WO2018020787A1 - 電解液流通型電池システム、及び電解液 - Google Patents

電解液流通型電池システム、及び電解液 Download PDF

Info

Publication number
WO2018020787A1
WO2018020787A1 PCT/JP2017/018549 JP2017018549W WO2018020787A1 WO 2018020787 A1 WO2018020787 A1 WO 2018020787A1 JP 2017018549 W JP2017018549 W JP 2017018549W WO 2018020787 A1 WO2018020787 A1 WO 2018020787A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
concentration
less
electrolyte
ions
Prior art date
Application number
PCT/JP2017/018549
Other languages
English (en)
French (fr)
Inventor
森内 清晃
良潤 關根
崇康 杉原
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to AU2017304833A priority Critical patent/AU2017304833A1/en
Priority to CN201780044129.4A priority patent/CN109478672A/zh
Priority to US16/319,210 priority patent/US20190221870A1/en
Priority to JP2018529372A priority patent/JPWO2018020787A1/ja
Priority to KR1020197002136A priority patent/KR20190033063A/ko
Priority to EP17833798.6A priority patent/EP3493314A4/en
Publication of WO2018020787A1 publication Critical patent/WO2018020787A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0008Phosphoric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolytic solution flow type battery system and an electrolytic solution.
  • This application claims priority based on Japanese Patent Application No. 2016-146799 of the Japanese application dated July 26, 2016, and incorporates all the description content described in the above Japanese application.
  • Some secondary battery (electrolyte flow type batteries) systems perform a battery reaction using an electrolytic solution.
  • an aqueous solution such as an aqueous sulfuric acid solution containing an ion whose valence changes as a result of oxidation and reduction as an active material is used as the electrolytic solution of the electrolytic solution circulation type battery system (paragraph 0023, patent in the specification of Patent Document 1).
  • Literature 2 Patent Literature 3
  • Patent Documents 1 to 3 disclose all vanadium electrolytes containing vanadium ions as positive and negative active materials.
  • An electrolyte solution battery system of the present disclosure includes: An electrolyte flow type battery system comprising an electrolyte flow type battery and an electrolyte supplied to the electrolyte flow type battery, A gas supply mechanism that continuously supplies a flow gas containing an inert gas to the gas phase of the tank that stores the electrolyte solution,
  • the gas supply mechanism includes: A gas supply source of the flow gas; A flow gas passage having an introduction pipe for introducing the flow gas into the gas phase of the tank, and a discharge pipe for discharging gas from the gas phase of the tank; A gas flow rate adjustment mechanism for adjusting the supply amount of the flow gas from the gas supply source,
  • the electrolyte is 5th periodic group 1 to 8 element ions and 13th to 16th group element ions of the periodic table, which are impurity element ions involved in the generation of a gas containing hydrogen element, and 1st of the 6th period of the periodic table
  • Charging / discharging method Continuous charging / discharging of constant current Current density: 70 (mA / cm 2 ) Charge end voltage: 1.55 (V) / cell Discharge end voltage: 1.00 (V) / cell Temperature: Room temperature (25 ° C.)
  • the electrolytic solution of the present disclosure is An electrolyte supplied to the electrolyte flow type battery, 5th periodic group 1 to 8 element ions and 13th to 16th group element ions of the periodic table, which are impurity element ions involved in the generation of a gas containing hydrogen element, and 1st of the 6th period of the periodic table
  • the total concentration of element ions of group 2, group 4, group 8 to group 8 and group 13 to group 15 is 2500 mg / L or less
  • the concentration of vanadium ions is 1 mol / L or more and 3 mol / L or less
  • the concentration of free sulfuric acid is 1 mol / L or more and 4 mol / L or less
  • the concentration of phosphoric acid is 1.0 ⁇ 10 ⁇ 4 mol / L or more and 7.1 ⁇ 10 ⁇ 1 mol / L or less
  • the ammonium concentration is 20 mg / L or less
  • the silicon concentration is 40 mg / L or less
  • Charging / discharging method Continuous charging / discharging of constant current Current density: 70 (mA / cm 2 ) Charge end voltage: 1.55 (V) / cell Discharge end voltage: 1.00 (V) / cell Temperature: Room temperature (25 ° C.)
  • gas may be generated due to a side reaction of the battery reaction.
  • the electrolytic solution is the above-described sulfuric acid aqueous solution, hydrogen or the like can be generated in the negative electrode (paragraph 0011 in the specification of Patent Document 2).
  • Patent Document 2 discloses that gas collected in a tank for storing an electrolytic solution is cleaned and removed by a gas removing device. This removal allows the removed gas to be discharged to the outside (in the atmosphere).
  • the above-mentioned gas removal device is frequently used for maintenance. Is required.
  • Patent Document 3 discloses that a flow gas containing an inert gas is supplied to the gas phase of the positive and negative electrode tanks to reduce the concentration of hydrogen in the gas phase, thereby reducing the concentration of hydrogen. Disclose to the atmosphere in the state. However, depending on the type of electrolytic solution and the flow gas supply conditions, there are cases where the gas phase cannot be sufficiently ventilated even if the flow gas is constantly supplied to the gas phase of the tank.
  • an object of the present invention is to provide an electrolyte solution battery system that can sufficiently ventilate the gas phase of a tank that stores an electrolyte solution.
  • Another object of the present invention is to provide an electrolytic solution capable of constructing the above-described electrolytic solution circulation type battery system.
  • the electrolytic solution circulation type battery system of the present disclosure can sufficiently ventilate the gas phase of the tank storing the electrolytic solution.
  • the electrolytic solution of the present disclosure can construct the electrolytic solution circulation type battery system of the present disclosure.
  • the present inventors diligently studied why the gas phase cannot be sufficiently ventilated even if the flow gas is continuously supplied to the gas phase of the tank, and have found that the amount of gas generated is large. Therefore, the inventors of the present invention have studied by paying particular attention to the electrolytic solution used for the electrolytic solution circulation type battery in order to find the cause of gas generation caused by the side reaction of the battery reaction.
  • the electrolytic solution may contain impurity ions such as impurity element ions and impurity compound ions in addition to the active material ions.
  • the main origin of the impurity ions in the electrolytic solution includes various materials such as a raw material of the electrolytic solution, materials and members used in the manufacturing process of the electrolytic solution, and members used for transportation and storage of the electrolytic solution.
  • the origin from the structural member of the electrolytic solution circulation type battery system which the electrolytic solution can contact at the time of operation of the electrolytic solution circulation type battery system is also considered.
  • H-containing gas a gas containing hydrogen element
  • An electrolyte flow type battery system includes: An electrolyte flow type battery system comprising an electrolyte flow type battery and an electrolyte supplied to the electrolyte flow type battery, A gas supply mechanism that continuously supplies a flow gas containing an inert gas to the gas phase of the tank that stores the electrolyte solution,
  • the gas supply mechanism includes: A gas supply source of the flow gas; A flow gas passage having an introduction pipe for introducing the flow gas into the gas phase of the tank, and a discharge pipe for discharging gas from the gas phase of the tank; A gas flow rate adjustment mechanism for adjusting the supply amount of the flow gas from the gas supply source,
  • the electrolyte is 5th periodic group 1 to 8 element ions and 13th to 16th group element ions of the periodic table, which are impurity element ions involved in the generation of a gas containing hydrogen element, and 1st of the 6th period of the periodic table The total concentration of element ions of group 2, group 4, group 8 to group 8 and group 13 to group 15
  • Charging / discharging method Continuous charging / discharging of constant current Current density: 70 (mA / cm 2 ) Charge end voltage: 1.55 (V) / cell Discharge end voltage: 1.00 (V) / cell Temperature: Room temperature (25 ° C.)
  • the electrolytic solution may contain both the specific element ions of the fifth period and the specific element ions of the sixth period, but the total content thereof is very small. Thereby, generation of gas due to side reaction of the battery reaction, particularly generation of gas containing hydrogen (H-containing gas) in the negative electrode can be reduced.
  • the hydrogen generation rate at the negative electrode can be 95 cc / h / m 2 or less under the above charge / discharge conditions. Therefore, the gas phase of the tank can be sufficiently ventilated by setting the supply amount of the flow gas that is continuously supplied to the gas phase of the tank by the gas supply mechanism to be 1.0 L / min or more and 50 L / min or less. Therefore, the electrolyte solution type battery system can reduce the hydrogen concentration in the gas phase of the tank and release the hydrogen from the tank to the atmosphere in a low concentration state.
  • the supply amount of the flow gas is 1.0 L / min or more, the supply amount is large, so that the gas phase in the tank can be sufficiently ventilated as described above.
  • the supply amount of the flow gas is not excessively large. Therefore, it can suppress that the inside of a tank becomes an excessive positive pressure (higher pressure than atmospheric pressure).
  • an increase in the size of the gas supply source and the tank can be suppressed, and as a result, an increase in the size of the electrolyte circulation type battery system can be suppressed.
  • the electrolyte solution is an all-vanadium electrolyte solution mainly containing a solution containing vanadium ions as an active material and containing sulfuric acid and phosphoric acid. Since the electrolytic solution has a specific composition, 1. 1. Easy to reduce gas generation due to side reaction of battery reaction. 2. Excellent valence balance between positive and negative electrodes and excellent battery characteristics such as battery efficiency. 3. Precipitation of a compound containing an active material element such as an ammonium-vanadium compound can be suppressed. Various effects are exhibited such that gelation of the electrolyte solution caused by silicon can be suppressed. Therefore, the electrolyte solution type battery system can further reduce gas generation caused by side reactions of the battery reaction, and can also suppress the precipitation of the precipitate containing the active material element derived from the active material element ion. , Has excellent battery characteristics.
  • the electrolytic solution has a concentration of barium ions, which are impurity element ions involved in generation of a gas containing hydrogen element, being 70 mg / L or less. It is done.
  • the electrolytic solution contains barium ions which are group 2 element ions in the sixth period of the periodic table, the content thereof is very small. Thereby, generation of gas, particularly generation of H-containing gas in the negative electrode can be reduced. Therefore, since the gas phase in the tank can be sufficiently ventilated, the concentration of hydrogen in the gas phase in the tank can be reduced, and hydrogen can be released from the tank to the atmosphere in a low concentration state.
  • the electrolyte solution has a concentration of molybdenum ions, which are impurity element ions involved in generation of a gas containing hydrogen element, of 2100 mg / L or less. It is done.
  • the electrolytic solution contains molybdenum ions which are group 6 element ions in the fifth period of the periodic table, the content thereof is very small. Thereby, generation of gas, particularly generation of H-containing gas in the negative electrode can be reduced. Therefore, since the gas phase in the tank can be sufficiently ventilated, the concentration of hydrogen in the gas phase in the tank can be reduced, and hydrogen can be released from the tank to the atmosphere in a low concentration state.
  • the electrolyte solution has a concentration of tungsten ions that are impurity element ions involved in generation of a gas containing hydrogen element of 310 mg / L or less. It is done.
  • the above electrolyte contains tungsten ions that are group 6 element ions in the sixth period of the periodic table, the content thereof is very small. Thereby, generation of gas, particularly generation of H-containing gas in the negative electrode can be reduced. Therefore, since the gas phase in the tank can be sufficiently ventilated, the concentration of hydrogen in the gas phase in the tank can be reduced, and hydrogen can be released from the tank to the atmosphere in a low concentration state.
  • the electrolyte solution has a rhenium ion concentration of 50 mg / L or less which is an impurity element ion involved in generation of a gas containing a hydrogen element. It is done.
  • the electrolyte contains rhenium ions which are group 7 element ions in the sixth period of the periodic table, the content thereof is very small. Thereby, generation of gas, particularly generation of H-containing gas in the negative electrode can be reduced. Therefore, since the gas phase in the tank can be sufficiently ventilated, the concentration of hydrogen in the gas phase in the tank can be reduced, and hydrogen can be released from the tank to the atmosphere in a low concentration state.
  • the electrolytic solution has a concentration of indium ions, which are impurity element ions involved in generation of a gas containing a hydrogen element, of 25 mg / L or less. It is done.
  • the electrolytic solution contains indium ions which are group 13 element ions in the fifth period of the periodic table, the content thereof is very small. Thereby, generation of gas, particularly generation of H-containing gas in the negative electrode can be reduced. Therefore, since the gas phase in the tank can be sufficiently ventilated, the concentration of hydrogen in the gas phase in the tank can be reduced, and hydrogen can be released from the tank to the atmosphere in a low concentration state.
  • the electrolytic solution has a concentration of antimony ions which are impurity element ions involved in generation of a gas containing hydrogen element of 50 mg / L or less. It is done.
  • the above electrolytic solution contains antimony ions which are Group 15 element ions in the fifth period of the periodic table, the content thereof is very small. Thereby, generation of gas, particularly generation of H-containing gas in the negative electrode can be reduced. Therefore, since the gas phase in the tank can be sufficiently ventilated, the concentration of hydrogen in the gas phase in the tank can be reduced, and hydrogen can be released from the tank to the atmosphere in a low concentration state.
  • the electrolytic solution has a concentration of bismuth ions which are impurity element ions involved in generation of a gas containing hydrogen element of 110 mg / L or less. It is done.
  • the electrolytic solution contains bismuth ions which are group 15 element ions in the sixth period of the periodic table, the content thereof is very small. Thereby, generation of gas, particularly generation of H-containing gas in the negative electrode can be reduced. Therefore, since the gas phase in the tank can be sufficiently ventilated, the concentration of hydrogen in the gas phase in the tank can be reduced, and hydrogen can be released from the tank to the atmosphere in a low concentration state.
  • the electrolytic solution according to one aspect of the present invention is: An electrolyte supplied to the electrolyte flow type battery, 5th periodic group 1 to 8 element ions and 13th to 16th group element ions of the periodic table, which are impurity element ions involved in the generation of a gas containing hydrogen element, and 1st of the 6th period of the periodic table
  • the total concentration of element ions of group 2, group 4, group 8 to group 8 and group 13 to group 15 is 2500 mg / L or less
  • the concentration of vanadium ions is 1 mol / L or more and 3 mol / L or less
  • the concentration of free sulfuric acid is 1 mol / L or more and 4 mol / L or less
  • the concentration of phosphoric acid is 1.0 ⁇ 10 ⁇ 4 mol / L or more and 7.1 ⁇ 10 ⁇ 1 mol / L or less
  • the ammonium concentration is 20 mg / L or less
  • the silicon concentration is 40 mg / L or less
  • Charging / discharging method Continuous charging / discharging of constant current Current density: 70 (mA / cm 2 ) Charge end voltage: 1.55 (V) / cell Discharge end voltage: 1.00 (V) / cell Temperature: Room temperature (25 ° C.)
  • the electrolytic solution can reduce gas generation, gas generation, particularly generation of H-containing gas in the negative electrode, can be reduced if it is used as an electrolytic solution in an electrolytic solution circulation type battery system. Therefore, it can contribute to the construction of an electrolyte solution battery system that can sufficiently ventilate the gas phase of the electrolyte tank.
  • FIG. 1 shows the electrolyte circulation type battery 1 and the circulation mechanism in the electrolyte circulation type battery system S, and the gas supply mechanism is omitted.
  • FIG. 2 each of the gas supply mechanism 2 and the circulation mechanism is shown.
  • the tanks 106 and 107 are shown and the others are omitted.
  • black arrows indicate the flow of the flow gas.
  • the electrolyte flow type battery system S of the embodiment includes the electrolyte flow type battery 1, an electrolyte solution, and a circulation mechanism (described later) for supplying the electrolyte solution to the electrolyte flow type battery 1.
  • the electrolyte circulation type battery 1 is typically connected to a power generation unit 300 and a load 400 such as a power system or a consumer via an AC / DC converter 200, a substation facility 210, and the like. Is charged using the power supply source, and discharging is performed using the load 400 as the power supply target.
  • Examples of the power generation unit 300 include a solar power generator, a wind power generator, and other general power plants.
  • the electrolyte flow type battery 1 includes a battery cell 100 including a positive electrode 10c, a negative electrode 10a, and a diaphragm 11 interposed between the electrodes 10c and 10a as main components.
  • the electrolyte flow type battery 1 is typically used in a form called a cell stack in which a plurality of battery cells 100 are stacked.
  • the cell stack includes a bipolar plate (not shown) having a positive electrode 10c on one side and a negative electrode 10a on the other side, and a frame (not shown) formed on the outer periphery of the bipolar plate.
  • a configuration using is typical.
  • the bipolar plate may be formed with a channel such as a groove through which the electrolytic solution flows.
  • the frame has a liquid supply hole for supplying an electrolyte solution of each electrode to an electrode of each electrode arranged on the bipolar plate and a drain hole for discharging the electrolyte solution.
  • the liquid supply hole and the liquid discharge hole constitute a flow path for electrolyte solution, and pipes 108 to 111 (to be described later) are connected to the pipe lines, respectively.
  • the cell stack is constructed by repeatedly laminating a bipolar plate of a certain frame assembly, a positive electrode 10c, a diaphragm 11, a negative electrode 10a, a bipolar plate of another frame assembly,.
  • the circulation mechanism includes a positive electrode tank 106 that stores a positive electrode electrolyte that is circulated and supplied to the positive electrode 10c, a negative electrode tank 107 that stores a negative electrode electrolyte that is circulated and supplied to the negative electrode 10a, and the positive electrode tank 106 and the electrolyte flow battery 1. , Pipes 109 and 111 for connecting the negative electrode tank 107 and the electrolyte flow battery 1, and pumps provided on the upstream (supply side) pipes 108 and 109. 112, 113.
