WO2018021059A1 - 車載電池用の電圧検出回路 - Google Patents

車載電池用の電圧検出回路 Download PDF

Info

Publication number
WO2018021059A1
WO2018021059A1 PCT/JP2017/025699 JP2017025699W WO2018021059A1 WO 2018021059 A1 WO2018021059 A1 WO 2018021059A1 JP 2017025699 W JP2017025699 W JP 2017025699W WO 2018021059 A1 WO2018021059 A1 WO 2018021059A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage signal
signal line
voltage
semiconductor switch
battery
Prior art date
Application number
PCT/JP2017/025699
Other languages
English (en)
French (fr)
Inventor
佐藤 慎一郎
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2018021059A1 publication Critical patent/WO2018021059A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a voltage detection circuit for in-vehicle batteries.
  • Patent Document 1 discloses a battery monitoring device 20 that monitors a battery voltage of an assembled battery 10 in which a plurality of unit batteries 11 are connected in series.
  • the battery monitoring device 20 includes battery monitoring electrical paths Ln to Ln + 1 and overcurrent preventing protection elements 23 and 25 provided on a predetermined mounting portion 31 in the middle of each of the electrical paths Ln to Ln + 1.
  • the battery system 100 shown in FIG. 9 includes a battery module 102, a battery monitoring device 110, and a battery monitoring IC 120.
  • the battery module 102 has a configuration in which unit batteries 104 are connected in series, and the battery monitoring device 110 includes voltage detection lines 112 respectively connected to both end electrodes of the battery module 102 and electrodes between unit cells.
  • Each voltage detection line 112 is connected to each input terminal of the battery monitoring IC 120, and the voltage applied to each voltage detection line 112 is input to the battery monitoring IC 120, respectively.
  • the battery monitoring IC 120 can continuously grasp the voltage between both ends of the battery module 140 and the voltage between unit cells, and can monitor the voltage of each part of the battery module 140.
  • Zener diodes are connected between adjacent detection lines in the plurality of voltage detection lines 112, and these function to suppress an excessive voltage.
  • the present invention has been made based on the above-described circumstances, and an object thereof is to provide a voltage detection circuit for an in-vehicle battery that can protect a battery monitoring circuit even when a battery module is reversely connected. It is.
  • the voltage detection circuit for in-vehicle batteries which is an example of the present invention, A voltage detection circuit for detecting a voltage of a battery module in which a plurality of unit batteries are connected in series, A plurality of voltage signal lines electrically connected to the inter-battery electrode portions of the plurality of unit cells connected in series or the end electrode portion of the battery module;
  • the unit battery or the battery module connected between the plurality of voltage signal lines is turned on when the unit battery or the battery module is in a forward connection state to bring the voltage signal line into a conductive state, and the unit battery or the battery module is reversely connected.
  • the voltage detection circuit includes a plurality of voltage signal lines that are electrically connected to the inter-battery electrode portions of the plurality of unit batteries or the end electrode portions of the battery module, and the unit battery is configured using these voltage signal lines as detection paths. It is possible to detect the voltage between the batteries or at each part of the battery module. Further, a semiconductor switch is connected to a plurality of voltage signal lines, and the semiconductor switch is turned on when the unit battery or the battery module is in a forward connection state to turn on the voltage signal line, and the unit battery or the battery module is reversed. When it is in the connected state, the voltage signal line is turned off by turning off.
  • the semiconductor switch when the battery module is in the reverse connection state, the semiconductor switch is turned off, and the voltage signal line provided with the semiconductor switch can be switched to the non-conduction state. Therefore, the voltage detection circuit can prevent an abnormal voltage outside the assumed range from being input via the voltage signal line.
  • FIG. 1 is a circuit diagram illustrating an in-vehicle battery system including the voltage detection circuit according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a case where battery modules are reversely connected in the in-vehicle battery system of FIG.
  • FIG. 3 is a circuit diagram illustrating an in-vehicle battery system including the voltage detection circuit according to the second embodiment.
  • FIG. 4 is a circuit diagram showing a case where battery modules are reversely connected in the in-vehicle battery system of FIG.
  • FIG. 5 is a circuit diagram illustrating a vehicle battery system including the voltage detection circuit according to the third embodiment.
  • FIG. 6 is a circuit diagram showing a case where battery modules are reversely connected in the in-vehicle battery system of FIG. FIG.
  • FIG. 7 is a circuit diagram illustrating an in-vehicle battery system including the voltage detection circuit according to the fourth embodiment.
  • FIG. 8 is a circuit diagram showing a case where battery modules are reversely connected in the in-vehicle battery system of FIG.
  • FIG. 9 is a circuit diagram illustrating an in-vehicle battery system including a voltage detection circuit of a comparative example.
  • a Zener diode may be connected between each of the adjacent signal lines between the plurality of voltage signal lines.
  • Each Zener diode has a cathode connected to one of the signal lines that has a relatively high potential when the plurality of unit cells are in a forward connection state among adjacent signal lines, and has a relatively low potential.
  • An anode may be connected to the other signal line.
  • a semiconductor switch may be provided at a position closer to the battery module than the Zener diode.
  • Each semiconductor switch is turned on when a plurality of unit batteries are in a forward connection state to turn on a voltage signal line to be switched, and is turned off when a plurality of unit batteries are in a reverse connection state.
  • the voltage signal line to be switched may function to be in a non-conductive state.
  • a Zener diode is connected between each of the adjacent signal lines between the plurality of voltage signal lines, so that the voltage between the signal lines becomes excessive when the plurality of unit batteries are in the forward connection state. It can be prevented from being too much.
  • a semiconductor switch is provided at a position closer to the battery module than the Zener diode in all or a plurality of voltage signal lines, and when the plurality of unit batteries are in a reverse connection state, the semiconductor switches Therefore, when a plurality of unit batteries are reversely connected, it is possible to prevent a large current from flowing through the Zener diode.
  • the semiconductor switch may be configured as an NPN transistor.
  • the emitter is electrically connected to one side path arranged on the inter-battery electrode part side or the end electrode part side of the voltage signal line provided with the semiconductor switch, and the collector is electrically connected to the other side path.
  • the base may be electrically connected to another voltage signal line different from the voltage signal line provided with the semiconductor switch.
  • the base potential applied via another voltage signal line is higher than the emitter potential applied via the voltage signal line provided with the semiconductor switch.
  • the base potential applied via the other voltage signal line is lower than the emitter potential applied via the voltage signal line provided with the semiconductor switch. The structure which becomes may be sufficient.
  • This voltage detection circuit has a voltage signal line provided with a semiconductor switch (NPN transistor) when a plurality of unit batteries are in a forward connection state (that is, a voltage signal line to be switched between conductive and non-conductive by a semiconductor switch).
  • the base potential applied via the other voltage signal line is higher than the emitter potential applied to the semiconductor switch via. For this reason, if the base current is sufficiently secured, the one-side path and the other-side path can be conducted in the voltage signal line provided with the semiconductor switch.
  • the base potential applied via another voltage signal line is more than the emitter potential applied via the voltage signal line provided with the semiconductor switch. Since it becomes low, the semiconductor switch is switched off. Therefore, conduction between the one-side path and the other-side path in the voltage signal line can be quickly and reliably interrupted.
  • the semiconductor switch is configured as a PNP transistor, and the emitter is electrically connected to one side path arranged on the inter-battery electrode part side or the end electrode part side of the voltage signal line provided with the semiconductor switch.
  • the collector may be electrically connected to the other side path, and the base may be electrically connected to another voltage signal line different from the voltage signal line provided with the semiconductor switch.
  • the base potential applied via another voltage signal line is lower than the emitter potential applied via the voltage signal line provided with the semiconductor switch.
  • the base potential applied via the other voltage signal line is higher than the emitter potential applied via the voltage signal line provided with the semiconductor switch. The structure which becomes may be sufficient.
  • This voltage detection circuit has a voltage signal line provided with a semiconductor switch (PNP transistor) when a plurality of unit batteries are in a forward connection state (that is, a voltage signal line to be switched between conductive and non-conductive by a semiconductor switch).
  • the base potential applied via the other voltage signal line is lower than the emitter potential applied to the semiconductor switch via. For this reason, if the base current is sufficiently secured, the one-side path and the other-side path can be conducted in the voltage signal line provided with the semiconductor switch.
  • the base potential applied via another voltage signal line is more than the emitter potential applied via the voltage signal line provided with the semiconductor switch. Since it becomes higher, the semiconductor switch is switched off. Therefore, conduction between the one-side path and the other-side path in the voltage signal line can be quickly and reliably interrupted.
  • the voltage detection circuit may include a voltage dividing circuit that divides the voltage between the one-side path and the other voltage signal line. And the structure by which the voltage divided
  • the base of the semiconductor switch is electrically connected to another voltage signal line through a base resistor, and is not connected to one side path of the voltage signal line provided with the semiconductor switch. Also good.
  • the in-vehicle battery system 1 shown in FIG. 1 includes an in-vehicle battery module 2 (hereinafter also referred to as a battery module 2) in which a plurality of unit batteries 4 are connected in series, and the voltages of the respective parts of the battery module 2.
  • An on-vehicle battery voltage detection circuit 10 (hereinafter also referred to as voltage detection circuit 10) that detects and transmits a detection value corresponding to the voltage value of each part, and each detection value transmitted by the voltage detection circuit 10 is input.
  • a battery monitoring IC 20 for a vehicle-mounted battery hereinafter also referred to as a battery monitoring IC 20).
  • the battery module 2 is a power storage unit that can function as an on-vehicle power source, and is mounted on the vehicle as a power source for a motor for driving an electric vehicle (EV or HEV), for example.
  • the battery module 2 is configured as a series connection body in which a plurality of unit batteries 4 made of, for example, a lithium ion secondary battery or a nickel hydride secondary battery are connected in series.
  • each unit battery 4 is also referred to as a battery cell.
  • the battery module 2 can be attached to and detached from a voltage detection circuit 10 to be described later.
  • the battery module 2 has terminals 3 connected to the end electrode portions 2A and 2B and the inter-battery electrode portion 2C, respectively.
  • Each voltage signal line 12 is detachable. And if it is a regular attachment state, the attachment state of the battery module 2 with respect to the voltage detection circuit 10 will become like FIG. However, there is a concern that a reverse connection state as shown in FIG. A countermeasure against this reverse connection state will be described later.
  • the battery monitoring IC 20 (battery monitoring circuit) includes input terminals connected to a plurality of voltage signal lines 12 provided in the voltage detection circuit 10 to be described later, and an analog input via each voltage signal line 12.
  • the terminal voltage of each unit battery 4 can be detected based on the voltage signal.
  • the battery monitoring IC 20 may include an AD converter that converts each input analog voltage signal into a digital signal, and includes a control circuit (such as a CPU) that can perform determination and control based on each analog voltage signal. You may have.
  • the voltage detection circuit 10 includes a plurality of voltage signal lines 12, a current limiting resistor 19 provided in each voltage signal line 12, a Zener diode 16 disposed between each signal line, and a voltage division disposed between each signal line.
  • the circuit 18 includes a semiconductor switch 14 provided in each of the remaining voltage signal lines 12 excluding the signal lines at the ends. In FIG. 1, some of the unit batteries 4 are omitted, and circuits corresponding to the omitted unit batteries 4 are also omitted.
  • the plurality of voltage signal lines 12 are connected to an inter-battery electrode part 2 ⁇ / b> C (hereinafter also referred to as an electrode part 2 ⁇ / b> C) of the battery module 2 in which a plurality of unit batteries 4 are connected in series or the end of the battery module 2. It is electrically connected to the partial electrode portions 2A and 2B (hereinafter also referred to as electrode portions 2A and 2B).
  • the electrode part 2 ⁇ / b> A is an electrode part at one end of the battery module 2, and is an electrode part with the highest potential in the battery module 2.
  • the electrode part 2 ⁇ / b> B is an electrode part at the other end of the battery module 2, and is an electrode part with the smallest potential in the battery module 2.
  • the inter-battery electrode portion 2C is a portion in which the positive electrode on one side and the negative electrode on the other side are electrically connected between the batteries of the unit batteries 4 connected in series. The closer the electrode portion 2A is, the larger the potential becomes.
  • the signal line connected to the electrode part 2A among the plurality of voltage signal lines 12 is the first voltage signal line 12C, and the signal line connected to the electrode parts 2B and 2C is the second voltage.
  • This is a signal line 12D.
  • the second voltage signal line 12D is a signal line on which a semiconductor switch 14 to be described later is disposed, and is configured by one side path 12B and the other side path 12A.
  • the one-side path 12B is a signal line disposed on the battery module side of the semiconductor switch 14 in the voltage signal line 12 (second voltage signal line 12D) provided with the semiconductor switch 14.
  • the other-side path 12A is a signal line that is disposed closer to the battery monitoring IC 20 than the semiconductor switch 14 in the voltage signal line 12 (second voltage signal line 12D) provided with the semiconductor switch 14.
