WO2018021315A1 - 配線シート、シート状システム、及び構造物運用支援システム - Google Patents

配線シート、シート状システム、及び構造物運用支援システム Download PDF

Info

Publication number
WO2018021315A1
WO2018021315A1 PCT/JP2017/026876 JP2017026876W WO2018021315A1 WO 2018021315 A1 WO2018021315 A1 WO 2018021315A1 JP 2017026876 W JP2017026876 W JP 2017026876W WO 2018021315 A1 WO2018021315 A1 WO 2018021315A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
wiring
carbon
power supply
supply line
Prior art date
Application number
PCT/JP2017/026876
Other languages
English (en)
French (fr)
Inventor
毅 関谷
隆文 植村
秀輔 吉本
徹平 荒木
野田 祐樹
貴康 櫻井
森 時彦
真 高宮
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017142222A external-priority patent/JP6967242B2/ja
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to CN201780045642.5A priority Critical patent/CN109564799B/zh
Priority to US16/319,694 priority patent/US11509123B2/en
Priority to EP17834317.4A priority patent/EP3489971B1/en
Publication of WO2018021315A1 publication Critical patent/WO2018021315A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/30Installations of cables or lines on walls, floors or ceilings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water

Definitions

  • the present invention relates to a wiring sheet that is a sheet body including a conductive wire, and a system including the wiring sheet.
  • IoT Internet of Things, Internet of Things
  • sensors are directly attached to the above structures, and information on the state of the structures is collected remotely from these sensors. I have an idea. If the information from the sensor can be acquired from a remote location, the information on the state of the structure can be acquired at a higher frequency or as needed when the inspector is regularly dispatched to the site.
  • a structure having a high demand for inspection using such a sensor may be a harsh environment for power supply to the sensor and wiring for communication with the sensor.
  • the environment where reliable inspection is required relatively frequently because concrete is prone to deterioration is an environment where there is a lot of chloride or high acidity, and it is generally used for power supply and communication
  • Metal wiring is also likely to deteriorate. Therefore, in order to install reliable wiring over a long period of time, it takes a cost of ensuring redundancy and continuous maintenance.
  • the total length of a tunnel for a communication line of a certain communication company is 600 km. It is said to extend to.
  • a power line cavern that a certain power company has in the pipe reaches a total length of 2000 km or more.
  • a structure of such a scale can be entered by a person but is relatively thin and has a complicated shape with many curved surfaces.
  • the present invention has been made in view of these problems, and can be widely applied to the shape and environment of the place where the device is installed, and the wiring sheet with reduced costs for introduction and maintenance, and a sheet shape including the wiring sheet
  • the purpose is to provide a system.
  • each of the wiring sheets according to one embodiment of the present invention is a signal line or a power supply line, and is one or more flexible conductors made mainly of carbon. And an insulating sheet having flexibility with an electrical insulator as a main material that wraps substantially the whole of the one or more carbon wirings.
  • each of the one or more carbon wirings may include graphene, graphite, or carbon nanotube as a main carbon material
  • the insulating sheet may include a resin, cloth, or paper as a main material.
  • the material of the carbon wiring can be selected in consideration of cost and required performance (resistance).
  • the above-mentioned insulating sheet may be mainly made of polyvinyl chloride resin.
  • Polyvinyl chloride resin can be made with flexibility that can handle complex shapes. Moreover, the humidity is high like the inside of a cave, and durability in an environment that can contain salt is high. Nevertheless, since it can be procured at a relatively low cost, for example, it is possible to reduce the cost of introduction and subsequent maintenance of the wiring sheet installed in the cave.
  • a carbon wiring having a resistance value per 1 cm length of 0.01 ⁇ or more and 1 ⁇ or less may be included.
  • the one or more carbon wires may include the power supply line, and the power supply line may form a grid.
  • the electric path of the two-dimensional shape obtained by this has a lower resistance than the one-dimensional shape path using one linear carbon wiring, and can carry power more efficiently.
  • a wiring sheet that includes such carbon wiring and spreads two-dimensionally it is possible to select a power extraction location with a high degree of freedom.
  • Such a configuration of the wiring sheet can be applied to, for example, wallpaper. By covering the wall surface of the living room with this wallpaper, power can be taken out at various locations on the wall surface by connecting the carbon wiring to the power source.
  • a wallpaper can provide a wide range of places where a load including an electric circuit can be attached without carrying out a large-scale construction, and facilitates the introduction of IoT technology.
  • the insulating sheet may include a via for electrically connecting the external conductor and the carbon wiring.
  • the insulating sheet is made of anisotropic conductive rubber, can be conductive in the thickness direction of the insulating sheet, and includes a contact for electrically connecting an external conductor and the carbon wiring. May be.
  • the terminal of the load installed on the insulating sheet or the wiring for electrical connection with the terminal and the carbon wiring wrapped by the insulating sheet can be more reliably electrically connected.
  • the carbon wiring inside can be insulated from the outside in the same manner as the portion covered with the insulating sheet.
  • the one or more carbon wirings may be three or more carbon wirings, and the three or more carbon wirings may include the power supply line, the signal line, and the first GND line.
  • this wiring sheet In the place where this wiring sheet is installed, it is possible to install a load that receives power from a highly environmentally resistant power supply line and outputs a signal to the highly environmentally resistant signal line.
  • the power supply line, the signal line, and the first GND line may extend in parallel, and the signal line may be positioned between the power supply line and the first GND line.
  • Long signal lines may act like an antenna due to the influence of the signal being carried, causing radio waves to jump out.
  • This radio waves may cause noise in other signal lines in the vicinity, malfunction of electronic equipment, etc. It may cause radio interference such as
  • harmonic components that cause radio wave interference included in the signal in the signal line are suppressed by capacitive coupling between the signal line and the power supply line and between the signal line and the first GND line. .
  • a sheet-like system includes any one of the above-described wiring sheets and a plurality of loads that are electrically connected to one or more carbon wirings from the outside to the inside of the insulating sheet.
  • the one or more carbon wirings include the power supply line, and the load receives a power supply from the power supply line to store electricity, and receives power from the power storage element. And an electric circuit that operates intermittently.
  • a system in which the load operates on a regular basis as an intermittent operation can be realized by using a cheaper power supply line with a relatively large resistance.
  • the power storage element can be charged using the supplied power during a time other than the scheduled operation of the load. That is, the storage element can be charged with a current with a reduced size. Therefore, resistance loss can be suppressed.
  • the one or more carbon wires may include the signal line, and the electric circuit may include a sensor, and a physical quantity measured by the sensor may be output via the signal line.
  • a sheet shape including a sensor that receives power from a power supply line that can withstand an environment such as a sinus road for a long time and outputs a signal indicating a measurement result to a signal line that can withstand the environment for a long time.
  • the one or more carbon wirings are two or more carbon wirings, and the two or more carbon wirings include a second GND line used for taking a ground potential without substantially flowing a current. But you can.
  • the one or more carbon wirings may include a power supply line
  • the plurality of loads may each include an electric circuit for returning power stored in the power storage element to the power supply line.
  • the one or more carbon wirings include a power supply line
  • the sheet-like system includes an electric wire through which electricity from an external power source flows and a gateway that electrically connects the power supply line.
  • the gateway may instruct each of a plurality of loads whether or not to receive power supply from a power supply via a power supply line.
  • the voltage drop is suppressed by limiting the number of loads that are charged at a time, and charging is normally executed at each load of the sheet-like system.
  • the structure operation support system includes any one of the plurality of sheet-like systems laid on the surface of the structure, and one or more of the above-described plurality of sheet-like systems. And an electric wire to which the carbon wiring is connected.
  • the present invention it is possible to provide a wiring sheet that can be widely adapted to the shape and environment of the place where it is installed, and that suppresses the cost of introduction and maintenance, and a sheet-like system including the wiring sheet.
  • FIG. 1 is a figure showing an example of installation of a structure operation support system realized using a wiring sheet concerning an embodiment.
  • FIG. 2 is a schematic diagram showing a state in which the above structure operation support system is seen through from the outside of the structure.
  • FIG. 3 is a schematic diagram illustrating an example of a connection form between each component in the structure operation support system.
  • FIG. 4 is a block diagram illustrating a functional configuration example of a load included in the sheet-like system according to the embodiment.
  • FIG. 5 is a partial cross-sectional view schematically showing a configuration example of the wiring sheet according to the embodiment.
  • FIG. 6A is a schematic diagram illustrating an example of the shape of the carbon wiring in the second modification of the embodiment.
  • FIG. 6B is a schematic diagram illustrating another example of the shape of the carbon wiring in Modification 2 of the embodiment.
  • FIG. 6C is a schematic partial cross-sectional view of a wiring sheet including a carbon wiring according to Modification 2 of the embodiment.
  • FIG. 7 is a schematic diagram showing a configuration example of a wiring sheet for electrically connecting a carbon wiring in an insulating sheet and an external conductor using a contact made of anisotropic conductive rubber in Modification 4 of the embodiment.
  • FIG. FIG. 8 is a block diagram illustrating a connection example of the second GND line in the fifth modification of the embodiment.
  • FIG. 9 is a block diagram illustrating a functional configuration of a load included in the sheet-like system according to the modification 7 of the embodiment.
  • FIG. 10A is a schematic diagram for explaining a configuration of a sheet-like system according to Modification 8 of the embodiment.
  • FIG. 10B is a block diagram illustrating a functional configuration example of a gateway included in the sheet-like system according to the eighth modification of the embodiment.
  • FIG. 11 is a schematic diagram for explaining an example of the arrangement of carbon wirings in the wiring sheet according to Modification Example 10 of the embodiment.
  • each drawing referred to in the following description is a schematic diagram, and does not accurately indicate the shape and size relationship of each component. Moreover, in each figure, it shows with the same code
  • FIG. 1 is a diagram illustrating an installation example of a structure operation support system realized using the wiring sheet according to the present embodiment.
  • the state of the structure operation support system 10 installed on the wall surface of the structure is shown.
  • FIG. 2 is a schematic diagram illustrating a state where the structure operation support system 10 illustrated in FIG. 1 is seen through from the outside of the structure.
  • the structures shown in these drawings are, for example, a cave that has a wall surface and a road surface of a concrete material and extends underground.
  • the sinusoid is a substantially circular tube having a size that allows at least a person to walk on the road surface inside, and the arched wall surface in FIG. 1 is the inner surface of the tube.
  • the road surface is a surface on which a passerby walks, which is provided below the inside of the circular pipe.
  • a telecommunication company's cave is a communication line
  • a power company's cave is a transmission line
  • part of the wall of the cave is behind these transmission lines.
  • Such an inspection of a sinus has been conventionally performed by, for example, a hitting sound when an inspector hits a wall surface using a percussion stick. In other words, even a test by hitting sound performed by a person cannot be easily performed on the entire wall surface.
  • the structure operation support system 10 includes a plurality of sheet-like systems 100 and an electric wire 500 to which the sheet-like system 100 is connected.
  • the sheet-like system 100 installed along the circumferential direction of the wall surface of the tunnel includes a wiring sheet 120 and a plurality of loads 140.
  • the size of the wiring sheet 120 is about 10 m in the long side direction.
  • interval of the loads 140 in the same wiring sheet 120 is about 1 m as an example.
  • interval of the wiring sheets 120 is about 10 m as an example.
  • the wiring sheet 120 includes a carbon wiring 102 and an insulating sheet 104.
  • the wiring sheet 120 includes three carbon wirings 102 each indicated by a dotted line.
  • the wiring sheet 120 covers substantially the entire carbon wiring 102, and the carbon wiring 102 is basically not exposed to the outside of the wiring sheet 120 except for portions necessary for connection to the outside.
  • the existence and arrangement of the carbon wiring 102 that cannot be seen from the outside are indicated by dotted lines for convenience.
  • Each carbon wiring 102 is used as a signal line or a power line in the structure operation support system 10.
  • the word “power supply line” is used as a word that can indicate either a power supply line or a combination of a power supply line and a GND (GROUND) line.
  • GND line used in combination with the power supply line included in the concept of the power supply line is also referred to as a first GND line in the present specification and the like.
  • the carbon wiring 102 is a conductor having carbon as a main material and is a flexible wire. More specific examples of this material include graphene, graphite, and single or multi-walled carbon nanotubes.
  • the carbon wiring 102 made of these materials has a structure and electrical property even in a place where there is a lot of chloride ions such as a place where there is a lot of moisture such as underground, a place where the acidity or alkalinity of soil is high, or a place near the coast. It is provided as a wiring that maintains the mechanical properties for a long time.
  • these materials are expected to be supplied more stably than copper often used for power supply and wiring for communication, it is easy to control the cost at the time of introduction.
  • the production and processing for application to a large structure is relatively easy, and the weight is relatively light, so that the installation work load is small and the structure is difficult to be burdened after installation. This is why these materials are used.
  • carbon wire 102 made of single-walled carbon nanotubes has a lower resistivity than carbon wire 102 made of graphite, and carbon made using graphene or multi-walled carbon nanotubes.
  • the resistivity of the wiring 102 is intermediate.
  • graphite is the cheapest, single-walled carbon nanotubes are the most expensive, and graphene and multi-walled carbon nanotubes are intermediate. Therefore, which of the above materials is used can be appropriately selected in consideration of, for example, the cost at the time of introduction and the power consumption of the load 140.
  • the material of the carbon wiring 102 may include substances other than carbon. For example, by using each material doped with boron, the carbon wiring 102 having a lower resistivity can be obtained. Also, a binder can be included as required.
  • each carbon wiring 102 is determined in consideration of resistance and flexibility. That is, the cross-sectional area needs to be large enough to prevent the resistance from becoming too high for power supply or signal transmission. On the other hand, it is necessary to be thin or thin enough to be deformed into a shape along the surface of the structure on which the wiring sheet 120 is installed.
  • examples of the shape of each carbon wiring 102 include a string shape or a ribbon shape.
  • the resistance value per 1 cm length can be about 0.01 ⁇ .
  • the carbon wiring 102 made of graphite can be set to about 1 ⁇ .
  • the insulating sheet 104 wraps the carbon wiring 102 and protects it from physical impact to some extent, and makes it easy to handle.
  • the insulating sheet 104 is mainly made of an electrical insulator. This insulating property protects the carbon wiring 102 serving as a power supply line and a signal line from an electrical influence from the outside. Moreover, the influence by mutual contact is prevented by fixing each carbon wiring 102 to be included in a positional relationship so that they are not unnecessarily brought into contact with each other. The arrangement of the plurality of carbon wirings 102 in the insulating sheet 104 will be described later.
  • the insulating sheet 104 has flexibility. Due to this property, the insulating sheet 104 is attached so as to follow the curved surface as shown in FIGS. 1 and 2 or the shape of the surface of the structure having a bent portion.
  • An example of the material of the insulating sheet 104 having such properties includes an organic polymer such as a resin.
  • polyvinyl chloride resin does not pass water and has excellent acid resistance and alkali resistance. Further, the amount of plasticizer added at the time of production can be adjusted to give flexibility.
  • Polyvinyl chloride resin having such properties is conventionally used as a sheet that is formed into a flexible sheet and covers the seam of the wall surface of the cave to prevent infiltration of groundwater.
  • such a polyvinyl chloride resin sheet is said to have a durability of about 70 years in a place where it is not exposed to heat exceeding 60 ° C. or ultraviolet rays.
  • the carbon contained in the sinus that is stable at a temperature at which workers can work without wearing sunlight and without wearing heat-resistant clothing.
  • the wiring 102 can be protected from moisture, chloride ions, acidic or alkaline substances in the surrounding environment for a long period of several decades. Further, since the wiring sheet 120 using such an insulating sheet 104 does not need frequent replacement, the maintenance cost of the structure operation support system 10 can be suppressed.
  • polyvinyl chloride resin is relatively inexpensive among resins.
  • the installation and replacement of the polyvinyl chloride resin sheet for preventing water immersion as described above on the wall surface of the sinus has been performed in the past, and is an operation that is originally planned in the future. Accordingly, by replacing the sheet for preventing inundation with the wiring sheet 120 in the future, the cost of introducing the structure operation support system 10 to a large-scale structure such as a cave can be suppressed.
  • the material constituting one insulating sheet 104 is not limited to one type.
  • the insulating sheet 104 may be composed of a plurality of layers made of different materials.
  • the structure of one insulating sheet 104 may be uniform as a whole or may vary depending on the location. The difference depending on the location may be, for example, a multilayer structure for reinforcement or fixing of the load 140 at the mounting position of the load 140, and may be a single-layer structure otherwise.