  • the electrolyte flow type battery system S uses the positive electrode electrolyte circulation path including the positive electrode tank 106 and the pipes 108 and 110 and the negative electrode electrolyte circulation path including the negative electrode tank 107 and the pipes 109 and 111, and the positive electrode.
  • the positive electrode electrolyte is circulated and supplied to 10c, and the negative electrode electrolyte is circulated and supplied to the negative electrode 10a.
  • charging / discharging is performed with the valence change reaction of the active material ions in the electrolyte solution of each electrode.
  • As the basic configuration of the electrolyte solution battery system S a known configuration can be used as appropriate.
  • One of the features of the electrolyte flow type battery system S of the embodiment is that the gas supply mechanism 2 for supplying a flow gas containing an inert gas to the gas phase of the negative electrode tank 107 and the following embodiments 1 to It is in the point provided with any one electrolyte solution of Embodiment 9.
  • the gas supply mechanism 2 will be described, and then the electrolyte solutions of Embodiments 1 to 9 will be described in order.
  • the gas supply mechanism 2 always continues to supply a flow gas containing an inert gas to the gas phase of the negative electrode tank 107.
  • the gas phase in the negative electrode tank 107 is sufficiently ventilated.
  • a gas containing hydrogen element (H-containing gas) may be generated at the negative electrode due to a side reaction of the battery reaction or the like.
  • the H-containing gas is easily stored in the gas phase of the negative electrode tank 107. Therefore, by sufficiently ventilating the gas phase of the negative electrode tank 107, the hydrogen concentration in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • “Always” means that the electrolyte circulation type battery system S is in operation.
  • the electrolytic solution circulation type battery 1 provided in the electrolytic solution circulation type battery system S is operated, that is, when the electrolytic solution is circulated in the electrolytic solution circulation type battery 1 to perform charging or discharging, charging or discharging is performed.
  • the case where the electrolytic solution circulation type battery 1 is stopped in preparation for discharge that is, when the electrolytic solution is not circulated in the electrolytic solution circulation type battery 1 is also included in “always”.
  • “other than normal” means, for example, when maintenance is performed on the electrolyte solution circulation battery system S including the electrolyte solution circulation battery 1.
  • the gas supply mechanism 2 includes a gas supply source 3, a flow gas flow path 4, and a gas flow rate adjustment mechanism 5.
  • the gas supply source 3 stores or generates a flow gas containing an inert gas and supplies the flow gas to the electrolyte flow-through battery 1.
  • the inert gas include nitrogen and rare gases (argon, neon, helium). Nitrogen is readily available and inexpensive.
  • the ratio of the inert gas in the flow gas is preferably 99.9% by volume or more. The higher this ratio, the more the deterioration of the electrolyte solution caused by the flow gas can be suppressed. In particular, when the ratio of the inert gas in the flow gas is 99.9% by volume or more, the deterioration of the electrolytic solution may be suppressed theoretically over 10 years.
  • the gas supply source 3 may include, for example, a storage member (cylinder, tank, or the like) that stores an inert gas, or may include a gas generator that generates an inert gas.
  • a storage member cylinder, tank, or the like
  • the former form can be easily constructed.
  • the latter form can reduce the trouble of replenishing the inert gas.
  • nitrogen can be extracted from the atmosphere, so that the flow gas can be supplied semi-permanently.
  • the flow gas channel 4 is a channel for constantly supplying the flow gas to the gas phase of the negative electrode tank 107. In this example, the flow gas channel 4 continues to supply the flow gas to the gas phase of the positive electrode tank 106.
  • the flow gas channel 4 includes a positive electrode introduction pipe 41, a negative electrode introduction pipe 42, and a negative electrode discharge pipe 43. These pipes 41 to 43 are preferably provided with valves (not shown) used for maintenance and the like.
  • the positive electrode introduction pipe 41 is a pipe for introducing the flow gas supplied from the gas supply source 3 into the positive electrode tank 106.
  • the positive electrode introducing tube 41 is open to the gas phase of the positive electrode tank 106.
  • the positive electrode introduction pipe 41 is provided with a gas flow rate adjusting mechanism 5 described later.
  • the negative electrode introduction pipe 42 is a pipe for introducing a flow gas into the gas phase of the negative electrode tank 107.
  • the negative electrode introduction pipe 42 is constituted by a gas phase communication pipe that communicates the gas phase of the positive electrode tank 106 and the gas phase of the negative electrode tank 107.
  • the flow gas introduced into the gas phase of the positive electrode tank 106 through the positive electrode introduction pipe 41 is introduced into the gas phase of the negative electrode tank 107 through the negative electrode introduction pipe (gas phase communication pipe) 42.
  • the negative electrode introduction pipe 42 is also a positive electrode discharge pipe for discharging gas from the gas phase of the positive electrode tank 106 due to its structure.
  • the negative electrode discharge pipe 43 is a pipe for discharging gas from the gas phase of the negative electrode tank 107.
  • the flow gas channel 4 may further include a positive electrode discharge pipe (not shown) for discharging gas from the gas phase of the positive electrode tank 106 separately from the negative electrode introduction pipe (gas phase connection pipe) 42.
  • a collective discharge pipe (not shown) that discharges the gas discharged from the positive electrode discharge pipe and the gas discharged from the negative electrode discharge pipe 43 together to the atmosphere may be provided.
  • the gas flow rate adjustment mechanism 5 adjusts the supply amount of the flow gas supplied from the gas supply source 3 to the electrolyte flow-through battery 1.
  • the supply amount of the flow gas supplied from the gas supply source 3 to the electrolyte flow type battery 1 is adjusted to a predetermined value or more.
  • the flow gas can be continuously supplied from the gas supply source 3 to the gas phase of the positive electrode tank 106 and the gas phase of the negative electrode tank 107.
  • the gas flow rate adjusting mechanism 5 includes a flow meter 51 and a valve 52.
  • the gas flow rate adjusting mechanism 5 adjusts the opening degree of the valve 52 based on the flow rate of the flow gas in the positive electrode introduction pipe 41 measured by the flow meter 51.
  • the determination of the opening degree based on the flow rate and the operation of the valve 52 are performed by a controller (not shown) (for example, a computer).
  • the supply amount of the flow gas to the electrolyte flow type battery 1 is preferably 1.0 L / min or more and 50 L / min or less.
  • the gas-phase ventilation of the tanks 106 and 107 that is, the gas-phase ventilation of the electrolyte circulation type battery 1 can be sufficiently performed.
  • the supply amount of the flow gas By setting the supply amount of the flow gas to 50 L / min or less, it is possible to suppress the inside of each of the tanks 106 and 107 from becoming an excessive positive pressure (higher than atmospheric pressure).
  • both the tanks 106 and 107 are handled integrally as described above, and after flowing the flow gas into the positive electrode tank 106, a part thereof is introduced into the negative electrode tank 107.
  • the supply amount of the flow gas to the electrolyte circulation battery 1 is adjusted so that the supply amount of the flow gas to the gas phase of the negative electrode tank 107 is 1.0 L / min or more and 50 L / min or less.
  • the supply amount of the flow gas is further preferably 1.0 L / min or more and 49 L / min or less, and particularly preferably 1.0 L / min or more and 48 L / min or less.
  • a flow meter (not shown) for measuring the flow rate at each location of the flow gas flow path 4.
  • an additional flow meter may be provided in the negative electrode introduction pipe 42 and the opening degree of the valve 52 may be adjusted in consideration of the measurement result.
  • the correlation data indicates that, for example, if the measured value (L / min) of the flow meter 51 satisfies a specific range, the vapors of the respective tanks 106 and 107 are sufficiently ventilated by simulation or an experiment using an actual machine. 2 may be provided only at the position of the gas flow rate adjusting mechanism 5 in FIG.
  • the gas supply mechanism 2 can include a backflow prevention mechanism, a breathing bag, and the like (all not shown).
  • the backflow prevention mechanism is provided in the negative electrode discharge pipe 43 and prevents backflow of gas to the negative electrode tank 107.
  • a backflow prevention mechanism may be provided in the positive electrode discharge pipe.
  • the backflow prevention mechanism for example, a configuration using a flow meter and a valve in addition to a known water seal valve can be used. In the case of using a flow meter and a valve, the flow rate in the negative electrode discharge pipe 43 is measured with the flow meter, and the valve is closed based on the measurement result, whereby the backflow of gas to the negative electrode tank 107 can be prevented.
  • the breathing bag is suspended in each of the tanks 106 and 107 so that the inside thereof communicates with the atmosphere, and the inside of both tanks 106 and 107 is prevented from becoming negative pressure (lower than atmospheric pressure). Specifically, when the pressure in the tanks 106 and 107 becomes negative, the atmosphere is sucked into the tanks 106 and 107 to reduce the internal volume of each tank 106 and 107 (excluding the breathing bag). Increase the pressure inside.
  • This breathing bag also functions when the pressure in the tanks 106 and 107 becomes positive. Specifically, the gas inside the breathing bag is released to the atmosphere, the internal volume of each tank 106, 107 (excluding the breathing bag) is increased, and the pressure in each tank 106, 107 is reduced.
  • this breathing bag a known one can be used (for example, see Japanese Patent Application Laid-Open No. 2002-175825).
  • the electrolytic solution of the embodiment is an ionic solution containing ions serving as an active material, and this point is common with the conventional electrolytic solution.
  • the electrolytic solution of the embodiment is characterized in that although it can contain a specific impurity element ion involved in gas generation due to a side reaction of a battery reaction or the like as an impurity ion, its content is very small. First, the specific impurity element ions will be described.
  • Embodiment 1 The electrolytic solution of Embodiment 1 includes, as impurity element ions involved in gas generation, group 5 to group 8 element ions and group 13 to group 16 element ions in the fifth period of the periodic table, and the sixth period of the periodic table.
  • the total concentration thereof is 2500 mg / L or less.
  • the tanks 106 and 107 are connected. Can fully ventilate the gas phase. Accordingly, the concentration of hydrogen in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • the elements of Group 1 to Group 8 of the 5th period of the periodic table are rubidium (Rb, Group 1), strontium (Sr, Group 2), yttrium (Y, Group 3), zirconium (Zr, Group 4), niobium (Nb, Group 5), Molybdenum (Mo, Group 6), Technetium (Tc, Group 7), Ruthenium (Ru, Group 8).
  • the elements of Groups 13 to 16 in the fifth period of the periodic table are indium (In, Group 13), tin (Sn, Group 14), antimony (Sb, Group 15), and tellurium (Te, Group 16). .
  • the elements of Group 1, Group 2, Group 4 to Group 8 of the 6th period of the periodic table are cesium (Cs, Group 1), barium (Ba, Group 2), hafnium (Hf, Group 4), tantalum (Ta Group 5), tungsten (W, Group 6), rhenium (Re, Group 7), and osmium (Os, Group 8).
  • the elements of Groups 13 to 15 in the sixth period of the periodic table are thallium (Tl, Group 13), lead (Pb, Group 14), and bismuth (Bi, Group 15).
  • these elements may be collectively referred to as a gas generating impurity element group.
  • the total concentration is 610 mg / L or less, 600 mg / L or less, further 550 mg / L or less, 500 mg / L or less, and particularly preferably 0 (zero).
  • the above upper limit is defined as an allowable amount that allows sufficient ventilation. It is considered that at least the total concentration in the unused electrolytic solution preferably satisfies the above range.
  • the lower the total concentration the more gas generation can be reduced. That is, as the total concentration is higher, gas is more easily generated. Therefore, it is easy to obtain the effect of gas phase ventilation by continuing to supply the flow gas to the gas phase of each of the tanks 106 and 107. For example, if the total concentration exceeds 610 mg / L, it is easy to obtain a gas-phase ventilation effect by continuously supplying the flow gas, and if the total concentration is 650 mg / L or more, particularly 700 mg / L or more, Easy to obtain ventilation effect.
  • the content of specific element ions in the gas generating impurity element group is defined as follows.
  • Embodiment 2 The electrolyte solution of Embodiment 2 has a concentration of 70 mg / L or less when barium ions are included as impurity element ions involved in gas generation.
  • the generation of gas particularly the generation of H-containing gas at the negative electrode, can be reduced particularly when the barium ion content satisfies the above range. Therefore, the gas supply mechanism 2 can sufficiently ventilate the gas phases of the tanks 106 and 107 by setting the supply amount of the flow gas that is continuously supplied to the gas phases of the tanks 106 and 107 within the above range. Accordingly, the concentration of hydrogen in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • the concentration of barium ions is preferably 67 mg / L or less, more preferably 65 mg / L or less, and particularly preferably 60 mg / L or less.
  • the concentration of barium ions is preferably 20 mg / L or less, 18 mg / L or less, more preferably 16 mg / L or less, and 10 mg / L or less, and particularly preferably 0 (zero).
  • the above upper limit is defined as the allowable amount that allows sufficient ventilation. It is considered preferable that at least the concentration of barium ions in the unused electrolytic solution satisfies the above range.
  • the concentration of barium ions is 30 mg / L or more, it is easy to obtain the effect of gas phase ventilation by continuing to supply the flow gas, and if the concentration is 35 mg / L or more, particularly 40 mg / L or more, the gas phase Easy to get the ventilation effect.
  • Embodiment 3 The electrolyte solution of Embodiment 3 has a concentration of 2100 mg / L or less when molybdenum ions are included as impurity element ions involved in gas generation.
  • impurity ions that can be contained in the electrolytic solution in particular, when the content of molybdenum ions satisfies the above range, generation of gas, particularly generation of H-containing gas in the negative electrode, can be reduced. Therefore, the gas supply mechanism 2 can sufficiently ventilate the gas phases of the tanks 106 and 107 by setting the supply amount of the flow gas that is continuously supplied to the gas phases of the tanks 106 and 107 within the above range. Accordingly, the concentration of hydrogen in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • the concentration of molybdenum ions is preferably 2055 mg / L or less, more preferably 2030 mg / L or less, and particularly preferably 2015 mg / L or less.
  • the concentration of molybdenum ions is 510 mg / L or less, 500 mg / L or less, further 495 mg / L or less, 450 mg / L or less, 400 mg / L, and particularly preferably 0 (zero).
  • the negative electrode tank The upper limit is defined as an allowable amount that can sufficiently ventilate the gas phase 107. It is considered that at least the concentration of molybdenum ions in the unused electrolyte solution preferably satisfies the above range.
  • the concentration of molybdenum ions exceeds 510 mg / L, it is easy to obtain the effect of gas phase ventilation by continuing to supply the flow gas, and if the concentration is 550 mg / L or more, particularly 600 mg / L or more, the gas phase Easy to get the ventilation effect.
  • Embodiment 4 The electrolyte solution of Embodiment 4 has a concentration of 310 mg / L or less when tungsten ions are included as impurity element ions involved in gas generation.
  • the generation of gas particularly the generation of H-containing gas at the negative electrode, can be reduced particularly when the content of tungsten ions satisfies the above range. Therefore, the gas supply mechanism 2 can sufficiently ventilate the gas phases of the tanks 106 and 107 by setting the supply amount of the flow gas that is continuously supplied to the gas phases of the tanks 106 and 107 within the above range. Accordingly, the concentration of hydrogen in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • the concentration of tungsten ions is preferably 300 mg / L or less, more preferably 285 mg / L or less, and particularly preferably 275 mg / L or less.
  • the concentration of tungsten ions is preferably 30 mg / L or less, 29 mg / L or less, more preferably 26 mg / L or less, 20 mg / L, and particularly preferably 0 (zero).
  • the above upper limit is defined as an allowable amount that allows sufficient ventilation. It is considered that at least the concentration of tungsten ions in the unused electrolyte solution preferably satisfies the above range.
  • the lower the tungsten ion concentration the lower the gas generation. That is, since the higher the concentration of tungsten ions, the easier the gas is generated, it is easier to obtain the effect of gas phase ventilation by continuing to supply the flow gas to the gas phase of each tank 106, 107.
  • the tungsten ion concentration is 60 mg / L or more, it is easy to obtain the effect of gas phase ventilation by continuing to supply the flow gas, and if the concentration is 65 mg / L or more, particularly 70 mg / L or more, the gas phase Easy to get the ventilation effect.
  • Embodiment 5 The electrolytic solution of Embodiment 5 has a concentration of 50 mg / L or less when rhenium ions are included as impurity element ions involved in gas generation.
  • the impurity ions that can be included in the electrolytic solution the content of rhenium ions particularly satisfies the above range, thereby reducing the generation of gas, particularly the generation of H-containing gas in the negative electrode. Therefore, the gas supply mechanism 2 can sufficiently ventilate the gas phases of the tanks 106 and 107 by setting the supply amount of the flow gas that is continuously supplied to the gas phases of the tanks 106 and 107 within the above range. Accordingly, the concentration of hydrogen in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • the concentration of rhenium ions is preferably 5 mg / L or less, 4.8 mg / L or less, more preferably 4.6 mg / L or less, and 4 mg / L, particularly 0 (zero).
  • the upper limit is defined as an allowable amount that can sufficiently ventilate the gas phase. It is considered that at least the concentration of rhenium ions in the unused electrolytic solution preferably satisfies the above range.
  • the concentration of rhenium ions exceeds 5 mg / L, it is easy to obtain the effect of gas phase ventilation by continuing to supply the flow gas, and if the concentration is 10 mg / L or more, particularly 15 mg / L or more, the gas phase Easy to get the ventilation effect.
  • Embodiment 6 When the electrolyte solution of Embodiment 6 contains indium ions as impurity element ions involved in gas generation, the concentration thereof is 25 mg / L or less.