  • Zener diodes 16 are connected between signal lines adjacent to each other in the battery module 2 in a plurality of voltage signal lines 12 connected to the electrode portions 2A, 2B, and 2C, respectively.
  • the plurality of voltage signal lines 12 are in a normal state as the connection site with the battery module 2 is closer to the electrode portion 2B in the circuit (the battery module 2 is in a forward connection state (normal connection as shown in FIG. 1). In the state), the potential applied is lower, and the closer the connection site with the battery module 2 is to the electrode portion 2A in the circuit, the higher the potential applied in the normal state.
  • a Zener diode 16 is connected in parallel with each unit battery 4 (battery cell) between each voltage signal line 12 and the voltage signal line 12 having the next highest potential after each voltage signal line 12.
  • Each Zener diode 16 has a relatively high potential when the plurality of unit batteries 4 are in the forward connection state (normal connection state) among the voltage signal lines adjacent to each other in the circuit at the connection position with the battery module 2.
  • the cathode is connected to one of the signal lines, and the anode is connected to the other signal line having a relatively low potential.
  • Each voltage signal line 12 is provided with a current limiting resistor 19.
  • the current limiting resistor 19 is provided closer to the battery module 2 than the connection position of the voltage dividing circuit 18 in each voltage signal line 12, and limits the current flowing from the unit battery 4 (battery cell) to the battery monitoring IC 20. .
  • the current limiting resistor 19 may be configured to melt when a current greater than the allowable current value flows.
  • the remaining voltage signal lines 12 (second voltage signal lines 12D) other than the voltage signal line 12 (first voltage signal line 12C) connected to the electrode portion 2A are semiconductors.
  • a switch 14 is provided.
  • the semiconductor switch 14 is configured as an NPN transistor, and is provided at a position closer to the battery module 2 than the Zener diode 16 in the second voltage signal line 12D.
  • Each semiconductor switch 14 is turned on when a plurality of unit batteries 4 are in a forward connection state (normal connection state) as shown in FIG. 1, and the voltage signal line 12 to be switched (that is, the voltage provided by itself).
  • the signal line 12) is turned on, and when the plurality of unit batteries 4 are reversely connected and reversely connected as shown in FIG. 2, the switching operation is performed so that the voltage signal line 12 to be switched is turned off. Function.
  • the semiconductor switch 14 configured as an NPN-type transistor has one side arranged on the inter-battery electrode part 2C side or the end electrode part 2B side of the voltage signal line 12 provided with the semiconductor switch 14 (self).
  • An emitter is electrically connected to the path 12B, a collector is electrically connected to the other path 12A, and another voltage signal line 12 (specifically) different from the voltage signal line 12 provided with the semiconductor switch 14 (self).
  • the base is electrically connected to the voltage signal line 12) connected to the positive electrode of the unit battery 4 (battery cell) to which the voltage signal line 12 provided with the semiconductor switch 14 is connected to the negative electrode. .
  • the voltage signal is connected between the voltage signal lines connected to both ends of each unit battery 4 (that is, between the two voltage signal lines 12 adjacent to each other in the circuit).
  • a voltage dividing circuit 18 for dividing the voltage between the lines is connected.
  • Each voltage dividing circuit 18 provided between the voltage signal lines has a configuration in which voltage dividing resistors 18A and 18B are connected in series, and an intermediate portion between the voltage dividing resistors 18A and 18B serves as a base of the semiconductor switch 14.
  • One end of the connected portion (the direct component) where the voltage dividing resistors 18A and 18B are connected in series is connected to the emitter of the semiconductor switch 14.
  • the emitter of the semiconductor switch 14 is connected to the one-side path 12B of the voltage signal line 12 to be switched, which is switched between the conductive state and the non-conductive state by the semiconductor switch 14, and the one-side path 12B and the other voltage are connected.
  • a voltage dividing circuit 18 is provided in a configuration for dividing the voltage between the signal line 12 (voltage signal line 12 connected to the positive electrode in the unit battery 4 to which the voltage signal line 12 to be switched is connected to the negative electrode), and A voltage divided by the voltage dividing circuit 18 is applied to the base of the semiconductor switch 14.
  • the negative side of the unit battery 4 (battery cell) is connected to the unit battery 4. It is electrically connected to one end of the voltage dividing circuit 18 connected in parallel, and the positive side of the unit battery 4 (battery cell) is electrically connected to the other end of the voltage dividing circuit 18.
  • the potential of the base connected to the intermediate part of the voltage dividing circuit 18 is higher than that of the emitter connected to one end of the voltage circuit 18.
  • the base potential of each semiconductor switch 14 is higher than the emitter potential, and the potential difference between the base emitters is smaller than the potential difference between the positive and negative electrodes of the unit cell 4. It can be suppressed.
  • the resistance values of the voltage dividing resistors 18A and 18B are set so that a sufficient base current that can turn on each semiconductor switch 14 flows in the forward connection state (normal connection state) as shown in FIG. Yes. Therefore, in the forward connection state (regular connection state), each semiconductor switch 14 is turned on, and the one-side path and the other-side path can be made conductive in each voltage signal line 12. Note that the resistance values of the voltage dividing resistors 18A and 18B are set to be sufficiently large so that the current flowing through the voltage dividing circuit 18 is kept low in the forward connection state (normal connection state).
  • the voltage detection circuit 10 of this configuration includes a plurality of voltage signal lines 12 electrically connected to the inter-battery electrode portions 2C of the plurality of unit batteries 4 or the end electrode portions 2A and 2B of the battery module 2.
  • the voltage of each part of the battery module 2 can be detected using these voltage signal lines 12 as detection paths.
  • a semiconductor switch 14 is provided on the voltage signal line 12 connected to the electrode portions 2B and 2C, and this semiconductor switch 14 is turned on when the plurality of unit batteries 4 are in the forward connection state (normal connection state). Then, the voltage signal line 12 is turned on, and when the plurality of unit batteries 4 are in the reverse connection state, the voltage signal line 12 is turned off to turn off the voltage signal line 12.
  • the semiconductor switch 14 is turned off, and the voltage signal line 12 provided with the semiconductor switch 14 can be switched to the non-conductive state. Therefore, it is possible to prevent an abnormal voltage outside the assumed range from being input via the voltage signal line 12.
  • Zener diodes 16 are connected between the signal lines adjacent to each other in the battery module 2 in the plurality of voltage signal lines 12.
  • Each of the Zener diodes 16 has a cathode connected to one signal line that has a relatively high potential when the plurality of unit cells 4 are in a forward connection state (regular connection state) between adjacent signal lines.
  • the anode is connected to the other signal line having a relatively low potential.
  • semiconductor switches 14 are respectively provided at positions closer to the battery module 2 than the Zener diode 16.
  • Each semiconductor switch 14 is turned on when the plurality of unit batteries 4 are in the forward connection state (regular connection state), and the voltage signal line 12 to be switched is turned on, and the plurality of unit batteries 4 are reversed. It functions to turn off the voltage signal line 12 to be switched when in the connected state.
  • the Zener diode 16 is connected between the signal lines adjacent to each other in the battery module 2, the voltage detection circuit 10 is connected between the signal lines in the forward connection state (normal connection state). Can be prevented from becoming excessively high. And in all except one of the plurality of voltage signal lines 12, when the semiconductor switch 14 is provided at a position closer to the battery module 2 than the Zener diode 16, the plurality of unit batteries 4 are in a reverse connection state. Since these semiconductor switches 14 are configured to be turned off, it is possible to prevent a large current from flowing through the Zener diode 16 when the plurality of unit batteries 4 are reversely connected.
  • the semiconductor switch 14 is configured as an NPN transistor.
  • the emitter is electrically connected to one side path 12B arranged on the inter-battery electrode part 2C side or the end electrode part 2B side of the voltage signal line 12 provided with the semiconductor switch 14, and the other side path.
  • the collector is electrically connected to 12A, and the base is electrically connected to another voltage signal line 12 different from the voltage signal line 12 provided with the semiconductor switch 14.
  • the emitter potential applied via the voltage signal line 12 provided with the semiconductor switch 14 is connected via another voltage signal line 12.
  • a voltage signal other than the emitter potential applied via the voltage signal line 12 provided with the semiconductor switch 14 is applied.
  • the base potential applied via line 12 is lower.
  • the voltage detection circuit 10 includes the voltage signal line 12 (that is, the semiconductor switch 14) provided with the semiconductor switch 14 (NPN transistor) when the plurality of unit batteries 4 are in the forward connection state (normal connection state).
  • the base potential applied via the other voltage signal line 12 becomes higher than the emitter potential applied to the semiconductor switch 14 via the voltage signal line 12) to be switched between conductive and non-conductive.
  • the one-side path 12B and the other-side path 12A can be made conductive in the voltage signal line 12 provided with the semiconductor switch 14.
  • the base potential applied via the other voltage signal line 12 is higher than the emitter potential applied via the voltage signal line 12 provided with the semiconductor switch 14. Therefore, the semiconductor switch 14 is turned off. Therefore, the conduction between the one-side path 12B and the other-side path 12A in the voltage signal line 12 can be quickly and reliably interrupted.
  • the voltage detection circuit 10 includes a one-side path 12B of the voltage signal line 12 to be switched and another voltage signal line 12 (a voltage having the next highest potential after the voltage signal line 12 to be switched among the plurality of voltage signal lines 12).
  • a voltage dividing circuit 18 that divides the voltage between the signal line and the signal line may be provided. The voltage divided by the voltage dividing circuit 18 may be applied to the base of the semiconductor switch 14 provided in the voltage signal line 12 to be switched.
  • the semiconductor switch 14 Even when the voltage between the signal lines (that is, the potential difference between the voltage signal line 12 to which the emitter is connected and the other voltage signal line 12 to which the base is connected) becomes large, the semiconductor switch 14 The voltage applied to the base can be suppressed.
  • Example 2 Next, with reference to FIG. 3, FIG. 4, etc., the vehicle-mounted battery system 201 provided with the voltage detection circuit 210 of Example 2 is demonstrated.
  • the in-vehicle battery system 201 described below is the above-described in-vehicle battery system 1 (FIG. 1) only in that the voltage detection circuit 210 shown in FIG. 3 or the like is used instead of the voltage detection circuit 10 shown in FIG. ),
  • the battery module 2, the battery monitoring IC 20, and the like are the same as the in-vehicle battery system 1 described in the first embodiment. Therefore, in the following, the configuration of the voltage detection circuit 210 will be described with emphasis, and portions having the same configuration as the in-vehicle battery system 1 of FIG. Omitted.
  • the voltage detection circuit 210 illustrated in FIG. 3 includes a plurality of voltage signal lines 212, a current limiting resistor 19 provided in each voltage signal line 212, a Zener diode 16 disposed between the signal lines, and a signal line. And a semiconductor switch 214 provided on each of the remaining voltage signal lines 212 (second voltage signal lines 212D) excluding a predetermined voltage signal line 212 (first voltage signal line 212C).
  • a semiconductor switch 214 provided on each of the remaining voltage signal lines 212 (second voltage signal lines 212D) excluding a predetermined voltage signal line 212 (first voltage signal line 212C).
  • some of the unit cells 4 are omitted, and circuits corresponding to the omitted unit cells 4 are also omitted.
  • the current limiting resistor 19, the Zener diode 16, and the voltage dividing circuit 18 used in the voltage detecting circuit 210 of FIG. 3 are the current limiting resistor 19, the Zener diode 16, and the voltage dividing circuit used in the voltage detecting circuit 10 of
  • the plurality of voltage signal lines 212 are electrically connected to the electrode part 2 ⁇ / b> C between the batteries of the battery module 2 in which a plurality of unit batteries 4 are connected in series or the electrode parts 2 ⁇ / b> A and 2 ⁇ / b> B at both ends of the battery module 2. Connected.
  • the signal line connected to the electrode part 2B among the plurality of voltage signal lines 212 is the first voltage signal line 212C, and the signal line connected to the electrode parts 2A and 2C is the second voltage.
  • This is a signal line 212D.
  • the second voltage signal line 212D is a signal line on which a semiconductor switch 214, which will be described later, is arranged, and is configured by one side path 212B and the other side path 212A.
  • the one-side path 212B is a signal line arranged on the battery module 2 side of the semiconductor switch 214 in the voltage signal line 212 (second voltage signal line 212D) provided with the semiconductor switch 214.
  • the other-side path 212A is a signal line that is disposed closer to the battery monitoring IC 20 than the semiconductor switch 214 in the voltage signal line 212 (second voltage signal line 212D) provided with the semiconductor switch 214.
  • the Zener diodes 16 are connected between the signal lines adjacent to each other in the battery module 2 in the plurality of voltage signal lines 212 connected to the electrode portions 2A, 2B, and 2C, respectively.
  • the plurality of voltage signal lines 212 are in a normal state as the connection portion with the battery module 2 is closer to the electrode portion 2B in the circuit (when the battery module 2 is in a forward connection state (normal connection state) as shown in FIG. 3).
  • the potential applied to the battery module 2 becomes higher as the connection site with the battery module 2 is closer to the electrode portion 2A in the circuit.
  • a Zener diode 16 is connected in parallel with each unit battery 4 (battery cell) between each voltage signal line 212 and the voltage signal line 212 having the next highest potential after each voltage signal line 212.
  • Each Zener diode 16 has a relatively high potential when the plurality of unit batteries 4 are in a forward connection state (normal connection state) between the voltage signal lines adjacent to each other in the circuit at the connection position with the battery module 2.
  • a cathode is connected to one signal line, and an anode is connected to the other signal line having a relatively low potential.
