WO2018021568A1 - Led light bulb - Google Patents

Led light bulb Download PDF

Info

Publication number
WO2018021568A1
WO2018021568A1 PCT/JP2017/027563 JP2017027563W WO2018021568A1 WO 2018021568 A1 WO2018021568 A1 WO 2018021568A1 JP 2017027563 W JP2017027563 W JP 2017027563W WO 2018021568 A1 WO2018021568 A1 WO 2018021568A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
phosphor
light
globe
led bulb
Prior art date
Application number
PCT/JP2017/027563
Other languages
French (fr)
Japanese (ja)
Inventor
圭亮 堺
秋山 貴
Original Assignee
シチズン時計株式会社
シチズン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン時計株式会社, シチズン電子株式会社 filed Critical シチズン時計株式会社
Priority to JP2018530442A priority Critical patent/JP6899827B2/en
Publication of WO2018021568A1 publication Critical patent/WO2018021568A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/65Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/66Details of globes or covers forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages

Definitions

  • the present invention relates to an LED bulb that includes an LED (light emitting diode) and a phosphor that can move with respect to the LED, and that can change the emission color by changing the relative positional relationship between the LED and the phosphor.
  • an illuminating device that can change the emission color.
  • FIG. 9 of Patent Document 1 shows a white light emitting device in which a wavelength conversion component is rotatable.
  • This white light emitting device includes LEDs arranged around three concentric circles, and a transparent disk (wavelength conversion component) that can rotate around a rotation axis common to the concentric circles.
  • a transparent disk transparent disk
  • On the surface of the transparent disk there is formed a wavelength conversion region that includes a phosphor having a predetermined component and concentration and whose wavelength conversion characteristics change according to a given rotation angle.
  • the white light emitting device can change the color temperature of white light between cold white and warm white by changing the relative positional relationship between the LED and the wavelength conversion region.
  • Patent Document 2 discloses an illuminating device in which a laminated phosphor sheet having a plurality of regions is provided on an optical path of light emitted from a light source.
  • the illumination device of Patent Document 2 includes a moving unit that moves the relative position between the laminated phosphor sheet and the light source, and can select a region through which light emitted from the light source is transmitted from any of a plurality of regions.
  • Patent Document 1 only shows that a transparent disk (hereinafter referred to as a “color disk”) having different wavelength conversion characteristics depending on the location is provided, and the emission color can be adjusted by rotation of the color disk. There is no specific description or suggestion as to how the method described in Patent Document 1 is applied to an LED bulb.
  • a transparent disk hereinafter referred to as a “color disk”
  • Patent Document 2 describes that a laminated phosphor sheet is wound up by a rotary solenoid to move a relative position with a light source. Therefore, the structure of the lighting device described in Patent Document 2 is complicated, and it is difficult to reduce the price and size of the lighting device.
  • an object of the present invention is to provide an LED bulb that has a simple structure and is easy to use, in an LED bulb that can change the emission color by rotating a color disk.
  • the LED bulb of the present invention includes a main body, an LED disposed in the main body, a globe supported rotatably on the main body and disposed so as to cover the LED, a disk disposed between the globe and the LED, A position changing mechanism that relatively changes the positional relationship between the LED and the disk as the globe rotates.
  • the disk has a first phosphor that converts light emitted from the LED into a first emission color, and second emission that differs from the first emission color in the light emitted from the LED. And a second phosphor to be converted into color, and the third emission color emitted from the globe is changed by changing the positional relationship by the position changing mechanism.
  • the LED is fixed to the main body
  • the disk is connected to the glove
  • the position changing mechanism is a support mechanism that supports the glove so as to be rotatable with respect to the main body
  • the disk is a rotation of the glove. It may be configured so as to rotate with the relative position and relatively change the positional relationship with the LED.
  • the disk of the LED bulb of the present invention may have an annular region, and the first phosphor and the second phosphor may be arranged in the annular region.
  • the disk of the LED bulb of the present invention may have a recess, and the first phosphor and the second phosphor may be applied to the recess.
  • the LED light bulb of the present invention has a first phosphor and a second phosphor on a disk so that the ratio of the first phosphor and the second phosphor facing the LED changes as the globe rotates. May be arranged.
  • the LED bulb of the present invention may further include a first light shielding member disposed around the disk.
  • the LED bulb of the present invention may further include a second light shielding member disposed between the first phosphor and the second phosphor.
  • the first light shielding member or the second light shielding member of the LED bulb of the present invention may be a white reflective resin.
  • the LED of the LED bulb of the present invention may include a dam material, a plurality of LED dies arranged inside the dam material, and a sealing material arranged inside the dam material.
  • the LED of the LED bulb of the present invention has a plurality of dam materials arranged in a plurality of regions, a plurality of LED dies arranged inside each of the plurality of dam materials, and a plurality of dam materials, respectively. It may contain a sealing material.
  • the LED bulb of the present invention may further have a mark indicating a third emission color that is changed as the globe rotates.
  • the light measured at the position of the target when the third emission color irradiates the target satisfies the following (A). It may be a thing.
  • (A) The distance D UVSSL from the black body radiation locus defined by ANSI C78.377 is ⁇ 0.0325 ⁇ D UVSSL ⁇ ⁇ 0.0075.
  • ⁇ C n ⁇ ⁇ (a * nSSL ) 2 + (b * nSSL ) 2 ⁇ ⁇ ⁇ (a * nref ) 2 + (b * nref ) 2 ⁇ .
  • the hue angle in the CIE 1976 L * a * b * color space of the above 15 types of modified Munsell color charts when the illumination by light measured at the position of the object is mathematically assumed is ⁇ nSSL (degree) ( Where n is a natural number from 1 to 15)
  • the LED bulb of the present invention is an LED bulb capable of changing the emission color depending on the relative positional relationship between the LED and the phosphor, a globe that can rotate around a rotation axis, an LED that is arranged off the rotation axis, And a color disk in which phosphors are separately applied according to a rotation angle around a rotation axis, and the color disk rotates in conjunction with a globe.
  • the globe and the colored disk fixed to the globe rotate around the rotation axis.
  • the color disk has a region where phosphors are separately applied according to the rotation angle. This region is laminated to the LED through an air layer.
  • the light emitted from the LED is partly or entirely wavelength-converted by the phosphor when the phosphor is laminated on the upper part, and is emitted from the globe to the outside.
  • FIG. 1 is an exploded perspective view of an LED bulb 10 according to a first embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view of the LED bulb 10. The top view which shows the inside of the globe 11 of the LED bulb 10.
  • FIG. 1 is a perspective view of a phosphor frame 12 included in an LED bulb 10.
  • FIG. 4 is a lateral cross-sectional view of the LED 16 included in the LED bulb 10.
  • FIG. 3 is an enlarged perspective view showing a relationship between a globe 11 and a phosphor frame 12 included in the LED bulb 10.
  • FIG. 3 is an enlarged perspective view showing a relationship between a globe 11 and a phosphor frame 12 included in the LED bulb 10.
  • FIG. 3 is a top view of a case 18 included in the LED bulb 10.
  • FIG. 3 is an external view of a connection portion between a globe 11 and a case 18 included in the LED bulb 10.
  • FIG. 1 is an exploded perspective view of an LED bulb 10 according to a first embodiment of the present invention.
  • the globe 11 is attached with a phosphor frame 12 (color disk) that is separately coated with phosphors having different characteristics.
  • the phosphor frame 12 is fixed to the globe 11 via the bridge portion 12a.
  • the reflection frame 13 and the circuit board 15 are fixed to the heat sink 18 a with screws 14.
  • the heat sink 18 a is fixed to the case 18 so that the upper surface is disposed on the upper part of the case 18.
  • the base 19 is attached to the lower part of the case 18.
  • the LED 16 and the connector 17 are mounted on the upper surface of the circuit board 15.
  • the globe 11 is fitted into the case 18 that is the main body of the LED bulb 10 so that the globe 11 can rotate around the rotation axis A that is the center line of the globe 11 and the case 18.
  • the phosphor frame 12 is disposed between the globe 11 and the LED 16.
  • FIG. 2 is a partial cross-sectional view of the LED bulb 10 and shows a part of a cross section including the central LED 16 among the three LEDs 16 (see FIG. 1) aligned on the short side of the circuit board 15.
  • the heat sink 18a is disposed on the upper portion of the case 18, and the circuit board 15 is laminated on the upper surface thereof.
  • LEDs 16 are mounted at both ends, and a reflection frame 13 is laminated.
  • the reflection frame 13 is fixed to the circuit board 15 with screws 14.
  • the globe 11 is in contact with the upper end of the case 18 at the step portion 11b.
  • the glove 11 is supported in a rotatable state with respect to the case 18 by engagement of locking claws (described later) formed on the lower part of the glove 11 and the upper part of the case 18.
  • the globe 11 and the phosphor frame 12 are connected by bonding the step portion 11 b of the globe 11 and the bridge portion 12 a of the phosphor frame 12.
  • the phosphor frame 12 includes an annular portion 12f and a bridge portion 12a, and the center of the annular portion 12f is open. Further, the phosphor frame 12 has a recess 12b formed immediately above the LED 16.
  • FIG. 3 is a plan view showing the inside of the globe 11 of the LED bulb 10 and shows a state in which the globe 11 is cut in the horizontal direction along the BB cutting line of FIG. 2 and the LED bulb 10 is viewed from above. .
  • a cut surface 11 a and a stepped portion 11 b are observed on the globe 11.
  • the step portion 11 b of the globe 11 and the bridge portion 12 a of the phosphor frame 12 are bonded and fixed so that the phosphor frame 12 rotates in conjunction with the globe 11.
  • the phosphor frame 12 is made of transparent plastic.
  • the annular portion of the phosphor frame 12 is divided into eight regions 12b, 12b, 12c, 12c, 12d, 12d, 12e, and 12e.
  • the regions 12b and 12b, the regions 12c and 12c, the regions 12d and 12d, and the regions 12e and 12e are arranged at positions that make a pair with the center of the ring.
  • the regions 12c, 12c, 12d, 12d, 12e, and 12e are coated with a phosphor.
  • the regions 12c, 12d, and 12e are also referred to as phosphors 12c, 12d, and 12e.
  • the regions 12b and 12b are not coated with a phosphor and are formed as recesses.
  • the regions 12b are also referred to as recesses 12b.
  • the LED 16 is observed through the regions 12b and 12b. When the LED 16 is turned on in the state of FIG. 3, the LED bulb 10 emits light in the
  • the reflection frame 13 is observed under the phosphor frame 12. Since the phosphor frame 12 is transparent, a part of the reflection frame 13 can be observed through the phosphor frame 12, but this portion is not shown.
  • a circuit board 15 is observed under the reflection frame 13. The reflection frame 13 is fixed to the circuit board 15 with screws 14 at a position deviating from the rotation axis A.
  • a connector 17 is mounted on the upper surface of the circuit board 15 at a position that does not interfere with the reflection frame 13. Under the circuit board 15, the upper surface of the heat sink 18a is observed.
  • FIG. 4 is a perspective view of the phosphor frame 12 included in the LED bulb 10, and shows a state in which the phosphor frame 12 before being coated with the phosphors 12c, 12d, and 12e is viewed from the lower side.
  • the phosphor frame 12 includes an annular portion 12f and two bridge portions 12a protruding from the annular portion 12f.
  • the annular portion 12f has an opening diameter of 20 mm and an outer diameter of 30 mm.
  • annular portion 12f On the lower surface of the annular portion 12f, eight concave portions 12b, 12b, 12c ′, 12c ′, 12d ′, corresponding to the eight regions 12b, 12b, 12c, 12c, 12d, 12d, 12e, 12e, 12d ', 12e', and 12e 'are formed. As described above, the phosphors 12c, 12d, and 12e are applied to the recesses 12c ′, 12d ′, and 12e ′ other than the recess 12b, respectively.
  • the bridge portion 12a is provided with a step toward the lower side.
  • the phosphors 12c, 12d, and 12e are separately applied to the annular region according to the rotation angle around the rotation axis, and the center portion is open.
  • the LED bulb 10 of the present embodiment can reduce the usage amount of the phosphors 12c, 12d, and 12e and reduce the weight of the phosphor frame 12. Further, as described above, since the LED bulb 10 is lit with the emission color of the LED 16, the phosphor is not applied to the recess 12b and remains transparent.
  • FIG. 5A is a side view of the LED 16 included in the LED bulb 10. As shown in FIG. 5A, when the LED 16 is viewed from the side, the sealing material 16a and the substrate 16b in contact with the lower portion of the sealing material 16a are observed.
  • FIG. 5B is a cross-sectional view of the LED 16 as viewed from the side.
  • the sealing material 16a is made of a transparent resin, and as shown in FIG. 5B, the LED die 16c is sealed, and has a convex lens portion with a diameter of 2.2 mm and a raised central portion.
  • the substrate 16b has an electrode 16b1, an insulator 16b2, and an electrode 16b3, and the LED die 16c is connected to the electrode 16b1 and the electrode 16b3 by a wire 16d.
  • the substrate 16b is a square having a planar shape of 2.57 mm ⁇ 2.57 mm, a thickness of about 0.1 mm, and a connection electrode is formed on the lower surface.
  • the height from the bottom surface of the substrate 16b to the top of the sealing material 16a is 1.14 mm.
  • FIG. 6 is a perspective view of the reflection frame 13 included in the LED bulb 10.
  • the reflection frame 13 includes a reflection portion 13a, an arm portion 13b, and an attachment portion 13c.
  • the reflection frame 13 is made of white plastic, and is configured such that the inclined surface inside the reflection portion 13 a reflects the emitted light of the LED 16. Further, the upper surfaces of the reflecting portion 13a, the arm portion 13b, and the mounting portion 13c are flush with each other, and the arm portion 13b is slightly thinner than the other portions.
  • FIG. 7 is a perspective view showing the relationship between the reflective frame 13 and the LED 16 included in the LED bulb 10.
  • Three LEDs 16 are arranged so as to be exposed from the bottom inside the reflecting portion 13a.
  • the reflection part 13a is arrange
  • the LED 16 is a blue light-emitting diode, and the wavelength of light emitted from the LED 16 is approximately 450 to 460 nm and has a spectrum having a sharp peak.
  • the light emitted from the LED 16 passes through the phosphor frame 12 and reaches the globe 11. As a result, the LED bulb 10 emits blue light.
  • the phosphor 12 c covers the upper part of the LED 16.
  • the phosphor 12c is a phosphor that contains YAG (Yttrium Aluminum Garnet) as a fluorescent material and emits yellow light.
  • the phosphor 12c is configured to wavelength-convert part of the light emitted from the LED 16 to yellow light.
  • the yellow light whose wavelength has been converted by the phosphor 12c and the blue light whose wavelength has not been converted reach the globe 11, and the LED bulb 10 emits white light.
  • the phosphor 12d When the globe 11 is further rotated 45 ° counterclockwise, the phosphor 12d covers the top of the LED 16.
  • the phosphor 12d is a phosphor that contains CaAlSiN3 or the like as a phosphor and emits red light.
  • the phosphor 12d is configured to wavelength-convert light emitted from all LEDs 16 to red light. As a result, the LED bulb 10 emits red light.
  • the phosphor 12e covers the upper part of the LED 16.
  • the phosphor 12e is a phosphor that contains ⁇ -SiAlON or the like as a phosphor and emits green light.
  • the phosphor 12e is configured to convert the wavelength of all LEDs 16 to green light. As a result, the LED bulb 10 emits green light.
  • the relative positional relationship between the LED 16 and the phosphor is changed with the rotation of the globe 11 around the rotation axis, and the emission colors thereof are blue, white, red, and green. Change.
  • the LED bulb 10 of the present embodiment is obtained by adding a phosphor frame 12 that allows the globe 11 to rotate and is fixed to the globe 11 with respect to a normal LED bulb. Since the temperature rise of the globe 11 of the LED bulb 10 is small, the user will not burn his / her hand even if he / she touches the globe 11 to rotate the globe 11. That is, the LED bulb 10 has an effect that the function of changing the emission color by rotating the phosphor frame 12 (color disk) is realized with a simple structure, and has an effect that the user can easily use it.
  • a light shielding member may be provided around the phosphor frame 12.
  • the light emission of the LED 16 is wavelength-converted by the fluorescent material contained in the phosphor 12c, and isotropically centered on the fluorescent material. Radiated.
  • the wavelength-converted light is also emitted from the lateral direction of the phosphor frame 12 (the direction parallel to the paper surface in FIG. 3).
  • the wavelength-converted light emitted in the lateral direction may disturb the light distribution characteristics of the LED bulb 10.
  • a light shielding member is provided around the phosphor frame 12, light emitted in the lateral direction of the phosphor frame 12 is eliminated. As a result, the light distribution characteristics of the LED bulb 10 are not disturbed.
  • a light shielding member may be disposed on the inner side surface of the phosphor frame 12.
  • the light shielding member is a white reflective resin.
  • a light-shielding member made of white reflective resin is provided around the phosphor frame 12, light emitted in the lateral direction of the phosphor frame 12 is irregularly reflected by the white reflective resin. As a result, the luminous efficiency of the LED bulb 10 is improved. The same applies to the inner side surface of the phosphor frame 12.
  • concave portions 12b, 12c ′, 12d ′, and 12e ′ are provided on the lower surface of the phosphor frame 12, and the fluorescent materials 12c, 12d, and 12e are applied to the concave portions 12c ′, 12d ′, and 12e ′.
  • phosphors may be applied separately on a flat surface of a color disk (or phosphor frame) having no recesses by a well-known method.
  • the concave portions 12b, 12c ′, 12d ′, and 12e ′ are provided in the color disk (phosphor frame 12) like the LED bulb 10, the phosphor can be applied with a medium having a low viscosity, and the manufacture is easy. become.
  • the flat surface of the color disk (or phosphor frame) having no recess may be partitioned by a dam material, and a phosphor having a low viscosity may be applied to the partitioned region.
  • the recesses 12b, 12c ′, 12d ′, and 12e ′ are provided like the LED bulb 10, the step of applying the dam material can be omitted.
