WO2018020639A1 - Power generation device and power generation element - Google Patents
Power generation device and power generation element Download PDFInfo
- Publication number
- WO2018020639A1 WO2018020639A1 PCT/JP2016/072148 JP2016072148W WO2018020639A1 WO 2018020639 A1 WO2018020639 A1 WO 2018020639A1 JP 2016072148 W JP2016072148 W JP 2016072148W WO 2018020639 A1 WO2018020639 A1 WO 2018020639A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- weight body
- bridge portion
- bridge
- vibration
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 173
- 230000008602 contraction Effects 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 23
- 230000005484 gravity Effects 0.000 claims description 13
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000005452 bending Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 28
- 239000003990 capacitor Substances 0.000 description 17
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000005684 electric field Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
Definitions
- the present invention relates to a power generation device that converts mechanical vibrational energy into electrical energy by using a piezoelectric effect, and a power generation element used therefor.
- a general power generation element of this type supports a weight body by a cantilever whose one end is fixed, and causes vertical deflection of the beam portion by vertical vibration of the weight body, and the force due to this bending is used as a piezoelectric element To generate charge.
- power generation efficiency is low because only vibration energy in one direction that vibrates the weight body in the vertical direction can be used.
- the piezoelectric element is disposed on a silicon substrate, the force acting on the weight body is transmitted to the piezoelectric element, and the mechanical force is piezoelectric effect To generate electric charge.
- This power generation element is designed in accordance with the resonance frequency of the installed environment in order to enhance the power generation efficiency.
- the vibrating body is made of Si (silicon) or metal, the peak (Q value) of the resonant frequency is high but the half width is narrow, so the resonant frequency of the power generation element is the frequency of the vibration of the environment used. You need to adjust to
- the power generation element disclosed in Patent Document 1 is a bridge portion of a cantilever structure in which a weight body is disposed asymmetrically bent around the weight body.
- a piezoelectric body is fixed to a bridge portion supported and bent and arranged, and an electrode is arranged on the piezoelectric body.
- At least a plurality of resonators different in resonance frequency (natural frequency) are arranged in a cantilever shape, and a piezoelectric member and an electrode are provided on the resonator.
- mechanical vibrations of a plurality of different frequencies are propagated from the resonator to the piezoelectric element, and mechanical vibrations in a wide frequency band are converted into electrical energy.
- the direction of vibration is limited to one axial direction, and vibrations in various directions in the use environment can not be efficiently converted into electrical energy.
- the present invention has been made in view of the above background art, and can efficiently convert mechanical vibrational energy including various directional components into electrical energy to obtain high power generation efficiency, and the structure is simple. It is an object of the present invention to provide a power generating device and a power generating element which are high in strength and easy to be miniaturized.
- the present invention is a power generation device including a power generation element that generates power by converting mechanical vibration energy into electrical energy, wherein the power generation element has a longitudinal axis and has a flexible bridge portion
- the support frame portion to which the base end portion of the bridge portion is fixed and the tip end portion of the longitudinal axis of the bridge portion are continuous, and bent toward the base end portion of the bridge portion at a predetermined distance
- a weight body provided, a piezoelectric element fixed at a predetermined position where expansion and contraction of the surface of the bridge portion is generated, and a plurality of electrodes fixed to the piezoelectric element and outputting charges generated in the piezoelectric element
- the plurality of power generation elements are fixed in the support frame portion, the natural frequency of the vibration system of each power generation element is configured with different frequencies, and each electrode of each power generation element is generated in the piezoelectric element Take out the charge and output the power A power generator connected to the electric circuit.
- the center of gravity of the weight body is located within an projection range of the bridge portion and on an axis parallel to the longitudinal axis at a predetermined distance. Furthermore, it is preferable that the weight body is bent in a symmetrical shape on both sides of the bridge portion.
- the vibration system of each of the power generation elements is set to a different natural frequency due to the difference in mass of the weight body.
- the vibration system of each of the power generation elements may be set to a different natural frequency due to the difference in the elastic coefficient or the shape of the bridge portion.
- the vibration systems of the power generation elements may be physically connected to each other so that one vibration can be transmitted to the other.
- weights are connected to each other by a connector.
- the present invention is a power generation element that generates electric power by converting mechanical vibration energy into electric energy, wherein the bridge portion having a longitudinal axis and having flexibility, and the base end portion of the bridge portion A fixed supporting frame portion, a weight body which is continuous with the tip end portion of the longitudinal axis of the bridge portion and which is provided at a predetermined interval and bent toward the base end portion of the bridge portion; And a plurality of electrodes fixed to the piezoelectric element and outputting charges generated in the piezoelectric element, wherein the center of gravity of the weight body is: It is an electric power generation element which is located within an projection range of the bridge portion and on an axis parallel to the longitudinal axis at a predetermined interval.
- the weight body is fixed to a weight body supporting portion positioned in parallel with the bridge portion at a predetermined interval, and a gravity center position of the weight body is positioned at a predetermined distance from a center of the bridge portion. It is
- the bridge portion and the weight body support portion are formed of the same plate material, a piezoelectric material layer is stacked on one surface of the bridge portion and the weight body support portion, and the weight body is formed on the other surface.
- a projected shape of the layer formed of the bridge portion and the weight body support portion, the piezoelectric material layer, and the weight body in the stacking direction is the same.
- the vibration system of each power generation element resonates at different frequencies with respect to vibration in a wide frequency band, and mechanical vibration of the external world is efficiently performed. It can be converted into electrical energy and taken out.
- the direction of external mechanical vibration can also be stably oscillated by picking up vibration in all directions of the XYZ Cartesian coordinate system, so that it can be changed to electrical energy, which is more efficient. Power generation can be performed.
- the power generation device and the power generation element of the present invention are simple in structure, high in strength, and easily reduced in size.
- FIG. 5 is a cross-sectional view taken along line AA of FIG. 4; It is a figure which shows the electric power generation circuit of 1st embodiment.
- Graph (a) showing the frequency characteristic of vibration in the X axis direction of the power generation zone of each unit power generation element of the power generation device of the first embodiment (a) Graph showing frequency characteristic of vibration in the Y axis direction (b) It is a graph (c) which shows the frequency characteristic of vibration. It is a top view which shows the electric power generating apparatus of 2nd embodiment of this invention.
- the power generation apparatus 10 of this embodiment is provided with a plurality of vibration systems 11, 12 and 13 having different natural frequencies (resonance frequencies), and each of the vibration systems 11, 12 and 13 includes unit power generation elements 21 and 22 respectively. , 23, and the outputs of the unit power generation elements 21, 22, 23 are connected to the power generation circuit 14.
- Each vibration system 11, 12, 13 has the same configuration, and has different natural frequencies depending on the length and mass of each part.
- the directions in the present invention will be described based on a three-dimensional orthogonal coordinate system in the XYZ axis directions orthogonal to each other, and the XY plane will be described as the horizontal plane, and the Z axis direction is the vertical direction and the vertical direction.
- the unit power generation element 21 is provided with a bridge portion 26 integrally provided projecting in the Y-axis direction from the inner wall surface 24 a of the rectangular frame-shaped hollow support portion 24 of the power generation device 10.
- the bridge portion 26 has a constant thickness in the Z-axis direction, and is formed in an elongated rectangular shape having a longitudinal axis in the Y-axis direction.
- an L-shaped weight support portion 28 extends from the distal end portion 26a by a predetermined distance in the X-axis direction and further toward the proximal end portion 26b of the bridge portion 26 in the Y-axis direction. They are provided symmetrically about the longitudinal axis in the Y-axis direction with the bridge portion 26 interposed therebetween.
- Each weight support portion 28 is integrally formed with the support portion 24 from the same plate material as the bridge portion 26.
- the bridge portion 26 and the pair of weight support portions 28 are substantially E-shaped on the XY plane. It is provided. Therefore, the bridge portion 26 and the portion parallel to the Y axis of the weight support portion 28 extend at a constant spacing s.
- the length of the weight support portion 28 in the Y-axis direction is shorter than that of the bridge portion 26, and the end 28a of the weight support portion 28 is located away from the inner wall surface 24a of the support portion 24. .
- the material of the support portion 24, the bridge portion 26 and the weight body support portion 28 is not limited, and in view of the manufacturing method and the like described later, it is preferable to be formed of silicon, ceramics or the like. As described later, the materials of the bridge portion 26 and the weight body support portion 28 may be formed to have either insulating or conductive properties with respect to the lower layer electrode E0.
- a piezoelectric material layer 30 formed of a piezoelectric material such as lead-free piezoelectric ceramics such as lead zirconate titanate (PZT) or sodium potassium niobate, or piezoelectric resin is provided on the upper layer in the Z-axis direction of the bridge portion 26 It is done.
- the piezoelectric material layer 30 is formed in a layer shape, and is formed in an E shape having the same shape as the bridge portion 26 and the weight body support portion 28 in the Z-axis direction.
- the lower layer electrode E0 is integrally formed in the same shape between the bridge portion 26 and the weight body support portion 28 and the piezoelectric material layer 30, and the bridge portion 26 and the weight body support portion 28 are formed via the lower layer electrode E0. It is provided integrally with the piezoelectric material layer 30.
- the piezoelectric material layer 30 in the portion laminated on the bridge portion 26 is a portion functioning as the piezoelectric element 34, and on the surface side of the piezoelectric element 34 on the opposite side to the lower layer electrode E0, four upper layer electrodes E1, E2,. E3 and E4 are provided.
- the upper layer electrodes E1, E2, E3 and E4 are stacked at four locations at both ends of the piezoelectric element 34 in the X-axis direction and at both ends in the Y-axis direction, and are connected to the power generation circuit 14 together with the lower layer electrode E0.
- each upper layer electrode E1 to E4 is a piezoelectric effect which is a region where the piezoelectric effect of the piezoelectric element 34 occurs. It is provided as an electrode formed on the part.
- the directions (the compression direction and the extension direction) of the stress applied to each portion of the piezoelectric element 34 differ depending on the direction of the external force acting on the unit power generation element 21 and occur in each piezoelectric effect portion of the piezoelectric element 34. This is because the positive or negative charges generated in each of the upper layer electrodes E1 to E4 can be efficiently taken in due to the difference in polarity of the electric field.
- the piezoelectric material layer 30 may not be laminated because almost no bending occurs in the weight body support portion 28 due to an external force and no stress is generated. Furthermore, the piezoelectric element 34 formed of the piezoelectric material layer 30 may be stacked on the entire surface of the bridge portion 26, or may be only the region where the upper layer electrodes E1, E2, E3 and E4 are disposed. However, in this embodiment, it is laminated in the same shape as the bridge portion 26 and the weight body support portion 28 for reasons of manufacturing and the like described later.
- a weight body 32 is integrally attached to the lower layer in the Z-axis direction of the weight body support portion 28.
- the weight 32 is integrally attached to a pair of L-shaped weight support portions 28 and has the same shape as the projection shape in the Z-axis direction in which the pair of L-shaped weight body support portions 28 are symmetrically opposed. In, it is formed in the gate shape.
- the weight body 32 has a constant thickness in the Z-axis direction, has a large mass in a portion parallel to the bridge portion 26, and is formed to a predetermined mass.
- the length of the weight body 32 in the Y-axis direction is shorter than that of the bridge portion 26, and the end 32 a of the weight body 32 is at the same position as the end 28 a of the weight body support 28. It is located slightly away from the inner wall surface 24a. Thereby, in the power generation operation described later, even when the weight body 32 swings, the end 32 a of the weight body 32 does not collide with the inner wall surface 24 a of the support portion 24.
- the weight body 32 is formed in a gate shape along the weight body support portion 28, so a space 35 is formed in the lower portion of the bridge portion 26 in the Z-axis direction.
- the gravity center position G of the weight body 32 is the center of the bridge portion 26 in the X-axis direction as shown in FIG. 4 and FIG. 5 and is spaced downward from the bridge portion 26 downward in the Z-axis direction. is there.
- the gravity center position G of the weight body 32 in the Y-axis direction of the bridge portion 26 is within the projection range of the bridge portion 26 and is slightly closer to the tip portion 26 a than the central portion.
- the weight body 32 may be made of Si.
- the power generation device 10 provided with the unit power generation elements 21, 22, 23 according to this embodiment will be described.
- the power generation device 10 is provided with unit power generation elements 22 and 23 having the same configuration as that of the above-described unit power generation element 21 in the support portion 24.
- the support portion 24 is formed in a hollow rectangular frame shape, and on the XY plane inside the support portion 24, the unitary power generation elements 21, 22, 23 extend in the Y-axis direction and are respectively positioned.
- the vibration systems 11, 12, 13 constituting the unitary power generation elements 21, 22, 23 have different natural frequencies and resonate at different frequencies.
- the weight bodies 32 of the unitary power generation elements 21, 22, 23 have different sizes and different masses so that they have different natural frequencies.
- the width or length may be changed so that the elastic modulus of the bridge portion 26 is different, even if the thickness, the laminated material, or the shape is changed. good. Furthermore, both the masses of the vibration systems 11, 12, 13 and the elastic coefficients of the bridge portions 32 may be set to different values.