  • Each voltage signal line 212 is provided with a current limiting resistor 19.
  • the current limiting resistor 19 is provided closer to the battery module 2 than the connection position of the voltage dividing circuit 18 in each voltage signal line 212 and limits the current flowing from the unit battery 4 (battery cell) to the battery monitoring IC 20. .
  • the Zener diode 16 and the current limiting resistor 19 function in the same manner as the Zener diode 16 and the current limiting resistor 19 in the first embodiment.
  • the remaining voltage signal lines 212 (second voltage signal lines 212D) other than the voltage signal lines 212 (first voltage signal lines 212C) connected to the electrode part 2B are connected to the semiconductor.
  • a switch 214 is provided.
  • the semiconductor switch 214 is configured as a PNP transistor, and is provided at a position closer to the battery module 2 than the Zener diode 16 in the second voltage signal line 212D.
  • Each semiconductor switch 214 is turned on when the plurality of unit batteries 4 are in the forward connection state (normal connection state) as shown in FIG. 3, and the voltage signal line 212 to be switched (that is, the voltage provided by itself).
  • the signal line 212) is turned on, and when the plurality of unit batteries 4 are in the reverse connection state as shown in FIG. 4, the switching function is performed so that the voltage signal line 212 to be switched is turned off.
  • the semiconductor switch 214 configured as a PNP transistor is on one side of the voltage signal line 212 provided with the semiconductor switch 214 (self), which is disposed on the inter-battery electrode portion 2C side or the end electrode portion 2B side.
  • An emitter is electrically connected to the path 212B
  • a collector is electrically connected to the other path 212A
  • another voltage signal line 212 (specifically, different from the voltage signal line 212 provided with the semiconductor switch 214 (self)).
  • the base is electrically connected to the voltage signal line 212 connected to the negative electrode of the unit battery 4 (battery cell) to which the voltage signal line 212 provided with the semiconductor switch 214 is connected to the positive electrode. .
  • each voltage dividing circuit 18 for dividing the voltage between the lines is connected.
  • Each voltage dividing circuit 18 provided between the voltage signal lines has a configuration in which voltage dividing resistors 18A and 18B are connected in series, and an intermediate portion between the voltage dividing resistors 18A and 18B serves as a base of the semiconductor switch 214.
  • One end of the connected portion (direct configuration portion) where the voltage dividing resistors 18A and 18B are connected in series is connected to the emitter of the semiconductor switch 214.
  • the emitter of the semiconductor switch 214 is connected to the one-side path 212B of the voltage signal line 212 to be switched, which is switched between the conductive state and the non-conductive state by the semiconductor switch 214, and the one-side path 212B and the other voltage
  • the voltage dividing circuit 18 is provided in a configuration that divides the voltage between the signal line 212 (the voltage signal line 212 connected to the negative electrode in the unit battery 4 to which the voltage signal line 212 to be switched is connected to the positive electrode), The voltage divided by the voltage dividing circuit 18 is applied to the base of the semiconductor switch 214.
  • the negative side of the unit battery 4 (battery cell) is connected to the unit battery 4. It is electrically connected to one end of the voltage dividing circuit 18 connected in parallel, and the positive side of the unit battery 4 (battery cell) is electrically connected to the other end of the voltage dividing circuit 18.
  • the potential of the base connected to the intermediate portion of the voltage dividing circuit 18 is lower than that of the emitter connected to the other end of the voltage circuit 18.
  • each semiconductor switch 214 in the forward connection state (regular connection state), the base potential of each semiconductor switch 214 is lower than the emitter potential, and the potential difference between the base emitters is smaller than the potential difference between the positive and negative electrodes of the unit cell 4. It can be suppressed. Further, the resistance values of the voltage dividing resistors 18A and 18B are set so that a sufficient base current that can turn on each semiconductor switch 214 flows in the forward connection state (normal connection state) as shown in FIG. Yes. Therefore, in the forward connection state (normal connection state), each semiconductor switch 214 is turned on, and the one-side path 212B and the other-side path 212A can be made conductive in each voltage signal line 212. Note that the resistance values of the voltage dividing resistors 18A and 18B are set to be sufficiently large so that the current flowing through the voltage dividing circuit 18 is kept low in the forward connection state (normal connection state).
  • the voltage detection circuit 210 When the plurality of unit batteries 4 are in the forward connection state (normal connection state), the voltage detection circuit 210 is electrically connected to the voltage signal line 212 provided with the semiconductor switch 214 (PNP-type transistor) (that is, not electrically connected to the voltage detection circuit 210).
  • the base potential applied via the voltage signal line 212) where the potential becomes lower becomes lower. For this reason, if the base-emitter voltage is sufficiently secured, the one-side path 212B and the other-side path 212A can be conducted in the voltage signal line 212 provided with the semiconductor switch 214.
  • the emitter potential applied via the voltage signal line 212 provided with the semiconductor switch 214 is connected via another voltage signal line 212. Since the applied base potential is higher, the semiconductor switch 214 is turned off. Therefore, the conduction between the one-side path 212B and the other-side path 212A in the voltage signal line 212 can be interrupted.
  • Example 3 Next, with reference to FIG. 5, FIG. 6, etc., the vehicle-mounted battery system 301 provided with the voltage detection circuit 310 of Example 3 is demonstrated. Note that the in-vehicle battery system 301 described below only uses the voltage detection circuit 310 shown in FIG. 5 or the like instead of the voltage detection circuit 10 shown in FIG. 1 or the like. ), The battery module 2, the battery monitoring IC 20, and the like are the same as the in-vehicle battery system 1 described in the first embodiment. Therefore, in the following, the configuration of the voltage detection circuit 310 will be described with emphasis, and the same reference numerals as those in FIG. 1 will be assigned to the portions having the same configuration as the in-vehicle battery system 1 in FIG. Omitted.
  • the voltage detection circuit 310 according to the third embodiment is different from the first embodiment only in that each voltage dividing circuit 18 is omitted from the voltage detection circuit 10 according to the first embodiment and a base resistor 318 is provided. Therefore, in the following description, the differences will be described with emphasis, and the same configurations as those of the voltage detection circuit 10 of the first embodiment are denoted by the same reference numerals as those of the voltage detection circuit 10, and detailed description thereof will be omitted.
  • the semiconductor switch 14 configured as an NPN transistor is provided on each of the voltage signal lines 12 (second voltage signal lines 12D) connected to the electrode portions 2B and 2C. .
  • the semiconductor switch 14 has an emitter connected to one side path 12B of the voltage signal line 12 to be switched that is switched between a conductive state and a non-conductive state by the semiconductor switch 14, a collector connected to the other side path 12A, and the base is
  • the other voltage signal line 12 (specifically, the voltage signal line 12 connected to the positive electrode in the unit battery 4 to which the voltage signal line 12 to be switched is connected to the negative electrode) is connected via the base resistor 318. Yes.
  • the base of the semiconductor switch 14 is electrically connected to another voltage signal line 12 (a voltage signal line 12 having the next highest potential after the voltage signal line 12 to be switched among the plurality of voltage signal lines 12) via a base resistor 318. And is not connected to the one-side path 12B of the switching target voltage signal line 12 provided with the semiconductor switch 14.
  • the voltage detection circuit 310 configured as described above has a circuit portion (semiconductor switch 14 and its semiconductor switch 14) between signal lines when a plurality of unit batteries 4 are in a forward connection state (normal connection state).
  • Unit unit 4 battery cell
  • the positive electrode side of the battery 4 is connected to the base of the semiconductor switch 14 via a base resistor 318 constituting the circuit unit. Due to such a configuration, in the forward connection state (normal connection state), the base potential of each semiconductor switch 14 becomes higher than the emitter potential, and a sufficient base current that can turn on each semiconductor switch 14 flows. Since the unit battery 4 and the base resistor 318 are configured in this way, in the forward connection state (normal connection state), each semiconductor switch 14 is turned on, and the one-side path 12B and the other-side path in each voltage signal line 12 12A can be conducted.
  • the base of the semiconductor switch 14 is connected to the other voltage signal line 12 (the normal connection state (regular connection among the plurality of voltage signal lines 12) via the base resistor 318.
  • the voltage signal line 12 having the next highest potential after the voltage signal line 12 provided with the semiconductor switch 14 in the state), and the base thereof is provided with the semiconductor switch 14
  • the voltage signal line 12 is not connected to the one-side path 12B. According to this configuration, it becomes easy to set the base voltage high, and it is easy to secure a base current that can turn on the semiconductor switch 14 even when the voltage of the unit battery 4 decreases.
  • an in-vehicle battery system 401 including the voltage detection circuit 410 according to the fourth embodiment will be described with reference to FIGS.
  • the in-vehicle battery system 401 described below has the above-described in-vehicle battery system 1 (FIG. 1) only in that the voltage detection circuit 410 shown in FIG. 7 or the like is used instead of the voltage detection circuit 10 shown in FIG. ),
  • the battery module 2, the battery monitoring IC 20, and the like are the same as the in-vehicle battery system 1 described in the first embodiment. Therefore, in the following, the configuration of the voltage detection circuit 410 will be described with emphasis, and the parts having the same configuration as the in-vehicle battery system 1 in FIG. Omitted.
  • the voltage detection circuit 410 according to the fourth embodiment is different from the second embodiment only in that each voltage dividing circuit 18 is omitted from the voltage detection circuit 210 according to the second embodiment and a base resistor 418 is provided. Therefore, in the following description, the differences will be mainly described, and the same configurations as those of the voltage detection circuit 210 of the second embodiment are denoted by the same reference numerals as those of the voltage detection circuit 210, and detailed description thereof will be omitted.
  • a semiconductor switch 214 configured as a PNP transistor is provided on each voltage signal line 212 (second voltage signal line 212D) connected to the electrode portions 2A and 2C. Yes.
  • an emitter is connected to one side path 212B of the voltage signal line 212 to be switched, which is switched between a conductive state and a non-conductive state by the semiconductor switch 214, a collector is connected to the other side path 212A, and the base is
  • the other voltage signal line 212 (specifically, the voltage signal line 212 connected to the negative electrode in the unit battery 4 to which the voltage signal line 212 to be switched is connected to the positive electrode) is connected via the base resistor 418.
  • the base of the semiconductor switch 214 is electrically connected to another voltage signal line 212 (a voltage signal line 212 having a potential lower than the voltage signal line 212 to be switched among the plurality of voltage signal lines 212) via a base resistor 418. And is not connected to the one-side path 212B of the switching target voltage signal line 212 provided with the semiconductor switch 214.
  • the voltage detection circuit 410 configured as described above has a circuit portion (semiconductor switch 214 and its semiconductor switch 214) between signal lines when the plurality of unit batteries 4 are in a forward connection state (normal connection state).
  • the unit battery 4 battery cell
  • the negative electrode side of the battery 4 is connected to the base of the semiconductor switch 214 via a base resistor 418 constituting the circuit portion. Due to such a configuration, in the forward connection state (normal connection state), the base potential of each semiconductor switch 214 is lower than the emitter potential, and a sufficient base current that can turn on each semiconductor switch 214 flows. Since the unit battery 4 and the base resistor 418 are configured, each semiconductor switch 214 is turned on in the forward connection state (normal connection state), and the one-side path 212B and the other-side path in each voltage signal line 212. 212A can be conducted.
  • the circuit unit between the signal lines (the circuit unit including the semiconductor switch 214 and the base resistor 418 connected to the base of the semiconductor switch 214) is parallel.
  • the unit battery 4 (battery cell) connected to the negative electrode side is connected to the emitter of the semiconductor switch 214, and the positive side of the unit battery 4 connected in parallel to the circuit part via the base resistor 418 constituting the circuit part.
  • the number of unit cells constituting the battery module 2 may be plural, and the number is not limited.
  • the number of voltage signal lines connected to each part of the battery module may be plural, and the number is not limited.
  • the configuration in which the voltage signal line is connected to the end electrode portions 2A and 2B and all the inter-battery electrode portions 2C of the battery module 2 is illustrated, but the end electrode portions 2A and 2B of the battery module 2 are illustrated.
  • the voltage signal line does not need to be connected to any one or a plurality of positions among all the inter-battery electrode portions 2C.
  • a plurality of voltage signal lines may be connected every other unit battery 4 connected in series.
  • secondary batteries such as nickel metal hydride batteries and lithium ion batteries are exemplified as the unit batteries 4 (battery cells).
  • power storage means such as electric double layer capacitors are used. May be.
  • the voltage detection circuit may include the battery module 2. That is, the voltage detection circuit may or may not include the battery module 2 as a component.
  • the battery module 2 is integrally configured with a circuit configuration body in which a semiconductor switch, a Zener diode, a voltage signal line, and the like are provided on a substrate. Also good.
  • the voltage detection circuit monitors each part of one battery module 2
  • the plurality of battery modules 2 are monitored.
  • the voltage detection circuit of any embodiment may be provided, and the voltage detection circuit of any embodiment may be provided so as to correspond to each battery module 2.
  • the voltage detection circuit of any one of the above-described embodiments is provided so as to correspond to each battery module 2, and each voltage detection The battery monitoring IC 20 may be provided so as to correspond to the circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