  • the impurity ions that can be contained in the electrolytic solution in particular, when the content of indium ions satisfies the above range, generation of gas, particularly generation of H-containing gas in the negative electrode can be reduced. Therefore, the gas supply mechanism 2 can sufficiently ventilate the gas phases of the tanks 106 and 107 by setting the supply amount of the flow gas that is continuously supplied to the gas phases of the tanks 106 and 107 within the above range. Accordingly, the concentration of hydrogen in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • the concentration of indium ions is preferably 5 mg / L or less, 4.8 mg / L or less, more preferably 4.6 mg / L or less, and 4 mg / L, particularly 0 (zero).
  • the negative electrode tank 107 The upper limit is defined as an allowable amount that can sufficiently ventilate the gas phase. It is considered that at least the concentration of indium ions in the unused electrolyte solution preferably satisfies the above range.
  • gas generation can be reduced as the concentration of indium ions is lower. That is, the higher the concentration of indium ions, the easier it is to generate gas, so it is easier to obtain the effect of gas phase ventilation by continuing to supply the flow gas to the gas phase of each tank 106, 107.
  • concentration of indium ions exceeds 5 mg / L, it is easy to obtain a gas-phase ventilation effect by continuing to supply the flow gas, and if the concentration is 7 mg / L or more, particularly 9 mg / L or more, the gas phase Easy to get the ventilation effect.
  • Embodiment 7 When the electrolyte solution of Embodiment 7 contains antimony ions as impurity element ions involved in gas generation, the concentration thereof is 50 mg / L or less.
  • the impurity ions that can be contained in the electrolytic solution in particular, when the content of antimony ions satisfies the above range, generation of gas, particularly generation of H-containing gas in the negative electrode can be reduced. Therefore, the gas supply mechanism 2 can sufficiently ventilate the gas phases of the tanks 106 and 107 by setting the supply amount of the flow gas that is continuously supplied to the gas phases of the tanks 106 and 107 within the above range. Accordingly, the concentration of hydrogen in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • the concentration of antimony ions is preferably 46 mg / L or less, more preferably 43 mg / L or less, and particularly preferably 40 mg / L.
  • the concentration of antimony ions is preferably 10 mg / L or less, 9 mg / L or less, more preferably 8 mg / L or less, 6 mg / L, and particularly preferably 0 (zero).
  • the above upper limit is defined as an allowable amount that allows sufficient ventilation. It is considered preferable that at least the concentration of antimony ions in the unused electrolyte satisfies the above range.
  • the concentration of antimony ions the more gas generation can be reduced. That is, since the higher the concentration of antimony ions, the easier the gas is generated, the effect of gas-phase ventilation by continuously supplying the flow gas to the gas-phase of each of the tanks 106 and 107 can be easily obtained. For example, if the concentration of antimony ions exceeds 10 mg / L, it is easy to obtain the effect of gas phase ventilation by continuing to supply the flow gas, and if the concentration is 12 mg / L or more, particularly 15 mg / L or more, the gas phase Easy to get the ventilation effect.
  • Embodiment 8 The electrolyte solution of Embodiment 8 has a concentration of 110 mg / L or less when it contains bismuth ions as impurity element ions involved in gas generation.
  • the generation of gas particularly the generation of H-containing gas at the negative electrode, can be reduced particularly when the bismuth ion content satisfies the above range. Therefore, the gas supply mechanism 2 can sufficiently ventilate the gas phases of the tanks 106 and 107 by setting the supply amount of the flow gas that is continuously supplied to the gas phases of the tanks 106 and 107 within the above range. Accordingly, the concentration of hydrogen in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • the concentration of bismuth ions is preferably 20 mg / L or less, 19 mg / L or less, more preferably 16 mg / L or less, and 15 mg / L, and particularly preferably 0 (zero).
  • the upper limit is defined as an allowable amount that allows sufficient ventilation. It is considered that the bismuth ion concentration preferably satisfies the above range for at least an unused electrolyte.
  • gas generation can be reduced as the concentration of bismuth ions is lower. That is, the higher the concentration of bismuth ions, the easier it is to generate gas. Therefore, it is easy to obtain the effect of gas phase ventilation by continuing to supply the flow gas to the gas phase of each of the tanks 106 and 107. For example, if the concentration of bismuth ions exceeds 20 mg / L, it is easy to obtain the effect of gas phase ventilation by continuing to supply the flow gas, and if the concentration is 25 mg / L or more, particularly 30 mg / L or more, the gas phase Easy to get the ventilation effect.
  • the electrolytic solution of the ninth embodiment satisfies all the provisions of the first to eighth embodiments described above.
  • the gas supply mechanism 2 can sufficiently ventilate the gas phases of the tanks 106 and 107 by setting the supply amount of the flow gas that is continuously supplied to the gas phases of the tanks 106 and 107 within the above range. Accordingly, the concentration of hydrogen in the gas phase of the negative electrode tank 107 can be reduced, and hydrogen can be released from the negative electrode tank 107 to the atmosphere in a low concentration state.
  • the following measures can be used. (1) In the production process of the electrolytic solution, a raw material (active material, solvent, etc.) containing a small amount of elements of the gas generating impurity element group, preferably not containing them, is used. (2) As a member used in the manufacturing process of the electrolytic solution, a component having a small content of, preferably not containing, an element of the gas generating impurity element group is used. (3) As a member (transport tank, storage tank, etc.) used in the process of transporting, storing, etc.
  • a component having a small content of elements of the gas generating impurity element group preferably not containing Use.
  • a removal operation described later for removing element ions of the gas generating impurity element group is performed on the electrolytic solution.
  • the constituent component has a small content of elements of the gas generating impurity element group, preferably not included. Use things.
  • the removal operation of (4) above can utilize various methods capable of removing element ions such as coagulation precipitation, solvent extraction, filtration using ion exchange resin or chelate resin, electrolytic deposition, membrane separation, and the like.
  • a known method may be used.
  • specific element ions can be selectively filtered by adjusting the physical properties of the chelate resin, the pH of the electrolytic solution, and the like.
  • This filtration can be performed by passing the electrolyte through a filter made of a chelate resin or a column filled with a chelate resin in the form of beads.
  • a plurality of element ions may be simultaneously removed from the element ions of the gas generating impurity element group present in the electrolytic solution.
  • the above removal operation can be performed at any time. That is, not only before the operation of supplying the electrolytic solution to the electrolytic solution flowing battery system S, but also during the operation of the system S, the component analysis in the electrolytic solution is performed during the standby period, the stop period, and the like.
  • the above-described removal operation can be performed. By doing so, the concentration of element ions of the gas generating impurity element group can be maintained within a specific range before and during the operation of the system S, and gas is generated even if the system S is operated for a long period of time. Since the amount of flow gas that is continuously supplied is within the above range, the gas phase in each of the tanks 106 and 107 can be sufficiently ventilated.
  • the electrolyte solution of embodiment can contain a various active material.
  • a various active material for example, an all-vanadium electrolyte in which the active material of both electrodes is vanadium ion (see FIG. 1), an iron-chromium electrolyte in which the positive electrode active material is iron ion and the negative electrode active material is chromium ion, and the positive electrode active material is manganese ion
  • a manganese-titanium-based electrolytic solution two-component type
  • the negative electrode active material is titanium ions
  • a manganese-titanium-based electrolytic solution one-component type containing manganese ions and titanium ions in both electrodes, and the like
  • all vanadium-based electrolytes may contain elements of the gas generating impurity element group during the manufacturing process of the electrolyte, and it is desirable to perform the removal operation (4) as appropriate.
  • the vanadium ion concentration in the positive electrode electrolyte and the negative electrode electrolyte is preferably 1 mol / L or more and 3 mol / L or less, and 1.2 mol / L or more and 2.5 mol / L or less. Furthermore, 1.5 mol / L or more and 1.9 mol / L or less are more preferable. This effect will be described later.
  • the average valence of vanadium ions is preferably 3.3 or more and 3.7 or less, and more preferably 3.4 or more and 3.6 or less.
  • the valence balance of both electrodes is excellent, the battery reaction can be satisfactorily performed, and the battery characteristics such as battery efficiency and energy density are excellent.
  • the electrolyte solution of embodiment can be made into the acid solution containing the said active material, especially the aqueous solution of an acid.
  • the acid solution is, for example, sulfuric acid (H 2 SO 4 ), K 2 SO 4 , Na 2 SO 4 , phosphoric acid (H 3 PO 4 ), H 4 P 2 O 7 , K 2 HPO 4 , Na 3 PO 4 , Examples include those containing at least one acid or acid salt selected from K 3 PO 4 , nitric acid (HNO 3 ), KNO 3 , hydrochloric acid (HCl), and NaNO 3 .
  • it can be set as an organic acid solution.
  • the electrolyte solution of the embodiment is an all-vanadium electrolyte solution of a sulfuric acid solution containing phosphoric acid
  • the vanadium ion concentration satisfies the specific range described above, and the concentration of free sulfuric acid is 1 mol / L or more and 4 mol / L or less.
  • the concentration of phosphoric acid is 1.0 ⁇ 10 ⁇ 4 mol / L or more and 7.1 ⁇ 10 ⁇ 1 mol / L or less
  • the concentration of ammonium is 20 mg / L or less
  • the concentration of silicon (Si) is 40 mg / L or less. It is preferable to satisfy.
  • the electrolyte solution can be excellent in the above valence balance.
  • a combination in which the vanadium ion concentration, the sulfuric acid concentration, and the phosphoric acid concentration satisfy the specific ranges described above is difficult to deposit a precipitate such as a vanadium compound containing an active material element, and can have excellent battery performance over a long period of time. .
  • the ammonium concentration satisfies the above specific range, it is easy to suppress precipitation of the ammonium-vanadium compound among the vanadium compounds.
  • silicon satisfies the specific range described above, the occurrence of a phenomenon that can adversely affect the diaphragm 11 can be reduced. This form can reduce the generation of precipitates derived from the active material element ions in addition to the effect of suppressing the gas generation derived from the impurity element ions, and can be said to be able to perform the battery reaction satisfactorily.
  • the concentration of free sulfuric acid is more preferably 1.5 mol / L or more and 3.5 mol / L or less.
  • the concentration of phosphoric acid is more preferably 1.0 ⁇ 10 ⁇ 3 mol / L or more and 3.5 ⁇ 10 ⁇ 1 mol / L or less.
  • the concentration of ammonium is more preferably 10 mg / L or less.
  • the concentration of silicon is more preferably 30 mg / L or less. In order to reduce the ammonium concentration and the silicon concentration, a known method such as filtration using a filter (see Patent Document 1, etc.) can be used.
  • the electrolyte solution type battery system S of the embodiment aims at stabilizing fluctuations in power generation output, storing electricity when surplus generated power, leveling load, etc., for power generation of natural energy such as solar power generation and wind power generation. It can be used for storage batteries. Moreover, the electrolyte solution type battery system S of the embodiment can be used in a storage battery for the purpose of instantaneous voltage drop, power failure countermeasures, and load leveling, which are provided in a general power plant.
  • the electrolyte solutions of Embodiments 1 to 9 can be used for the above-described electrolyte flow battery system S.
  • an electrolyte flow type battery having a cell stack in which a plurality of battery cells are stacked, a circulation mechanism for circulating the electrolyte solution to the electrolyte flow type battery (cell stack), and a tank gas phase of the electrolyte solution at each electrode
  • an electrolyte solution battery system including a gas supply mechanism capable of continuously supplying flow gas to the battery was constructed (see FIGS. 1 and 2).
  • Each battery cell of the cell stack was constructed by an electrode made of carbon felt having an electrode area of 500 cm 2 , a diaphragm, and a frame assembly. This electrolyte flow type battery system has an output of 1 kW and a capacity of 5 hours.
  • a sulfuric acid aqueous solution containing vanadium ions as an active material of both electrodes that is, a total vanadium electrolyte solution was prepared.
  • the amount of the electrolyte solution is 175 liters for the positive electrode electrolyte and 175 liters for the negative electrode electrolyte (350 liters in total, positive and negative).
  • the following components were used as common components.
  • Vanadium ion concentration 1.7 mol / L -Average valence of vanadium ion: 3.5 -Free sulfuric acid concentration: 2.0 mol / L Phosphoric acid concentration: 0.14 mol / L (1.4 ⁇ 10 ⁇ 1 mol / L) -Ammonium concentration: 20 mg / L or less-Silicon concentration: 40 mg / L or less
  • Sample No. shown in Table 1 The electrolyte solutions 1-1 to 1-13 were passed through a column filled with a chelate resin, and the concentration of impurity element ions was adjusted and used for concentration measurement described later.
  • Sample No. shown in Table 2 The electrolyte solutions 1-101 to 1-108 are sample nos. The concentration of impurity element ions adjusted by using a column packed with a chelate resin different from 1-1, using another ion removal method, or adding specific impurity element ions is the concentration described below. It used for the measurement.
  • the electrolyte solution of each sample was circulated and supplied to the electrolyte flow type battery, and a charge / discharge test was performed under the following conditions.
  • Nitrogen gas was used as the flow gas, and the flow gas supply amount (L / min) of each sample was as shown in Table 1.
  • Tables 1 and 2 show numerical values of the hydrogen generation rate (cc / h / m 2 ) and the discharge rate (cc / h / m 2 ).
  • Charging / discharging method Continuous charging / discharging of constant current Current density: 70 (mA / cm 2 ) Charge end voltage: 1.55 (V) / cell Discharge end voltage: 1.00 (V) / cell Temperature: Room temperature (25 ° C.)
  • the flow gas is not repeatedly supplied to the gas phase of each electrode tank, It can be seen that gas generation can be reduced during charge / discharge operation, specifically, the hydrogen generation rate at the negative electrode is 95 cc / h / m 2 or less.
  • the rate of hydrogen generation at the negative electrode is more than 10 cc / h / m 2 , but the supply amount of the flow gas that is continuously supplied to each electrode tank is 1.0 L / min or more and 50 L / min or less, It can be seen that the discharge rate of hydrogen from the negative electrode tank can be 10 cc / h / m 2 or less.
  • the concentration of barium ions is 70 mg / L or less.
  • the concentration of molybdenum ions is 2100 mg / L or less.
  • the concentration of tungsten ions is 310 mg / L or less.
  • the concentration of rhenium ions is 50 mg / L or less.
  • the concentration of indium ions is 25 mg / L or less.
  • the concentration of antimony ions is 50 mg / L or less.
  • the concentration of bismuth ions is 110 mg / L or less.
  • each element ion defined in the above (1) to (8) is treated as an impurity element ion involved in gas generation caused by a side reaction of the battery reaction, etc., and its concentration is in a specific range, It was confirmed that gas generation can be reduced.
  • the concentration of the element ions of the gas generating impurity element group in the electrolyte is preferably in a specific range before the operation of the electrolyte circulation type battery system (unused state). From this point, from the start of the operation of the electrolyte circulation type battery system, during a short period of use (for example, about 100 cycles or less for a battery with a capacity of 10 kWh or more depending on the capacity of the electrolyte circulation type battery).
  • the concentration of at least one element ion of the gas generating impurity element group in the electrolyte solution may change after charging / discharging during the charging / discharging of the electrolyte circulation type battery system, the above-described removal operation or the like is appropriately performed. It is good to do it at the time. Then, the flow rate of the flow gas that is continuously supplied to each electrode tank by using an electrolyte solution in which the impurity element ions are in a specific range is set to 1.0 L / min or more and 50 L / min or less, thereby reducing the hydrogen discharge rate. It was confirmed that it could be 10 cc / h / m 2 or less.
  • Test Example 2 In the same manner as in Test Example 1, various prepared electrolytes were circulated and supplied to the electrolyte flow type battery to perform a charge / discharge test, and the hydrogen generation rate at the negative electrode when no flow gas was supplied was examined. The results are shown in Table 3.
  • the hydrogen generation rate of each sample is 95 cc / h / m 2 or less.
  • the hydrogen generation rate of 2-13 is 10 cc / h / m 2 or more. 1-1-No. It is equal to or less than the hydrogen generation rate of 1-13. Therefore, sample no. 2-4 ⁇ No. 2-6, no. 2-8, No. 2 2-10-No. 2-13 is Sample No. 2-13. 1-1-No.
  • the hydrogen discharge rate can be reduced to 10 cc / h / m 2 or less by setting the flow gas supply amount that is continuously supplied to each electrode tank to 1.0 L / min to 50 L / min. .
  • the hydrogen generation rate of 2-9 is 10 cc / h / m 2 or less, and if the flow gas supply rate that is continuously supplied to each electrode tank is 1.0 L / min to 50 L / min, the hydrogen discharge rate It can be seen that can be further reduced.
  • the present invention is not limited to these exemplifications, is shown by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
  • the type and concentration of the active material, the type and concentration of the acid in the electrolyte solution of each electrode, the amount of the electrolyte solution, the size of the electrode, the capacity of the electrolyte flow type battery, and the like can be appropriately changed.
  • Electrolyte flow type battery system 1 Electrolyte flow type battery 100 Battery cell 10c Positive electrode 10a Negative electrode 11 Diaphragm 106 Positive electrode tank 107 Negative electrode tank 108-111 Piping 112,113 Pump 2 Gas supply mechanism 3 Gas supply source 4 Flow gas flow Path 41 Positive electrode introduction tube 42 Negative electrode introduction tube (gas phase communication tube) 43 Discharge pipe for negative electrode 5 Gas flow rate adjusting mechanism 51 Flow meter 52 Valve 200 AC / DC converter 210 Substation equipment 300 Power generation unit 400 Load

