JP6309698B1 - Power generation device and power generation element - Google Patents

Power generation device and power generation element Download PDF

Info

Publication number
JP6309698B1
JP6309698B1 JP2017541879A JP2017541879A JP6309698B1 JP 6309698 B1 JP6309698 B1 JP 6309698B1 JP 2017541879 A JP2017541879 A JP 2017541879A JP 2017541879 A JP2017541879 A JP 2017541879A JP 6309698 B1 JP6309698 B1 JP 6309698B1
Authority
JP
Japan
Prior art keywords
power generation
bridge portion
weight body
longitudinal axis
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017541879A
Other languages
Japanese (ja)
Other versions
JPWO2018020639A1 (en
Inventor
岡田 和廣
和廣 岡田
聡 江良
聡 江良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tri Force Management Corp
Original Assignee
Tri Force Management Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tri Force Management Corp filed Critical Tri Force Management Corp
Application granted granted Critical
Publication of JP6309698B1 publication Critical patent/JP6309698B1/en
Publication of JPWO2018020639A1 publication Critical patent/JPWO2018020639A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Abstract

様々な方向成分を含んだ機械的振動エネルギーを効率よく電気エネルギーに変換し、高い発電効率を得ることが可能で、構造が簡単で強度が高く、小型化も容易な発電装置と発電素子である。長手方向軸を有して可撓性を有する橋梁部26と、橋梁部26の基端部26bが固定された支持枠部24を備える。橋梁部26の長手方向軸の先端部26aから連続するとともに、所定間隔を隔てて橋梁部26の基端部26b側に屈曲して設けられた重錘体32を備える。橋梁部26の表面の伸縮変形が生じる所定位置に、圧電素子34を有する。圧電素子34は、複数の電極E0,E1,E2,E3,E4を備える。支持枠部24の中に、複数の発電素子21,22,23が固定されている。発電素子21,22,23の振動系の固有振動数が、各々異なる周波数である。It is a power generation device and a power generation element that can convert mechanical vibration energy containing various directional components efficiently into electrical energy and obtain high power generation efficiency, and has a simple structure, high strength, and easy miniaturization. . A bridge portion 26 having a longitudinal axis and having flexibility, and a support frame portion 24 to which a base end portion 26b of the bridge portion 26 is fixed. A weight body 32 is provided which is continuous from the distal end portion 26a of the longitudinal axis of the bridge portion 26 and is bent toward the proximal end portion 26b side of the bridge portion 26 at a predetermined interval. The piezoelectric element 34 is provided at a predetermined position where expansion and contraction of the surface of the bridge portion 26 occurs. The piezoelectric element 34 includes a plurality of electrodes E0, E1, E2, E3, E4. A plurality of power generation elements 21, 22, and 23 are fixed in the support frame portion 24. The natural frequencies of the vibration systems of the power generating elements 21, 22, and 23 are different frequencies.

Description

この発明は、圧電効果を利用して機械的な振動エネルギーを電気エネルギーに変換する発電装置とこれに用いる発電素子に関する。   The present invention relates to a power generation device that converts mechanical vibration energy into electrical energy using a piezoelectric effect, and a power generation element used therefor.

近年、電気エネルギーを得る手段として、圧電効果を利用して機械的な振動エネルギーを電気エネルギーに変換する発電素子が種々提案されている。この種の一般的な発電素子は、一端を固定した片持ち梁によって重錘体を支持し、重錘体の上下振動によって梁部に周期的な撓みを生じさせ、この撓みによる力を圧電素子に伝達して、電荷を発生させるものである。このような方式では、重錘体を上下方向に振動させる1方向の振動エネルギーしか利用できないため、発電効率が低いものであった。   In recent years, various power generation elements that convert mechanical vibration energy into electrical energy using the piezoelectric effect have been proposed as means for obtaining electrical energy. This type of general power generation element supports a weight body by a cantilever beam having one end fixed, and causes the beam portion to be periodically bent by the vertical vibration of the weight body, and a force generated by this bending is applied to the piezoelectric element. To generate a charge. In such a system, since only one-way vibration energy for vibrating the weight body in the vertical direction can be used, the power generation efficiency is low.

また、MEMS(Micro Electro Mechanical System)技術を用いた圧電型発電素子も、シリコン基板上に圧電素子を配置し、重錘体に作用した力を圧電素子に伝達し、機械的な力を圧電効果により電荷に変換し発電するものである。この発電素子は、発電効率を高めるために、設置される環境の共振周波数に合わせて設計する。さらに、振動体はSi(シリコン)や金属で作られるために、共振周波数のピーク(Q値)は高いが、半値幅が狭いので、発電素子の共振周波数を、使用される環境の振動の周波数に合わせる必要がある。   In addition, a piezoelectric power generation element using MEMS (Micro Electro Mechanical System) technology is also arranged on a silicon substrate, and the force acting on the weight body is transmitted to the piezoelectric element, and mechanical force is applied to the piezoelectric effect. To generate electric power by converting into electric charge. This power generation element is designed in accordance with the resonance frequency of the environment in which it is installed in order to increase power generation efficiency. Furthermore, since the vibrating body is made of Si (silicon) or metal, the resonance frequency peak (Q value) is high, but the half-value width is narrow, so the resonance frequency of the power generation element is set to the vibration frequency of the environment in which it is used. It is necessary to adjust to.

そこで、発電素子の発電効率を上げるために、特許文献1に開示された発電素子は、重錘体を、その重錘体の周囲に非対称に屈曲させて配置した片持ち梁構造の橋梁部で支持し、屈曲させて配置した橋梁部に圧電体を固定し、その圧電体に電極を配置している。これにより、互いに直交する複数方向の機械的振動エネルギーを発電に利用することができ、発電効率を上げている。   Therefore, in order to increase the power generation efficiency of the power generation element, the power generation element disclosed in Patent Document 1 is a bridge portion having a cantilever structure in which a weight body is bent asymmetrically around the weight body. A piezoelectric body is fixed to a bridge portion that is supported and bent and an electrode is disposed on the piezoelectric body. Thereby, mechanical vibration energy in a plurality of directions orthogonal to each other can be used for power generation, and the power generation efficiency is increased.

その他、特許文献2に開示された発電素子は、共振周波数(固有振動数)の異なる少なくとも複数の共振体を片持ち梁状に配置し、この共振体に圧電体と電極を設けている。これにより、複数の異なる周波数の機械的振動を共振体から圧電素子に伝搬させ、幅広い周波数帯域の機械的振動を電気エネルギーに変換している。   In addition, in the power generation element disclosed in Patent Document 2, at least a plurality of resonators having different resonance frequencies (natural frequencies) are arranged in a cantilever shape, and a piezoelectric body and an electrode are provided on the resonator. Accordingly, a plurality of mechanical vibrations having different frequencies are propagated from the resonator to the piezoelectric element, and mechanical vibrations in a wide frequency band are converted into electric energy.

特許第5529328号公報Japanese Patent No. 5529328 特開2010−273408号公報JP 2010-273408 A

一般に、発電素子が使用される環境にはいろいろな周波数の機械的振動が混在し、特定の周波数や特定な振動方向だけとは限らない。また、Siや金属による構造体の共振周波数(固有振動数)は、外部応力や温度変動によっても変わるという問題がある。従って、発電素子の共振周波数を使用環境の振動の周波数に合わせても、温度変動等で発電効率が低下したり、発電しなくなるという問題がある。   In general, mechanical vibrations of various frequencies are mixed in an environment in which the power generation element is used, and it is not limited to a specific frequency and a specific vibration direction. In addition, there is a problem that the resonance frequency (natural frequency) of a structure made of Si or metal varies depending on external stress or temperature fluctuation. Therefore, even if the resonance frequency of the power generation element is matched with the vibration frequency of the usage environment, there is a problem that the power generation efficiency decreases due to temperature fluctuation or the like, or power generation stops.

さらに、特許文献1に開示された発電素子の構造の場合、橋梁部に十分な携みを発生させ、発電効率を向上させるためには、橋梁部をできるだけ長く、薄くする必要性がある。しかし、橋梁部を長く且つ薄くすると、構造が大型化するとともに機械的強度が低下し、使用中に過度の振動が加わった場合に、橋梁部が損傷する可能性があり、圧電素子に形成する電極や重錘の配置にも制限があった。   Furthermore, in the case of the structure of the power generation element disclosed in Patent Document 1, it is necessary to make the bridge portion as long and thin as possible in order to generate sufficient engagement in the bridge portion and improve power generation efficiency. However, if the bridge part is made long and thin, the structure becomes large and the mechanical strength decreases, and if excessive vibration is applied during use, the bridge part may be damaged and formed in the piezoelectric element. There were also restrictions on the arrangement of electrodes and weights.

特許文献2に開示された発電素子は、振動の方向が1軸方向に限られ、使用環境における種々の方向の振動を、効率よく電気エネルギーに変換できていないものである。   The power generating element disclosed in Patent Document 2 has a vibration direction limited to a uniaxial direction, and cannot efficiently convert vibrations in various directions in a use environment into electric energy.

この発明は、上記背景技術に鑑みて成されたものであり、様々な方向成分を含んだ機械的振動エネルギーを効率よく電気エネルギーに変換し、高い発電効率を得ることが可能で、構造が簡単で強度が高く、小型化も容易な発電装置と発電素子を提供することを目的とする。   The present invention has been made in view of the above-described background art, and can efficiently convert mechanical vibration energy containing various directional components into electric energy to obtain high power generation efficiency, and has a simple structure. An object of the present invention is to provide a power generation device and a power generation element that are high in strength and easy to downsize.

この発明は、機械的振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子を備えた発電装置であって、前記発電素子は、長手方向軸を有して可撓性を有する橋梁部と、前記橋梁部の基端部が固定された支持枠部と、前記橋梁部の前記長手方向軸の先端部から連続するとともに、所定間隔を隔てて前記橋梁部の基端部側に屈曲して設けられた重錘体と、前記橋梁部の表面の伸縮変形が生じる所定位置に固定された圧電素子と、前記圧電素子に固定され前記圧電素子に発生した電荷を出力する複数の電極とを備え、前記支持枠部の中に複数の前記発電素子が固定され、各発電素子の振動系の固有振動数が各々異なる周波数で構成され、前記各発電素子の各電極が、前記圧電素子に発生した電荷を取り出して電力を出力する発電回路に接続されている発電装置である。   The present invention relates to a power generation device including a power generation element that generates power by converting mechanical vibration energy into electric energy, the power generation element having a longitudinal bridge and a flexible bridge portion. And a support frame portion to which a base end portion of the bridge portion is fixed, and a continuous portion from the tip end portion of the longitudinal axis of the bridge portion, and is bent toward the base end portion side of the bridge portion at a predetermined interval. A weight body provided; a piezoelectric element fixed at a predetermined position where expansion and contraction of the surface of the bridge portion occurs; and a plurality of electrodes fixed to the piezoelectric element and outputting charges generated in the piezoelectric element. A plurality of the power generation elements are fixed in the support frame portion, and the natural frequency of the vibration system of each power generation element is configured with a different frequency, and each electrode of each power generation element is generated in the piezoelectric element. Electric power is extracted and electric power is output. A power generator connected to the circuit.

