되는 경우, 치료광 조사가 자동 멈춤될 때까지 조사된 마이크로 펄스의 개수가 n1개 미만이면, 가이드부(230)는 치료광 강도가 적정 범위에서 과도하게 설정된 것으로 판단할 수 있다. 이 경우, 인접한 다른 위치에서는 첫 번째 마이크로 펄스에 의해 자동 멈춤이 발생할 수 있고, 이는 첫 번째 마이크로 펄스의 강도에 의해서도 과도한 손상이 발생한 상태일 수 있기 때문이다. Specifically, when one treatment light is composed of N micro pulses of sequentially increasing intensity, when the number of micro pulses irradiated until the treatment light irradiation is automatically stopped is less than n1, the guide unit 230 is It may be determined that the treatment light intensity is excessively set in an appropriate range. In this case, an automatic stop may occur by the first micropulse at another adjacent position, since excessive damage may also be caused by the intensity of the first micropulse.
그리고, 치료광 조사가 자동 멈춤될 때까지 조사된 마이크로 펄스의 개수가 n2개를 초과하거나 자동멈춤이 발생하지 않으면, 가이드부(230)는 치료광 강도가 적정 범위에 미치지 못하게 설정된 것으로 판단할 수 있다. 이 경우, 인접한 다른 위치에서는 N개의 마이크로 펄스가 모두 조사되는 동안 자동 멈춤이 이루어지지 않을 수 있고, 이는 치료가 제대로 이루어지지 않은 상태이기 때문이다. If the number of irradiated micropulses exceeds n2 or the automatic stop does not occur until the treatment light irradiation is automatically stopped, the guide unit 230 may determine that the treatment light intensity is set to fall within an appropriate range. have. In this case, the automatic stop may not be made while all N micropulses are irradiated at other adjacent positions, because the treatment is not properly performed.
그리고, 치료광 조사가 자동 멈춤될 때까지 조사된 마이크로 펄스의 개수가 n1개 이상 n2 이하이면, 가이드부(230)는 해당 위치로의 치료광 강도 설정이 적정한 것으로 판단할 수 있다. 이때, n1 및 n2는 안전도의 마진(margin of safety) 및 불완전 치료 가능성을 고려하여 설정할 수 있다. 일 예로, n1은 N의 20% 이상의 값이고, n2는 N의 80% 이하의 값일 수 있다(n1, n2<N).When the number of micro pulses irradiated until the treatment light irradiation is automatically stopped is n1 or more and n2 or less, the guide unit 230 may determine that the treatment light intensity setting to the corresponding position is appropriate. In this case, n1 and n2 may be set in consideration of the margin of safety and the possibility of incomplete treatment. For example, n1 may be a value of 20% or more of N, and n2 may be a value of 80% or less of N (n1, n2 <N).
도 7은 도 2의 가이드부가 치료광 강도 적합 여부를 판단하는 기준을 설명하기 위한 그래프이다. 도 7에 도시된 바와 같이, 본 실시예에서는 15개의 마이크로 펄스를 조사하는 동안(N=15), 조직의 상태 변화가 감지되어 치료광 자동 멈춤이 발생할 때까지 조사된 마이크로 펄스의 개수가 4 내지 12이면, 해당 위치에 대해 치료광 강도가 적절하게 설정된 것으로 판단할 수 있다(n1=4, n2=12). 반면, 3회 이하의 마이크로펄스가 조사된 후 치료광 조사가 종료되면 설정된 치료광 강도가 과한 것으로 판단하고, 13회 이상의 마이크로 펄스가 조사된 후 치료광 조사가 종료되면 설정된 치료광 강도가 약한 것으로 판단할 수 있다.FIG. 7 is a graph illustrating a criterion for determining whether the guide portion of FIG. 2 is suitable for treatment light intensity. As shown in FIG. 7, in the present embodiment, while irradiating 15 micropulses (N = 15), the number of micropulses irradiated until the change in tissue state is detected and the treatment light automatically stops is 4 to 4 If it is 12, it can be determined that the treatment light intensity is appropriately set for the position (n1 = 4, n2 = 12). On the other hand, when the treatment light irradiation is terminated after three or less micropulses are irradiated, it is determined that the set treatment light intensity is excessive, and when the treatment light irradiation is finished after 13 or more micro pulses are irradiated, the set treatment light intensity is weak. You can judge.
이처럼, 가이드부(230)는 각 치료 위치에서 진행된 치료 내용에 기초하여 치료광 강도 설정이 적합한지 여부를 판단하고, 이를 사용자에게 가이드한다. 이때, 가이드부(230)가 사용자에게 치료광 강도가 적합한지 여부를 표시하는 방식은 다양하게 구성할 수 있다. 도 8 내지 도 10은 도 2의 가이드부의 다양한 표시예를 도시한 도면이며, 이하에서는 도 8 내지 도 10을 참조하여 가이드부의 다양한 예를 설명한다.As such, the guide unit 230 determines whether the treatment light intensity setting is appropriate based on the treatment progressed at each treatment position, and guides it to the user. In this case, the guide unit 230 may be configured in various ways to indicate whether the treatment light intensity is suitable for the user. 8 to 10 are views illustrating various display examples of the guide unit of FIG. 2, and various examples of the guide unit will be described below with reference to FIGS. 8 to 10.