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

電解液流通型電池システムであって、電解液を貯留するタンクの気相に、常時、不活性ガスを含むフローガスを供給し続けるガス供給機構を備え、前記電解液は、不純物元素イオンである周期表の第5周期の1族から8族の元素イオン及び13族から16族の元素イオンと、第6周期の1族、2族、4族から8族の元素イオン及び13族から15族の元素イオンとの合計濃度が2500mg/L以下、バナジウムイオンの濃度が1mol/L以上3mol/L以下、フリーの硫酸の濃度が1mol/L以上4mol/L以下、リン酸の濃度が1.0×10-4mol/L以上7.1×10-1mol/L以下、アンモニウムの濃度が20mg/L以下、ケイ素の濃度が40mg/L以下であり、電解液流通型電池に循環供給して充放電試験を行ったとき、水素の発生率が95cc/h/m未満であり、前記フローガスの供給量は1.0L/min以上50L/min以下である電解液流通型電池システム。

Description

電解液流通型電池システム、及び電解液
 本発明は、電解液流通型電池システム、及び電解液に関する。
 本出願は、2016年7月26日付の日本国出願の特願2016-146799に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 二次電池(電解液流通型電池)システムには、電解液を用いて電池反応を行うものがある。電解液流通型電池システムの電解液には、例えば、酸化還元により価数が変化するイオンを活物質として含む硫酸水溶液などの水溶液が用いられている(特許文献1の明細書の段落0023、特許文献2、特許文献3)。特許文献1~3では、正負両極の活物質としてバナジウムイオンを含む全バナジウム系電解液を開示している。
特開2002-367657号公報 特開2007-311209号公報 特開2015-232960号公報
 本開示の電解液流通型電池システムは、
 電解液流通型電池と、前記電解液流通型電池に供給される電解液とを備える電解液流通型電池システムであって、
 前記電解液を貯留するタンクの気相に、常時、不活性ガスを含むフローガスを供給し続けるガス供給機構を備え、
 前記ガス供給機構は、
  前記フローガスのガス供給源と、
  前記タンクの気相に前記フローガスを導入する導入管、及び前記タンクの気相から気体を排出する排出管を有するフローガス流路と、
  前記ガス供給源からの前記フローガスの供給量を調整するガス流量調整機構とを備え、
 前記電解液は、
  水素元素を含有するガスの発生に関与する不純物元素イオンである周期表の第5周期の1族から8族の元素イオン及び13族から16族の元素イオンと、周期表の第6周期の1族、2族、4族から8族の元素イオン及び13族から15族の元素イオンとの合計濃度が2500mg/L以下、
  バナジウムイオンの濃度が1mol/L以上3mol/L以下、
  フリーの硫酸の濃度が1mol/L以上4mol/L以下、
  リン酸の濃度が1.0×10-4mol/L以上7.1×10-1mol/L以下、
  アンモニウムの濃度が20mg/L以下、
  ケイ素の濃度が40mg/L以下であり、
  前記電解液流通型電池に循環供給して前記フローガスを供給せず以下の条件で充放電試験を行ったとき、充放電中に前記電解液流通型電池の負極で発生する水素の発生率が95cc/h/m未満であり、
 前記フローガスの供給量は、1.0L/min以上50L/min以下である。
 (充放電条件)
  充放電方法 :定電流の連続充放電
  電流密度  :70(mA/cm
  充電終了電圧:1.55(V)/セル
  放電終了電圧:1.00(V)/セル
  温度    :室温(25℃)
 本開示の電解液は、
 電解液流通型電池に供給される電解液であって、
 水素元素を含有するガスの発生に関与する不純物元素イオンである周期表の第5周期の1族から8族の元素イオン及び13族から16族の元素イオンと、周期表の第6周期の1族、2族、4族から8族の元素イオン及び13族から15族の元素イオンとの合計濃度が2500mg/L以下、
 バナジウムイオンの濃度が1mol/L以上3mol/L以下、
 フリーの硫酸の濃度が1mol/L以上4mol/L以下、
 リン酸の濃度が1.0×10-4mol/L以上7.1×10-1mol/L以下、
 アンモニウムの濃度が20mg/L以下、
 ケイ素の濃度が40mg/L以下であり、
 前記電解液流通型電池に循環供給して以下の条件で充放電試験を行ったとき、充放電中に前記電解液流通型電池の負極で発生する水素の発生率が95cc/h/m未満である。
 (充放電条件)
  充放電方法 :定電流の連続充放電
  電流密度  :70(mA/cm
  充電終了電圧:1.55(V)/セル
  放電終了電圧:1.00(V)/セル
  温度    :室温(25℃)
実施形態の電解液流通型電池システムの概略構成と、電解液流通型電池の動作原理とを示す説明図である。 実施形態の電解液流通型電池システムに備わるガス供給機構の概略を示す構成図である。
 [本開示が解決しようとする課題]
 電解液流通型電池システムでは、電池反応の副反応などに起因して、ガスが発生し得る。例えば、電解液が上述の硫酸水溶液である場合、負極では水素などが発生し得る(特許文献2の明細書の段落0011)。特許文献2には、電解液を貯留するタンク内に溜まったガスをガス除去装置でクリーン化して除去することを開示している。この除去により除去後のガスを外部(大気中)に排出できるが、安全性に配慮してガスの除去が十分に行われていることを確認するために、上記ガス除去装置は高頻度なメンテナンスが必要になる。これを解決する技術として、特許文献3には、不活性ガスを含むフローガスを正・負極タンクの気相に供給して気相中の水素の濃度を低下させることで、水素を低濃度の状態で大気中に排出することを開示している。しかし、電解液の種類やフローガスの供給条件によってはタンクの気相にフローガスを常時供給し続けても気相を十分に換気できない場合があった。
 そこで、電解液を貯留するタンクの気相を十分に換気できる電解液流通型電池システムを提供することを目的の一つとする。
 また、上記電解液流通型電池システムを構築できる電解液を提供することを目的の一つとする。
 [本開示の効果]
 本開示の電解液流通型電池システムは、電解液を貯留するタンクの気相を十分に換気できる。
 本開示の電解液は、上記本開示の電解液流通型電池システムを構築できる。
 [本発明の実施形態の説明]
 本発明者らは、タンクの気相にフローガスを常時供給し続けても気相を十分に換気できない原因を鋭意検討したところ、ガスの発生量が多いことにあるとの知見を得た。そこで、本発明者らは、電池反応の副反応などに起因するガス発生の原因を見つけるために、特に電解液流通型電池に用いる電解液に着目して検討した。電解液は、活物質イオン以外に、不純物元素イオンや不純物化合物イオンといった不純物イオンを含有し得る。電解液中の不純物イオンの主な由来は、電解液の原料、電解液の製造工程で使用する材料や部材、電解液の搬送や保管などに使用する部材など種々のものが挙げられる。その他、電解液流通型電池システムの運転時に電解液が接触し得る電解液流通型電池システムの構成部材からの由来も考えられる。このような不純物イオンの種類及び多寡とガスの発生量の多寡とについて調べた結果、水素元素を含むガス(以下、H含有ガスと呼ぶことがある)の発生には、電解液中に含有し得る特定種の不純物元素イオンが多過ぎることが原因となり得るとの知見を得た。そして、H含有ガスの発生率が特定の範囲の電解液を用いる場合には、タンクの気相に常時供給し続けるフローガスの供給量を特定の範囲とすることで、タンクの気相を効果的に換気できるとの知見を得た。本発明は、これらの知見に基づくものである。以下、本発明の実施態様を列記して説明する。
 (1)本発明の一態様に係る電解液流通型電池システムは、
 電解液流通型電池と、前記電解液流通型電池に供給される電解液とを備える電解液流通型電池システムであって、
 前記電解液を貯留するタンクの気相に、常時、不活性ガスを含むフローガスを供給し続けるガス供給機構を備え、
 前記ガス供給機構は、
  前記フローガスのガス供給源と、
  前記タンクの気相に前記フローガスを導入する導入管、及び前記タンクの気相から気体を排出する排出管を有するフローガス流路と、
  前記ガス供給源からの前記フローガスの供給量を調整するガス流量調整機構とを備え、
 前記電解液は、
  水素元素を含有するガスの発生に関与する不純物元素イオンである周期表の第5周期の1族から8族の元素イオン及び13族から16族の元素イオンと、周期表の第6周期の1族、2族、4族から8族の元素イオン及び13族から15族の元素イオンとの合計濃度が2500mg/L以下、
  バナジウムイオンの濃度が1mol/L以上3mol/L以下、
  フリーの硫酸の濃度が1mol/L以上4mol/L以下、
  リン酸の濃度が1.0×10-4mol/L以上7.1×10-1mol/L以下、
  アンモニウムの濃度が20mg/L以下、
  ケイ素の濃度が40mg/L以下であり、
  前記電解液流通型電池に循環供給して前記フローガスを供給せず以下の条件で充放電試験を行ったとき、充放電中に前記電解液流通型電池の負極で発生する水素の発生率が95cc/h/m未満であり、
 前記フローガスの供給量は、1.0L/min以上50L/min以下である。
 (充放電条件)
  充放電方法 :定電流の連続充放電
  電流密度  :70(mA/cm
  充電終了電圧:1.55(V)/セル
  放電終了電圧:1.00(V)/セル
  温度    :室温(25℃)
 上記電解液は、第5周期の特定の元素イオンと、第6周期の特定の元素イオンとの双方を含み得るものの、その合計含有量が非常に少ない。それにより、電池反応の副反応などに起因するガスの発生、特に負極において、水素を含むガス(H含有ガス)の発生を低減できる。具体的には、上記充放電条件において、負極での水素の発生率を95cc/h/m以下にできる。そのため、ガス供給機構でタンクの気相に常時供給し続けるフローガスの供給量を1.0L/min以上50L/min以下とすることで、タンクの気相を十分に換気できる。従って、上記電解液流通型電池システムは、タンクの気相中の水素濃度を低下させて、水素を低濃度の状態でタンクから大気中に放出できる。
 フローガスの供給量を1.0L/min以上とすることで、その供給量が多いため、上述のようにタンクの気相の換気を十分に行える。フローガスの供給量を50L/min以下とすることで、その供給量が過度に多すぎない。そのため、タンク内が過度な正圧(大気圧よりも高圧)になることを抑制できる。その上、ガス供給源やタンクの大型化を抑制でき、ひいては電解液流通型電池システムの大型化を抑制できる。
 また、上記電解液は、バナジウムイオンを活物質として含み、硫酸及びリン酸を含む溶液を主体とする全バナジウム系電解液である。上記電解液は、特定の組成であるため、1.電池反応の副反応によるガス発生を低減し易い、2.正負極の価数バランスに優れて電池効率などの電池特性に優れる、3.アンモニウム-バナジウム化合物といった活物質元素を含む化合物の析出を抑制できる、4.ケイ素に起因する電解液のゲル化などを抑制できる、といった種々の効果を奏する。従って、上記電解液流通型電池システムは、電池反応の副反応などに起因するガス発生をより低減できる上に、活物質元素イオンに由来する活物質元素を含む析出物の析出をも抑制できて、優れた電池特性を有する。
 (2)上記電解液流通型電池システムの一形態として、前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるバリウムイオンの濃度が70mg/L以下であることが挙げられる。
 上記電解液は、周期表の第6周期の2族元素イオンであるバリウムイオンを含有する場合でも、その含有量が非常に少ない。それにより、ガスの発生、特に負極におけるH含有ガスの発生を低減できる。そのため、タンクの気相を十分に換気できるので、タンクの気相中の水素の濃度を薄くして、水素を低濃度の状態でタンクから大気中に放出できる。
 (3)上記電解液流通型電池システムの一形態として、前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるモリブデンイオンの濃度が2100mg/L以下であることが挙げられる。
 上記電解液は、周期表の第5周期の6族元素イオンであるモリブデンイオンを含有する場合でも、その含有量が非常に少ない。それにより、ガスの発生、特に負極におけるH含有ガスの発生を低減できる。そのため、タンクの気相を十分に換気できるので、タンクの気相中の水素の濃度を薄くして、水素を低濃度の状態でタンクから大気中に放出できる。
 (4)上記電解液流通型電池システムの一形態として、前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるタングステンイオンの濃度が310mg/L以下であることが挙げられる。
 上記電解液は、周期表の第6周期の6族元素イオンであるタングステンイオンを含有する場合でも、その含有量が非常に少ない。それにより、ガスの発生、特に負極におけるH含有ガスの発生を低減できる。そのため、タンクの気相を十分に換気できるので、タンクの気相中の水素の濃度を薄くして、水素を低濃度の状態でタンクから大気中に放出できる。
 (5)上記電解液流通型電池システムの一形態として、前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるレニウムイオンの濃度が50mg/L以下であることが挙げられる。
 上記電解液は、周期表の第6周期の7族元素イオンであるレニウムイオンを含有する場合でも、その含有量が非常に少ない。それにより、ガスの発生、特に負極におけるH含有ガスの発生を低減できる。そのため、タンクの気相を十分に換気できるので、タンクの気相中の水素の濃度を薄くして、水素を低濃度の状態でタンクから大気中に放出できる。
 (6)上記電解液流通型電池システムの一形態として、前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるインジウムイオンの濃度が25mg/L以下であることが挙げられる。
 上記電解液は、周期表の第5周期の13族元素イオンであるインジウムイオンを含有する場合でも、その含有量が非常に少ない。それにより、ガスの発生、特に負極におけるH含有ガスの発生を低減できる。そのため、タンクの気相を十分に換気できるので、タンクの気相中の水素の濃度を薄くして、水素を低濃度の状態でタンクから大気中に放出できる。
 (7)上記電解液流通型電池システムの一形態として、前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるアンチモンイオンの濃度が50mg/L以下であることが挙げられる。