前記重錘体の重心は、前記橋梁部の投影範囲内であって、前記長手方向軸に対して所定の間隔を隔てて平行な軸線上に位置しているものである。さらに、前記重錘体は、前記橋梁部を中心としてその両側に対称な形状で屈曲して設けられていると良い。   The center of gravity of the weight body is located within the projection range of the bridge portion and on an axis parallel to the longitudinal axis at a predetermined interval. Furthermore, the weight body may be provided by being bent in a symmetrical shape on both sides of the bridge portion as a center.

前記各発電素子の振動系は、前記重錘体の質量が異なることにより異なる固有振動数に設定されている。または、前記各発電素子の振動系は、前記橋梁部の弾性係数や形状が異なることにより異なる固有振動数に設定されていても良い。   The vibration system of each power generating element is set to a different natural frequency due to the mass of the weight body being different. Alternatively, the vibration system of each power generating element may be set to have a different natural frequency due to a difference in elastic coefficient and shape of the bridge portion.

前記各発電素子の前記各振動系は、互いに物理的に接続されて、一方の振動が他方に伝達可能に設けられていると良い。前記各振動系は、各重錘体が互いに連結体により接続されているものである。   The vibration systems of the power generation elements are preferably physically connected to each other so that one vibration can be transmitted to the other. In each of the vibration systems, the weight bodies are connected to each other by a connecting body.

またこの発明は、機械的振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子であって、長手方向軸を有して可撓性を有する橋梁部と、前記橋梁部の基端部が固定された支持枠部と、前記橋梁部の前記長手方向軸の先端部から連続するとともに、所定間隔を隔てて前記橋梁部の基端部側に屈曲して設けられた重錘体と、前記橋梁部の表面の伸縮変形が生じる所定位置に固定された圧電素子と、前記圧電素子に固定され前記圧電素子に発生した電荷を出力する複数の電極とを備え、前記重錘体の重心は、前記橋梁部の投影範囲内であって、前記長手方向軸に対して所定の間隔を隔てて平行な軸線上に位置している発電素子である。   The present invention is also a power generation element that generates power by converting mechanical vibration energy into electrical energy, and has a bridge portion having a longitudinal axis and flexibility, and a base end portion of the bridge portion. A fixed support frame portion, a weight body that is continuous from a distal end portion of the longitudinal axis of the bridge portion and is bent toward a base end portion side of the bridge portion at a predetermined interval; and A piezoelectric element fixed at a predetermined position where expansion and contraction of the surface of the bridge portion occurs, and a plurality of electrodes fixed to the piezoelectric element and outputting charges generated in the piezoelectric element, and the center of gravity of the weight body is The power generating element is located on an axis parallel to the longitudinal axis with a predetermined interval within the projection range of the bridge portion.

前記重錘体は、前記橋梁部と所定間隔を空けて平行に位置した重錘体支持部に固定され、前記重錘体の重心位置が、前記橋梁部の中心から所定間隔を空けて位置しているものである。   The weight body is fixed to a weight body support portion positioned in parallel with the bridge portion at a predetermined interval, and the gravity center position of the weight body is located at a predetermined interval from the center of the bridge portion. It is what.

前記橋梁部と前記重錘体支持部は同一の板材から形成され、前記橋梁部と前記重錘体支持部の一方の面に圧電体材料層が積層され、他方の面に前記重錘体が積層され、前記橋梁部と前記重錘体支持部とから成る層と前記圧電体材料層、及び前記重錘体の前記積層方向での投影形状が同じである。   The bridge portion and the weight body support portion are formed of the same plate material, a piezoelectric material layer is laminated on one surface of the bridge portion and the weight body support portion, and the weight body is formed on the other surface. The projected shapes in the stacking direction of the stacked layer, the layer including the bridge portion and the weight body support portion, the piezoelectric material layer, and the weight body are the same.

この発明の発電装置によれば、発電装置が設けられた環境中において、幅広い周波数帯域の振動に対して、各発電素子の振動系が各々異なる周波数で共振し、外界の機械的振動を効率よく電気エネルギーに変換して取り出すことができる。   According to the power generation device of the present invention, the vibration system of each power generation element resonates at different frequencies with respect to vibrations in a wide frequency band in the environment where the power generation device is provided, and mechanical vibrations in the outside world are efficiently generated. It can be converted into electrical energy and taken out.

さらに、この発明の発電素子によれば、外界の機械的振動の方向も、XYZ直交座標系の全ての方向の振動を拾って安定に振動し、電気エネルギーに変更することができるので、さらに効率的な発電を行うことができる。また、この発明の発電装置及び発電素子は、構造も簡単で強度も高く、小型化も容易なものである。   Furthermore, according to the power generating element of the present invention, the direction of the mechanical vibration of the outside world can be picked up in all directions of the XYZ Cartesian coordinate system, can be vibrated stably, and can be changed into electric energy, so that the efficiency can be further improved. Power generation. In addition, the power generation device and the power generation element of the present invention are simple in structure, high in strength, and easy to downsize.

この発明の発電装置の第一実施形態を示す概略平面図である。1 is a schematic plan view showing a first embodiment of a power generator of the present invention. 第一実施形態の振動系と発電回路を示すブロック図である。It is a block diagram which shows the vibration system and power generation circuit of 1st embodiment. 第一実施形態の発電装置に用いられる単位発電素子の分解斜視図である。It is a disassembled perspective view of the unit electric power generation element used for the electric power generating apparatus of 1st embodiment. 第一実施形態の単位発電素子の平面図である。It is a top view of the unit power generation element of a first embodiment. 図4のA−A断面図である。It is AA sectional drawing of FIG. 第一実施形態の発電回路を示す図である。It is a figure which shows the electric power generation circuit of 1st embodiment. 第一実施形態の単位発電素子に、X軸方向の力Fxが加わった状態を示す平面図(a)、Y軸方向の力Fyが加わった状態を示す平面図(b)、Z軸方向の力Fzが加わった状態を示す平面図(c)である。The top view (a) which shows the state where the force Fx of the X-axis direction was added to the unit power generation element of 1st embodiment, the top view (b) which shows the state where the force Fy of the Y-axis direction was added, Z-axis direction It is a top view (c) which shows the state where force Fz was added. 第一実施形態の発電装置の各単位発電素子の発電帯域のX軸方向の振動の周波数特性を示すグラフ(a)、Y軸方向の振動の周波数特性を示すグラフ(b)、Z軸方向の振動の周波数特性を示すグラフ(c)である。The graph (a) which shows the frequency characteristic of the vibration of the X-axis direction of the power generation band of each unit power generation element of the power generator of the first embodiment, the graph (b) which shows the frequency characteristic of the vibration of the Y-axis direction, and the Z-axis direction It is a graph (c) which shows the frequency characteristic of vibration. この発明の第二の実施形態の発電装置を示す平面図である。It is a top view which shows the electric power generating apparatus of 2nd embodiment of this invention. この発明の第三の実施形態の発電装置を示す平面図である。It is a top view which shows the electric power generating apparatus of 3rd embodiment of this invention. 第三実施形態の発電装置を説明するための2つの基本的振動系を示す平面図である。It is a top view which shows two basic vibration systems for demonstrating the electric power generating apparatus of 3rd embodiment. 第三実施形態の発電装置を説明するための、一方の基本的振動系のみの周波数特性を示すグラフ(a)、他方の基本的振動系のみの周波数特性を示すグラフ(b)である。It is the graph (a) which shows the frequency characteristic of only one basic vibration system, and the graph (b) which shows the frequency characteristic only of the other basic vibration system for demonstrating the electric power generating apparatus of 3rd embodiment. 第三実施形態の発電装置を説明するための2つの基本的振動系と発電回路を示す概略図である。It is the schematic which shows two basic vibration systems and power generation circuits for demonstrating the electric power generating apparatus of 3rd embodiment. 第三実施形態の発電装置の連結体を設けた一方の基本的振動系の周波数特性を示すグラフ(a)、他方の基本的振動系の周波数特性を示すグラフ(b)である。It is the graph (a) which shows the frequency characteristic of one basic vibration system which provided the coupling body of the electric power generating apparatus of 3rd embodiment, and the graph (b) which shows the frequency characteristic of the other basic vibration system. この発明の第四の実施形態の発電装置の単位発電素子を示す側面図(a)と平面図(b)である。It is the side view (a) and top view (b) which show the unit electric power generation element of the electric power generating apparatus of 4th embodiment of this invention.

以下、この発明の発電装置の第一実施形態について、図1〜図8に基づいて説明する。この実施形態の発電装置10は、固有振動数(共振周波数)の異なる複数の振動系11,12,13を備えたもので、各振動系11,12,13は、各々単位発電素子21,22,23を構成し、各単位発電素子21,22,23の出力が発電回路14に接続されている。各振動系11,12,13は、同様の構成であり、各部の長さや質量の違いにより各々異なる固有振動数を有するものである。先ず、振動系11の単位発電素子21を基に、この実施形態の単位発電素子21の基本構造について、以下に説明する。ここで、本願発明における方向の説明は、互いに直交するXYZ軸方向の3次元直交座標系を基に説明し、XY平面が水平面、Z軸方向が垂直方向で上下方向として説明する。   Hereinafter, a first embodiment of a power generator according to the present invention will be described with reference to FIGS. The power generation apparatus 10 of this embodiment includes a plurality of vibration systems 11, 12, and 13 having different natural frequencies (resonance frequencies), and each of the vibration systems 11, 12, and 13 includes unit power generation elements 21 and 22, respectively. , 23, and the outputs of the unit power generation elements 21, 22, 23 are connected to the power generation circuit 14. The vibration systems 11, 12, and 13 have the same configuration and have different natural frequencies depending on the length and mass of each part. First, based on the unit power generation element 21 of the vibration system 11, the basic structure of the unit power generation element 21 of this embodiment will be described below. Here, the description of the direction in the present invention is based on a three-dimensional orthogonal coordinate system in the XYZ axis directions orthogonal to each other, and the XY plane is a horizontal plane, and the Z axis direction is a vertical direction and the vertical direction.