電池モジュールが逆接続された場合でも電池監視用の回路を保護し得る車載電池用の電圧検出回路を提供する。 電圧検出回路(10)は、複数の単位電池(4)が直列に接続されてなる電池モジュール(2)を監視する装置として構成されている。電圧検出回路(10)は、直列に接続された複数の単位電池(4)の電池間電極部又は電池モジュール(2)の端部電極部に電気的に接続される複数の電圧信号線(12)と、電圧信号線(12)に設けられ、複数の単位電池(4)が順接続状態であるときにオン動作して電圧信号線(12)を導通状態とし、複数の単位電池(4)が逆接続状態であるときにオフ動作して電圧信号線(12)を非導通状態とする半導体スイッチ(14)とを有する。

Description

車載電池用の電圧検出回路
 本発明は、車載電池用の電圧検出回路に関するものである。
 特許文献1には、複数の単位電池11が直列に接続されてなる組電池10の電池電圧を監視する電池監視装置20が開示されている。この電池監視装置20は、電池監視用の電気経路Ln~Ln+1と、各電気経路Ln~Ln+1の途中部分において所定の実装部位31に実装して設けられた過電流防止用の保護素子23、25とを備える。
特開2015-201912号公報
 ここで、図9を参照して従来の電池監視装置の課題を説明する。図9で示す電池システム100は、電池モジュール102、電池監視装置110、電池監視IC120を備えている。電池モジュール102は、単位電池104が直列に接続された構成をなし、電池監視装置110は、電池モジュール102の両端電極及び単位電池間の電極にそれぞれ接続される電圧検出線112を備える。各電圧検出線112は、電池監視IC120の各入力端子に接続されており、各電圧検出線112に印加された電圧が電池監視IC120にそれぞれ入力される。このような構成により、電池監視IC120は、電池モジュール140の両端電圧及び単位電池間の電圧を継続的に把握することができ、電池モジュール140の各部位の電圧を監視することができる。また、複数の電圧検出線112において隣り合う検出線間にはそれぞれツェナーダイオードが接続され、これらは過大電圧を抑制するように機能する。
 図9で示す電池監視装置110は、図9(A)のように電池モジュール102が正規の向きで接続された場合には電池監視IC120の各端子に入力される電圧は想定された範囲内に収まるが、図9(B)のように電池モジュール102が逆接続された場合には、電池監視IC120に意図しない逆電圧が印加されてしまい、電池監視IC120には想定された範囲を逸脱した電圧が入力されることになる。このような事態が生じると、電池監視IC120の故障などの不具合を招く虞がある。
 本発明は、上述した事情に基づいてなされたものであり、電池モジュールが逆接続された場合でも電池監視用の回路を保護し得る車載電池用の電圧検出回路を提供することを目的とするものである。
 本発明の一例である車載電池用の電圧検出回路は、
 複数の単位電池が直列に接続されてなる電池モジュールの電圧を検出する電圧検出回路であって、
 直列に接続された複数の前記単位電池の電池間電極部又は前記電池モジュールの端部電極部に電気的に接続される複数の電圧信号線と、
 前記複数の電圧信号線間に接続される、前記単位電池又は前記電池モジュールが順接続状態であるときにオン動作して前記電圧信号線を導通状態とし、前記単位電池又は前記電池モジュールが逆接続状態であるときにオフ動作して前記電圧信号線を非導通状態とする半導体スイッチと、
を有する。
 上記電圧検出回路は、複数の単位電池の電池間電極部又は電池モジュールの端部電極部に電気的に接続される複数の電圧信号線を備えており、これら電圧信号線を検出経路として単位電池の電池間又は電池モジュールの各部位の電圧を検出することができる。更に、複数の電圧信号線に半導体スイッチが接続され、半導体スイッチは、単位電池又は電池モジュールが順接続状態であるときにオン動作して電圧信号線を導通状態とし、単位電池又は電池モジュールが逆接続状態であるときにオフ動作して電圧信号線を非導通状態とする。このように、電池モジュールが逆接続状態であるときに半導体スイッチがオフ動作し、この半導体スイッチが設けられた電圧信号線を非導通状態に切り替えることができる。よって、上記電圧検出回路は、電圧信号線を介して想定範囲外の異常電圧が入力されることを防ぐことができる。
図1は、実施例1の電圧検出回路を備えた車載用電池システムを例示する回路図である。 図2は、図1の車載用電池システムにおいて電池モジュールが逆接続された場合を示す回路図である。 図3は、実施例2の電圧検出回路を備えた車載用電池システムを例示する回路図である。 図4は、図3の車載用電池システムにおいて電池モジュールが逆接続された場合を示す回路図である。 図5は、実施例3の電圧検出回路を備えた車載用電池システムを例示する回路図である。 図6は、図5の車載用電池システムにおいて電池モジュールが逆接続された場合を示す回路図である。 図7は、実施例4の電圧検出回路を備えた車載用電池システムを例示する回路図である。 図8は、図7の車載用電池システムにおいて電池モジュールが逆接続された場合を示す回路図である。 図9は、比較例の電圧検出回路を備えた車載用電池システムを例示する回路図である。
 ここで、本発明の望ましい一例を示す。ただし、本発明は以下の例に限定されない。
 電圧検出回路は、複数の電圧信号線間において隣り合う信号線間の各々にツェナーダイオードが接続されていてもよい。そして、各々のツェナーダイオードは、隣り合う信号線間のうち、複数の単位電池が順接続状態のときに相対的に電位が高くなる一方の信号線にカソードが接続され、相対的に電位が低くなる他方の信号線にアノードが接続されていてもよい。更に、複数の電圧信号線の全て又はいずれかを除いた全てにおいて、ツェナーダイオードよりも電池モジュール側の位置に半導体スイッチがそれぞれ設けられていてもよい。そして、各々の半導体スイッチは、複数の単位電池が順接続状態のときにオン動作して切替対象の電圧信号線を導通状態とし、複数の単位電池が逆接続状態であるときにオフ動作して切替対象の電圧信号線を非導通状態とするように機能してもよい。
 この電圧検出回路は、複数の電圧信号線間において隣り合う信号線間の各々にツェナーダイオードが接続されているため、複数の単位電池が順接続状態のときに信号線間の電圧が過大になりすぎることを防ぐことができる。そして、複数の電圧信号線の全て又はいずれかを除いた全てにおいて、ツェナーダイオードよりも電池モジュール側の位置に半導体スイッチがそれぞれ設けられ、複数の単位電池が逆接続状態であるときにそれら半導体スイッチがオフ動作する構成であるため、複数の単位電池が逆接続された場合にツェナーダイオードを介して大電流が流れることを防ぐことができる。
 半導体スイッチは、NPN型のトランジスタとして構成されていてもよい。そして、当該半導体スイッチが設けられた電圧信号線のうちの電池間電極部側又は端部電極部側に配される一方側経路にエミッタが電気的に接続され、他方側経路にコレクタが電気的に接続され、当該半導体スイッチが設けられた電圧信号線とは異なる他の電圧信号線にベースが電気的に接続されていてもよい。そして、複数の単位電池が順接続状態のときには当該半導体スイッチが設けられた電圧信号線を介して印加されるエミッタ電位よりも他の電圧信号線を介して印加されるベース電位の方が高くなり、複数の単位電池が逆接続状態であるときには、当該半導体スイッチが設けられた電圧信号線を介して印加されるエミッタ電位よりも他の電圧信号線を介して印加されるベース電位の方が低くなる構成であってもよい。
 この電圧検出回路は、複数の単位電池が順接続状態のときには半導体スイッチ(NPN型のトランジスタ)が設けられた電圧信号線(即ち、半導体スイッチによって導通、非導通の切替対象となる電圧信号線)を介して当該半導体スイッチに印加されるエミッタ電位よりも他の電圧信号線を介して印加されるベース電位の方が高くなる。このため、ベース電流が十分に確保されれば、半導体スイッチが設けられた電圧信号線において一方側経路と他方側経路とを導通させることができる。一方、複数の単位電池が逆接続状態であるときには、当該半導体スイッチが設けられた電圧信号線を介して印加されるエミッタ電位よりも他の電圧信号線を介して印加されるベース電位の方が低くなるため半導体スイッチがオフ状態に切り替わる。よって、電圧信号線において一方側経路と他方側経路との間の導通を迅速且つ確実に遮断することができる。
 半導体スイッチは、PNP型のトランジスタとして構成され、当該半導体スイッチが設けられた電圧信号線のうちの電池間電極部側又は端部電極部側に配される一方側経路にエミッタが電気的に接続され、他方側経路にコレクタが電気的に接続され、当該半導体スイッチが設けられた電圧信号線とは異なる他の電圧信号線にベースが電気的に接続されていてもよい。そして、複数の単位電池が順接続状態のときには当該半導体スイッチが設けられた電圧信号線を介して印加されるエミッタ電位よりも他の電圧信号線を介して印加されるベース電位の方が低くなり、複数の単位電池が逆接続状態であるときには、当該半導体スイッチが設けられた電圧信号線を介して印加されるエミッタ電位よりも他の電圧信号線を介して印加されるベース電位の方が高くなる構成であってもよい。
 この電圧検出回路は、複数の単位電池が順接続状態のときには半導体スイッチ(PNP型のトランジスタ)が設けられた電圧信号線(即ち、半導体スイッチによって導通、非導通の切替対象となる電圧信号線)を介して当該半導体スイッチに印加されるエミッタ電位よりも他の電圧信号線を介して印加されるベース電位の方が低くなる。このため、ベース電流が十分に確保されれば、半導体スイッチが設けられた電圧信号線において一方側経路と他方側経路とを導通させることができる。一方、複数の単位電池が逆接続状態であるときには、当該半導体スイッチが設けられた電圧信号線を介して印加されるエミッタ電位よりも他の電圧信号線を介して印加されるベース電位の方が高くなるため半導体スイッチがオフ状態に切り替わる。よって、電圧信号線において一方側経路と他方側経路との間の導通を迅速且つ確実に遮断することができる。
 電圧検出回路は、上記一方側経路と上記他の電圧信号線との間の電圧を分圧する分圧回路を有していてもよい。そして、半導体スイッチのベースに分圧回路で分圧された電圧が印加される構成であってもよい。
 この構成によれば、信号線間の電圧(即ち、エミッタが接続される電圧信号線とベースが接続される他の電圧信号線の電位差)が大きくなる場合であっても半導体スイッチのベースに印加される電圧を抑えることができる。
 半導体スイッチのベースは、ベース抵抗を介して他の電圧信号線に電気的に接続されており、且つ当該半導体スイッチが設けられた電圧信号線の一方側経路には接続されていない構成であってもよい。
 この構成によれば、ベース電圧を高く設定しやすくなり、単位電池の電圧が低下した場合でも半導体スイッチをオン動作させ得るベース電流が確保され易くなる。
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示す車載用電池システム1は、複数の単位電池4が直列に接続されてなる車載用の電池モジュール2(以下、電池モジュール2ともいう)と、この電池モジュール2の各部位の電圧を検出し、各部位の電圧値に相当する検出値をそれぞれ伝達する車載電池用の電圧検出回路10(以下、電圧検出回路10ともいう)と、電圧検出回路10によって伝達される各検出値が入力される車載電池用の電池監視IC20(以下、電池監視IC20ともいう)とを備える。
 電池モジュール2は、車載用の電源として機能し得る蓄電手段であり、例えば電動車両(EVやHEV)の走行用モータの電源等として車両に搭載される。電池モジュール2は、例えば、リチウムイオン二次電池やニッケル水素二次電池などからなる単位電池4を複数個直列に接続した直列接続体として構成されている。なお、以下の説明では、各単位電池4を電池セルともいう。