  • the emission colors are white, red, green, and blue, but any emission color can be obtained by adjusting the phosphor material and the composition of the phosphor contained in the phosphor.
  • the LED 16 is disposed so as to be opposed to the rotation axis A so as to be 1 ⁇ 2 rotationally symmetric, but the LED 16 may be disposed so as to be 1 / n rotationally symmetric.
  • the phosphors 12c, 12d, and 12e applied to the phosphor frame 12 are configured so that the light emission of the paired LEDs 16 is wavelength-converted to the same color.
  • the phosphor frame 12 of the LED bulb 10 is configured to have an annular portion 12f having an outer periphery and an opening, and phosphors 12c, 12d, and 12e are applied to a partial region of the annular portion 12f.
  • the phosphor frame 12 may be configured to have a disk portion that does not have an opening, and the phosphor may be applied to a fan-shaped region obtained by dividing the disk portion by a radius. In this case, since more LEDs can be stacked with the phosphor, the amount of light can be increased.
  • the LED 16 is a blue light emitting diode.
  • the LED is not limited to a blue light emitting diode, and may be a near ultraviolet light emitting LED or a white LED.
  • FIG. 8 is an enlarged perspective view showing the relationship between the globe 11 and the phosphor frame 12 included in the LED bulb 10, and more specifically, the globe 11 with the globe 11 and the phosphor frame 12 connected to each other.
  • the phosphor frame 12 includes an annular portion 12f and two bridge portions 12a that protrude oppositely from the annular portion 12f.
  • the bridge portion 12a is provided with a step 12g directed downward.
  • the step 11b of the globe 11 is formed with a notch 11c that can accommodate the step 12g of the bridge 12a.
  • the bottom surface of the notch 11c of the globe 11 and the top surface of the step 12g of the phosphor frame 12 are connected by adhesion.
  • FIG. 9A is a top view of the case 18 included in the LED bulb 10.
  • FIG. 9B is an enlarged cross-sectional view of a connection portion between the globe 11 and the case 18 included in the LED bulb 10, and shows a cross section taken along the line CC in FIG.
  • FIG. 9C is an external view of a connection portion between the globe 11 and the case 18 included in the LED bulb 10.
  • locking claws 18b are formed in the vicinity of the outer periphery of the upper portion of the case 18.
  • the claw 18b can be formed of an elastic material, for example, resin or metal.
  • two claws 18b are formed at four places, but this is not a limitation.
  • a protruding portion 11 c is formed at the tip of the stepped portion 11 b of the globe 11.
  • the globe 11 and the case 18 are connected by engaging the protruding portion 11 c of the globe 11 and the claw 18 b of the case 18.
  • the bottom surface of the stepped portion 11b of the globe 11 and the top surface of the claw 18b of the case 18 are formed in substantially the same circular shape when viewed from above, and the globe 11 can rotate with respect to the case 18 around the rotation axis.
  • the phosphor frame 12 also rotates about the rotation axis. As a result, as the globe 11 rotates, the positional relationship between the LED 16 and the phosphor frame 12 is relatively changed.
  • the protrusion 11c When the protrusion 11c is continuously formed on the circumference of the step portion 11b, even when the claw 18b is formed only on a part of the upper portion of the case 18, the glove 11 is rotated. The connection between the globe 11 and the case 18 can be stably maintained. On the contrary, the protrusion 11c may be formed only in part and the claw 18b may be formed continuously.
  • the globe 11 and the case 18 may be provided with a protruding portion and a locking portion, respectively, to restrict the globe 11 from rotating beyond a predetermined angle with respect to the case 18.
  • the protrusion provided in the globe 11 is restricted by a plurality of engaging portions provided in the case 18 and can be prevented from rotating beyond the engaging portion.
  • a predetermined angle 180 degrees in the first embodiment
  • a scale 11 d is formed on the outer surface of the lower end of the globe 11, and an indicator 18 c is formed on the outer surface of the upper end of the case 18.
  • the state of FIG. 9C indicates that the emission color of the LED bulb 10 is a color (in this case, B: blue) represented by the scale 11d at the position of the index 18c.
  • B blue
  • the user can easily know the emission color of the LED bulb 10 corresponding to the rotation angle of the globe 11 without actually lighting the LED bulb 10.
  • the scale 11d is formed on the globe 11 and the indicator 18c is formed on the case 18 to form a mark indicating the emission color.
  • the present invention is not limited to this configuration.
  • a scale may be formed on the surface.
  • the light emission color is represented by characters on the scale 11d.
  • the present invention is not limited to this configuration, and is based on the color corresponding to the light emission color, the numerical value corresponding to the ratio of irradiation to the LED 16 for each phosphor, and the like. May be represented.
  • the LED bulb 10 may include a click mechanism that gives a click feeling to the user when the rotation angle of the globe 11 around the rotation axis A is a predetermined angle. For example, if it is configured to give a click feeling at a rotation angle at which a standard emission color is obtained, the user can easily cause the LED bulb 10 to emit light in the standard emission color.
  • the LED bulb 20 of the second embodiment of the present invention is different from the LED bulb 10 of the first embodiment in that it includes a phosphor frame 22 having a light shielding member.
  • the same members as those of the LED bulb 10 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 10A is a sectional view in the diameter direction of the phosphor frame 22 included in the LED bulb 20 of the second embodiment of the present invention
  • FIG. 10B is a sectional view in the circumferential direction of the phosphor frame 22.
  • the phosphor frame 22 of the present embodiment is configured such that the annular portion 22f includes a light shielding member 22f1 and a transparent member 22f2. As shown in FIG. 10A, the light shielding member 22f1 is provided around the phosphor frame 22 by a member that blocks light. The light shielding member 22f1 may be provided on the inner side surface of the phosphor frame 22. The upper surface of the annular portion 22f is formed of a transparent member 22f2, and transmits light emitted from the LED 16 and / or wavelength-converted light.
  • a light shielding member 22f3 may be provided so as to partition the phosphors that have been separately coated (for example, between the phosphor 22d and the phosphor 22e).
  • the light shielding member 22f1 or the light shielding member 22f3 as shown in FIG. 10A or FIG. 10B, the light whose wavelength is converted by the phosphor 22d is not radiated in the lateral direction, but is radiated to the globe 11 through the transparent member 22f2. With this configuration, the light distribution characteristics of the LED bulb 20 can be stabilized.
  • the light shielding member 22f1 or the light shielding member 22f3 can be made of a white reflective resin.
  • the light emitted in the lateral direction is irregularly reflected by the light shielding member 22f1 or the light shielding member 22f3 made of white reflective resin, and the luminous efficiency of the LED bulb 20 is improved.
  • Such a phosphor frame including the light shielding member 22f1, the light shielding member 22f3, and the transparent member 22f2 can be manufactured by a two-color injection molding method.
  • the annular portion of the phosphor frame is arranged so that the phosphor applied on the transparent member faces the LED.
  • the light emitted from the LED first enters the phosphor and reaches the globe via the transparent member.
  • the concave portion may be formed on the upper surface of the annular portion, the bottom of the concave portion may be formed of a transparent member, and the phosphor may be applied to the concave portion.
  • the LED bulb 30 of the third embodiment of the present invention is different from the LED bulb 10 of the first embodiment in that the LED is a CSP (chip size package).
  • the same members as those of the LED bulb 10 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • an LED die 16c having a width of 1.0 mm or less is mounted on a substrate 16b having a side of 2.57 mm.
  • a substrate 16b having a side of 2.57 mm In order to obtain a bright LED bulb, even if an attempt is made to increase the ratio of the area of the LED die 16c to the mounting area of the circuit board 15, it is difficult to realize using the LED 16.
  • FIG. 11 is a cross-sectional view showing the structure of the LED 36 included in the LED bulb 30 according to the third embodiment of the present invention.
  • an LED 36 that is a CSP includes an LED die 36c, a frame 36d, and a sealing material 36a.
  • the LED die 36c is a semiconductor element that emits light, and is configured by laminating a sapphire substrate 36c1, a semiconductor layer 36c2, and an electrode 36c3.
  • a semiconductor layer 36c2 including a light emitting layer is formed on the sapphire substrate 36c1.
  • an electrode 36c3 used for connection to the circuit board 15 is formed on the surface of the semiconductor layer 36c2 that faces the surface on which the sapphire substrate 36c1 is formed.
  • the frame 36d is provided on the outer periphery of the LED die 36c, regulates the shape of the sealing material 36a, which is a transparent resin that seals the LED die 36c, and flows out the light emitted from the LED die 36c in the lateral direction. Shut off.
  • the frame 36d is formed of a white reflective resin, light emitted in the lateral direction is irregularly reflected and the light emission efficiency of the LED bulb 30 is improved, which is preferable.
  • the width of the outer shape of the frame 36d is 1.1 mm or less, and the width of the LED die 36c is 0.8 mm.
  • the height of the frame 36d is 0.4 mm or less, and the combined height of the sapphire substrate 36c1 and the semiconductor layer 36c2 in the LED die 36c is 0.1 mm or less.
  • the LED 36 and the LED die 36c are substantially the same size. Therefore, more LED dies can be arranged in a region of the same area on the circuit board, and a brighter LED bulb 30 can be obtained.
  • the size of the LED 36 described above is an example, and the present invention is not limited to this.
  • FIG. 12 is a diagram showing a region on the circuit board 35 where the LEDs 36 are arranged.
  • the CSP LEDs 36 are arranged in two fan-shaped regions having a predetermined central angle in a circular circuit board 35.
  • the fan-shaped region does not include the center of the circuit board 35 having a circular shape.
  • the LED 36 is arranged away from the center of the circuit board 35, that is, the rotational axis A of the globe 11.
  • the two fan-shaped regions have a relationship of overlapping when rotated 180 degrees.
  • the LEDs 16 of the LED bulb 10 of the first embodiment are arranged one-dimensionally on a circle having a predetermined radius on the circuit board 15.
  • the LEDs 36 of the LED bulb 30 of the third embodiment are two-dimensionally arranged in the fan-shaped region on the circuit board 35. Therefore, more LED dies can be arranged on the circuit board 35 than the circuit board 15 having the same area. Needless to say, an LED that is not a CSP may be arranged in the fan-shaped region shown in FIG.
  • FIG. 13 is a diagram showing an arrangement example of the phosphors in the disk portion 32f of the phosphor frame corresponding to the circuit board 35.
  • the concave portions 32b, 32c ′, 32d ′, and 32e ′ of the disk portion 32f are not in an annular shape as in the first embodiment, but in a fan shape. It is formed into a shape.
  • the phosphors 32c, 32d and 32e are applied in this fan shape.
  • the LED light bulb 40 according to the fourth embodiment of the present invention includes the LED 46 having a structure in which an LED die mounted in a region surrounded by a dam material in the circuit board 45 is sealed with a resin. Different from the LED bulb 10.
  • FIG. 14 is a top view of the circuit board 45 included in the LED bulb 40 of the fourth embodiment of the present invention.
  • the LED 46 mounted on the circuit board 45 has an LED die 46a and a dam material 46b.
  • the LED die 46a is configured in the same manner as the LED die 36c in the third embodiment, and a plurality of LED dies 46a are arranged in a plurality of regions on the circuit board 45 surrounded by a dam material 46b described later.
  • a plurality of dam members 46b are provided so as to surround a predetermined region on the circuit board 45, and regulate the shape of the sealing material which is a transparent resin for sealing the LED die 46a and light emitted from the LED die 46a. Block the lateral flow of When the dam material 46b is formed of a white reflective resin, light emitted in the lateral direction is irregularly reflected and the light emission efficiency of the LED bulb 40 is improved, which is preferable.
  • the LED 46 used in the LED bulb 40 includes a plurality of dam materials 46b arranged in a plurality of regions, a plurality of LED dies 46a arranged inside the plurality of dam materials 46b, and a plurality of dies. And a sealing material disposed inside the dam material 46a.
  • circuit board 45 and the LEDs 46 By configuring the circuit board 45 and the LEDs 46 in this manner, more LED dies can be arranged on the circuit board having the same area. Moreover, since the LED die can be sealed in a single process, the manufacturing process can be further simplified as a whole.
  • the predetermined area surrounded by the dam material 46b is fan-shaped, a phosphor frame having a disk portion in which the phosphor is applied to the fan-shaped area, such as the disk portion 32f of the phosphor frame shown in FIG. It is preferred to use.
  • region which the dam material 46b surrounds is not limited to a fan shape, For example, it can change suitably to the rod-shaped shape etc. which extend in a radial direction. At this time, the shape of the region where the phosphor is applied to the phosphor frame may be appropriately changed so as to match the shape of the predetermined region surrounded by the dam material 46b.
  • an LED 46 having a structure in which an LED die mounted in a region surrounded by a dam material is sealed with a resin is disposed on a circuit board 55 via a submount circuit board. This is different from the LED bulb 40 of the fourth embodiment.
  • FIG. 15 is a top view of the circuit board 55 included in the LED bulb 50 according to the fifth embodiment of the present invention.
  • the LED 56 mounted on the circuit board 55 includes an LED die 56a, a dam material 56b, and a submount circuit board 56c.
  • the LED die 56a and the dam material 56b are the same as the LED die 46a and the dam material 46b in the fourth embodiment except that they are mounted not on the circuit board 55 but on the submount circuit board 56c. Description is omitted.
  • the submount circuit board 56c is a so-called COB (chip on board) package in which the LED die 56a and the dam material 56b are mounted.
  • the submount circuit board 56 c in which the LED die 56 a and the dam material 56 b are mounted is disposed on the circuit board 55 as the LED 56. Accordingly, the LED 56 is mounted on the LED bulb 50 via the submount circuit board 56c.
  • the LED 56 used in the LED bulb 50 includes a plurality of dam materials 56b arranged in a plurality of regions, a plurality of LED dies 56a arranged inside the plurality of dam materials 56b, and a plurality of dies. And a sealing material disposed inside the dam material 56a.
  • the shape of the region surrounded by the dam material 56b and the shape of the region where the phosphor is applied to the phosphor frame are the same as in the fourth embodiment.
  • the submount circuit board 56c is formed in a shape in which one side of the rectangle is an arc, but is not limited to this shape and can be changed as appropriate.
  • the LED bulb 60 of the sixth embodiment of the present invention is different from the LED bulb 10 of the first embodiment in that it has a phosphor frame 62 that is separately coated with two phosphors.
  • FIG. 16 is a top view of the phosphor frame 62 included in the LED bulb 60 according to the sixth embodiment of the present invention.
  • the bridge portion of the phosphor frame 62 is omitted.
  • the circular phosphor frame 62 is equally divided by its diameter and further divided to be rotationally symmetric by a curve passing through the center of the circle. Within each divided area, the phosphor 62b and 62c is applied.
  • the phosphor frame 62 may have the light shielding member described in the second embodiment so that the phosphor frame 62 is partitioned around the phosphor frame 62 and / or so as to partition the separately painted phosphors.
  • the phosphor frame 62 may be used with any LED arranged, but since the phosphor is applied to the vicinity of the center, it is more preferable that the LED is arranged to the vicinity of the center.
  • the LED light bulb 60 has the circuit board 35 shown in FIG.
  • the LED 36 and the phosphor 62b face each other. At this time, the LED bulb 60 emits light in the first color.
  • the phosphor frame 62 is rotated to the left together with the globe 11 from this state, the area of the phosphor 62b facing the LED 36 decreases and the area of the phosphor 62c increases.
  • a predetermined angle (135 degrees to the left in the present embodiment) is rotated, the LED 36 and the phosphor 62c transition to a state where they face each other. At this time, the LED bulb 60 emits light in the second color.
  • the phosphor is applied to the phosphor frame 62 so that the ratio of the phosphor facing the LED 36 changes as the globe 11 rotates.
  • the user can adjust the emission color of the LED bulb 60 according to the usage environment and preferences, which is preferable.
  • the phosphor 62b is a black body on the CIE1960 (u, v) chromaticity diagram, rather than the color emitted by the LED bulb 60 when the phosphor 62c faces the LED 36 when facing the LED 36.
  • D uv which is the distance from the radiation locus is set to emit light with a small color.
  • the phosphor 62b may be set to emit light from the LED bulb 60 with a color that approximates a black body radiation locus, and the phosphor 62c may be a color that can be clearly recognized even when it is dark.
  • the LED bulb 60 having such a phosphor frame 62 is suitable for use in a place where a situation where normal brightness is required and a situation where the color is desired to be clearly confirmed are mixed in time series.
  • a place is, for example, a living room at home, and it is conceivable to switch between lighting at normal time and lighting at meal time.
  • the color approximated to the black body radiation locus is, for example, a color having D uv of 0.02 or less.
  • the color with a correlated color temperature of 5700K to 7100K, especially about 6500K is called a daylight color. Since the daylight color is close to the color of the cloudy sky, it is suitable for lighting in a refreshing and refreshing atmosphere.
  • the light measured at the position of the target is (A Colors that meet) can be used: A) The distance D UVSSL from the black body radiation locus defined by ANSI C78.377 is ⁇ 0.0325 ⁇ D UVSSL ⁇ ⁇ 0.0075.
  • ⁇ Cn ⁇ ⁇ (a * nSSL ) 2 + (b * nSSL ) 2 ⁇ ⁇ ⁇ (a * nref ) 2 + (b * nref ) 2 ⁇ .
  • the hue angle in the CIE 1976 L * a * b * color space of the above 15 types of modified Munsell color charts when the illumination by light measured at the position of the object is mathematically assumed is ⁇ nSSL (degrees) (Where n is a natural number from 1 to 15)
  • the phosphors 62b and 62c may be configured to emit light in colors other than light emission, such as a light bulb color and daylight white, in a color that approximates a black body radiation locus or a color that is clearly recognizable even in the dark. Good.
  • the phosphor frame 62 may be painted with three or more phosphors.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)