単位発電素子21は、発電装置10の矩形枠状の中空の支持体部24の内壁面24aから一体にY軸方向に突出して設けられた橋梁部26を備えている。橋梁部26は、Z軸方向の厚さが一定に形成され、Y軸方向に長手方向軸を有した細長い長方形に形成されている。   The unit power generation element 21 includes a bridge portion 26 that is provided so as to protrude integrally in the Y-axis direction from the inner wall surface 24 a of the rectangular frame-shaped hollow support body portion 24 of the power generation device 10. The bridge portion 26 is formed in an elongated rectangle having a constant thickness in the Z-axis direction and a longitudinal axis in the Y-axis direction.

橋梁部26の先端部26aには、先端部26aからX軸方向に所定距離だけ延びて、さらにY軸方向に橋梁部26の基端部26bに向かうL字状の重錘体支持部28が、互いに橋梁部26を挟んで、Y軸方向の長手方向軸を中心として対称に設けられている。各重錘体支持部28は、支持体部24とともに橋梁部26と同一の板材から一体に形成され、橋梁部26及び一対の重錘体支持部28は、XY平面上でほぼE字状に設けられている。従って、橋梁部26と、重錘体支持部28のY軸に平行な部分とは、一定の間隔sを空けて延びている。重錘体支持部28のY軸方向の長さは、橋梁部26よりも短く、重錘体支持部28の端部28aは、支持体部24の内壁面24aから離間して位置している。   At the distal end portion 26a of the bridge portion 26, there is an L-shaped weight body support portion 28 extending from the distal end portion 26a by a predetermined distance in the X-axis direction and further toward the proximal end portion 26b of the bridge portion 26 in the Y-axis direction. They are provided symmetrically with respect to the longitudinal axis in the Y-axis direction with the bridge portion 26 therebetween. Each weight support part 28 is integrally formed with the support part 24 from the same plate material as the bridge part 26, and the bridge part 26 and the pair of weight support parts 28 are substantially E-shaped on the XY plane. Is provided. Therefore, the bridge portion 26 and the portion parallel to the Y axis of the weight body support portion 28 extend with a constant interval s. The length of the weight body support portion 28 in the Y-axis direction is shorter than that of the bridge portion 26, and the end portion 28 a of the weight body support portion 28 is located away from the inner wall surface 24 a of the support body portion 24. .

支持体部24、橋梁部26及び重錘体支持部28の材料は問わないもので、後述する製造方法等に鑑みて、シリコンや、セラミックス等で形成することが好ましい。後述するように、橋梁部26及び重錘体支持部28の材料は、下層電極E0に対して絶縁性又は導電性のいずれの性質を有して形成されていても良い。   The material of the support part 24, the bridge part 26, and the weight support part 28 is not ask | required, and it is preferable to form with a silicon | silicone, ceramics, etc. in view of the manufacturing method etc. which are mentioned later. As will be described later, the material of the bridge portion 26 and the weight support portion 28 may be formed to have any property of insulation or conductivity with respect to the lower layer electrode E0.

橋梁部26のZ軸方向の上層には、チタン酸ジルコン酸鉛(PZT)やニオブ酸ナトリウムカリウム等の鉛フリー圧電性セラミックス、圧電性樹脂等の圧電材料で形成された圧電材料層30が設けられている。圧電材料層30は、層状に形成され、橋梁部26及び重錘体支持部28とZ軸方向に同形状のE字状に形成されている。橋梁部26及び重錘体支持部28と圧電材料層30の間には、下層電極E0が同形状で一体的に形成され、下層電極E0を介して橋梁部26及び重錘体支持部28が圧電材料層30と一体に設けられている。   A piezoelectric material layer 30 formed of a piezoelectric material such as lead-free piezoelectric ceramics such as lead zirconate titanate (PZT) or sodium potassium niobate, or a piezoelectric resin is provided on the upper layer of the bridge portion 26 in the Z-axis direction. It has been. The piezoelectric material layer 30 is formed in a layer shape, and is formed in an E shape having the same shape as the bridge portion 26 and the weight support portion 28 in the Z-axis direction. The lower layer electrode E0 is integrally formed in the same shape between the bridge portion 26 and the weight body support portion 28 and the piezoelectric material layer 30, and the bridge portion 26 and the weight body support portion 28 are formed via the lower layer electrode E0. The piezoelectric material layer 30 is provided integrally.

橋梁部26に積層された部分の圧電材料層30は、圧電素子34として機能する部分であり、下層電極E0と反対側の圧電素子34の表面側には、4枚の上層電極E1,E2,E3,E4が設けられている。上層電極E1,E2,E3,E4は、圧電素子34のX軸方向の両端とY軸方向の両端の4箇所に積層され、下層電極E0とともに各々発電回路14に接続されている。下層電極E0が、圧電素子34の下面全面に形成された1枚の共通電極になっているのに対し、各上層電極E1〜E4は、圧電素子34の圧電効果が生じる領域である各圧電効果部に形成された電極として設けられている。これは、後述するように、単位発電素子21に作用する外力の方向によって、圧電素子34の各部に加わる応力の向き(圧縮方向、伸張方向)が異なり、圧電素子34の各圧電効果部内に発生する電界の極性が異なることにより、各上層電極E1〜E4に発生するプラス又はマイナスの電荷を効率よく取り込むためである。   A portion of the piezoelectric material layer 30 laminated on the bridge portion 26 is a portion that functions as the piezoelectric element 34, and on the surface side of the piezoelectric element 34 opposite to the lower layer electrode E0, there are four upper layer electrodes E1, E2, and so on. E3 and E4 are provided. The upper layer electrodes E1, E2, E3, and E4 are stacked at four locations on both ends of the piezoelectric element 34 in the X-axis direction and both ends in the Y-axis direction, and are connected to the power generation circuit 14 together with the lower layer electrode E0. The lower layer electrode E0 is a single common electrode formed on the entire lower surface of the piezoelectric element 34, whereas the upper layer electrodes E1 to E4 are piezoelectric regions in which the piezoelectric effect of the piezoelectric element 34 is generated. It is provided as an electrode formed in the part. As will be described later, the direction of the stress (compression direction and extension direction) applied to each part of the piezoelectric element 34 differs depending on the direction of the external force acting on the unit power generation element 21, and is generated in each piezoelectric effect part of the piezoelectric element 34. This is because the positive or negative charges generated in the upper layer electrodes E1 to E4 are efficiently taken in by the different polarities of the electric fields to be generated.

なお、外力に対して重錘体支持部28にはほとんど撓みが生じず応力も生じないので、圧電材料層30は積層されていなくても良い。さらに、圧電材料層30による圧電素子34は、橋梁部26の全面に積層される他、上層電極E1,E2,E3,E4の配置された領域だけでも良い。ただし、この実施形態では、後述する製造上等の理由により、橋梁部26及び重錘体支持部28と同形状に積層されている。   Since the weight support portion 28 hardly bends and does not generate stress due to external force, the piezoelectric material layer 30 may not be laminated. Further, the piezoelectric element 34 formed of the piezoelectric material layer 30 may be stacked only on the entire surface of the bridge portion 26 or may be only the region where the upper layer electrodes E1, E2, E3, and E4 are disposed. However, in this embodiment, the bridge portion 26 and the weight body support portion 28 are laminated in the same shape for reasons such as manufacturing described later.

重錘体支持部28のZ軸方向の下層には、重錘体32が一体に取り付けられている。重錘体32は、一対のL字状の重錘体支持部28に一体に取り付けられ、一対のL字状の重錘体支持部28が対称に対向したZ軸方向の投影形状と同形状で、門形に形成されている。重錘体32は、Z軸方向に一定厚みを有し、橋梁部26と平行な部分に多くの質量を有して、所定の質量に形成されている。重錘体32のY軸方向の長さは、橋梁部26よりも短く、重錘体32の端部32aは、重錘体支持部28の端部28aと同位置で、支持体部24の内壁面24aから僅かに離間して位置している。これにより、後述する発電動作において、重錘体32が揺動した場合も、重錘体32の端部32aが支持体部24の内壁面24aに衝突することがない。   A weight body 32 is integrally attached to a lower layer of the weight body support portion 28 in the Z-axis direction. The weight body 32 is integrally attached to the pair of L-shaped weight body support portions 28, and has the same shape as the projected shape in the Z-axis direction in which the pair of L-shaped weight body support portions 28 face each other symmetrically. And it is formed in a gate shape. The weight body 32 has a constant thickness in the Z-axis direction, has a large mass in a portion parallel to the bridge portion 26, and is formed to a predetermined mass. The length of the weight body 32 in the Y-axis direction is shorter than that of the bridge portion 26, and the end portion 32 a of the weight body 32 is located at the same position as the end portion 28 a of the weight body support portion 28. It is located slightly away from the inner wall surface 24a. Thereby, in the power generation operation described later, even when the weight body 32 swings, the end portion 32 a of the weight body 32 does not collide with the inner wall surface 24 a of the support body portion 24.

重錘体32は、重錘体支持部28に沿って門形に形成されているので、橋梁部26のZ軸方向の下側部分には、空間35が形成されている。重錘体32の重心位置Gは、図4,図5に示すように、橋梁部26のX軸方向の中心であって、Z軸方向下方に橋梁部26から所定の距離を空けて下方にある。橋梁部26のY軸方向における重錘体32の重心位置Gは、橋梁部26の投影範囲内であって、中央部より僅かに先端部26a側に位置する。   Since the weight body 32 is formed in a gate shape along the weight body support portion 28, a space 35 is formed in the lower portion of the bridge portion 26 in the Z-axis direction. 4 and 5, the gravity center position G of the weight body 32 is the center in the X-axis direction of the bridge portion 26, and is downward with a predetermined distance from the bridge portion 26 downward in the Z-axis direction. is there. The gravity center position G of the weight body 32 in the Y-axis direction of the bridge portion 26 is within the projection range of the bridge portion 26 and is located slightly on the distal end portion 26a side from the center portion.

重錘体32の材料は、できるだけ比重の大きな材料を用いるのが好ましい。例えば、SUS、鉄、銅、タングステンなどの金属、あるいはセラミックス、もしくはガラスを用いて構成すると良い。さらに、後述するように、単位発電素子21,22,23を、MEMS技術を用いて作る場合は、重錘体32をSiにより製造しても良い。   As the material of the weight body 32, it is preferable to use a material having a specific gravity as large as possible. For example, a metal such as SUS, iron, copper, and tungsten, ceramics, or glass may be used. Furthermore, as will be described later, when the unit power generation elements 21, 22, and 23 are manufactured using the MEMS technology, the weight body 32 may be manufactured from Si.