- the power generation circuit 14 of this embodiment will be described based on FIG.
- the other unit power generation elements 22 and 23 are also connected to the same power generation circuit 14 by the same circuit structure.
- the piezoelectric element 34 stacked on the bridge portion 26 portions facing the upper layer electrodes E1, E2, E3 and E4 and the periphery thereof are portions where the piezoelectric effect is efficiently generated.
- the upper layer electrodes E1, E2, E3 and E4 The parts facing each other are referred to as piezoelectric effect parts P1, P2, P3 and P4.
- the upper layer electrode E1 attached to the piezoelectric effect portion P1 is connected to the anode of the diode D11 forming the rectification circuit of the power generation circuit 14 and the cathode of the diode D12 respectively, and the cathode of the diode D11 stores charges in the power generation circuit 14
- One end of the capacitor Cf is connected, and the anode of the diode D12 is connected to the other end of the capacitor Cf.
- the upper layer electrode E2 attached to the piezoelectric effect portion P2 is connected to the anode of the diode D21 forming the rectification circuit of the power generation circuit 14 and the cathode of the diode D22, and the cathode of the diode D21 is a capacitor One end of Cf is connected, and the anode of the diode D22 is connected to the other end of the capacitor Cf.
- the upper layer electrode E3 attached to the piezoelectric effect portion P3 is connected to the anode of the diode D31 forming the rectification circuit of the power generation circuit 14 and the cathode of the diode D32, and the cathode of the diode D31 is a capacitor One end of Cf is connected, and the anode of the diode D32 is connected to the other end of the capacitor Cf.
- the upper layer electrode E4 attached to the piezoelectric effect portion P4 is connected to the anode of the diode D41 forming the rectification circuit of the power generation circuit 14 and the cathode of the diode D42, and the cathode of the diode D41 stores a charge.
- One end of Cf is connected, and the anode of diode D42 is connected to the other end of capacitor Cf.
- the lower layer electrode E0 is connected to the anode of the diode D01 and the cathode of the diode D02, and the cathode of the diode D01 is connected to one end of the capacitor Cf storing electric charge, and the anode of the diode D02 is connected to the other end of the capacitor Cf. It is connected.
- the lower layer electrodes E0 and the upper layer electrodes E1, E2, E3, E4 of the three unit power generation elements 21, 22, 23 are similarly connected to the diodes D11 to D42 and connected to the capacitor Cf. Thereby, the charge generated by the three unit power generation elements 21, 22, 23 can be stored in the capacitor Cf.
- the capacitor Cf is connected to various loads ZL in use.
- the power generation device 10 of this embodiment is suitable for a power supply of a sensor manufactured by MEMS technology and the like, and a minute structure is required. Therefore, each bridge portion of the support portion 24 and the unit power generation elements 21, 22, 23
- the materials of the weight support portion 28 and the weight support portion 28 can be manufactured using Si and utilizing the process of forming a semiconductor circuit.
- the thickness in the Z-axis direction of the bridge portion 26 and the weight support portion 28 is about 200 ⁇ m
- the same thickness of the piezoelectric layer 30 is 2 ⁇ m
- the thickness of the weight 32 in the Z-axis direction The thickness is set to about 1000 ⁇ m
- the thicknesses of the lower layer electrode E0 and the upper layer electrodes E1 to E4 are set to about 0.01 ⁇ m
- the outer shape can be manufactured in a size of about 5 mm ⁇ 5 mm.
- the lamination process such as etching and vapor deposition is repeated in the Z-axis direction.
- Other processes such as printing and sputtering can also be used.
- an SOI substrate is preferably used as the Si substrate.
- the lower layer electrode E0, the piezoelectric body 34, and the upper layer electrodes E1 to E4 may be formed on the active layer Si of the SOI substrate, and the base Si may be a weight body 32.
- the metal plate for each bridge portion 26 of the support portion 24 and the unit power generation elements 21, 22, 23.
- the upper layer electrode can be formed of a metal material by printing, vapor deposition, sputtering, or the like.
- the support portion 24 is placed on the XY plane, and the hollow portion penetrates in the Z-axis direction.
- an acceleration acts on the weight body 32 of the unit power generation element 21 shown in FIGS. 3 to 5 due to vibration or the like and a force is applied will be described.
- a force in the extension direction acts on the portion P3, and a force in the compression direction acts on the piezoelectric effect portion P4 opposed to the upper layer electrode E4.
- electric fields of opposite polarities are generated in the piezoelectric effect portions P1 and P2, and electric fields of opposite polarity are also generated in the piezoelectric effect portions P3 and P4, and the electric fields of the piezoelectric effects portions P1 and P3 become opposite polarities. Occur.
- charges of the same polarity are generated in the upper layer electrodes E1 and E4, and charges of the same polarity and reverse polarity to the upper layer electrodes E1 and E4 are generated in the upper layer electrodes E2 and E3, respectively.
- each of the electrodes E0 to E4 are reverse in polarity between the upper layer electrodes E1 and E4 and the upper layer electrodes E2 and E3, but are rectified by the circuit shown in FIG. Be stored.
- a negative force -Fx acts in the negative direction of the X-axis, charges are generated in each electrode with the opposite polarity to the above, but the circuit shown in FIG. Is stored.
- a force in the compression direction acts on the piezoelectric effect portions P3 and P4 facing the respective upper layer electrodes E3 and E4, and an electric field having a polarity opposite to that of the piezoelectric effect portions P1 and P2 is generated.
- charges of the opposite polarity to the upper layer electrodes E1 and E2 are generated, but the charges are rectified by the circuit shown in FIG. 6 and the charges are accumulated in the capacitor Cf.
- a negative force -Fz acts in the negative direction of the Z-axis, charges are generated with the opposite polarity to the above but with the circuit shown in FIG. 6, charges are accumulated in the capacitor Cf with the same polarity.
- the electric charges generated by the force in the extension direction and the force in the compression direction are opposite in polarity, but the piezoelectric material layer is made to be a piezoelectric ceramic and polarization control is controlled to obtain the same polarity in extension and compression. It is also possible to generate a charge. Even in this case, the power generation circuit 14 shown in FIG. 6 is effective.
- the resonance frequency to the vibration of the external world is different.
- the resonance frequency in the X-axis direction of the vibration system 11 is fx1
- the resonance frequency in the Y-axis direction is fy1
- the resonance frequency in the Z-axis direction is fz1.
- the resonance frequency in the X-axis direction of the vibration system 12 is fx2
- the resonance frequency in the Y-axis direction is fy2
- the resonance frequency in the Z-axis direction is fz2.
- the resonance frequency in the X axis direction of the vibration system 13 is fx3, the resonance frequency in the Y axis direction is fy3, and the resonance frequency in the Z axis direction is fz3.
- the vibration systems 11, 12 and 13 of the unit power generation elements 21, 22 and 23 can resonate at different frequencies with respect to mechanical vibration in a wide band of different frequencies with respect to forces in the XYZ axial directions.
- the vibration of a wide frequency contributes to the power generation operation, and power can be generated effectively.
- the vibration system 11 of the unit power generation elements 21, 22, and 23 in response to a wide range of mechanical vibrations of the environment where the power generation device 10 is provided.
- 12 and 13 resonate at different frequencies, so that external vibration can be efficiently converted into electrical energy and extracted.
- the direction of external mechanical vibration can also be picked up and resonated in all directions of the XYZ Cartesian coordinate system and converted to electrical energy, so that efficient power generation can be performed from this point as well.
- they since they are formed symmetrically on the XY plane with respect to the axis in the Y-axis direction, they vibrate efficiently, have a simple structure, and have high strength.
- the weight body support portion 28 and the weight body 32 are formed to be bent from the distal end portion 26a of the bridge portion 26 and extended to the base end portion 26b, and miniaturization is easy.
- the power generation element 36 of this embodiment is a device in which the arrangement of the unit power generation elements 21, 22, 23 is devised to reduce the overall volume. As shown in FIG. 9, the directions of the unit power generation elements 21 and 22 and the unit power generation element 23 are reversed, and the dimension in the X axis direction is shortened by the width of the weight 32 in the X axis direction. And space efficiency.
- the same effect as that of the above embodiment can be obtained, and a further compact and efficient power generation device can be provided.
- the power generation element 38 of this embodiment is, as shown in FIG. 10, an end of the weight body 32 of the unit power generation elements 21 and 23 facing each other, and a weight body 32 of the unit power generation elements 22 and 23 facing each other.
- the end portions of are physically connected by a connecting body 40.
- the frequency characteristic of the basic vibration system 41 is shown in FIG. 12 (a), and the frequency characteristic of the basic vibration system 42 is shown in FIG. 12 (b).
- a resonance frequency of the basic vibration system 41 is f1
- a peak of amplitude at resonance is Q1
- a resonance frequency of the basic vibration system 42 is f2
- a peak of amplitude at resonance is Q2.
- the peak at resonance becomes Q1 and a large charge is generated in the electrode E1. This charge will disturb the vibration with its own charge.
- a large amount of charge or stress generated at the time of resonance may damage the thin film of the piezoelectric body 46 or the mechanical portion of the power generation element.
- the peak at resonance becomes Q2
- a large charge is generated in the electrode E2
- this charge interferes with its own vibration.
- a large amount of charge or stress generated at the time of resonance may damage the thin film of the piezoelectric body 46 or the mechanical portion of the power generation element.
- the weight bodies m1 and m2 are physically connected by the connector 40, and the basic vibration system 41 vibrates at the resonance frequency f1.
- the peak at the time of resonance of the basic vibration system 41 may be lowered, and power may be generated in the basic vibration system 42 as well.
- the vibration is released to the basic vibration system 41, the peak at the resonance of the basic vibration system 42 is lowered, and power is generated also in the basic vibration system 41. You should do it.
- the connection by the connecting body 40 does not function so much, but when the amplitudes of the weight bodies m1 and m2 become large, the connection body 40 generates the amplitudes of the vibration systems 41 and 42. Will be restricted.
- the power generation device 38 of this embodiment utilizes this action, and as shown in FIG. 10, the end portions of the weight bodies 32 of the unit power generation elements 21 and 22 facing each other, and the unit power generation elements 22 and 23.
- the end portions of the weight bodies 32 facing each other are physically connected by the connecting member 40 to improve the power generation efficiency and to increase the strength against external force.
- the vibration systems are mutually coupled too strongly, the above-mentioned power generation capacity is rather suppressed and the power generation efficiency is lowered, so it is necessary to connect the appropriate strength.
- the mechanical vibration of the unit power generation elements 21, 22, and 23 of the vibration systems 11, 12, and 13 is the other vibration by the connector 40. Even if one vibration system propagates to the system and generates a large acceleration due to resonance, the mechanical vibration is dispersed to the other vibration systems, the peak value of the amplitude is reduced, and the breakage of the bridge portion 26 is prevented.
- a power generation system according to a fourth embodiment of the present invention will be described with reference to FIG.
- the same members as those in the above embodiment are given the same reference numerals, and the description thereof is omitted.
- the power generation device of this embodiment is different from the above embodiment in the shape of the unit power generation element 51, and the whole volume can be further reduced.
- the weight body 52 is continuous downward from the tip end 26a of the bridge portion 26 in the Z-axis direction, and is separated from the bridge portion 26 by a predetermined distance.
- One weight body 52 is formed in an L-shape extending toward the end 26b. Therefore, the weight body 52 is located below the bridge portion 26 in the Z-axis direction.
- the weight body 52 of this embodiment is provided so as to overlap the bridge portion 26 in the Z-axis direction, after being formed separately from the bridge portion 26, L-shaped
- the one end 52 a of the weight body 52 formed in the above is formed by being joined to the tip 26 a of the bridge 26.
- the power generation apparatus of this embodiment also has a structure similar to that of the unit power generation element 51, and is provided with a plurality of unit power generation elements having different natural frequencies, as in the above embodiment.
- the method of making natural frequency into a different value is the same as that of the said embodiment.
- the power generation device of this embodiment and the unit power generation element 51, the same effect as that of the above-described embodiment can be obtained, and a further compact and efficient power generation device can be provided.
- the power generation element of the present invention is not limited to the above embodiment.
- the weight body may have a shape provided with only one of the pair of weight bodies of the first embodiment, whereby the bridge portion becomes asymmetrical with respect to the longitudinal axis in the Y-axis direction, It is possible to further miniaturize the shape of the power generation device.
- the position of the center of gravity of the weight body is a predetermined distance from the approximate center of the bridge in the Z-axis direction, and is within the projection range of the bridge and parallel to the longitudinal axis at a predetermined distance. If the weight body is asymmetrical, it may be slightly out of the projection range of the bridge portion.
- the support frame portion, the bridge portion of the unitary power generation element, and the weight body support portion may be replaced with the above-described materials.
- the unit power generation element only needs to have flexibility in the bridge portion.
- the elastic coefficient may be changed for each region of the bridge portion to set the natural frequency, and any method of setting the natural frequency may be used. Absent.