Abstract

The invention provides, as an LED light bulb whereof the light-emission color can be modified by rotating a color disc, a simple-to-use LED light bulb having a simple structure. The LED light bulb comprises a main body, LEDs disposed in the main body, a globe supported by the main body so as to be rotatable and disposed in such a manner as to cover the LEDs, a disc disposed between the globe and the LEDs, and a position modification mechanism changing relatively the positional relationship between the LEDs and the disc concomitantly to a rotation of the globe. In this LED light bulb, the disc contains a first phosphor whereby light emitted from the LEDs is converted into a first light-emission color, and a second phosphor whereby the light emitted from the LEDs is converted into a second light-emitting color that is different from the first light-emitting color, such that a change in the positional relationship by the position modification mechanism causes a third light-emission color, which is emitted from the globe, to change.

Description

LED電球LED bulb
 本発明は、LED(発光ダイオード)と、LEDに対して移動できる蛍光体とを備え、LEDと蛍光体との相対的な位置関係を変更することにより発光色を変更できるLED電球に関する。 The present invention relates to an LED bulb that includes an LED (light emitting diode) and a phosphor that can move with respect to the LED, and that can change the emission color by changing the relative positional relationship between the LED and the phosphor.
 光源となるLEDと、LEDの発光の全部又は一部を波長変換する蛍光体とを備え、当該蛍光体がLEDに対して移動可能で、LEDと蛍光体の相対的な位置関係を変更することにより発光色を変更できる照明装置が知られている。 An LED serving as a light source and a phosphor that converts the wavelength of all or part of the light emitted from the LED, the phosphor is movable with respect to the LED, and the relative positional relationship between the LED and the phosphor is changed. There is known an illuminating device that can change the emission color.
 特許文献1の図9には、波長変換コンポーネントが回転可能である白色光放出デバイスが示されている。この白色光放出デバイスは、三つの同心円の周囲に配置されたLEDと、当該同心円と共通の回転軸を中心に回転可能な透明ディスク(波長変換コンポーネント)とを備えている。透明ディスクの表面には、所定の成分や濃度の蛍光体を含み、所与の回転角に応じて波長変換特性が変化する波長変換領域が形成されている。このような構成により白色光放出デバイスは、LEDと波長変換領域の相対的な位置関係を変えることにより、冷白色と温白色との間で白色光の色温度を変更できる。 FIG. 9 of Patent Document 1 shows a white light emitting device in which a wavelength conversion component is rotatable. This white light emitting device includes LEDs arranged around three concentric circles, and a transparent disk (wavelength conversion component) that can rotate around a rotation axis common to the concentric circles. On the surface of the transparent disk, there is formed a wavelength conversion region that includes a phosphor having a predetermined component and concentration and whose wavelength conversion characteristics change according to a given rotation angle. With such a configuration, the white light emitting device can change the color temperature of white light between cold white and warm white by changing the relative positional relationship between the LED and the wavelength conversion region.
 特許文献2には、複数の領域を有する積層型蛍光体シートが光源から出射される光の光路上に設けられた照明装置が示されている。特許文献2の照明装置は、積層型蛍光体シートと光源との相対位置を移動する移動部を備え、複数の領域の何れかから光源の出射光が透過する領域を選択可能となっている。 Patent Document 2 discloses an illuminating device in which a laminated phosphor sheet having a plurality of regions is provided on an optical path of light emitted from a light source. The illumination device of Patent Document 2 includes a moving unit that moves the relative position between the laminated phosphor sheet and the light source, and can select a region through which light emitted from the light source is transmitted from any of a plurality of regions.
特表2010-541283号公報 (図9、段落0059)Japanese translation of PCT publication 2010-541283 (FIG. 9, paragraph 0059) 特開2012-221763号公報JP 2012-221863 A
 特許文献1には、波長変換特性が場所により異なる透明ディスク(以下、「色円盤」と呼ぶ)を備え、当該色円盤の回転により発光色を調整できること、のみが示されている。特許文献1に記載の手法をLED電球にいかに適用するかについては、具体的な記載も示唆もない。 Patent Document 1 only shows that a transparent disk (hereinafter referred to as a “color disk”) having different wavelength conversion characteristics depending on the location is provided, and the emission color can be adjusted by rotation of the color disk. There is no specific description or suggestion as to how the method described in Patent Document 1 is applied to an LED bulb.
 特許文献2には、具体的にはロータリーソレノイドによって積層型蛍光体シートを巻き取り、光源との相対位置を移動させることが記載されている。従って、特許文献2に記載の照明装置の構造は複雑であり、照明装置の低価格化や小型軽量化が困難である。 Specifically, Patent Document 2 describes that a laminated phosphor sheet is wound up by a rotary solenoid to move a relative position with a light source. Therefore, the structure of the lighting device described in Patent Document 2 is complicated, and it is difficult to reduce the price and size of the lighting device.
 そこで本発明は、上記課題に鑑みて為されたものであり、色円盤を回転させることによって発光色を変更できるLED電球において、構造が簡単で使いやすいLED電球を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide an LED bulb that has a simple structure and is easy to use, in an LED bulb that can change the emission color by rotating a color disk.
 本発明のLED電球は、本体と、本体に配置されたLEDと、本体に回転可能に支持され、LEDを覆う様に配置されたグローブと、グローブとLEDとの間に配置された円盤と、グローブの回転に伴ってLEDと円盤との位置関係を相対的に変更させる位置変更機構と、を有する。本発明のLED電球は、円盤が、LEDから出射された光を第1の発光色に変換する第1の蛍光体と、LEDから出射された光を第1の発光色と異なる第2の発光色に変換する第2の蛍光体と、を含み、位置変更機構による位置関係の変更によって、グローブから出射される第3の発光色が変化する、ことを特徴とする。 The LED bulb of the present invention includes a main body, an LED disposed in the main body, a globe supported rotatably on the main body and disposed so as to cover the LED, a disk disposed between the globe and the LED, A position changing mechanism that relatively changes the positional relationship between the LED and the disk as the globe rotates. In the LED light bulb of the present invention, the disk has a first phosphor that converts light emitted from the LED into a first emission color, and second emission that differs from the first emission color in the light emitted from the LED. And a second phosphor to be converted into color, and the third emission color emitted from the globe is changed by changing the positional relationship by the position changing mechanism.
 本発明のLED電球は、LEDは本体に固定されており、円盤はグローブと接続されており、位置変更機構はグローブを本体に対して回転可能に支持する支持機構であり、円盤はグローブの回転に伴って回転し、LEDとの位置関係を相対的に変更する、よう構成されていても良い。 In the LED bulb of the present invention, the LED is fixed to the main body, the disk is connected to the glove, the position changing mechanism is a support mechanism that supports the glove so as to be rotatable with respect to the main body, and the disk is a rotation of the glove. It may be configured so as to rotate with the relative position and relatively change the positional relationship with the LED.
 本発明のLED電球の円盤は円環状の領域を有し、円環状の領域に第1の蛍光体及び第2の蛍光体が配置されていても良い。 The disk of the LED bulb of the present invention may have an annular region, and the first phosphor and the second phosphor may be arranged in the annular region.
 本発明のLED電球の円盤は、凹部を有し、凹部に、第1の蛍光体及び第2の蛍光体が塗布されていても良い。 The disk of the LED bulb of the present invention may have a recess, and the first phosphor and the second phosphor may be applied to the recess.
 本発明のLED電球は、グローブの回転に伴って、LEDに対向する第1の蛍光体と第2の蛍光体の比率が変化するように、円盤に第1の蛍光体及び第2の蛍光体が配置されていても良い。 The LED light bulb of the present invention has a first phosphor and a second phosphor on a disk so that the ratio of the first phosphor and the second phosphor facing the LED changes as the globe rotates. May be arranged.
 本発明のLED電球は、円盤の周囲に配置された第1の遮光部材を更に有していても良い。 The LED bulb of the present invention may further include a first light shielding member disposed around the disk.
 本発明のLED電球は、第1の蛍光体と第2の蛍光体との間に配置された第2の遮光部材を更に有していても良い。 The LED bulb of the present invention may further include a second light shielding member disposed between the first phosphor and the second phosphor.
 本発明のLED電球の第1の遮光部材又は第2の遮光部材は、白色反射樹脂であっても良い。 The first light shielding member or the second light shielding member of the LED bulb of the present invention may be a white reflective resin.
 本発明のLED電球のLEDは、ダム材、ダム材の内側に配置された複数のLEDダイ、及び、ダム材の内側に配置された封止材を含んでいても良い。 The LED of the LED bulb of the present invention may include a dam material, a plurality of LED dies arranged inside the dam material, and a sealing material arranged inside the dam material.
 本発明のLED電球のLEDは、複数の領域にそれぞれ配置された複数のダム材、複数のダム材の内側にそれぞれ配置された複数のLEDダイ、及び、複数のダム材の内側にそれぞれ配置された封止材を含んでいても良い。 The LED of the LED bulb of the present invention has a plurality of dam materials arranged in a plurality of regions, a plurality of LED dies arranged inside each of the plurality of dam materials, and a plurality of dam materials, respectively. It may contain a sealing material.
 本発明のLED電球は、グローブの回転に伴って変更される第3の発光色を示すマークを更に有していても良い。 The LED bulb of the present invention may further have a mark indicating a third emission color that is changed as the globe rotates.
 本発明のLED電球のLEDと円盤とが所定の位置関係にあるときの第3の発光色が対象物を照射した際に、対象物の位置で測定した光が、以下の(A)を満たすものであっても良い。
 (A)ANSI C78.377で定義される黒体放射軌跡からの距離DUVSSLが、-0.0325≦DUVSSL≦-0.0075である。
When the LED of the LED bulb according to the present invention and the disk are in a predetermined positional relationship, the light measured at the position of the target when the third emission color irradiates the target satisfies the following (A). It may be a thing.
(A) The distance D UVSSL from the black body radiation locus defined by ANSI C78.377 is −0.0325 ≦ D UVSSL ≦ −0.0075.
 本発明のLED電球のLEDと円盤とが所定の位置関係にあるときの第3の発光色が対象物を照射した際に、対象物の位置で測定した光が、更に、以下の(B)及び(C)を満たすものであっても良い。
 (B)対象物の位置で測定した光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L***色空間におけるa*値、b*値をそれぞれa*nSSL、b* nSSL(ただしnは1から15の自然数)とし、
 対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L***色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCn
 -2.7 ≦ ΔCn ≦ 18.6      (nは1から15の自然数)
を満たし、
下記式(1)で表される飽和度差の平均が下記式(2)を満たし、
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 かつ飽和度差の最大値をΔCmax、飽和度差の最小値をΔCminとした場合に、飽和度差の最大値と、飽和度差の最小値との差ΔCmax-ΔCminが、
 3.0 ≦ (ΔCmax-ΔCmin) ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL2+(b* nSSL2}-√{(a* nref2+(b* nref2}とする。
 15種類の修正マンセル色票
 #01    7.5 P  4  /10
 #02   10   PB 4  /10
 #03    5   PB 4  /12
 #04    7.5  B 5  /10
 #05   10   BG 6  / 8
 #06    2.5 BG 6  /10
 #07    2.5  G 6  /12
 #08    7.5 GY 7  /10
 #09    2.5 GY 8  /10
 #10    5    Y 8.5/12
 #11   10   YR 7  /12
 #12    5   YR 7  /12
 #13   10    R 6  /12
 #14    5    R 4  /14
 #15    7.5 RP 4  /12
 (C)対象物の位置で測定した光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L***色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
 対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L***色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
 0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
ただし、Δhn=θnSSL-θnrefとする。
When the LED of the LED bulb of the present invention and the disk are in a predetermined positional relationship, when the third emission color irradiates the object, the light measured at the position of the object is further the following (B) And (C) may be satisfied.
(B) CIE 1976 L * a * b * a * value in the color space of the following 15 types of modified Munsell color charts of # 01 to # 15 when mathematically assuming illumination by light measured at the position of the object , B * values are a * n SSL and b * nSSL (where n is a natural number from 1 to 15, respectively)
CIE 1976 L * a of the fifteen kinds of modified Munsell color charts when mathematically assuming illumination with reference light selected according to the correlated color temperature T SSL (K) of light measured at the position of the object * When the a * value and b * value in the b * color space are a * nref and b * nref (where n is a natural number from 1 to 15), the saturation difference ΔC n is −2.7 ≦ ΔC n ≦ 18.6 (n is a natural number from 1 to 15)
The filling,
The average saturation difference represented by the following formula (1) satisfies the following formula (2),
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
When the maximum value of the saturation difference is ΔC max and the minimum value of the saturation difference is ΔC min , the difference ΔC max −ΔC min between the maximum value of the saturation difference and the minimum value of the saturation difference is
3.0 ≦ (ΔC max −ΔC min ) ≦ 19.6
Meet.
However, ΔC n = √ {(a * nSSL ) 2 + (b * nSSL ) 2 } −√ {(a * nref ) 2 + (b * nref ) 2 }.
15 types of modified Munsell color chart # 01 7.5 P 4/10
# 02 10 PB 4/10
# 03 5 PB 4/12
# 04 7.5 B 5/10
# 05 10 BG 6/8
# 06 2.5 BG 6/10
# 07 2.5 G 6/12
# 08 7.5 GY 7/10
# 09 2.5 GY 8/10
# 10 5 Y 8.5 / 12
# 11 10 YR 7/12
# 12 5 YR 7/12
# 13 10 R 6/12
# 14 5 R 4/14
# 15 7.5 RP 4/12
(C) The hue angle in the CIE 1976 L * a * b * color space of the above 15 types of modified Munsell color charts when the illumination by light measured at the position of the object is mathematically assumed is θ nSSL (degree) ( Where n is a natural number from 1 to 15)
CIE 1976 L * a of the fifteen kinds of modified Munsell color charts when mathematically assuming illumination with reference light selected according to the correlated color temperature T SSL (K) of light measured at the position of the object * b * When the hue angle in the color space is θ nref (degrees) (where n is a natural number from 1 to 15), the absolute value of the hue angle difference | Δh n | is 0 ≦ | Δh n | ≦ 9.0. (Degree) (n is a natural number from 1 to 15)
Meet.
However, Δh n = θ nSSL −θ nref .
 本発明のLED電球は、LEDと蛍光体の相対的な位置関係により発光色を変更できるLED電球において、回転軸周りに回転可能なグローブと、前記回転軸から外れて配置されたLEDと、前記回転軸を中心とする回転角に応じて蛍光体が塗り分けられた色円盤とを備え、前記色円盤は、グローブと連動して回転することを特徴とする。 The LED bulb of the present invention is an LED bulb capable of changing the emission color depending on the relative positional relationship between the LED and the phosphor, a globe that can rotate around a rotation axis, an LED that is arranged off the rotation axis, And a color disk in which phosphors are separately applied according to a rotation angle around a rotation axis, and the color disk rotates in conjunction with a globe.
 本発明のLED電球では、回転軸を中心として、グローブとグローブに固定された色円盤が回転する。色円盤は、回転角に応じて蛍光体が塗り分けられた領域を有する。この領域は、空気層を介してLEDに積層する。LEDから放射された光は、上部に蛍光体が積層しているとき、その一部又は全部が当該蛍光体で波長変換されグローブから外部に出射する。グローブを回転し、LED上に蛍光体を配置するか、又はLED上の蛍光体を別の蛍光体に代えると、LED電球の発光色が変化する。 In the LED bulb of the present invention, the globe and the colored disk fixed to the globe rotate around the rotation axis. The color disk has a region where phosphors are separately applied according to the rotation angle. This region is laminated to the LED through an air layer. The light emitted from the LED is partly or entirely wavelength-converted by the phosphor when the phosphor is laminated on the upper part, and is emitted from the globe to the outside. When the globe is rotated and the phosphor is disposed on the LED, or the phosphor on the LED is replaced with another phosphor, the emission color of the LED bulb changes.
 本発明によれば、グローブを回転させるだけで発光色を変化できるLED電球を、簡単な構造で実現することができる。 According to the present invention, it is possible to realize an LED bulb that can change the emission color simply by rotating the globe with a simple structure.
本発明の第1実施形態のLED電球10の分解斜視図。1 is an exploded perspective view of an LED bulb 10 according to a first embodiment of the present invention. LED電球10の部分断面図。FIG. 3 is a partial cross-sectional view of the LED bulb 10. LED電球10のグローブ11の内部を示す平面図。The top view which shows the inside of the globe 11 of the LED bulb 10. FIG. LED電球10に含まれる蛍光体フレーム12の斜視図。1 is a perspective view of a phosphor frame 12 included in an LED bulb 10. FIG. LED電球10に含まれるLED16の側面図。The side view of LED16 contained in the LED bulb 10. FIG. LED電球10に含まれるLED16の横方向断面図。FIG. 4 is a lateral cross-sectional view of the LED 16 included in the LED bulb 10. LED電球10に含まれる反射枠13の斜視図。The perspective view of the reflective frame 13 contained in the LED bulb 10. FIG. LED電球10に含まれる反射枠13とLED16との関係を示す斜視図。The perspective view which shows the relationship between the reflective frame 13 contained in LED bulb 10, and LED16. LED電球10に含まれるグローブ11と蛍光体フレーム12との関係を示す斜視拡大図。FIG. 3 is an enlarged perspective view showing a relationship between a globe 11 and a phosphor frame 12 included in the LED bulb 10. LED電球10に含まれるケース18の上面図。FIG. 3 is a top view of a case 18 included in the LED bulb 10. LED電球10に含まれるグローブ11とケース18との接続箇所の断面拡大図。The cross-sectional enlarged view of the connection location of the globe 11 and the case 18 included in the LED bulb 10. LED電球10に含まれるグローブ11とケース18との接続箇所の外観図。FIG. 3 is an external view of a connection portion between a globe 11 and a case 18 included in the LED bulb 10. 本発明の第2実施形態のLED電球20に含まれる蛍光体フレーム22の直径方向の断面図。Sectional drawing of the diameter direction of the fluorescent substance flame | frame 22 contained in the LED bulb 20 of 2nd Embodiment of this invention. 本発明の第2実施形態のLED電球20に含まれる蛍光体フレーム22の円周方向の断面図。Sectional drawing of the circumferential direction of the fluorescent substance flame | frame 22 contained in the LED bulb 20 of 2nd Embodiment of this invention. 本発明の第3実施形態のLED電球30に含まれるLED36の構造を示す断面図。Sectional drawing which shows the structure of LED36 contained in the LED bulb 30 of 3rd Embodiment of this invention. LED36が配置される回路基板35上の領域を示す図。The figure which shows the area | region on the circuit board 35 in which LED36 is arrange | positioned. 回路基板35に対応する蛍光体フレームの円盤部32fにおける蛍光体の配置例を示す図。The figure which shows the example of arrangement | positioning of the fluorescent substance in the disk part 32f of the fluorescent substance flame | frame corresponding to the circuit board. 本発明の第4実施形態のLED電球40に含まれる回路基板45の上面図。The top view of the circuit board 45 contained in the LED bulb 40 of 4th Embodiment of this invention. 本発明の第5実施形態のLED電球50に含まれる回路基板55の上面図。The top view of the circuit board 55 contained in the LED bulb 50 of 5th Embodiment of this invention. 本発明の第6実施形態のLED電球60に含まれる蛍光体フレーム62の上面図。The top view of the fluorescent substance flame | frame 62 contained in the LED bulb 60 of 6th Embodiment of this invention.