次に、この実施形態の単位発電素子21,22,23を備えた発電装置10について説明する。発電装置10は、図1に示すように、上述の単位発電素子21と同様の構成の単位発電素子22,23を支持体部24の中に各々設けたものである。支持体部24は、中空の矩形枠状に形成され、支持体部24の内側のXY平面上で、単位発電素子21,22,23がY軸方向に延出して各々位置している。各単位発電素子21,22,23を構成する振動系11,12,13は、各々の固有振動数が異なり、異なる周波数で共振する。この実施形態では、単位発電素子21,22,23の重錘体32の大きさが異なり、その質量が異なることにより、異なる固有振動数としている。   Next, the power generation apparatus 10 including the unit power generation elements 21, 22, and 23 according to this embodiment will be described. As shown in FIG. 1, the power generation apparatus 10 is provided with unit power generation elements 22 and 23 having the same configuration as that of the above-described unit power generation element 21 in a support 24. The support body portion 24 is formed in a hollow rectangular frame shape, and the unit power generation elements 21, 22, and 23 extend in the Y-axis direction and are positioned on the XY plane inside the support body portion 24. The vibration systems 11, 12, and 13 constituting each unit power generation element 21, 22, and 23 have different natural frequencies and resonate at different frequencies. In this embodiment, since the size of the weight body 32 of the unit power generation elements 21, 22, and 23 is different and the masses thereof are different, different natural frequencies are obtained.

なお、各振動系11,12,13を異なる固有振動数とするために、橋梁部26の弾性係数が異なるように幅や長さを変えても良く、厚みや積層材、形状を変えても良い。さらに、振動系11,12,13の各質量と、各橋梁部32の弾性係数の両方を異なる値に設定しても良い。   In addition, in order to make each vibration system 11, 12, and 13 have a different natural frequency, the width and length may be changed so that the elastic coefficient of the bridge portion 26 is different, and the thickness, laminate material, and shape may be changed. good. Further, both the masses of the vibration systems 11, 12, and 13 and the elastic coefficients of the bridge portions 32 may be set to different values.

次に、この実施形態の発電回路14について、図6を基に説明する。ここでは、単位発電素子21に接続された例を基に説明するが、他の単位発電素子22,23も同様の回路構成で同じ発電回路14に接続される。橋梁部26に積層された圧電素子34のうち、上層電極E1,E2,E3,E4に対向する部分及びその周辺が、効率よく圧電効果が生じる部分であり、上層電極E1,E2,E3,E4に対面した各部を圧電効果部P1,P2,P3,P4とする。   Next, the power generation circuit 14 of this embodiment will be described with reference to FIG. Here, although it demonstrates based on the example connected to the unit power generation element 21, the other unit power generation elements 22 and 23 are also connected to the same power generation circuit 14 by the same circuit structure. Among the piezoelectric elements 34 stacked on the bridge portion 26, the portions facing the upper layer electrodes E1, E2, E3, and E4 and the periphery thereof are portions where the piezoelectric effect is efficiently generated, and the upper layer electrodes E1, E2, E3, and E4 The parts facing each other are referred to as piezoelectric effect parts P1, P2, P3, and P4.

圧電効果部P1に取り付けられた上層電極E1は、発電回路14の整流回路を形成するダイオードD11のアノードと、ダイオードD12のカソードに各々接続され、ダイオードD11のカソードが、発電回路14において電荷を溜めるコンデンサCfの一端に接続され、ダイオードD12のアノードがコンデンサCfの他端に接続されている。   The upper layer electrode E1 attached to the piezoelectric effect part P1 is connected to the anode of the diode D11 that forms the rectifier circuit of the power generation circuit 14 and the cathode of the diode D12, respectively, and the cathode of the diode D11 accumulates charges in the power generation circuit 14. The capacitor Cf is connected to one end, and the anode of the diode D12 is connected to the other end of the capacitor Cf.

同様に、圧電効果部P2に取り付けられた上層電極E2は、発電回路14の整流回路を形成するダイオードD21のアノードと、ダイオードD22のカソードに各々接続され、ダイオードD21のカソードが、電荷を溜めるコンデンサCfの一端に接続され、ダイオードD22のアノードがコンデンサCfの他端に接続されている。   Similarly, the upper layer electrode E2 attached to the piezoelectric effect portion P2 is connected to the anode of the diode D21 that forms the rectifier circuit of the power generation circuit 14 and the cathode of the diode D22, respectively, and the cathode of the diode D21 is a capacitor that accumulates charges. Connected to one end of Cf, the anode of diode D22 is connected to the other end of capacitor Cf.

同様に、圧電効果部P3に取り付けられた上層電極E3は、発電回路14の整流回路を形成するダイオードD31のアノードと、ダイオードD32のカソードに各々接続され、ダイオードD31のカソードが、電荷を溜めるコンデンサCfの一端に接続され、ダイオードD32のアノードがコンデンサCfの他端に接続されている。   Similarly, the upper layer electrode E3 attached to the piezoelectric effect portion P3 is connected to the anode of the diode D31 that forms the rectifier circuit of the power generation circuit 14 and the cathode of the diode D32, respectively, and the cathode of the diode D31 is a capacitor that accumulates charges. Connected to one end of Cf, the anode of diode D32 is connected to the other end of capacitor Cf.

同様に、圧電効果部P4に取り付けられた上層電極E4は、発電回路14の整流回路を形成するダイオードD41のアノードと、ダイオードD42のカソードに各々接続され、ダイオードD41のカソードが、電荷を溜めるコンデンサCfの一端に接続され、ダイオードD42のアノードがコンデンサCfの他端に接続されている。   Similarly, the upper layer electrode E4 attached to the piezoelectric effect portion P4 is connected to the anode of the diode D41 and the cathode of the diode D42 that form the rectifier circuit of the power generation circuit 14, respectively, and the cathode of the diode D41 is a capacitor that accumulates charges. Connected to one end of Cf, the anode of diode D42 is connected to the other end of capacitor Cf.

さらに、下層電極E0は、ダイオードD01のアノードと、ダイオードD02のカソードに各々接続され、ダイオードD01のカソードが、電荷を溜めるコンデンサCfの一端に接続され、ダイオードD02のアノードがコンデンサCfの他端に接続されている。   Further, the lower layer electrode E0 is connected to the anode of the diode D01 and the cathode of the diode D02, the cathode of the diode D01 is connected to one end of the capacitor Cf that accumulates charges, and the anode of the diode D02 is connected to the other end of the capacitor Cf. It is connected.

これにより、各圧電効果部P1,P2,P3,P4により上層電極E1,E2,E3,E4に正負いずれの電荷が発生しても、コンデンサCfに同極性で溜めることができる。さらにこの実施形態では、3つの単位発電素子21,22,23の各下層電極E0及び上層電極E1,E2,E3,E4が同様にダイオードD11〜D42に接続され、コンデンサCfに接続されている。これにより、コンデンサCfには、3つの単位発電素子21,22,23により発生した電荷を溜めることができる。コンデンサCfは、使用状態において、種々の負荷ZLに接続される。   Thereby, even if positive or negative charges are generated in the upper layer electrodes E1, E2, E3, E4 by the piezoelectric effect portions P1, P2, P3, P4, they can be stored in the capacitor Cf with the same polarity. Furthermore, in this embodiment, the lower layer electrodes E0 and the upper layer electrodes E1, E2, E3, and E4 of the three unit power generation elements 21, 22, and 23 are similarly connected to the diodes D11 to D42 and connected to the capacitor Cf. As a result, the charge generated by the three unit power generation elements 21, 22, 23 can be stored in the capacitor Cf. The capacitor Cf is connected to various loads ZL in use.

この実施形態の発電装置10は、MEMS技術で作られたセンサの電源等に適しており、微小な構造が要求されるので、支持体部24及び単位発電素子21,22,23の各橋梁部26及び重錘体支持部28の材料はSiを用いて、半導体回路の形成工程を利用して製造することができる。この場合、例えば、橋梁部26及び重錘体支持部28のZ軸方向の厚みは200μm程度でありであり、圧電体層30の同厚みは2μm、重錘体32のZ軸方向の厚みの厚みが1000μm、下層電極E0及び上層電極E1〜E4の厚みは0.01μm程度に設定し、外形を5mm×5mm程度の大きさで製造することができる。製造工程では、Z軸方向にエッチング及び蒸着等の積層工程を繰り返して製造する。その他、印刷やスパッタリング等の工程を用いることもできる。この場合、Si基板としてSOI基板を用いると良い。SOI基板の活性層Siに下層電極E0、圧電体34,上層電極E1〜E4を形成し、ベースSiを重錘体32とすれば良い。   Since the power generation apparatus 10 of this embodiment is suitable for a power source of a sensor made by MEMS technology and requires a minute structure, each bridge portion of the support 24 and the unit power generation elements 21, 22, and 23 is required. 26 and the weight body support portion 28 can be made of Si by using a semiconductor circuit forming process. In this case, for example, the thickness of the bridge portion 26 and the weight support portion 28 in the Z-axis direction is about 200 μm, the thickness of the piezoelectric layer 30 is 2 μm, and the thickness of the weight body 32 in the Z-axis direction. The thickness is set to 1000 μm, the thickness of the lower layer electrode E0 and the upper layer electrodes E1 to E4 is set to about 0.01 μm, and the outer shape can be manufactured to a size of about 5 mm × 5 mm. In the manufacturing process, the stacking process such as etching and vapor deposition is repeated in the Z-axis direction. In addition, processes such as printing and sputtering can also be used. In this case, an SOI substrate may be used as the Si substrate. The lower layer electrode E0, the piezoelectric body 34, and the upper layer electrodes E1 to E4 may be formed on the active layer Si of the SOI substrate, and the base Si may be used as the weight body 32.

その他、支持体部24及び単位発電素子21,22,23の各橋梁部26に金属板を利用することも可能である。その場合は、金属板をエッチング等により所定形状に形成し、金属板の上面が下層電極E0として機能し、この金属板の上にスバッタ法やゾルゲノレ法によって圧電体の薄膜を成膜すると良い。また、上層電極は、金属材料を印刷、蒸着、スバッタ等の方法で形成することができる。   In addition, it is also possible to use a metal plate for the support portion 24 and the bridge portions 26 of the unit power generation elements 21, 22, and 23. In that case, a metal plate may be formed into a predetermined shape by etching or the like, and the upper surface of the metal plate functions as the lower layer electrode E0, and a piezoelectric thin film is formed on the metal plate by a sputtering method or a Solgenole method. The upper layer electrode can be formed by printing, vapor deposition, sputtering, or the like using a metal material.

次に、この実施形態の単位発電素子21の発電動作について説明する。ここでは、支持体部24がXY平面上に置かれ、Z軸方向に中空部が貫通している。先ず、図3〜図5に示す単位発電素子21の重錘体32に、振動等により加速度が作用し力がかかる場合について説明する。   Next, the power generation operation of the unit power generation element 21 of this embodiment will be described. Here, the support body portion 24 is placed on the XY plane, and the hollow portion penetrates in the Z-axis direction. First, the case where an acceleration is applied to the weight body 32 of the unit power generation element 21 shown in FIGS.