도 8에 도시된 바와 같이, 가이드부는 서로 상이한 방향을 나타내는 3개의 화살표 아이콘을 선택적으로 표시하거나, 택일적으로 점등할 수 있도록 구성될 수 있다. 전술한 방식에 의해 치료광 강도의 적합 여부를 판단한 결과, 설정된 치료광 강도가 과하다고 판단되면, 사용자가 치료광 강도를 낮게 조절할 수 있도록 아랫 방향으로 표시된 화살표를 선택적으로 표시/점등한다. 반면, 치료광 강도가 약하다고 판단되면, 사용자가 치료광 강도를 높이도록 윗 방향으로 표시된 화살표를 선택적으로 표시/점등한다. 그리고, 치료광 강도가 적정하다고 판단되면, 수평 방향 화살표를 선택적으로 표시/점등한다. 도 8에서는 화살표 형태의 아이콘을 이용하여 사용자에게 표시하나, 이는 일 예이며, 다양한 형상, 색상, 문자를 이용하여 표시할 수 있다. 그리고, 이러한 표시는 인터페이스부의 표시부(210)를 통해 표시하는 것도 가능하며, 사용자가 슬릿 램프(10)를 사용하는 동안 확인하는 것이 가능하도록, 슬릿 램프 내측에 구비된 표시 소자를 이용하여 표시하는 것도 가능하다.As illustrated in FIG. 8, the guide unit may be configured to selectively display or alternatively light three arrow icons representing different directions. As a result of determining the suitability of the treatment light intensity by the above-described method, if it is determined that the set treatment light intensity is excessive, the arrow displayed downward is selectively displayed / lighted so that the user can adjust the treatment light intensity low. On the other hand, if it is determined that the treatment light intensity is weak, the user selectively displays / lights the arrow displayed upward in order to increase the treatment light intensity. When it is determined that the treatment light intensity is appropriate, the horizontal arrow is selectively displayed / lit. In FIG. 8, an icon in the form of an arrow is displayed to the user, but this is an example and may be displayed using various shapes, colors, and characters. In addition, such a display may be displayed through the display unit 210 of the interface unit, and may be displayed using a display element provided inside the slit lamp so that the user can check it while using the slit lamp 10. It is possible.
또는, 도 9와 같이, 가이드부는 안저 이미지 상에 각 치료 위치의 치료광 강도의 적합 여부를 표시할 수 있다. 즉, 도 9에 도시된 바와 같이, 표시부(210)에 표시된 안저 이미지의 치료 위치를 표시하되, 과도한 치료강도, 적정 치료강도, 부족 치료 강도에 따라 각 치료 위치의 스팟을 상이하게 표시할 수 있다. 예를 들어, 색상, 음영, 형상 등을 이용하여 스팟을 상이하게 표시할 수 있으며, 또는 스팟과 인접하여 수치를 기재하는 방식으로 치료광 강도를 표시하는 것이 가능하다.Alternatively, as shown in FIG. 9, the guide unit may indicate whether the treatment light intensity of each treatment position is appropriate on the fundus image. That is, as shown in FIG. 9, the treatment position of the fundus image displayed on the display unit 210 may be displayed, and spots of each treatment position may be differently displayed according to excessive treatment intensity, proper treatment intensity, and insufficient treatment intensity. . For example, spots may be displayed differently using colors, shades, shapes, or the like, or it is possible to display the treatment light intensity in a manner of describing a numerical value adjacent to the spots.
또는, 도 10과 같이, 가이드부는 치료광 강도 조절을 제안하는 문구를 직접 사용자에게 표시하는 것도 가능하다. 예를 들어, 설정된 치료광 강도가 과도하다고 판단되는 경우, 도 10과 같이, 치료광 강도를 낮출 것을 사용자에게 직접 제안함으로써 치료 동작을 가이드할 수 있다.Alternatively, as shown in FIG. 10, the guide unit may directly display a phrase suggesting treatment light intensity control to the user. For example, when it is determined that the set treatment light intensity is excessive, as shown in FIG. 10, the treatment operation may be guided by directly suggesting to the user to lower the treatment light intensity.
도 8 내지 도 10에서 설명한 가이드부의 표시예는 택일적으로 실시하는 것도 가능하나, 별도의 창을 이용하여 동시에 표시하도록 실시하는 것도 가능하다. 한편, 전술한 예에서는 하나의 치료 위치에 대한 치료광 강도의 적합 여부 판단이 이루어지면 이를 표시하는 것으로 설명하고 있으나, 설정된 치료광 강도가 과도하다는 판단, 또는 부족하다는 판단이 특정 비중 이상으로 나타나거나, 연속하여 나타나는 경우에만 사용자에게 표시하도록 제어할 수 있다.The display example of the guide unit described with reference to FIGS. 8 to 10 may alternatively be implemented. Alternatively, the guide unit may be simultaneously displayed using a separate window. Meanwhile, in the above-described example, it is described that the determination of the suitability of the treatment light intensity for one treatment position is indicated. However, the determination that the set treatment light intensity is excessive or insufficient appears to be above a certain specific gravity. For example, it can be controlled to be displayed to the user only when it appears continuously.
한편, 사용자는 치료가 진행되는 동안 치료광 강도가 적합한지 여부에 대한 정보를 가이드부(230)로부터 제공받고, 필요하다고 판단되는 경우 설정부(240)를 통해 치료광 강도를 조절하여 치료를 진행할 수 있다. 만약, 가이드부(230)에서 설정된 치료광 강도가 과도하다는 표시가 반복되는 경우, 사용자는 설정부(240)를 통해 최대 마이크로 펄스의 강도를 10μJ씩 낮추는 조절을 수행할 수 있다. 또는, 설정된 치료광 강도가 약하다는 표시가 반복되는 경우, 사용자는 설정부(240)를 통해 최대 마이크로 펄스의 강도를 10μJ씩 높이는 조절을 수행할 수 있다.On the other hand, the user is provided with information on whether the treatment light intensity is suitable while the treatment is in progress from the guide unit 230, if it is determined that it is necessary to adjust the treatment light intensity through the setting unit 240 to proceed with the treatment Can be. If the indication that the treatment light intensity set by the guide unit 230 is excessive is repeated, the user may adjust the intensity of the maximum micro pulse by 10 μJ through the setting unit 240. Alternatively, when the indication that the set treatment light intensity is weak is repeated, the user may adjust the intensity of the maximum micro pulse by 10 μJ through the setting unit 240.