 この電池モジュール2は、後述する電圧検出回路10に対して着脱可能とされており、例えば、電池モジュール2の端部電極部2A,2B及び電池間電極部2Cにそれぞれ接続された各端子3と各電圧信号線12とが着脱可能とされている。そして、正規の取付状態であれば、電圧検出回路10に対する電池モジュール2の取付状態は図1のようになる。ただし、製造時やメンテナンス時などにおいて図2のような逆接続状態となる懸念もある。この逆接続状態に対する対策については後述する。
 電池監視IC20(電池監視回路)は、後述する電圧検出回路10に設けられた複数の電圧信号線12に接続される入力端子をそれぞれ備えており、各電圧信号線12を介して入力されたアナログ電圧信号に基づき各単位電池4の端子電圧を検出し得る。なお、電池監視IC20は、入力された各アナログ電圧信号をデジタル信号に変換するAD変換器を有していてもよく、各アナログ電圧信号に基づく判定や制御を行い得る制御回路(CPU等)を有していてもよい。
 電圧検出回路10は、複数の電圧信号線12、各電圧信号線12に設けられる電流制限抵抗19、各信号線間にそれぞれ配置されるツェナーダイオード16、各信号線間にそれぞれ配置される分圧回路18、端部の信号線を除く残りの電圧信号線12にそれぞれ設けられる半導体スイッチ14などを備える。なお、図1では、一部の単位電池4を省略して示しており、省略された単位電池4に対応する回路も省略して示している。
 図1のように、複数の電圧信号線12は、複数の単位電池4が直列に接続されてなる電池モジュール2の電池間電極部2C(以下、電極部2Cともいう)又は電池モジュール2の端部電極部2A,2B(以下、それぞれを電極部2A,2Bともいう)に電気的に接続されている。
 電極部2Aは、電池モジュール2の一端部の電極部であり、電池モジュール2において、電位が最も大きくなる電極部である。電極部2Bは、電池モジュール2の他端部の電極部であり、電池モジュール2において、電位が最も小さくなる電極部である。電池間の電極部2Cは、直列に接続された単位電池4の各電池間において一方側の正極と他方側の負極が電気的に接続された部分であり、複数の電池間電極部2Cは、電極部2Aに近づくほど電位が大きくなる。
 図1の例では、複数の電圧信号線12のうち電極部2Aに接続される信号線が第1の電圧信号線12Cであり、電極部2B,2Cに接続される信号線が第2の電圧信号線12Dである。第2の電圧信号線12Dは、後述する半導体スイッチ14が配置される信号線であり、一方側経路12B及び他方側経路12Aによって構成されている。一方側経路12Bは、半導体スイッチ14が設けられた電圧信号線12(第2の電圧信号線12D)において、半導体スイッチ14よりも電池モジュール側に配置される信号線である。他方側経路12Aは、半導体スイッチ14が設けられた電圧信号線12(第2の電圧信号線12D)において、半導体スイッチ14よりも電池監視IC20側に配置される信号線である。
 電圧検出回路10は、電極部2A,2B,2Cにそれぞれ接続される複数の電圧信号線12において電池モジュール2での接続部位が隣り合う信号線間にそれぞれツェナーダイオード16が接続されている。具体的には、複数の電圧信号線12は、電池モジュール2との接続部位が回路において電極部2Bに近いほど正常状態のとき(図1のように電池モジュール2が順接続状態(正規の接続状態)であるとき)に印加される電位が低く、電池モジュール2との接続部位が回路において電極部2Aに近いほど正常状態のときに印加される電位が高くなる。そして、各電圧信号線12と各電圧信号線12の次に電位が高くなる電圧信号線12との間には、ツェナーダイオード16が各単位電池4(電池セル)と並列に接続されている。
 各々のツェナーダイオード16は、電池モジュール2との接続位置が回路において隣り合う電圧信号線間のうち、複数の単位電池4が順接続状態(正規の接続状態)のときに相対的に電位が高くなる一方の信号線にカソードが接続され、相対的に電位が低くなる他方の信号線にアノードが接続されている。この構成では、複数の単位電池4が順接続状態(正規の接続状態)のときにツェナーダイオード16と並列に接続された単位電池4(電池セル)の端子間電圧が所定値まで高くなると、ツェナーダイオード16のカソード側からアノード側に電流が流れ、ツェナーダイオード16の両端間の電圧(即ち、ツェナーダイオード16と並列に接続された電圧信号線間の電圧)が所定電圧以下に維持される。
 各電圧信号線12には、電流制限抵抗19が設けられている。電流制限抵抗19は、各電圧信号線12における分圧回路18の接続位置よりも電池モジュール2側に設けられており、単位電池4(電池セル)から電池監視IC20に流れ込む電流を制限している。なお、電流制限抵抗19は、許容電流値以上の電流が流れた場合に溶断する構成であってもよい。
 複数の電圧信号線12のうち、電極部2Aに接続された電圧信号線12(第1の電圧信号線12C)を除く残りの電圧信号線12(第2の電圧信号線12D)には、半導体スイッチ14が設けられている。半導体スイッチ14は、NPN型のトランジスタとして構成され、第2の電圧信号線12Dにおいてツェナーダイオード16よりも電池モジュール2側の位置にそれぞれ設けられている。各々の半導体スイッチ14は、図1のように複数の単位電池4が順接続状態(正規の接続状態)のときにオン動作して切替対象の電圧信号線12(即ち、自身が設けられた電圧信号線12)を導通状態とし、図2のように複数の単位電池4が逆接続されて逆接続状態であるときにオフ動作して切替対象の電圧信号線12を非導通状態とするように機能する。
 NPN型のトランジスタとして構成される半導体スイッチ14は、その半導体スイッチ14(自身)が設けられた電圧信号線12のうちの電池間電極部2C側又は端部電極部2B側に配される一方側経路12Bにエミッタが電気的に接続され、他方側経路12Aにコレクタが電気的に接続され、その半導体スイッチ14(自身)が設けられた電圧信号線12とは異なる他の電圧信号線12(具体的には、その半導体スイッチ14が設けられた電圧信号線12が負極に接続される単位電池4(電池セル)の正極に接続される電圧信号線12)にベースが電気的に接続されている。
 電圧検出回路10において、各単位電池4の両端に接続される電圧信号線間(即ち、電池モジュール2との接続位置が回路において隣り合う2つの電圧信号線12の間)には、その電圧信号線間の電圧を分圧する分圧回路18が接続されている。電圧信号線間にそれぞれ設けられる各々の分圧回路18は、分圧抵抗18A,18Bが直列に接続された構成をなし、分圧抵抗18A,18Bの間の中間部が半導体スイッチ14のベースに接続され、分圧抵抗18A,18Bが直列に接続された部分(直接構成部)の一端がその半導体スイッチ14のエミッタに接続されている。具体的には、半導体スイッチ14によって導通状態と非導通状態が切り替えられる切替対象の電圧信号線12の一方側経路12Bにその半導体スイッチ14のエミッタが接続され、その一方側経路12Bと他の電圧信号線12(切替対象の電圧信号線12が負極に接続される単位電池4において正極に接続される電圧信号線12)との間の電圧を分圧する構成で分圧回路18が設けられ、その半導体スイッチ14のベースに対してその分圧回路18で分圧された電圧が印加される。
 このように構成された電圧検出回路10は、図1のように複数の単位電池4が順接続状態(正規の接続状態)のときには、単位電池4(電池セル)の負極側がその単位電池4と並列に接続された分圧回路18の一方の端部に電気的に接続され、単位電池4(電池セル)の正極側がその分圧回路18の他方の端部に電気的に接続され、その分圧回路18の一方の端部に接続されたエミッタよりもその分圧回路18の中間部に接続されたベースの方が電位が高くなる。このように、順接続状態(正規の接続状態)のときには、各半導体スイッチ14のベース電位はエミッタ電位よりも高くなり且つベースエミッタ間の電位差は、単位電池4の正負極間の電位差よりも小さく抑えられる。更に、図1のような順接続状態(正規の接続状態)のときに各半導体スイッチ14をオン動作させ得る十分なベース電流が流れるように分圧抵抗18A,18Bの各抵抗値が設定されている。このため、順接続状態(正規の接続状態)のときには、各半導体スイッチ14がオン状態となり、各電圧信号線12において一方側経路と他方側経路とを導通させることができる。なお、順接続状態(正規の接続状態)のときに分圧回路18を流れる電流を低く抑えるように分圧抵抗18A,18Bの抵抗値は十分大きく設定される。
 一方、図2のように複数の単位電池4が逆接続状態のときには、単位電池4(電池セル)の正極側がその単位電池4と並列に接続された分圧回路18の一方の端部に電気的に接続され、単位電池4(電池セル)の負極側がその分圧回路18の他方の端部に電気的に接続され、その分圧回路18の一方の端部に接続されたエミッタよりもその分圧回路18の中間部に接続されたベースの方が電位が低くなる。このように、逆接続状態のときには各半導体スイッチ14のベース電位はエミッタ電位よりも低くなるため、各半導体スイッチ14はオフ状態に切り替わる。よって、各半導体スイッチ14が設けられた各電圧信号線12において一方側経路12Bと他方側経路12Aとの間の導通を遮断することができる。
 次に、上記構成の効果を例示する。
 本構成の電圧検出回路10は、複数の単位電池4の電池間電極部2C又は電池モジュール2の端部電極部2A,2Bに電気的に接続される複数の電圧信号線12を備えており、これら電圧信号線12を検出経路として電池モジュール2の各部位の電圧を検出することができる。更に、電極部2B,2Cに接続された電圧信号線12に半導体スイッチ14が設けられ、この半導体スイッチ14は、複数の単位電池4が順接続状態(正規の接続状態)であるときにオン動作して電圧信号線12を導通状態とし、複数の単位電池4が逆接続状態であるときにオフ動作して電圧信号線12を非導通状態とする。このように、電池モジュール2が逆接続されて逆接続状態であるときに半導体スイッチ14がオフ動作し、この半導体スイッチ14が設けられた電圧信号線12を非導通状態に切り替えることができる。よって、電圧信号線12を介して想定範囲外の異常電圧が入力されることを防ぐことができる。
 本構成の電圧検出回路10は、複数の電圧信号線12において電池モジュール2での接続部位が隣り合う信号線間にそれぞれツェナーダイオード16が接続されている。そして、各々のツェナーダイオード16は、隣り合う信号線間のうち、複数の単位電池4が順接続状態(正規の接続状態)のときに相対的に電位が高くなる一方の信号線にカソードが接続され、相対的に電位が低くなる他方の信号線にアノードが接続されている。更に、複数の電圧信号線12のいずれかを除いた全てにおいて、ツェナーダイオード16よりも電池モジュール2側の位置に半導体スイッチ14がそれぞれ設けられている。そして、各々の半導体スイッチ14は、複数の単位電池4が順接続状態(正規の接続状態)のときにオン動作して切替対象の電圧信号線12を導通状態とし、複数の単位電池4が逆接続状態であるときにオフ動作して切替対象の電圧信号線12を非導通状態とするように機能する。
 このように、電圧検出回路10は、電池モジュール2での接続部位が隣り合う信号線間にそれぞれツェナーダイオード16が接続されているため、順接続状態(正規の接続状態)のときに信号線間の電圧が過大になりすぎることを防ぐことができる。そして、複数の電圧信号線12のいずれかを除いた全てにおいて、ツェナーダイオード16よりも電池モジュール2側の位置に半導体スイッチ14がそれぞれ設けられ、複数の単位電池4が逆接続状態であるときにそれら半導体スイッチ14がオフ動作する構成であるため、複数の単位電池4が逆接続された場合にツェナーダイオード16を介して大電流が流れることを防ぐことができる。