 以下、添付図面を参照しながらLED電球の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。また、説明のため部材の縮尺は適宜変更している。 Hereinafter, preferred embodiments of the LED bulb will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. Moreover, the scale of the member is appropriately changed for the sake of explanation.
 (第1実施形態)
 図1は、本発明の第1実施形態のLED電球10の分解斜視図である。グローブ11には、特性の異なる蛍光体で塗り分けられた蛍光体フレーム12(色円盤)が取り付けられる。蛍光体フレーム12は、ブリッジ部12aを介してグローブ11に固定される。反射枠13及び回路基板15は、ネジ14でヒートシンク18aに固定される。ヒートシンク18aは、上面がケース18の上部に配置されるようケース18に固定される。口金19は、ケース18の下部に取り付けられる。LED16とコネクタ17は、回路基板15の上面に実装される。グローブ11は、グローブ11及びケース18の中心線である回転軸Aを中心に回転できるように、LED電球10の本体であるケース18に嵌め込まれる。このように、蛍光体フレーム12はグローブ11とLED16との間に配置される。
(First embodiment)
FIG. 1 is an exploded perspective view of an LED bulb 10 according to a first embodiment of the present invention. The globe 11 is attached with a phosphor frame 12 (color disk) that is separately coated with phosphors having different characteristics. The phosphor frame 12 is fixed to the globe 11 via the bridge portion 12a. The reflection frame 13 and the circuit board 15 are fixed to the heat sink 18 a with screws 14. The heat sink 18 a is fixed to the case 18 so that the upper surface is disposed on the upper part of the case 18. The base 19 is attached to the lower part of the case 18. The LED 16 and the connector 17 are mounted on the upper surface of the circuit board 15. The globe 11 is fitted into the case 18 that is the main body of the LED bulb 10 so that the globe 11 can rotate around the rotation axis A that is the center line of the globe 11 and the case 18. Thus, the phosphor frame 12 is disposed between the globe 11 and the LED 16.
 図2は、LED電球10の部分断面図であり、回路基板15の短辺に整列した3個のLED16(図1参照)のうち、中央のLED16が含まれる断面の一部を示している。前述したように、ヒートシンク18aはケース18の上部に配置され、その上面に回路基板15が積層される。回路基板15には、両端部にLED16が実装されているとともに、反射枠13が積層される。反射枠13は回路基板15にネジ14で固定される。 FIG. 2 is a partial cross-sectional view of the LED bulb 10 and shows a part of a cross section including the central LED 16 among the three LEDs 16 (see FIG. 1) aligned on the short side of the circuit board 15. As described above, the heat sink 18a is disposed on the upper portion of the case 18, and the circuit board 15 is laminated on the upper surface thereof. On the circuit board 15, LEDs 16 are mounted at both ends, and a reflection frame 13 is laminated. The reflection frame 13 is fixed to the circuit board 15 with screws 14.
 グローブ11は、段差部11bでケース18の上端と接している。グローブ11の下部及びケース18の上部に形成される係止用の爪(後述)が係合することにより、グローブ11はケース18に対して回転可能な状態で支持される。グローブ11及び蛍光体フレーム12は、グローブ11の段差部11bと蛍光体フレーム12のブリッジ部12aとが接着されることにより接続される。 The globe 11 is in contact with the upper end of the case 18 at the step portion 11b. The glove 11 is supported in a rotatable state with respect to the case 18 by engagement of locking claws (described later) formed on the lower part of the glove 11 and the upper part of the case 18. The globe 11 and the phosphor frame 12 are connected by bonding the step portion 11 b of the globe 11 and the bridge portion 12 a of the phosphor frame 12.
 蛍光体フレーム12は、円環部12fとブリッジ部12aとを備えているとともに、円環部12fの中央が開口している。また蛍光体フレーム12は、LED16の直上部分に凹部12bが形成されている。 The phosphor frame 12 includes an annular portion 12f and a bridge portion 12a, and the center of the annular portion 12f is open. Further, the phosphor frame 12 has a recess 12b formed immediately above the LED 16.
 図3は、LED電球10のグローブ11の内部を示す平面図であり、グローブ11を図2のB-B切断線で水平方向に切断し、LED電球10を上部から眺めた状態を示している。図3に示すように、グローブ11には切断面11aと段差部11bとが観察される。グローブ11と連動して蛍光体フレーム12が回転するように、グローブ11の段差部11bと蛍光体フレーム12のブリッジ部12aとが接着固定されている。 FIG. 3 is a plan view showing the inside of the globe 11 of the LED bulb 10 and shows a state in which the globe 11 is cut in the horizontal direction along the BB cutting line of FIG. 2 and the LED bulb 10 is viewed from above. . As shown in FIG. 3, a cut surface 11 a and a stepped portion 11 b are observed on the globe 11. The step portion 11 b of the globe 11 and the bridge portion 12 a of the phosphor frame 12 are bonded and fixed so that the phosphor frame 12 rotates in conjunction with the globe 11.
 蛍光体フレーム12は、透明プラスチックからなる。蛍光体フレーム12の円環状の部分は、領域12b、12b、12c、12c、12d、12d、12e、12eに8分割されている。領域12b、12b、領域12c、12c、領域12d、12d、領域12e、12eは、円環の中心に対してそれぞれ対をなす位置に配置される。領域12c、12c、12d、12d、12e、12eには蛍光体が塗布されており、以下、領域12c、12d、12eを、蛍光体12c、12d、12eともいう。領域12b、12bには蛍光体が塗布されておらず凹部として形成されており、以下、領域12bを凹部12bともいう。領域12b、12bを通して、LED16が観察される。図3の状態でLED16を点灯させると、LED電球10はLED16の発光色で発光することになる。 The phosphor frame 12 is made of transparent plastic. The annular portion of the phosphor frame 12 is divided into eight regions 12b, 12b, 12c, 12c, 12d, 12d, 12e, and 12e. The regions 12b and 12b, the regions 12c and 12c, the regions 12d and 12d, and the regions 12e and 12e are arranged at positions that make a pair with the center of the ring. The regions 12c, 12c, 12d, 12d, 12e, and 12e are coated with a phosphor. Hereinafter, the regions 12c, 12d, and 12e are also referred to as phosphors 12c, 12d, and 12e. The regions 12b and 12b are not coated with a phosphor and are formed as recesses. Hereinafter, the regions 12b are also referred to as recesses 12b. The LED 16 is observed through the regions 12b and 12b. When the LED 16 is turned on in the state of FIG. 3, the LED bulb 10 emits light in the emission color of the LED 16.
 蛍光体フレーム12の下に、反射枠13が観察される。蛍光体フレーム12は透明なので、蛍光体フレーム12を通して反射枠13の一部分が観察し得るが、この部分は図示していない。反射枠13の下に、回路基板15が観察される。反射枠13は、回転軸Aから外れた位置でネジ14により回路基板15に固定される。回路基板15の上面には、反射枠13と干渉しない位置にコネクタ17が実装される。回路基板15の下側にはヒートシンク18aの上面が観察される。 The reflection frame 13 is observed under the phosphor frame 12. Since the phosphor frame 12 is transparent, a part of the reflection frame 13 can be observed through the phosphor frame 12, but this portion is not shown. A circuit board 15 is observed under the reflection frame 13. The reflection frame 13 is fixed to the circuit board 15 with screws 14 at a position deviating from the rotation axis A. A connector 17 is mounted on the upper surface of the circuit board 15 at a position that does not interfere with the reflection frame 13. Under the circuit board 15, the upper surface of the heat sink 18a is observed.
 図4は、LED電球10に含まれる蛍光体フレーム12の斜視図であり、蛍光体12c、12d、12eを塗布する前の蛍光体フレーム12を下側から眺めた状態を示している。図4に示すように蛍光体フレーム12は、円環部12fと、円環部12fから突出した二つのブリッジ部12aからなる。円環部12fは、開口の直径が20mmで、外周の直径が30mmである。円環部12fの下面には、8個の領域12b、12b、12c、12c、12d、12d、12e、12eに対応して、8個の凹部12b、12b、12c´、12c´、12d´、12d´、12e´、12e´が形成されている。前述したように、凹部12b以外の凹部12c´、12d´、12e´には、それぞれ蛍光体12c、12d、12eが塗布される。ブリッジ部12aには、下側に向かう段差が設けられている。 FIG. 4 is a perspective view of the phosphor frame 12 included in the LED bulb 10, and shows a state in which the phosphor frame 12 before being coated with the phosphors 12c, 12d, and 12e is viewed from the lower side. As shown in FIG. 4, the phosphor frame 12 includes an annular portion 12f and two bridge portions 12a protruding from the annular portion 12f. The annular portion 12f has an opening diameter of 20 mm and an outer diameter of 30 mm. On the lower surface of the annular portion 12f, eight concave portions 12b, 12b, 12c ′, 12c ′, 12d ′, corresponding to the eight regions 12b, 12b, 12c, 12c, 12d, 12d, 12e, 12e, 12d ', 12e', and 12e 'are formed. As described above, the phosphors 12c, 12d, and 12e are applied to the recesses 12c ′, 12d ′, and 12e ′ other than the recess 12b, respectively. The bridge portion 12a is provided with a step toward the lower side.
 上述のように蛍光体フレーム12は、円環状の領域に蛍光体12c、12d、12eが回転軸を中心とする回転角に応じて塗り分けられ、中心部が開口している。このような構成により、本実施形態のLED電球10は、蛍光体12c、12d、12eの使用量を削減するとともに、蛍光体フレーム12を軽量化することができる。また、前述したようにLED16の発光色でLED電球10を点灯させるため、凹部12bには蛍光体が塗布されず、透明のままである。 As described above, in the phosphor frame 12, the phosphors 12c, 12d, and 12e are separately applied to the annular region according to the rotation angle around the rotation axis, and the center portion is open. With such a configuration, the LED bulb 10 of the present embodiment can reduce the usage amount of the phosphors 12c, 12d, and 12e and reduce the weight of the phosphor frame 12. Further, as described above, since the LED bulb 10 is lit with the emission color of the LED 16, the phosphor is not applied to the recess 12b and remains transparent.
 図5Aは、LED電球10に含まれるLED16の側面図である。図5Aに示すように、LED16を側面から眺めると、封止材16aと、封止材16aの下部に接する基板16bとが観察される。図5Bは、LED16を側面から見た断面図である。封止材16aは、透明な樹脂からなり、図5Bに示すように、LEDダイ16cを封止し、直径が2.2mmで中央部が盛り上がった凸レンズ部を有する。図5Bにおいて、基板16bは、電極16b1、絶縁体16b2、電極16b3を有し、LEDダイ16cはワイヤ16dにより電極16b1および電極16b3に接続される。基板16bは、平面形状が2.57mm×2.57mmの正方形で、厚さが約0.1mmであり、下面に接続電極が形成されている。基板16bの底面から封止材16aの頂部までの高さは1.14mmである。 FIG. 5A is a side view of the LED 16 included in the LED bulb 10. As shown in FIG. 5A, when the LED 16 is viewed from the side, the sealing material 16a and the substrate 16b in contact with the lower portion of the sealing material 16a are observed. FIG. 5B is a cross-sectional view of the LED 16 as viewed from the side. The sealing material 16a is made of a transparent resin, and as shown in FIG. 5B, the LED die 16c is sealed, and has a convex lens portion with a diameter of 2.2 mm and a raised central portion. In FIG. 5B, the substrate 16b has an electrode 16b1, an insulator 16b2, and an electrode 16b3, and the LED die 16c is connected to the electrode 16b1 and the electrode 16b3 by a wire 16d. The substrate 16b is a square having a planar shape of 2.57 mm × 2.57 mm, a thickness of about 0.1 mm, and a connection electrode is formed on the lower surface. The height from the bottom surface of the substrate 16b to the top of the sealing material 16a is 1.14 mm.
 図6は、LED電球10に含まれる反射枠13の斜視図である。反射枠13は、反射部13aと、アーム部13bと、取り付け部13cとからなる。反射枠13は、白色のプラスチックからなり、反射部13aの内側の斜面がLED16の放射光を反射するよう構成される。また反射部13aと、アーム部13bと、取り付け部13cとの上面が面一となっており、アーム部13bは他の部分より若干薄くなっている。 FIG. 6 is a perspective view of the reflection frame 13 included in the LED bulb 10. The reflection frame 13 includes a reflection portion 13a, an arm portion 13b, and an attachment portion 13c. The reflection frame 13 is made of white plastic, and is configured such that the inclined surface inside the reflection portion 13 a reflects the emitted light of the LED 16. Further, the upper surfaces of the reflecting portion 13a, the arm portion 13b, and the mounting portion 13c are flush with each other, and the arm portion 13b is slightly thinner than the other portions.
 図7は、LED電球10に含まれる反射枠13とLED16の関係を示す斜視図である。反射部13aの内側の底部から露出するように、3個のLED16が配置される。反射部13aは、LED16を図2における左右から挟むように配置される。LED16の上面と反射枠13の上面との間には2mm程度の高低差がある。 FIG. 7 is a perspective view showing the relationship between the reflective frame 13 and the LED 16 included in the LED bulb 10. Three LEDs 16 are arranged so as to be exposed from the bottom inside the reflecting portion 13a. The reflection part 13a is arrange | positioned so that LED16 may be pinched | interposed from right and left in FIG. There is a height difference of about 2 mm between the upper surface of the LED 16 and the upper surface of the reflection frame 13.
 LED16は青色発光ダイオードであり、その発する光の波長はおよそ450~460nmで、鋭いピークを有するスペクトルを有する。図3に示す状態では、LED16から発した光は蛍光体フレーム12を抜け、グローブ11に達する。その結果、LED電球10は青色で発光する。 The LED 16 is a blue light-emitting diode, and the wavelength of light emitted from the LED 16 is approximately 450 to 460 nm and has a spectrum having a sharp peak. In the state shown in FIG. 3, the light emitted from the LED 16 passes through the phosphor frame 12 and reaches the globe 11. As a result, the LED bulb 10 emits blue light.
 図3に示した状態からグローブ11を左回りに45°回転させると、蛍光体12cがLED16の上部を覆う。蛍光体12cは、蛍光物質としてYAG(Yttrium Aluminium Garnet)を含み、黄色発光する蛍光体である。蛍光体12cは、LED16の発光の一部を黄色光に波長変換するよう構成される。蛍光体12cにより波長変換された黄色光と、波長変換されなかった青色光とがグローブ11に達し、LED電球10は白色で発光する。 When the globe 11 is rotated 45 ° counterclockwise from the state shown in FIG. 3, the phosphor 12 c covers the upper part of the LED 16. The phosphor 12c is a phosphor that contains YAG (Yttrium Aluminum Garnet) as a fluorescent material and emits yellow light. The phosphor 12c is configured to wavelength-convert part of the light emitted from the LED 16 to yellow light. The yellow light whose wavelength has been converted by the phosphor 12c and the blue light whose wavelength has not been converted reach the globe 11, and the LED bulb 10 emits white light.
 さらにグローブ11を左回りに45°回転させると、蛍光体12dがLED16の上部を覆う。蛍光体12dは、蛍光物質としてCaAlSiN3等を含み、赤色発光する蛍光体である。蛍光体12dは、全てのLED16の発光を赤色光に波長変換するよう構成される。この結果、LED電球10は赤色で発光する。 When the globe 11 is further rotated 45 ° counterclockwise, the phosphor 12d covers the top of the LED 16. The phosphor 12d is a phosphor that contains CaAlSiN3 or the like as a phosphor and emits red light. The phosphor 12d is configured to wavelength-convert light emitted from all LEDs 16 to red light. As a result, the LED bulb 10 emits red light.
 さらにグローブ11を左回りに45°回転させると、蛍光体12eがLED16の上部を覆う。蛍光体12eは、蛍光物質としてβ-SiAlON等を含み、緑色発光する蛍光体である。蛍光体12eは、全てのLED16の発光を緑色光に波長変換するよう構成される。この結果、LED電球10は緑色で発光する。 When the globe 11 is further rotated 45 ° counterclockwise, the phosphor 12e covers the upper part of the LED 16. The phosphor 12e is a phosphor that contains β-SiAlON or the like as a phosphor and emits green light. The phosphor 12e is configured to convert the wavelength of all LEDs 16 to green light. As a result, the LED bulb 10 emits green light.
 以上のようにLED電球10は、回転軸を中心としたグローブ11の回転に伴ってLED16と蛍光体との相対的な位置関係が変更され、その発光色が、青色、白色、赤色、緑色に変化する。本実施形態のLED電球10は、通常のLED電球に対し、グローブ11を回転可能とし、グローブ11に固定する蛍光体フレーム12を追加したものである。LED電球10のグローブ11の温度上昇は少ないので、ユーザは、グローブ11を回転させるためにグローブ11に手で触れても、手をやけどすることがない。すなわちLED電球10は、蛍光体フレーム12(色円盤)を回転させることによって発光色を変更する機能を簡単な構造で実現したものであり、しかもユーザが使いやすいという効果を有している。 As described above, in the LED bulb 10, the relative positional relationship between the LED 16 and the phosphor is changed with the rotation of the globe 11 around the rotation axis, and the emission colors thereof are blue, white, red, and green. Change. The LED bulb 10 of the present embodiment is obtained by adding a phosphor frame 12 that allows the globe 11 to rotate and is fixed to the globe 11 with respect to a normal LED bulb. Since the temperature rise of the globe 11 of the LED bulb 10 is small, the user will not burn his / her hand even if he / she touches the globe 11 to rotate the globe 11. That is, the LED bulb 10 has an effect that the function of changing the emission color by rotating the phosphor frame 12 (color disk) is realized with a simple structure, and has an effect that the user can easily use it.
 なお、蛍光体フレーム12の周囲に遮光部材を設けると良い。例えば、図3の状態から蛍光体フレーム12を左回りに45°回転させた状態において、LED16の発光は、蛍光体12cに含まれる蛍光物質により波長変換され、蛍光物質を中心に等方的に放射される。このため、蛍光体フレーム12の横方向(図3では紙面に平行な方向)からも波長変換された光が放射される。横方向への放射される波長変換された光は、LED電球10の配光特性を乱すことがある。蛍光体フレーム12の周囲に遮光部材を設ければ、蛍光体フレーム12の横方向に放射される光が無くなる。この結果、LED電球10の配光特性は乱されなくなる。同様に、蛍光体フレーム12の内側の側面にも遮光部材を配すると良い。 A light shielding member may be provided around the phosphor frame 12. For example, in the state where the phosphor frame 12 is rotated 45 ° counterclockwise from the state of FIG. 3, the light emission of the LED 16 is wavelength-converted by the fluorescent material contained in the phosphor 12c, and isotropically centered on the fluorescent material. Radiated. For this reason, the wavelength-converted light is also emitted from the lateral direction of the phosphor frame 12 (the direction parallel to the paper surface in FIG. 3). The wavelength-converted light emitted in the lateral direction may disturb the light distribution characteristics of the LED bulb 10. If a light shielding member is provided around the phosphor frame 12, light emitted in the lateral direction of the phosphor frame 12 is eliminated. As a result, the light distribution characteristics of the LED bulb 10 are not disturbed. Similarly, a light shielding member may be disposed on the inner side surface of the phosphor frame 12.
 上記遮光部材が白色反射樹脂であると、さらに良い。白色反射樹脂である遮光部材を蛍光体フレーム12の周囲に設けると、蛍光体フレーム12の横方向に放射される光は白色反射樹脂により乱反射される。その結果、LED電球10の発光効率が向上する。蛍光体フレーム12の内側の側面も同様である。 Further preferably, the light shielding member is a white reflective resin. When a light-shielding member made of white reflective resin is provided around the phosphor frame 12, light emitted in the lateral direction of the phosphor frame 12 is irregularly reflected by the white reflective resin. As a result, the luminous efficiency of the LED bulb 10 is improved. The same applies to the inner side surface of the phosphor frame 12.
 LED電球10では、蛍光体フレーム12の下面に凹部12b、12c´、12d´、12e´を設け、凹部12c´、12d´、12e´に蛍光体12c、12d、12eを塗布している。これに対し、凹部のない色円盤(又は蛍光体フレーム)の平坦な面に、良く知られた方法で蛍光体を塗り分けても良い。しかしながらLED電球10のように色円盤(蛍光体フレーム12)に凹部12b、12c´、12d´、12e´を設けておくと、粘度の低い媒体によって蛍光体を塗布することができ、製造が容易になる。また、凹部のない色円盤(又は蛍光体フレーム)の平坦な面をダム材で仕切り、この仕切られた領域に粘度の低い蛍光体を塗布しても良い。しかしながらLED電球10のように凹部12b、12c´、12d´、12e´を設けておけば、ダム材を塗布する工程を省略できる。 In the LED bulb 10, concave portions 12b, 12c ′, 12d ′, and 12e ′ are provided on the lower surface of the phosphor frame 12, and the fluorescent materials 12c, 12d, and 12e are applied to the concave portions 12c ′, 12d ′, and 12e ′. On the other hand, phosphors may be applied separately on a flat surface of a color disk (or phosphor frame) having no recesses by a well-known method. However, if the concave portions 12b, 12c ′, 12d ′, and 12e ′ are provided in the color disk (phosphor frame 12) like the LED bulb 10, the phosphor can be applied with a medium having a low viscosity, and the manufacture is easy. become. Further, the flat surface of the color disk (or phosphor frame) having no recess may be partitioned by a dam material, and a phosphor having a low viscosity may be applied to the partitioned region. However, if the recesses 12b, 12c ′, 12d ′, and 12e ′ are provided like the LED bulb 10, the step of applying the dam material can be omitted.