다만, 다른 예로서, 사용자가 직접 치료광 강도를 조절하는 것이 아니라, 제어부 자체가 가이드부에서 판단한 정보에 근거하여, 치료광 강도를 자동적으로 조절 제어하도록 구성하는 것도 가능하다.However, as another example, instead of directly adjusting the treatment light intensity, the control unit itself may be configured to automatically adjust and control the treatment light intensity based on the information determined by the guide unit.
이하에서는, 도 11 및 도 12를 이용하여, 본 실시예에 따른 안과용 치료장치의 제어 방법 및 이를 이용한 치료 방법을 구체적으로 설명한다.Hereinafter, the control method of the ophthalmic treatment apparatus and the treatment method using the same will be described in detail with reference to FIGS. 11 and 12.
도 11은 본 실시예에 따른 안과용 치료장치의 제어방법을 도시한 순서도이이고, 도 12는 도 11의 초기 치료광 강도 설정 단계를 보다 상세하게 나타낸 순서도이다. FIG. 11 is a flowchart illustrating a control method of an ophthalmic treatment apparatus according to the present embodiment, and FIG. 12 is a flowchart illustrating the initial treatment light intensity setting step of FIG. 11 in more detail.
우선, 초기 치료광 강도를 설정하기에 앞서, 환자의 병변을 진단한 후, 안저의 치료 영역을 결정하고, 치료에 필요한 각종 모드 설정 및 정보 입력을 수행하는 단계를 진행한다.First, prior to setting the initial treatment light intensity, after diagnosing a lesion of the patient, the treatment area of the fundus is determined, and various modes necessary for treatment and input of information are performed.
그리고, 치료를 진행하기에 앞서, 초기 치료광 강도를 설정하는 단계를 수행한다(S10). 전술한 바와 같이, 초기 치료광 강도는 치료 영역과 구분되는 테스트 영역에 테스트 광을 조사한 결과를 이용하여 설정될 수 있다.And, before proceeding with the treatment, the step of setting the initial treatment light intensity (S10). As described above, the initial treatment light intensity may be set using the result of irradiating the test light to a test region which is separated from the treatment region.
구체적으로, 도 11에 도시된 바와 같이, 우선 치료 영역(B)과 구분되는 안저의 테스트 영역(C)에 테스트 광을 조사하는 단계를 수행한다. 이때, 테스트 광은 테스트 영역내 5개 내지 18개의 테스트 위치(T0)에 각각 단일 마이크로 펄스 형태로 조사되며, 각각의 위치에 조사되는 마이크로 펄스의 강도는 상이하게 설정된다. 이때, 테스트 광은 치료광 발생부(110)로부터 발생되는 광을 이용할 수 있다(S11).Specifically, as shown in FIG. 11, first, the test light is irradiated to the test area C of the fundus, which is distinguished from the treatment area B. FIG. At this time, the test light is irradiated to each of 5 to 18 test positions T0 in the test region in the form of a single micro pulse, and the intensity of the micro pulses irradiated to each position is set differently. In this case, the test light may use the light generated from the treatment light generator 110 (S11).
그리고, 테스트 광이 조사된 후 소정 시간이 경과한 후, 조영제를 주사하여 형광안저 혈광 조영술을 통해 테스트 광이 조사된 위치의 영상을 확인한다(S12). 이 중, 일부의 테스트 위치에서 RPE 층을 통한 누수가 발생하면, 누수가 발생한 테스트 위치들로 조사된 테스트 광 중 가장 낮은 강도의 값을 확인한다. 그리고, 해당 강도를 치료광 중 최대 강도를 갖는 마이크로 펄스(15번째 펄스)의 강도로 설정함으로써, 초기 치료광 강도를 설정한다(S13).Then, after a predetermined time elapses after the test light is irradiated, a contrast agent is injected to confirm an image of the position where the test light is irradiated through fluorescein angiography (S12). Among these, when a leak occurs through the RPE layer at some test positions, the lowest intensity value of the test light irradiated to the leaked test positions is confirmed. The initial treatment light intensity is set by setting the intensity to the intensity of the micro pulse (the 15th pulse) having the maximum intensity among the treatment lights (S13).
전술한 단계에 의해, 초기 치료광 강도를 설정되면, 설정된 강도로 치료 영역 내 위치하는 제1 치료 위치에 치료광을 조사한다(S20). 이때, 치료광은 순차적으로 강도가 증가하는 N개(15개)의 마이크로 펄스 구성된다. 그리고, 치료광이 조사되는 동안 모니터링부(150)는 치료 위치로부터 발생되는 신호를 감지하여, 타겟 조직의 상태 변화 여부를 감지한다(S30). 이때, 모니터링부(150)에서 조직 상태 변화를 감지하는 알고리즘은 앞서 상세 기술된 부분으로 대체한다. 이때, 치료광 조사 단계(S20)와 상태 변화 여부를 감지하는 단계(S30)가 순차적으로 진행되는 단계인 것처럼 도시었으나, 이는 설명의 편의를 위한 것이며, 상기 두 단계는 해당 치료 위치에 대한 치료가 종료될 때가지 동시에 병렬적으로 진행된다.When the initial treatment light intensity is set by the above-described step, the treatment light is irradiated to the first treatment position positioned in the treatment region at the set intensity (S20). At this time, the treatment light is composed of N (15) micro pulses of sequentially increasing intensity. Then, while the treatment light is irradiated, the monitoring unit 150 detects a signal generated from the treatment position, and detects whether the target tissue state changes (S30). At this time, the algorithm for detecting the change in the tissue state in the monitoring unit 150 is replaced with the above-described parts. In this case, the treatment light irradiation step (S20) and the step (S30) of detecting the state change is shown as being a step that proceeds sequentially, but this is for convenience of description, the two steps are the treatment for the treatment location It runs in parallel at the same time until it is finished.