  • the plurality of loads 140 are arranged on the surface of such a wiring sheet 120 at predetermined intervals along the carbon wiring 102.
  • ten loads 140 are arranged at intervals of about 1 m on the surface of each wiring sheet 120 on the side in contact with the wall surface of the sinus.
  • Each load 140 in the present embodiment includes an electric circuit including a sensor, and this electric circuit is connected to the carbon wiring 102 through a via provided in the insulating sheet 104, for example.
  • the via is an example of a configuration for electrically connecting the carbon wiring 102 and a conductor outside the insulating sheet 104, here, for example, a power supply terminal or a signal terminal included in the load 140. Details of the load 140 will be described later using an example.
  • the carbon wire 102 provided in each of the plurality of sheet-like systems 100 is connected to the electric wire 500.
  • the electric wire 500 in the present embodiment includes a power line for supplying electric power to the illuminating lamp 600 used when working in the tunnel.
  • a power supply line in the carbon wiring 102 included in each sheet-like system 100 is connected to the power supply line included in the electric wire 500. Thereby, electric power is supplied to the load 140 with which each sheet-like system 100 is provided via the carbon wiring 102 which is a power supply line.
  • the electric wire 500 in the present embodiment further includes a communication line that is installed for communication with workers in the cave.
  • a signal line in the carbon wiring 102 included in each sheet-like system 100 is connected to the communication line included in the electric wire 500.
  • the signal output from the sensor of the load 140 with which each sheet-like system 100 is provided is output via the carbon wiring 102 which is a signal line, and is conveyed by the communication line which the electric wire 500 contains.
  • This signal is sent to the central management system of the sinus including, for example, an electronic computer, and is handled as data to be accumulated, analyzed, or monitored for grasping the state of the sinus by the electronic computer.
  • FIG. 3 is a schematic diagram illustrating an example of the connection mode described so far in the structure operation support system 10 according to the present embodiment.
  • each sheet-like system 100 has a plurality of carbon wires 102 connected to the electric wires 500.
  • the electric power supplied from the electric wire 500 is delivered to each load 140 through the carbon wiring 102 which is a power supply line.
  • the carbon wiring 102 which is a signal line is a so-called bus shared by the load 140 in each sheet-like system 100, and each load 140 is a node connected to this bus.
  • the signal output from the sensor of each load 140 is output to the electric wire 500 via the carbon wiring 102 and is conveyed.
  • the signal carried by the electric wire 500 is delivered to the server 800 or the monitoring terminal device 700 included in the centralized management system of the sinus via a communication network such as the Internet, an intranet, or a dedicated line.
  • the data indicated by this signal is stored in the server 800 or displayed on the monitor of the monitoring terminal device 700.
  • the structure operation support system 10 when there is a power supply line or a communication communication line for supplying power to an illumination lamp or the like conventionally provided in the structure where the structure operation support system 10 is installed, It may be used as a power line or a communication line included in the electric wire 500. Thereby, the cost of introduction of the structure operation support system 10 can be suppressed.
  • the structure operation support system 10 includes a large number of sensors installed on the surface of the structure, and information indicating the state of the structure can be collected from each sensor. In addition, by using data measured by these sensors at the same time, it is possible to grasp a spatial state in which structures are captured at multiple points, which is impossible with a conventional hammering test.
  • a load 140 including these sensors and a configuration of the wiring sheet 120 that connects the plurality of loads 140 and connects the load 140 and the electric wire 500 over a long period of time.
  • FIG. 4 is a block diagram illustrating a functional configuration example of the load 140.
  • the load 140 includes a power supply unit 141, a communication unit 143, a control unit 144, a signal processing unit 145, and a sensor 146.
  • the power supply unit 141 is a power supply circuit, and generates power used for the operation of each component of the load 140 from input power supplied from the carbon wiring 102 which is a power supply line.
  • power supply unit 141 in the present embodiment includes power storage element 142 for storing power to be supplied to these components.
  • the power storage element 142 is realized using a capacitor or a storage battery. Note that a highly durable power storage element 142 is preferably used. Examples of the power storage element 142 include a highly durable ceramic capacitor and a carbon nanotube capacitor.
  • the sensor 146 in the present embodiment is not limited as long as it is for measuring a physical quantity that can be used to grasp various changes such as alteration and deformation of building materials such as concrete constituting the structure.
  • a sensor that measures the amount of iron ions present on the wall surface in order to diagnose the corrosion of reinforcing bars in the walls of a cave or a sensor that measures displacement in order to check whether or not the wall surface is deformed.
  • various sensors such as temperature, humidity, vibration, current, magnetism, electromagnetic waves, electrical resistance, and specific substances can be used alone or in combination.
  • the physical quantity measured by the sensor 146 is processed by the signal processing unit 145 as necessary, and is output as a signal from the communication unit 143 to the electric wire 500 via the carbon wiring 102 which is a signal line.
  • the signal processing unit 145 includes, for example, a filter circuit for removing noise, an amplifier circuit for amplifying the signal, and an A / D (Analog-to-Digital) conversion circuit for converting an analog signal into a digital signal.
  • the communication unit 143 is a communication module including an output port that outputs a digital signal obtained by processing by the signal processing unit 145 to a signal line.
  • the measurement by the sensor 146 in the present embodiment does not have to be performed constantly depending on the measurement object and the purpose of use of the measurement result.
  • the measurement is intermittently performed at predetermined intervals such as a fixed time of day. May be executed.
  • the displacement of each part of the structure and the corrosion of the reinforcing bars in the wall usually do not progress rapidly in one day.
  • daily measurement it is possible to grasp the tendency of change from the accumulated data of the daily measurement results.
  • the measurement operation of the sensor 146 only needs to be possible for a very short time such as once to several times a day, several seconds to several minutes.
  • the power necessary for the operation of each load 140 may be stored in the power storage element 142 during the measurement execution opportunity. Also good.
  • the resistance value of the carbon wiring 102 may be relatively high. Therefore, the cheaper carbon wiring 102 can be used, and the introduction cost of the structure operation support system 10 can be suppressed.
  • the resistance loss of power proportional to the square of the magnitude of the current is small, and the energy efficiency as the structure operation support system 10 is less than that in a short time using a large current. Good.
  • the control unit 144 is realized by using, for example, a CPU (Central Processing Unit) and controls operations of the communication unit 143, the signal processing unit 145, and the sensor 146.
  • the CPU includes a timer, and intermittent operations such as the above-described measurement are also executed based on the time counted by the timer. Note that a CPU with low power consumption is also preferably used.
  • the communication unit 143, the control unit 144, and the signal processing unit 145 may be realized as a single one-chip microcomputer as a whole.
  • the load 140 may be sealed with glass epoxy or the like except for a sensor portion that needs to be exposed for sensing the structure in order to increase the durability of the circuit.
  • the operation of the electrical circuit other than the power supply unit 141 (the communication unit 143 and the signal processing unit under the control of the control unit 144) according to the measurement target by the sensor 146 and the purpose of use of the measurement result. 145 and each operation of the sensor 146) may be intermittently performed by receiving power supply from the power storage element 142.
  • the sheet-like system 100 capable of performing necessary functions such as measurement by the sensor can be realized at a lower cost, and further, the introduction cost and the operation cost of the structure operation support system 10 can be suppressed.
  • FIG. 5 is a partial cross-sectional view schematically showing a configuration example of the wiring sheet 120. More specifically, the configuration of a location where one load 140 is attached on the wiring sheet 120 is shown.
  • the wiring sheet 120 has a plurality of locations with such a configuration.
  • each carbon wiring 102 is not easily affected by an external impact.
  • the insulating sheet 104 is mainly made of polyvinyl chloride resin as described above, each carbon wiring 102 is further less susceptible to moisture, acid, alkali, electricity, and the like.
  • each carbon wiring 102 can stably exhibit the functions as a power supply line, a signal line, and a GND line.
  • the wiring sheet 120 exemplified so far includes only one carbon wiring 102 as a GND line, but the carbon wiring 102 that is a signal ground GND line and the carbon wiring 102 that is a frame ground GND line. As shown in FIG.
  • the insulating sheet 104 includes a plurality of vias 103 that reach each carbon wiring 102 from the surface.
  • each via 103 is made of graphene, graphite, single-walled or multi-walled carbon nanotubes, and the like, like the carbon wiring 102, and is bonded to the metal terminal 105 on the surface of the insulating sheet 104.
  • the load 140 is connected to the metal terminal 105 on the surface of the insulating sheet 104 and is electrically connected to each carbon wiring 102 via the via 103.
  • Such a wiring sheet 120 can be manufactured, for example, by the following method.
  • a sheet material having a desired thickness is formed by discharging a solution obtained by mixing a carbon material such as graphite with a binder of a polymer material so as to apply a predetermined surface with ink of a printer.
  • a desired shape for example, a ribbon shape
  • a plurality of carbon wirings 102 obtained in this way are arranged so as not to overlap each other and are laminated by sandwiching them with a sheet of polyvinyl chloride resin, whereby an insulating sheet 104 enclosing the carbon wirings 102 is obtained.
  • a plurality of holes reaching the carbon wiring 102 are formed at positions where the carbon wiring 102 is present. Then, the above solution is applied so as to block each hole and around each hole to form the via 103. The metal terminal 105 is joined to the carbon material located above the finally closed hole to obtain the wiring sheet 120 having the configuration as shown in FIG.
  • the wiring sheet 120 may be manufactured using a method different from this method or a completely different method.
  • a sheet of commercially available graphite or the like may be used as the carbon material sheet.
  • a pattern of the carbon wiring 102 is printed on the insulating sheet 104, and the insulating sheet 104 is bent or overlapped with another insulating sheet 104 so that the printed surface is inside. And may be sealed.
  • the via 103 may be formed in the insulating sheet 104 before including the carbon wiring 102. In this case, the carbon wiring 102 is arranged along the via 103.
  • the wiring sheet 120 according to one embodiment of the present invention and the structure operation support system 10 realized by using a plurality of wiring sheets 120 have been described, but the present invention is not limited to the above-described embodiment.
  • the wiring sheet 120 used as a part of the sheet-like system 100 and the sheet-like system 100 connected to the electric wire 500 and constituting the structure operation support system 10 are also individually used.
  • modifications of the above embodiment will be described below.
  • the wiring sheet 120 is composed of three carbon wirings 102, each of which is a power supply line, a signal line, and a GND line, and a long insulation covering each one of them.
  • the invention is not limited to the sheet 104.
  • it may be a shape that can be developed vertically and horizontally on the wall surface, such as wallpaper.
  • Insulating sheet 104 may include a plurality of various carbon wirings 102 such as power supply lines and signal lines. If they are insulated from each other, the various carbon wirings 102 may cross three-dimensionally. Good.
  • Each of the carbon wirings 102 described so far provides a linear one-dimensional electrical path, but may provide a two-dimensional electrical path.
  • 6A and 6B are schematic views showing examples of the shape of the carbon wiring 102 which is a power supply line in the first modification.
  • FIG. 6C is a schematic partial cross-sectional view of a wiring sheet 120 including such a carbon wiring 102. 6A and 6B are used for distinguishing between the two carbon wirings 102 positioned in the front-rear or top-bottom direction while overlapping each other except for a part.
  • the carbon wiring 102 that is the power supply line may form a grid as shown in FIG. 6A, for example.
  • One of the two carbon wirings 102 in FIG. 6A is a power supply line, and the other is a GND line.
  • these carbon wirings 102 are in a positional relationship in which the other can be seen from the holes of one grid and separated from the insulating sheet 104 as shown in FIG. 6C. By having such a positional relationship, both carbon wirings 102 can be accessed in a wide range on the surface of the wiring sheet 120 exposed when being attached to the wall surface.
  • the load 140 includes a needle-like terminal of a conductor as shown in FIG. 6C, for example, and may be pierced at an appropriate position on this surface and connected to both the carbon wirings 102.
  • three or more needle-shaped terminals for connecting to each carbon wiring 102 are arranged close to each other as shown in FIG. 6C so that pressure is applied via the carbon wiring 102 and good connection with the carbon wiring 102 is achieved. Contact can be obtained.
  • Such a two-dimensional shape electric path using the carbon wiring 102 has a lower resistance than a one-dimensional shape path using one linear carbon wiring 102. Therefore, it is possible to carry power more efficiently by using it as a power line.
  • a power extraction location can be selected with a high degree of freedom.
  • Such a configuration of the wiring sheet 120 can be applied to wallpaper or the like, for example. If the wall surface of the living room is covered with this wallpaper and the carbon wiring 102 is connected to the power source, electric power can be taken out at various places on the wall surface.
  • such wallpaper can provide a wide range of places where loads including electric circuits can be attached without carrying out construction such as drilling several places in the wall material. It is easy to introduce IoT technology for connecting to a network.
  • such a configuration of the wiring sheet 120 can be applied to an object that is used in a smaller form than a wallpaper and spreads in a planar shape, such as a table.
  • the wiring sheet 120 has a lower resistance and a higher degree of freedom in the load mounting position. can get.
  • each load 140 may include an energy harvesting element such as a solar battery.
  • the wiring sheet 120 can be used not only for installation of sensors and the like as exemplified in the embodiment, but also for various uses for the purpose of power supply or signal transmission.
  • the wiring sheet 120 is affixed to a part of or the entire wall of the room as wallpaper in order to install a line for power supply or signal transmission.
  • the carbon wiring 102 that is a power supply line may be connected to a commercial power supply
  • the carbon wiring 102 that is a signal line may be connected to a telephone line or a broadcast receiving antenna.
  • the connection terminal with the apparatus which acquires electric power or a signal from each carbon wiring 102, and may be used may be attached to the via 103.
  • the material of the insulating sheet 104 that is a flexible electrical insulator is, for example, a resin such as polyvinyl chloride resin or polyolefin, cloth, paper, or glass fiber. Etc. may be used. As a result, it is possible to meet the demand for appearance at the installation location.
  • the via 103 is not provided in the insulating sheet 104 in advance, and a hole may be opened each time only in a place where electricity or a signal needs to be taken out by the insulating sheet 104, for example.
  • one end may be a needle-like conductor, and a hole may be formed in the insulating sheet 104 to receive input of power from the carbon wiring 102 or to be electrically connected to an electric device that is a load 140 that exchanges signals.
  • an electrical device that is mounted on a wall is highly effective in improving the degree of freedom in arrangement and simplifying wiring from a power source or the like.
  • only a plurality of holes that reach the carbon wiring 102 may be provided, and plugs that are detachable to close the holes may be provided.
  • the plug of the hole in the place where it is necessary to take out electricity and signals may be removed, and the exposed carbon wiring 102 and the electric device may be connected.
  • Such a wiring sheet 120 provides wiring for power supply or signal transmission that can be used for a long period of time while responding to various appearance requirements at each installation location.
  • an improvement in the degree of freedom of arrangement of the electric product and simplification of wiring between the electric device and the power source are realized.
  • FIG. 7 is a schematic partial cross-sectional view showing a configuration example of a wiring sheet 120 that electrically connects the carbon wiring 102 in the insulating sheet 104 and an external conductor using a contact made of anisotropic conductive rubber. It is. Note that the entire surface of the insulating sheet 104 does not need to have such a configuration, and may be configured in such a manner only at a place where the load 140 is grounded.
  • the insulating sheet 104 includes a contact 106 that connects the carbon wiring 102 and an external wiring.
  • the contact 106 is plate-shaped or cylindrical, one surface (or end surface) is exposed on the surface of the insulating sheet 104, and the other surface (or end surface) is electrically connected to the carbon wiring 102.
  • the material of the contact 106 is anisotropic conductive rubber as described above.
  • the anisotropic conductive rubber contains conductive pins or particles at a predetermined density in the rubber and is energized only when pressure is applied in a predetermined direction.
  • the contact 106 in this modification is energized only when it receives pressure in the thickness direction of the insulating sheet 104.
  • the contact 106 and the via 103 may be used in this way, or only one of them may be used.
  • the insulating sheet 104 further includes an insulating sheet first layer 104A and an insulating sheet second layer 104B.
  • the thickness of the insulating sheet first layer 104A is substantially equal to the combined thickness of the carbon wiring 102 and the carbon via.
  • the insulating sheet first layer 104A may be thicker and may cover the lower surface of the carbon wiring 102 in FIG.
  • the insulating sheet second layer 104B that overlaps the insulating sheet first layer 104A is preferably slightly thinner than the contact 106. This is because a part of the contact 106 protrudes from the insulating sheet second layer 104 ⁇ / b> B so that the pressure in the thickness direction of the insulating sheet 104 necessary for energization can be easily applied to the contact 106.