 また、半導体スイッチ14は、NPN型のトランジスタとして構成されている。そして、当該半導体スイッチ14が設けられた電圧信号線12のうちの電池間電極部2C側又は端部電極部2B側に配される一方側経路12Bにエミッタが電気的に接続され、他方側経路12Aにコレクタが電気的に接続され、当該半導体スイッチ14が設けられた電圧信号線12とは異なる他の電圧信号線12にベースが電気的に接続されている。そして、複数の単位電池4が順接続状態(正規の接続状態)のときには当該半導体スイッチ14が設けられた電圧信号線12を介して印加されるエミッタ電位よりも他の電圧信号線12を介して印加されるベース電位の方が高くなり、複数の単位電池4が逆接続状態であるときには、当該半導体スイッチ14が設けられた電圧信号線12を介して印加されるエミッタ電位よりも他の電圧信号線12を介して印加されるベース電位の方が低くなる。
 このように、電圧検出回路10は、複数の単位電池4が順接続状態(正規の接続状態)のときには半導体スイッチ14(NPN型のトランジスタ)が設けられた電圧信号線12(即ち、半導体スイッチ14によって導通、非導通の切替対象となる電圧信号線12)を介してその半導体スイッチ14に印加されるエミッタ電位よりも他の電圧信号線12を介して印加されるベース電位の方が高くなる。このため、ベース電流が十分に確保されれば、半導体スイッチ14が設けられた電圧信号線12において一方側経路12Bと他方側経路12Aとを導通させることができる。一方、複数の単位電池4が逆接続状態であるときには、半導体スイッチ14が設けられた電圧信号線12を介して印加されるエミッタ電位よりも他の電圧信号線12を介して印加されるベース電位の方が低くなるためその半導体スイッチ14がオフ状態に切り替わる。よって、電圧信号線12において一方側経路12Bと他方側経路12Aとの間の導通を迅速且つ確実に遮断することができる。
 電圧検出回路10は、切替対象の電圧信号線12の一方側経路12Bと他の電圧信号線12(複数の電圧信号線12のうち、切替対象の電圧信号線12の次に電位が高くなる電圧信号線)との間の電圧を分圧する分圧回路18を有していてもよい。そして、その切替対象の電圧信号線12に設けられた半導体スイッチ14のベースに分圧回路18で分圧された電圧が印加される構成であってもよい。
 この構成によれば、信号線間の電圧(即ち、エミッタが接続される電圧信号線12とベースが接続される他の電圧信号線12の電位差)が大きくなる場合であっても半導体スイッチ14のベースに印加される電圧を抑えることができる。
 <実施例2>
 次に、図3、図4等を参照し、実施例2の電圧検出回路210を備えた車載用電池システム201について説明する。なお、以下で説明する車載用電池システム201は、図1等で示す電圧検出回路10に代えて図3等で示す電圧検出回路210を用いた点のみが上述した車載用電池システム1(図1)と異なり、電池モジュール2、電池監視IC20などは実施例1で説明した車載用電池システム1と同一である。よって、以下では、電圧検出回路210の構成について重点的に説明し、図1の車載用電池システム1と同一の構成をなす部分については、図1と同一の符号を付し、詳細な説明は省略する。
 図3で示す電圧検出回路210は、複数の電圧信号線212、各電圧信号線212に設けられる電流制限抵抗19、各信号線間にそれぞれ配置されるツェナーダイオード16、各信号線間にそれぞれ配置される分圧回路18、所定の電圧信号線212(第1の電圧信号線212C)を除く残りの電圧信号線212(第2の電圧信号線212D)にそれぞれ設けられる半導体スイッチ214などを備える。なお、図3では、一部の単位電池4を省略して示しており、省略された単位電池4に対応する回路も省略して示している。また、図3の電圧検出回路210で用いられる電流制限抵抗19、ツェナーダイオード16、分圧回路18は、実施例1の電圧検出回路10に用いられる電流制限抵抗19、ツェナーダイオード16、分圧回路18のそれぞれと同一の構成をなし、同様に機能する。
 図3のように、複数の電圧信号線212は、複数の単位電池4が直列に接続されてなる電池モジュール2の電池間の電極部2C又は電池モジュール2の両端の電極部2A,2Bに電気的に接続されている。
 図3の例では、複数の電圧信号線212のうち電極部2Bに接続される信号線が第1の電圧信号線212Cであり、電極部2A,2Cに接続される信号線が第2の電圧信号線212Dである。第2の電圧信号線212Dは、後述する半導体スイッチ214が配置される信号線であり、一方側経路212B及び他方側経路212Aによって構成されている。一方側経路212Bは、半導体スイッチ214が設けられた電圧信号線212(第2の電圧信号線212D)において、半導体スイッチ214よりも電池モジュール2側に配置される信号線である。他方側経路212Aは、半導体スイッチ214が設けられた電圧信号線212(第2の電圧信号線212D)において、半導体スイッチ214よりも電池監視IC20側に配置される信号線である。
 電圧検出回路210は、電極部2A,2B,2Cにそれぞれ接続される複数の電圧信号線212において電池モジュール2での接続部位が隣り合う信号線間にそれぞれツェナーダイオード16が接続されている。複数の電圧信号線212は、電池モジュール2との接続部位が回路において電極部2Bに近いほど正常状態のとき(図3のように電池モジュール2が順接続状態(正規の接続状態)であるとき)に印加される電位が低く、電池モジュール2との接続部位が回路において電極部2Aに近いほど正常状態のときに印加される電位が高くなる。そして、各電圧信号線212と各電圧信号線212の次に電位が高くなる電圧信号線212との間には、ツェナーダイオード16が各単位電池4(電池セル)と並列に接続されている。
 各々のツェナーダイオード16は、電池モジュール2との接続位置が回路において隣り合う電圧信号線間において、複数の単位電池4が順接続状態(正規の接続状態)のときに相対的に電位が高くなる一方の信号線にカソードが接続され、相対的に電位が低くなる他方の信号線にアノードが接続されている。また、各電圧信号線212には、電流制限抵抗19が設けられている。電流制限抵抗19は、各電圧信号線212における分圧回路18の接続位置よりも電池モジュール2側に設けられており、単位電池4(電池セル)から電池監視IC20に流れ込む電流を制限している。これらツェナーダイオード16及び電流制限抵抗19は、実施例1におけるツェナーダイオード16及び電流制限抵抗19と同様に機能する。
 複数の電圧信号線212のうち、電極部2Bに接続された電圧信号線212(第1の電圧信号線212C)を除く残りの電圧信号線212(第2の電圧信号線212D)には、半導体スイッチ214が設けられている。半導体スイッチ214は、PNP型のトランジスタとして構成され、第2の電圧信号線212Dにおいてツェナーダイオード16よりも電池モジュール2側の位置にそれぞれ設けられている。各々の半導体スイッチ214は、図3のように複数の単位電池4が順接続状態(正規の接続状態)のときにオン動作して切替対象の電圧信号線212(即ち、自身が設けられた電圧信号線212)を導通状態とし、図4のように複数の単位電池4が逆接続状態であるときにオフ動作して切替対象の電圧信号線212を非導通状態とするように機能する。
 PNP型のトランジスタとして構成される半導体スイッチ214は、その半導体スイッチ214(自身)が設けられた電圧信号線212のうちの電池間電極部2C側又は端部電極部2B側に配される一方側経路212Bにエミッタが電気的に接続され、他方側経路212Aにコレクタが電気的に接続され、その半導体スイッチ214(自身)が設けられた電圧信号線212とは異なる他の電圧信号線212(具体的には、その半導体スイッチ214が設けられた電圧信号線212が正極に接続される単位電池4(電池セル)の負極に接続される電圧信号線212)にベースが電気的に接続されている。
 電圧検出回路210において、各単位電池4の両端に接続される電圧信号線間(即ち、電池モジュール2との接続位置が回路において隣り合う2つの電圧信号線212の間)には、その電圧信号線間の電圧を分圧する分圧回路18が接続されている。電圧信号線間にそれぞれ設けられる各々の分圧回路18は、分圧抵抗18A,18Bが直列に接続された構成をなし、分圧抵抗18A,18Bの間の中間部が半導体スイッチ214のベースに接続され、分圧抵抗18A,18Bが直列に接続された部分(直接構成部)の一端がその半導体スイッチ214のエミッタに接続されている。具体的には、半導体スイッチ214によって導通状態と非導通状態が切り替えられる切替対象の電圧信号線212の一方側経路212Bにその半導体スイッチ214のエミッタが接続され、その一方側経路212Bと他の電圧信号線212(切替対象の電圧信号線212が正極に接続される単位電池4において負極に接続される電圧信号線212)との間の電圧を分圧する構成で分圧回路18が設けられ、その半導体スイッチ214のベースに対してその分圧回路18で分圧された電圧が印加される。
 このように構成された電圧検出回路210は、図3のように複数の単位電池4が順接続状態(正規の接続状態)のときには、単位電池4(電池セル)の負極側がその単位電池4と並列に接続された分圧回路18の一方の端部に電気的に接続され、単位電池4(電池セル)の正極側がその分圧回路18の他方の端部に電気的に接続され、その分圧回路18の他方の端部に接続されたエミッタよりもその分圧回路18の中間部に接続されたベースの方が電位が低くなる。このように、順接続状態(正規の接続状態)のときには、各半導体スイッチ214のベース電位はエミッタ電位よりも低くなり且つベースエミッタ間の電位差は、単位電池4の正負極間の電位差よりも小さく抑えられる。更に、図3のような順接続状態(正規の接続状態)のときに各半導体スイッチ214をオン動作させ得る十分なベース電流が流れるように分圧抵抗18A,18Bの各抵抗値が設定されている。このため、順接続状態(正規の接続状態)のときには、各半導体スイッチ214がオン状態となり、各電圧信号線212において一方側経路212Bと他方側経路212Aとを導通させることができる。なお、順接続状態(正規の接続状態)のときに分圧回路18を流れる電流を低く抑えるように分圧抵抗18A,18Bの抵抗値は十分大きく設定される。
 一方、図4のように複数の単位電池4が逆接続状態のときには、単位電池4(電池セル)の正極側がその単位電池4と並列に接続された分圧回路18の一方の端部に電気的に接続され、単位電池4(電池セル)の負極側がその分圧回路18の他方の端部に電気的に接続され、その分圧回路18の他方の端部に接続されたエミッタよりもその分圧回路18の中間部に接続されたベースの方が電位が高くなる。このように、逆接続状態のときには各半導体スイッチ214のベース電位はエミッタ電位よりも高くなるため、各半導体スイッチ214はオフ状態に切り替わる。よって、各半導体スイッチ214が設けられた各電圧信号線212において一方側経路212Bと他方側経路212Aとの間の導通を遮断することができる。
 以上のような電圧検出回路210(図3)でも、図1等で示す電圧検出回路10と同様の効果が得られる。
 電圧検出回路210は、複数の単位電池4が順接続状態(正規の接続状態)のときには半導体スイッチ214(PNP型のトランジスタ)が設けられた電圧信号線212(即ち、半導体スイッチ214によって導通、非導通の切替対象となる電圧信号線212)を介して当該半導体スイッチ214に印加されるエミッタ電位よりも他の電圧信号線212(複数の電圧信号線212のうち、切替対象の電圧信号線212の次に電位が低くなる電圧信号線212)を介して印加されるベース電位の方が低くなる。このため、ベースエミッタ間電圧が十分に確保されれば、半導体スイッチ214が設けられた電圧信号線212において一方側経路212Bと他方側経路212Aとを導通させることができる。一方、複数の単位電池4が逆接続されて逆接続状態であるときには、当該半導体スイッチ214が設けられた電圧信号線212を介して印加されるエミッタ電位よりも他の電圧信号線212を介して印加されるベース電位の方が高くなるため半導体スイッチ214がオフ状態に切り替わる。よって、電圧信号線212において一方側経路212Bと他方側経路212Aとの間の導通を遮断することができる。