복수의 마이크로 펄스로 구성되는 치료광이 조사되는 동안, 조직의 상태가 변화한 것으로 감지되면, 제어부(160)는 잔여 마이크로 펄스를 조사하지 않은 상태로 치료광 조사를 자동 멈춤시킴으로써 제1 치료 위치에 대한 치료를 종료한다(S40). If the state of tissue is detected while the treatment light composed of the plurality of micro pulses is irradiated, the controller 160 automatically stops the treatment light irradiation without irradiating the remaining micro pulses to the first treatment position. End the treatment (S40).
다만, N회의 마이크로 펄스가 조사되는 동안 조직의 상태 변화가 감지되지 않은 경우, 설정된 N회의 마이크로 펄스를 조사한 후, 제1 치료 위치에 대한 치료를 종료한다.However, if the state change of the tissue is not detected during the irradiation of the N micro pulses, the set N micro pulses are irradiated, and then the treatment for the first treatment position is terminated.
그리고, 가이드부(230)는 제1 치료위치를 치료하는 과정에서 해당 위치로 조사된 마이크로 펄스의 수에 근거하여, 제1 위치로 조사된 치료광 강도가 적합한지 여부를 판단하여 가이드한다(S50). 예를 들어, 제1 치료 위치로 조사된 마이크로 펄스의 수(n)가 n1이상 n2이하이면(n1=4, n2=12), 설정된 치료광 강도가 적정한 것으로 판단하고, n1 미만이면 치료광 강도가 과한 것으로, n2를 초과하면 치료광 강도가 부족한 것으로 판단한다. 그리고, 치료광 강도의 적합여부에 대해 판단한 결과를 표시부 등을 통해 사용자에게 가이드한다. 본 단계에서, 가이드부에서 치료광 강도의 적합 여부를 판단하고, 이를 표시하는 구체적인 내용은 앞서 설명한 내용을 참고한다.In addition, the guide unit 230 determines whether or not the treatment light intensity irradiated to the first position is suitable based on the number of micro pulses irradiated to the corresponding position in the process of treating the first treatment position (S50). ). For example, if the number n of micro pulses irradiated to the first treatment position is n1 or more and n2 or less (n1 = 4, n2 = 12), it is determined that the set treatment light intensity is appropriate. If n2 is exceeded, it is determined that the treatment light intensity is insufficient. The result of the determination on whether the treatment light intensity is suitable is guided to the user through the display unit. In this step, the guide unit determines whether the treatment light intensity is suitable, and for details of displaying the same, refer to the above description.
그리고, 사용자는 가이드부(230)에서 가이드된 정보를 참고하여, 치료광 강도를 조절하는 단계를 수행한다(S60). 예를 들어, 제1 치료위치로 조사된 치료광 강도가 과도한 것으로 가이드되면 치료광 강도, 즉 최대 마이크로 펄스의 강도를 낮추도록 조절할 수 있고, 제1 치료위치로 조사된 치료광 강도가 부족한 것으로 가이드되는 경우 치료광 강도를 증가시킬 수 있다. 다만, 본 단계는 필수적으로 수행해야하는 단계는 아니며, 치료광 강도가 적정한 것으로 가이드되는 경우, 또는 치료광 강도가 과도하거나 부족하다고 가이드되더라도 사용자가 치료에 영향을 미치지 않을 것으로 판단하는 경우에는, 치료광 강도를 조절하지 않고 다음 단계를 수행할 수 있다.The user performs the step of adjusting the treatment light intensity by referring to the information guided by the guide unit 230 (S60). For example, when the treatment light intensity irradiated to the first treatment position is guided to be excessive, the treatment light intensity, ie, the intensity of the maximum micro pulse, may be adjusted to lower the guide, and the treatment light intensity irradiated to the first treatment position is insufficient. Treatment light intensity can be increased. However, this step is not necessarily a step to be performed, and if the therapeutic light intensity is guided to an appropriate level or if the user determines that the therapeutic light intensity is guided to be excessive or insufficient, the treatment light will not be affected. The following steps can be performed without adjusting the intensity.
전술한 단계를 수행한 후, 치료 위치를 제2 치료 위치로 변경한 후(S70), 해당 치료 위치에서 S20 내지 S60에 해당하는 단계를 반복할 수 있다. 이후, 제3, 제4 치료 위치에 대해서도 동일한 방식으로 치료를 진행할 수 있다. 이때, 각각의 치료 위치에서는 선행 치료된 위치의 치료 결과를 반영하여 조절된 치료광 강도로 치료가 이루어질 수 있는 바, 적합한 치료를 진행하는 것이 가능하다.After performing the above-described steps, after changing the treatment position to the second treatment position (S70), the steps corresponding to S20 to S60 can be repeated at the treatment position. Thereafter, the treatment may proceed in the same manner with respect to the third and fourth treatment positions. At this time, in each treatment position, the treatment can be performed with the adjusted treatment light intensity reflecting the treatment result of the previously treated position, so that it is possible to proceed with the appropriate treatment.