先ず、X軸正方向の力+Fxが作用した場合について説明する。重錘体32の重心Gが橋梁部26のほぼ中央部でZ軸方向下方に位置しているので、外力+Fxが作用すると橋梁部26の圧電素子34には、図7(a)に示すように、次のように力が作用する。上層電極E1に対向する圧電効果部P1には、圧縮方向の力が作用し、上層電極E2に対向する圧電効果部P2には、伸張方向の力が作用し、上層電極E3に対向する圧電効果部P3には、伸張方向の力が作用し、上層電極E4に対向する圧電効果部P4には、圧縮方向の力が作用する。これにより、圧電効果部P1,P2には互いに逆極性の電界が発生し、圧電効果部P3,P4にも、互いに逆極性の電界であって圧電効果部P1,P3が逆極性となる電界が発生する。そして、上層電極E1,E4に同極性の電荷、上層電極E2,E3には互いに同極性であって上層電極E1,E4とは逆極性の電荷が発生し、各々電荷が溜められる。各電極E0〜E4に溜められた電荷は、上層電極E1,E4と、上層電極E2,E3とでは逆極性であるが、図6に示す回路により整流されて、コンデンサCfに同極性で電荷が溜められる。同様に、X軸負方向にマイナスの力−Fxが作用した場合は、上記と逆極性で、各々の電極に電荷が発生するが、図6に示す回路により、コンデンサCfには同極性で電荷が溜められる。   First, a case where a force + Fx in the positive direction of the X axis acts will be described. Since the center of gravity G of the weight body 32 is located substantially in the center of the bridge portion 26 and below the Z-axis direction, the external force + Fx is applied to the piezoelectric element 34 of the bridge portion 26 as shown in FIG. 7A. In addition, the force acts as follows. A force in the compression direction acts on the piezoelectric effect portion P1 facing the upper layer electrode E1, and a force in the expansion direction acts on the piezoelectric effect portion P2 facing the upper layer electrode E2, and the piezoelectric effect facing the upper layer electrode E3. A force in the extension direction acts on the portion P3, and a force in the compression direction acts on the piezoelectric effect portion P4 facing the upper layer electrode E4. As a result, electric fields having opposite polarities are generated in the piezoelectric effect portions P1 and P2, and electric fields having opposite polarities in the piezoelectric effect portions P1 and P3 are also generated in the piezoelectric effect portions P3 and P4. Occur. Then, charges having the same polarity are generated in the upper layer electrodes E1 and E4, and charges having the same polarity and opposite in polarity to the upper layer electrodes E1 and E4 are generated in the upper layer electrodes E2 and E3, respectively. The charges accumulated in the electrodes E0 to E4 are opposite in polarity to the upper layer electrodes E1 and E4 and the upper layer electrodes E2 and E3, but are rectified by the circuit shown in FIG. Can be stored. Similarly, when a negative force -Fx is applied in the negative direction of the X axis, charges are generated in the respective electrodes with the opposite polarity as described above, but the capacitor Cf has the same polarity in the charge shown in FIG. Is accumulated.

次に、単位発電素子21の重錘体32にY軸正方向の力+Fyが作用した場合について説明する。重錘体32の重心Gは、橋梁部26のほぼ中央部のZ軸方向下方に位置しているので、Y軸正方向の力+Fyが作用した場合、橋梁部26には、図5において時計方向のモーメントが作用する。これにより、図7(b)に示すように、各上層電極E1,E2,E3,E4に対向する圧電効果部P1,P2,P3,P4には、各々同様に圧縮方向の力が作用し、各々同極性の電界が発生する。これにより、各上層電極E1,E2,E3,E4には各々同極性で電荷が発生し、図6に示す回路により整流されて、コンデンサCfに電荷が溜められる。同様に、Y軸負方向にマイナスの力−Fyが作用した場合は、上記と逆極性で、電荷が発生するが、図6に示す回路により、コンデンサCfには同極性で電荷が溜められる。   Next, a case where a force + Fy in the Y-axis positive direction acts on the weight body 32 of the unit power generation element 21 will be described. Since the gravity center G of the weight body 32 is located substantially below the center of the bridge portion 26 in the Z-axis direction, when the force + Fy in the Y-axis positive direction is applied, Directional moment acts. As a result, as shown in FIG. 7B, force in the compression direction similarly acts on the piezoelectric effect portions P1, P2, P3, and P4 facing the upper layer electrodes E1, E2, E3, and E4, Electric fields having the same polarity are generated. As a result, charges are generated with the same polarity in each of the upper layer electrodes E1, E2, E3, E4, and are rectified by the circuit shown in FIG. 6, and are stored in the capacitor Cf. Similarly, when a negative force -Fy is applied in the negative Y-axis direction, charges are generated with the opposite polarity to the above, but charges are stored in the capacitor Cf with the same polarity by the circuit shown in FIG.

次に、単位発電素子21の重錘体32にZ軸正方向の力+Fzが作用した場合について説明する。重錘体32の重心Gは、橋梁部26のほぼ中央部のZ軸方向下方に位置しているので、図7(c)に示すように、各上層電極E1,E2に対向する圧電効果部P1,P2には、伸張方向の力が作用し各々同極性の電界が発生して、各上層電極E1,E2には各々同極性で電荷が発生する。一方、各上層電極E3,E4に対向する圧電効果部P3,P4には圧縮方向の力が作用し、圧電効果部P1,P2とは逆極性の電界が発生して、各上層電極E3,E4には上層電極E1,E2とは逆極性の電荷が発生するが、図6に示す回路により整流されて、コンデンサCfに電荷が溜められる。同様に、Z軸負方向にマイナスの力−Fzが作用した場合は、上記と逆極性で、電荷が発生するが、図6に示す回路により、コンデンサCfには同極性で電荷が溜められる。   Next, a case where a force + Fz in the positive Z-axis direction acts on the weight body 32 of the unit power generation element 21 will be described. Since the center of gravity G of the weight body 32 is located substantially below the center of the bridge portion 26 in the Z-axis direction, as shown in FIG. 7C, the piezoelectric effect portion facing each of the upper-layer electrodes E1, E2. A force in the extension direction acts on P1 and P2 to generate electric fields having the same polarity, and charges are generated on the upper layer electrodes E1 and E2 with the same polarity. On the other hand, a force in the compression direction acts on the piezoelectric effect portions P3 and P4 facing the upper layer electrodes E3 and E4, and an electric field having a polarity opposite to that of the piezoelectric effect portions P1 and P2 is generated. In this case, a charge having a polarity opposite to that of the upper layer electrodes E1 and E2 is generated, but the charge is rectified by the circuit shown in FIG. 6 and accumulated in the capacitor Cf. Similarly, when a negative force -Fz is applied in the negative Z-axis direction, charges are generated with the opposite polarity as described above, but charges are stored in the capacitor Cf with the same polarity by the circuit shown in FIG.

この実施形態の説明では、伸張方向の力と圧縮方向の力で発生する電荷が逆極性としたが、圧電材料層を圧電セラミックスにし、分極処理を制御することにより、伸張と圧縮で同じ極性の電荷を発生させることも可能である。この場合でも、図6に示す発電回路14は有効なものである。   In the description of this embodiment, the charges generated by the force in the extension direction and the force in the compression direction have opposite polarities, but the piezoelectric material layer is made of piezoelectric ceramics, and the polarization process is controlled, so that the same polarity is applied to the extension and compression. It is also possible to generate a charge. Even in this case, the power generation circuit 14 shown in FIG. 6 is effective.

次に、この実施形態の単位発電素子21,22,23を備えた発電装置10による発電動作について説明する。発電装置10は、上述のように各々異なる固有振動数の振動系11,12,13から成るので、外界の振動に対する共振周波数が異なる。図8(a),(b),(c)に示すように、振動系11のX軸方向の共振周波数をfx1とし、Y軸方向の共振周波数をfy1とし、Z軸方向の共振周波数をfz1とする。振動系12のX軸方向の共振周波数をfx2とし、Y軸方向の共振周波数をfy2とし、Z軸方向の共振周波数をfz2とする。振動系13のX軸方向の共振周波数をfx3とし、Y軸方向の共振周波数をfy3とし、Z軸方向の共振周波数をfz3とする。これらの振動系11、振動系12、振動系13の周波数特性をまとめると、XYZ軸方向に各々の共振周波数と振幅は、図8に示すように表される。これにより、XYZ軸方向の各力に対して、異なる周波数の幅広い帯域の機械的振動に対して、単位発電素子21,22,23の振動系11,12,13が各々異なる周波数で共振可能であり、幅広い周波数の振動が発電動作に寄与し、効果的に発電を行うことができる。   Next, the power generation operation by the power generation apparatus 10 including the unit power generation elements 21, 22, and 23 according to this embodiment will be described. Since the power generation apparatus 10 includes the vibration systems 11, 12, and 13 having different natural frequencies as described above, the resonance frequency with respect to vibrations in the outside world is different. As shown in FIGS. 8A, 8B, and 8C, the resonance frequency in the X-axis direction of the vibration system 11 is fx1, the resonance frequency in the Y-axis direction is fy1, and the resonance frequency in the Z-axis direction is fz1. And The resonance frequency in the X-axis direction of the vibration system 12 is fx2, the resonance frequency in the Y-axis direction is fy2, and the resonance frequency in the Z-axis direction is fz2. The resonance frequency in the X-axis direction of the vibration system 13 is fx3, the resonance frequency in the Y-axis direction is fy3, and the resonance frequency in the Z-axis direction is fz3. When the frequency characteristics of the vibration system 11, the vibration system 12, and the vibration system 13 are summarized, the respective resonance frequencies and amplitudes in the XYZ axis directions are expressed as shown in FIG. As a result, the vibration systems 11, 12, and 13 of the unit power generation elements 21, 22, and 23 can resonate at different frequencies with respect to mechanical vibrations in a wide band of different frequencies for each force in the XYZ axial directions. In addition, vibrations of a wide range of frequencies contribute to the power generation operation and can generate power effectively.