  • the insulating sheet first layer 104A and the insulating sheet second layer 104B are both made of an organic polymer material that is an insulator, for example. However, the insulating sheet second layer 104B is somewhat harder than the insulating sheet first layer 104A. This is to support the contact 106 that is receiving pressure so that it is difficult to shift.
  • the contact 106 is easily contacted with this terminal in a wider area due to the elasticity of the anisotropic conductive rubber, the terminal and the wiring sheet 120 can be more reliably electrically connected. Further, by using the anisotropic conductive rubber contact 106, when the load is not connected, the inside carbon wiring 102 can be insulated from the outside in the same manner as the portion covered with the insulating sheet. It is done.
  • a pressure different from that described above is applied to the contact 106 by a conductor outside the insulating sheet 104 to electrically connect the conductor and the carbon wiring 102 in the insulating sheet 104. Connected to.
  • the insulating sheet 104 shown in FIG. 7 further includes a wiring substrate 104C and a support member 104D that form layers with the insulating sheet first layer 104A and the insulating sheet second layer 104B interposed therebetween.
  • Both the wiring board 104C and the support material 104D are insulators that are harder than the first insulating sheet layer 104A.
  • the wiring board 104C has a through hole, and a part of the contact 106 protruding from the insulating sheet second layer 104B is further exposed through the through hole. This exposed portion of the contact 106 contacts the wiring 160 outside the insulating sheet 104 running on the wiring board 104C.
  • the wiring 160 is actually fixed and integrated with the wiring substrate 104C, but here it is assumed to be outside the insulating sheet 104 for convenience of explanation.
  • Such wiring 160 may be provided, for example, to absorb and connect the difference between the passing widths of the plurality of terminals of the load 140 and the passing widths of the plurality of carbon wirings 102.
  • the wiring 160 may be replaceable together with the wiring board 104C in accordance with the width of the terminal of the load 140 attached to the wiring sheet 120.
  • the support member 104D supports the carbon wiring 102 directly or over the insulating sheet first layer 104A from the side opposite to the wiring substrate 104C when viewed from the carbon wiring 102 in the insulating sheet 104.
  • the wiring 160 When an external conductor, in this example, the wiring 160 is attached, it is caulked with a force in the thickness direction of the insulating sheet 104 using a pressurizing mechanism 180 penetrating from the wiring substrate 104C to the support member 104D as shown in FIG.
  • the pressurizing mechanism 180 shown in FIG. 7 is a bolt and a nut, but the pressurizing mechanism 180 may be anything that can be used for caulking the insulating sheet 104 with a force in the thickness direction. For example, grommet, caulking, rivet It can be replaced with a stapler or the like.
  • the wiring sheet 120 in the embodiment and a part of the modification includes a plurality of carbon wirings 102, each of which is a power supply line, a signal line, and a GND line. A portion of the carbon wiring 102 may not be provided. That is, the wiring sheet 120 may not be provided with a power supply line, and may be used to provide only a signal line at the installation location. Conversely, the wiring sheet 120 does not include a signal line, and may be used to provide only the power supply line to the installation location.
  • one wiring sheet 120 may include a plurality of signal lines, and the use of each signal line may be divided into a signal line that carries a clock signal and a signal that carries a data signal.
  • the clock signal is transmitted from, for example, a gateway or a parent device described later.
  • the sheet-like system 100 further includes a carbon wiring 102 used as a Kelvin ground for taking a ground potential without substantially flowing a current. You may prepare.
  • this Kelvin ground line is also referred to as a second GND line in distinction from the first GND line through which a current flows.
  • the carbon wiring 102 is made of a common material such as copper.
  • FIG. 8 is a block diagram showing a connection example of the second GND line in the sheet-like system 100 having such a configuration.
  • the sheet-like system 100 includes five carbon wires 102.
  • One of these carbon wirings 102 is a second GND line.
  • the second GND line is not connected to the electric wire 500 for supplying electric power but is connected to the ground line 550 that is not connected to any power source, and is grounded via the ground line 550.
  • the ground wire 550 may be connected to a reinforcing bar included in a wall material of a structure in which the sheet-like system 100 is installed in some places.
  • the second GND line is connected to the sensor 146. Thereby, in the load 140, the difference between the potential sensed by the sensor 146 and the potential of the second GND line can be taken and measured as the surface potential of the measurement object.
  • the load 140 of the sheet-like system 100 in the above embodiment includes a sensor. However, depending on the application of the sheet-like system 100, other electrical loads are included in addition to or instead of the sensor. Also good.
  • the load 140 includes a light source such as a light emitting diode, and may be turned on according to the detection result of the sensor or to obtain light necessary for detection by the sensor.
  • the sheet-like system 100 provided with the load 140 containing a light source may be used as a lighting fixture.
  • what the load 140 includes is not limited as long as it operates with electric power, and may be a driving device such as a motor or an actuator, a sounding device such as a buzzer, a heat generating device, or the like.
  • the structure operation support system 10 including such a sheet-like system 100 can be used as a system for lighting or decoration of the structure in addition to the maintenance of the structure. It can be used as a system for supporting various operations of the structure, for example, an environment for a predetermined purpose in the structure, for example, an environment for experiments, plant cultivation, or animal breeding. Also in this case, the structure operation support system 10 suppresses the cost for introduction or maintenance, and the operation rate as a facility for a predetermined purpose of the structure with high reliability and durability. Contribute to improvement.
  • the load 140 does not need to contain the electrical storage element 142 in embodiment and each modification.
  • the distance from the connecting portion of the sheet-like system 100 and the electric wire 500 to the end of the carbon wiring 102 is about 5 m. Becomes 500 ⁇ .
  • the peak current of the load 140 is 20 mA
  • a voltage drop of 10 V occurs between this connection portion and the end of the carbon wiring 102.
  • a necessary amount of charge is intermittently intermittent in some loads 140, particularly those near the end of the carbon wiring 102. Problems can occur during normal operation.
  • FIG. 9 is a block diagram showing a functional configuration of a load provided in such a sheet-like system 100.
  • the difference from the functional block diagram of the embodiment shown in FIG. 4 will be mainly described.
  • the load 140 in this modification is different from the embodiment in the configuration of the power supply unit 141.
  • the load 140 according to this modification includes two functionally different power supply circuits, a first power supply circuit 147 and a second power supply circuit 148, in the power supply unit 141.
  • the first power supply circuit 147 is a power supply circuit for obtaining electricity from the carbon wiring 102.
  • the first power supply circuit 147 includes a DC-DC converter, a charge control circuit, a current controller, and a switch.
  • the DC-DC converter adjusts the voltage difference between the inside and outside of the load 140.
  • the charge control circuit controls charging of the storage element 142 and prevents overcharging.
  • the current controller and the switch control whether the current from the carbon wiring 102 flows to the power storage element 142 or the load circuit such as a sensor, and whether the current from the power storage element 142 flows to the load circuit.
  • the second power supply circuit 148 is a power supply circuit for returning electricity to the carbon wiring 102.
  • the second power supply circuit includes a DC-DC converter, a discharge control circuit, a voltage monitor circuit, a current controller, and a switch.
  • the DC-DC converter adjusts the voltage difference between the inside and outside of the load 140.
  • the discharge control circuit controls discharge from the storage element 142 and prevents overdischarge.
  • the voltage monitor circuit monitors the voltage of the carbon wiring 102.
  • the current controller and the switch control whether or not the current from the power storage element 142 flows through the carbon wiring 102 based on whether a predetermined condition is satisfied.
  • the sheet-like system 100 may be configured such that the number of loads 140 that execute power consumption such as charging at a time can be limited.
  • FIG. 10A is a schematic diagram for explaining the configuration of such a sheet-like system 100.
  • FIG. 10B is a block diagram showing a functional configuration of the gateway 650 included in such a sheet-like system 100.
  • the sheet-like system 100 includes a gateway 650.
  • the gateway 650 an electric wire 500 through which electricity from an external power source of the sheet-like system 100 flows and the carbon wiring 102 that is a power supply line are electrically connected. Moreover, the gateway 650 is provided with the control part 651 as FIG. 10B shows.
  • the control unit 651 is realized using, for example, a microcontroller including a CPU, a memory, a timer, and an input / output unit, and is connected to the carbon wiring 102 which is a signal line through the input / output unit.
  • the gateway 650 transmits an instruction regarding power supply to each load 140. More specifically, each load 140 of the sheet-like system 100 is instructed whether or not to receive power supply from an external power supply via the power supply line. Each load 140 that receives the instruction starts or stops receiving power according to the instruction.
  • the gateway 650 may alternately supply power to the load 140 included in one sheet-like system 100 every time a certain time elapses. Alternatively, in consideration of the voltage drop described in the description of the modification example 7, power may be supplied for a longer time to the load 140 closer to the end of the carbon wiring 102. Further, the gateway 650 may receive notification of the state of charge of the power storage element 142 from each load 140, and may preferentially receive power supply from the load 140 with a small remaining amount.
  • Such an instruction is issued so that the number of loads 140 that receive power supply at a time is limited.
  • the gateway 650 limits the number of loads 140 to which power is supplied so that the voltage drop falls within a predetermined range from the power supply voltage so that the influence of charging on the loads 140 due to the voltage drop is not excessive.
  • charging is normally performed by each load 140 of the sheet-like system 100, or a normal operation
  • the stability of the operation can be enhanced in the entire sheet-like system 100.
  • the communication between the gateway 650 and each load 140 is not limited to wired communication via a signal line, and may be wireless communication.
  • the carbon wiring 102 used as the signal line acts like an antenna due to the influence of the signal to be carried and easily emits radio waves.
  • This radio wave can cause radio wave interference such as causing noise on a signal line provided in another nearby sheet-like system 100 or causing malfunction of an electronic device.
  • a harmonic component higher than the signal repetition rate as included in a square wave or the like is likely to cause this problem.
  • the wiring sheet 120 includes three or more carbon wirings 102 including the power supply line, the signal line, and the first GND line
  • the insulating sheet 104 includes the power supply line, the signal line, and the first wiring line.
  • the 1GND line extends in parallel, and the signal line may be disposed between the power supply line and the first GND line.
  • harmonic components that cause radio wave interference included in the signal in the signal line are suppressed by capacitive coupling between the signal line and the power supply line and between the signal line and the first GND line.
  • FIG. 11 is a schematic diagram for explaining an example of the arrangement of such carbon wirings 102.
  • the wiring sheet 120 includes four carbon wirings 102, one of which is a power supply line, one is a GND line, and the other two are signal lines for carrying a data signal and a clock signal, respectively.
  • Two carbon wirings 102 as signal lines extend in parallel in the wiring sheet 120 and are sandwiched between the other two carbon wirings 102.
  • Other wiring sheets 120 in FIG. 11 also have a common configuration, and the occurrence of radio wave interference between the adjacent sheet-like systems 100 is suppressed.
  • harmonics can also be obtained by a method such as smoothing the drive waveform. Ingredients can be suppressed.
  • the communication unit 143 may be wirelessly transmitted with a wireless communication function.
  • the storage element 142 is a power source for the operation of the electric circuit of the load 140
  • the communication unit 143 is realized by a communication module that performs communication with smaller power consumption, such as Bluetooth (registered trademark) Low Energy. Is preferred.
  • the load 140 that is the master unit described in 2-9 receives and collects the detection results of the remaining load 140 that is the slave unit by wireless communication, and the collected result is the electric wire.
  • the data may be output to 500 and transmitted to a remote centralized management system.
  • each load 140 is shown only when transmitting a signal, but each load 140 may receive a signal.
  • a signal for an operation test or an extraordinary operation may be received via the electric wire 500 and the carbon wiring 102 which is a signal line from a centralized management system of a sinus or the like.
  • bidirectional communication may be performed wirelessly with an information terminal device possessed by a worker in a cave, and measurement according to the operation of the worker may be performed and the result transmitted.
  • the sheet-like system 100 described above includes a plurality of loads, the number of loads included in the sheet-like system 100 may be one.
  • the insulating sheet 104 As a material of the insulating sheet 104, natural resin rubber which is a typical insulator may be used.
  • the material of the via 103 is not limited to a carbon material such as graphite, but may be a conductor that can withstand the environment of the installation place for a long time.
  • the structures where the structure operation support system 10 is installed include utility poles, steel towers, dams, bridges, roads, dikes, breakwaters Further examples include ships.
  • the material of the structure in which the sheet-like system 100 is installed is not limited to concrete, and mortar, metal, glass, resin, tile, and brick can be further exemplified. Alternatively, it may be installed on the surface of soil or rock at a site such as construction or excavation.
  • energy harvesting may be used to supply power to the load 140.
  • an environmental power generation element such as a solar cell may be added to each load 140 or the structure operation support system 10 to be used as an auxiliary power source.
  • a wind power generator may be added in a place where wind is stably received, or a piezoelectric element may be added in a place where there is a lot of vibration.
  • the carbon wiring 102 provided in the wiring sheet 120 has high environmental resistance due to the property of carbon, which is the main material, of being extremely resistant to corrosion. As a result, the carbon wiring 102 can be used as a reliable wiring for a longer period of time than metals conventionally used as a wiring material. Compared to copper, which is often used as a wiring material, it may be a metal, and since stable supply is expected first, it is advantageous in terms of cost at the time of introduction. In addition, because of its light weight, ability to withstand repeated bending, good workability, and good productivity for deployment over a large area, it can also be applied to structures with complex surface shapes and large-scale structures. To facilitate the application of.
  • the carbon wiring 102 is wrapped in an insulating sheet 104 made of a material having high environmental resistance such as polyvinyl chloride resin, it becomes easy to handle and obtains higher durability, and can be used for a long period of time. Can be used.
  • Such a wiring sheet 120 having high environmental resistance is provided with, for example, an electric circuit including a sensor, and a plurality of loads 140 are connected and connected to be connected to the carbon wiring 102 to form a sheet-like inspection system (sheet-like system 100).
  • sheet-like system 100 can be used over a long period of time even if it is attached to the surface of a structure in an environment that tends to deteriorate with conventional metal wiring.
  • a large number of sheet-like systems 100 may be installed by connecting to power lines, communication lines, and the like that circulate around the structure.
  • the structure operation support system 10 that can be inspected by almost simultaneous physical quantity measurement at multiple points, which is practically impossible by the inspection by a conventional inspector.
  • the data obtained by intermittent measurement can be used for finding abnormalities, such as measuring for a short time every day.
  • the resistivity may be high, but power may be supplied to the load 140 using the cheaper carbon wiring 102, and the load 140 may be stored in a storage element such as a capacitor.
  • the electric circuit including the sensor only at a predetermined time with the electric power from the electric storage element.
  • This data of measurement results is collected in a centralized structure management system, for example, and used as a target for monitoring and analysis.
  • the state of the entire structure can be grasped spatially or the change of the state of the entire structure can be grasped in time series.
  • this data can be used for grasping the state of the structure and early detection of abnormalities using a different approach. There is sex.
  • an insulating sheet 104 whose main material is an electrically insulating and flexible material such as a resin other than polyvinyl chloride, cloth or paper is used. By using it, for example, it can be used as a wallpaper having a required appearance and a high degree of freedom in a place where electricity and signals are taken out.
  • the carbon wiring 102 is mainly made of carbon, which is a resource that is expected to provide abundant and stable supply compared to metals such as copper conventionally used for wiring. Further, the use of the carbon wiring 102 realizes long-term durability exceeding 10 years, which is the product life often referred to in the conventional electronics field. This contributes to resource and energy savings by reducing the frequency of repairs and replacements.
  • the above-described printing method when adopted as a method of manufacturing the carbon wiring 102, it can contribute to energy saving in that the heat generated by processing and manufacturing is relatively small.
  • the structure operation support system 10 including the wiring sheet 120 an abnormality diagnosis that spatially captures a structure based on data that could not be acquired conventionally is realized, and the useful life of the structure is extended. be able to.
  • the frequency of construction of the structure decreases, it will lead to a reduction in energy consumption and CO 2 generated, including the building materials, construction equipment and logistics associated with this construction.
  • the present invention can be used as a wiring sheet, as a sheet-like system in which a plurality of loads are combined with the wiring sheet, and as a structure operation support system including a plurality of the sheet-like systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Insulated Conductors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