 上記電解液は、周期表の第5周期の15族元素イオンであるアンチモンイオンを含有する場合でも、その含有量が非常に少ない。それにより、ガスの発生、特に負極におけるH含有ガスの発生を低減できる。そのため、タンクの気相を十分に換気できるので、タンクの気相中の水素の濃度を薄くして、水素を低濃度の状態でタンクから大気中に放出できる。
 (8)上記電解液流通型電池システムの一形態として、前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるビスマスイオンの濃度が110mg/L以下であることが挙げられる。
 上記電解液は、周期表の第6周期の15族元素イオンであるビスマスイオンを含有する場合でも、その含有量が非常に少ない。それにより、ガスの発生、特に負極におけるH含有ガスの発生を低減できる。そのため、タンクの気相を十分に換気できるので、タンクの気相中の水素の濃度を薄くして、水素を低濃度の状態でタンクから大気中に放出できる。
 (9)本発明の一態様に係る電解液は、
 電解液流通型電池に供給される電解液であって、
 水素元素を含有するガスの発生に関与する不純物元素イオンである周期表の第5周期の1族から8族の元素イオン及び13族から16族の元素イオンと、周期表の第6周期の1族、2族、4族から8族の元素イオン及び13族から15族の元素イオンとの合計濃度が2500mg/L以下、
 バナジウムイオンの濃度が1mol/L以上3mol/L以下、
 フリーの硫酸の濃度が1mol/L以上4mol/L以下、
 リン酸の濃度が1.0×10-4mol/L以上7.1×10-1mol/L以下、
 アンモニウムの濃度が20mg/L以下、
 ケイ素の濃度が40mg/L以下であり、
 前記電解液流通型電池に循環供給して以下の条件で充放電試験を行ったとき、充放電中に前記電解液流通型電池の負極で発生する水素の発生率が95cc/h/m未満である。
 (充放電条件)
  充放電方法 :定電流の連続充放電
  電流密度  :70(mA/cm
  充電終了電圧:1.55(V)/セル
  放電終了電圧:1.00(V)/セル
  温度    :室温(25℃)
 上記電解液は、ガス発生を低減できるため、電解液流通型電池システムの電解液に利用すれば、ガス発生、特に負極におけるH含有ガスの発生を低減できる。そのため、電解液のタンクの気相を十分に換気できる電解液流通型電池システムの構築に寄与できる。
 [本発明の実施形態の詳細]
 以下、図1,図2を参照して、本発明の実施形態に係る電解液流通型電池システムSをより詳細に説明する。図1の正極タンク106,負極タンク107内に示すイオンは、電解液中に活物質として含むイオン種の一例を示し、電解液流通型電池1の実線矢印は充電、破線矢印は放電を意味する。説明の便宜上、図1では、電解液流通型電池システムSのうち電解液流通型電池1と循環機構とを示してガス供給機構を省略し、図2では、ガス供給機構2と循環機構の各タンク106,107とを示してその他を省略している。図2において黒塗り矢印は、フローガスの流れを示す。
(電解液流通型電池システムの概要)
 実施形態の電解液流通型電池システムSは、電解液流通型電池1と、電解液と、電解液を電解液流通型電池1に供給するための循環機構(後述)とを備える。電解液流通型電池1は、代表的には、交流/直流変換器200や変電設備210などを介して、発電部300と、電力系統や需要家などの負荷400とに接続され、発電部300を電力供給源として充電を行い、負荷400を電力提供対象として放電を行う。発電部300は、例えば、太陽光発電機、風力発電機、その他一般の発電所などが挙げられる。
(電解液流通型電池の基本構成)
 電解液流通型電池1は、正極電極10cと、負極電極10aと、両電極10c,10a間に介在される隔膜11とを備える電池セル100を主な構成要素とする。
 電解液流通型電池1は、代表的には、複数の電池セル100が積層されて、セルスタックと呼ばれる形態で利用される。セルスタックは、一面に正極電極10c、他面に負極電極10aが配置される双極板(図示せず)と、上記双極板の外周に形成された枠体(図示せず)とを備えるフレームアッシーを用いた構成が代表的である。双極板には、電解液が流通する溝などの流路が形成されていてもよい。枠体には、双極板上に配置された各極の電極に各極の電解液を供給する給液孔及び電解液を排出する排液孔を有する。複数のフレームアッシーを積層することで給液孔及び排液孔は電解液の流通管路を構成し、この管路に後述の配管108~111がそれぞれ接続される。セルスタックは、あるフレームアッシーの双極板、正極電極10c、隔膜11、負極電極10a、別のフレームアッシーの双極板、…と順に繰り返し積層されて構成される。
(循環機構)
 循環機構は、正極電極10cに循環供給する正極電解液を貯留する正極タンク106と、負極電極10aに循環供給する負極電解液を貯留する負極タンク107と、正極タンク106と電解液流通型電池1との間を接続する配管108,110と、負極タンク107と電解液流通型電池1との間を接続する配管109,111と、上流側(供給側)の配管108,109に設けられたポンプ112,113とを備える。
 電解液流通型電池システムSは、正極タンク106及び配管108,110を備える正極電解液の循環経路と、負極タンク107及び配管109,111を備える負極電解液の循環経路を利用して、正極電極10cに正極電解液を循環供給すると共に負極電極10aに負極電解液を循環供給する。この循環供給によって、各極の電解液中の活物質イオンの価数変化反応に伴って充放電を行う。電解液流通型電池システムSの基本構成は、公知の構成を適宜利用可能である。実施形態の電解液流通型電池システムSの特徴の一つは、負極タンク107の気相に不活性ガスを含むフローガスを供給するガス供給機構2と、電解液として、以下の実施形態1~実施形態9のいずれか1つの電解液とを備える点にある。以下、ガス供給機構2を説明し、その後、実施形態1~実施形態9の電解液を順に説明する。
(ガス供給機構)
 ガス供給機構2は、常時、負極タンク107の気相に不活性ガスを含むフローガスを供給し続ける。そうして、負極タンク107の気相を十分に換気する。この電解液流通型電池システムSでは、後述する各実施形態の電解液を用いると、電池反応の副反応などに起因して負極で水素元素を含有するガス(H含有ガス)が発生し得る。それにより、負極タンク107の気相にH含有ガスが貯まり易い。そのため、負極タンク107の気相を十分に換気することで、負極タンク107の気相中の水素濃度を低下させて、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 『常時』とは、電解液流通型電池システムSを運用する間中である。電解液流通型電池システムSに備わる電解液流通型電池1を動作させているとき、即ち電解液を電解液流通型電池1内に循環させて充電あるいは放電を行っているときはもちろん、充電あるいは放電に備えて電解液流通型電池1を停止しているとき、即ち電解液を電解液流通型電池1内に循環させていないときも、『常時』に含まれる。逆に、『常時以外』とは、例えば電解液流通型電池1を含む電解液流通型電池システムSのメンテナンスを行うときなどである。
 このガス供給機構2は、ガス供給源3とフローガス流路4とガス流量調整機構5とを備える。
 ・ガス供給源
 ガス供給源3は、不活性ガスを含むフローガスを貯留又は発生させ、電解液流通型電池1に供給する。不活性ガスの種類は、例えば、窒素や希ガス(アルゴン、ネオン、ヘリウム)などが挙げられる。窒素は、容易に入手可能で、安価である。フローガスにおける不活性ガスの割合は、99.9体積%以上であることが好ましい。この割合が高いほど、フローガスによる電解液の劣化を抑制できる。特に、フローガスにおける不活性ガスの割合が99.9体積%以上であると、理論上、10年以上に渡って電解液の劣化が抑制される可能性がある。
 ガス供給源3は、例えば、不活性ガスを貯留する貯留部材(ボンベ、タンクなど)を備えていてもよいし、不活性ガスを発生させるガス発生装置を備えていてもよい。前者の形態は、簡単に構築できる。後者の形態は、不活性ガスの補充の手間を低減できる。特に、窒素を発生させるガス発生装置の場合、大気中から窒素を取り出せるので、半永久的にフローガスを供給できる。
 ・フローガス流路
 フローガス流路4は、負極タンク107の気相に常時、フローガスを供給し続けるための流路である。本例では、フローガス流路4は、正極タンク106の気相にもフローガスを供給し続ける。フローガス流路4は、正極用導入管41と負極用導入管42と負極用排出管43とを備える。これらの配管41~43には、メンテナンスなどに用いるバルブ(図示せず)を設けることが好ましい。
 正極用導入管41は、ガス供給源3から供給されるフローガスを正極タンク106に導入する配管である。この正極用導入管41は、正極タンク106の気相に開口している。この正極用導入管41には、後述のガス流量調整機構5が設けられている。負極用導入管42は、負極タンク107の気相にフローガスを導入する配管である。本例では、正極タンク106の気相と負極タンク107の気相とを連通させる気相連通管によって負極用導入管42を構成している。即ち、正極用導入管41を介して正極タンク106の気相に導入されたフローガスが、負極用導入管(気相連通管)42を介して負極タンク107の気相に導入される。この負極用導入管42は、その構造上、正極タンク106の気相から気体を排出する正極用排出管でもある。負極用排出管43は、負極タンク107の気相から気体を排出する配管である。これらの配管41~43は、ガス供給源3から正極タンク106の気相および負極タンク107の気相を介して大気に至るフローガスの流路を形成する。
 フローガス流路4は、その他、負極用導入管(気相連結管)42とは別に、正極タンク106の気相から気体を排出する正極用排出管(図示略)を備えていてもよい。この場合、正極用排出管から排出された気体と、負極用排出管43から排出された気体をまとめて大気へ放出する集合排出管(図示略)を備えていてもよい。
 ・ガス流量調整機構
 ガス流量調整機構5は、ガス供給源3から電解液流通型電池1に供給されるフローガスの供給量を調整する。本例では、ガス供給源3から電解液流通型電池1に供給されるフローガスの供給量を所定値以上に調整する。それにより、ガス供給源3から正極タンク106の気相および負極タンク107の気相に常時、フローガスを供給し続けられる。ガス流量調整機構5は、例えば、流量計51とバルブ52とを備える構成が挙げられる。ガス流量調整機構5は、流量計51で計測した正極用導入管41におけるフローガスの流量に基づいてバルブ52の開度を調整する。流量に基づく開度の決定や、バルブ52の動作は、図示しない制御部(例えば、コンピュータなど)によって行う。
 電解液流通型電池1へのフローガスの供給量は、1.0L/min以上50L/min以下が好ましい。フローガスの供給量を1.0L/min以上とすることで、各タンク106,107の気相の換気、即ち電解液流通型電池1の気相の換気を十分に行える。フローガスの供給量を50L/min以下とすることで、各タンク106,107内が過度な正圧(大気圧よりも高圧)になることを抑制できる。本例の場合、上述のように両タンク106,107を一体に扱い、正極タンク106にフローガスを流した後、その一部を負極タンク107に導入する構成としている。そのため、負極タンク107の気相へのフローガスの供給量が1.0L/min以上50L/min以下となるように、電解液流通型電池1へのフローガスの供給量を調整する。このフローガスの供給量は、更に1.0L/min以上49L/min以下が好ましく、特に1.0L/min以上48L/min以下が好ましい。
 さらに、電解液タンク106,107の気相の換気が十分に行われているかを監視するために、フローガス流路4の各所に流量を測定する流量計(図示略)を設けることが好ましい。例えば、負極用導入管42に追加の流量計を設け、その測定結果も加味して、バルブ52の開度を調整しても良い。もちろん、シミュレーションや実機を使った実験によって、例えば、流量計51の測定値(L/min)が特定の範囲を満たせば、各タンク106,107の気相の換気が十分に行われるといった相関データが得られているのであれば、図2のガス流量調整機構5の位置にのみ流量計51を設ける構成であってもよい。
 ・その他
 ガス供給機構2は、その他、逆流防止機構や呼吸袋などを備えることができる(いずれも図示略)。
 ・・逆流防止機構
 逆流防止機構は、負極用排出管43に設けられ、負極タンク107への気体の逆流を防止する。上述のように気相連結管42とは別に正極用排出管を設ける場合には、逆流防止機構を正極用排出管にも設けることが挙げられる。逆流防止機構は、例えば、公知の水封弁の他、流量計とバルブを用いた構成などが利用できる。流量計とバルブを用いる場合は、流量計で負極用排出管43内の流量を計測し、その計測結果に基づいてバルブを閉鎖することで、負極タンク107への気体の逆流を防止できる。
 ・・呼吸袋
 呼吸袋は、各タンク106,107内に垂下されてその内部が大気中に連通され、両タンク106,107内が負圧(大気圧よりも低圧)となることを抑制する。具体的には、各タンク106,107内が負圧になったときに、その内部に大気を吸い込んで、各タンク106,107の内容積(呼吸袋を除く)を減じ、各タンク106,107内の圧力を上昇させる。この呼吸袋は、各タンク106,107内が正圧になったときにも機能する。具体的には、呼吸袋の内部の気体を大気に放出し、各タンク106,107の内容積(呼吸袋を除く)を増やし、各タンク106,107内の圧力を低下させる。この呼吸袋は、公知のものを利用できる(例えば、特開2002-175825号公報を参照)。
(電解液)
 実施形態の電解液は、活物質となるイオンを含有するイオン溶液であり、この点は従来の電解液と共通する。実施形態の電解液は、不純物イオンとして、電池反応の副反応などに起因するガス発生に関与する特定の不純物元素イオンを含み得るものの、その含有量が非常に少ない点を特徴の一つとする。まず、この特定の不純物元素イオンを説明する。
 ・不純物元素イオン
 ・・実施形態1
 実施形態1の電解液は、ガス発生に関与する不純物元素イオンとして、周期表の第5周期の1族から8族の元素イオン及び13族から16族の元素イオンと、周期表の第6周期の1族、2族、4族から8族の元素イオン及び13族から15族の元素イオンとを含む場合にこれらの合計濃度が2500mg/L以下である。これらの不純物元素イオンの含有量(合計濃度)が上記の範囲を満たすことで、電池反応の副反応などに起因するガスの発生、特に負極での水素を含有するH含有ガスの発生を低減できる。そのため、ガス供給機構2により各タンク106,107の気相に常時供給し続けるフローガスの共有量を上述した1.0L/min以上50L/min以下の範囲とすることで、各タンク106,107の気相を十分に換気できる。それにより、負極タンク107の気相中の水素の濃度を薄くして、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 周期表の第5周期の1族から8族の元素とは、ルビジウム(Rb、1族)、ストロンチウム(Sr、2族)、イットリウム(Y、3族)、ジルコニウム(Zr、4族)、ニオブ(Nb、5族)、モリブデン(Mo、6族)、テクネチウム(Tc、7族)、ルテニウム(Ru、8族)である。