이와 같이, 본 발명에 의할 경우, 치료가 진행되는 동안 실시간으로 조직의 상태 변화를 감지하여 치료광을 자동 멈춤 제어함으로써 최적 치료를 진행하되, 조직의 특성을 고려한 최적 치료광 강도를 지속적으로 가이드함으로써, 안전성을 향상시키고 치료가 누락되는 것을 방지함으로써 치료 효과를 향상시킬 수 있다. 특히, 각 치료광의 조사에 따른 조직의 손상 정보가 가이드되어 사용자가 이를 참조하여 치료를 수행할 수 있는 바, 사용자의 숙련도에 따른 치료 결과의 차이를 최소화할 수 있다.As described above, according to the present invention, while the treatment is in progress, in real time, by detecting the change of the tissue in real time, the treatment light automatically stops and proceeds to the optimal treatment, while continually guiding the optimal treatment light intensity considering the characteristics of the tissue Thus, the therapeutic effect can be improved by improving safety and preventing the treatment from being omitted. In particular, the damage information of the tissue according to the irradiation of each treatment light is guided so that the user can perform the treatment with reference thereto, thereby minimizing the difference in treatment result according to the user's skill level.
이상, 본 발명의 다양한 실시예에 대해 상세하게 기술하였으나, 본 발명이 상기 실시예에 한정되는 것은 아니다. 본 발명이 속하는 기술 분야에 대해 통상의 지식을 가진 사람이면, 첨부된 청구범위에 정의된 본 발명의 기술적 특징의 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형 또는 변경하여 실시할 수 있음은 밝혀둔다.As mentioned above, although the various Example of this invention was described in detail, this invention is not limited to the said Example. It will be apparent to those skilled in the art that the present invention may be modified or modified in various ways without departing from the scope of the technical features of the invention as defined in the appended claims. Put it.
Claims (19)
- 순차적으로 강도가 증가하는 펄스로 구성되는 치료광을 안조직의 치료 위치로 조사하는 치료광 조사부;Treatment light irradiation unit for irradiating the treatment light consisting of pulses of increasing intensity sequentially to the treatment position of the eye tissue;상기 치료광이 조사되는 동안 상기 치료광에 의한 상기 치료 위치의 상태 정보를 모니터링하는 모니터링부;A monitoring unit for monitoring state information of the treatment position by the treatment light while the treatment light is irradiated;상기 모니터링된 상태 정보에 근거하여 상기 치료 위치에 목표한 상태 변화가 발생한 것으로 감지되면 상기 치료 위치로의 상기 치료광 조사가 자동 멈춤되게 제어하는 제어부;A controller configured to automatically stop the treatment light irradiation to the treatment position when it is detected that a target state change has occurred in the treatment position based on the monitored state information;상기 치료 위치의 상태 변화가 감지된 시점에 근거하여, 설정된 치료광 강도가 적합한지 여부를 사용자에게 가이드하는 가이드부; 및,A guide unit guiding a user whether the set treatment light intensity is suitable based on a time point at which a change in the state of the treatment position is detected; And,사용자가 상기 치료광 강도를 조절할 수 있는 설정부를 포함하는 안과용 치료장치.Ophthalmic treatment device comprising a setting unit for the user to adjust the treatment light intensity.
- 제1항에 있어서,The method of claim 1,상기 가이드부는 상기 치료광 조사가 자동 멈춤될 때까지 기 조사된 펄스의 수에 근거하여 상기 설정된 치료광 강도가 적합한지 여부를 사용자에게 가이드하는 것을 특징으로 하는 안과용 치료장치.And the guide unit guides the user whether the set treatment light intensity is suitable based on the number of pulses previously irradiated until the treatment light irradiation is automatically stopped.
- 제2항에 있어서,The method of claim 2,상기 치료광은 하나의 치료 위치에 펄스를 N회 조사하도록 설정되며,The treatment light is set to emit N pulses at one treatment position,상기 치료 위치의 상태 변화가 감지되어 상기 치료광이 자동 멈춤될 때까지 조사된 펄스가 n1회 이상이면 상기 가이드부는 상기 치료광 강도 설정이 적합한 것으로 표시하고, n1회 미만이면 상기 가이드부는 상기 설정된 치료광 강도가 과도한 것으로 표시하는 것을 특징으로 하는 안과용 치료장치.The guide unit indicates that the treatment light intensity setting is suitable when the pulse irradiated until the treatment light is automatically stopped by detecting the state change of the treatment position is n1 or more times, and the guide unit indicates that the setting of the treatment light intensity is less than n1 times. An ophthalmic treatment device, characterized in that the light intensity is displayed as excessive.
- 제2항에 있어서,The method of claim 2,상기 치료광은 하나의 치료 위치에 펄스를 N회 조사하도록 설정되며,The treatment light is set to emit N pulses at one treatment position,상기 치료 위치의 상태 변화가 감지되어 상기 치료광이 자동 멈춤될 때까지 조사된 펄스가 n2회 이하이면 상기 가이드부는 상기 설정된 치료광 강도가 적합한 것으로 표시하고, n2회를 초과하거나 자동 멈춤이 발생하지 않으면 상기 가이드부는 상기 설정된 치료광 강도가 약한 것으로 표시하는 것을 특징으로 하는 안과용 치료장치.If the pulse irradiated until the treatment light is automatically stopped by detecting a change in the state of the treatment position is n2 or less times, the guide unit indicates that the set treatment light intensity is appropriate and does not exceed n2 times or automatic stop occurs. Otherwise, the guide unit displays the set treatment light intensity as weak.