 なおLED電球10では、発光色を白色、赤色、緑色、青色としたが、蛍光体に含まれる蛍光物資及びその配合を調整することにより任意の発光色を得ることができる。また、LED電球10では、LED16を、1/2回転対称となるように回転軸Aを中心に対向して配置したが、LED16を1/n回転対称となるように配置しても良い。またLED電球10では、蛍光体フレーム12に塗布した蛍光体12c、12d、12eは、対となるLED16の発光が同じ色に波長変換するよう構成される。これに対し、対となるLED16の発光が異なる色に波長変換するよう蛍光体を構成しても良い。また、LED電球10の蛍光体フレーム12は、外周と開口とを有する円環部12fを有して構成され、円環部12fにおける一部領域に蛍光体12c、12d、12eが塗布されている。しかし、蛍光体フレーム12を開口を有しない円盤部を有するよう構成し、円盤部を半径によって分割した扇形の領域に、蛍光体を塗布しても良い。この場合、さらに多くのLEDを蛍光体と積層させることができるため、光量の増大を図ることができる。またLED電球10では、LED16を青色発光ダイオードとしていた。しかしながらLEDは青色発光ダイオードに限られず、近紫外発光LEDや白色LEDであっても良い。 In the LED bulb 10, the emission colors are white, red, green, and blue, but any emission color can be obtained by adjusting the phosphor material and the composition of the phosphor contained in the phosphor. Further, in the LED bulb 10, the LED 16 is disposed so as to be opposed to the rotation axis A so as to be ½ rotationally symmetric, but the LED 16 may be disposed so as to be 1 / n rotationally symmetric. Further, in the LED bulb 10, the phosphors 12c, 12d, and 12e applied to the phosphor frame 12 are configured so that the light emission of the paired LEDs 16 is wavelength-converted to the same color. On the other hand, you may comprise a fluorescent substance so that the wavelength of light emission of LED16 used as a pair may be wavelength-converted. In addition, the phosphor frame 12 of the LED bulb 10 is configured to have an annular portion 12f having an outer periphery and an opening, and phosphors 12c, 12d, and 12e are applied to a partial region of the annular portion 12f. . However, the phosphor frame 12 may be configured to have a disk portion that does not have an opening, and the phosphor may be applied to a fan-shaped region obtained by dividing the disk portion by a radius. In this case, since more LEDs can be stacked with the phosphor, the amount of light can be increased. In the LED bulb 10, the LED 16 is a blue light emitting diode. However, the LED is not limited to a blue light emitting diode, and may be a near ultraviolet light emitting LED or a white LED.
 グローブ11と蛍光体フレーム12との接続について、図8を参照して説明する。図8は、LED電球10に含まれるグローブ11と蛍光体フレーム12との関係を示す斜視拡大図であり、より詳細には、グローブ11と蛍光体フレーム12とが接続された状態で、グローブ11をケース18と接続される下部から見た図である。後述するように、蛍光体フレーム12は、円環部12fと、円環部12fから対向して突出する二つのブリッジ部12aとを有する。ブリッジ部12aには、下側に向かう段差12gが設けられる。また、グローブ11の段差部11bには、ブリッジ部12aの段差12gを収容可能な切り欠き11cが形成される。グローブ11の切り欠き11cの底面と、蛍光体フレーム12の段差12gの上面とが、接着により接続される。 The connection between the globe 11 and the phosphor frame 12 will be described with reference to FIG. FIG. 8 is an enlarged perspective view showing the relationship between the globe 11 and the phosphor frame 12 included in the LED bulb 10, and more specifically, the globe 11 with the globe 11 and the phosphor frame 12 connected to each other. FIG. As will be described later, the phosphor frame 12 includes an annular portion 12f and two bridge portions 12a that protrude oppositely from the annular portion 12f. The bridge portion 12a is provided with a step 12g directed downward. Further, the step 11b of the globe 11 is formed with a notch 11c that can accommodate the step 12g of the bridge 12a. The bottom surface of the notch 11c of the globe 11 and the top surface of the step 12g of the phosphor frame 12 are connected by adhesion.
 グローブ11とケース18との関係について、図9Aから図9Cを参照して説明する。図9AはLED電球10に含まれるケース18の上面図である。図9BはLED電球10に含まれるグローブ11とケース18との接続箇所の断面拡大図であり、図3におけるC-C切断線における断面を示している。図9CはLED電球10に含まれるグローブ11とケース18との接続箇所の外観図である。 The relationship between the globe 11 and the case 18 will be described with reference to FIGS. 9A to 9C. FIG. 9A is a top view of the case 18 included in the LED bulb 10. FIG. 9B is an enlarged cross-sectional view of a connection portion between the globe 11 and the case 18 included in the LED bulb 10, and shows a cross section taken along the line CC in FIG. FIG. 9C is an external view of a connection portion between the globe 11 and the case 18 included in the LED bulb 10.
 図9Aに示すように、ケース18の上部の外周近傍には、係止用の爪18bが形成される。爪18bは、弾性を有する材料、例えば樹脂や金属により形成可能である。図9Aでは、爪18bは2つずつ4カ所に形成されているが、この構成に限定されるものではない。 As shown in FIG. 9A, locking claws 18b are formed in the vicinity of the outer periphery of the upper portion of the case 18. The claw 18b can be formed of an elastic material, for example, resin or metal. In FIG. 9A, two claws 18b are formed at four places, but this is not a limitation.
 図9Bに示すように、グローブ11の段差部11bの先端に突出部11cが形成される。グローブ11の突出部11cとケース18の爪18bとが係合することにより、グローブ11とケース18とが接続される。グローブ11の段差部11bの底面とケース18の爪18bの上面とは、上面視においてほぼ同一の円形に形成され、グローブ11はケース18に対し、回転軸を中心として回転可能となる。グローブ11を回転させると、上述のようにグローブ11と蛍光体フレーム12とが接続されているため、蛍光体フレーム12も回転軸を中心として回転する。その結果、グローブ11の回転に伴って、LED16と蛍光体フレーム12との位置関係が相対的に変更される。 As shown in FIG. 9B, a protruding portion 11 c is formed at the tip of the stepped portion 11 b of the globe 11. The globe 11 and the case 18 are connected by engaging the protruding portion 11 c of the globe 11 and the claw 18 b of the case 18. The bottom surface of the stepped portion 11b of the globe 11 and the top surface of the claw 18b of the case 18 are formed in substantially the same circular shape when viewed from above, and the globe 11 can rotate with respect to the case 18 around the rotation axis. When the globe 11 is rotated, since the globe 11 and the phosphor frame 12 are connected as described above, the phosphor frame 12 also rotates about the rotation axis. As a result, as the globe 11 rotates, the positional relationship between the LED 16 and the phosphor frame 12 is relatively changed.
 突出部11cを段差部11bの円周に連続的に形成するようにすると、爪18bがケース18の上部の一部のみに形成されている構成であっても、グローブ11を回転させたときにグローブ11とケース18との接続を安定して維持することができる。逆に、突出部11cを一部のみに形成し、爪18bを連続的に形成してもよい。 When the protrusion 11c is continuously formed on the circumference of the step portion 11b, even when the claw 18b is formed only on a part of the upper portion of the case 18, the glove 11 is rotated. The connection between the globe 11 and the case 18 can be stably maintained. On the contrary, the protrusion 11c may be formed only in part and the claw 18b may be formed continuously.
 グローブ11およびケース18に、それぞれ突出部および係止部を設け、グローブ11がケース18に対して所定角度を超えて回転しないよう規制してもよい。例えばグローブ11に設けられた突出部がケース18に複数設けられた係止部に規制され、係止部を超えて回転しないようにすることができる。所定角度(第1実施形態においては180度)回転するごとに発光色が周期的に変動するようなLED電球において、所定角度を超えてグローブが回転しないようになっていると、ユーザは色の可変範囲を明確に把握することができる。 The globe 11 and the case 18 may be provided with a protruding portion and a locking portion, respectively, to restrict the globe 11 from rotating beyond a predetermined angle with respect to the case 18. For example, the protrusion provided in the globe 11 is restricted by a plurality of engaging portions provided in the case 18 and can be prevented from rotating beyond the engaging portion. In an LED bulb in which the emission color periodically changes every rotation by a predetermined angle (180 degrees in the first embodiment), if the glove does not rotate beyond a predetermined angle, the user The variable range can be grasped clearly.
 図9Cに示すように、グローブ11の下端外表面に目盛11dが形成され、ケース18の上端外表面に指標18cが形成される。図9Cの状態は、LED電球10の発光色が指標18cの位置の目盛11dで表される色(この場合、B:青)であることを示している。このように構成することにより、ユーザは実際にLED電球10を点灯しなくても、グローブ11の回転角に対応するLED電球10の発光色を容易に知ることができる。なお、図9Cでは、グローブ11に目盛11dが、ケース18に指標18cが形成されて発光色を示すマークを構成しているが、この構成に限定されず、例えばグローブ11に指標を、ケース18に目盛を形成するようにしてもよい。また、図9Cでは、目盛11dにおいて発光色を文字により表しているが、この構成に限定されず、発光色に対応する色や、蛍光体ごとのLED16に照射される割合に対応する数値などにより表してもよい。 As shown in FIG. 9C, a scale 11 d is formed on the outer surface of the lower end of the globe 11, and an indicator 18 c is formed on the outer surface of the upper end of the case 18. The state of FIG. 9C indicates that the emission color of the LED bulb 10 is a color (in this case, B: blue) represented by the scale 11d at the position of the index 18c. With this configuration, the user can easily know the emission color of the LED bulb 10 corresponding to the rotation angle of the globe 11 without actually lighting the LED bulb 10. In FIG. 9C, the scale 11d is formed on the globe 11 and the indicator 18c is formed on the case 18 to form a mark indicating the emission color. However, the present invention is not limited to this configuration. A scale may be formed on the surface. In FIG. 9C, the light emission color is represented by characters on the scale 11d. However, the present invention is not limited to this configuration, and is based on the color corresponding to the light emission color, the numerical value corresponding to the ratio of irradiation to the LED 16 for each phosphor, and the like. May be represented.
 また、LED電球10は、回転軸Aを中心とするグローブ11の回転角が所定角度のときに、ユーザにクリック感を付与するクリック機構を備えてもよい。例えば標準的な発光色となる回転角のときにクリック感を与えるように構成すると、ユーザはLED電球10を、容易に標準的な発光色で発光させることができる。 Further, the LED bulb 10 may include a click mechanism that gives a click feeling to the user when the rotation angle of the globe 11 around the rotation axis A is a predetermined angle. For example, if it is configured to give a click feeling at a rotation angle at which a standard emission color is obtained, the user can easily cause the LED bulb 10 to emit light in the standard emission color.
 (第2実施形態)
 本発明の第2実施形態のLED電球20は、遮光部材を有する蛍光体フレーム22を備える点で、第1実施形態のLED電球10と相違する。第1実施形態のLED電球10と同一の部材には同一の符号を付し、説明を省略する。
(Second Embodiment)
The LED bulb 20 of the second embodiment of the present invention is different from the LED bulb 10 of the first embodiment in that it includes a phosphor frame 22 having a light shielding member. The same members as those of the LED bulb 10 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図10Aは、本発明の第2実施形態のLED電球20に含まれる蛍光体フレーム22の直径方向の断面図であり、図10Bは、蛍光体フレーム22の円周方向の断面図である。 FIG. 10A is a sectional view in the diameter direction of the phosphor frame 22 included in the LED bulb 20 of the second embodiment of the present invention, and FIG. 10B is a sectional view in the circumferential direction of the phosphor frame 22.
 本実施形態の蛍光体フレーム22は、円環部22fが遮光部材22f1と透明部材22f2とを有するよう構成される。図10Aに示すように、遮光部材22f1は、光を遮断する部材により、蛍光体フレーム22の周囲に設けられる。また、遮光部材22f1は、蛍光体フレーム22の内側の側面に設けられてもよい。円環部22fの上面は透明部材22f2で形成され、LED16の発光および/または波長変換された光を透過する。 The phosphor frame 22 of the present embodiment is configured such that the annular portion 22f includes a light shielding member 22f1 and a transparent member 22f2. As shown in FIG. 10A, the light shielding member 22f1 is provided around the phosphor frame 22 by a member that blocks light. The light shielding member 22f1 may be provided on the inner side surface of the phosphor frame 22. The upper surface of the annular portion 22f is formed of a transparent member 22f2, and transmits light emitted from the LED 16 and / or wavelength-converted light.
 図10Bに示すように、遮光部材22f3が、塗り分けられた蛍光体を仕切るように(例えば蛍光体22dおよび蛍光体22eの間に)設けられてよい。図10Aまたは図10Bのように遮光部材22f1または遮光部材22f3を設けることにより、蛍光体22dで波長変換された光が横方向に放射されず、透明部材22f2を通してグローブ11に放射される。かかる構成により、LED電球20の配光特性を安定させることができる。 As shown in FIG. 10B, a light shielding member 22f3 may be provided so as to partition the phosphors that have been separately coated (for example, between the phosphor 22d and the phosphor 22e). By providing the light shielding member 22f1 or the light shielding member 22f3 as shown in FIG. 10A or FIG. 10B, the light whose wavelength is converted by the phosphor 22d is not radiated in the lateral direction, but is radiated to the globe 11 through the transparent member 22f2. With this configuration, the light distribution characteristics of the LED bulb 20 can be stabilized.
 上述のように、遮光部材22f1または遮光部材22f3を白色反射樹脂で構成することができる。白色反射樹脂で構成された遮光部材22f1または遮光部材22f3により、横方向に放射される光は乱反射され、LED電球20の発光効率が向上する。このような、遮光部材22f1、遮光部材22f3、および透明部材22f2を有して構成される蛍光体フレームは、二色射出成形法により製造することができる。 As described above, the light shielding member 22f1 or the light shielding member 22f3 can be made of a white reflective resin. The light emitted in the lateral direction is irregularly reflected by the light shielding member 22f1 or the light shielding member 22f3 made of white reflective resin, and the luminous efficiency of the LED bulb 20 is improved. Such a phosphor frame including the light shielding member 22f1, the light shielding member 22f3, and the transparent member 22f2 can be manufactured by a two-color injection molding method.
 なお、第1実施形態および第2実施形態のいずれも、蛍光体フレームの円環部は、透明部材上に塗布された蛍光体がLEDに対向するように配置される。その結果、LEDから放射された光はまず蛍光体に入射し、透明部材を介してグローブに到達する。しかし、この構成に限定することを意図するものではなく、透明部材と蛍光体の順序が逆になっていてもよい。具体的には、円環部の上面に凹部が形成され、凹部の底が透明部材で構成され、凹部に蛍光体が塗布される構成であってもよい。 In both the first embodiment and the second embodiment, the annular portion of the phosphor frame is arranged so that the phosphor applied on the transparent member faces the LED. As a result, the light emitted from the LED first enters the phosphor and reaches the globe via the transparent member. However, it is not intended to limit to this configuration, and the order of the transparent member and the phosphor may be reversed. Specifically, the concave portion may be formed on the upper surface of the annular portion, the bottom of the concave portion may be formed of a transparent member, and the phosphor may be applied to the concave portion.
 (第3実施形態)
 本発明の第3実施形態のLED電球30は、LEDがCSP(チップサイズパッケージ)である点で、第1実施形態のLED電球10と相違する。第1実施形態のLED電球10と同一の部材には同一の符号を付し、説明を省略する。
(Third embodiment)
The LED bulb 30 of the third embodiment of the present invention is different from the LED bulb 10 of the first embodiment in that the LED is a CSP (chip size package). The same members as those of the LED bulb 10 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 第1実施形態のLED電球で使用するLED16は、図5Bに示すように、幅1.0mm以下のLEDダイ16cが一辺2.57mmの基板16bに実装されている。明るいLED電球を得るために、回路基板15における実装面積に占めるLEDダイ16cの面積の比率を大きくしようとしても、かかるLED16を用いて実現することは難しい。 In the LED 16 used in the LED bulb of the first embodiment, as shown in FIG. 5B, an LED die 16c having a width of 1.0 mm or less is mounted on a substrate 16b having a side of 2.57 mm. In order to obtain a bright LED bulb, even if an attempt is made to increase the ratio of the area of the LED die 16c to the mounting area of the circuit board 15, it is difficult to realize using the LED 16.
 第3実施形態のLED電球30では、CSPのLED36を使用する。図11は、本発明の第3実施形態のLED電球30に含まれるLED36の構造を示す断面図である。図11を参照すると、CSPであるLED36は、LEDダイ36cと、枠36dと、封止材36aとを有する。 In the LED bulb 30 of the third embodiment, a CSP LED 36 is used. FIG. 11 is a cross-sectional view showing the structure of the LED 36 included in the LED bulb 30 according to the third embodiment of the present invention. Referring to FIG. 11, an LED 36 that is a CSP includes an LED die 36c, a frame 36d, and a sealing material 36a.
 LEDダイ36cは、光を放射する半導体素子であり、サファイヤ基板36c1と、半導体層36c2と、電極36c3とが積層されて構成される。サファイヤ基板36c1上に、発光層を含む半導体層36c2が形成される。さらに、半導体層36c2におけるサファイヤ基板36c1が形成される面と対向する面に、回路基板15との接続に用いられる電極36c3が形成される。 The LED die 36c is a semiconductor element that emits light, and is configured by laminating a sapphire substrate 36c1, a semiconductor layer 36c2, and an electrode 36c3. A semiconductor layer 36c2 including a light emitting layer is formed on the sapphire substrate 36c1. Further, an electrode 36c3 used for connection to the circuit board 15 is formed on the surface of the semiconductor layer 36c2 that faces the surface on which the sapphire substrate 36c1 is formed.
 枠36dは、LEDダイ36cの外周に設けられ、LEDダイ36cを封止する透明な樹脂である封止材36aの形状を規制するとともに、LEDダイ36cから放射される光の横方向への流出を遮断する。枠36dを白色反射樹脂で形成すると、横方向に放射される光は乱反射され、LED電球30の発光効率が向上するため、好適である。 The frame 36d is provided on the outer periphery of the LED die 36c, regulates the shape of the sealing material 36a, which is a transparent resin that seals the LED die 36c, and flows out the light emitted from the LED die 36c in the lateral direction. Shut off. When the frame 36d is formed of a white reflective resin, light emitted in the lateral direction is irregularly reflected and the light emission efficiency of the LED bulb 30 is improved, which is preferable.
 図11に示すLED36において、枠36dの外形における幅は1.1mm以下であり、LEDダイ36cの幅は0.8mmである。また、枠36dの高さは0.4mm以下であり、LEDダイ36cにおけるサファイヤ基板36c1と半導体層36c2とを合わせた高さは0.1mm以下である。このように、CSPのLED36では、LED36とLEDダイ36cとが略同サイズである。よって、回路基板上の同じ面積の領域に、より多くのLEDダイを配置することができ、より明るいLED電球30を得ることができる。なお、上述したLED36のサイズは一例であり、これに限定されるものではない。 In the LED 36 shown in FIG. 11, the width of the outer shape of the frame 36d is 1.1 mm or less, and the width of the LED die 36c is 0.8 mm. The height of the frame 36d is 0.4 mm or less, and the combined height of the sapphire substrate 36c1 and the semiconductor layer 36c2 in the LED die 36c is 0.1 mm or less. Thus, in the CSP LED 36, the LED 36 and the LED die 36c are substantially the same size. Therefore, more LED dies can be arranged in a region of the same area on the circuit board, and a brighter LED bulb 30 can be obtained. The size of the LED 36 described above is an example, and the present invention is not limited to this.
 回路基板におけるCSPのLED36を配置する領域を拡大すると、さらに多くのLEDダイを配置することが可能となる。図12は、LED36が配置される回路基板35上の領域を示す図である。図12に示すように、CSPのLED36は、円形をなす回路基板35における、所定の中心角の2つの扇型領域内に配置される。扇型領域は、円形をなす回路基板35の中心を含まない。その結果LED36は、回路基板35の中心、すなわちグローブ11の回転軸Aから外れて配置される。2つの扇型領域は、180度回転したときに重なる関係にある。第1実施形態のLED電球10のLED16は、回路基板15上の所定の半径を有する円周上に一次元的に配置される。一方、第3実施形態のLED電球30のLED36は、回路基板35上の扇型領域内に二次元的に配置される。したがって、回路基板35には、同じ面積の回路基板15よりも多くのLEDダイを配置可能である。なお、CSPでないLEDを図12に示す扇型領域に配置してもよいことは言うまでもない。 When the area where the CSP LEDs 36 are arranged on the circuit board is enlarged, it becomes possible to arrange more LED dies. FIG. 12 is a diagram showing a region on the circuit board 35 where the LEDs 36 are arranged. As shown in FIG. 12, the CSP LEDs 36 are arranged in two fan-shaped regions having a predetermined central angle in a circular circuit board 35. The fan-shaped region does not include the center of the circuit board 35 having a circular shape. As a result, the LED 36 is arranged away from the center of the circuit board 35, that is, the rotational axis A of the globe 11. The two fan-shaped regions have a relationship of overlapping when rotated 180 degrees. The LEDs 16 of the LED bulb 10 of the first embodiment are arranged one-dimensionally on a circle having a predetermined radius on the circuit board 15. On the other hand, the LEDs 36 of the LED bulb 30 of the third embodiment are two-dimensionally arranged in the fan-shaped region on the circuit board 35. Therefore, more LED dies can be arranged on the circuit board 35 than the circuit board 15 having the same area. Needless to say, an LED that is not a CSP may be arranged in the fan-shaped region shown in FIG.