 周期表の第5周期の13族から16族の元素とは、インジウム(In、13族)、錫(Sn、14族)、アンチモン(Sb、15族)、テルル(Te、16族)である。
 周期表の第6周期の1族、2族、4族から8族の元素とは、セシウム(Cs、1族)、バリウム(Ba、2族)、ハフニウム(Hf、4族)、タンタル(Ta、5族)、タングステン(W、6族)、レニウム(Re、7族)、オスミウム(Os、8族)である。
 周期表の第6周期の13族から15族の元素とは、タリウム(Tl、13族)、鉛(Pb、14族)、ビスマス(Bi、15族)である。
 以下、これらの元素をまとめてガス発生不純物元素群と呼ぶことがある。
 上記合計濃度が低いほどガス発生を低減できて好ましく、2450mg/L以下、更に2400mg/L以下、特に2300mg/L以下が好ましい。上記合計濃度は、610mg/L以下、600mg/L以下、更に550mg/L以下、500mg/L以下、特に0(ゼロ)が好ましいが、フローガスを供給し続けることにより負極タンク107の気相の換気を十分に行える許容量として、上記の上限値を規定する。少なくとも未使用の電解液における上記合計濃度が上記の範囲を満たすことが好ましいと考えられる。
 上述のように上記合計濃度が低いほどガス発生を低減できる。即ち、上記合計濃度が高いほどガスが発生し易いため、各タンク106,107の気相へフローガスを供給し続けることによる気相の換気の効果を得易い。例えば、上記合計濃度が610mg/L超であれば、フローガスを供給し続けることによる気相の換気の効果を得易く、更に650mg/L以上、特に700mg/L以上であれば、気相の換気の効果を得易い。
 上記ガス発生不純物元素群の元素イオンの合計濃度が低い場合でも、上記ガス発生不純物元素群の元素イオンのうち、特定の元素イオンについては、その含有量が多過ぎるとガスが発生し易いとの知見を得た。そこで、上記ガス発生不純物元素群のうち、特定の元素イオンについて、以下のように含有量を規定する。
 ・・実施形態2
 実施形態2の電解液は、ガス発生に関与する不純物元素イオンとして、バリウムイオンを含む場合にその濃度が70mg/L以下である。電解液に含み得る不純物イオンのうち、特にバリウムイオンの含有量が上記の範囲を満たすことで、ガスの発生、特に負極でのH含有ガスの発生を低減できる。そのため、ガス供給機構2によりタンク106,107の気相に供給し続けるフローガスの供給量を上述の範囲とすることで、各タンク106,107の気相を十分に換気できる。それにより、負極タンク107の気相中の水素の濃度を薄くして、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 バリウムイオンの濃度が低いほどガス発生を低減できて好ましく、67mg/L以下、更に65mg/L以下、特に60mg/L以下が好ましい。バリウムイオンの濃度は、20mg/L以下、18mg/L以下、更に16mg/L以下、10mg/L以下、特に0(ゼロ)が好ましいが、フローガスを供給し続けることにより負極タンク107の気相の換気を十分に行える許容量として、上記の上限値を規定する。少なくとも未使用の電解液におけるバリウムイオンの濃度が上記の範囲を満たすことが好ましいと考えられる。
 上述のようにバリウムイオンの濃度が低いほどガス発生を低減できる。即ち、バリウムイオンの濃度が高いほどガスが発生し易いため、各タンク106,107の気相へフローガスを供給し続けることによる気相の換気の効果を得易い。例えば、バリウムイオンの濃度が30mg/L以上であれば、フローガスを供給し続けることによる気相の換気の効果を得易く、更に35mg/L以上、特に40mg/L以上であれば、気相の換気の効果を得易い。
 ・・実施形態3
 実施形態3の電解液は、ガス発生に関与する不純物元素イオンとして、モリブデンイオンを含む場合にその濃度が2100mg/L以下である。電解液に含み得る不純物イオンのうち、特にモリブデンイオンの含有量が上記の範囲を満たすことで、ガスの発生、特に負極でのH含有ガスの発生を低減できる。そのため、ガス供給機構2によりタンク106,107の気相に供給し続けるフローガスの供給量を上述の範囲とすることで、各タンク106,107の気相を十分に換気できる。それにより、負極タンク107の気相中の水素の濃度を薄くして、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 モリブデンイオンの濃度が低いほどガス発生を低減できて好ましく、2055mg/L以下、更に2030mg/L以下、特に2015mg/L以下が好ましい。モリブデンイオンの濃度は、510mg/L以下、500mg/L以下、更に495mg/L以下、450mg/L以下、400mg/L、特に0(ゼロ)が好ましいが、フローガスを供給し続けることにより負極タンク107の気相の換気を十分に行える許容量として、上記の上限値を規定する。少なくとも未使用の電解液におけるモリブデンイオンの濃度が上記の範囲を満たすことが好ましいと考えられる。
 上述のようにモリブデンイオンの濃度が低いほどガス発生を低減できる。即ち、モリブデンイオンの濃度が高いほどガスが発生し易いため、各タンク106,107の気相へフローガスを供給し続けることによる気相の換気の効果を得易い。例えば、モリブデンイオンの濃度が510mg/L超であれば、フローガスを供給し続けることによる気相の換気の効果を得易く、更に550mg/L以上、特に600mg/L以上であれば、気相の換気の効果を得易い。
 ・・実施形態4
 実施形態4の電解液は、ガス発生に関与する不純物元素イオンとして、タングステンイオンを含む場合にその濃度が310mg/L以下である。電解液に含み得る不純物イオンのうち、特にタングステンイオンの含有量が上記の範囲を満たすことで、ガスの発生、特に負極でのH含有ガスの発生を低減できる。そのため、ガス供給機構2によりタンク106,107の気相に供給し続けるフローガスの供給量を上述の範囲とすることで、各タンク106,107の気相を十分に換気できる。それにより、負極タンク107の気相中の水素の濃度を薄くして、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 タングステンイオンの濃度が低いほどガス発生を低減できて好ましく、300mg/L以下、更に285mg/L以下、特に275mg/L以下が好ましい。タングステンイオンの濃度は、30mg/L以下、29mg/L以下、更に26mg/L以下、20mg/L、特に0(ゼロ)が好ましいが、フローガスを供給し続けることにより負極タンク107の気相の換気を十分に行える許容量として、上記の上限値を規定する。少なくとも未使用の電解液におけるタングステンイオンの濃度が上記の範囲を満たすことが好ましいと考えられる。
 上述のようにタングステンイオンの濃度が低いほどガス発生を低減できる。即ち、タングステンイオンの濃度が高いほどガスが発生し易いため、各タンク106,107の気相へフローガスを供給し続けることによる気相の換気の効果を得易い。例えば、タングステンイオンの濃度が60mg/L以上であれば、フローガスを供給し続けることによる気相の換気の効果を得易く、更に65mg/L以上、特に70mg/L以上であれば、気相の換気の効果を得易い。
 ・・実施形態5
 実施形態5の電解液は、ガス発生に関与する不純物元素イオンとして、レニウムイオンを含む場合にその濃度が50mg/L以下である。電解液に含み得る不純物イオンのうち、特にレニウムイオンの含有量が上記の範囲を満たすことで、ガスの発生、特に負極でのH含有ガスの発生を低減できる。そのため、ガス供給機構2によりタンク106,107の気相に供給し続けるフローガスの供給量を上述の範囲とすることで、各タンク106,107の気相を十分に換気できる。それにより、負極タンク107の気相中の水素の濃度を薄くして、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 レニウムイオンの濃度が低いほどガス発生を低減できて好ましく、45mg/L以下、更に40mg/L以下、特に35mg/Lが好ましい。レニウムイオンの濃度は、5mg/L以下、4.8mg/L以下、更に4.6mg/L以下、4mg/L、特に0(ゼロ)が好ましいが、フローガスを供給し続けることにより負極タンク107の気相の換気を十分に行える許容量として、上記の上限値を規定する。少なくとも未使用の電解液におけるレニウムイオンの濃度が上記の範囲を満たすことが好ましいと考えられる。
 上述のようにレニウムイオンの濃度が低いほどガス発生を低減できる。即ち、レニウムイオンの濃度が高いほどガスが発生し易いため、各タンク106,107の気相へフローガスを供給し続けることによる気相の換気の効果を得易い。例えば、レニウムイオンの濃度が5mg/L超であれば、フローガスを供給し続けることによる気相の換気の効果を得易く、更に10mg/L以上、特に15mg/L以上であれば、気相の換気の効果を得易い。
 ・・実施形態6
 実施形態6の電解液は、ガス発生に関与する不純物元素イオンとして、インジウムイオンを含む場合にその濃度が25mg/L以下である。電解液に含み得る不純物イオンのうち、特にインジウムイオンの含有量が上記の範囲を満たすことで、ガスの発生、特に負極でのH含有ガスの発生を低減できる。そのため、ガス供給機構2によりタンク106,107の気相に供給し続けるフローガスの供給量を上述の範囲とすることで、各タンク106,107の気相を十分に換気できる。それにより、負極タンク107の気相中の水素の濃度を薄くして、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 インジウムイオンの濃度が低いほどガス発生を低減できて好ましく、23mg/L以下、更に20mg/L以下、特に18mg/Lがより好ましい。インジウムイオンの濃度は、5mg/L以下、4.8mg/L以下、更に4.6mg/L以下、4mg/L、特に0(ゼロ)が好ましいが、フローガスを供給し続けることにより負極タンク107の気相の換気を十分に行える許容量として、上記の上限値を規定する。少なくとも未使用の電解液におけるインジウムイオンの濃度が上記の範囲を満たすことが好ましいと考えられる。
 上述のようにインジウムイオンの濃度が低いほどガス発生を低減できる。即ち、インジウムイオンの濃度が高いほどガスが発生し易いため、各タンク106,107の気相へフローガスを供給し続けることによる気相の換気の効果を得易い。例えば、インジウムイオンの濃度が5mg/L超であれば、フローガスを供給し続けることによる気相の換気の効果を得易く、更に7mg/L以上、特に9mg/L以上であれば、気相の換気の効果を得易い。
 ・・実施形態7
 実施形態7の電解液は、ガス発生に関与する不純物元素イオンとして、アンチモンイオンを含む場合にその濃度が50mg/L以下である。電解液に含み得る不純物イオンのうち、特にアンチモンイオンの含有量が上記の範囲を満たすことで、ガスの発生、特に負極でのH含有ガスの発生を低減できる。そのため、ガス供給機構2によりタンク106,107の気相に供給し続けるフローガスの供給量を上述の範囲とすることで、各タンク106,107の気相を十分に換気できる。それにより、負極タンク107の気相中の水素の濃度を薄くして、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 アンチモンイオンの濃度が低いほどガス発生を低減できて好ましく、46mg/L以下、更に43mg/L以下、特に40mg/Lが好ましい。アンチモンイオンの濃度は、10mg/L以下、9mg/L以下、更に8mg/L以下、6mg/L、特に0(ゼロ)が好ましいが、フローガスを供給し続けることにより負極タンク107の気相の換気を十分に行える許容量として、上記の上限値を規定する。少なくとも未使用の電解液ににおけるアンチモンイオンの濃度が上記の範囲を満たすことが好ましいと考えられる。
 上述のようにアンチモンイオンの濃度が低いほどガス発生を低減できる。即ち、アンチモンイオンの濃度が高いほどガスが発生し易いため、各タンク106,107の気相へフローガスを供給し続けることによる気相の換気の効果を得易い。例えば、アンチモンイオンの濃度が10mg/L超であれば、フローガスを供給し続けることによる気相の換気の効果を得易く、更に12mg/L以上、特に15mg/L以上であれば、気相の換気の効果を得易い。
 ・・実施形態8
 実施形態8の電解液は、ガス発生に関与する不純物元素イオンとして、ビスマスイオンを含む場合にその濃度が110mg/L以下である。電解液に含み得る不純物イオンのうち、特にビスマスイオンの含有量が上記の範囲を満たすことで、ガスの発生、特に負極でのH含有ガスの発生を低減できる。そのため、ガス供給機構2によりタンク106,107の気相に供給し続けるフローガスの供給量を上述の範囲とすることで、各タンク106,107の気相を十分に換気できる。それにより、負極タンク107の気相中の水素の濃度を薄くして、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 ビスマスイオンの濃度が低いほどガス発生を低減できて好ましく、100mg/L以下、更に95mg/L以下、特に90mg/Lがより好ましい。ビスマスイオンの濃度は、20mg/L以下、19mg/L以下、更に16mg/L以下、15mg/L、特に0(ゼロ)が好ましいが、フローガスを供給し続けることにより負極タンク107の気相の換気を十分に行うことがでできる許容量として、上記の上限値を規定する。少なくとも未使用の電解液について、ビスマスイオンの濃度が上記の範囲を満たすことが好ましいと考えられる。
 上述のようにビスマスイオンの濃度が低いほどガス発生を低減できる。即ち、ビスマスイオンの濃度が高いほどガスが発生し易いため、各タンク106,107の気相へフローガスを供給し続けることによる気相の換気の効果を得易い。例えば、ビスマスイオンの濃度が20mg/L超であれば、フローガスを供給し続けることによる気相の換気の効果を得易く、更に25mg/L以上、特に30mg/L以上であれば、気相の換気の効果を得易い。
 ・・実施形態9
 実施形態9の電解液は、上述の実施形態1~実施形態8の全ての規定を満たす。このような実施形態9の電解液を用いることで、ガスの発生、特に負極でのH含有ガスの発生を低減できる。そのため、ガス供給機構2によりタンク106,107の気相に供給し続けるフローガスの供給量を上述の範囲とすることで、各タンク106,107の気相を十分に換気できる。それにより、負極タンク107の気相中の水素の濃度を薄くして、水素を低濃度の状態で負極タンク107から大気中に放出できる。