配線シート(120)は、各々が信号線又は電力供給線であり、炭素を主な材料とする導体で、可撓性を有する1本以上の炭素配線(102)と、炭素配線(102)の略全体を包む、電気絶縁体を主な材料として可撓性を有する絶縁シート(104)とを備える。

Description

配線シート、シート状システム、及び構造物運用支援システム
 本発明は、導電線を含むシート体である配線シート、及びこの配線シートを含むシステム等に関する。
 各地の現場で人手によって行われてきた構造物の維持管理作業の効率化、補修サイクルの長期化には、様々な工夫が従来なされてきた。
 例えばトンネル等のコンクリート構造物では、完成後に年月が経過するとコンクリートの壁面にクラックが発生することがある。このクラックに雨水や地下水等の浸入する場所では、冬期にこの水が凍結してクラックをさらに広げることがある。そしてこのようなクラックは、壁面の剥落などの原因になり得、危険である。このような危険を防ぐために、壁面のクラックの補修の際に導電線を壁面内に配設し、照明配線からこの導電線に通電して発熱させることで凍結を防止する策が提案されている(特許文献1参照)。
 従来は、上記のようなコンクリート構造物のクラック等の異常の有無は、現地で人手による打音診断等でなされていたが、このような人手による検査の作業に代替する装置等に関する技術の提案もある。例えば、定点設置された、又は走行車両に搭載されたカメラで得られた撮影画像の解析による構造物の検査のための技術が提案されている。
特公平04-029840号公報
 「IoT(Internet of Things、モノのインターネット)」と表現される社会の構築が進む今日では、上記のような構造物にセンサを直接取り付け、構造物の状態に関する情報をこのセンサから遠隔で収集する着想がある。センサからの情報を遠隔から通信によって取得することができれば、構造物の状態に関する情報を、検査員を定期的に現地に派遣するよりも高い頻度で、あるいは必要なときに随時取得できる。
 また、コンクリート構造物の耐用年数に達する部分の施設全体に占める割合が増えつつある中で、人手による検査を安全の確保に必要な頻度で実施するには大きなコストがかかることが予想される。そこで、上記のようにセンサを用いることで、画像からは得られない物理量を測定によって得て構造物の状態を診断することができる。
 しかしながら、構造物に設置するセンサを用いての情報収集の実現には、以下に挙げる問題点がある。
 まず、そのようなセンサを用いた検査の要求が高い構造物は、センサへの電力供給やセンサとの通信のための配線にとって過酷な環境である場合がある。例えばコンクリートが劣化しやすいために信頼性の高い検査が比較的頻繁に必要な環境とは、塩化物の多い環境であったり酸性度が高い環境であったりして、給電や通信に一般に使われる金属配線も劣化しやすい。したがって、長期にわたり信頼できる配線を敷設するには、冗長性の確保や継続的な保守のコストがかかる。
 また、検査が必要な構造物、中でも交通や通信等の社会基盤の施設には非常に大規模なものがある、例えば、ある通信会社の通信線用のトンネル(洞道)の総延長は600kmに及ぶと言われる。また、ある電力会社が管内に有する送電線用の洞道は、総延長2000km以上に達する。このような規模の構造物は、人が立ち入ることはできるが比較的細く、曲面が多い複雑な形状をしている。
 つまり、構造物に直接取り付けたセンサを用いれば、このような洞道の定期的な検査は、確かにより迅速かつ容易に実施できる。しかしながら、これだけ大規模で複雑な形状の構造物の監視に必要な多数のセンサを含む検査システムを構築するに当たり、過酷な環境での長期間にわたる信頼性の確保とコストの抑制との両立の困難さの問題がある。
 本発明はこれらの問題に鑑みてなされたものであり、設置される場所の形状や環境に幅広く対応可能で、且つ導入及び維持にかかるコストを抑えた配線シート、及びこの配線シートを含むシート状システム等の提供を目的とする。
 上記の目的を達成するために提供される、本発明の一態様に係る配線シートは各々が信号線又は電力供給線であり、炭素を主な材料とする導体で可撓性を有する1本以上の炭素配線と、前記1本以上の炭素配線の略全体を包む、電気絶縁体を主な材料として可撓性を有する絶縁シートとを備える。
 これにより、耐環境性の高い配線を構造物の表面に沿わせて設置することができる。
 また、上記の1本以上の炭素配線は、それぞれグラフェン、グラファイト、又はカーボンナノチューブを主な炭素材料とし、上記の絶縁シートは、樹脂、布、又は紙を主な材料としてもよい。
 これにより、配線を含むシートとしては各設置場所での多様な外観の要求に応えながら、長期にわたり使用が可能な耐環境性の高い配線を設置することができる。また、炭素配線の材料は、コスト及び必要な性能(抵抗)を考慮して選択され得る。
 なお、例えば、上記の絶縁シートは、ポリ塩化ビニル樹脂を主な材料としてもよい。
 ポリ塩化ビニル樹脂は複雑な形状に対応可能な柔軟性を持たせて作ることができる。また、洞道内部のように湿度が高く、塩分を含み得る環境での耐久性が高い。それでいて、比較的安価に調達が可能であるため、例えば洞道内に設置する配線シートの導入及びその後の維持のコストを抑えることができる。
 また、上記の材料を用いて得られる炭素配線の抵抗のより具体的な範囲として、例えば、長さ1cmあたりの抵抗値が0.01Ω以上1Ω以下である炭素配線が含まれてもよい。
 また、上記の1本以上の炭素配線は上記の電力供給線を含み、当該電力供給線はグリッドを成していてもよい。
 これにより得られる二次元的な形状の電気経路は、1本の線状の炭素配線を用いた一次元的な形状の経路よりも抵抗が低く、より効率的に電力を運ぶことができる。また、このような炭素配線を内包して二次元的に広がる配線シート上では、高い自由度で電力の取り出し場所を選ぶことができる。このような配線シートの構成は、例えば壁紙等に適用することができる。この壁紙で居室等の壁面を覆うことで、炭素配線を電源に接続すれば壁面のさまざまな場所で電力の取り出しが可能になる。また、このような壁紙は、大掛かりな工事をすることなく電気回路を含む負荷を取付できる場所を広範囲に提供することが可能であり、IoT技術の導入を容易にする。
 また、上記の絶縁シートは、その外部の導体と前記炭素配線とを電気的に接続するためのビアを備えてもよい。
 これにより、耐環境性の高い配線に接続された複数の負荷を、構造物の表面に沿って配置可能なシステムが実現される。
 また、上記の絶縁シートは、異方性導電ゴムからなる、当該絶縁シートの厚さ方向に導電可能であって、外部の導体と上記の炭素配線とを電気的に接続するためのコンタクトを備えてもよい。
 これにより、例えば絶縁シート上に設置される上記の負荷の端子又はこの端子との電気的接続のための配線と絶縁シートが包む炭素配線とを、より確実に電気的に接続することができる。また、負荷を接続していないときには、絶縁シートで覆った箇所と同様に中の炭素配線を外部から絶縁することができる。
 また、上記の1本以上の炭素配線は3本以上の炭素配線であり、上記の3本以上の炭素配線は、上記の電力供給線、上記の信号線、及び第1GND線を含んでもよい。
 この配線シートが設置された場所では、耐環境性の高い電力供給線から電力の供給を受け、耐環境性の高い信号線に信号を出力するような負荷を設置することできる。
 また、上記の絶縁シートにおいて、電力供給線、信号線、及び第1GND線は平行に延在し、信号線は、電力供給線と第1GND線との間に位置してもよい。
 長尺の信号線は、搬送する信号の影響でアンテナのように作用して電波を飛び出させることがあり、この電波は周辺にある他の信号線にノイズを発生させたり、電子機器の誤動作等を引き起こしたりする等の電波障害の原因となり得る。上記の構成では、信号線と電力供給線との間、及び信号線と第1GND線との間の容量結合によって、信号線内の信号に含まれる電波障害の原因となる高調波成分が抑えられる。
 また、本発明の一態様にかかるシート状システムは、上記の配線シートのいずれかと、その絶縁シートの外から中にある1本以上の炭素配線に電気的に接続される複数の負荷とを備え、上記の1本以上の炭素配線は上記の電力供給線を含み、上記の負荷は、この電力供給線から電力の供給を受けて蓄電する蓄電素子と、この蓄電素子から電力の供給を受けて間欠的に動作する電気回路とをそれぞれ含む。
 これにより、例えば負荷が間欠的な動作として定時動作をするシステムを、抵抗が比較的大きいながらより安価な電力供給線を用いて実現することができる。このシステムでは、負荷の定時動作以外の時間は、供給される電力を用いて蓄電素子を充電することができる。つまり、蓄電素子の充電を、大きさを抑えた電流で実施することができる。したがって、抵抗損失を抑えることができる。
 また、上記の1本以上の炭素配線は上記の信号線を含み、上記の電気回路はセンサを含み、このセンサによって測定された物理量を上記の信号線を介して出力してもよい。
 これにより、例えば洞道のような環境に長期間耐えうる電力供給線から電力の供給を受け、同環境に長期間耐えうる信号線に計測結果を示す信号を出力するようなセンサを含むシート状システムが実現される。
 また、上記の1本以上の炭素配線は2本以上の炭素配線であり、この2本以上の炭素配線は、電流を実質的に流すことなく接地電位を取るために用いられる第2GND線を含んでもよい。
 これにより、例えば、設置場所である構造物の表面電位をセンサでより正確に測定することができるシート状システムが実現される。
 また、上記の1本以上の炭素配線は電力供給線を含み、上記の複数の負荷は、蓄電素子に蓄えられた電力を電力供給線に戻すための電気回路をそれぞれ備えてもよい。
 上記のシート状システムでは、電力供給線の抵抗が比較的大きいために生じる電圧降下の影響により、一部の負荷で十分に充電できない場合が起こり得る。しかし、上記の構成では、シート状システム内で電力供給線を共用する近隣の負荷同士で、可能な場合には電力を融通しあうことができる。これにより、シート状システム全体で動作の安定性を高めることができる。
 また、上記の1本以上の炭素配線は電力供給線を含み、当該シート状システムは、外部の電源からの電気が流れる電線と上記の電力供給線とを電気的に接続するゲートウェイとを備え、当該ゲートウェイは、複数の負荷のそれぞれに、電力供給線を介する電源からの電力の供給を受けるか否かを指示してもよい。
 これにより、例えば一時に充電を実行する負荷の個数を制限することで電圧降下を抑制し、シート状システムの各負荷で充電が正常に実行される。
 また、本発明の一態様にかかる構造物運用支援システムは、構造物の表面に敷設される複数の上記のシート状システムのいずれかと、上記の複数のシート状システムがそれぞれ備える上記の1本以上の炭素配線が接続される電線とを備える。
 これにより、設置面である構造物の表面の形状に合わせて設置可能なシート状システムを、当該構造物の規模に合わせて複数備えることが可能であって、各シート状システム上の負荷の長期間にわたる安定的な運用が可能な構造物運用支援システムが実現される。
 本発明によれば、設置される場所の形状や環境に幅広く対応可能で、且つ導入及び維持にかかるコストを抑えた配線シート、及びこの配線シートを含むシート状システム等が提供される。
図1は、実施の形態に係る配線シートを用いて実現される構造物運用支援システムの設置例を示す図である。 図2は、上記の構造物運用支援システムを構造物の外側から透視した状態を示す模式図である。 図3は、上記の構造物運用支援システムにおける各構成要素間の接続形態の例を示す模式図である。 図4は、実施の形態に係るシート状システムが備える負荷の機能的な構成例を示すブロック図である。 図5は、実施の形態に係る配線シートの構成例を模式的に示す部分断面図である。 図6Aは、実施の形態の変形例2における炭素配線の形状の例を示す模式図である。 図6Bは、実施の形態の変形例2における炭素配線の形状の他の例を示す模式図である。 図6Cは、実施の形態の変形例2に係る炭素配線を含む配線シートの模式的な部分断面図である。 図7は、実施の形態の変形例4における、異方性導電ゴムからなるコンタクトを用いて絶縁シート中の炭素配線と、外部の導体とを電気的に接続する配線シートの構成例を示す模式的な部分断面図である。 図8は、実施の形態の変形例5における第2GND線の接続例を示すブロック図である。 図9は、実施の形態の変形例7に係るシート状システムが備える負荷の機能的な構成を示すブロック図である。 図10Aは、実施の形態の変形例8に係るシート状システムの構成を説明するための模式図である。 図10Bは、実施の形態の変形例8に係るシート状システムが備えるゲートウェイの機能的な構成例を示すブロック図である。 図11は、実施の形態の変形例10に係る配線シートにおける炭素配線の配置の例を説明するための模式図である。
 (実施の形態)
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、以下の説明で参照される各図は模式図であり、各構成要素の形状や大小関係を正確に示すものではない。また、各図において共通の構成部材については同じ符号で示される。
 [1.構成]
 [1-1.概要]
 図1は、本実施の形態に係る配線シートを用いて実現される構造物運用支援システムの設置例を示す図である。本図では、構造物の壁面に設置される構造物運用支援システム10の様子が示されている。図2は、図1に示される構造物運用支援システム10を構造物の外側から透視した様子を示す模式図である。
 これらの図に示される構造物は、例えば、コンクリート材の壁面及び路面を有して地下に延在する洞道である。この洞道は、その内部の路面を少なくとも人が歩いて通行できる程度の大きさを有する略円管状であり、図1中のアーチ状の壁面はこの円管の内側面である。路面はこの円管の内部の下側に設けられる、通行者が歩行する面である。
 なお、本図では説明のために洞道内の様子が簡略化して示されており、現実には、例えば通信会社の洞道であれば通信線、電力会社の洞道であれば送電線、及びこれらを支持する架台、作業員のための照明器具や通信線などが洞道内に複数存在する。そして洞道の壁面は一部がこれらの送電線等の陰になっている。そしてこのような洞道の検査は、例えば検査員が打診棒を用いて壁面を叩いたときの打音によって従来なされていた。つまり、人が行う打音による検査であっても、壁面全体で容易に実施できるわけではない。
 構造物運用支援システム10は、複数のシート状システム100と、シート状システム100が接続される電線500とを備える。
 洞道の壁面の周方向に沿うよう設置されているシート状システム100は、配線シート120及び複数の負荷140をそれぞれ備える。配線シート120の大きさは、一例として長辺方向で約10mである。また、同一の配線シート120にある負荷140同士の間隔は、一例として約1mである。また、配線シート120同士の間隔は、一例として約10mである。
 配線シート120は、炭素配線102及び絶縁シート104を備える。図1及び図2に示される例では、配線シート120はそれぞれが点線で示される3本の炭素配線102を含む。なお、配線シート120は炭素配線102の略全体を包んでおり、炭素配線102は外部との接続などのために必要な箇所を除いて基本的に配線シート120の外部には露出しない。ただし図1及び図2では、外部からは見えない炭素配線102の存在及び配置が便宜的に点線を用いて示されている。
 各炭素配線102は、それぞれ構造物運用支援システム10において信号線又は電源線として用いられる。なお、本実施の形態の説明において、電源線の語は、電力供給線、又は電力供給線とGND(GROUND)線との組のいずれも指し得る語として用いられている。また、電源線の概念に含まれる、電力供給線と組で用いられるGND線は、本願明細書等において第1GND線ともいう。
 炭素配線102は炭素を主な材料とする導体であって可撓性を有する線である。この材料のより具体的な例としては、グラフェン、グラファイト、及び単層又は多層のカーボンナノチューブが挙げられる。
 これらを主な材料として用いるのは、ひとつは炭素にはイオン化しにくい、すなわち腐食しにくい性質があるためである。したがって、これらを材料とする炭素配線102は、地下のように水分が多い場所、土壌の酸性度又はアルカリ度が高い場所、又は海岸に近い地域等の塩化物イオンの多い場所でもその構造及び電気的性質を長期間保つ配線として提供される。また、これらの材料は、電力供給や通信用の配線によく用いられる銅に比べると安定した供給が見込まれることから、導入時のコストをコントロールしやすい。その他、大きな構造物に適用するための生産及び加工が比較的容易である点、及び重量が比較的軽いので設置の作業負担が小さく、且つ、設置後も構造物の負担になりにくい点も上記の材料が用いられる理由である。