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Provided are a power generation device and a power generation element that are able to efficiently convert mechanical vibration energy that includes various directional components into electrical energy, are able to achieve high power generation efficiency, have a simple structure and high strength, and can easily be made smaller. The power generation element is equipped with: flexible bridge parts 26 having a longitudinal shaft; a support frame part 24 to which the base-end part 26b of the bridge parts 26 are secured; weight bodies 32, which continue from the tip-end part 26a of the longitudinal shaft of the bridge parts 26, and are provided bending toward the base-end part 26b of the bridge parts 26, with a prescribed interval therebetween; and a piezoelectric elements 34 at a prescribed position on the surface of the bridge parts 26 at which expansion/contraction deformation occurs. The piezoelectric elements 34 are equipped with a plurality of electrodes E0, E1, E2, E3, and E4. A plurality of the power generation elements 21, 22, and 23 are secured in the middle of the support frame part 24. The Eigen frequency of the vibration system of each power generation element 21, 22, and 23 is a different frequency.
Description
この発明は、圧電効果を利用して機械的な振動エネルギーを電気エネルギーに変換する発電装置とこれに用いる発電素子に関する。
The present invention relates to a power generation device that converts mechanical vibrational energy into electrical energy by using a piezoelectric effect, and a power generation element used therefor.
近年、電気エネルギーを得る手段として、圧電効果を利用して機械的な振動エネルギーを電気エネルギーに変換する発電素子が種々提案されている。この種の一般的な発電素子は、一端を固定した片持ち梁によって重錘体を支持し、重錘体の上下振動によって梁部に周期的な撓みを生じさせ、この撓みによる力を圧電素子に伝達して、電荷を発生させるものである。このような方式では、重錘体を上下方向に振動させる1方向の振動エネルギーしか利用できないため、発電効率が低いものであった。
In recent years, various power generation elements that convert mechanical vibrational energy into electrical energy using the piezoelectric effect have been proposed as means for obtaining electrical energy. A general power generation element of this type supports a weight body by a cantilever whose one end is fixed, and causes vertical deflection of the beam portion by vertical vibration of the weight body, and the force due to this bending is used as a piezoelectric element To generate charge. In such a system, power generation efficiency is low because only vibration energy in one direction that vibrates the weight body in the vertical direction can be used.
また、MEMS(Micro Electro Mechanical System)技術を用いた圧電型発電素子も、シリコン基板上に圧電素子を配置し、重錘体に作用した力を圧電素子に伝達し、機械的な力を圧電効果により電荷に変換し発電するものである。この発電素子は、発電効率を高めるために、設置される環境の共振周波数に合わせて設計する。さらに、振動体はSi(シリコン)や金属で作られるために、共振周波数のピーク(Q値)は高いが、半値幅が狭いので、発電素子の共振周波数を、使用される環境の振動の周波数に合わせる必要がある。
Also, in a piezoelectric power generation element using MEMS (Micro Electro Mechanical System) technology, the piezoelectric element is disposed on a silicon substrate, the force acting on the weight body is transmitted to the piezoelectric element, and the mechanical force is piezoelectric effect To generate electric charge. This power generation element is designed in accordance with the resonance frequency of the installed environment in order to enhance the power generation efficiency. Furthermore, since the vibrating body is made of Si (silicon) or metal, the peak (Q value) of the resonant frequency is high but the half width is narrow, so the resonant frequency of the power generation element is the frequency of the vibration of the environment used. You need to adjust to
そこで、発電素子の発電効率を上げるために、特許文献1に開示された発電素子は、重錘体を、その重錘体の周囲に非対称に屈曲させて配置した片持ち梁構造の橋梁部で支持し、屈曲させて配置した橋梁部に圧電体を固定し、その圧電体に電極を配置している。これにより、互いに直交する複数方向の機械的振動エネルギーを発電に利用することができ、発電効率を上げている。
Therefore, in order to increase the power generation efficiency of the power generation element, the power generation element disclosed in Patent Document 1 is a bridge portion of a cantilever structure in which a weight body is disposed asymmetrically bent around the weight body. A piezoelectric body is fixed to a bridge portion supported and bent and arranged, and an electrode is arranged on the piezoelectric body. As a result, mechanical vibrational energy in a plurality of directions orthogonal to each other can be used for power generation, and power generation efficiency is increased.
その他、特許文献2に開示された発電素子は、共振周波数(固有振動数)の異なる少なくとも複数の共振体を片持ち梁状に配置し、この共振体に圧電体と電極を設けている。これにより、複数の異なる周波数の機械的振動を共振体から圧電素子に伝搬させ、幅広い周波数帯域の機械的振動を電気エネルギーに変換している。
In addition, in the power generation element disclosed in Patent Document 2, at least a plurality of resonators different in resonance frequency (natural frequency) are arranged in a cantilever shape, and a piezoelectric member and an electrode are provided on the resonator. Thereby, mechanical vibrations of a plurality of different frequencies are propagated from the resonator to the piezoelectric element, and mechanical vibrations in a wide frequency band are converted into electrical energy.
一般に、発電素子が使用される環境にはいろいろな周波数の機械的振動が混在し、特定の周波数や特定な振動方向だけとは限らない。また、Siや金属による構造体の共振周波数(固有振動数)は、外部応力や温度変動によっても変わるという問題がある。従って、発電素子の共振周波数を使用環境の振動の周波数に合わせても、温度変動等で発電効率が低下したり、発電しなくなるという問題がある。
In general, mechanical vibration of various frequencies is mixed in an environment in which a power generation element is used, and is not limited to a specific frequency or a specific vibration direction. Further, there is a problem that the resonance frequency (natural frequency) of the structure made of Si or metal also changes due to external stress or temperature fluctuation. Therefore, even if the resonant frequency of the power generation element is adjusted to the frequency of the vibration of the usage environment, there is a problem that the power generation efficiency is lowered due to temperature fluctuation or the like, or the power generation does not occur.
さらに、特許文献1に開示された発電素子の構造の場合、橋梁部に十分な携みを発生させ、発電効率を向上させるためには、橋梁部をできるだけ長く、薄くする必要性がある。しかし、橋梁部を長く且つ薄くすると、構造が大型化するとともに機械的強度が低下し、使用中に過度の振動が加わった場合に、橋梁部が損傷する可能性があり、圧電素子に形成する電極や重錘の配置にも制限があった。
Furthermore, in the case of the structure of the power generation element disclosed in Patent Document 1, there is a need to make the bridge portion as long and thin as possible in order to generate a sufficient hand in the bridge portion and to improve power generation efficiency. However, if the bridge portion is long and thin, the structure is enlarged and mechanical strength is reduced, and the bridge portion may be damaged if excessive vibration is applied during use, and the piezoelectric element is formed. There were also restrictions on the arrangement of the electrodes and weights.
特許文献2に開示された発電素子は、振動の方向が1軸方向に限られ、使用環境における種々の方向の振動を、効率よく電気エネルギーに変換できていないものである。
In the power generation element disclosed in Patent Document 2, the direction of vibration is limited to one axial direction, and vibrations in various directions in the use environment can not be efficiently converted into electrical energy.
この発明は、上記背景技術に鑑みて成されたものであり、様々な方向成分を含んだ機械的振動エネルギーを効率よく電気エネルギーに変換し、高い発電効率を得ることが可能で、構造が簡単で強度が高く、小型化も容易な発電装置と発電素子を提供することを目的とする。
The present invention has been made in view of the above background art, and can efficiently convert mechanical vibrational energy including various directional components into electrical energy to obtain high power generation efficiency, and the structure is simple. It is an object of the present invention to provide a power generating device and a power generating element which are high in strength and easy to be miniaturized.
この発明は、機械的振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子を備えた発電装置であって、前記発電素子は、長手方向軸を有して可撓性を有する橋梁部と、前記橋梁部の基端部が固定された支持枠部と、前記橋梁部の前記長手方向軸の先端部から連続するとともに、所定間隔を隔てて前記橋梁部の基端部側に屈曲して設けられた重錘体と、前記橋梁部の表面の伸縮変形が生じる所定位置に固定された圧電素子と、前記圧電素子に固定され前記圧電素子に発生した電荷を出力する複数の電極とを備え、前記支持枠部の中に複数の前記発電素子が固定され、各発電素子の振動系の固有振動数が各々異なる周波数で構成され、前記各発電素子の各電極が、前記圧電素子に発生した電荷を取り出して電力を出力する発電回路に接続されている発電装置である。
The present invention is a power generation device including a power generation element that generates power by converting mechanical vibration energy into electrical energy, wherein the power generation element has a longitudinal axis and has a flexible bridge portion The support frame portion to which the base end portion of the bridge portion is fixed and the tip end portion of the longitudinal axis of the bridge portion are continuous, and bent toward the base end portion of the bridge portion at a predetermined distance A weight body provided, a piezoelectric element fixed at a predetermined position where expansion and contraction of the surface of the bridge portion is generated, and a plurality of electrodes fixed to the piezoelectric element and outputting charges generated in the piezoelectric element The plurality of power generation elements are fixed in the support frame portion, the natural frequency of the vibration system of each power generation element is configured with different frequencies, and each electrode of each power generation element is generated in the piezoelectric element Take out the charge and output the power A power generator connected to the electric circuit.
前記重錘体の重心は、前記橋梁部の投影範囲内であって、前記長手方向軸に対して所定の間隔を隔てて平行な軸線上に位置しているものである。さらに、前記重錘体は、前記橋梁部を中心としてその両側に対称な形状で屈曲して設けられていると良い。
The center of gravity of the weight body is located within an projection range of the bridge portion and on an axis parallel to the longitudinal axis at a predetermined distance. Furthermore, it is preferable that the weight body is bent in a symmetrical shape on both sides of the bridge portion.
前記各発電素子の振動系は、前記重錘体の質量が異なることにより異なる固有振動数に設定されている。または、前記各発電素子の振動系は、前記橋梁部の弾性係数や形状が異なることにより異なる固有振動数に設定されていても良い。
The vibration system of each of the power generation elements is set to a different natural frequency due to the difference in mass of the weight body. Alternatively, the vibration system of each of the power generation elements may be set to a different natural frequency due to the difference in the elastic coefficient or the shape of the bridge portion.
前記各発電素子の前記各振動系は、互いに物理的に接続されて、一方の振動が他方に伝達可能に設けられていると良い。前記各振動系は、各重錘体が互いに連結体により接続されているものである。
The vibration systems of the power generation elements may be physically connected to each other so that one vibration can be transmitted to the other. In each of the vibration systems, weights are connected to each other by a connector.
またこの発明は、機械的振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子であって、長手方向軸を有して可撓性を有する橋梁部と、前記橋梁部の基端部が固定された支持枠部と、前記橋梁部の前記長手方向軸の先端部から連続するとともに、所定間隔を隔てて前記橋梁部の基端部側に屈曲して設けられた重錘体と、前記橋梁部の表面の伸縮変形が生じる所定位置に固定された圧電素子と、前記圧電素子に固定され前記圧電素子に発生した電荷を出力する複数の電極とを備え、前記重錘体の重心は、前記橋梁部の投影範囲内であって、前記長手方向軸に対して所定の間隔を隔てて平行な軸線上に位置している発電素子である。
Further, the present invention is a power generation element that generates electric power by converting mechanical vibration energy into electric energy, wherein the bridge portion having a longitudinal axis and having flexibility, and the base end portion of the bridge portion A fixed supporting frame portion, a weight body which is continuous with the tip end portion of the longitudinal axis of the bridge portion and which is provided at a predetermined interval and bent toward the base end portion of the bridge portion; And a plurality of electrodes fixed to the piezoelectric element and outputting charges generated in the piezoelectric element, wherein the center of gravity of the weight body is: It is an electric power generation element which is located within an projection range of the bridge portion and on an axis parallel to the longitudinal axis at a predetermined interval.
前記重錘体は、前記橋梁部と所定間隔を空けて平行に位置した重錘体支持部に固定され、前記重錘体の重心位置が、前記橋梁部の中心から所定間隔を空けて位置しているものである。
The weight body is fixed to a weight body supporting portion positioned in parallel with the bridge portion at a predetermined interval, and a gravity center position of the weight body is positioned at a predetermined distance from a center of the bridge portion. It is
前記橋梁部と前記重錘体支持部は同一の板材から形成され、前記橋梁部と前記重錘体支持部の一方の面に圧電体材料層が積層され、他方の面に前記重錘体が積層され、前記橋梁部と前記重錘体支持部とから成る層と前記圧電体材料層、及び前記重錘体の前記積層方向での投影形状が同じである。
The bridge portion and the weight body support portion are formed of the same plate material, a piezoelectric material layer is stacked on one surface of the bridge portion and the weight body support portion, and the weight body is formed on the other surface. A projected shape of the layer formed of the bridge portion and the weight body support portion, the piezoelectric material layer, and the weight body in the stacking direction is the same.
この発明の発電装置によれば、発電装置が設けられた環境中において、幅広い周波数帯域の振動に対して、各発電素子の振動系が各々異なる周波数で共振し、外界の機械的振動を効率よく電気エネルギーに変換して取り出すことができる。
According to the power generation device of the present invention, in the environment where the power generation device is provided, the vibration system of each power generation element resonates at different frequencies with respect to vibration in a wide frequency band, and mechanical vibration of the external world is efficiently performed. It can be converted into electrical energy and taken out.
