WO2018018854A1 - 用于室内定位的方法及系统 - Google Patents

用于室内定位的方法及系统 Download PDF

Info

Publication number
WO2018018854A1
WO2018018854A1 PCT/CN2017/070236 CN2017070236W WO2018018854A1 WO 2018018854 A1 WO2018018854 A1 WO 2018018854A1 CN 2017070236 W CN2017070236 W CN 2017070236W WO 2018018854 A1 WO2018018854 A1 WO 2018018854A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
mobile device
signal
location
determining
Prior art date
Application number
PCT/CN2017/070236
Other languages
English (en)
French (fr)
Inventor
陈涛
王新珩
潘传荣
郑成明
Original Assignee
无锡知谷网络科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡知谷网络科技有限公司 filed Critical 无锡知谷网络科技有限公司
Publication of WO2018018854A1 publication Critical patent/WO2018018854A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0263Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
    • G01S5/0264Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems at least one of the systems being a non-radio wave positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0263Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • G01S2205/02Indoor

Definitions

  • Embodiments of the present invention relate to the field of indoor positioning, and in particular, to a method and system for indoor positioning.
  • GPS Global Positioning System
  • BDS Beidou Satellite Positioning System
  • a physical sensor network is built to achieve indoor positioning navigation, such as infrared, ultrasonic, pressure sensors or several integrated wireless beacon modules.
  • indoor positioning navigation such as infrared, ultrasonic, pressure sensors or several integrated wireless beacon modules.
  • a wireless beacon-based indoor positioning system and method is known that, by installing a wireless beacon module in a desired positioning environment, the wireless beacon signal of the entire indoor environment is ensured to have no dead angle coverage, and the wireless beacon module is integrated.
  • RF, infrared and air pressure sensors, mobile devices communicate with wireless beacon systems via Bluetooth for indoor positioning.
  • the inventors have found that at least the following problems exist in the related art: the indoor environment of a large building is complicated, such as an airport, in a normal area passage, a gate and a safety and alarm related area, and an automatic step ladder.
  • the magnetic field environment is not the same, and various wireless signals interfere with each other. Therefore, it is difficult to implement indoor positioning and navigation services for passengers by using a conventional single wireless indoor positioning technology in all places.
  • a large number of wireless beacons are deployed, and the infrastructure projects they implement are vast, costly, and generate a large amount of electromagnetic pollution. Therefore, there are still many problems that need to be solved in order to achieve precise positioning and navigation in large indoor places.
  • Embodiments of the present invention provide a method and system for indoor positioning to solve at least one problem in the prior art.
  • an embodiment of the present invention provides a method for indoor positioning, where the method includes: determining a location scenario of the mobile device according to the information of the at least one positioning signal received by the mobile device; and determining, according to the determined location scenario, Determining a positioning mode of the mobile device; using the multi-color set model to select at least one available positioning signal that matches the determined positioning mode to locate the mobile device.
  • an embodiment of the present invention provides a system for indoor positioning, where the system includes: a location scene determining module, configured to determine a location scenario of the mobile device according to information of at least one positioning signal received by the mobile device; a positioning mode determining module, configured to determine a positioning mode of the mobile device based on the determined location scenario; and a positioning execution module, configured to select, by using the multi-color set model, at least one available positioning signal pair that matches the determined positioning mode Mobile device for positioning.
  • an embodiment of the present invention further provides a non-volatile computer storage medium storing computer-executable instructions for performing the method for indoor positioning of any of the above-described embodiments of the present invention.
  • an embodiment of the present invention further provides an electronic device, including: at least one processor; and a memory; wherein the memory stores a program executable by the at least one processor, where the instruction is Said at least one processor is operative to enable said at least one processor to perform the method of any of the above-described embodiments of the invention for indoor positioning.
  • an embodiment of the present invention further provides a computer program product, including storing Computer-executable instructions in a non-volatile computer storage medium, the computer executable code causing an electronic device to perform the method of any of the above-described embodiments of the present invention for indoor positioning.
  • the method and system provided by the embodiments of the present invention can be applied to a positioning and navigation scene of a large building site, such as an airport, a museum, and the like.