- 제2항에 있어서,The method of claim 2,상기 치료광은 하나의 치료 위치에 펄스를 N회 조사하도록 설정되며,The treatment light is set to emit N pulses at one treatment position,상기 치료 위치의 상태 변화가 감지되어 상기 치료광이 자동 멈춤될 때까지 조사된 펄스가 n1회 이상 n2 이하이면, 상기 가이드부는 상기 설정된 치료광 강도가 적합한 것으로 표시하고,If the change in the state of the treatment position is detected and the pulse irradiated until the treatment light is automatically stopped n1 or more times n2 or less, the guide unit indicates that the set treatment light intensity is suitable,상기 치료광이 자동 멈춤될 때까지 조사된 펄스가 n1회 미만이면, 상기 가이드부는 상기 설정된 치료광 강도가 과도한 것으로 표시하고,If the pulse irradiated until the treatment light is automatically stopped is less than n1 times, the guide unit displays that the set treatment light intensity is excessive,상기 치료광이 자동 멈춤될 때까지 조사된 펄스가 n2회를 초과하거나 자동 멈춤이 발생하지 않으면, 상기 가이드부는 상기 설정된 치료광 강도가 약한 것으로 표시하는 것을 특징으로 하는 안과용 치료장치.And the guide unit indicates that the set treatment light intensity is weak when the irradiated pulse exceeds n2 times or the automatic stop does not occur until the treatment light is automatically stopped.
- 제5항에 있어서,The method of claim 5,상기 n1은 상기 N의 20% 이상의 값이고, 상기 n2는 상기 N의 80% 이하의 값인 것을 특징으로 하는 안과용 치료장치.The n1 is a value of 20% or more of the N, the n2 is an ophthalmic treatment device, characterized in that the value of 80% or less of the N.
- 제2항에 있어서,The method of claim 2,상기 설정부는 사용자가 최대 강도를 갖는 펄스의 강도를 조절할 수 있도록 구성되며,The setting unit is configured to allow the user to adjust the intensity of the pulse having the maximum intensity,상기 최대 강도를 갖는 펄스의 강도가 조절되면 나머지 펄스의 강도 또한 기 설정된 방식으로 조절되어 상기 치료광 강도가 조절되는 것을 특징으로 하는 안과용 치료장치.When the intensity of the pulse having the maximum intensity is adjusted, the intensity of the remaining pulses are also adjusted in a predetermined manner so that the therapeutic light intensity is controlled.
- 제7항에 있어서,The method of claim 7, wherein상기 최대 강도를 갖는 펄스의 초기 강도는 테스트 영역에 펄스를 조사하였을 때 형광 안저 혈관조영술(fluorescein angiography)을 통해 RPE 영역에서 누출(leakage)이 관찰되는 최소 강도값인 것을 특징으로 하는 안과용 치료장치.The initial intensity of the pulse having the maximum intensity is an ophthalmic treatment device, characterized in that the leakage is observed in the RPE area through fluorescein angiography (fluorescein angiography) when the pulse is irradiated to the test area .
- 제2항에 있어서,The method of claim 2,상기 모니터링부는 서로 상이한 방식으로 상기 치료 위치의 상태 변화를 감지하는 제1 모니터링 유닛 및 제2 모니터링 유닛을 포함하고,The monitoring unit includes a first monitoring unit and a second monitoring unit for detecting a state change of the treatment position in a different manner from each other,상기 제어부는 상기 치료광이 조사되는 동안 상기 제1 모니터링 유닛과 상기 제2 모니터링 유닛 중 어느 하나에서 상기 치료 위치의 상태 변화가 감지되면 상기 치료광을 자동 멈춤시키도록 제어하는 것을 특징으로 하는 안과용 치료장치.The controller may be configured to automatically stop the treatment light when a change in the state of the treatment position is detected by any one of the first monitoring unit and the second monitoring unit while the treatment light is irradiated. Treatment device.
- 제2항에 있어서,The method of claim 2,상기 가이드부를 통해 상기 설정된 치료광 강도가 적합한지 여부가 결정되면, 상기 제어부는 자동적으로 상기 치료광 강도를 조절하는 것을 특징으로 하는 안과용 치료장치.And if it is determined whether the set treatment light intensity is suitable through the guide unit, the control unit automatically adjusts the treatment light intensity.
- 치료광 조사부를 통해 순차적으로 강도가 증가하는 복수의 펄스로 구성된 치료광을 안조직의 치료 위치로 조사하는 단계;Irradiating a treatment light composed of a plurality of pulses of increasing intensity sequentially through the treatment light irradiation unit to a treatment position of the eye tissue;상기 모니터링부를 통해 상기 치료광이 조사되는 동안 상기 치료 위치의 상태 변화를 모니터링하는 단계;Monitoring a state change of the treatment position while the treatment light is irradiated through the monitoring unit;상기 치료광이 조사되는 동안 상기 치료 위치의 상태 변화가 발생하면 상기 치료광을 자동 멈춤시키는 단계;Automatically stopping the treatment light when a change of state of the treatment position occurs while the treatment light is irradiated;상기 치료 위치의 상태 변화가 감지된 시점에 근거하여, 상기 치료광의 강도 설정이 적합한지 여부를 가이드부를 통해 사용자에게 가이드하는 단계를 포함하는 안과용 치료장치의 제어방법.And guiding the user through a guide unit whether or not the intensity setting of the treatment light is suitable based on a time point at which the state change of the treatment position is sensed.
- 제11항에 있어서,The method of claim 11,상기 가이드하는 단계는, 상기 치료광 조사가 자동 멈춤될 때까지 기 조사된 펄스의 수에 근거하여 상기 설정된 치료광의 강도가 적합한지 여부를 판단하는 것을 특징으로 하는 안과용 치료장치의 제어방법.The guiding step may include determining whether the set intensity of the treatment light is appropriate based on the number of pulses previously irradiated until the treatment light irradiation is automatically stopped.