 図13は、回路基板35に対応する蛍光体フレームの円盤部32fにおける蛍光体の配置例を示す図である。回路基板35で中心近傍から外縁近傍にわたって配置されるLED36に対応するため、円盤部32fの凹部32b、32c´、32d´、32e´は、第1実施形態のような円環状ではなく、扇型形状に形成される。そして、蛍光体32c、32d、32eはこの扇形形状に塗布される。 FIG. 13 is a diagram showing an arrangement example of the phosphors in the disk portion 32f of the phosphor frame corresponding to the circuit board 35. In order to correspond to the LED 36 arranged from the vicinity of the center to the vicinity of the outer edge of the circuit board 35, the concave portions 32b, 32c ′, 32d ′, and 32e ′ of the disk portion 32f are not in an annular shape as in the first embodiment, but in a fan shape. It is formed into a shape. The phosphors 32c, 32d and 32e are applied in this fan shape.
 図13の例では、中心角が45度の扇型が8個形成され、それぞれ対応する蛍光体が塗布され、または塗布されず透明のままとされる。このような円盤部32fを有する蛍光体フレームによると、グローブ11を45度回転させるごとにLED電球30の発光色が切り替わる。この蛍光体の塗布領域は例示であり、分割数および形状は適宜変更可能である。 In the example of FIG. 13, eight fan shapes having a central angle of 45 degrees are formed, and the corresponding phosphors are applied or not applied and remain transparent. According to the phosphor frame having such a disk portion 32f, the light emission color of the LED bulb 30 is switched every time the globe 11 is rotated 45 degrees. The application region of the phosphor is an example, and the number of divisions and the shape can be changed as appropriate.
 (第4実施形態)
 本発明の第4実施形態のLED電球40は、回路基板45におけるダム材で囲まれた領域内に実装されたLEDダイを樹脂で封止した構造のLED46を有する点で、第1実施形態のLED電球10と相違する。
(Fourth embodiment)
The LED light bulb 40 according to the fourth embodiment of the present invention includes the LED 46 having a structure in which an LED die mounted in a region surrounded by a dam material in the circuit board 45 is sealed with a resin. Different from the LED bulb 10.
 図14は、本発明の第4実施形態のLED電球40に含まれる回路基板45の上面図である。図14を参照すると、回路基板45に実装されるLED46は、LEDダイ46aと、ダム材46bとを有する。LEDダイ46aは、第3実施形態におけるLEDダイ36cと同様に構成され、後述するダム材46bにより囲まれた回路基板45上の複数の領域内に複数配置される。 FIG. 14 is a top view of the circuit board 45 included in the LED bulb 40 of the fourth embodiment of the present invention. Referring to FIG. 14, the LED 46 mounted on the circuit board 45 has an LED die 46a and a dam material 46b. The LED die 46a is configured in the same manner as the LED die 36c in the third embodiment, and a plurality of LED dies 46a are arranged in a plurality of regions on the circuit board 45 surrounded by a dam material 46b described later.
 ダム材46bは、回路基板45上の所定の領域を囲むよう複数設けられ、LEDダイ46aを封止する透明な樹脂である封止材の形状を規制するとともに、LEDダイ46aから放射される光の横方向への流出を遮断する。ダム材46bを白色反射樹脂で形成すると、横方向に放射される光は乱反射され、LED電球40の発光効率が向上するため、好適である。 A plurality of dam members 46b are provided so as to surround a predetermined region on the circuit board 45, and regulate the shape of the sealing material which is a transparent resin for sealing the LED die 46a and light emitted from the LED die 46a. Block the lateral flow of When the dam material 46b is formed of a white reflective resin, light emitted in the lateral direction is irregularly reflected and the light emission efficiency of the LED bulb 40 is improved, which is preferable.
 LED電球40に使用されるLED46は、上述のように、複数の領域に配置された複数のダム材46bと、複数のダム材46bの内側にそれぞれ配置された複数のLEDダイ46aと、複数のダム材46aの内側にそれぞれ配置された封止材とを含んでいる。 As described above, the LED 46 used in the LED bulb 40 includes a plurality of dam materials 46b arranged in a plurality of regions, a plurality of LED dies 46a arranged inside the plurality of dam materials 46b, and a plurality of dies. And a sealing material disposed inside the dam material 46a.
 このように回路基板45およびLED46を構成することにより、同じ面積の回路基板に対してより多くのLEDダイを配置することができる。また、一回の工程でLEDダイを封止することができるので、製造工程を全体としてより単純化できる。 By configuring the circuit board 45 and the LEDs 46 in this manner, more LED dies can be arranged on the circuit board having the same area. Moreover, since the LED die can be sealed in a single process, the manufacturing process can be further simplified as a whole.
 図14において、ダム材46bが囲む所定の領域は扇形形状であるため、図13に示した蛍光体フレームの円盤部32fのように蛍光体を扇形領域に塗布した円盤部を有する蛍光体フレームを使用するのが好ましい。なお、ダム材46bが囲む所定の領域は扇形形状に限定されず、例えば半径方向に延びる棒状の形状などに適宜変更可能である。このとき、ダム材46bが囲む所定の領域の形状に適合するよう、蛍光体フレームに蛍光体を塗布する領域の形状も適宜変更してよい。 In FIG. 14, since the predetermined area surrounded by the dam material 46b is fan-shaped, a phosphor frame having a disk portion in which the phosphor is applied to the fan-shaped area, such as the disk portion 32f of the phosphor frame shown in FIG. It is preferred to use. In addition, the predetermined area | region which the dam material 46b surrounds is not limited to a fan shape, For example, it can change suitably to the rod-shaped shape etc. which extend in a radial direction. At this time, the shape of the region where the phosphor is applied to the phosphor frame may be appropriately changed so as to match the shape of the predetermined region surrounded by the dam material 46b.
 (第5実施形態)
 本発明の第5実施形態のLED電球50は、ダム材で囲まれた領域内に実装されたLEDダイを樹脂で封止した構造のLED46を、サブマウント回路基板を介して回路基板55に配置する点で、第4実施形態のLED電球40と相違する。
(Fifth embodiment)
In an LED bulb 50 according to a fifth embodiment of the present invention, an LED 46 having a structure in which an LED die mounted in a region surrounded by a dam material is sealed with a resin is disposed on a circuit board 55 via a submount circuit board. This is different from the LED bulb 40 of the fourth embodiment.
 図15は、本発明の第5実施形態のLED電球50に含まれる回路基板55の上面図である。図15を参照すると、回路基板55に実装されるLED56は、LEDダイ56aと、ダム材56bと、サブマウント回路基板56cとを有する。LEDダイ56aおよびダム材56bは、回路基板55ではなくサブマウント回路基板56cの上に実装される点を除き第4実施形態におけるLEDダイ46aおよびダム材46bと同様であり、共通する点については説明を省略する。 FIG. 15 is a top view of the circuit board 55 included in the LED bulb 50 according to the fifth embodiment of the present invention. Referring to FIG. 15, the LED 56 mounted on the circuit board 55 includes an LED die 56a, a dam material 56b, and a submount circuit board 56c. The LED die 56a and the dam material 56b are the same as the LED die 46a and the dam material 46b in the fourth embodiment except that they are mounted not on the circuit board 55 but on the submount circuit board 56c. Description is omitted.
 サブマウント回路基板56cには、LEDダイ56aおよびダム材56bが実装された、いわゆるCOB(チップオンボード)パッケージである。LEDダイ56aおよびダム材56bが実装された状態のサブマウント回路基板56cが、LED56として回路基板55上に配置される。これにより、LED56はサブマウント回路基板56cを介してLED電球50に実装される。 The submount circuit board 56c is a so-called COB (chip on board) package in which the LED die 56a and the dam material 56b are mounted. The submount circuit board 56 c in which the LED die 56 a and the dam material 56 b are mounted is disposed on the circuit board 55 as the LED 56. Accordingly, the LED 56 is mounted on the LED bulb 50 via the submount circuit board 56c.
 LED電球50に使用されるLED56は、上述のように、複数の領域に配置された複数のダム材56bと、複数のダム材56bの内側にそれぞれ配置された複数のLEDダイ56aと、複数のダム材56aの内側にそれぞれ配置された封止材とを含んでいる。 As described above, the LED 56 used in the LED bulb 50 includes a plurality of dam materials 56b arranged in a plurality of regions, a plurality of LED dies 56a arranged inside the plurality of dam materials 56b, and a plurality of dies. And a sealing material disposed inside the dam material 56a.
 ダム材56bが囲む領域の形状および蛍光体フレームに蛍光体を塗布する領域の形状については、第4実施形態と同様である。また、サブマウント回路基板56cは、長方形の一辺が円弧となった形状で形成されているが、この形状に限定されず、適宜変更可能である。 The shape of the region surrounded by the dam material 56b and the shape of the region where the phosphor is applied to the phosphor frame are the same as in the fourth embodiment. The submount circuit board 56c is formed in a shape in which one side of the rectangle is an arc, but is not limited to this shape and can be changed as appropriate.
 (第6実施形態)
 本発明の第6実施形態のLED電球60は、2つの蛍光体により塗り分けられた蛍光体フレーム62を有する点で、第1実施形態のLED電球10と相違する。
(Sixth embodiment)
The LED bulb 60 of the sixth embodiment of the present invention is different from the LED bulb 10 of the first embodiment in that it has a phosphor frame 62 that is separately coated with two phosphors.
 図16は、本発明の第6実施形態のLED電球60に含まれる蛍光体フレーム62の上面図である。図16では、蛍光体フレーム62のブリッジ部は省略されている。図16を参照すると、円形の蛍光体フレーム62は、その直径によって等分され、円の中心を通る曲線により回転対称となるようさらに分割され、分割されたそれぞれの領域内に、蛍光体62bおよび62cが塗布される。蛍光体フレーム62は、その周囲に、および/または、塗り分けられた蛍光体を仕切るように、第2実施形態で説明した遮光部材を有していてもよい。 FIG. 16 is a top view of the phosphor frame 62 included in the LED bulb 60 according to the sixth embodiment of the present invention. In FIG. 16, the bridge portion of the phosphor frame 62 is omitted. Referring to FIG. 16, the circular phosphor frame 62 is equally divided by its diameter and further divided to be rotationally symmetric by a curve passing through the center of the circle. Within each divided area, the phosphor 62b and 62c is applied. The phosphor frame 62 may have the light shielding member described in the second embodiment so that the phosphor frame 62 is partitioned around the phosphor frame 62 and / or so as to partition the separately painted phosphors.
 蛍光体フレーム62は、どのように配置されたLEDとともに使用してもよいが、中心近傍まで蛍光体が塗布されているため、中心近傍までLEDが配置されているとより好ましい。ここでは、LED電球60が図12に示す回路基板35を有するものとして以下説明する。 The phosphor frame 62 may be used with any LED arranged, but since the phosphor is applied to the vicinity of the center, it is more preferable that the LED is arranged to the vicinity of the center. Here, it demonstrates below that the LED light bulb 60 has the circuit board 35 shown in FIG.
 回路基板35に対し図16で示した角度で蛍光体フレーム62が重なると、LED36と蛍光体62bとが対向する。このとき、LED電球60は第1の色で発光する。この状態からグローブ11とともに蛍光体フレーム62を左方向に回転させるにつれて、LED36と対向する蛍光体62bの領域が減少するとともに蛍光体62cの領域が増加する。所定角度(本実施形態では左方向に135度)回転すると、LED36と蛍光体62cとが対向する状態に遷移する。このとき、LED電球60は第2の色で発光する。 When the phosphor frame 62 overlaps the circuit board 35 at the angle shown in FIG. 16, the LED 36 and the phosphor 62b face each other. At this time, the LED bulb 60 emits light in the first color. As the phosphor frame 62 is rotated to the left together with the globe 11 from this state, the area of the phosphor 62b facing the LED 36 decreases and the area of the phosphor 62c increases. When a predetermined angle (135 degrees to the left in the present embodiment) is rotated, the LED 36 and the phosphor 62c transition to a state where they face each other. At this time, the LED bulb 60 emits light in the second color.
 このように、LED電球60では、LED36に対向する蛍光体の比率が、グローブ11の回転に伴って変化するように、蛍光体フレーム62に蛍光体が塗布されている。かかる構成により、ユーザは使用環境や好みに応じてLED電球60の発光色を調整することができ、好適である。 Thus, in the LED bulb 60, the phosphor is applied to the phosphor frame 62 so that the ratio of the phosphor facing the LED 36 changes as the globe 11 rotates. With this configuration, the user can adjust the emission color of the LED bulb 60 according to the usage environment and preferences, which is preferable.
 本実施形態において、蛍光体62bは、LED36と対向したときに、蛍光体62cがLED36と対向したときにLED電球60が発光する色よりも、CIE1960(u,v)色度図上における黒体放射軌跡からの距離であるDuvが小さい色で発光するよう設定される。また、蛍光体62bは、黒体放射軌跡に近似する色で、蛍光体62cは、暗くても色彩がはっきり認識できる色で、LED電球60を発光させるようそれぞれ設定されてよい。このような蛍光体フレーム62を有するLED電球60は、通常の明るさが求められる状況と色彩をはっきり確認したい状況とが時系列的に混在する場所で使用するのに好適である。このような場所は、例えば家庭の居室であり、通常時の照明と食事のときの照明とを切り替えて使用することが考えられる。 In the present embodiment, the phosphor 62b is a black body on the CIE1960 (u, v) chromaticity diagram, rather than the color emitted by the LED bulb 60 when the phosphor 62c faces the LED 36 when facing the LED 36. D uv which is the distance from the radiation locus is set to emit light with a small color. The phosphor 62b may be set to emit light from the LED bulb 60 with a color that approximates a black body radiation locus, and the phosphor 62c may be a color that can be clearly recognized even when it is dark. The LED bulb 60 having such a phosphor frame 62 is suitable for use in a place where a situation where normal brightness is required and a situation where the color is desired to be clearly confirmed are mixed in time series. Such a place is, for example, a living room at home, and it is conceivable to switch between lighting at normal time and lighting at meal time.
 黒体放射軌跡に近似する色とは、例えばDuvが0.02以下である色をいう。黒体放射軌跡に近似する色のうち、相関色温度が5700K以上7100K以下、特に約6500Kの色は昼光色と呼ばれる。昼光色は、曇天空の色に近いため、すがすがしく爽快な雰囲気の照明に好適である。 The color approximated to the black body radiation locus is, for example, a color having D uv of 0.02 or less. Among the colors that approximate the black body radiation locus, the color with a correlated color temperature of 5700K to 7100K, especially about 6500K, is called a daylight color. Since the daylight color is close to the color of the cloudy sky, it is suitable for lighting in a refreshing and refreshing atmosphere.
 LED36と蛍光体62cとが対向するときにLED電球60が発光する色の一例として、LED電球60の発光色が対象物を照射した際に、対象物の位置で測定した光が以下の(A)を満たす色を使用することができる:
 A)ANSI C78.377で定義される黒体放射軌跡からの距離DUVSSLが、-0.0325≦DUVSSL≦-0.0075である。
As an example of the color emitted by the LED bulb 60 when the LED 36 and the phosphor 62c face each other, when the emission color of the LED bulb 60 irradiates the target, the light measured at the position of the target is (A Colors that meet) can be used:
A) The distance D UVSSL from the black body radiation locus defined by ANSI C78.377 is −0.0325 ≦ D UVSSL ≦ −0.0075.
 また、LED36と蛍光体62cとが対向するときにLED電球60が発光する色の一例として、LED電球60の発光色が対象物を照射した際に、対象物の位置で測定した光が、上記(A)に加えて以下の(B)および(C)を満たす色を使用することができる:
 (B)前記対象物の位置で測定した光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L***色空間におけるa*値、b*値をそれぞれa*nSSL、b* nSSL(ただしnは1から15の自然数)とし、
 前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L***色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCn
 -2.7 ≦ ΔCn ≦ 18.6      (nは1から15の自然数)
を満たし、
下記式(1)で表される飽和度差の平均が下記式(2)を満たし、
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 かつ飽和度差の最大値をΔCmax、飽和度差の最小値をΔCminとした場合に、飽和度差の最大値と、飽和度差の最小値との差ΔCmax-ΔCminが、
 3.0 ≦ (ΔCmax-ΔCmin) ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL2+(b* nSSL2}-√{(a* nref2+(b* nref2}とする。
 15種類の修正マンセル色票
 #01    7.5 P  4  /10
 #02   10   PB 4  /10
 #03    5   PB 4  /12
 #04    7.5  B 5  /10
 #05   10   BG 6  / 8
 #06    2.5 BG 6  /10
 #07    2.5  G 6  /12
 #08    7.5 GY 7  /10
 #09    2.5 GY 8  /10
 #10    5    Y 8.5/12
 #11   10   YR 7  /12
 #12    5   YR 7  /12
 #13   10    R 6  /12
 #14    5    R 4  /14
 #15    7.5 RP 4  /12
 (C)前記対象物の位置で測定した光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L***色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
 前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L***色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
 0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
 ただし、Δhn=θnSSL-θnrefとする。
In addition, as an example of the color emitted by the LED bulb 60 when the LED 36 and the phosphor 62c face each other, the light measured at the position of the target when the emission color of the LED bulb 60 irradiates the target is the above-mentioned In addition to (A), colors that satisfy the following (B) and (C) can be used:
(B) CIE 1976 L * a * b * a * in the color space of the following 15 types of modified Munsell color charts of # 01 to # 15 when the illumination by the light measured at the position of the object is mathematically assumed And b * values are a * n SSL and b * nSSL (where n is a natural number from 1 to 15),
CIE 1976 L * of the 15 types of corrected Munsell color charts when mathematically assuming illumination with reference light selected according to the correlated color temperature T SSL (K) of light measured at the position of the object . a * b * a * values in a color space, b * values of each a * nref, b * nref (where n is from 1 natural numbers 15) when the degree of saturation difference [Delta] C n is -2.7 ≦ [Delta] C n ≦ 18.6 (n is a natural number from 1 to 15)
The filling,
The average saturation difference represented by the following formula (1) satisfies the following formula (2),
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
When the maximum value of the saturation difference is ΔC max and the minimum value of the saturation difference is ΔC min , the difference ΔC max −ΔC min between the maximum value of the saturation difference and the minimum value of the saturation difference is
3.0 ≦ (ΔC max −ΔC min ) ≦ 19.6
Meet.
However, ΔCn = √ {(a * nSSL ) 2 + (b * nSSL ) 2 } −√ {(a * nref ) 2 + (b * nref ) 2 }.
15 types of modified Munsell color chart # 01 7.5 P 4/10
# 02 10 PB 4/10
# 03 5 PB 4/12
# 04 7.5 B 5/10
# 05 10 BG 6/8
# 06 2.5 BG 6/10
# 07 2.5 G 6/12
# 08 7.5 GY 7/10
# 09 2.5 GY 8/10
# 10 5 Y 8.5 / 12
# 11 10 YR 7/12
# 12 5 YR 7/12
# 13 10 R 6/12
# 14 5 R 4/14
# 15 7.5 RP 4/12
(C) The hue angle in the CIE 1976 L * a * b * color space of the above 15 types of modified Munsell color charts when the illumination by light measured at the position of the object is mathematically assumed is θ nSSL (degrees) (Where n is a natural number from 1 to 15)
CIE 1976 L * of the 15 types of corrected Munsell color charts when mathematically assuming illumination with reference light selected according to the correlated color temperature T SSL (K) of light measured at the position of the object . When the hue angle in the a * b * color space is θ nref (degrees) (where n is a natural number from 1 to 15), the absolute value of the hue angle difference | Δh n | is 0 ≦ | Δh n | ≦ 9. 0 (degrees) (n is a natural number from 1 to 15)
Meet.
However, Δh n = θ nSSL −θ nref .
 なお、蛍光体62bおよび62cは、黒体放射軌跡に近似する色または暗くても色彩がはっきり認識できる色で発光以外の色、例えば、電球色と昼白色とで発光するように構成されてもよい。また、第6実施形態において、蛍光体フレーム62は、3種以上の蛍光体で塗り分けられてもよい。 It should be noted that the phosphors 62b and 62c may be configured to emit light in colors other than light emission, such as a light bulb color and daylight white, in a color that approximates a black body radiation locus or a color that is clearly recognizable even in the dark. Good. In the sixth embodiment, the phosphor frame 62 may be painted with three or more phosphors.