さらに、この発明の発電素子によれば、外界の機械的振動の方向も、XYZ直交座標系の全ての方向の振動を拾って安定に振動し、電気エネルギーに変更することができるので、さらに効率的な発電を行うことができる。また、この発明の発電装置及び発電素子は、構造も簡単で強度も高く、小型化も容易なものである。
Furthermore, according to the power generation element of the present invention, the direction of external mechanical vibration can also be stably oscillated by picking up vibration in all directions of the XYZ Cartesian coordinate system, so that it can be changed to electrical energy, which is more efficient. Power generation can be performed. In addition, the power generation device and the power generation element of the present invention are simple in structure, high in strength, and easily reduced in size.
以下、この発明の発電装置の第一実施形態について、図1~図8に基づいて説明する。この実施形態の発電装置10は、固有振動数(共振周波数)の異なる複数の振動系11,12,13を備えたもので、各振動系11,12,13は、各々単位発電素子21,22,23を構成し、各単位発電素子21,22,23の出力が発電回路14に接続されている。各振動系11,12,13は、同様の構成であり、各部の長さや質量の違いにより各々異なる固有振動数を有するものである。先ず、振動系11の単位発電素子21を基に、この実施形態の単位発電素子21の基本構造について、以下に説明する。ここで、本願発明における方向の説明は、互いに直交するXYZ軸方向の3次元直交座標系を基に説明し、XY平面が水平面、Z軸方向が垂直方向で上下方向として説明する。
Hereinafter, a first embodiment of a power generation apparatus according to the present invention will be described based on FIGS. 1 to 8. The power generation apparatus 10 of this embodiment is provided with a plurality of vibration systems 11, 12 and 13 having different natural frequencies (resonance frequencies), and each of the vibration systems 11, 12 and 13 includes unit power generation elements 21 and 22 respectively. , 23, and the outputs of the unit power generation elements 21, 22, 23 are connected to the power generation circuit 14. Each vibration system 11, 12, 13 has the same configuration, and has different natural frequencies depending on the length and mass of each part. First, based on the unitary power generation element 21 of the vibration system 11, the basic structure of the unitary power generation element 21 of this embodiment will be described below. Here, the directions in the present invention will be described based on a three-dimensional orthogonal coordinate system in the XYZ axis directions orthogonal to each other, and the XY plane will be described as the horizontal plane, and the Z axis direction is the vertical direction and the vertical direction.
単位発電素子21は、発電装置10の矩形枠状の中空の支持体部24の内壁面24aから一体にY軸方向に突出して設けられた橋梁部26を備えている。橋梁部26は、Z軸方向の厚さが一定に形成され、Y軸方向に長手方向軸を有した細長い長方形に形成されている。
The unit power generation element 21 is provided with a bridge portion 26 integrally provided projecting in the Y-axis direction from the inner wall surface 24 a of the rectangular frame-shaped hollow support portion 24 of the power generation device 10. The bridge portion 26 has a constant thickness in the Z-axis direction, and is formed in an elongated rectangular shape having a longitudinal axis in the Y-axis direction.
橋梁部26の先端部26aには、先端部26aからX軸方向に所定距離だけ延びて、さらにY軸方向に橋梁部26の基端部26bに向かうL字状の重錘体支持部28が、互いに橋梁部26を挟んで、Y軸方向の長手方向軸を中心として対称に設けられている。各重錘体支持部28は、支持体部24とともに橋梁部26と同一の板材から一体に形成され、橋梁部26及び一対の重錘体支持部28は、XY平面上でほぼE字状に設けられている。従って、橋梁部26と、重錘体支持部28のY軸に平行な部分とは、一定の間隔sを空けて延びている。重錘体支持部28のY軸方向の長さは、橋梁部26よりも短く、重錘体支持部28の端部28aは、支持体部24の内壁面24aから離間して位置している。
At the distal end portion 26a of the bridge portion 26, an L-shaped weight support portion 28 extends from the distal end portion 26a by a predetermined distance in the X-axis direction and further toward the proximal end portion 26b of the bridge portion 26 in the Y-axis direction. They are provided symmetrically about the longitudinal axis in the Y-axis direction with the bridge portion 26 interposed therebetween. Each weight support portion 28 is integrally formed with the support portion 24 from the same plate material as the bridge portion 26. The bridge portion 26 and the pair of weight support portions 28 are substantially E-shaped on the XY plane. It is provided. Therefore, the bridge portion 26 and the portion parallel to the Y axis of the weight support portion 28 extend at a constant spacing s. The length of the weight support portion 28 in the Y-axis direction is shorter than that of the bridge portion 26, and the end 28a of the weight support portion 28 is located away from the inner wall surface 24a of the support portion 24. .
支持体部24、橋梁部26及び重錘体支持部28の材料は問わないもので、後述する製造方法等に鑑みて、シリコンや、セラミックス等で形成することが好ましい。後述するように、橋梁部26及び重錘体支持部28の材料は、下層電極E0に対して絶縁性又は導電性のいずれの性質を有して形成されていても良い。
The material of the support portion 24, the bridge portion 26 and the weight body support portion 28 is not limited, and in view of the manufacturing method and the like described later, it is preferable to be formed of silicon, ceramics or the like. As described later, the materials of the bridge portion 26 and the weight body support portion 28 may be formed to have either insulating or conductive properties with respect to the lower layer electrode E0.
橋梁部26のZ軸方向の上層には、チタン酸ジルコン酸鉛(PZT)やニオブ酸ナトリウムカリウム等の鉛フリー圧電性セラミックス、圧電性樹脂等の圧電材料で形成された圧電材料層30が設けられている。圧電材料層30は、層状に形成され、橋梁部26及び重錘体支持部28とZ軸方向に同形状のE字状に形成されている。橋梁部26及び重錘体支持部28と圧電材料層30の間には、下層電極E0が同形状で一体的に形成され、下層電極E0を介して橋梁部26及び重錘体支持部28が圧電材料層30と一体に設けられている。
A piezoelectric material layer 30 formed of a piezoelectric material such as lead-free piezoelectric ceramics such as lead zirconate titanate (PZT) or sodium potassium niobate, or piezoelectric resin is provided on the upper layer in the Z-axis direction of the bridge portion 26 It is done. The piezoelectric material layer 30 is formed in a layer shape, and is formed in an E shape having the same shape as the bridge portion 26 and the weight body support portion 28 in the Z-axis direction. The lower layer electrode E0 is integrally formed in the same shape between the bridge portion 26 and the weight body support portion 28 and the piezoelectric material layer 30, and the bridge portion 26 and the weight body support portion 28 are formed via the lower layer electrode E0. It is provided integrally with the piezoelectric material layer 30.
橋梁部26に積層された部分の圧電材料層30は、圧電素子34として機能する部分であり、下層電極E0と反対側の圧電素子34の表面側には、4枚の上層電極E1,E2,E3,E4が設けられている。上層電極E1,E2,E3,E4は、圧電素子34のX軸方向の両端とY軸方向の両端の4箇所に積層され、下層電極E0とともに各々発電回路14に接続されている。下層電極E0が、圧電素子34の下面全面に形成された1枚の共通電極になっているのに対し、各上層電極E1~E4は、圧電素子34の圧電効果が生じる領域である各圧電効果部に形成された電極として設けられている。これは、後述するように、単位発電素子21に作用する外力の方向によって、圧電素子34の各部に加わる応力の向き(圧縮方向、伸張方向)が異なり、圧電素子34の各圧電効果部内に発生する電界の極性が異なることにより、各上層電極E1~E4に発生するプラス又はマイナスの電荷を効率よく取り込むためである。
The piezoelectric material layer 30 in the portion laminated on the bridge portion 26 is a portion functioning as the piezoelectric element 34, and on the surface side of the piezoelectric element 34 on the opposite side to the lower layer electrode E0, four upper layer electrodes E1, E2,. E3 and E4 are provided. The upper layer electrodes E1, E2, E3 and E4 are stacked at four locations at both ends of the piezoelectric element 34 in the X-axis direction and at both ends in the Y-axis direction, and are connected to the power generation circuit 14 together with the lower layer electrode E0. While the lower layer electrode E0 is a common electrode formed on the entire lower surface of the piezoelectric element 34, each upper layer electrode E1 to E4 is a piezoelectric effect which is a region where the piezoelectric effect of the piezoelectric element 34 occurs. It is provided as an electrode formed on the part. As described later, the directions (the compression direction and the extension direction) of the stress applied to each portion of the piezoelectric element 34 differ depending on the direction of the external force acting on the unit power generation element 21 and occur in each piezoelectric effect portion of the piezoelectric element 34. This is because the positive or negative charges generated in each of the upper layer electrodes E1 to E4 can be efficiently taken in due to the difference in polarity of the electric field.
なお、外力に対して重錘体支持部28にはほとんど撓みが生じず応力も生じないので、圧電材料層30は積層されていなくても良い。さらに、圧電材料層30による圧電素子34は、橋梁部26の全面に積層される他、上層電極E1,E2,E3,E4の配置された領域だけでも良い。ただし、この実施形態では、後述する製造上等の理由により、橋梁部26及び重錘体支持部28と同形状に積層されている。
The piezoelectric material layer 30 may not be laminated because almost no bending occurs in the weight body support portion 28 due to an external force and no stress is generated. Furthermore, the piezoelectric element 34 formed of the piezoelectric material layer 30 may be stacked on the entire surface of the bridge portion 26, or may be only the region where the upper layer electrodes E1, E2, E3 and E4 are disposed. However, in this embodiment, it is laminated in the same shape as the bridge portion 26 and the weight body support portion 28 for reasons of manufacturing and the like described later.
重錘体支持部28のZ軸方向の下層には、重錘体32が一体に取り付けられている。重錘体32は、一対のL字状の重錘体支持部28に一体に取り付けられ、一対のL字状の重錘体支持部28が対称に対向したZ軸方向の投影形状と同形状で、門形に形成されている。重錘体32は、Z軸方向に一定厚みを有し、橋梁部26と平行な部分に多くの質量を有して、所定の質量に形成されている。重錘体32のY軸方向の長さは、橋梁部26よりも短く、重錘体32の端部32aは、重錘体支持部28の端部28aと同位置で、支持体部24の内壁面24aから僅かに離間して位置している。これにより、後述する発電動作において、重錘体32が揺動した場合も、重錘体32の端部32aが支持体部24の内壁面24aに衝突することがない。
A weight body 32 is integrally attached to the lower layer in the Z-axis direction of the weight body support portion 28. The weight 32 is integrally attached to a pair of L-shaped weight support portions 28 and has the same shape as the projection shape in the Z-axis direction in which the pair of L-shaped weight body support portions 28 are symmetrically opposed. In, it is formed in the gate shape. The weight body 32 has a constant thickness in the Z-axis direction, has a large mass in a portion parallel to the bridge portion 26, and is formed to a predetermined mass. The length of the weight body 32 in the Y-axis direction is shorter than that of the bridge portion 26, and the end 32 a of the weight body 32 is at the same position as the end 28 a of the weight body support 28. It is located slightly away from the inner wall surface 24a. Thereby, in the power generation operation described later, even when the weight body 32 swings, the end 32 a of the weight body 32 does not collide with the inner wall surface 24 a of the support portion 24.
重錘体32は、重錘体支持部28に沿って門形に形成されているので、橋梁部26のZ軸方向の下側部分には、空間35が形成されている。重錘体32の重心位置Gは、図4,図5に示すように、橋梁部26のX軸方向の中心であって、Z軸方向下方に橋梁部26から所定の距離を空けて下方にある。橋梁部26のY軸方向における重錘体32の重心位置Gは、橋梁部26の投影範囲内であって、中央部より僅かに先端部26a側に位置する。
The weight body 32 is formed in a gate shape along the weight body support portion 28, so a space 35 is formed in the lower portion of the bridge portion 26 in the Z-axis direction. The gravity center position G of the weight body 32 is the center of the bridge portion 26 in the X-axis direction as shown in FIG. 4 and FIG. 5 and is spaced downward from the bridge portion 26 downward in the Z-axis direction. is there. The gravity center position G of the weight body 32 in the Y-axis direction of the bridge portion 26 is within the projection range of the bridge portion 26 and is slightly closer to the tip portion 26 a than the central portion.
重錘体32の材料は、できるだけ比重の大きな材料を用いるのが好ましい。例えば、SUS、鉄、銅、タングステンなどの金属、あるいはセラミックス、もしくはガラスを用いて構成すると良い。さらに、後述するように、単位発電素子21,22,23を、MEMS技術を用いて作る場合は、重錘体32をSiにより製造しても良い。
It is preferable to use a material having a specific gravity as large as possible for the weight body 32. For example, a metal such as SUS, iron, copper, tungsten, or a ceramic or glass may be used. Furthermore, as described later, in the case where the unitary power generation elements 21, 22, 23 are made using MEMS technology, the weight body 32 may be made of Si.