- 제12항에 있어서,The method of claim 12,상기 치료광은 하나의 치료 위치에 펄스를 N회 조사하도록 설정되며,The treatment light is set to emit N pulses at one treatment position,상기 치료 위치의 상태 변화가 감지되어 상기 치료광이 자동 멈춤될 때까지 기 조사된 펄스가 n1회 이상 n2회 이하이면, 상기 가이드부를 통해 상기 설정된 치료광의 강도가 적합한 것으로 표시하고,When the change in the state of the treatment position is detected and the pulse irradiated until the treatment light is automatically stopped n1 times or more than n2 times, the intensity of the set treatment light through the guide unit is displayed as appropriate,상기 치료광이 자동 멈춤될 때까지 조사된 마이크로펄스가 n1회 미만이면 상기 가이드부를 통해 상기 설정된 치료광의 강도가 과도한 것으로 표시하고, If the irradiated micropulse is less than n1 times until the treatment light is automatically stopped, the intensity of the set treatment light is displayed as excessive through the guide unit,상기 치료광이 자동 멈춤될 때까지 조사된 마이크로펄스가 n2회를 초과하면 상기 가이드부를 통해 상기 설정된 치료광의 강도가 약한 것으로 표시하는 것을 특징으로 하는 안과용 치료장치의 제어방법.And if the irradiated micropulse exceeds n2 times until the treatment light is automatically stopped, the intensity of the set treatment light is weakly displayed through the guide unit.
- 제12항에 있어서,The method of claim 12,상기 치료광의 강도를 설정하는 단계를 더 포함하고, 상기 치료광의 강도를 설정하는 단계는 상기 치료광을 구성하는 복수의 펄스 중 최대 강도를 갖는 펄스의 강도를 설정하는 것을 특징으로 하는 안과용 치료장치의 제어방법.And setting the intensity of the treatment light, wherein setting the intensity of the treatment light sets an intensity of a pulse having a maximum intensity among a plurality of pulses constituting the treatment light. Control method.
- 제12항에 있어서,The method of claim 12,상기 모니터링 단계는 서로 상이한 방식으로 상기 치료 위치의 상태 변화를 감지하는 제1 모니터링 유닛 및 제2 모니터링 유닛을 이용하여 모니터링하며,The monitoring step monitors using a first monitoring unit and a second monitoring unit for detecting a change in the state of the treatment position in different ways,상기 제1 모니터링 유닛과 상기 제2 모니터링 유닛 중 어느 하나에서 상기 치료 위치의 상태 변화가 감지되면 상기 치료광 조사를 자동 멈춤하는 것을 특징으로 하는 안과용 치료장치의 제어방법.The control method of the ophthalmic treatment device, characterized in that the irradiation of the treatment light automatically stops when a change in the state of the treatment position is detected in any one of the first monitoring unit and the second monitoring unit.
- 안조직의 테스트 영역에 상이한 강도를 갖는 테스트 펄스를 조사하여 치료광의 강도를 설정하는 단계;Irradiating test pulses having different intensities to the test area of the eye tissue to set the intensity of the treatment light;설정된 치료광 강도에 근거하여 순차적으로 강도가 증가하는 복수의 펄스로 구성된 치료광을 안조직의 치료 위치로 조사하는 단계;Irradiating a treatment light composed of a plurality of pulses of sequentially increasing intensity based on the set treatment light intensity to a treatment position of the eye tissue;상기 치료광이 상기 치료 위치로 조사되는 동안 상기 치료 위치의 상태 변화를 모니터링하는 단계;Monitoring a change in state of the treatment location while the treatment light is directed to the treatment location;상기 치료 위치의 상태 변화가 감지되면 상기 치료광을 자동 멈춤시키는 단계; 및Automatically stopping the treatment light when a change in state of the treatment position is detected; And상기 치료 위치의 상태 변화가 감지된 시점에 근거하여 가이드 되는 상기 설정된 치료광 강도의 적합 여부에 대한 정보에 따라, 상기 설정된 치료광 강도를 조절하는 단계;를 포함하는 안과용 치료장치를 이용한 치료방법.And adjusting the set treatment light intensity according to the information on whether the set treatment light intensity is guided based on the time point at which the state change of the treatment position is sensed. .
- 제16항에 있어서,The method of claim 16,상기 치료광 강도가 적합한지 여부는 상기 치료광 조사가 자동 멈춤될 때까지 기 조사된 펄스의 수에 근거하여 판단하는 것을 특징으로 하는 안과용 치료장치를 이용한 치료방법.Whether or not the treatment light intensity is suitable is determined based on the number of pulses previously irradiated until the treatment light irradiation is automatically stopped.
- 제17항에 있어서,The method of claim 17,상기 치료광은 하나의 치료 위치에 펄스를 N회 조사하도록 설정되며,The treatment light is set to emit N pulses at one treatment position,상기 치료 위치의 상태 변화가 감지되어 상기 치료광이 자동 멈춤될 때까지 기 조사된 펄스가 n1회 이상 n2회 이하이면, 상기 설정된 치료광 강도가 적합한 것으로 가이드 되고,When the change in the state of the treatment position is detected and the pulse irradiated before the treatment light is automatically stopped n1 times or more than n2 times, the set treatment light intensity is guided to be suitable,상기 치료광이 자동 멈춤될 때까지 조사된 마이크로펄스가 n1회 미만이면 상기 설정된 치료광 강도가 과도한 것으로 표시되고,If the irradiated micropulse is less than n1 times until the treatment light is automatically stopped, the set treatment light intensity is displayed as excessive,상기 치료광이 자동 멈춤될 때까지 조사된 마이크로펄스가 n2회를 초과하면 상기 설정된 치료광 강도가 약한 것으로 가이드되는 것을 특징으로 하는 안과용 치료장치를 이용한 치료방법.If the irradiated micropulse exceeds n2 times until the treatment light is automatically stopped, the treatment method using an ophthalmic treatment device, characterized in that the set treatment light intensity is guided to weak.