Claims (13)

  1.  LED電球であって、
     本体と、
     前記本体に配置されたLEDと、
     前記本体に回転可能に支持され、前記LEDを覆う様に配置されたグローブと、
     前記グローブと前記LEDとの間に配置された円盤と、
     前記グローブの回転に伴って前記LEDと前記円盤との位置関係を相対的に変更させる位置変更機構と、を有し、
     前記円盤は、前記LEDから出射された光を第1の発光色に変換する第1の蛍光体と、前記LEDから出射された光を前記第1の発光色と異なる第2の発光色に変換する第2の蛍光体と、を含み、
     前記位置変更機構による位置関係の変更によって、前記グローブから出射される第3の発光色が変化する、
    ことを特徴とするLED電球。
    An LED bulb,
    The body,
    An LED disposed on the body;
    A glove that is rotatably supported by the main body and arranged to cover the LED;
    A disk disposed between the globe and the LED;
    A position changing mechanism that relatively changes the positional relationship between the LED and the disk as the globe rotates,
    The disk converts a first phosphor that converts light emitted from the LED into a first emission color, and converts a light emitted from the LED into a second emission color different from the first emission color. A second phosphor that
    By changing the positional relationship by the position changing mechanism, the third emission color emitted from the globe changes.
    LED bulb characterized by that.
  2.  前記LEDは前記本体に固定されており、
     前記円盤は前記グローブと接続されており、
     前記位置変更機構は、前記グローブを前記本体に対して回転可能に支持する支持機構であり、
     前記円盤は前記グローブの回転に伴って回転し、前記LEDとの位置関係を相対的に変更する、
     請求項1に記載のLED電球。
    The LED is fixed to the main body,
    The disk is connected to the globe,
    The position changing mechanism is a support mechanism that rotatably supports the globe with respect to the main body,
    The disk rotates with the rotation of the globe and relatively changes the positional relationship with the LED,
    The LED bulb according to claim 1.
  3.  前記円盤は円環状の領域を有し、前記円環状の領域に前記第1の蛍光体及び前記第2の蛍光体が配置されている、請求項1又は2に記載のLED電球。 The LED bulb according to claim 1 or 2, wherein the disk has an annular region, and the first phosphor and the second phosphor are arranged in the annular region.
  4.  前記円盤は凹部を有し、前記凹部に、前記第1の蛍光体及び前記第2の蛍光体が塗布されている、請求項1~3の何れか一項に記載のLED電球。 4. The LED bulb according to claim 1, wherein the disk has a recess, and the first phosphor and the second phosphor are applied to the recess.
  5.  前記グローブの回転に伴って、前記LEDに対向する前記第1の蛍光体と前記第2の蛍光体の比率が変化するように、前記円盤に前記第1の蛍光体及び前記第2の蛍光体が配置されている、請求項1~4のいずれか一項に記載のLED電球。 As the globe rotates, the first phosphor and the second phosphor on the disk so that the ratio between the first phosphor and the second phosphor facing the LED changes. The LED bulb according to any one of claims 1 to 4, wherein is disposed.
  6.  前記円盤の周囲に配置された第1の遮光部材を更に有する、請求項1~5の何れか一項に記載のLED電球。 The LED bulb according to any one of claims 1 to 5, further comprising a first light-shielding member disposed around the disk.
  7.  前記第1の蛍光体と前記第2の蛍光体との間に配置された第2の遮光部材を更に有する、請求項1~6の何れか一項に記載のLED電球。 The LED bulb according to any one of claims 1 to 6, further comprising a second light-shielding member disposed between the first phosphor and the second phosphor.
  8.  前記第1の遮光部材又は前記第2の遮光部材は、白色反射樹脂である、請求項6又は7に記載のLED電球。 The LED light bulb according to claim 6 or 7, wherein the first light shielding member or the second light shielding member is a white reflective resin.
  9.  前記LEDは、ダム材、前記ダム材の内側に配置された複数のLEDダイ、及び、前記ダム材の内側に配置された封止材を含む、請求項1~8の何れか一項に記載のLED電球。 The LED includes a dam material, a plurality of LED dies disposed inside the dam material, and a sealing material disposed inside the dam material. LED bulb.
  10.  前記LEDは、複数の領域にそれぞれ配置された複数のダム材、前記複数のダム材の内側にそれぞれ配置された複数のLEDダイ、及び、前記複数のダム材の内側にそれぞれ配置された封止材を含む、請求項1~8の何れか一項に記載のLED電球。 The LED includes a plurality of dam materials respectively disposed in a plurality of regions, a plurality of LED dies disposed inside the plurality of dam materials, and a sealing disposed respectively inside the plurality of dam materials. The LED bulb according to any one of claims 1 to 8, comprising a material.
  11.  前記グローブの回転に伴って変更される前記第3の発光色を示すマークを更に有する、請求項1~10の何れか一項に記載のLED電球。 The LED bulb according to any one of claims 1 to 10, further comprising a mark indicating the third emission color that is changed in accordance with rotation of the globe.
  12.  前記第3の発光色が対象物を照射した際に、前記対象物の位置で測定した光が、以下の(A)を満たす、請求項1~11の何れか一項に記載のLED電球。
     (A)ANSI C78.377で定義される黒体放射軌跡からの距離DUVSSLが、-0.0325≦DUVSSL≦-0.0075である。
    The LED bulb according to any one of claims 1 to 11, wherein when the third emission color irradiates the object, the light measured at the position of the object satisfies the following (A).
    (A) The distance D UVSSL from the black body radiation locus defined by ANSI C78.377 is −0.0325 ≦ D UVSSL ≦ −0.0075.
  13.  前記第3の発光色が対象物を照射した際に、前記対象物の位置で測定した光が、更に、以下の(B)及び(C)を満たす、請求項12に記載のLED電球。
     (B)前記対象物の位置で測定した光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L***色空間におけるa*値、b*値をそれぞれa*nSSL、b* nSSL(ただしnは1から15の自然数)とし、
     前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L***色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCn
     -2.7 ≦ ΔCn ≦ 18.6      (nは1から15の自然数)
    を満たし、
    下記式(1)で表される飽和度差の平均が下記式(2)を満たし、
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
     かつ飽和度差の最大値をΔCmax、飽和度差の最小値をΔCminとした場合に、飽和度差の最大値と、飽和度差の最小値との差ΔCmax-ΔCminが、
     3.0 ≦ (ΔCmax-ΔCmin) ≦ 19.6
    を満たす。
    ただし、ΔCn=√{(a* nSSL2+(b* nSSL2}-√{(a* nref2+(b* nref2}とする。
     15種類の修正マンセル色票
     #01    7.5 P  4  /10
     #02   10   PB 4  /10
     #03    5   PB 4  /12
     #04    7.5  B 5  /10
     #05   10   BG 6  / 8
     #06    2.5 BG 6  /10
     #07    2.5  G 6  /12
     #08    7.5 GY 7  /10
     #09    2.5 GY 8  /10
     #10    5    Y 8.5/12
     #11   10   YR 7  /12
     #12    5   YR 7  /12
     #13   10    R 6  /12
     #14    5    R 4  /14
     #15    7.5 RP 4  /12
     (C)前記対象物の位置で測定した光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L***色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
     前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L***色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
     0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
    を満たす。
    ただし、Δhn=θnSSL-θnrefとする。
    The LED light bulb according to claim 12, wherein when the third emission color irradiates an object, the light measured at the position of the object further satisfies the following (B) and (C).
    (B) CIE 1976 L * a * b * a * in the color space of the following 15 types of modified Munsell color charts of # 01 to # 15 when the illumination by the light measured at the position of the object is mathematically assumed And b * values are a * n SSL and b * nSSL (where n is a natural number from 1 to 15),
    CIE 1976 L * of the 15 types of corrected Munsell color charts when mathematically assuming illumination with reference light selected according to the correlated color temperature T SSL (K) of light measured at the position of the object . a * b * a * values in a color space, b * values of each a * nref, b * nref (where n is from 1 natural numbers 15) when the degree of saturation difference [Delta] C n is -2.7 ≦ [Delta] C n ≦ 18.6 (n is a natural number from 1 to 15)
    The filling,
    The average saturation difference represented by the following formula (1) satisfies the following formula (2),
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    When the maximum value of the saturation difference is ΔC max and the minimum value of the saturation difference is ΔC min , the difference ΔC max −ΔC min between the maximum value of the saturation difference and the minimum value of the saturation difference is
    3.0 ≦ (ΔC max −ΔC min ) ≦ 19.6
    Meet.
    However, ΔC n = √ {(a * nSSL ) 2 + (b * nSSL ) 2 } −√ {(a * nref ) 2 + (b * nref ) 2 }.
    15 types of modified Munsell color chart # 01 7.5 P 4/10
    # 02 10 PB 4/10
    # 03 5 PB 4/12
    # 04 7.5 B 5/10
    # 05 10 BG 6/8
    # 06 2.5 BG 6/10
    # 07 2.5 G 6/12
    # 08 7.5 GY 7/10
    # 09 2.5 GY 8/10
    # 10 5 Y 8.5 / 12
    # 11 10 YR 7/12
    # 12 5 YR 7/12
    # 13 10 R 6/12
    # 14 5 R 4/14
    # 15 7.5 RP 4/12
    (C) The hue angle in the CIE 1976 L * a * b * color space of the above 15 types of modified Munsell color charts when the illumination by light measured at the position of the object is mathematically assumed is θ nSSL (degrees) (Where n is a natural number from 1 to 15)
    CIE 1976 L * of the 15 types of corrected Munsell color charts when mathematically assuming illumination with reference light selected according to the correlated color temperature T SSL (K) of light measured at the position of the object . When the hue angle in the a * b * color space is θ nref (degrees) (where n is a natural number from 1 to 15), the absolute value of the hue angle difference | Δh n | is 0 ≦ | Δh n | ≦ 9. 0 (degrees) (n is a natural number from 1 to 15)
    Meet.
    However, Δh n = θ nSSL −θ nref .
PCT/JP2017/027563 2016-07-28 2017-07-28 Led light bulb WO2018021568A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018530442A JP6899827B2 (en) 2016-07-28 2017-07-28 LED bulb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-148196 2016-07-28
JP2016148196 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018021568A1 true WO2018021568A1 (en) 2018-02-01