 なお、上記の各材料を用いて作られた炭素配線102の抵抗率には差がある。具体的には、グラファイトを用いて作られた炭素配線102よりも単層カーボンナノチューブを用いて作られた炭素配線102の方が抵抗率は低く、グラフェン又は多層カーボンナノチューブを用いて作られた炭素配線102の抵抗率はその中間である。一方、価格はグラファイトが最も安く、単層カーボンナノチューブが最も高価で、グラフェン及び多層カーボンナノチューブはその中間である。したがって、上記の材料のいずれを用いるかは、例えば導入時のコスト及び負荷140の消費電力等を勘案して適宜選択され得る。なお、炭素配線102の材料には炭素以外の物質が含まれてもよく、例えばホウ素をドーピングした各材料を用いることで、より抵抗率の低い炭素配線102が得られる。また、必要に応じたバインダも含まれ得る。
 また、各炭素配線102の形状及び大きさ等については、抵抗や可撓性を考慮して決定される。すなわち、断面積は、電力供給や信号送信のために抵抗が高くなりすぎない程度の大きさが必要である。その一方で、配線シート120が設置される構造物の表面に沿う形への変形が可能な程度の細さ又は薄さが必要である。これらを満たすうえで、各炭素配線102の形状の例として紐状又はリボン状が挙げられる。なお、例えば単層カーボンナノチューブを材料とする炭素配線102で、長さ1cmあたりの抵抗値を0.01Ω程度とすることができる。また、グラファイトを材料とする炭素配線102で1Ω程度とすることができる。このような抵抗の炭素配線102を信号線又は電源線として用いることで本実施の形態における構造物運用支援システム10は実用的に動作させることができる。
 絶縁シート104は、上述のとおり炭素配線102を包んで物理的な衝撃などからある程度保護し、扱いを容易にする。
 また、絶縁シート104は電気絶縁体を主な材料とする。この絶縁性により、電源線や信号線としての役割を果たす炭素配線102を、外部からの電気的影響から保護する。また、内包する各炭素配線102同士を不必要に接触させないような位置関係で固定することで、相互の接触による影響を防ぐ。複数の炭素配線102の絶縁シート104内での配置等については後述する。
 また、絶縁シート104は可撓性を有する。この性質により、絶縁シート104は、図1及び図2に示されるような曲面、又は屈曲部を有するような構造物の表面の形状に追従するように取り付けられる。
 このような性質を有する絶縁シート104の材料の例としては、樹脂等の有機高分子体が挙げられる。
 なお、樹脂の中でも例えばポリ塩化ビニル樹脂は水を通さず、耐酸性及び耐アルカリ性にも優れる。また、製造時に添加する可塑剤の量を調整して可撓性を持たせることもできる。このような性質を有するポリ塩化ビニル樹脂は、柔軟なシートに成形されて、洞道の壁面の継ぎ目を覆って地下水の浸入を防ぐシートとして従来用いられている。また、このようなポリ塩化ビニル樹脂のシートは、約60℃を超えるような熱にも紫外線にも晒されないような場所であれば70年程度の耐久性があるとされる。このような、ポリ塩化ビニル樹脂を主な材料とする絶縁シート104であれば、日光は入らず、耐熱服を着用していないで作業員が作業できる温度で安定した洞道において、内包する炭素配線102を周辺環境にある水分、塩化物イオン、酸性又はアルカリ性の物質から数十年の長期間にわたり保護することができる。また、このような絶縁シート104を用いた配線シート120であれば頻繁な交換の必要がないため、構造物運用支援システム10の維持コストを抑えることができる。
 さらに、ポリ塩化ビニル樹脂は樹脂類の中でも比較的安価である。また、上述のような浸水防止用のポリ塩化ビニル樹脂製シートの洞道の壁面への設置及び交換は、従来行われており、元々今後も予定されている作業である。したがって、浸水防止用のシートを今後は配線シート120で置き替えていくことで、洞道のような大規模な構造物への構造物運用支援システム10の導入のコストを抑えることができる。
 なお、1つの絶縁シート104を構成する材料は1種類に限定されない。例えば絶縁シート104は互いに材料の異なる複数の層で構成されてもよい。また、1つの絶縁シート104の構造は、全体が一様であってもよいし、場所による差異があってもよい。場所による差異とは、例えば、負荷140の取付位置では補強又は負荷140の固定のために多層構造であり、それ以外では単層構造であってもよい。
 複数の負荷140は、このような配線シート120の表面に、炭素配線102に沿って所定の間隔で配置される。図1及び図2に示される例では、10個の負荷140が、各配線シート120の洞道の壁面に接する側の表面に約1mおきに配置されている。
 本実施の形態における各負荷140は、センサを含む電気回路を含み、この電気回路は、例えば絶縁シート104が備えるビアを介して炭素配線102と接続される。ビアは、炭素配線102と、絶縁シート104の外部の導体、ここでは例えば負荷140が有する電源端子又は信号端子とを電気的に接続するための構成の例である。この負荷140の詳細については例を用いて後述する。
 電線500には、複数のシート状システム100がそれぞれ備える炭素配線102が接続されている。
 本実施の形態における電線500は、洞道内での作業時に用いられる照明灯600に電力を供給するための電源線を含む。各シート状システム100が備える炭素配線102のうちの電源線は、電線500が含むこの電源線に接続される。これにより、各シート状システム100が備える負荷140に、電源線である炭素配線102を介して電力が供給される。
 また、本実施の形態における電線500は、洞道内に居る作業員の連絡用に設置されている通信線をさらに含む。各シート状システム100が備える炭素配線102のうちの信号線は、電線500が含むこの通信線に接続される。これにより、各シート状システム100が備える負荷140のセンサから出力される信号は、信号線である炭素配線102を介して出力され、電線500が含む通信線によって搬送される。この信号は、例えば電子計算機を含むこの洞道の集中管理システムに送られて、この電子計算機によって、洞道の状態を把握するための、蓄積、解析、又は監視等の対象のデータとして扱われる。図3は、本実施の形態における構造物運用支援システム10における、ここまでに説明した接続の形態の例を示す模式図である。
 図3に示されるように、各シート状システム100は、電線500に接続される複数の炭素配線102を有する。
 電線500から供給される電力は、電源線である炭素配線102を介して各負荷140に届けられる。
 また、信号線である炭素配線102は、各シート状システム100において負荷140が共有するいわばバスであり、各負荷140はこのバスに接続されるノードである。各負荷140のセンサから出力された信号は、炭素配線102を介して電線500に出力されて搬送される。電線500によって搬送された信号は、例えばインターネット、イントラネット、又は専用回線などの通信ネットワークを経由して、この洞道の集中管理システムが備えるサーバ800又は監視用端末装置700に届けられる。そしてこの信号が示すデータは、サーバ800に蓄積されたり、監視用端末装置700のモニタ上に表示されたりする。
 なお、上述の例のように、構造物運用支援システム10が設置される構造物に従来備えられている照明灯等に電力を供給する電源線又は連絡用の通信線がある場合は、それぞれを電線500が含む電源線又は通信線として利用してもよい。これにより、構造物運用支援システム10の導入のコストを抑えることができる。
 上記のような構成により、構造物運用支援システム10は、構造物の表面に設置される多数のセンサを備え、各センサから構造物の状態を示す情報の集約が可能である。また、これらのセンサが同時刻に計測したデータを用いることで、従来の打音検査では不可能な、構造物を多点で捉えた空間的な状態の把握が可能である。
 次に、これらのセンサをそれぞれ含む負荷140、及び複数の負荷140を接続し、且つ負荷140の構成と動作、及び電線500とを長期間にわたって接続する配線シート120の構成について説明する。
 [1-2.負荷の構成及び動作]
 図4は、負荷140の機能的な構成例を示すブロック図である。
 負荷140は、電源部141、通信部143、制御部144、信号処理部145、及びセンサ146を備える。
 電源部141は電源回路であり、電力供給線である炭素配線102から供給される入力電力から、負荷140の各構成要素の動作に用いられる電力を生成する。また、本実施の形態における電源部141は、これらの構成要素に供給するための電力を蓄えるための蓄電素子142を備える。蓄電素子142は、キャパシタ又は蓄電池を用いて実現される。なお、蓄電素子142は耐久性の高いものが好適に用いられる。蓄電素子142の例としては、高耐久性のセラミックコンデンサ、及びカーボンナノチューブキャパシタが挙げられる。
 本実施の形態におけるセンサ146は、構造物を構成するコンクリート等の建材の変質や変形等各種の変化を把握するために利用可能な物理量を計測するためのものであれば限定されない。例えば洞道の壁の中にある鉄筋の腐食を診断するために、壁面に存在する鉄イオンの量を計測するセンサでもよいし、壁面の変形の有無及び程度を調べるために変位を計測するセンサでもよい。その他、温度、湿度、振動、電流、磁気、電磁波、電気抵抗、特定の物質等、各種のセンサが単独で又は組み合わせて用いられ得る。
 センサ146が測定した物理量は、信号処理部145によって必要に応じた処理がなされて、信号として、通信部143から信号線である炭素配線102を介して電線500に出力される。
 信号処理部145は、例えばノイズを除去するためのフィルタ回路、信号を増幅するための増幅回路、及びアナログ信号をデジタル信号に変換するA/D(Analog-to-Digital)変換回路を含む。
 通信部143は、信号処理部145による処理によって得られたデジタル信号を信号線に出力する出力ポートを含む通信モジュールである。
 なお、本実施の形態におけるセンサ146による計測は、その計測対象及び計測結果の使用目的によっては常時実行される必要はなく、例えば一日の決まった時刻等、所定の間隔で間欠的に計測が実行されてもよい。例えば構造物の各部の変位や壁の中にある鉄筋の腐食は、通常であれば一日の間で急激には進行しにくい。そして日次の計測によって、日々の計測結果の蓄積されたデータから変化の傾向を捉えることができる。つまり、センサ146の計測のための動作は一日1回~数回、数秒~数分程度のごく短時間可能であればよい。
 そしてこのような間欠的な計測であれば、例えば各負荷140の動作に必要な電力は、計測の実行機会の間に上記の蓄電素子142に蓄電すればよく、例えば小さな電流で常時給電してもよい。
 このような構成の場合、蓄電は小さな電流を供給して長い時間をかけて行うことができるため、炭素配線102の抵抗値が比較的高くてもよい。したがって、より安価な炭素配線102を用いることができ、構造物運用支援システム10の導入コストを抑えることができる。また、小さな電流が用いられるため、電流の大きさの2乗に比例する電力の抵抗損失が小さく、大きな電流を用いて短時間で蓄電するよりも、構造物運用支援システム10としてのエネルギー効率はよい。
 制御部144は、例えばCPU(Central Processing Unit:中央演算処理装置)を用いて実現され、通信部143、信号処理部145、及びセンサ146の動作を制御する。このCPUはタイマーを備え、例えば上記の計測のような間欠的な動作もこのタイマーによって計時される時間に基づいて実行される。なお、このCPUも低消費電力のものが好適に用いられる。
 なお、通信部143、制御部144、及び信号処理部145は、まとめて1つのワンチップマイコンとしても実現されてもよい。
 また、負荷140では、回路の耐久性を高めるために、構造物のセンシングのために露出が必要なセンサの部分を除いてガラスエポキシ等で封止されてもよい。
 このように、負荷140においては、センサ146による計測の対象及び計測結果の使用目的に応じて、電源部141以外の電気回路の動作(制御部144による制御下での通信部143、信号処理部145、及びセンサ146の各動作)は、蓄電素子142から電力の供給を受けて間欠的に実行されてもよい。これにより、センサによる計測等の必要な機能を発揮可能なシート状システム100をより安価に実現することができ、さらには構造物運用支援システム10の導入コスト及び運転コストを抑えることができる。
 [1-3.配線シートの構成]
 図5は、配線シート120の構成例を模式的に示す部分断面図である。より具体的には、配線シート120上で1個の負荷140が取り付けられる箇所の構成が示されている。配線シート120には、このような構成の箇所が複数ある。
 図5に示されるように、配線シート120では、複数のリボン状の炭素配線102が絶縁シート104に内包されている。これにより、各炭素配線102は外部からの衝撃の影響を受けにくい。また、この絶縁シート104が上述のようにポリ塩化ビニル樹脂を主な材料とする場合、各炭素配線102はさらに水分、酸、アルカリ、電気等の影響を受けにくい。
 また、これらの炭素配線102は互いに接触しないように配線シート120内で固定されているため、各炭素配線102は電力供給線、信号線、及びGND線としての機能を安定して発揮し得る。なお、ここまでに例示された配線シート120は、GND線としての炭素配線102を1本のみ含んでいるが、シグナルグランドのGND線である炭素配線102及びフレームグランドのGND線である炭素配線102のように複数本を含んでもよい。
 図5に示される構成例では、絶縁シート104は、表面から各炭素配線102に到達するビア103を複数備える。また、この例では、各ビア103は、炭素配線102と同じくグラフェン、グラファイト、及び単層又は多層のカーボンナノチューブ等を材料とし、絶縁シート104の表面で金属端子105と接合している。負荷140は絶縁シート104の表面でこの金属端子105と接続され、ビア103を介して各炭素配線102と電気的に接続される。
 このような配線シート120は、例えば以下の方法で製造することができる。
 まず、グラファイト等の炭素材料を高分子体材料のバインダと混ぜた溶液をプリンタのインクで所定の面を塗るように吐出することで所望の厚さのシート状に形成する。この炭素材料を含むシートが固まったら、所望の形状(例えばリボン状)にカットして複数の炭素配線102を得る。
 次に、このようにして得られた複数の炭素配線102を重ならないように並べた状態でポリ塩化ビニル樹脂のシートで挟んでラミネート加工をすることで、炭素配線102を内包する絶縁シート104を形成する。
 次に、形成された絶縁シート104上で、中に炭素配線102がある位置に、この炭素配線102に到達する孔を複数開ける。そして、上記の溶液を、各孔を塞ぐように、及び各孔の周辺に塗布してビア103を形成する。最後に塞がれた孔の上方にある炭素材料に金属端子105を接合して、図5に示されるような構成の配線シート120が得られる。
 なお、上記の製造方法は一例であり、配線シート120はこの方法と一部、又は全く異なる方法を用いて製造されてもよい。例えば炭素材料のシートには、市販のグラファイト等のシート等が用いられてもよい。また、シート状の炭素材料を用いる代わりに、絶縁シート104に炭素配線102のパターンを印刷し、この印刷面が内側になるように絶縁シート104を折り曲げたり、又は他の絶縁シート104と重ねたりして封止してもよい。また、ビア103については、炭素配線102を内包する前の絶縁シート104に形成されていてもよい。この場合、このビア103に沿うように炭素配線102が配置される。
 [2.変形例]
 以上、本発明の一実施の形態に係る配線シート120、及び配線シート120を複数用いて実現される構造物運用支援システム10について説明したが、本発明は上記の実施の形態に限定されない。上記の実施の形態において、シート状システム100の一部として用いられている配線シート120、及び電線500に接続されて構造物運用支援システム10を構成するシート状システム100の個別での利用例も含めて、上記の実施の形態の変形例を以下に説明する。
 [2-1.変形例1]