次に、この実施形態の単位発電素子21,22,23を備えた発電装置10について説明する。発電装置10は、図1に示すように、上述の単位発電素子21と同様の構成の単位発電素子22,23を支持体部24の中に各々設けたものである。支持体部24は、中空の矩形枠状に形成され、支持体部24の内側のXY平面上で、単位発電素子21,22,23がY軸方向に延出して各々位置している。各単位発電素子21,22,23を構成する振動系11,12,13は、各々の固有振動数が異なり、異なる周波数で共振する。この実施形態では、単位発電素子21,22,23の重錘体32の大きさが異なり、その質量が異なることにより、異なる固有振動数としている。
Next, the power generation device 10 provided with the unit power generation elements 21, 22, 23 according to this embodiment will be described. As shown in FIG. 1, the power generation device 10 is provided with unit power generation elements 22 and 23 having the same configuration as that of the above-described unit power generation element 21 in the support portion 24. The support portion 24 is formed in a hollow rectangular frame shape, and on the XY plane inside the support portion 24, the unitary power generation elements 21, 22, 23 extend in the Y-axis direction and are respectively positioned. The vibration systems 11, 12, 13 constituting the unitary power generation elements 21, 22, 23 have different natural frequencies and resonate at different frequencies. In this embodiment, the weight bodies 32 of the unitary power generation elements 21, 22, 23 have different sizes and different masses so that they have different natural frequencies.
なお、各振動系11,12,13を異なる固有振動数とするために、橋梁部26の弾性係数が異なるように幅や長さを変えても良く、厚みや積層材、形状を変えても良い。さらに、振動系11,12,13の各質量と、各橋梁部32の弾性係数の両方を異なる値に設定しても良い。
In order to make each vibration system 11, 12, 13 have different natural frequencies, the width or length may be changed so that the elastic modulus of the bridge portion 26 is different, even if the thickness, the laminated material, or the shape is changed. good. Furthermore, both the masses of the vibration systems 11, 12, 13 and the elastic coefficients of the bridge portions 32 may be set to different values.
次に、この実施形態の発電回路14について、図6を基に説明する。ここでは、単位発電素子21に接続された例を基に説明するが、他の単位発電素子22,23も同様の回路構成で同じ発電回路14に接続される。橋梁部26に積層された圧電素子34のうち、上層電極E1,E2,E3,E4に対向する部分及びその周辺が、効率よく圧電効果が生じる部分であり、上層電極E1,E2,E3,E4に対面した各部を圧電効果部P1,P2,P3,P4とする。
Next, the power generation circuit 14 of this embodiment will be described based on FIG. Here, although it demonstrates based on the example connected to the unit power generation element 21, the other unit power generation elements 22 and 23 are also connected to the same power generation circuit 14 by the same circuit structure. Of the piezoelectric element 34 stacked on the bridge portion 26, portions facing the upper layer electrodes E1, E2, E3 and E4 and the periphery thereof are portions where the piezoelectric effect is efficiently generated. The upper layer electrodes E1, E2, E3 and E4 The parts facing each other are referred to as piezoelectric effect parts P1, P2, P3 and P4.
圧電効果部P1に取り付けられた上層電極E1は、発電回路14の整流回路を形成するダイオードD11のアノードと、ダイオードD12のカソードに各々接続され、ダイオードD11のカソードが、発電回路14において電荷を溜めるコンデンサCfの一端に接続され、ダイオードD12のアノードがコンデンサCfの他端に接続されている。
The upper layer electrode E1 attached to the piezoelectric effect portion P1 is connected to the anode of the diode D11 forming the rectification circuit of the power generation circuit 14 and the cathode of the diode D12 respectively, and the cathode of the diode D11 stores charges in the power generation circuit 14 One end of the capacitor Cf is connected, and the anode of the diode D12 is connected to the other end of the capacitor Cf.
同様に、圧電効果部P2に取り付けられた上層電極E2は、発電回路14の整流回路を形成するダイオードD21のアノードと、ダイオードD22のカソードに各々接続され、ダイオードD21のカソードが、電荷を溜めるコンデンサCfの一端に接続され、ダイオードD22のアノードがコンデンサCfの他端に接続されている。
Similarly, the upper layer electrode E2 attached to the piezoelectric effect portion P2 is connected to the anode of the diode D21 forming the rectification circuit of the power generation circuit 14 and the cathode of the diode D22, and the cathode of the diode D21 is a capacitor One end of Cf is connected, and the anode of the diode D22 is connected to the other end of the capacitor Cf.
同様に、圧電効果部P3に取り付けられた上層電極E3は、発電回路14の整流回路を形成するダイオードD31のアノードと、ダイオードD32のカソードに各々接続され、ダイオードD31のカソードが、電荷を溜めるコンデンサCfの一端に接続され、ダイオードD32のアノードがコンデンサCfの他端に接続されている。
Similarly, the upper layer electrode E3 attached to the piezoelectric effect portion P3 is connected to the anode of the diode D31 forming the rectification circuit of the power generation circuit 14 and the cathode of the diode D32, and the cathode of the diode D31 is a capacitor One end of Cf is connected, and the anode of the diode D32 is connected to the other end of the capacitor Cf.
同様に、圧電効果部P4に取り付けられた上層電極E4は、発電回路14の整流回路を形成するダイオードD41のアノードと、ダイオードD42のカソードに各々接続され、ダイオードD41のカソードが、電荷を溜めるコンデンサCfの一端に接続され、ダイオードD42のアノードがコンデンサCfの他端に接続されている。
Similarly, the upper layer electrode E4 attached to the piezoelectric effect portion P4 is connected to the anode of the diode D41 forming the rectification circuit of the power generation circuit 14 and the cathode of the diode D42, and the cathode of the diode D41 stores a charge. One end of Cf is connected, and the anode of diode D42 is connected to the other end of capacitor Cf.
さらに、下層電極E0は、ダイオードD01のアノードと、ダイオードD02のカソードに各々接続され、ダイオードD01のカソードが、電荷を溜めるコンデンサCfの一端に接続され、ダイオードD02のアノードがコンデンサCfの他端に接続されている。
Furthermore, the lower layer electrode E0 is connected to the anode of the diode D01 and the cathode of the diode D02, and the cathode of the diode D01 is connected to one end of the capacitor Cf storing electric charge, and the anode of the diode D02 is connected to the other end of the capacitor Cf. It is connected.
これにより、各圧電効果部P1,P2,P3,P4により上層電極E1,E2,E3,E4に正負いずれの電荷が発生しても、コンデンサCfに同極性で溜めることができる。さらにこの実施形態では、3つの単位発電素子21,22,23の各下層電極E0及び上層電極E1,E2,E3,E4が同様にダイオードD11~D42に接続され、コンデンサCfに接続されている。これにより、コンデンサCfには、3つの単位発電素子21,22,23により発生した電荷を溜めることができる。コンデンサCfは、使用状態において、種々の負荷ZLに接続される。
Thereby, even if positive or negative charges are generated in the upper layer electrodes E1, E2, E3 and E4 by the respective piezoelectric effect portions P1, P2, P3 and P4, they can be accumulated in the capacitor Cf with the same polarity. Furthermore, in this embodiment, the lower layer electrodes E0 and the upper layer electrodes E1, E2, E3, E4 of the three unit power generation elements 21, 22, 23 are similarly connected to the diodes D11 to D42 and connected to the capacitor Cf. Thereby, the charge generated by the three unit power generation elements 21, 22, 23 can be stored in the capacitor Cf. The capacitor Cf is connected to various loads ZL in use.
この実施形態の発電装置10は、MEMS技術で作られたセンサの電源等に適しており、微小な構造が要求されるので、支持体部24及び単位発電素子21,22,23の各橋梁部26及び重錘体支持部28の材料はSiを用いて、半導体回路の形成工程を利用して製造することができる。この場合、例えば、橋梁部26及び重錘体支持部28のZ軸方向の厚みは200μm程度でありであり、圧電体層30の同厚みは2μm、重錘体32のZ軸方向の厚みの厚みが1000μm、下層電極E0及び上層電極E1~E4の厚みは0.01μm程度に設定し、外形を5mm×5mm程度の大きさで製造することができる。製造工程では、Z軸方向にエッチング及び蒸着等の積層工程を繰り返して製造する。その他、印刷やスパッタリング等の工程を用いることもできる。この場合、Si基板としてSOI基板を用いると良い。SOI基板の活性層Siに下層電極E0、圧電体34,上層電極E1~E4を形成し、ベースSiを重錘体32とすれば良い。
The power generation device 10 of this embodiment is suitable for a power supply of a sensor manufactured by MEMS technology and the like, and a minute structure is required. Therefore, each bridge portion of the support portion 24 and the unit power generation elements 21, 22, 23 The materials of the weight support portion 28 and the weight support portion 28 can be manufactured using Si and utilizing the process of forming a semiconductor circuit. In this case, for example, the thickness in the Z-axis direction of the bridge portion 26 and the weight support portion 28 is about 200 μm, the same thickness of the piezoelectric layer 30 is 2 μm, and the thickness of the weight 32 in the Z-axis direction The thickness is set to about 1000 μm, and the thicknesses of the lower layer electrode E0 and the upper layer electrodes E1 to E4 are set to about 0.01 μm, and the outer shape can be manufactured in a size of about 5 mm × 5 mm. In the manufacturing process, the lamination process such as etching and vapor deposition is repeated in the Z-axis direction. Other processes such as printing and sputtering can also be used. In this case, an SOI substrate is preferably used as the Si substrate. The lower layer electrode E0, the piezoelectric body 34, and the upper layer electrodes E1 to E4 may be formed on the active layer Si of the SOI substrate, and the base Si may be a weight body 32.
その他、支持体部24及び単位発電素子21,22,23の各橋梁部26に金属板を利用することも可能である。その場合は、金属板をエッチング等により所定形状に形成し、金属板の上面が下層電極E0として機能し、この金属板の上にスバッタ法やゾルゲノレ法によって圧電体の薄膜を成膜すると良い。また、上層電極は、金属材料を印刷、蒸着、スバッタ等の方法で形成することができる。
In addition, it is also possible to use a metal plate for each bridge portion 26 of the support portion 24 and the unit power generation elements 21, 22, 23. In that case, it is preferable to form the metal plate in a predetermined shape by etching or the like, the upper surface of the metal plate to function as the lower electrode E0, and deposit a thin film of a piezoelectric material on the metal plate by the Sbutter method or Solgenol method. Further, the upper layer electrode can be formed of a metal material by printing, vapor deposition, sputtering, or the like.
次に、この実施形態の単位発電素子21の発電動作について説明する。ここでは、支持体部24がXY平面上に置かれ、Z軸方向に中空部が貫通している。先ず、図3~図5に示す単位発電素子21の重錘体32に、振動等により加速度が作用し力がかかる場合について説明する。
Next, the power generation operation of the unit power generation element 21 of this embodiment will be described. Here, the support portion 24 is placed on the XY plane, and the hollow portion penetrates in the Z-axis direction. First, the case where an acceleration acts on the weight body 32 of the unit power generation element 21 shown in FIGS. 3 to 5 due to vibration or the like and a force is applied will be described.
先ず、X軸正方向の力+Fxが作用した場合について説明する。重錘体32の重心Gが橋梁部26のほぼ中央部でZ軸方向下方に位置しているので、外力+Fxが作用すると橋梁部26の圧電素子34には、図7(a)に示すように、次のように力が作用する。上層電極E1に対向する圧電効果部P1には、圧縮方向の力が作用し、上層電極E2に対向する圧電効果部P2には、伸張方向の力が作用し、上層電極E3に対向する圧電効果部P3には、伸張方向の力が作用し、上層電極E4に対向する圧電効果部P4には、圧縮方向の力が作用する。これにより、圧電効果部P1,P2には互いに逆極性の電界が発生し、圧電効果部P3,P4にも、互いに逆極性の電界であって圧電効果部P1,P3が逆極性となる電界が発生する。そして、上層電極E1,E4に同極性の電荷、上層電極E2,E3には互いに同極性であって上層電極E1,E4とは逆極性の電荷が発生し、各々電荷が溜められる。各電極E0~E4に溜められた電荷は、上層電極E1,E4と、上層電極E2,E3とでは逆極性であるが、図6に示す回路により整流されて、コンデンサCfに同極性で電荷が溜められる。同様に、X軸負方向にマイナスの力-Fxが作用した場合は、上記と逆極性で、各々の電極に電荷が発生するが、図6に示す回路により、コンデンサCfには同極性で電荷が溜められる。
First, the case where the force + Fx in the positive direction of the X axis acts will be described. As the center of gravity G of the weight body 32 is located at the substantially central part of the bridge portion 26 downward in the Z-axis direction, when an external force + Fx acts, the piezoelectric element 34 of the bridge portion 26 is shown in FIG. In the following, the force acts. A force in the compression direction acts on the piezoelectric effect portion P1 opposed to the upper layer electrode E1, and a force in the extension direction acts on the piezoelectric effect portion P2 opposed to the upper layer electrode E2, and a piezoelectric effect opposed to the upper layer electrode E3. A force in the extension direction acts on the portion P3, and a force in the compression direction acts on the piezoelectric effect portion P4 opposed to the upper layer electrode E4. As a result, electric fields of opposite polarities are generated in the piezoelectric effect portions P1 and P2, and electric fields of opposite polarity are also generated in the piezoelectric effect portions P3 and P4, and the electric fields of the piezoelectric effects portions P1 and P3 become opposite polarities. Occur. Then, charges of the same polarity are generated in the upper layer electrodes E1 and E4, and charges of the same polarity and reverse polarity to the upper layer electrodes E1 and E4 are generated in the upper layer electrodes E2 and E3, respectively. The charges accumulated in each of the electrodes E0 to E4 are reverse in polarity between the upper layer electrodes E1 and E4 and the upper layer electrodes E2 and E3, but are rectified by the circuit shown in FIG. Be stored. Similarly, when a negative force -Fx acts in the negative direction of the X-axis, charges are generated in each electrode with the opposite polarity to the above, but the circuit shown in FIG. Is stored.