- 제16항에 있어서, 상기 치료광 강도를 설정하는 단계는,The method of claim 16, wherein setting the treatment light intensity comprises:상기 테스트 영역에 상이한 강도를 갖는 복수의 테스트 펄스를 각각 상이한 위치에 조사하는 단계;Irradiating a plurality of test pulses having different intensities in the test area at different positions;형광 안저 혈관 조영술(Fluorescein Angiography)을 이용하여 상기 복수의 테스트 펄스가 조사된 위치의 누출(leakage) 여부를 확인하는 단계; 및Confirming whether or not the plurality of test pulses are leaked using a fluorescein angiography; And상기 누출이 있는 위치로 조사된 테스트 펄스들의 강도 중 최저값을 이용하여 상기 치료광 강도를 설정하는 단계를 포함하는 것을 특징으로 하는 안과용 치료장치를 이용한 치료방법.And setting the treatment light intensity by using the lowest value of the intensity of the test pulses irradiated to the leaked position.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180044956A KR101966906B1 (en) | 2018-04-18 | 2018-04-18 | An ophthalmic treatment apparatus and method for controlling that |
KR10-2018-0044956 | 2018-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203373A1 true WO2019203373A1 (en) | 2019-10-24 |
Family
ID=66164495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/004511 WO2019203373A1 (en) | 2018-04-18 | 2018-04-18 | Ophthalmic treatment apparatus and control method thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101966906B1 (en) |
WO (1) | WO2019203373A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008183247A (en) * | 2007-01-30 | 2008-08-14 | Nidek Co Ltd | Ophthalmic laser treatment device |
US20140135753A1 (en) * | 2002-09-18 | 2014-05-15 | Ellex Medical Pty Ltd | Ophthalmic laser system |
JP2016154790A (en) * | 2015-02-26 | 2016-09-01 | 株式会社ニデック | Ophthalmic laser treatment device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010085650A2 (en) * | 2009-01-23 | 2010-07-29 | The General Hospital Corporation | Dose determination for inducing microcavitation in retinal pigment epithelium (rpe) |
KR101421653B1 (en) | 2012-07-13 | 2014-07-23 | 주식회사 루트로닉 | Apparatus for treating ocular and beam control method thereof |
-
2018
- 2018-04-18 KR KR1020180044956A patent/KR101966906B1/en active Active
- 2018-04-18 WO PCT/KR2018/004511 patent/WO2019203373A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140135753A1 (en) * | 2002-09-18 | 2014-05-15 | Ellex Medical Pty Ltd | Ophthalmic laser system |
US20150157506A1 (en) * | 2002-09-18 | 2015-06-11 | Ellex Medical Pty Ltd | Ophthalmic Laser System |
JP2008183247A (en) * | 2007-01-30 | 2008-08-14 | Nidek Co Ltd | Ophthalmic laser treatment device |
JP2016154790A (en) * | 2015-02-26 | 2016-09-01 | 株式会社ニデック | Ophthalmic laser treatment device |
Non-Patent Citations (1)
Title |
---|
KIM, YE JI ET AL.: "Selective retina therapy with real-time feedback-controlled dosimetry for treating acute idiopathic central serous chorioretinopathy in Korean patients", JOURNAL OF OPHTHALMOLOGY, vol. 2018, February 2018 (2018-02-01), pages 1 - 9, XP055643373 * |
Also Published As
Publication number | Publication date |
---|---|
KR101966906B1 (en) | 2019-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018021781A1 (en) | Ophthalmic treatment device and control method therefor | |
WO2015088226A1 (en) | Ophthalmic treatment device, method for controlling ophthalmic treatment device, and fundus lesion treatment method | |
WO2018021780A1 (en) | Ophthalmic treatment device and method of controlling same | |
WO2015170947A1 (en) | Ophthalmic treatment device | |
WO2016018099A1 (en) | Ophthalmic treatment device and method for driving same | |
JP5563488B2 (en) | Ophthalmic devices and methods for eye observation, examination, diagnosis and / or treatment | |
JP5179894B2 (en) | Ophthalmic equipment | |
WO2014011017A1 (en) | Ophthalmic treatment apparatus and beam control method therefor | |
WO2011059018A1 (en) | Ophthalmic device | |
WO2016024841A1 (en) | Ophthalmic treatment device and control method therefor | |
CN115103657A (en) | Direct laser trabeculoplasty method and apparatus | |
US20250017778A1 (en) | Ophthalmic therapeutic device and control method therefor | |
CN107072523A (en) | For monitoring dynamic system, the method and apparatus to check visual field of eye | |
WO2019194519A1 (en) | Ophthalmic treatment apparatus and control method therefor | |
WO2019203373A1 (en) | Ophthalmic treatment apparatus and control method thereof | |
KR102191632B1 (en) | An ophthalmic treatment apparatus and method for controlling that | |
KR102191633B1 (en) | An ophthalmic treatment apparatus and method for controlling that | |
WO2019031846A1 (en) | Ophthalmic treatment device and control method therefor | |
KR102227732B1 (en) | An ophthalmic treatment apparatus and method for controlling that | |
KR102020841B1 (en) | An ophthalmic treatment apparatus and method for controlling that | |
WO2024147767A1 (en) | An apparatus and method for pupillary reflex based early disease detection | |
Rathi et al. | Understanding the Machine and Laser Settings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18915669 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18915669 Country of ref document: EP Kind code of ref document: A1 |