 配線シート120の構成は、図1~図3に示されるような、それぞれ電力供給線、信号線、GND線である3本の炭素配線102と、これらを各1本ずつ包む長尺状の絶縁シート104からなるものに限定されない。例えば壁紙のように壁面の上下左右に展開可能な形状であってもよい。また、絶縁シート104内に電源線及び信号線等の各種の炭素配線102が複数本ずつ含まれてもよいし、相互に絶縁されていれば各種の炭素配線102が立体的に交差してもよい。
 [2-2.変形例2]
 ここまでに説明した各炭素配線102は、いずれも線状の一次元的な形状の電気経路を提供するものであるが、二次元的な形状の電気経路を提供する物であってもよい。図6Aおよび図6Bは、それぞれ変形例1における電源線である炭素配線102の形状の一例を示す模式図である。図6Cは、このような炭素配線102を含む配線シート120の模式的な部分断面図である。なお、図6Aおよび図6Bにおける実線及び破線は、一部を除いて互いに重なりながら、前後又は上下に位置する2つの炭素配線102を区別して示すために用いられている。
 電源線である炭素配線102は、例えば図6Aに示されるように、グリッドを成してもよい。図6A中の2つの炭素配線102は、一方が電力供給線であり、他方がGND線である。配線シート120内では、これらの炭素配線102は、一方のグリッドの孔から他方が見え、かつ図6Cに示されるように絶縁シート104を隔てて離れる位置関係にある。このような位置関係にあることで、壁面に貼り付けられたときに露出する配線シート120の面で、広い範囲で両方の炭素配線102にアクセスすることができる。
 負荷140は、例えば図6Cに示されるように導体の針状の端子を備え、この面の適切な位置で突き刺して両方の炭素配線102に接続させてもよい。また、各炭素配線102に接続するための針状の端子は、3本以上を図6Cのように互いの近くに配置することで炭素配線102を介して圧力をかけあい炭素配線102との良好な接触を得ることができる。
 このような炭素配線102を用いた二次元的な形状の電気経路は、1本の線状の炭素配線102を用いた一次元的な形状の経路よりも抵抗が低い。したがって、電源線として用いることでより効率的に電力を運ぶことができる。また、このような炭素配線102を内包して二次元的に広がる配線シート120上では、高い自由度で電力の取り出し場所を選ぶことができる。このような配線シート120の構成は、例えば壁紙等に適用することができる。この壁紙で居室等の壁面を覆い、炭素配線102を電源に接続すれば、壁面のさまざまな場所で電力の取り出しが可能になる。また、このような壁紙は、壁材を何箇所も穿孔するような工事をすることなく電気回路を含む負荷を取付できる場所を広範囲に提供することが可能であり、多くの場所に多数の物をネットワークに接続するIoT技術の導入を容易にする。その他、このような配線シート120の構成は、壁紙より小規模で面状に広げて用いられる物、例えばテーブル敷きに適用することができる。
 また、2つの炭素配線102のうち、図6Bに示されるように電力供給線として用いる方を面状にすることで、抵抗はより低く、負荷の取付位置の自由度はより高い配線シート120が得られる。
 なお、ここまで炭素配線102を電源線としてのみ用いる場合を例に本変形例を説明した。このような配線シート120に取り付けられた負荷140からの通信は、例えば無線で行われてもよい。また、本変形例における炭素配線102は、信号線として用いることも可能である。信号線と電源線との併存が困難な事情がある場合には、各負荷140が太陽電池等の環境発電素子を備える構成でもよい。
 [2-3.変形例3]
 配線シート120は、実施の形態で例示したようなセンサ等の設置のためのみならず、電力供給又は信号伝送を目的として多様な用途に用いることができる。
 例えば住宅やビル等の建物、又は地下街等の施設等内において、配線シート120を電力供給又は信号伝送のための線を設置するために部屋の壁の一部又は全体に壁紙のように貼り付けられてもよい。この場合、例えば電源線である炭素配線102は商用電源に接続され、信号線である炭素配線102は電話回線又は放送受信用アンテナに接続されてもよい。そしてビア103には、各炭素配線102から電力又は信号を取得して利用する機器との接続端子が取り付けられてもよい。このような配線シート120が設置されている場所では電気、又は通信回線若しくは放送波受信用のアンテナからの信号を取り出す場所の自由度が高い。つまり、電気機器の配置の自由度が高く、また、延長用のケーブル類の必要性を抑えることができる。
 なお、配線シート120がこのように使われる場合、可撓性がある電気絶縁体である絶縁シート104の材料として、例えば、ポリ塩化ビニル樹脂、ポリオレフィン等の樹脂類、布、紙、又はガラス繊維等が用いられてもよい。これにより、設置場所での外観の要求にも応えることができる。
 [2-4.変形例4]
 ビア103は、絶縁シート104にあらかじめ設けられるのではなく、例えば絶縁シート104で電気や信号を取り出す必要がある場所にのみ、その都度孔が開けられてもよい。例えば一端が針状の導電体で絶縁シート104に孔を開けて炭素配線102電力の入力を受ける、又は信号のやりとりをする負荷140である電気機器とが電気的に接続されてもよい。特に、壁掛けして用いられる電気機器では、配置の自由度の向上と、電源等からの配線の簡略化の効果が高い。または、炭素配線102に到達するような孔のみ複数が設けられて、各孔を塞ぐ脱着可能な栓がされていてもよい。この場合、設置後に、電気や信号を取り出す必要がある場所にある孔の栓を外し、露出する炭素配線102と電気機器とが接続されてもよい。
 このような配線シート120により、各設置場所での多様な外観の要求に応えながら、長期にわたって使用が可能な電力供給又は信号伝送用の配線が提供される。また、電気製品の配置の自由度の向上、及び電気機器と電源等の間の配線の簡略化が実現される。
 また、絶縁シート104の中の炭素配線102と、外部の負荷140との電気的な接続は、絶縁シート104の素材又は配線シート120の設置場所等によっては、上記のビア103のように硬質な物を介しては必要な確実性を得られない場合がある。この接続の確実性を向上させるために、異方性導電ゴムからなるコンタクトを用いて絶縁シート104の外部の導体と炭素配線とを電気的に接続してもよい。図7は、異方性導電ゴムからなるコンタクトを用いて絶縁シート104の中の炭素配線102と、外部の導体とを電気的に接続する配線シート120の構成例を示す模式的な部分断面図である。なお、絶縁シート104は、全面がこのような構成である必要はなく、負荷140の接地される場所のみでこのように構成されればよい。
 本変形例においては、絶縁シート104は、炭素配線102と外部の配線とを接続する、コンタクト106を備える。コンタクト106は、板状又は筒状で、一方の面(又は端面)は絶縁シート104の表面に露出し、他方の面(又は端面)は炭素配線102と電気的に接続されている。
 コンタクト106の材料は、上述のとおり異方性導電ゴムである。異方性導電ゴムはゴムの中に所定の密度で導体のピン又は粒子を含み、所定の方向に圧力を受けたときのみ通電する。本変形例におけるコンタクト106は、絶縁シート104の厚さ方向の圧力を受けたときのみ通電する。なお、図7の例では炭素配線102とコンタクト106との間に炭素性のビア103がある。コンタクト106とビア103とはこのように併用されてもよいし、一方のみが用いられてもよい。
 絶縁シート104はさらに、絶縁シート第1層104Aと絶縁シート第2層104Bとを含む。図7の例では、絶縁シート第1層104Aの厚さは、炭素配線102と炭素ビアとを合わせた厚さと略等しい。ただし、絶縁シート第1層104Aはさらに厚く、炭素配線102の図7における下側の面を覆っていてもよい。
 一方、絶縁シート第1層104Aに重なる絶縁シート第2層104Bは、コンタクト106よりもやや薄いのが好適である。これは、コンタクト106の一部を絶縁シート第2層104Bから突出させることで、通電させるために必要な絶縁シート104の厚さ方向の圧力をコンタクト106にかけやすくするためである。
 絶縁シート第1層104A及び絶縁シート第2層104Bは、いずれも例えば絶縁体である有機高分子体の材料からなる。ただし、絶縁シート第2層104Bは、絶縁シート第1層104Aよりもいくらか硬質である。これは、圧力を受けているコンタクト106がずれにくいように支えるためである。
 例えば底面に端子を備え、壁面などにネジ止めするための孔を備える負荷140を想定する。壁面に貼付された配線シート120において上述の構成を有する部分で、この端子をコンタクト106に接触させた状態で負荷140を配線シート120越しに壁面に押し付けるようにネジ止めする。これにより、コンタクト106に圧力が加わって通電し、この負荷140の端子と配線シート120の中の炭素配線102とが、コンタクト106を介して電気的に接続される。
 コンタクト106は、異方性導電ゴムの弾性によって、この端子とより広い面積で接触しやすいため、より確実に端子と配線シート120とを電気的に接続することができる。さらに、異方性導電ゴム製のコンタクト106を用いることで、負荷を接続していないときには、絶縁シートで覆った箇所と同様に中の炭素配線102を外部から絶縁することができるという効果も得られる。
 なお、図7の例では、上記とはさらに異なる構成で絶縁シート104の外部の導体でコンタクト106に通電させるための圧力を加えてこの導体と絶縁シート104の中の炭素配線102とを電気的に接続している。
 図7に示される絶縁シート104はさらに、絶縁シート第1層104Aと絶縁シート第2層104Bとを挟んで層をなす配線基板104Cと支持材104Dとを備える。配線基板104C及び支持材104Dは、ともに絶縁シート第1層104Aよりは硬質な絶縁体である。
 配線基板104Cには貫通孔があり、絶縁シート第2層104Bから突出するコンタクト106の一部分は、さらにこの貫通孔を貫通して露出している。コンタクト106のこの露出した部分は、配線基板104C上を走る絶縁シート104の外部の配線160に接触する。なお、配線160は実際には配線基板104Cに固定されて一体であるが、ここでは説明の便宜上、絶縁シート104の外部にあるものとする。このような配線160は、例えば負荷140の複数の端子の差し渡し幅と、複数の炭素配線102の差し渡し幅との違いを吸収して接続するために設けられることがある。配線160は、配線シート120に取り付けられる負荷140の端子の差し渡し幅に合わせて配線基板104Cごと交換可能であってもよい。
 支持材104Dは、絶縁シート104の中の炭素配線102から見て配線基板104Cとは反対側から炭素配線102を直接又は絶縁シート第1層104A越しに支持する。
 外部の導体、この例では配線160を取り付けるときには、図7のように配線基板104Cから支持材104Dまでを貫通する加圧機構180を用いて絶縁シート104の厚さ方向の力でかしめる。
 これにより、コンタクト106に通電させるための圧力が配線160から加わり、配線160と絶縁シート104の中の炭素配線102とがコンタクト106を介して電気的に接続される。図7に示される加圧機構180はボルト及びナットであるが、加圧機構180は絶縁シート104を厚さ方向の力でかしめるために用い得る物であればよく、例えばグロメット、カシメ、リベット、ステープラー等で代替可能である。
 このような構成でも、上述した本変形例の効果が得られる。
 [2-5.変形例5]
 実施の形態及びその変形例の一部における配線シート120は、それぞれが電力供給線、信号線、GND線である複数の炭素配線102を備えるが、配線シート120の使用環境や用途によっては、これらの炭素配線102の一部を備えなくてもよい。すなわち、配線シート120は電力供給線を備えず、その設置場所に信号線のみを提供するために用いられてもよい。また、逆に配線シート120は信号線を備えず、その設置場所に電力供給線のみを提供するために用いられてもよい。
 その他、1つの配線シート120が備える炭素配線102の用途及び各用途の炭素配線102の本数は実施の形態及びその各変形例に限定されない。例えば1つの配線シート120が複数の信号線を備えてもよく、各信号線の用途が、クロック信号を運ぶ信号線とデータ信号を運ぶ信号とで分けられていてもよい。クロック信号は、例えば後述のゲートウェイ又は親機から送信される。
 また、上記の炭素配線102はいずれも電線500に接続されるが、シート状システム100は、電流を実質的に流すことなく接地電位を取るための、いわばケルビングラウンドとして用いられる炭素配線102をさらに備えてもよい。本願明細書等においては、このケルビングラウンドの線を、電流が流れる上記の第1GND線と区別して、第2GND線ともいう。
 例えば、シート状システム100の設置場所である構造物の表面電位を、負荷140が備えるセンサ146で計測するにあたり、第1GND線から接地電位を取ると、炭素配線102の、銅製などの一般的な導電線と比較して大きな抵抗に起因する電圧降下の影響により、正確な表面電位が得られないという問題がある。
 この問題は、負荷140において、ケルビングラウンドで取った接地電位を、センサ146を用いた測定のリファレンス電位として使用する構成を用いることで解消することができる。図8は、このような構成を備えるシート状システム100における第2GND線の接続例を示すブロック図である。
 図8に示される例では、シート状システム100は5本の炭素配線102を備える。これらの炭素配線102のうちの1本が第2GND線である。第2GND線は、電力を供給するための電線500には接続されず、電源に一切接続されていない接地線550に接続され、接地線550を介して接地される。例えば接地線550は、シート状システム100が設置される構造物の壁材に含まれる鉄筋に所々で接続してもよい。一方で、第2GND線はセンサ146と接続される。これにより、負荷140では、センサ146が感知した電位と第2GND線の電位との差分を取って計測対象物の表面電位として計測することができる。
 [2-6.変形例6]
 上記の実施の形態におけるシート状システム100の負荷140にはセンサが含まれるが、シート状システム100の用途に応じて、センサに加えて、又はセンサに替えて他の電気的負荷が含まれてもよい。
 例えば負荷140には発光ダイオード等の光源が含まれて、センサでの検知結果に応じて、又はセンサでの検知のために必要な光を得るために点灯されてもよい。あるいは、光源を含む負荷140を備えるシート状システム100が照明器具として用いられてもよい。その他、負荷140が含むものは電力で動作するものであれば限定されず、モータ又はアクチュエータ等の駆動装置、ブザーなどの発音装置、発熱装置等であってもよい。
 そして、このようなシート状システム100を含む構造物運用支援システム10は、構造物の保守以外に、構造物の照明若しくは装飾のためのシステムとしても利用することができる。その他構造物の各種の運用の支援、例えば構造物の中に所定の目的の環境、例えば実験、植物の栽培、又は動物の飼育等のための環境を構築するシステムとして利用することができる。この場合も、構造物運用支援システム10は、導入又は維持のためのコストを抑え、また、信頼性の高さと耐久性の高さで、構造物の所定の目的のための施設としての稼働率の向上に資する。
 なお、負荷140の電気回路の動作に必要な電力が炭素配線102から随時供給できる場合、実施の形態及びその各変形例において、負荷140は蓄電素子142を含まなくてもよい。
 [2-7.変形例7]
 実施の形態においては、シート状システム100における配線シート120の大きさの一例として、長辺方向で約10mを挙げている。また、炭素配線102の抵抗の一例として、長さ1cmあたり1Ω程度を挙げている。
 このような規模のシート状システム100を図2に示されるような態様で運用する場合、シート状システム100と電線500の接続部分から炭素配線102の端部までは約5mであり、この間の抵抗は500Ωになる。ここで、例えば負荷140のピーク電流が20mAとすると、この接続部分と炭素配線102の端部との間では10Vの電圧降下が生じる。このように、電力供給線である炭素配線102の抵抗が大きいために生じる電圧降下の影響により、一部の負荷140、特に炭素配線102の端部に近いものでは、必要な量の充電が間欠的な動作の間にできないという問題が起こり得る。