次に、単位発電素子21の重錘体32にY軸正方向の力+Fyが作用した場合について説明する。重錘体32の重心Gは、橋梁部26のほぼ中央部のZ軸方向下方に位置しているので、Y軸正方向の力+Fyが作用した場合、橋梁部26には、図5において時計方向のモーメントが作用する。これにより、図7(b)に示すように、各上層電極E1,E2,E3,E4に対向する圧電効果部P1,P2,P3,P4には、各々同様に圧縮方向の力が作用し、各々同極性の電界が発生する。これにより、各上層電極E1,E2,E3,E4には各々同極性で電荷が発生し、図6に示す回路により整流されて、コンデンサCfに電荷が溜められる。同様に、Y軸負方向にマイナスの力-Fyが作用した場合は、上記と逆極性で、電荷が発生するが、図6に示す回路により、コンデンサCfには同極性で電荷が溜められる。
Next, the case where a force + Fy in the Y-axis positive direction acts on the weight body 32 of the unitary power generation element 21 will be described. The center of gravity G of the weight body 32 is located below the substantially central portion of the bridge portion 26 in the Z-axis direction, so when a force + Fy in the positive Y-axis direction is applied, the bridge portion 26 is watched in FIG. A moment in the direction acts. As a result, as shown in FIG. 7B, the force in the compression direction acts on the piezoelectric effect portions P1, P2, P3 and P4 facing the respective upper layer electrodes E1, E2, E3 and E4, respectively. Each generates an electric field of the same polarity. As a result, charges are generated in the respective upper layer electrodes E1, E2, E3 and E4 with the same polarity, rectified by the circuit shown in FIG. 6, and the charges are accumulated in the capacitor Cf. Similarly, when a negative force -Fy acts in the Y-axis negative direction, charges are generated with the opposite polarity to the above, but charges are accumulated in the capacitor Cf with the same polarity by the circuit shown in FIG.
次に、単位発電素子21の重錘体32にZ軸正方向の力+Fzが作用した場合について説明する。重錘体32の重心Gは、橋梁部26のほぼ中央部のZ軸方向下方に位置しているので、図7(c)に示すように、各上層電極E1,E2に対向する圧電効果部P1,P2には、伸張方向の力が作用し各々同極性の電界が発生して、各上層電極E1,E2には各々同極性で電荷が発生する。一方、各上層電極E3,E4に対向する圧電効果部P3,P4には圧縮方向の力が作用し、圧電効果部P1,P2とは逆極性の電界が発生して、各上層電極E3,E4には上層電極E1,E2とは逆極性の電荷が発生するが、図6に示す回路により整流されて、コンデンサCfに電荷が溜められる。同様に、Z軸負方向にマイナスの力-Fzが作用した場合は、上記と逆極性で、電荷が発生するが、図6に示す回路により、コンデンサCfには同極性で電荷が溜められる。
Next, the case where a force + Fz in the positive direction of the Z-axis acts on the weight body 32 of the unitary power generation element 21 will be described. The center of gravity G of the weight body 32 is located below the substantially central portion of the bridge portion 26 in the Z-axis direction. Therefore, as shown in FIG. 7C, piezoelectric effect portions facing the respective upper layer electrodes E1 and E2 A force in the extension direction acts on P1 and P2 to generate electric fields of the same polarity, and charges are generated on the respective upper layer electrodes E1 and E2 with the same polarity. On the other hand, a force in the compression direction acts on the piezoelectric effect portions P3 and P4 facing the respective upper layer electrodes E3 and E4, and an electric field having a polarity opposite to that of the piezoelectric effect portions P1 and P2 is generated. On the other hand, charges of the opposite polarity to the upper layer electrodes E1 and E2 are generated, but the charges are rectified by the circuit shown in FIG. 6 and the charges are accumulated in the capacitor Cf. Similarly, when a negative force -Fz acts in the negative direction of the Z-axis, charges are generated with the opposite polarity to the above but with the circuit shown in FIG. 6, charges are accumulated in the capacitor Cf with the same polarity.
この実施形態の説明では、伸張方向の力と圧縮方向の力で発生する電荷が逆極性としたが、圧電材料層を圧電セラミックスにし、分極処理を制御することにより、伸張と圧縮で同じ極性の電荷を発生させることも可能である。この場合でも、図6に示す発電回路14は有効なものである。
In the description of this embodiment, the electric charges generated by the force in the extension direction and the force in the compression direction are opposite in polarity, but the piezoelectric material layer is made to be a piezoelectric ceramic and polarization control is controlled to obtain the same polarity in extension and compression. It is also possible to generate a charge. Even in this case, the power generation circuit 14 shown in FIG. 6 is effective.
次に、この実施形態の単位発電素子21,22,23を備えた発電装置10による発電動作について説明する。発電装置10は、上述のように各々異なる固有振動数の振動系11,12,13から成るので、外界の振動に対する共振周波数が異なる。図8(a),(b),(c)に示すように、振動系11のX軸方向の共振周波数をfx1とし、Y軸方向の共振周波数をfy1とし、Z軸方向の共振周波数をfz1とする。振動系12のX軸方向の共振周波数をfx2とし、Y軸方向の共振周波数をfy2とし、Z軸方向の共振周波数をfz2とする。振動系13のX軸方向の共振周波数をfx3とし、Y軸方向の共振周波数をfy3とし、Z軸方向の共振周波数をfz3とする。これらの振動系11、振動系12、振動系13の周波数特性をまとめると、XYZ軸方向に各々の共振周波数と振幅は、図8に示すように表される。これにより、XYZ軸方向の各力に対して、異なる周波数の幅広い帯域の機械的振動に対して、単位発電素子21,22,23の振動系11,12,13が各々異なる周波数で共振可能であり、幅広い周波数の振動が発電動作に寄与し、効果的に発電を行うことができる。
Next, the power generation operation by the power generation device 10 provided with the unit power generation elements 21, 22, 23 of this embodiment will be described. Since the power generator 10 is composed of the vibration systems 11, 12, 13 of different natural frequencies as described above, the resonance frequency to the vibration of the external world is different. As shown in FIGS. 8A, 8B, and 8C, the resonance frequency in the X-axis direction of the vibration system 11 is fx1, the resonance frequency in the Y-axis direction is fy1, and the resonance frequency in the Z-axis direction is fz1. I assume. The resonance frequency in the X-axis direction of the vibration system 12 is fx2, the resonance frequency in the Y-axis direction is fy2, and the resonance frequency in the Z-axis direction is fz2. The resonance frequency in the X axis direction of the vibration system 13 is fx3, the resonance frequency in the Y axis direction is fy3, and the resonance frequency in the Z axis direction is fz3. Summarizing the frequency characteristics of the vibration system 11, the vibration system 12, and the vibration system 13, respective resonance frequencies and amplitudes in the X, Y, and Z directions are represented as shown in FIG. Thus, the vibration systems 11, 12 and 13 of the unit power generation elements 21, 22 and 23 can resonate at different frequencies with respect to mechanical vibration in a wide band of different frequencies with respect to forces in the XYZ axial directions. The vibration of a wide frequency contributes to the power generation operation, and power can be generated effectively.
この実施形態の発電装置10と単位発電素子21,22,23によれば、発電装置10が設けられた環境の幅広い機械的振動に対応して、単位発電素子21,22,23の振動系11,12,13が各々異なる周波数で共振し、外界の振動を効率よく電気エネルギーに変換して取り出すことができる。しかも、外界の機械的振動の方向も、XYZ直交座標系の全ての方向の振動を拾って共振し、電気エネルギーに変更することができるので、この点からも効率的な発電を行うことができる。また、XY平面上でY軸方向の軸を中心に対称な形状に形成されているので、効率よく振動し、構造も簡単で強度も高いものである。さらに、重錘体支持部28及び重錘体32が橋梁部26の先端部26aから屈曲して基端部26bに伸びる構造に形成され、小型化も容易なものである。
According to the power generation device 10 and the unit power generation elements 21, 22, and 23 of this embodiment, the vibration system 11 of the unit power generation elements 21, 22, and 23 in response to a wide range of mechanical vibrations of the environment where the power generation device 10 is provided. , 12 and 13 resonate at different frequencies, so that external vibration can be efficiently converted into electrical energy and extracted. Moreover, the direction of external mechanical vibration can also be picked up and resonated in all directions of the XYZ Cartesian coordinate system and converted to electrical energy, so that efficient power generation can be performed from this point as well. . Further, since they are formed symmetrically on the XY plane with respect to the axis in the Y-axis direction, they vibrate efficiently, have a simple structure, and have high strength. Furthermore, the weight body support portion 28 and the weight body 32 are formed to be bent from the distal end portion 26a of the bridge portion 26 and extended to the base end portion 26b, and miniaturization is easy.
次にこの発明の第二実施形態の発電装置36について図9を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の発電素子36は、単位発電素子21,22,23の配置を工夫して、全体の体積を縮小したものである。図9に示すように、単位発電素子21,22と単位発電素子23のY軸方向の向きを逆にして、X軸方向の重錘体32の幅分だけX軸方向の寸法を短くして、スペース効率を上げたものである。
Next, a power generation device 36 according to a second embodiment of the present invention will be described based on FIG. Here, the same members as those in the above embodiment are given the same reference numerals, and the description thereof is omitted. The power generation element 36 of this embodiment is a device in which the arrangement of the unit power generation elements 21, 22, 23 is devised to reduce the overall volume. As shown in FIG. 9, the directions of the unit power generation elements 21 and 22 and the unit power generation element 23 are reversed, and the dimension in the X axis direction is shortened by the width of the weight 32 in the X axis direction. And space efficiency.
この実施形態の発電装置36と単位発電素子21,22,23によよっても、上記実施形態と同様の効果が得られ、さらに小型で効率の良い発電装置を提供することができる。
According to the power generation device 36 and the unit power generation elements 21, 22, and 23 of this embodiment, the same effect as that of the above embodiment can be obtained, and a further compact and efficient power generation device can be provided.
次にこの発明の第三実施形態の発電装置38について図10~図14を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の発電素子38は、図10に示すように、単位発電素子21,23の互いに対向する重錘体32の端部同士、及び単位発電素子22,23の互いに対向する重錘体32の端部同士を連結体40で物理的に連結したものである。
Next, a power generation apparatus 38 according to a third embodiment of the present invention will be described based on FIGS. 10 to 14. Here, the same members as those in the above embodiment are given the same reference numerals, and the description thereof is omitted. The power generation element 38 of this embodiment is, as shown in FIG. 10, an end of the weight body 32 of the unit power generation elements 21 and 23 facing each other, and a weight body 32 of the unit power generation elements 22 and 23 facing each other. The end portions of are physically connected by a connecting body 40.
以下に、重錘体32の端部同士を連結することによる作用について説明する。先ず、単純化のため図11に示す片持ち梁による基本的振動系41,42を想定する。基本的振動系41に重錘体m1が設けられ、基本的振動系42には重錘体m2が設けられ、基本的振動系41,42の各固有振動数は異なる。基本的振動系41,42の各橋梁部44には、図示しない下層電極E0、及び圧電体46を介して上層電極E1が設けられているとする。
Below, the effect | action by connecting the end parts of the weight body 32 is demonstrated. First, for the sake of simplicity, it is assumed that basic vibration systems 41 and 42 each having a cantilever shown in FIG. A weight m1 is provided to the basic vibration system 41, and a weight m2 is provided to the basic vibration system 42, and the natural frequencies of the basic vibration systems 41 and 42 are different. It is assumed that an upper layer electrode E1 is provided in each bridge portion 44 of the basic vibration systems 41 and 42 via a lower layer electrode E0 and a piezoelectric body 46 (not shown).