 ・不純物元素イオンの低減方法
 電解液中に存在し得る上述のガス発生不純物元素群の元素イオンの濃度を低減するには、例えば、以下の対策を利用できる。
(1)電解液の製造過程で、ガス発生不純物元素群の元素の含有量が少ない、好ましくは含んでいない原料(活物質、溶媒など)を用いる。
(2)電解液の製造過程に利用する部材として、その構成成分にガス発生不純物元素群の元素の含有量が少ない、好ましくは含んでいないものを用いる。
(3)電解液の搬送、保管などの過程で利用する部材(輸送タンクや保管タンクなど)として、その構成成分にガス発生不純物元素群の元素の含有量が少ない、好ましくは含んでいないものを用いる。
(4)電解液に対して、ガス発生不純物元素群の元素イオンを除去する後述の除去操作を行う。
(5)電解液流通型電池システムSを構築する部材のうち、上述した電解液と接触し得る部材として、その構成成分にガス発生不純物元素群の元素の含有量が少ない、好ましくは含んでいないものを用いる。
 上記(4)の除去操作は、凝集沈殿、溶媒抽出、イオン交換樹脂やキレート樹脂を用いた濾過、電解析出、膜分離などといった元素イオンの除去が可能な種々の方法を利用できる。公知の方法を利用してもよい。特に、キレート樹脂を用いた濾過では、キレート樹脂の物性や電解液のpHなどを調整することで、特定の元素イオンを選択的に濾過できる。この濾過は、キレート樹脂製のフィルタ、又はキレート樹脂をビーズ状にして充填したカラムなどに電解液を通液することで行える。この除去操作を行うことで、電解液中に存在するガス発生不純物元素群の元素イオンのうち、複数の元素イオンを同時に除去することがある。
 上述の除去操作は、任意の時期に行える。即ち、電解液を電解液流通型電池システムSに供給する運転前だけでなく、システムSの運転中であって待機期間や停止期間などに電解液中の成分分析を行い、その結果に応じて、上述の除去操作を行える。こうすることで、システムSの運転前は勿論、運転中においても、ガス発生不純物元素群の元素イオンの濃度を特定の範囲に維持できて、システムSを長期に亘り運転してもガスを発生し難くできるため、常時供給し続けるフローガスの供給量を上述の範囲とすることで、各タンク106,107の気相を十分に換気できる。
 ・活物質
 実施形態の電解液は、種々の活物質を含むことができる。例えば、両極の活物質がバナジウムイオンである全バナジウム系電解液(図1参照)、正極活物質が鉄イオン、負極活物質がクロムイオンである鉄-クロム系電解液、正極活物質がマンガンイオン、負極活物質がチタンイオンであるマンガン-チタン系電解液(二液型)、両極にマンガンイオン及びチタンイオンを含むマンガン-チタン系電解液(一液型)などとすることができる。特に全バナジウム系電解液では、電解液の製造過程などでガス発生不純物元素群の元素を含む可能性があり、上述の(4)の除去操作などを適宜行うことが望まれる。
 実施形態の電解液を全バナジウム系電解液とする場合、正極電解液及び負極電解液におけるバナジウムイオン濃度は1mol/L以上3mol/L以下が好ましく、1.2mol/L以上2.5mol/L以下、更に1.5mol/L以上1.9mol/L以下がより好ましい。この効果は後述する。
 実施形態の電解液を全バナジウム系電解液とする場合、バナジウムイオンの平均価数は3.3以上3.7以下、更に3.4以上3.6以下が好ましい。この場合、両極の価数バランスに優れ、電池反応を良好に行えて、電池効率やエネルギー密度といった電池特性に優れる。また、価数バランスに優れることで、電池反応の副反応の発生を低減し易くなり、副反応に起因するガス発生を低減し易い。
 ・溶媒など
 実施形態の電解液は、上記活物質を含む酸溶液、特に酸の水溶液とすることができる。酸溶液は、例えば、硫酸(HSO)、KSO、NaSO、リン酸(HPO)、H、KHPO、NaPO、KPO、硝酸(HNO)、KNO、塩酸(HCl)及びNaNOから選択される少なくとも1種の酸又は酸塩を含むものが挙げられる。その他、有機酸溶液とすることができる。
 実施形態の電解液を、リン酸を含む硫酸溶液の全バナジウム系電解液とする場合、バナジウムイオン濃度が上述の特定の範囲を満たすと共に、フリーの硫酸の濃度が1mol/L以上4mol/L以下、リン酸の濃度が1.0×10-4mol/L以上7.1×10-1mol/L以下、アンモニウムの濃度が20mg/L以下、ケイ素(Si)の濃度が40mg/L以下を満たすことが好ましい。
 バナジウムイオンの濃度及びフリーの硫酸の濃度が上述の範囲を満たせば、上述の価数バランスに優れる電解液とすることができる。
 バナジウムイオン濃度、硫酸濃度、リン酸濃度が上述の特定の範囲を満たす組合せは、活物質元素を含むバナジウム化合物などの析出物が析出し難く、長期に亘り、優れた電池性能を有することができる。
 アンモニウム濃度が上述の特定の範囲を満たせば、上記バナジウム化合物のうち、アンモニウム-バナジウム化合物の析出を抑制し易い。
 ケイ素が上述の特定の範囲を満たせば、隔膜11に悪影響を与え得る現象の発生を低減できる。
 この形態は、不純物元素イオンに由来するガス発生の抑制効果に加えて、活物質元素イオンに由来する析出物の発生をも低減できて、電池反応を良好に行えるといえる。
 フリーの硫酸の濃度は、1.5mol/L以上3.5mol/L以下がより好ましい。リン酸の濃度は、1.0×10-3mol/L以上3.5×10-1mol/L以下がより好ましい。アンモニウムの濃度は、10mg/L以下がより好ましい。ケイ素の濃度は、30mg/L以下がより好ましい。アンモニウムの濃度及びケイ素の濃度を低減するには、フィルタを用いた濾過など公知の手法(特許文献1など参照)が利用できる。
(用途)
 実施形態の電解液流通型電池システムSは、太陽光発電、風力発電などの自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした蓄電池に利用できる。また、実施形態の電解液流通型電池システムSは、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした蓄電池にも利用できる。実施形態1~実施形態9の電解液は、上述の電解液流通型電池システムSに利用できる。
 [試験例1]
 種々の電解液を電解液流通型電池に循環供給して充放電試験を行い、各極タンクの気相にフローガスを供給しないときのガスの発生状態と、フローガスを常時供給し続けたときのタンクの気相からのガスの排出状態とを調べた。
 この試験では、電池セルを複数積層したセルスタックを有する電解液流通型電池と、電解液流通型電池(セルスタック)に電解液を循環供給する循環機構と、各極の電解液のタンク気相にフローガスを常時供給し続けられるガス供給機構とを備える電解液流通型電池システムを構築した(図1、図2参照)。
 セルスタックの各電池セルは、電極面積が500cmであるカーボンフェルト製の電極と、隔膜と、フレームアッシーとによって構築した。
 この電解液流通型電池システムは、出力1kWで5時間の容量を有するものである。
 各試料の電解液には、両極の活物質としてバナジウムイオンを含む硫酸水溶液、つまり全バナジウム系電解液を用意した。各試料の電解液量はいずれも、正極電解液が175リットル、負極電解液が175リットルである(正負合計で350リットル)。各試料の電解液はいずれも、以下の成分を共通成分とした。
 電解液中の濃度(各試料について共通)
 ・バナジウムイオンの濃度:1.7mol/L
 ・バナジウムイオンの平均価数:3.5
 ・フリーの硫酸の濃度:2.0mol/L
 ・リン酸の濃度:0.14mol/L(1.4×10-1mol/L)
 ・アンモニウムの濃度:20mg/L以下
 ・ケイ素の濃度:40mg/L以下
 表1に示す試料No.1-1~1-13の電解液は、キレート樹脂を充填したカラムに通液させて、不純物元素イオンの濃度調整を行ったものを後述の濃度測定に供した。
 表2に示す試料No.1-101~1-108の電解液は、試料No.1-1とは異なるキレート樹脂を充填したカラムや、別のイオン除去方法などを用いたり、特定の不純物元素イオンを添加したりして、不純物元素イオンの濃度調整を行ったものを後述の濃度測定に供した。
 充放電試験前に、各試料の電解液の成分分析を行い、周期表の第5周期の1族から8族及び13族から16族、周期表の第6周期の1族、2族、4族から8族及び13族から15族に規定される元素について、各元素イオンの濃度(mg/L)を測定した。その結果を表1、表2に示す。濃度の測定には、ICP質量分析装置(Agilent Technologies. Inc.製、Agilent 7700x ICP-MS)を用いた。
 各試料の電解液を電解液流通型電池に循環供給して、以下の条件で充放電試験を行った。まず、各極タンクの気相にフローガスを供給しない状態で充放電中に負極で発生したガスを採集し、その成分を分析して水素の発生率(cc/h/m)を調べることでガスの発生状態を調べた。次に、ガス供給機構により各極タンクの気相にフローガスを常時供給し続けた状態で充放電中に負極タンクから排出されたガスを採集し、その成分を分析して水素の排出率(cc/h/m)を調べることでガスの排出状態を調べた。フローガスには窒素ガスを用い、各試料のフローガスの供給量(L/min)は表1に示す通りとした。水素の発生率(cc/h/m)と排出率(cc/h/m)の数値を表1、表2に示す。
(充放電条件)
  充放電方法 :定電流の連続充放電
  電流密度  :70(mA/cm
  充電終了電圧:1.55(V)/セル
  放電終了電圧:1.00(V)/セル
  温度    :室温(25℃)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すように電解液中に含み得る不純物元素イオンが以下の(1)~(8)の少なくとも一つを満たせば、各極タンクの気相にフローガスを供給しない状態において、繰り返しの充放電運転中にガス発生を低減できること、具体的には負極での水素の発生率が95cc/h/m以下であることが分かる。負極での水素の発生率はいずれも10cc/h/m超であるが、各極タンクに常時供給し続けるフローガスの供給量を1.0L/min以上50L/min以下とすることで、負極タンクからの水素の排出率を10cc/h/m以下にできることが分かる。
 (1)周期表の第5周期の1族から8族の元素イオン及び13族から16族の元素イオンと、周期表の第6周期の1族、2族、4族から8族の元素イオン及び13族から15族の元素イオンとの合計濃度が2500mg/L以下である。
 (2)バリウムイオンの濃度が70mg/L以下である。
 (3)モリブデンイオンの濃度が2100mg/L以下である。
 (4)タングステンイオンの濃度が310mg/L以下である。
 (5)レニウムイオンの濃度が50mg/L以下である。
 (6)インジウムイオンの濃度が25mg/L以下である。
 (7)アンチモンイオンの濃度が50mg/L以下である。
 (8)ビスマスイオンの濃度が110mg/L以下である。
 一方、表2に示すように、上記(1)~(8)のいずれか一つを満たさない場合には、各極タンクの気相にフローガスを供給しない状態において、繰り返しの充放電運転中に水素が発生し易いこと、具体的には負極での水素の発生率が95cc/h/m超であることが分かる。このような電解液を用いると、各極タンクに常時供給し続けるフローガスの供給量を50L/minとしても、負極タンクからの水素の排出率を10cc/h/m以下とすることができず、その水素の排出率が10cc/h/mを超えることが分かる。
 この試験から、上記(1)~(8)に規定する各元素イオンを電池反応の副反応などに起因するガス発生に関与する不純物元素イオンとして扱い、その濃度を特定の範囲とすることで、ガス発生を低減できることが確認できた。特に、この試験から、電解液流通型電池システムの運転前(未使用の状態)において、電解液中にガス発生不純物元素群の元素イオンの濃度を特定の範囲にすることが好ましいといえる。この点から、電解液流通型電池システムの運転開始から、使用期間が短い間(電解液流通型電池の容量などにもよるが、例えば、容量が10kWh以上の電池では、100サイクル以内程度)に、濃度調整を行うことが好ましいと考えられる。電解液流通型電池システムの充放電中、充放電後に電解液中のガス発生不純物元素群のうち、少なくとも一種の元素イオンの濃度が変化する可能性があるため、上述の除去作業などを適宜な時期に行うとよい。そして、不純物元素イオンが特定の範囲の電解液を用いて、各極タンクに常時供給し続けるフローガスの供給量を1.0L/min以上50L/min以下とすることで、水素の排出率を10cc/h/m以下にできることが確認できた。
 [試験例2]
 試験例1と同様にして、用意した種々の電解液を電解液流通型電池に循環供給して充放電試験を行い、フローガスを供給しないときの負極での水素の発生率を調べた。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、各試料の水素発生率はいずれも95cc/h/m以下であることが分かる。試料No.2-4~No.2-6、No.2-8、No.2-10~No.2-13の水素発生率は、10cc/h/m以上であるが、試験例1の試料No.1-1~No.1-13の水素発生率と同等或いはそれ以下である。そのことから、試料No.2-4~No.2-6、No.2-8、No.2-10~No.2-13は、試料No.1-1~No.1-13と同様に、各極タンクに常時供給し続けるフローガスの供給量を1.0L/min以上50L/min以下とすれば、水素排出率を10cc/h/m以下にできることがわかる。試料No.2-1~No.2-3、No.2-7,No.2-9の水素発生率は、10cc/h/m以下であり、各極タンクに常時供給し続けるフローガスの供給量を1.0L/min以上50L/min以下とすれば、水素排出率をより一層低減できることが分かる。
 本発明は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、上記の試験例において、活物質の種類・濃度、各極の電解液の酸の種類・酸濃度、電解液の量、電極の大きさや電解液流通型電池の容量などを適宜変更できる。
 S 電解液流通型電池システム 1 電解液流通型電池
 100 電池セル 10c 正極電極 10a 負極電極 11 隔膜
 106 正極タンク 107 負極タンク 108~111 配管
 112,113 ポンプ
 2 ガス供給機構
 3 ガス供給源
 4 フローガス流路
 41 正極用導入管 42 負極用導入管(気相連通管)
 43 負極用排出管
 5 ガス流量調整機構
 51 流量計 52 バルブ
 200 交流/直流変換器 210 変電設備 300 発電部
 400 負荷