 このような問題を解消するために、シート状システム100を、電力供給線を共用する近隣の負荷140同士で可能な場合には電力を融通しあうことができるよう構成してもよい。図9は、このようなシート状システム100が備える負荷の機能的な構成を示すブロック図である。以下、図4に示される実施の形態の機能ブロック図との差異を中心に説明する。
 本変形例における負荷140は、電源部141の構成が実施の形態と異なる。本変形例における負荷140は、電源部141に、第1電源回路147と第2電源回路148との2つの機能的に異なる電源回路を備える。
 第1電源回路147は、炭素配線102から電気を得るための電源回路である。第1電源回路147は、DC-DCコンバータ、充電制御回路、電流コントローラ、及びスイッチを含む。
 DC-DCコンバータは、負荷140の内外の電圧差を調整する。充電制御回路は、蓄電素子142への充電を制御し、過充電を防止する。電流コントローラ及びスイッチは、炭素配線102からの電流を、蓄電素子142に流すか、又はセンサ等の負荷回路に流すか、及び蓄電素子142からの電流を負荷回路に流すかを制御する。
 第2電源回路148は、炭素配線102に電気を戻すための電源回路である。第2電源回路は、DC-DCコンバータ、放電制御回路、電圧モニタ回路、電流コントローラ、及びスイッチを含む。
 DC-DCコンバータは、負荷140の内外の電圧差を調整する。放電制御回路は、蓄電素子142からの放電を制御し、過放電を防止する。電圧モニタ回路は炭素配線102の電圧をモニタする。電流コントローラ及びスイッチは、蓄電素子142からの電流を炭素配線102に流すか否かを所定の条件が満たされたかに基づいて制御する。
 例えば上記の電線500の接続部分から炭素配線102の端部までは約5mであるシート状システム100において、電力供給線を共用する負荷140が1mおきに配置されている場合を想定する。この場合に、ある負荷140から、10mAの電流が1m離れた隣の負荷140に融通されると、電圧降下は10mA×100Ω=1Vに抑えられる。電流の融通を受けた負荷140では、センサの動作又は蓄電素子142の充電を行うことができる。
 これにより、シート状システム100全体で動作の安定性を高めることができる。また、より全長が長く抵抗の高い炭素配線102を備えるシート状システム100、または同規模であってもより廉価であるが抵抗の高い炭素配線102を用いてのシート状システム100での各負荷140への電力供給の問題が解消し、実用的な運用が可能になる。
 [2-8.変形例8]
 変形例7では、抵抗の高い炭素配線102を用いることによる電圧降下に関する問題を挙げ、その問題を解消するための構成を説明した。本変形例もまた、起こり得る電圧降下に関する問題を解消するものである。
 変形例7で例として想定したシート状システム100を再び例に用いて説明する。このシート状システム100が、図2に示されるように10個の負荷140を含むとする。すべての負荷140で一時に1mAの電流で充電が行われると、10個×1mA×500Ω=5Vの電圧降下が生じる。この電圧降下により、変形例7と同じく充電不足又は不能の問題が起こり得る。
 このような問題を解消するために、シート状システム100を、一時に充電等の電力消費を実行する負荷140の個数が制限できるよう構成してもよい。図10Aは、このようなシート状システム100の構成を説明するための模式図である。また、図10Bは、このようなシート状システム100が備えるゲートウェイ650の機能的な構成を示すブロック図である。
 本変形例に係るシート状システム100は、ゲートウェイ650を備える。
 ゲートウェイ650では、シート状システム100の外部の電源からの電気が流れる電線500と電力供給線である炭素配線102とを電気的に接続されている。また、ゲートウェイ650は、図10Bに示されるように、制御部651を備える。制御部651は例えばCPU、メモリ、タイマー、及び入出力部を備えるマイクロコントローラを用いて実現され、入出力部を介して信号線である炭素配線102と接続する。
 この構成により、ゲートウェイ650は各負荷140に電力の供給に関する指示を送信する。より具体的には、シート状システム100の負荷140のそれぞれに、電力供給線を介する外部の電源からの電力の供給を受けるか否かを指示する。指示を受け取った各負荷140は、その指示に従って給電を受けるのを開始又は停止する。
 ゲートウェイ650は、1つのシート状システム100が備える負荷140に、例えば一定の時間が経過するごとに交代で電力の供給を受けさせてもよい。あるいは、変形例7の説明で述べた電圧降下を考慮して、炭素配線102の末端により近い負荷140により長い時間電力の供給を受けさせてもよい。また、ゲートウェイ650は各負荷140から蓄電素子142の充電状態の通知を受け、残量の少ない負荷140から優先的に電力の供給を受けさせてもよい。
 このような指示は、一時に電力の供給を受ける負荷140の個数が制限されるように出される。例えばゲートウェイ650は、電圧降下による各負荷140での充電への影響が過大にならないように、電圧降下が電源電圧から所定の範囲に収まるよう電力の供給を受ける負荷140の個数を制限する。これにより、シート状システム100の各負荷140で充電が正常に実行され、又は正常な動作が可能になる。また、シート状システム100全体で動作の安定性を高めることができる。
 なお、ゲートウェイ650と各負荷140との通信は、信号線を介する有線の通信には限定されず、無線の通信であってもよい。
 [2-9.変形例9]
 ここまでに、各シート状システム100に含まれる複数の負荷140の間の差異の有無について言及していないが、すべてが機能的に同等でなくてもよい。例えば複数の負荷140のうち1つが親機としての役割を果たして、子機である残りの負荷140の検知結果を収集して電線500へ出力してもよい。
 [2-10.変形例10]
 実施の形態においては、シート状システム100における配線シート120同士の間隔の一例として約10mを挙げている。ただし、シート状システム100の使用場所又は使用目的によって、配線シート120同士の間隔はより短くてもよい。
 しかしながら、信号線として用いられる炭素配線102は、長尺になると、搬送する信号の影響でアンテナのように作用して電波を飛び出させやすくなる。そしてこの電波は、近くにある他のシート状システム100が備える信号線にノイズを発生させたり電子機器の誤動作等を起こしたりする等の電波障害の原因となり得る。特に、方形波等に含まれるような信号の繰り返し速度より高い高調波成分は、この問題を生じさせやすい。
 この問題を解消するために、配線シート120が電力供給線、信号線、及び第1GND線を含む3本以上の炭素配線102を備える場合、絶縁シート104において、電力供給線、信号線、及び第1GND線は平行に延在し、この信号線は、電力供給線と第1GND線との間に位置するよう配置してもよい。
 これにより、信号線と電力供給線との間、及び信号線と第1GND線との間の容量結合によって、信号線内の信号に含まれる電波障害の原因となる高調波成分が抑えられる。
 図11は、このような炭素配線102の配置の例を説明するための模式図である。この例では、配線シート120は4本の炭素配線102を備え、うち1本は電力供給線、1本はGND線、残る2本はそれぞれデータ信号、クロック信号を搬送する信号線である。信号線である2本の炭素配線102は、配線シート120において平行に延在し、他の2本の炭素配線102の間に挟まれる。図11内の他の配線シート120も共通の構成であり、近くのシート状システム100間で相互に電波障害の発生が抑制される。
 なお、配線シート120が備える炭素配線102のいずれも電力供給線として用いられていない、又は炭素配線102を平行に配置することができない場合には、駆動波形をなまらせるなどの手法によっても高調波成分を抑えることができる。
 [2-11.変形例11]
 上記で例示した使用環境である洞道には、電気が通る多数のケーブル等に起因してノイズが多く存在する。このような環境に設置されるシート状システム100又は構造物運用支援システム10に含まれるセンサ146の検出結果を示す信号は、信号線である炭素配線102によって有線で伝送されるのが好ましい。
 しかし、ノイズが少ない環境、また、通信相手との距離が数m程度の限られた環境で用いられる場合、通信部143が無線通信の機能を備えて無線で伝送されてもよい。この場合において、蓄電素子142が負荷140の電気回路の動作の電源であれば、通信部143は、Bluetooth(登録商標) Low Energy等の、より小さい消費電力で通信を行う通信モジュールで実現されるのが好ましい。また、例えば各シート状システム100において、2-9に記載した親機である負荷140が、子機である残りの負荷140の検知結果を無線通信で受信して収集し、収集した結果を電線500へ出力して遠方の集中管理システムに送信してもよい。
 また、上記の実施の形態の説明では、各負荷140は信号を送信する場合のみが示されているが、各負荷140は信号を受信してもよい。例えば洞道の集中管理システム等から電線500及び信号線である炭素配線102を介して動作試験又は臨時の動作等のための信号を受信してもよい。また、例えば洞道内で作業員が所持する情報端末装置と無線による双方向の通信をして、作業員の操作に応じた計測の実行とその結果の送信をしてもよい。
 [2-12.その他の変形例]
 上記の2-1~2-11に上記の実施の形態の主な変形例を挙げたが、その他にも上記で具体的には例示していない種々の変形が可能である。
 例えば、上述したシート状システム100はいずれも複数の負荷を備えるが、シート状システム100が備える負荷の個数は1個であってもよい。
 また、絶縁シート104の材料には、典型的な絶縁体である天然樹脂のゴムが用いられてもよい。
 また、ビア103の材料はグラファイト等の炭素材料に限定されず、設置場所の環境に長期に耐え得る導電体であればよい。
 また、構造物運用支援システム10の設置場所である構造物には、上記の洞道、住居、ビル、商用施設等の建築物の他に、電柱、鉄塔、ダム、橋梁、道路、堤防、防波堤、船舶が例としてさらに挙げられる。また、シート状システム100が設置される構造物の材質はコンクリートに限定されず、モルタル、金属、ガラス、樹脂、タイル、煉瓦が例としてさらに挙げられる。または工事や発掘調査等の現場において土や岩石の表面に設置されてもよい。
 また、構造物運用支援システム10が設置される場所の環境によっては環境発電が負荷140に電力を供給するために用いられてもよい。例えば安定的に光を受ける場所であれば、各負荷140又は構造物運用支援システム10内に太陽電池等の環境発電素子を付加して補助的な電源として用いてもよい。例えば安定的に風を受ける場所であれば風力発電機が付加されてもよいし、振動が多い場所では圧電素子が付加されてもよい。
 上述の実施の形態及びその変形例は、本発明の技術内容を説明することを目的とする例示として記載されたものであり、本願に係る発明の技術的範囲をこの記載の内容に限定する趣旨ではない。本願に係る発明の技術的範囲は、明細書、図面、及び請求の範囲又はこれに均等の範囲において当業者が想到可能な限り、変更、置き換え、付加、省略されたものも含む。
 [3.効果]
 配線シート120が備える炭素配線102は、その主な材料である炭素が持つきわめて腐食しにくい性質に因って高い耐環境性を有する。これにより炭素配線102は、配線の材料として従来用いられている金属類に比べてより長期にわたって信頼性のある配線としての使用が可能である。金属類でもよく配線の材料に用いられている銅との比較でさらに言えば、まず、安定した供給が見込まれることから、導入時のコストの面でも長期的に有利である。また、軽量である点、繰り返しの屈曲に耐え得る点、加工性の良さ、及び大きな面積への展開のための生産性の良さも、複雑な表面形状の構造物や、大規模な構造物への適用を容易にする。
 また、炭素配線102をポリ塩化ビニル樹脂等の耐環境性の高い材料の絶縁シート104に包めば扱いが容易になり、且つ、より高い耐久性を得て、長期間の使用が可能な配線として使用することができる。
 このような高い耐環境性を持つ配線シート120は、例えばセンサを含む電気回線を備える、複数の負荷140を炭素配線102と接続するよう取り付けて組み合わせることでシート状の検査システム(シート状システム100の例)に利用可能である。このようなシート状システム100は、従来の金属配線では劣化しやすい環境にある構造物の表面に取り付けても長期にわたり利用することが可能である。
 また、大規模な構造物であれば、シート状システム100を当該構造物に巡らされた電源線や通信線等に接続して多数設置してもよい。これにより、従来の検査員による検査では現実的に不可能な、多点でのほぼ同時の物理量計測による検査が可能な構造物運用支援システム10を実現することができる。
 なお、計測の対象や目的によっては、センサを常時動作させてデータを収集する必要はなく、例えば毎日決まった時刻に短時間計測する等、間欠的な計測で得たデータで異常の発見に利用可能なものもある。このような場合は、例えば抵抗率は高いが、より安価な炭素配線102を用いて電力を負荷140に供給し、負荷140ではキャパシタ等の蓄電素子に蓄電してもよい。そして、この蓄電素子からの電力で所定の時刻にのみセンサを含む電気回線を動作させて、計測から計測結果の送信までが実行されてもよい。
 この計測結果のデータは例えば構造物の集中管理システムに集約され、監視や解析の対象として利用される。このデータを用いて、例えば構造物全体の状態を空間的に、又は構造物全体の状態の変化を時系列に沿って把握することができる。
 また、従来は全体から一度にはデータを収集できなかった構造物であれば、このデータを用いることで、従来とは異なるアプローチでこの構造物の状態の把握や異常の早期発見に役立てられる可能性がある。
 また、配線シート120としては、高い耐環境性が要求されない場所では、ポリ塩化ビニル以外の樹脂や布や紙などの電気絶縁性と可撓性を有する材料を主な材料とする絶縁シート104を用いることで、例えば要求された外観を呈し、かつ電気や信号を取り出す場所の自由度の高い壁紙としての利用が可能である。
 さらに本発明の効果として、省資源及び省エネルギーへの貢献が見込まれる。
 まず上記のとおり、炭素配線102は、配線に従来利用されている銅等の金属に比べて豊富で安定的な供給が見込まれる資源である炭素を主な材料とするものである。また、炭素配線102を用いることで従来のエレクトロニクス分野でよく言われる製品寿命である10年を超える長期の耐久性を実現する。これにより、補修や交換の頻度を抑えることで省資源及び省エネルギーに貢献する。
 また、炭素配線102の製法として、上述の印刷による方法が採用される場合は、加工や製造で産生する熱が比較的小さい点でも省エネルギーに貢献し得る。
 そして、配線シート120を含む構造物運用支援システム10を用いることで、従来は取得が不可能だったデータに基づく構造物を空間的にとらえた異常診断が実現し、構造物の耐用寿命を延ばすことができる。これにより、構造物の建設の頻度が下がれば、その分、この建設に伴う建材、建設機器、及び物流も含めた消費エネルギーや発生するCOの削減につながる。また、人手による点検作業で必要な物流や照明等のエネルギーも減らすことができる。
 特に洞道等の大規模で複雑な構造物では、建設、点検、全体的な改修で消費される資源及びエネルギーは大量である。このような構造物にも適用可能な本発明に係る構造物運用支援システム10がもたらす省資源及び省エネルギーの効果は大きい。
 本発明は、配線シートとして、この配線シートに複数の負荷を組み合わせたシート状システムとして、また、このシート状システムを複数含む、構造物運用支援システムとして利用可能である。
 10 構造物運用支援システム
 100 シート状システム
 102 炭素配線
 103 ビア
 104 絶縁シート
 104A 絶縁シート第1層
 104B 絶縁シート第2層
 104C 配線基板
 104D 支持材
 105 金属端子
 106 コンタクト
 120 配線シート
 140 負荷
 141 電源部
 142 蓄電素子
 143 通信部
 144 制御部
 145 信号処理部
 146 センサ
 147 第1電源回路
 148 第2電源回路
 160 配線
 180 加圧機構
 500 電線
 550 接地線
 600 照明灯
 651 制御部
 700 監視用端末装置
 800 サーバ