この実施形態の発電装置10と単位発電素子21,22,23によれば、発電装置10が設けられた環境の幅広い機械的振動に対応して、単位発電素子21,22,23の振動系11,12,13が各々異なる周波数で共振し、外界の振動を効率よく電気エネルギーに変換して取り出すことができる。しかも、外界の機械的振動の方向も、XYZ直交座標系の全ての方向の振動を拾って共振し、電気エネルギーに変更することができるので、この点からも効率的な発電を行うことができる。また、XY平面上でY軸方向の軸を中心に対称な形状に形成されているので、効率よく振動し、構造も簡単で強度も高いものである。さらに、重錘体支持部28及び重錘体32が橋梁部26の先端部26aから屈曲して基端部26bに伸びる構造に形成され、小型化も容易なものである。   According to the power generation device 10 and the unit power generation elements 21, 22, and 23 of this embodiment, the vibration system 11 of the unit power generation elements 21, 22, and 23 corresponds to a wide range of mechanical vibrations in the environment in which the power generation device 10 is provided. , 12 and 13 resonate at different frequencies, and external vibrations can be efficiently converted into electrical energy and extracted. In addition, the direction of mechanical vibrations in the external world can be picked up and resonated by picking up vibrations in all directions of the XYZ Cartesian coordinate system, and can be changed into electric energy, so that efficient power generation can be performed from this point. . Further, since it is formed in a symmetric shape around the axis in the Y-axis direction on the XY plane, it vibrates efficiently, has a simple structure and high strength. Furthermore, the weight support portion 28 and the weight body 32 are formed in a structure that bends from the distal end portion 26a of the bridge portion 26 and extends to the proximal end portion 26b, and can be easily downsized.

次にこの発明の第二実施形態の発電装置36について図9を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の発電素子36は、単位発電素子21,22,23の配置を工夫して、全体の体積を縮小したものである。図9に示すように、単位発電素子21,22と単位発電素子23のY軸方向の向きを逆にして、X軸方向の重錘体32の幅分だけX軸方向の寸法を短くして、スペース効率を上げたものである。   Next, a power generator 36 according to a second embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. The power generating element 36 of this embodiment has a reduced overall volume by devising the arrangement of the unit power generating elements 21, 22, and 23. As shown in FIG. 9, the direction of the Y axis direction of the unit power generation elements 21 and 22 and the unit power generation element 23 is reversed, and the dimension in the X axis direction is shortened by the width of the weight body 32 in the X axis direction. , Which is more space efficient.

この実施形態の発電装置36と単位発電素子21,22,23によよっても、上記実施形態と同様の効果が得られ、さらに小型で効率の良い発電装置を提供することができる。   According to the power generation device 36 and the unit power generation elements 21, 22, and 23 of this embodiment, the same effects as those of the above-described embodiment can be obtained, and a smaller and more efficient power generation device can be provided.

次にこの発明の第三実施形態の発電装置38について図10〜図14を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の発電素子38は、図10に示すように、単位発電素子21,23の互いに対向する重錘体32の端部同士、及び単位発電素子22,23の互いに対向する重錘体32の端部同士を連結体40で物理的に連結したものである。   Next, a power generator 38 according to a third embodiment of the present invention will be described with reference to FIGS. Here, the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIG. 10, the power generation element 38 of this embodiment includes the end portions of the weight bodies 32 facing each other of the unit power generation elements 21 and 23 and the weight bodies 32 of the unit power generation elements 22 and 23 facing each other. These end portions are physically connected by a connecting body 40.

以下に、重錘体32の端部同士を連結することによる作用について説明する。先ず、単純化のため図11に示す片持ち梁による基本的振動系41,42を想定する。基本的振動系41に重錘体m1が設けられ、基本的振動系42には重錘体m2が設けられ、基本的振動系41,42の各固有振動数は異なる。基本的振動系41,42の各橋梁部44には、図示しない下層電極E0、及び圧電体46を介して上層電極E1が設けられているとする。   Below, the effect | action by connecting the edge parts of the weight body 32 is demonstrated. First, for simplification, basic vibration systems 41 and 42 using cantilever beams shown in FIG. 11 are assumed. The basic vibration system 41 is provided with a weight body m1, and the basic vibration system 42 is provided with a weight body m2. The natural vibration frequencies of the basic vibration systems 41 and 42 are different. It is assumed that each bridge portion 44 of the basic vibration systems 41 and 42 is provided with a lower layer electrode E0 (not shown) and an upper layer electrode E1 via a piezoelectric body 46.

基本的振動系41の周波数特性を図12(a)に示し、基本的振動系42の周波数特性を図12(b)に示す。基本的振動系41の共振周波数をf1、共振時の振幅のピークをQlとし、基本的振動系42の共振周波数をf2、共振時の振幅のピークをQ2とする。基本的振動系41がその共振周波数で振動した時、共振時のピークはQlとなり、電極E1に大きな電荷が発生する。この電荷は、自分の電荷で振動を妨げることになる。また、共振時に発生する大量の電荷や応力で、圧電体46の薄膜や発電素子の機構部にダメージを与える可能性がある。   The frequency characteristic of the basic vibration system 41 is shown in FIG. 12A, and the frequency characteristic of the basic vibration system 42 is shown in FIG. The resonance frequency of the basic vibration system 41 is f1, the amplitude peak at resonance is Ql, the resonance frequency of the basic vibration system 42 is f2, and the amplitude peak at resonance is Q2. When the basic vibration system 41 vibrates at the resonance frequency, the peak at the time of resonance is Ql and a large charge is generated at the electrode E1. This electric charge will prevent the vibration by its own charge. In addition, a large amount of charge and stress generated during resonance may damage the thin film of the piezoelectric body 46 and the mechanical portion of the power generation element.

同様に、基本的振動系42が共振周波数で振動した時、共振時のピークはQ2となり、電極E2に大きな電荷が発生し、この電荷により自分の振動を妨げることになる。また、共振時に発生する大量の電荷や応力で、圧電体46の薄膜や発電素子の機構部にダメージを与える可能性がある。   Similarly, when the basic vibration system 42 vibrates at the resonance frequency, the peak at the time of resonance is Q2, and a large charge is generated in the electrode E2, and this vibration prevents the vibration of itself. In addition, a large amount of charge and stress generated during resonance may damage the thin film of the piezoelectric body 46 and the mechanical portion of the power generation element.

上記のような過剰な振動や加速度を抑えるために、図13に示すように、重錘体m1,m2を連結体40で物理的に連結し、基本的振動系41が共振周波数f1で振動した時、その振動を基本的振動系42に逃がし、基本的振動系41の共振時のピークを下げ、基本的振動系42でも発電するようにすればよい。同様に、基本的振動系42が共振周波数f2で振動した時、その振動を基本的振動系41に逃がし、基本的振動系42の共振時のピークを下げ、基本的振動系41でも発電するようにすればよい。これにより、一つの共振周波数f1により上層電極E1,E2の両方で電荷が発生し、発生した電荷を発電回路47に出力し、電力として取り出すことができる。しかも、大きな外力が作用した場合にも、基本的振動系42に力を分散して、破損を防止することができる。同様に、他の共振周波数f2によっても、上層電極E1,E2の両方で電荷が発生し、発生した電荷を発電回路14に出力し、電力として取り出すことができる。しかも、大きな外力が作用した場合にも、基本的振動系41に力を分散して、破損を防止することができる。   In order to suppress the excessive vibration and acceleration as described above, the weight bodies m1 and m2 are physically connected by the connecting body 40 as shown in FIG. 13, and the basic vibration system 41 vibrates at the resonance frequency f1. At that time, the vibration may be released to the basic vibration system 42, the peak at the time of resonance of the basic vibration system 41 may be lowered, and the basic vibration system 42 may generate power. Similarly, when the basic vibration system 42 vibrates at the resonance frequency f2, the vibration is released to the basic vibration system 41, the peak during resonance of the basic vibration system 42 is lowered, and the basic vibration system 41 also generates power. You can do it. Thereby, electric charges are generated in both the upper layer electrodes E1 and E2 by one resonance frequency f1, and the generated electric charges can be output to the power generation circuit 47 and taken out as electric power. Moreover, even when a large external force is applied, the force can be distributed to the basic vibration system 42 to prevent breakage. Similarly, electric charges are generated in both upper layer electrodes E1 and E2 by other resonance frequencies f2, and the generated electric charges can be output to the power generation circuit 14 and taken out as electric power. Moreover, even when a large external force is applied, the force can be distributed to the basic vibration system 41 to prevent breakage.

連結体40で重錘体m1,m2を連結することにより、基本的振動系41,42では、連結体40がない場合と比較して上層電極E1の周波数f1での発生電荷の量である発電量が低下するが、図14(a)で、示すように、上層電極E2でも発電する。同様に、周波数f2では、上層電極E2での発電量が低下するが、上層電極E1も発電する。そして、発電回路47で電極E4lとE42に発生する両者の電荷を集めて発電すれば、効率的な発電が可能となる。しかも、周波数f1、周波数f2で振幅が抑えられるので橋梁部44の破損の可能性も抑えられる。なお、重錘体m1,m2の振幅が小さい時は、連結体40による結合はさほど機能しないが、重錘体m1,m2の振幅が大きくなると、連結体40は振動系41,42の振幅を制限するようになる。   By connecting the weight bodies m1 and m2 with the connecting body 40, the basic vibration systems 41 and 42 generate electric power that is the amount of generated charges at the frequency f1 of the upper electrode E1 as compared with the case where the connecting body 40 is not provided. Although the amount decreases, as shown in FIG. 14A, power is also generated by the upper electrode E2. Similarly, at the frequency f2, the power generation amount at the upper layer electrode E2 decreases, but the upper layer electrode E1 also generates power. If the electric power generation circuit 47 collects both electric charges generated at the electrodes E41 and E42 to generate electric power, efficient electric power generation is possible. In addition, since the amplitude is suppressed at the frequency f1 and the frequency f2, the possibility of damage to the bridge portion 44 is also suppressed. When the weights m1 and m2 have a small amplitude, the connection by the connecting body 40 does not function so much. However, when the weights m1 and m2 have a large amplitude, the connecting body 40 increases the amplitude of the vibration systems 41 and 42. Come to limit.

この実施形態の発電装置38は、この作用を利用したもので、図10に示すように、単位発電素子21,22の互いに対向する重錘体32の端部同士、及び単位発電素子22,23の互いに対向する重錘体32の端部同士を連結体40で物理的に連結し、発電効率を向上させ、外力に対する強度も高めたものである。ただし、互いの振動系を強く結合しすぎると、上記のかえって発電能力が抑えられて発電効率が落ちるので、適切な強度の連結が必要になる。   The power generation device 38 of this embodiment utilizes this action. As shown in FIG. 10, the end portions of the weight bodies 32 facing each other of the unit power generation elements 21 and 22 and the unit power generation elements 22 and 23. The ends of the weight bodies 32 facing each other are physically connected by the connecting body 40 to improve the power generation efficiency and the strength against external force. However, if the mutual vibration systems are coupled too strongly, the power generation capacity is reduced and the power generation efficiency is lowered. Therefore, connection with appropriate strength is required.