 <実施例3>
 次に、図5、図6等を参照し、実施例3の電圧検出回路310を備えた車載用電池システム301について説明する。なお、以下で説明する車載用電池システム301は、図1等で示す電圧検出回路10に代えて図5等で示す電圧検出回路310を用いた点のみが上述した車載用電池システム1(図1)と異なり、電池モジュール2、電池監視IC20などは実施例1で説明した車載用電池システム1と同一である。よって、以下では、電圧検出回路310の構成について重点的に説明し、図1の車載用電池システム1と同一の構成をなす部分については、図1と同一の符号を付し、詳細な説明は省略する。また、実施例3の電圧検出回路310は、実施例1の電圧検出回路10から各分圧回路18を省略し、ベース抵抗318を設けた点のみが実施例1と異なる。よって、以下の説明では、相違点を重点的に説明し、実施例1の電圧検出回路10と同一の構成については電圧検出回路10と同一の符号を付し、詳細な説明は省略する。
 図5で示す電圧検出回路310でも、NPN型のトランジスタとして構成される半導体スイッチ14が電極部2B,2Cに接続された電圧信号線12(第2の電圧信号線12D)にそれぞれ設けられている。
 半導体スイッチ14は、この半導体スイッチ14によって導通状態と非導通状態が切り替えられる切替対象の電圧信号線12の一方側経路12Bにエミッタが接続され、他方側経路12Aにコレクタが接続され、ベースは、他の電圧信号線12(具体的には、その切替対象の電圧信号線12が負極に接続される単位電池4において正極に接続される電圧信号線12)にベース抵抗318を介して接続されている。半導体スイッチ14のベースは、ベース抵抗318を介して他の電圧信号線12(複数の電圧信号線12のうち、切替対象の電圧信号線12の次に電位が高くなる電圧信号線12)に電気的に接続されており、且つ当該半導体スイッチ14が設けられた切替対象の電圧信号線12の一方側経路12Bには接続されていない構成となっている。
 このように構成された電圧検出回路310は、図5のように複数の単位電池4が順接続状態(正規の接続状態)のときには、信号線間の回路部(半導体スイッチ14及びその半導体スイッチ14のベースに接続されたベース抵抗318からなる回路部)と並列に接続された単位電池4(電池セル)の負極側がその半導体スイッチ14のエミッタに接続され、その回路部と並列に接続された単位電池4の正極側がその回路部を構成するベース抵抗318を介してその半導体スイッチ14のベースに接続される。このような構成であるため、順接続状態(正規の接続状態)のときには各半導体スイッチ14のベース電位がエミッタ電位よりも高くなり且つ各半導体スイッチ14をオン動作させ得る十分なベース電流が流れるように単位電池4及びベース抵抗318が構成されているため、順接続状態(正規の接続状態)のときには、各半導体スイッチ14がオン状態となり、各電圧信号線12において一方側経路12Bと他方側経路12Aとを導通させることができる。
 一方、図6のように複数の単位電池4が逆接続状態のときには、信号線間の回路部(半導体スイッチ14及びその半導体スイッチ14のベースに接続されたベース抵抗からなる回路部)と並列に接続された単位電池4(電池セル)の正極側がその半導体スイッチ14のエミッタに接続され、その回路部と並列に接続された単位電池4の負極側がその回路部を構成するベース抵抗318を介してその半導体スイッチ14のベースに接続される。このように、逆接続状態のときには各半導体スイッチ14のベース電位はエミッタ電位よりも低くなるため、各半導体スイッチ14はオフ状態に切り替わる。よって、各半導体スイッチ14が設けられた各電圧信号線12において一方側経路12Bと他方側経路12Aとの間の導通を迅速に且つ確実に遮断することができる。
 以上のように、本構成の電圧検出回路310は、半導体スイッチ14のベースが、ベース抵抗318を介して他の電圧信号線12(複数の電圧信号線12のうち、順接続状態(正規の接続状態)のときに当該半導体スイッチ14が設けられた電圧信号線12の次に電位が高くなる電圧信号線12)に電気的に接続されており、且つそのベースが、当該半導体スイッチ14が設けられた電圧信号線12の一方側経路12Bに接続されていない構成である。この構成によれば、ベース電圧を高く設定しやすくなり、単位電池4の電圧が低下した場合でも半導体スイッチ14をオン動作させ得るベース電流が確保され易くなる。
 <実施例4>
 次に、図7、図8等を参照し、実施例4の電圧検出回路410を備えた車載用電池システム401について説明する。なお、以下で説明する車載用電池システム401は、図1等で示す電圧検出回路10に代えて図7等で示す電圧検出回路410を用いた点のみが上述した車載用電池システム1(図1)と異なり、電池モジュール2、電池監視IC20などは実施例1で説明した車載用電池システム1と同一である。よって、以下では、電圧検出回路410の構成について重点的に説明し、図1の車載用電池システム1と同一の構成をなす部分については、図1と同一の符号を付し、詳細な説明は省略する。また、実施例4の電圧検出回路410は、実施例2の電圧検出回路210から各分圧回路18を省略し、ベース抵抗418を設けた点のみが実施例2と異なる。よって、以下の説明では、相違点を重点的に説明し、実施例2の電圧検出回路210と同一の構成については電圧検出回路210と同一の符号を付し、詳細な説明は省略する。
 図7で示す電圧検出回路410でも、PNP型のトランジスタとして構成される半導体スイッチ214が電極部2A,2Cに接続された各電圧信号線212(第2の電圧信号線212D)にそれぞれ設けられている。
 半導体スイッチ214は、この半導体スイッチ214によって導通状態と非導通状態が切り替えられる切替対象の電圧信号線212の一方側経路212Bにエミッタが接続され、他方側経路212Aにコレクタが接続され、ベースは、他の電圧信号線212(具体的には、その切替対象の電圧信号線212が正極に接続される単位電池4において負極に接続される電圧信号線212)にベース抵抗418を介して接続されている。半導体スイッチ214のベースは、ベース抵抗418を介して他の電圧信号線212(複数の電圧信号線212のうち、切替対象の電圧信号線212の次に電位が低くなる電圧信号線212)に電気的に接続されており、且つ当該半導体スイッチ214が設けられた切替対象の電圧信号線212の一方側経路212Bには接続されていない構成となっている。
 このように構成された電圧検出回路410は、図7のように複数の単位電池4が順接続状態(正規の接続状態)のときには、信号線間の回路部(半導体スイッチ214及びその半導体スイッチ214のベースに接続されたベース抵抗418からなる回路部)と並列に接続された単位電池4(電池セル)の正極側がその半導体スイッチ214のエミッタに接続され、その回路部と並列に接続された単位電池4の負極側がその回路部を構成するベース抵抗418を介してその半導体スイッチ214のベースに接続される。このような構成であるため、順接続状態(正規の接続状態)のときには各半導体スイッチ214のベース電位がエミッタ電位よりも低くなり且つ各半導体スイッチ214をオン動作させ得る十分なベース電流が流れるように単位電池4及びベース抵抗418が構成されているため、順接続状態(正規の接続状態)のときには、各半導体スイッチ214がオン状態となり、各電圧信号線212において一方側経路212Bと他方側経路212Aとを導通させることができる。
 一方、図8のように複数の単位電池4が逆接続状態のときには、信号線間の回路部(半導体スイッチ214及びその半導体スイッチ214のベースに接続されたベース抵抗418からなる回路部)と並列に接続された単位電池4(電池セル)の負極側がその半導体スイッチ214のエミッタに接続され、その回路部と並列に接続された単位電池4の正極側がその回路部を構成するベース抵抗418を介してその半導体スイッチ214のベースに接続される。このように、逆接続状態のときには各半導体スイッチ214のベース電位はエミッタ電位よりも高くなるため、各半導体スイッチ214はオフ状態に切り替わる。よって、各半導体スイッチ214が設けられた各電圧信号線212において一方側経路212Bと他方側経路212Aとの間の導通を迅速に且つ確実に遮断することができる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
 上述した実施例では、電池モジュール2の一例を示したが、電池モジュール2を構成する単位電池の数は複数であればよく、その数は限定されない。また、電池モジュールの各部位に接続される電圧信号線の数も複数であればよく、その数は限定されない。
 上述した実施例では、電池モジュール2の端部電極部2A,2B及び全ての電池間電極部2Cに電圧信号線が接続された構成を例示したが、電池モジュール2の端部電極部2A,2B及び全ての電池間電極部2Cのうちいずれか1又は複数位置に電圧信号線が接続されていなくてもよい。例えば、直列に接続された単位電池4において複数個おきに電圧信号線が接続されていてもよい。
 上述した実施例では、単位電池4(電池セル)として、ニッケル水素電池やリチウムイオン電池といった二次電池を例示したが、これらの二次電池の代わりに、電気二重層キャパシタなどの蓄電手段を用いてもよい。
 上述した実施例では、電圧検出回路の外部に電池モジュール2が設けられた構成を例示したが、電圧検出回路は、電池モジュール2を含んだ構成であってもよい。つまり、電圧検出回路は、構成要素として電池モジュール2を含んでいてもよく、含んでいなくてもよい。電圧検出回路が構成要素として電池モジュール2を含む場合、例えば、半導体スイッチ、ツェナーダイオード、電圧信号線などが基板に設けられてなる回路構成体と、電池モジュール2とが一体的に構成されていてもよい。
 上述した実施例では、電圧検出回路が1つの電池モジュール2の各部位を監視する例を示したが、車両内に複数の電池モジュール2が設けられる場合、複数の電池モジュール2を監視するようにいずれかの実施例の電圧検出回路が設けられていてもよく、各電池モジュール2にそれぞれ対応するようにいずれかの実施例の電圧検出回路が設けられていてもよい。例えば、電池モジュール2が複数個直列に接続された電池システムを監視対象とする場合、各電池モジュール2に対応するように上述したいずれかの実施例の電圧検出回路がそれぞれ設けられ、各電圧検出回路に対応するように電池監視IC20が設けられていればよい。
 上述した実施例では、電池モジュール2に接続された複数の電圧信号線のうち、一方側の端部の電圧信号線(第1の電圧信号線)を除く残り全ての電圧信号線(第2の電圧信号線)に半導体スイッチが設けられた構成を例示したが、順接続状態(正規の接続状態)のときにオン動作し、逆接続状態のときにオフ動作する接続構成であれば、一方側の端部の電圧信号線(第1の電圧信号線)に半導体スイッチを設けてもよい。例えば、図1の第1の電圧信号線12Cに、図3のような半導体スイッチ214を同様の構成で設けてもよい。
 1,201,301,401…車載用電池システム
 2…電池モジュール
 2A,2B…端部電極部
 2C…電池間電極部
 4…単位電池
 10,210,310,410…電圧検出回路
 12,212…電圧信号線
 14,214…半導体スイッチ
 16…ツェナーダイオード
 18…分圧回路
 318,418…ベース抵抗