Claims (9)

  1.  電解液流通型電池と、前記電解液流通型電池に供給される電解液とを備える電解液流通型電池システムであって、
     前記電解液を貯留するタンクの気相に、常時、不活性ガスを含むフローガスを供給し続けるガス供給機構を備え、
     前記ガス供給機構は、
      前記フローガスのガス供給源と、
      前記タンクの気相に前記フローガスを導入する導入管、及び前記タンクの気相から気体を排出する排出管を有するフローガス流路と、
      前記ガス供給源からの前記フローガスの供給量を調整するガス流量調整機構とを備え、
     前記電解液は、
      水素元素を含有するガスの発生に関与する不純物元素イオンである周期表の第5周期の1族から8族の元素イオン及び13族から16族の元素イオンと、周期表の第6周期の1族、2族、4族から8族の元素イオン及び13族から15族の元素イオンとの合計濃度が2500mg/L以下、
      バナジウムイオンの濃度が1mol/L以上3mol/L以下、
      フリーの硫酸の濃度が1mol/L以上4mol/L以下、
      リン酸の濃度が1.0×10-4mol/L以上7.1×10-1mol/L以下、
      アンモニウムの濃度が20mg/L以下、
      ケイ素の濃度が40mg/L以下であり、
      前記電解液流通型電池に循環供給して前記フローガスを供給せず以下の条件で充放電試験を行ったとき、充放電中に前記電解液流通型電池の負極で発生する水素の発生率が95cc/h/m未満であり、
     前記フローガスの供給量は、1.0L/min以上50L/min以下である電解液流通型電池システム。
     (充放電条件)
      充放電方法 :定電流の連続充放電
      電流密度  :70(mA/cm
      充電終了電圧:1.55(V)/セル
      放電終了電圧:1.00(V)/セル
      温度    :室温(25℃)
  2.  前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるバリウムイオンの濃度が70mg/L以下である請求項1に記載の電解液流通型電池システム。
  3.  前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるモリブデンイオンの濃度が2100mg/L以下である請求項1又は請求項2に記載の電解液流通型電池システム。
  4.  前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるタングステンイオンの濃度が310mg/L以下である請求項1から請求項3のいずれか1項に記載の電解液流通型電池システム。
  5.  前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるレニウムイオンの濃度が50mg/L以下である請求項1から請求項4のいずれか1項に記載の電解液流通型電池システム。
  6.  前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるインジウムイオンの濃度が25mg/L以下である請求項1から請求項5のいずれか1項に記載の電解液流通型電池システム。
  7.  前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるアンチモンイオンの濃度が50mg/L以下である請求項1から請求項6のいずれか1項に記載の電解液流通型電池システム。
  8.  前記電解液は、水素元素を含有するガスの発生に関与する不純物元素イオンであるビスマスイオンの濃度が110mg/L以下である請求項1から請求項7のいずれか1項に記載の電解液流通型電池システム。
  9.  電解液流通型電池に供給される電解液であって、
     水素元素を含有するガスの発生に関与する不純物元素イオンである周期表の第5周期の1族から8族の元素イオン及び13族から16族の元素イオンと、周期表の第6周期の1族、2族、4族から8族の元素イオン及び13族から15族の元素イオンとの合計濃度が2500mg/L以下、
     バナジウムイオンの濃度が1mol/L以上3mol/L以下、
     フリーの硫酸の濃度が1mol/L以上4mol/L以下、
     リン酸の濃度が1.0×10-4mol/L以上7.1×10-1mol/L以下、
     アンモニウムの濃度が20mg/L以下、
     ケイ素の濃度が40mg/L以下であり、
     前記電解液流通型電池に循環供給して以下の条件で充放電試験を行ったとき、充放電中に前記電解液流通型電池の負極で発生する水素の発生率が95cc/h/m未満である電解液。
     (充放電条件)
      充放電方法 :定電流の連続充放電
      電流密度  :70(mA/cm
      充電終了電圧:1.55(V)/セル
      放電終了電圧:1.00(V)/セル
      温度    :室温(25℃)
PCT/JP2017/018549 2016-07-26 2017-05-17 電解液流通型電池システム、及び電解液 WO2018020787A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2017304833A AU2017304833A1 (en) 2016-07-26 2017-05-17 Rechargeable battery system, and electrolyte
CN201780044129.4A CN109478672A (zh) 2016-07-26 2017-05-17 电解液流通电池系统及电解液
US16/319,210 US20190221870A1 (en) 2016-07-26 2017-05-17 Electrolyte flow battery system and electrolyte
JP2018529372A JPWO2018020787A1 (ja) 2016-07-26 2017-05-17 電解液流通型電池システム、及び電解液
KR1020197002136A KR20190033063A (ko) 2016-07-26 2017-05-17 전해액 유통형 전지 시스템 및 전해액
EP17833798.6A EP3493314A4 (en) 2016-07-26 2017-05-17 RECHARGEABLE BATTERY SYSTEM AND ELECTROLYTE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146799A JP6153100B1 (ja) 2016-07-26 2016-07-26 電解液流通型電池用電解液、及び電解液流通型電池システム
JP2016-146799 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018020787A1 true WO2018020787A1 (ja) 2018-02-01

Family

ID=59218458

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/018549 WO2018020787A1 (ja) 2016-07-26 2017-05-17 電解液流通型電池システム、及び電解液
PCT/JP2017/018548 WO2018020786A1 (ja) 2016-07-26 2017-05-17 電解液流通型電池用電解液、及び電解液流通型電池システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018548 WO2018020786A1 (ja) 2016-07-26 2017-05-17 電解液流通型電池用電解液、及び電解液流通型電池システム

Country Status (7)

Country Link
US (2) US11233253B2 (ja)
EP (2) EP3493314A4 (ja)
JP (2) JP6153100B1 (ja)
KR (2) KR20190033062A (ja)
CN (2) CN109478672A (ja)
AU (2) AU2017304832B2 (ja)
WO (2) WO2018020787A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153100B1 (ja) 2016-07-26 2017-06-28 住友電気工業株式会社 電解液流通型電池用電解液、及び電解液流通型電池システム
US11791488B2 (en) 2016-07-26 2023-10-17 Sumitomo Electric Industries, Ltd. Flow battery system
CN110416585B (zh) * 2018-04-27 2020-10-23 江苏泛宇能源有限公司 液流电池电解液的制备方法和制备装置
US20220209274A1 (en) * 2020-12-31 2022-06-30 Uop Llc Redox flow battery with a balancing cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203410A1 (ja) * 2013-06-21 2014-12-24 住友電気工業株式会社 レドックスフロー電池用電解液、およびレドックスフロー電池
JP2015232960A (ja) * 2014-06-10 2015-12-24 住友電気工業株式会社 電池システム
JP2016031790A (ja) * 2014-07-25 2016-03-07 住友電気工業株式会社 電解液循環型電池
JP6153100B1 (ja) * 2016-07-26 2017-06-28 住友電気工業株式会社 電解液流通型電池用電解液、及び電解液流通型電池システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878042A (ja) * 1994-09-01 1996-03-22 Sumitomo Electric Ind Ltd レドックスフロー型電池の電解液の製造方法
JP3085634B2 (ja) * 1994-11-17 2000-09-11 鹿島北共同発電株式会社 高純度バナジウム電解液の製造法
JP3897544B2 (ja) * 2001-06-07 2007-03-28 住友電気工業株式会社 レドックスフロー電池用電解液およびレドックスフロー電池
JP5148842B2 (ja) * 2006-05-18 2013-02-20 住友電気工業株式会社 レドックスフロー電池
WO2010065938A1 (en) * 2008-12-05 2010-06-10 Deeya Energy Technologies, Inc. Preparation of electrolytes for redox flow batteries
US8394529B2 (en) * 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
JP2013037856A (ja) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
WO2013054921A1 (ja) 2011-10-14 2013-04-18 株式会社ギャラキシー バナジウム電解液、その製造方法及びその製造装置
US10115993B2 (en) * 2013-02-14 2018-10-30 Hydraredox Technologies Holdings Ltd. All-vanadium redox flow battery system employing a V+4/V+5 redox couple and an ancillary Ce+3/Ce+4 redox couple in the positive electrolyte solution
CN103326049B (zh) * 2013-06-19 2016-03-30 大连融科储能技术发展有限公司 一种液流电池的氢气排出系统
ES2606456T3 (es) * 2013-06-21 2017-03-24 Sumitomo Electric Industries, Ltd. Batería de flujo redox que incluye un electrolito y el uso de electrolito en una batería de flujo redox
US9647290B2 (en) * 2013-06-21 2017-05-09 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery
EP3032628B1 (en) * 2013-08-07 2019-03-20 Sumitomo Electric Industries, Ltd. Redox flow battery
WO2016017393A1 (ja) * 2014-08-01 2016-02-04 住友電気工業株式会社 レドックスフロー電池用電解液、及びレドックスフロー電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203410A1 (ja) * 2013-06-21 2014-12-24 住友電気工業株式会社 レドックスフロー電池用電解液、およびレドックスフロー電池
JP2015232960A (ja) * 2014-06-10 2015-12-24 住友電気工業株式会社 電池システム
JP2016031790A (ja) * 2014-07-25 2016-03-07 住友電気工業株式会社 電解液循環型電池
JP6153100B1 (ja) * 2016-07-26 2017-06-28 住友電気工業株式会社 電解液流通型電池用電解液、及び電解液流通型電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3493314A4 *

Also Published As

Publication number Publication date
AU2017304833A1 (en) 2019-01-31
JPWO2018020787A1 (ja) 2019-10-24
US20190221870A1 (en) 2019-07-18
EP3493313A1 (en) 2019-06-05
EP3493314A4 (en) 2019-08-28
EP3493313B1 (en) 2020-07-01
US20190280324A1 (en) 2019-09-12
JP6153100B1 (ja) 2017-06-28
CN109478673B (zh) 2022-02-25
EP3493314A1 (en) 2019-06-05
KR20190033063A (ko) 2019-03-28
EP3493313A4 (en) 2019-08-28
CN109478673A (zh) 2019-03-15
AU2017304832A1 (en) 2019-01-31
KR20190033062A (ko) 2019-03-28
US11233253B2 (en) 2022-01-25
AU2017304832B2 (en) 2022-06-02
WO2018020786A1 (ja) 2018-02-01
JP2018018640A (ja) 2018-02-01
CN109478672A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP5007849B1 (ja) レドックスフロー電池、及びその運転方法
WO2018020787A1 (ja) 電解液流通型電池システム、及び電解液
EP3176862B1 (en) Electrolyte for redox flow battery and redox flow battery system
EP2876718B1 (en) Redox flow battery including an electrolyte and the use of an electrolyte in a redox flow battery
EP3480880B1 (en) Redox flow battery, electrical quantity measurement system, and electrical quantity measurement method
EP2876719B1 (en) Redox flow battery including an electrolyte and the use of an electrolyte in a redox flow battery
EP3492628B1 (en) Electrolyte and electrolyzer system
US11791488B2 (en) Flow battery system
JP2012204347A (ja) レドックスフロー電池、及びその運転方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529372

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002136

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017304833

Country of ref document: AU

Date of ref document: 20170517

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017833798

Country of ref document: EP

Effective date: 20190226