この実施形態の発電装置38と単位発電素子21,22,23によれば、振動系11,12,13の単位発電素子21,22,23互いの機械的振動が、連結体40により他方の振動系に伝搬され、一つの振動系が共振による大きな加速度を生じたとしても、互いに他の振動系に機械的振動を分散させ、振幅のピーク値を低減させ、橋梁部26の破損を防止する。   According to the power generation device 38 and the unit power generation elements 21, 22, and 23 of this embodiment, the mechanical power generation between the unit power generation elements 21, 22, and 23 of the vibration systems 11, 12, and 13 is caused by the coupling body 40. Even if one vibration system generates a large acceleration due to resonance, the mechanical vibration is distributed to other vibration systems to reduce the peak value of the amplitude and prevent the bridge portion 26 from being damaged.

次にこの発明の第四実施形態の発電装置について図15を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の発電装置は、単位発電素子51の形状が上記実施形態とは異なるもので、さらに全体の体積を小さくすることができるものである。   Next, a power generator according to a fourth embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. In the power generation device of this embodiment, the shape of the unit power generation element 51 is different from that of the above embodiment, and the entire volume can be further reduced.

この実施形態の単位発電素子51は、重錘体52が橋梁部26の先端部26aからZ軸方向下方に連続し、橋梁部26と所定間隔を空けてさらにY軸方向に橋梁部26の基端部26b側に延びてL字状で、一つの重錘体52が形成されたものである。従って、重錘体52は、橋梁部26のZ軸方向の下方に位置しているものである。   In the unit power generation element 51 of this embodiment, the weight body 52 is continuous downward from the distal end portion 26a of the bridge portion 26 in the Z-axis direction, and is spaced apart from the bridge portion 26 by a predetermined distance and further in the Y-axis direction. One weight body 52 is formed in an L shape extending to the end portion 26b side. Therefore, the weight body 52 is located below the bridge portion 26 in the Z-axis direction.

この実施形態の重錘体52は、上記実施形態の重錘体32と異なり、橋梁部26とZ軸方向に重なって設けられているため、橋梁部26とは別に形成した後、L字状に形成した重錘体52の一端部52aを橋梁部26の先端部26aに接合して形成する。   Unlike the weight body 32 of the above embodiment, the weight body 52 of this embodiment is provided so as to overlap with the bridge portion 26 in the Z-axis direction. One end portion 52 a of the weight body 52 formed in the above is joined to the tip end portion 26 a of the bridge portion 26.

この実施形態の発電装置も、上記実施形態と同様に支持枠部の内側に、単位発電素子51と同様の構造であって、固有振動数の異なる複数の単位発電素子が設けられている。固有振動数を異なる値にする方法は、上記実施形態と同様である。   The power generation apparatus of this embodiment is also provided with a plurality of unit power generation elements having the same structure as that of the unit power generation element 51 and having different natural frequencies inside the support frame portion as in the above embodiment. The method of setting the natural frequency to a different value is the same as in the above embodiment.

この実施形態の発電装置と単位発電素子51によっても、上記実施形態と同様の効果が得られ、さらに小型で効率の良い発電装置を提供することができる。   Also by the power generation device and the unit power generation element 51 of this embodiment, an effect similar to that of the above-described embodiment can be obtained, and a more compact and efficient power generation device can be provided.

なお、この発明の発電素子は、上記実施形態に限定されるものではない。重錘体は上記第一実施形態の一対の重錘体のうちの一方のみを備えた形状でも良く、これにより、橋梁部はY軸方向の長手方向軸に対して非対称な形状になるが、発電装置の形状をより小型化することが可能である。重錘体の重心位置は、橋梁部のほぼ中央からZ軸方向に所定距離離間している他、橋梁部の投影範囲内であって、長手方向軸に対して所定の間隔を隔てて平行位置して良いが、重錘体が非対称な場合は橋梁部の投影範囲から僅かに外れていても良い。   The power generating element of the present invention is not limited to the above embodiment. The weight body may have a shape including only one of the pair of weight bodies of the first embodiment, whereby the bridge portion has an asymmetric shape with respect to the longitudinal axis in the Y-axis direction. It is possible to further reduce the shape of the power generation device. The center of gravity of the weight body is located at a predetermined distance from the center of the bridge portion in the Z-axis direction, and is within the projection range of the bridge portion and parallel to the longitudinal axis at a predetermined interval. However, when the weight body is asymmetrical, it may be slightly deviated from the projection range of the bridge portion.

また、支持枠部や単位発電素子の橋梁部や重錘体支持部は、上述の素材意外に置き換えてもよい。単位発電素子は、橋梁部が可撓性を有していれば良く、橋梁部の領域毎に弾性係数を変えて、固有振動数を設定しても良く、固有振動数を設定する方法は問わない。   Moreover, you may replace the support frame part, the bridge | bridging part of a unit power generation element, and a weight support part other than the above-mentioned raw material. The unit power generation element only needs to have flexibility in the bridge portion, and the natural frequency may be set by changing the elastic coefficient for each region of the bridge portion. Absent.

11,12,13 振動系
14 発電回路
21,22,23,51 単位発電素子
24 支持枠部
24a 内壁面
26 橋梁部
26a 先端部
26b 基端部
28 重錘体支持部
30 圧電材料層
32,52 重錘体
34 圧電素子
E0 下層電極
E1,E2,E3,E4 上層電極
P1,P2,P3,P4 電効果部
11, 12, 13 Vibration system 14 Power generation circuit 21, 22, 23, 51 Unit power generation element 24 Support frame portion 24a Inner wall surface 26 Bridge portion 26a Tip portion 26b Base end portion 28 Weight body support portion 30 Piezoelectric material layers 32, 52 Weight 34 Piezoelectric element E0 Lower layer electrode E1, E2, E3, E4 Upper layer electrode P1, P2, P3, P4

Claims (10)

機械的振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子を備えた発電装置であって、
前記発電素子は、長手方向軸を有して可撓性を有する橋梁部と、前記橋梁部の基端部が固定された支持枠部と、前記橋梁部の前記長手方向軸の先端部に固定され、所定間隔を隔てて前記橋梁部の基端部側に屈曲して設けられた重錘体と、前記橋梁部の表面の伸縮変形が生じる所定位置に固定された圧電素子と、前記圧電素子に固定され前記圧電素子に発生した電荷を出力する複数の電極とを備え、
前記重錘体は、前記橋梁部の前記長手方向軸を中心としてその両側に対称な形状で一対に設けられ、一対の前記重錘体が、前記電極が設けられた表面とは反対側の前記橋梁部の裏面側に設けられ、前記橋梁部とともにE字状に各々平行に設けられ、前記重錘体の重心は、前記長手方向軸に対して所定の間隔を隔てて、前記橋梁部の裏面側に位置し、
前記支持枠部の中に複数の前記発電素子が固定され、各発電素子の振動系の固有振動数が各々異なる周波数で構成され、
前記各発電素子の各電極が、前記圧電素子に発生した電荷を取り出して電力を出力する発電回路に接続されていることを特徴とする発電装置。
A power generation device including a power generation element that generates power by converting mechanical vibration energy into electrical energy,
The power generating element is fixed to a flexible bridge portion having a longitudinal axis, a support frame portion to which a base end portion of the bridge portion is fixed, and a distal end portion of the longitudinal axis of the bridge portion. A weight body bent to a base end side of the bridge portion at a predetermined interval, a piezoelectric element fixed at a predetermined position where expansion and contraction of the surface of the bridge portion occurs, and the piezoelectric element And a plurality of electrodes for outputting charges generated in the piezoelectric element,
The weight bodies are provided in pairs with symmetrical shapes on both sides of the bridge portion around the longitudinal axis, and the pair of weight bodies are opposite to the surface on which the electrodes are provided. Provided on the back side of the bridge part, and provided in parallel with the bridge part in an E-shape, and the center of gravity of the weight body is spaced apart from the longitudinal axis by a predetermined distance, and the back side of the bridge part Located on the side
A plurality of the power generation elements are fixed in the support frame portion, and the natural frequency of the vibration system of each power generation element is configured at different frequencies,
Each of the electrodes of each of the power generation elements is connected to a power generation circuit that extracts electric charges generated in the piezoelectric elements and outputs electric power.
機械的振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子を備えた発電装置であって、
前記発電素子は、長手方向軸を有して可撓性を有する橋梁部と、前記橋梁部の基端部が固定された支持枠部と、前記橋梁部の前記長手方向軸の先端部に固定され、所定間隔を隔てて前記橋梁部の基端部側に屈曲して設けられた重錘体と、前記橋梁部の表面の伸縮変形が生じる所定位置に固定された圧電素子と、前記圧電素子に固定され前記圧電素子に発生した電荷を出力する複数の電極とを備え、
前記重錘体は、前記橋梁部を中心として、前記電極が設けられた表面とは反対側の前記橋梁部の裏面側に前記橋梁部と平行に設けられ、前記重錘体の重心は、前記橋梁部の投影範囲内であって、前記長手方向軸に対して所定の間隔を隔てて平行な軸線上に位置し、
前記支持枠部の中に複数の前記発電素子が固定され、各発電素子の振動系の固有振動数が各々異なる周波数で構成され、
前記各発電素子の各電極が、前記圧電素子に発生した電荷を取り出して電力を出力する発電回路に接続されていることを特徴とする発電装置。
A power generation device including a power generation element that generates power by converting mechanical vibration energy into electrical energy,
The power generating element is fixed to a flexible bridge portion having a longitudinal axis, a support frame portion to which a base end portion of the bridge portion is fixed, and a distal end portion of the longitudinal axis of the bridge portion. A weight body bent to a base end side of the bridge portion at a predetermined interval, a piezoelectric element fixed at a predetermined position where expansion and contraction of the surface of the bridge portion occurs, and the piezoelectric element And a plurality of electrodes for outputting charges generated in the piezoelectric element,
The weight body is provided in parallel to the bridge portion on the back side of the bridge portion on the opposite side of the surface on which the electrode is provided with the bridge portion as a center, and the gravity center of the weight body is Located within the projection range of the bridge portion on an axis parallel to the longitudinal axis at a predetermined interval,
A plurality of the power generation elements are fixed in the support frame portion, and the natural frequency of the vibration system of each power generation element is configured at different frequencies,
Each of the electrodes of each of the power generation elements is connected to a power generation circuit that extracts electric charges generated in the piezoelectric elements and outputs electric power.
前記橋梁部と前記重錘体支持部は同一の板材から形成され、前記橋梁部と前記重錘体支持部の一方の面に圧電体材料層が積層され、他方の面に前記重錘体が積層され、前記橋梁部と前記重錘体支持部とから成る層と前記圧電体材料層、及び前記重錘体の前記積層方向での投影形状が同じである請求項1記載の発電装置。  The bridge portion and the weight body support portion are formed of the same plate material, a piezoelectric material layer is laminated on one surface of the bridge portion and the weight body support portion, and the weight body is formed on the other surface. The power generation device according to claim 1, wherein the projection shape of the layer formed by stacking the bridge portion and the weight body support portion, the piezoelectric material layer, and the weight body in the stacking direction is the same. 前記各発電素子の振動系は、前記重錘体の質量が異なることにより異なる固有振動数に設定されている請求項1又は2記載の発電装置。  The power generation device according to claim 1 or 2, wherein the vibration system of each power generation element is set to have a different natural frequency due to a difference in mass of the weight body. 前記各発電素子の振動系は、前記橋梁部の弾性係数が異なることにより異なる固有振動数に設定されている請求項1又は2記載の発電装置。  3. The power generation device according to claim 1, wherein the vibration system of each power generation element is set to have a different natural frequency due to a difference in elastic coefficient of the bridge portion. 前記各発電素子の前記各橋梁部は、前記支持枠部の対向する内壁面に互い違いに固定され、同一平面上で互いに平行に延びている請求項1又は2記載の発電装置。  3. The power generation device according to claim 1, wherein the bridge portions of the power generation elements are alternately fixed to the opposing inner wall surfaces of the support frame portion and extend parallel to each other on the same plane. 前記各発電素子の前記各振動系は、互いに連結体により物理的に接続されて、一方の振動が他方に伝達可能に設けられている請求項1又は2記載の発電装置。  3. The power generation device according to claim 1, wherein the vibration systems of the power generation elements are physically connected to each other by a coupling body, and one vibration can be transmitted to the other. 前記電極は、前記橋梁部の前記長手方向軸の両側であって、前記長手方向軸に沿って前記圧電素子の両端に積層されて4箇所に設けられている請求項1又は2記載の発電装置。  3. The power generation device according to claim 1, wherein the electrodes are provided at four positions on both sides of the longitudinal axis of the bridge portion and stacked on both ends of the piezoelectric element along the longitudinal axis. . 機械的振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子であって、
長手方向軸を有して可撓性を有する橋梁部と、
前記橋梁部の基端部が固定された支持枠部と、
前記橋梁部の前記長手方向軸の先端部に固定され、所定間隔を隔てて前記橋梁部の基端部側に屈曲して設けられた重錘体と、
前記橋梁部の表面の伸縮変形が生じる所定位置に固定された圧電素子と、
前記圧電素子に固定され前記圧電素子に発生した電荷を出力する複数の電極とを備え、
前記重錘体は、前記電極が設けられた表面とは反対側の前記橋梁部の裏面側に屈曲し、前記長手方向軸に対して所定の間隔を隔てて平行な軸線上に位置し、前記重錘体の重心は、前記橋梁部の投影範囲内であって、前記長手方向軸に対して所定の間隔を隔てて平行な軸線上に位置していることを特徴とする発電素子。
A power generation element that generates power by converting mechanical vibration energy into electrical energy,
A flexible bridge portion having a longitudinal axis;
A support frame portion to which a base end portion of the bridge portion is fixed;
A weight body fixed to a distal end portion of the longitudinal axis of the bridge portion and bent to a proximal end side of the bridge portion with a predetermined interval;
A piezoelectric element fixed at a predetermined position where expansion and contraction of the surface of the bridge portion occurs;
A plurality of electrodes fixed to the piezoelectric element and outputting charges generated in the piezoelectric element;
The weight body is bent on the back surface side of the bridge portion opposite to the surface on which the electrode is provided, and is located on an axis parallel to the longitudinal axis at a predetermined interval, The power generation element according to claim 1, wherein a center of gravity of the weight body is located on an axis parallel to the longitudinal axis within a projection range of the bridge portion at a predetermined interval.
前記電極は、前記橋梁部の前記長手方向軸の両側であって、前記長手方向軸に沿って前記圧電素子の両端に積層されて4箇所に設けられている請求項9記載の発電素子。  The power generation element according to claim 9, wherein the electrodes are provided at four positions on both sides of the longitudinal axis of the bridge portion and stacked on both ends of the piezoelectric element along the longitudinal axis.
JP2017541879A 2016-07-28 2016-07-28 Power generation device and power generation element Active JP6309698B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072148 WO2018020639A1 (en) 2016-07-28 2016-07-28 Power generation device and power generation element