Claims (6)

  1.  複数の単位電池が直列に接続されてなる電池モジュールの電圧を検出する電圧検出回路であって、
     直列に接続された複数の前記単位電池の電池間電極部又は前記電池モジュールの端部電極部に電気的に接続される複数の電圧信号線と、
     前記複数の電圧信号線間に接続される、前記単位電池又は前記電池モジュールが順接続状態であるときにオン動作して前記電圧信号線を導通状態とし、前記単位電池又は前記電池モジュールが逆接続状態であるときにオフ動作して前記電圧信号線を非導通状態とする半導体スイッチと、
    を有する車載電池用の電圧検出回路。
  2.  複数の前記電圧信号線間において隣り合う信号線間の各々にツェナーダイオードが接続され、
     各々の前記ツェナーダイオードは、隣り合う信号線間のうち、複数の前記単位電池が順接続状態のときに相対的に電位が高くなる一方の信号線にカソードが接続され、相対的に電位が低くなる他方の信号線にアノードが接続され、
     複数の前記電圧信号線の全て又はいずれかを除いた全てにおいて、前記ツェナーダイオードよりも前記電池モジュール側の位置に前記半導体スイッチがそれぞれ設けられ、
     各々の前記半導体スイッチは、複数の前記単位電池が順接続状態のときにオン動作して切替対象の前記電圧信号線を導通状態とし、複数の前記単位電池が逆接続状態であるときにオフ動作して切替対象の前記電圧信号線を非導通状態とする請求項1に記載の車載電池用の電圧検出回路。
  3.  前記半導体スイッチは、NPN型のトランジスタとして構成され、当該半導体スイッチが設けられた前記電圧信号線のうちの前記電池間電極部側又は前記端部電極部側に配される一方側経路にエミッタが電気的に接続され、他方側経路にコレクタが電気的に接続され、当該半導体スイッチが設けられた前記電圧信号線とは異なる他の電圧信号線にベースが電気的に接続され、複数の前記単位電池が順接続状態のときには当該半導体スイッチが設けられた前記電圧信号線を介して印加されるエミッタ電位よりも前記他の電圧信号線を介して印加されるベース電位の方が高くなり、複数の前記単位電池が逆接続状態であるときには、当該半導体スイッチが設けられた前記電圧信号線を介して印加されるエミッタ電位よりも前記他の電圧信号線を介して印加されるベース電位の方が低くなる請求項1又は請求項2に記載の車載電池用の電圧検出回路。
  4.  前記半導体スイッチは、PNP型のトランジスタとして構成され、当該半導体スイッチが設けられた前記電圧信号線のうちの前記電池間電極部側又は前記端部電極部側に配される一方側経路にエミッタが電気的に接続され、他方側経路にコレクタが電気的に接続され、当該半導体スイッチが設けられた前記電圧信号線とは異なる他の電圧信号線にベースが電気的に接続され、複数の前記単位電池が順接続状態のときには当該半導体スイッチが設けられた前記電圧信号線を介して印加されるエミッタ電位よりも前記他の電圧信号線を介して印加されるベース電位の方が低くなり、複数の前記単位電池が逆接続状態であるときには、当該半導体スイッチが設けられた前記電圧信号線を介して印加されるエミッタ電位よりも前記他の電圧信号線を介して印加されるベース電位の方が高くなる請求項1又は請求項2に記載の車載電池用の電圧検出回路。
  5.  前記一方側経路と前記他の電圧信号線との間の電圧を分圧する分圧回路を有し、
     前記半導体スイッチのベースには、前記分圧回路で分圧された電圧が印加される請求項3又は請求項4に記載の車載電池用の電圧検出回路。
  6.  前記半導体スイッチのベースは、ベース抵抗を介して前記他の電圧信号線に電気的に接続されており、且つ当該半導体スイッチが設けられた前記電圧信号線の前記一方側経路には接続されていない請求項3又は請求項4に記載の車載電池用の電圧検出回路。
PCT/JP2017/025699 2016-07-26 2017-07-14 車載電池用の電圧検出回路 WO2018021059A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146077A JP2018019474A (ja) 2016-07-26 2016-07-26 車載電池用の電圧検出回路
JP2016-146077 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018021059A1 true WO2018021059A1 (ja) 2018-02-01

Family

ID=61016840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025699 WO2018021059A1 (ja) 2016-07-26 2017-07-14 車載電池用の電圧検出回路

Country Status (2)

Country Link
JP (1) JP2018019474A (ja)
WO (1) WO2018021059A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095159A (ja) * 2000-09-13 2002-03-29 Keihin Corp 保護回路
JP2003037933A (ja) * 2001-07-24 2003-02-07 Koito Mfg Co Ltd 電子機器の保護装置
JP2015201912A (ja) * 2014-04-04 2015-11-12 株式会社デンソー 電池監視装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095159A (ja) * 2000-09-13 2002-03-29 Keihin Corp 保護回路
JP2003037933A (ja) * 2001-07-24 2003-02-07 Koito Mfg Co Ltd 電子機器の保護装置
JP2015201912A (ja) * 2014-04-04 2015-11-12 株式会社デンソー 電池監視装置

Also Published As

Publication number Publication date
JP2018019474A (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
US10227014B2 (en) Charge gun, electric vehicle supply equipment, and electric vehicle charging method thereof
US10139443B2 (en) Circuit apparatus and method for detecting a state of an interlock loop
JP4121511B2 (ja) 電源装置
JP5585616B2 (ja) 回路保護装置
US10811897B2 (en) Relay device and power supply device
KR20140136844A (ko) 배터리 팩의 릴레이 진단장치 및 배터리 제어 시스템
US10348187B2 (en) DC-DC converter having a reverse flow protection function
US10830830B2 (en) Battery monitoring device for vehicle-mounted battery
US11506718B2 (en) Battery monitoring device
CN110789351B (zh) 识别双电源电气系统中的电力故障源的电路
US9472941B2 (en) Battery module
US20180231613A1 (en) Semiconductor device and battery monitoring system
US20190123547A1 (en) Relay device
JP6245516B2 (ja) 電圧検出装置
US11079439B2 (en) Protection circuit for battery monitoring device, and battery monitoring device
CN109247036B (zh) 管理装置和电源系统
WO2018021059A1 (ja) 車載電池用の電圧検出回路
JP5884683B2 (ja) 電池監視装置
US11626722B2 (en) On-board power supply system for a vehicle
CN116848750A (zh) 车载用切换装置
WO2017056411A1 (ja) 検出回路、及び管理装置
US10599198B2 (en) Load driving device
JP6014764B2 (ja) 電池システム監視装置
JP6789768B2 (ja) 回路保護装置及び電源監視装置
JP6658381B2 (ja) 漏電判定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834067

Country of ref document: EP

Kind code of ref document: A1