Family

ID=61016983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027563 WO2018021568A1 (en) 2016-07-28 2017-07-28 Led light bulb

Country Status (2)

Country Link
JP (1) JP6899827B2 (en)
WO (1) WO2018021568A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061521A (en) * 2018-10-12 2020-04-16 日亜化学工業株式会社 Light-emitting device
WO2022227430A1 (en) * 2021-04-30 2022-11-03 深圳市爱图仕影像器材有限公司 Color matching method and apparatus for illumination apparatus, and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059260A (en) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp Illumination device and illumination fixture
WO2012017754A1 (en) * 2010-08-02 2012-02-09 シャープ株式会社 Illumination device
JP2013026416A (en) * 2011-07-20 2013-02-04 Toyoda Gosei Co Ltd Element mounting substrate and light emitting device including the same
JP2014067555A (en) * 2012-09-25 2014-04-17 Toshiba Lighting & Technology Corp Led lighting device
JP2014519689A (en) * 2011-06-10 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Retrofit lighting equipment
JP2014197673A (en) * 2013-03-04 2014-10-16 三菱化学株式会社 Light-emitting device including semiconductor light-emitting element, method for designing light-emitting device, method for driving light-emitting device, and illumination method
JP2014229608A (en) * 2013-05-21 2014-12-08 ライト−オン テクノロジー コーポレーション Lighting apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059260A (en) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp Illumination device and illumination fixture
WO2012017754A1 (en) * 2010-08-02 2012-02-09 シャープ株式会社 Illumination device
JP2014519689A (en) * 2011-06-10 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Retrofit lighting equipment
JP2013026416A (en) * 2011-07-20 2013-02-04 Toyoda Gosei Co Ltd Element mounting substrate and light emitting device including the same
JP2014067555A (en) * 2012-09-25 2014-04-17 Toshiba Lighting & Technology Corp Led lighting device
JP2014197673A (en) * 2013-03-04 2014-10-16 三菱化学株式会社 Light-emitting device including semiconductor light-emitting element, method for designing light-emitting device, method for driving light-emitting device, and illumination method
JP2014229608A (en) * 2013-05-21 2014-12-08 ライト−オン テクノロジー コーポレーション Lighting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061521A (en) * 2018-10-12 2020-04-16 日亜化学工業株式会社 Light-emitting device
JP7089181B2 (en) 2018-10-12 2022-06-22 日亜化学工業株式会社 Light emitting device
WO2022227430A1 (en) * 2021-04-30 2022-11-03 深圳市爱图仕影像器材有限公司 Color matching method and apparatus for illumination apparatus, and storage medium

Also Published As

Publication number Publication date
JP6899827B2 (en) 2021-07-07
JPWO2018021568A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
EP3539358B1 (en) Tunable led emitter with continuous spectrum
US8258722B2 (en) Lighting device with defined spectral power distribution
JP6063500B2 (en) Solid color lighting system with improved color quality
US8215798B2 (en) Solid state lighting system with optic providing occluded remote phosphor
JP5372155B2 (en) Color adjustable light source
US9297516B2 (en) Phosphor wheel for converting pump light
KR20160037050A (en) Light-emitting module
KR20110089153A (en) Light emitting diode module with three part color matching
EP2705545B1 (en) Phosphor-enhanced lighting device, retrofit light bulb and light tube with reduced color appearance
JP2012015012A (en) Led lighting device
WO2018021568A1 (en) Led light bulb
CN109891152B (en) Lighting device comprising a plurality of different light sources having a similar off-state appearance
US20190081281A1 (en) Method and system for reducing reflection of ambient light in an emissive display
US8222652B2 (en) Method for controlling color accuracy in a light-emitting semiconductor-based device and process for producing a light-emitting semiconductor-based device with controlled color accuracy
JP2006120748A (en) Semiconductor device and electronic apparatus
US20160116141A1 (en) Light-emitting device
JP6644233B2 (en) Light emitting device
JP2014150293A (en) Light-emitting device
KR102568411B1 (en) Light emittign module and lighting apparatus
CN107431110B (en) LED-based lighting device with asymmetrically distributed LED chips
JP2013175765A (en) Light-emitting device and luminaire
TWI421449B (en) Lighting device and method for selecting color of toner in medium layer thereof
TWM455119U (en) Rotatable type light-emitting device
TWM565405U (en) LED light emitting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530442

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834570

Country of ref document: EP

Kind code of ref document: A1