Publications (2)

Publication Number Publication Date
JP6309698B1 true JP6309698B1 (en) 2018-04-11
JPWO2018020639A1 JPWO2018020639A1 (en) 2018-07-26

Family

ID=61017470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017541879A Active JP6309698B1 (en) 2016-07-28 2016-07-28 Power generation device and power generation element

Country Status (2)

Country Link
JP (1) JP6309698B1 (en)
WO (1) WO2018020639A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027252B2 (en) 2018-05-25 2022-03-01 株式会社東芝 Vibration sensor and sensor module
JP7218522B2 (en) * 2018-09-13 2023-02-07 富士電機株式会社 generator

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102283A (en) * 1979-01-29 1980-08-05 Toshiba Corp Generating device
JPH07245970A (en) * 1994-03-02 1995-09-19 Calsonic Corp Piezoelectric power generator
JP2006166694A (en) * 2004-11-11 2006-06-22 Kohei Hayamizu Piezoelectric element, sound pressure-generated electricity apparatus, and vibration-generated electricity apparatus
JP2006162315A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Compound sensor
WO2009063609A1 (en) * 2007-11-13 2009-05-22 Kohei Hayamizu Power generation unit and light emitting tool
JP2009247106A (en) * 2008-03-31 2009-10-22 Taiyo Yuden Co Ltd Piezo-electric vibratory generator
JP2010273408A (en) * 2009-05-19 2010-12-02 Emprie Technology Development LLC Power device, method of generating power, and method of manufacturing the power device
US7948153B1 (en) * 2008-05-14 2011-05-24 Sandia Corporation Piezoelectric energy harvester having planform-tapered interdigitated beams
JP2012005192A (en) * 2010-06-15 2012-01-05 Panasonic Corp Power generation component, power generator using the same, and communication module
WO2012026453A1 (en) * 2010-08-25 2012-03-01 パナソニック株式会社 Vibration power generating element and vibration power generating device using same
US20120153778A1 (en) * 2010-12-21 2012-06-21 Electronics And Telecommunications Research Institute Piezoelectric micro energy harvester and manufacturing method thereof
WO2012153593A1 (en) * 2011-05-09 2012-11-15 株式会社村田製作所 Piezoelectric power generating apparatus
US20130127295A1 (en) * 2011-11-21 2013-05-23 Electronics And Telecommunications Research Institute Piezoelectric micro power generator and fabrication method thereof
JP2013243821A (en) * 2012-05-18 2013-12-05 National Institute Of Advanced Industrial & Technology Vibration power generation element
JP2015517791A (en) * 2012-05-25 2015-06-22 ケンブリッジ エンタープライズ リミテッド Energy harvesting apparatus and method
JP5996078B1 (en) * 2015-10-19 2016-09-21 株式会社トライフォース・マネジメント Power generation element

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102283A (en) * 1979-01-29 1980-08-05 Toshiba Corp Generating device
JPH07245970A (en) * 1994-03-02 1995-09-19 Calsonic Corp Piezoelectric power generator
JP2006166694A (en) * 2004-11-11 2006-06-22 Kohei Hayamizu Piezoelectric element, sound pressure-generated electricity apparatus, and vibration-generated electricity apparatus
JP2006162315A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Compound sensor
WO2009063609A1 (en) * 2007-11-13 2009-05-22 Kohei Hayamizu Power generation unit and light emitting tool
JP2009247106A (en) * 2008-03-31 2009-10-22 Taiyo Yuden Co Ltd Piezo-electric vibratory generator
US7948153B1 (en) * 2008-05-14 2011-05-24 Sandia Corporation Piezoelectric energy harvester having planform-tapered interdigitated beams
JP2010273408A (en) * 2009-05-19 2010-12-02 Emprie Technology Development LLC Power device, method of generating power, and method of manufacturing the power device
JP2012005192A (en) * 2010-06-15 2012-01-05 Panasonic Corp Power generation component, power generator using the same, and communication module
WO2012026453A1 (en) * 2010-08-25 2012-03-01 パナソニック株式会社 Vibration power generating element and vibration power generating device using same
US20120153778A1 (en) * 2010-12-21 2012-06-21 Electronics And Telecommunications Research Institute Piezoelectric micro energy harvester and manufacturing method thereof
WO2012153593A1 (en) * 2011-05-09 2012-11-15 株式会社村田製作所 Piezoelectric power generating apparatus
US20130127295A1 (en) * 2011-11-21 2013-05-23 Electronics And Telecommunications Research Institute Piezoelectric micro power generator and fabrication method thereof
JP2013243821A (en) * 2012-05-18 2013-12-05 National Institute Of Advanced Industrial & Technology Vibration power generation element
JP2015517791A (en) * 2012-05-25 2015-06-22 ケンブリッジ エンタープライズ リミテッド Energy harvesting apparatus and method
JP5996078B1 (en) * 2015-10-19 2016-09-21 株式会社トライフォース・マネジメント Power generation element

Also Published As

Publication number Publication date
JPWO2018020639A1 (en) 2018-07-26
WO2018020639A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
US10033305B2 (en) Energy harvesting device and method for forming the same
US10581344B2 (en) Miniature kinetic energy harvester for generating electrical energy from mechanical vibrations
US9893655B2 (en) Piezoelectric power generation apparatus
JP5136644B2 (en) Piezoelectric generator
JP2011152004A (en) Power generation unit and power generation devic
US10734922B2 (en) Power generating element and power generating device
CN106664073B (en) Resonance device
US10361643B2 (en) Power generating element
CN109428516B (en) Power generating element
JP2010011547A (en) Power generation device
US10917025B2 (en) Power generating element converting vibration energy into electric energy
JP6309698B1 (en) Power generation device and power generation element
KR20180066787A (en) Vibration Energy Harvesting Device based on Stochastic Resonance and Vibration Energy Harvesting System using the same
JP6421874B2 (en) Resonator
US11205977B2 (en) Power generating element
WO2018189545A1 (en) A vibration-based energy harvester comprising a proof mass surrounding a central anchor
JP6932378B2 (en) Power generation elements and power generation equipment
JP6671660B2 (en) Power generation element
KR20180111719A (en) Vibration Energy Harvesting Device based on Stochastic Resonance and Vibration Energy Harvesting System using the same
Honma et al. Power Generation Demonstration of Electrostatic Vibrational Energy Harvester with Comb Electrodes and Suspensions Located in Upper and Lower Decks.
Saadon et al. Vibration-based MEMS piezoelectric energy harvesters using cantilever beams
JP2006226799A (en) Mechanical quantity sensor
JP6884377B2 (en) Power generation circuit
KR20150059513A (en) 2 degree of freedom piezoelectric energy harvester
KR101231226B1 (en) Energy harvester

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20170808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170808

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170808

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180314

R150 Certificate of patent or registration of utility model

Ref document number: 6309698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250