基本的振動系41の周波数特性を図12(a)に示し、基本的振動系42の周波数特性を図12(b)に示す。基本的振動系41の共振周波数をf1、共振時の振幅のピークをQlとし、基本的振動系42の共振周波数をf2、共振時の振幅のピークをQ2とする。基本的振動系41がその共振周波数で振動した時、共振時のピークはQlとなり、電極E1に大きな電荷が発生する。この電荷は、自分の電荷で振動を妨げることになる。また、共振時に発生する大量の電荷や応力で、圧電体46の薄膜や発電素子の機構部にダメージを与える可能性がある。
The frequency characteristic of the basic vibration system 41 is shown in FIG. 12 (a), and the frequency characteristic of the basic vibration system 42 is shown in FIG. 12 (b). A resonance frequency of the basic vibration system 41 is f1, a peak of amplitude at resonance is Q1, a resonance frequency of the basic vibration system 42 is f2, and a peak of amplitude at resonance is Q2. When the basic vibration system 41 vibrates at its resonance frequency, the peak at resonance becomes Q1 and a large charge is generated in the electrode E1. This charge will disturb the vibration with its own charge. In addition, a large amount of charge or stress generated at the time of resonance may damage the thin film of the piezoelectric body 46 or the mechanical portion of the power generation element.
同様に、基本的振動系42が共振周波数で振動した時、共振時のピークはQ2となり、電極E2に大きな電荷が発生し、この電荷により自分の振動を妨げることになる。また、共振時に発生する大量の電荷や応力で、圧電体46の薄膜や発電素子の機構部にダメージを与える可能性がある。
Similarly, when the basic vibration system 42 vibrates at a resonance frequency, the peak at resonance becomes Q2, a large charge is generated in the electrode E2, and this charge interferes with its own vibration. In addition, a large amount of charge or stress generated at the time of resonance may damage the thin film of the piezoelectric body 46 or the mechanical portion of the power generation element.
上記のような過剰な振動や加速度を抑えるために、図13に示すように、重錘体m1,m2を連結体40で物理的に連結し、基本的振動系41が共振周波数f1で振動した時、その振動を基本的振動系42に逃がし、基本的振動系41の共振時のピークを下げ、基本的振動系42でも発電するようにすればよい。同様に、基本的振動系42が共振周波数f2で振動した時、その振動を基本的振動系41に逃がし、基本的振動系42の共振時のピークを下げ、基本的振動系41でも発電するようにすればよい。これにより、一つの共振周波数f1により上層電極E1,E2の両方で電荷が発生し、発生した電荷を発電回路47に出力し、電力として取り出すことができる。しかも、大きな外力が作用した場合にも、基本的振動系42に力を分散して、破損を防止することができる。同様に、他の共振周波数f2によっても、上層電極E1,E2の両方で電荷が発生し、発生した電荷を発電回路14に出力し、電力として取り出すことができる。しかも、大きな外力が作用した場合にも、基本的振動系41に力を分散して、破損を防止することができる。
In order to suppress the above excessive vibration and acceleration, as shown in FIG. 13, the weight bodies m1 and m2 are physically connected by the connector 40, and the basic vibration system 41 vibrates at the resonance frequency f1. When the vibration is released to the basic vibration system 42, the peak at the time of resonance of the basic vibration system 41 may be lowered, and power may be generated in the basic vibration system 42 as well. Similarly, when the basic vibration system 42 vibrates at the resonance frequency f2, the vibration is released to the basic vibration system 41, the peak at the resonance of the basic vibration system 42 is lowered, and power is generated also in the basic vibration system 41. You should do it. As a result, charges are generated in both of the upper layer electrodes E1 and E2 at one resonance frequency f1, and the generated charges can be output to the power generation circuit 47 and taken out as electric power. In addition, even when a large external force acts, the force can be dispersed in the basic vibration system 42 to prevent breakage. Similarly, charges are generated in both of the upper layer electrodes E1 and E2 by the other resonance frequency f2, and the generated charges can be output to the power generation circuit 14 and taken out as electric power. Moreover, even when a large external force acts, the force can be dispersed to the basic vibration system 41 to prevent breakage.
連結体40で重錘体m1,m2を連結することにより、基本的振動系41,42では、連結体40がない場合と比較して上層電極E1の周波数f1での発生電荷の量である発電量が低下するが、図14(a)で、示すように、上層電極E2でも発電する。同様に、周波数f2では、上層電極E2での発電量が低下するが、上層電極E1も発電する。そして、発電回路47で電極E4lとE42に発生する両者の電荷を集めて発電すれば、効率的な発電が可能となる。しかも、周波数f1、周波数f2で振幅が抑えられるので橋梁部44の破損の可能性も抑えられる。なお、重錘体m1,m2の振幅が小さい時は、連結体40による結合はさほど機能しないが、重錘体m1,m2の振幅が大きくなると、連結体40は振動系41,42の振幅を制限するようになる。
By connecting the weight bodies m1 and m2 with the connecting body 40, in the basic vibration systems 41 and 42, power generation which is the amount of generated charge at the frequency f1 of the upper layer electrode E1 as compared with the case without the connecting body 40 Although the amount decreases, as shown in FIG. 14A, the upper layer electrode E2 also generates power. Similarly, at the frequency f2, the amount of power generation in the upper layer electrode E2 decreases, but the upper layer electrode E1 also generates power. Then, if the two electric charges generated on the electrodes E41 and E42 are collected by the power generation circuit 47 to generate power, efficient power generation becomes possible. Moreover, since the amplitude is suppressed at the frequency f1 and the frequency f2, the possibility of breakage of the bridge portion 44 can also be suppressed. When the amplitudes of the weight bodies m1 and m2 are small, the connection by the connecting body 40 does not function so much, but when the amplitudes of the weight bodies m1 and m2 become large, the connection body 40 generates the amplitudes of the vibration systems 41 and 42. Will be restricted.
この実施形態の発電装置38は、この作用を利用したもので、図10に示すように、単位発電素子21,22の互いに対向する重錘体32の端部同士、及び単位発電素子22,23の互いに対向する重錘体32の端部同士を連結体40で物理的に連結し、発電効率を向上させ、外力に対する強度も高めたものである。ただし、互いの振動系を強く結合しすぎると、上記のかえって発電能力が抑えられて発電効率が落ちるので、適切な強度の連結が必要になる。
The power generation device 38 of this embodiment utilizes this action, and as shown in FIG. 10, the end portions of the weight bodies 32 of the unit power generation elements 21 and 22 facing each other, and the unit power generation elements 22 and 23. The end portions of the weight bodies 32 facing each other are physically connected by the connecting member 40 to improve the power generation efficiency and to increase the strength against external force. However, if the vibration systems are mutually coupled too strongly, the above-mentioned power generation capacity is rather suppressed and the power generation efficiency is lowered, so it is necessary to connect the appropriate strength.
この実施形態の発電装置38と単位発電素子21,22,23によれば、振動系11,12,13の単位発電素子21,22,23互いの機械的振動が、連結体40により他方の振動系に伝搬され、一つの振動系が共振による大きな加速度を生じたとしても、互いに他の振動系に機械的振動を分散させ、振幅のピーク値を低減させ、橋梁部26の破損を防止する。
According to the power generation device 38 and the unit power generation elements 21, 22, and 23 of this embodiment, the mechanical vibration of the unit power generation elements 21, 22, and 23 of the vibration systems 11, 12, and 13 is the other vibration by the connector 40. Even if one vibration system propagates to the system and generates a large acceleration due to resonance, the mechanical vibration is dispersed to the other vibration systems, the peak value of the amplitude is reduced, and the breakage of the bridge portion 26 is prevented.
次にこの発明の第四実施形態の発電装置について図15を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の発電装置は、単位発電素子51の形状が上記実施形態とは異なるもので、さらに全体の体積を小さくすることができるものである。
Next, a power generation system according to a fourth embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the above embodiment are given the same reference numerals, and the description thereof is omitted. The power generation device of this embodiment is different from the above embodiment in the shape of the unit power generation element 51, and the whole volume can be further reduced.
この実施形態の単位発電素子51は、重錘体52が橋梁部26の先端部26aからZ軸方向下方に連続し、橋梁部26と所定間隔を空けてさらにY軸方向に橋梁部26の基端部26b側に延びてL字状で、一つの重錘体52が形成されたものである。従って、重錘体52は、橋梁部26のZ軸方向の下方に位置しているものである。
In the unit power generation element 51 of this embodiment, the weight body 52 is continuous downward from the tip end 26a of the bridge portion 26 in the Z-axis direction, and is separated from the bridge portion 26 by a predetermined distance. One weight body 52 is formed in an L-shape extending toward the end 26b. Therefore, the weight body 52 is located below the bridge portion 26 in the Z-axis direction.
この実施形態の重錘体52は、上記実施形態の重錘体32と異なり、橋梁部26とZ軸方向に重なって設けられているため、橋梁部26とは別に形成した後、L字状に形成した重錘体52の一端部52aを橋梁部26の先端部26aに接合して形成する。
Unlike the weight body 32 of the above embodiment, since the weight body 52 of this embodiment is provided so as to overlap the bridge portion 26 in the Z-axis direction, after being formed separately from the bridge portion 26, L-shaped The one end 52 a of the weight body 52 formed in the above is formed by being joined to the tip 26 a of the bridge 26.
この実施形態の発電装置も、上記実施形態と同様に支持枠部の内側に、単位発電素子51と同様の構造であって、固有振動数の異なる複数の単位発電素子が設けられている。固有振動数を異なる値にする方法は、上記実施形態と同様である。
The power generation apparatus of this embodiment also has a structure similar to that of the unit power generation element 51, and is provided with a plurality of unit power generation elements having different natural frequencies, as in the above embodiment. The method of making natural frequency into a different value is the same as that of the said embodiment.
この実施形態の発電装置と単位発電素子51によっても、上記実施形態と同様の効果が得られ、さらに小型で効率の良い発電装置を提供することができる。
Also by the power generation device of this embodiment and the unit power generation element 51, the same effect as that of the above-described embodiment can be obtained, and a further compact and efficient power generation device can be provided.
なお、この発明の発電素子は、上記実施形態に限定されるものではない。重錘体は上記第一実施形態の一対の重錘体のうちの一方のみを備えた形状でも良く、これにより、橋梁部はY軸方向の長手方向軸に対して非対称な形状になるが、発電装置の形状をより小型化することが可能である。重錘体の重心位置は、橋梁部のほぼ中央からZ軸方向に所定距離離間している他、橋梁部の投影範囲内であって、長手方向軸に対して所定の間隔を隔てて平行位置して良いが、重錘体が非対称な場合は橋梁部の投影範囲から僅かに外れていても良い。
The power generation element of the present invention is not limited to the above embodiment. The weight body may have a shape provided with only one of the pair of weight bodies of the first embodiment, whereby the bridge portion becomes asymmetrical with respect to the longitudinal axis in the Y-axis direction, It is possible to further miniaturize the shape of the power generation device. The position of the center of gravity of the weight body is a predetermined distance from the approximate center of the bridge in the Z-axis direction, and is within the projection range of the bridge and parallel to the longitudinal axis at a predetermined distance. If the weight body is asymmetrical, it may be slightly out of the projection range of the bridge portion.
また、支持枠部や単位発電素子の橋梁部や重錘体支持部は、上述の素材意外に置き換えてもよい。単位発電素子は、橋梁部が可撓性を有していれば良く、橋梁部の領域毎に弾性係数を変えて、固有振動数を設定しても良く、固有振動数を設定する方法は問わない。
Further, the support frame portion, the bridge portion of the unitary power generation element, and the weight body support portion may be replaced with the above-described materials. The unit power generation element only needs to have flexibility in the bridge portion. The elastic coefficient may be changed for each region of the bridge portion to set the natural frequency, and any method of setting the natural frequency may be used. Absent.
11,12,13 振動系
14 発電回路
21,22,23,51 単位発電素子
24 支持枠部
24a 内壁面
26 橋梁部
26a 先端部
26b 基端部
28 重錘体支持部
30 圧電材料層
32,52 重錘体
34 圧電素子
E0 下層電極
E1,E2,E3,E4 上層電極
P1,P2,P3,P4 電効果部 11, 12, 13Vibration system 14 Power generation circuit 21, 22, 23, 51 Unit power generation element 24 Support frame portion 24 a Inner wall surface 26 Bridge portion 26 a Tip portion 26 b Base end portion 28 Weight mass support portion 30 Piezoelectric material layer 32, 52 Weight body 34 Piezoelectric element E0 Lower layer electrodes E1, E2, E3, and E4 Upper layer electrodes P1, P2, P3, and P4 electric effect unit
14 発電回路
21,22,23,51 単位発電素子
24 支持枠部
24a 内壁面
26 橋梁部
26a 先端部
26b 基端部
28 重錘体支持部
30 圧電材料層
32,52 重錘体
34 圧電素子
E0 下層電極
E1,E2,E3,E4 上層電極
P1,P2,P3,P4 電効果部 11, 12, 13
Claims (11)
- 機械的振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子を備えた発電装置であって、
前記発電素子は、長手方向軸を有して可撓性を有する橋梁部と、前記橋梁部の基端部が固定された支持枠部と、前記橋梁部の前記長手方向軸の先端部から連続するとともに、所定間隔を隔てて前記橋梁部の基端部側に屈曲して設けられた重錘体と、前記橋梁部の表面の伸縮変形が生じる所定位置に固定された圧電素子と、前記圧電素子に固定され前記圧電素子に発生した電荷を出力する複数の電極とを備え、
前記支持枠部の中に複数の前記発電素子が固定され、各発電素子の振動系の固有振動数が各々異なる周波数で構成され、
前記各発電素子の各電極が、前記圧電素子に発生した電荷を取り出して電力を出力する発電回路に接続されていることを特徴とする発電装置。 A power generation device comprising a power generation element that generates power by converting mechanical vibration energy into electric energy,
The power generation element is continuous from a bridge portion having a longitudinal axis and having flexibility, a support frame portion to which a base end portion of the bridge portion is fixed, and a tip portion of the longitudinal axis of the bridge portion And a weight body provided bent at the base end side of the bridge portion at a predetermined interval, a piezoelectric element fixed at a predetermined position at which expansion and contraction of the surface of the bridge portion occurs, and the piezoelectric element A plurality of electrodes fixed to the element and outputting the charge generated in the piezoelectric element;
A plurality of the power generation elements are fixed in the support frame portion, and natural frequencies of vibration systems of the respective power generation elements are configured at different frequencies.