Claims (15)

  1.  各々が信号線又は電力供給線であり、炭素を主な材料とする導体で可撓性を有する1本以上の炭素配線と、
     前記1本以上の炭素配線の略全体を包む、電気絶縁体を主な材料として可撓性を有する絶縁シートとを備える
     配線シート。
  2.  前記1本以上の炭素配線は、それぞれグラフェン、グラファイト、又はカーボンナノチューブを主な炭素材料とし、
     前記絶縁シートは、樹脂、布、又は紙を主な材料とする
     請求項1に記載の配線シート。
  3.  前記絶縁シートは、ポリ塩化ビニル樹脂を主な材料とする
     請求項2に記載の配線シート。
  4.  前記1本以上の炭素配線は、長さ1cmあたりの抵抗値が0.01Ω以上1Ω以下である炭素配線を含む
     請求項1~3のいずれか1項に記載の配線シート。
  5.  前記1本以上の炭素配線は前記電力供給線を含み、
     前記電力供給線はグリッドを成している
     請求項1~4のいずれか1項に記載の配線シート。
  6.  前記絶縁シートは、前記絶縁シートの外部の導体と前記炭素配線とを電気的に接続するためのビアを備える
     請求項1~5のいずれか1項に記載の配線シート。
  7.  前記絶縁シートは、異方性導電ゴムからなる、前記絶縁シートの厚さ方向に導電可能であって、前記絶縁シートの外部の導体と前記炭素配線とを電気的に接続するためのコンタクトを備える
     請求項1~6のいずれか1項に記載の配線シート。
  8.  前記1本以上の炭素配線は3本以上の炭素配線であり、
     前記3本以上の炭素配線は、前記電力供給線、前記信号線、及び第1GND線を含む、
     請求項1~7のいずれか1項に記載の配線シート。
  9.  前記絶縁シートにおいて、前記電力供給線、前記信号線、及び前記第1GND線は平行に延在し、前記信号線は、前記電力供給線と前記第1GND線との間に位置する
     請求項8に記載の配線シート。
  10.  請求項1~9のいずれか1項に記載の配線シートと、
     前記絶縁シートの外から前記1本以上の炭素配線に電気的に接続される複数の負荷とを備え、
     前記1本以上の炭素配線は前記電力供給線を含み、
     前記複数の負荷は、
     前記電力供給線から電力の供給を受けて蓄電する蓄電素子と、
     前記蓄電素子から電力の供給を受けて間欠的に動作する電気回路とをそれぞれ含む
     シート状システム。
  11.  前記1本以上の炭素配線は前記信号線を含み、
     前記電気回路はセンサを含み、前記信号線を介して前記センサによって測定された物理量を出力する
     請求項10に記載のシート状システム。
  12.  前記1本以上の炭素配線は2本以上の炭素配線であり、
     前記2本以上の炭素配線は、電流を実質的に流すことなく接地電位を取るために用いられる第2GND線を含む
     請求項11に記載のシート状システム。
  13.  前記1本以上の炭素配線は前記電力供給線を含み、
     前記複数の負荷は、前記蓄電素子に蓄えられた電力を前記電力供給線に戻すための電気回路をそれぞれ備える
     請求項10~12のいずれか1項に記載のシート状システム。
  14.  前記1本以上の炭素配線は前記電力供給線を含み、
     当該シート状システムの外部の電源からの電気が流れる電線と前記電力供給線とを電気的に接続するゲートウェイとを備え、
     前記ゲートウェイは、
     前記複数の負荷のそれぞれに、前記電力供給線を介する前記電源からの電力の供給を受けるか否かを指示する
     請求項10~13のいずれか1項に記載のシート状システム。
  15.  構造物の表面に敷設される、複数の請求項10~14のいずれか1項に記載のシート状システムと、
     前記複数のシート状システムがそれぞれ備える前記1本以上の炭素配線が接続される電線とを備える
     構造物運用支援システム。
PCT/JP2017/026876 2016-07-25 2017-07-25 配線シート、シート状システム、及び構造物運用支援システム WO2018021315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780045642.5A CN109564799B (zh) 2016-07-25 2017-07-25 布线片材、片材状系统、以及构造物运用支援系统
US16/319,694 US11509123B2 (en) 2016-07-25 2017-07-25 Wiring sheet, sheet-shaped system, and structure operation support system
EP17834317.4A EP3489971B1 (en) 2016-07-25 2017-07-25 Wiring sheet, sheet-shaped system, and structure operation support system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-145777 2016-07-25
JP2016145777 2016-07-25
JP2017142222A JP6967242B2 (ja) 2016-07-25 2017-07-21 シート状システム、及び構造物運用支援システム
JP2017-142222 2017-07-21

Publications (1)

Publication Number Publication Date
WO2018021315A1 true WO2018021315A1 (ja) 2018-02-01

Family

ID=61016131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026876 WO2018021315A1 (ja) 2016-07-25 2017-07-25 配線シート、シート状システム、及び構造物運用支援システム

Country Status (2)

Country Link
JP (1) JP2022009124A (ja)
WO (1) WO2018021315A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193993A (ja) * 1994-11-16 1996-07-30 Kumagai Gumi Co Ltd コンクリート構造物のひびわれ検知方法
JP2003016848A (ja) * 2001-07-04 2003-01-17 Auto Network Gijutsu Kenkyusho:Kk フラットケーブル
WO2012070537A1 (ja) * 2010-11-22 2012-05-31 古河電気工業株式会社 凝集紡糸構造体およびその製造方法ならびにそれを用いた電線
JP2013139697A (ja) * 2012-01-05 2013-07-18 Atelier Tekuto:Kk 導電性内装仕上げ材及び電力供給装置
JP2014526233A (ja) * 2011-08-16 2014-10-02 コーニンクレッカ フィリップス エヌ ヴェ 容量性電力伝送を用いた配電のための広表面導電層

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570336Y2 (ja) * 1991-11-28 1998-05-06 矢崎総業株式会社 テープ電線

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193993A (ja) * 1994-11-16 1996-07-30 Kumagai Gumi Co Ltd コンクリート構造物のひびわれ検知方法
JP2003016848A (ja) * 2001-07-04 2003-01-17 Auto Network Gijutsu Kenkyusho:Kk フラットケーブル
WO2012070537A1 (ja) * 2010-11-22 2012-05-31 古河電気工業株式会社 凝集紡糸構造体およびその製造方法ならびにそれを用いた電線
JP2014526233A (ja) * 2011-08-16 2014-10-02 コーニンクレッカ フィリップス エヌ ヴェ 容量性電力伝送を用いた配電のための広表面導電層
JP2013139697A (ja) * 2012-01-05 2013-07-18 Atelier Tekuto:Kk 導電性内装仕上げ材及び電力供給装置

Also Published As

Publication number Publication date
JP2022009124A (ja) 2022-01-14

Similar Documents

Publication Publication Date Title
JP6967242B2 (ja) シート状システム、及び構造物運用支援システム
JP4688080B2 (ja) 腐食センサ、シース管、シース管継ぎ手部材および腐食センサユニット
CN202794092U (zh) 基于柔性导电涂料的地铁隧道混凝土裂缝监测装置
CN104335019B (zh) 光纤温度传感器
JP6179033B2 (ja) 劣化検出方法、センサの製造方法およびセンサ
CN204030866U (zh) 一种用于水轮发电机定子和转子绕组的温度测量装置
JPWO2005033475A1 (ja) トンネル落盤監視システム、トンネル落盤監視方法及び土木構造物破損監視システム
CN210953134U (zh) 一种高压电缆接头无线测温装置
JP2007108884A (ja) ワイヤレスセンサ及びこれを用いたワイヤレス監視システム
JP6059943B2 (ja) 構造物のき裂監視装置
JP6789549B2 (ja) コンクリート構造物の腐食センサ及び腐食検出方法
WO2018021315A1 (ja) 配線シート、シート状システム、及び構造物運用支援システム
CN215768360U (zh) 一种风机叶片表面裂纹监测装置
CN201803691U (zh) 基于柔性导电涂料的内埋式裂缝监测装置
CN213517304U (zh) 一种城镇燃气管道电位变化的监测装置
JP6691492B2 (ja) 地下空洞の充填状況確認構造および充填状況確認方法
JP4913628B2 (ja) 構造物の監視装置及び監視方法
CN211205333U (zh) 传感器
JP7457312B2 (ja) 構造物点検システム
JP2017003371A (ja) ひずみセンサ、および監視システム
Yun et al. Wireless sensing technologies for bridge monitoring and assessment
CN206942281U (zh) 一种智能型复合材料电力杆塔
JP2005077360A (ja) ディジタル保護リレーの寿命診断装置、寿命診断システム及び寿命診断方法
CN107525581A (zh) 接触网系统接触悬挂监测装置
JP2019120521A (ja) 間隙幅データ収集システム及び間隙幅推定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834317

Country of ref document: EP

Effective date: 20190225