A power generation apparatus characterized in that each electrode of each power generation element is connected to a power generation circuit that takes out the charge generated in the piezoelectric element and outputs power. - 前記重錘体の重心は、前記橋梁部の投影範囲内であって、前記長手方向軸に対して所定の間隔を隔てて平行な軸線上に位置している請求項1記載の発電装置。 The power generator according to claim 1, wherein the center of gravity of the weight body is located on an axis parallel to the longitudinal axis at predetermined intervals with respect to the longitudinal axis.
- 前記重錘体は、前記橋梁部を中心としてその両側に対称な形状で屈曲して設けられている請求項2記載の発電装置。 The power generating apparatus according to claim 2, wherein the weight body is bent in a symmetrical shape on both sides of the bridge portion.
- 前記各発電素子の振動系は、前記重錘体の質量が異なることにより異なる固有振動数に設定されている請求項3記載の発電装置。 The power generation device according to claim 3, wherein vibration systems of the respective power generation elements are set to different natural frequencies because the mass of the weight body is different.
- 前記各発電素子の振動系は、前記橋梁部の弾性係数が異なることにより異なる固有振動数に設定されている請求項3記載の発電装置。 The power generation device according to claim 3, wherein vibration systems of the respective power generation elements are set to different natural frequencies because the elastic coefficients of the bridge portions are different.
- 前記各発電素子の前記各橋梁部は、前記支持枠部の対向する内壁面に互い違いに固定され、同一平面上で互いに平行に延びている請求項3記載の発電装置。 The power generating apparatus according to claim 3, wherein the bridge portions of the power generating elements are alternately fixed to opposing inner wall surfaces of the support frame portion and extend parallel to each other on the same plane.
- 前記各発電素子の前記各振動系は、互いに物理的に接続されて、一方の振動が他方に伝達可能に設けられている請求項1記載の発電装置。 The power generation device according to claim 1, wherein the vibration systems of the power generation elements are physically connected to each other so that one vibration can be transmitted to the other.
- 前記各振動系は、各重錘体が互いに連結体により接続されている請求項7記載の発電装置。 The power generation apparatus according to claim 7, wherein the respective weight systems of the respective vibration systems are connected to each other by a coupling body.
- 機械的振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子であって、
長手方向軸を有して可撓性を有する橋梁部と、
前記橋梁部の基端部が固定された支持枠部と、
前記橋梁部の前記長手方向軸の先端部から連続するとともに、所定間隔を隔てて前記橋梁部の基端部側に屈曲して設けられた重錘体と、
前記橋梁部の表面の伸縮変形が生じる所定位置に固定された圧電素子と、
前記圧電素子に固定され前記圧電素子に発生した電荷を出力する複数の電極とを備え、
前記重錘体の重心は、前記橋梁部の投影範囲内であって、前記長手方向軸に対して所定の間隔を隔てて平行な軸線上に位置していることを特徴とする発電素子。 A power generation element that generates power by converting mechanical vibration energy into electrical energy,
A flexible bridge section having a longitudinal axis,
A support frame portion to which a base end portion of the bridge portion is fixed;
A weight body which is continuous with the tip of the longitudinal axis of the bridge portion and is bent at the base end side of the bridge portion at a predetermined interval;
A piezoelectric element fixed at a predetermined position where expansion and contraction deformation of the surface of the bridge portion occurs;
And a plurality of electrodes fixed to the piezoelectric element and outputting charges generated in the piezoelectric element;
The center of gravity of the weight body is located on an axis parallel to the longitudinal axis at predetermined intervals with respect to the longitudinal axis. - 前記重錘体は、前記橋梁部と所定間隔を空けて平行に位置した重錘体支持部に固定され、前記重錘体の重心位置が前記橋梁部の中心から所定間隔を空けて位置している請求項9記載の発電素子。 The weight body is fixed to a weight body supporting portion located in parallel with the bridge portion at a predetermined interval, and a center of gravity of the weight body is located at a predetermined distance from a center of the bridge portion. The power generation element according to claim 9.
- 前記橋梁部と前記重錘体支持部は同一の板材から形成され、前記橋梁部と前記重錘体支持部の一方の面に圧電体材料層が積層され、他方の面に前記重錘体が積層され、前記橋梁部と前記重錘体支持部とから成る層と前記圧電体材料層、及び前記重錘体の前記積層方向での投影形状が同じである請求項9記載の発電素子。 The bridge portion and the weight body support portion are formed of the same plate material, a piezoelectric material layer is stacked on one surface of the bridge portion and the weight body support portion, and the weight body is formed on the other surface. The power generation element according to claim 9, wherein the projected shapes of the layer formed of the bridge portion and the weight body support portion, the piezoelectric material layer, and the weight body in the stacking direction are the same.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017541879A JP6309698B1 (en) | 2016-07-28 | 2016-07-28 | Power generation device and power generation element |
PCT/JP2016/072148 WO2018020639A1 (en) | 2016-07-28 | 2016-07-28 | Power generation device and power generation element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/072148 WO2018020639A1 (en) | 2016-07-28 | 2016-07-28 | Power generation device and power generation element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018020639A1 true WO2018020639A1 (en) | 2018-02-01 |
Family
ID=61017470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072148 WO2018020639A1 (en) | 2016-07-28 | 2016-07-28 | Power generation device and power generation element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6309698B1 (en) |
WO (1) | WO2018020639A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019204918A (en) * | 2018-05-25 | 2019-11-28 | 株式会社東芝 | Vibration sensor and sensor module |
JP2020043725A (en) * | 2018-09-13 | 2020-03-19 | 富士電機株式会社 | Power generator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006166694A (en) * | 2004-11-11 | 2006-06-22 | Kohei Hayamizu | Piezoelectric element, sound pressure-generated electricity apparatus, and vibration-generated electricity apparatus |
JP2009247106A (en) * | 2008-03-31 | 2009-10-22 | Taiyo Yuden Co Ltd | Piezo-electric vibratory generator |
US20120153778A1 (en) * | 2010-12-21 | 2012-06-21 | Electronics And Telecommunications Research Institute | Piezoelectric micro energy harvester and manufacturing method thereof |
WO2012153593A1 (en) * | 2011-05-09 | 2012-11-15 | 株式会社村田製作所 | Piezoelectric power generating apparatus |
US20130127295A1 (en) * | 2011-11-21 | 2013-05-23 | Electronics And Telecommunications Research Institute | Piezoelectric micro power generator and fabrication method thereof |
JP2015517791A (en) * | 2012-05-25 | 2015-06-22 | ケンブリッジ エンタープライズ リミテッド | Energy harvesting apparatus and method |
JP5996078B1 (en) * | 2015-10-19 | 2016-09-21 | 株式会社トライフォース・マネジメント | Power generation element |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55102283A (en) * | 1979-01-29 | 1980-08-05 | Toshiba Corp | Generating device |
JPH07245970A (en) * | 1994-03-02 | 1995-09-19 | Calsonic Corp | Piezoelectric power generator |
JP4774733B2 (en) * | 2004-12-03 | 2011-09-14 | パナソニック株式会社 | Compound sensor |
WO2009063609A1 (en) * | 2007-11-13 | 2009-05-22 | Kohei Hayamizu | Power generation unit and light emitting tool |
US7948153B1 (en) * | 2008-05-14 | 2011-05-24 | Sandia Corporation | Piezoelectric energy harvester having planform-tapered interdigitated beams |
JP2010273408A (en) * | 2009-05-19 | 2010-12-02 | Emprie Technology Development LLC | Power device, method of generating power, and method of manufacturing the power device |
JP2012005192A (en) * | 2010-06-15 | 2012-01-05 | Panasonic Corp | Power generation component, power generator using the same, and communication module |
WO2012026453A1 (en) * | 2010-08-25 | 2012-03-01 | パナソニック株式会社 | Vibration power generating element and vibration power generating device using same |
JP5961868B2 (en) * | 2012-05-18 | 2016-08-02 | 国立研究開発法人産業技術総合研究所 | Vibration power generation element |
-
2016
- 2016-07-28 JP JP2017541879A patent/JP6309698B1/en active Active
- 2016-07-28 WO PCT/JP2016/072148 patent/WO2018020639A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006166694A (en) * | 2004-11-11 | 2006-06-22 | Kohei Hayamizu | Piezoelectric element, sound pressure-generated electricity apparatus, and vibration-generated electricity apparatus |
JP2009247106A (en) * | 2008-03-31 | 2009-10-22 | Taiyo Yuden Co Ltd | Piezo-electric vibratory generator |
US20120153778A1 (en) * | 2010-12-21 | 2012-06-21 | Electronics And Telecommunications Research Institute | Piezoelectric micro energy harvester and manufacturing method thereof |
WO2012153593A1 (en) * | 2011-05-09 | 2012-11-15 | 株式会社村田製作所 | Piezoelectric power generating apparatus |
US20130127295A1 (en) * | 2011-11-21 | 2013-05-23 | Electronics And Telecommunications Research Institute | Piezoelectric micro power generator and fabrication method thereof |
JP2015517791A (en) * | 2012-05-25 | 2015-06-22 | ケンブリッジ エンタープライズ リミテッド | Energy harvesting apparatus and method |
JP5996078B1 (en) * | 2015-10-19 | 2016-09-21 | 株式会社トライフォース・マネジメント | Power generation element |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019204918A (en) * | 2018-05-25 | 2019-11-28 | 株式会社東芝 | Vibration sensor and sensor module |
US11255736B2 (en) | 2018-05-25 | 2022-02-22 | Kabushiki Kaisha Toshiba | Vibration sensor and sensor module |
JP7027252B2 (en) | 2018-05-25 | 2022-03-01 | 株式会社東芝 | Vibration sensor and sensor module |
US11879793B2 (en) | 2018-05-25 | 2024-01-23 | Kabushiki Kaisha Toshiba | Vibration sensor and sensor module |
JP2020043725A (en) * | 2018-09-13 | 2020-03-19 | 富士電機株式会社 | Power generator |
JP7218522B2 (en) | 2018-09-13 | 2023-02-07 | 富士電機株式会社 | generator |
Also Published As
Publication number | Publication date |
---|---|
JP6309698B1 (en) | 2018-04-11 |
JPWO2018020639A1 (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10033305B2 (en) | Energy harvesting device and method for forming the same | |
US10581344B2 (en) | Miniature kinetic energy harvester for generating electrical energy from mechanical vibrations | |
EP2662971B1 (en) | Piezoelectric power generator | |
CN109997305B (en) | Vibration power generation element | |
US9893655B2 (en) | Piezoelectric power generation apparatus | |
JP5136644B2 (en) | Piezoelectric generator | |
JP2011152004A (en) | Power generation unit and power generation devic | |
WO2012105368A1 (en) | Piezoelectric power-generation apparatus | |
WO2018008198A1 (en) | Resonator and resonance device | |
CN109428516B (en) | Power generating element | |
JP2014511664A (en) | Device for converting mechanical energy into electrical energy | |
US10001372B2 (en) | Angular velocity detection device | |
US20180351481A1 (en) | Power generating element | |
US10917025B2 (en) | Power generating element converting vibration energy into electric energy | |
JP2011066970A (en) | Piezoelectric generator | |
KR20180066787A (en) | Vibration Energy Harvesting Device based on Stochastic Resonance and Vibration Energy Harvesting System using the same | |
JP6309698B1 (en) | Power generation device and power generation element | |
US11205977B2 (en) | Power generating element | |
KR101951031B1 (en) | Broadband piezoelectric energy harvester | |
WO2020230509A1 (en) | Vibration power generation device | |
JP2006525548A (en) | Scanning mirror | |
JP6932378B2 (en) | Power generation elements and power generation equipment | |
JP6671660B2 (en) | Power generation element | |
KR20180111719A (en) | Vibration Energy Harvesting Device based on Stochastic Resonance and Vibration Energy Harvesting System using the same | |
JP2006226799A (en) | Mechanical quantity sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017541879 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16910542 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16910542 Country of ref document: EP Kind code of ref document: A1 |