  • the invention adopts a multi-color collection model, and uniformly stores data information acquired by various positioning methods in a set array through unified data mapping, which simplifies storage and reading logic, improves data reading and writing and application efficiency, and does not require additional definition. And consider the single method of locating information to obtain success or failure. Make full use of the characteristics of a variety of positioning technologies, abandon the conventional single wireless indoor positioning technology, set the corresponding positioning mode according to different scene areas and magnetic field environment, to achieve convenient and efficient accurate positioning of mobile devices, while avoiding a variety of Signal interference between positioning methods.
  • the method and system provided by the embodiments of the present invention can effectively save production cost, reduce electromagnetic pollution caused by excessive positioning nodes, improve operation flexibility of the mobile device, meet the requirements of precise positioning of large complex indoors, and improve user positioning experience. with broadly application foreground.
  • FIG. 1 is a flowchart of a method for indoor positioning according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a positioning manner of a setting area according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of an optional method for indoor positioning according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of still another optional method for indoor positioning according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a system for indoor positioning according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a specific embodiment according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a mobile device used for indoor positioning according to an embodiment of the present invention.
  • Indoor positioning technology is an emerging application with the development of information technology. Early research and applications were mostly directed at a single positioning method. At present, with the application of various indoor intelligent beacons and the continuous development of indoor positioning technology, based on RFID/IRID, WLAN-AP, BLE Beacon, LED, Various indoor positioning technologies such as geomagnetic field and vision have been realized and perfected and entered the commercial application field. However, in complex indoor spaces, the application of a single positioning method has limitations. For example, the positioning performance of a single positioning method may be different in different scenarios, and the positioning accuracy cannot be completely ensured; it is also difficult to arrange the coverage of the beacon used by the single positioning method. At the same time, considering and applying a variety of positioning methods, and selecting the position data measured by the optimal positioning method according to the scene is a feasible way to solve the precise positioning of complex indoor places.
  • FIG. 1 is a flow chart of a method for indoor positioning provided by an embodiment of the present invention, which may include the following steps:
  • S11 Determine a location scenario of the mobile device according to the information of the at least one positioning signal received by the mobile device.
  • S12 Determine, according to the determined location scenario, a positioning mode to be applied by the mobile device.
  • S13 Select, by the multi-color set model, the mobile device to locate the at least one available positioning signal that matches the determined positioning mode.
  • the positioning signals can be various, such as satellite positioning (GPS/BDS), radio frequency identification signal/infrared signal positioning (RFID/IRID), wireless local area network positioning (WLAN-AP), BLE Beacon positioning, LED white light. Positioning, geomagnetic field positioning and visual positioning signals, wherein wireless local area network positioning can be selected by WiFi-AP or LTE-AP positioning.
  • a mobile device (such as a smart cart) can carry a plurality of positioning modules corresponding to the plurality of positioning signals shown, and receive corresponding positioning signals according to the positioning module.
  • the satellite positioning module can be used to receive the satellite positioning signal.
  • the method provided by the illustrated embodiment can be applied to a positioning navigation scene of a large building site such as an airport or a museum. Firstly, the location signal is used to determine the location scene of the mobile device, and the corresponding positioning mode is determined according to the location scenario, and finally the mobile device is selected by selecting at least one available positioning manner corresponding to the location scenario.
  • the method shown fully utilizes the characteristics of multiple positioning modes, abandons the conventional single wireless indoor positioning technology, and establishes different positioning nodes according to different scene regions, thereby realizing convenient and efficient accurate positioning of mobile devices; The signal interference situation of the positioning mode satisfies the requirements of precise positioning in large complex indoors, and has broad application prospects.
  • the positioning signal in the method of FIG. 1 includes a positioning signal from a positioning node of a floor in the room and/or a positioning signal from a positioning node of the set area.
  • corresponding positioning transmitting nodes are set according to specific scenes within the building, and the position coordinates of these transmitting nodes are known.
  • the positioning signal of the positioning node is received, so that the approximate location scene of the mobile device is known.
  • the mobile device receives the positioning signal transmitted by the positioning node of a certain setting area (such as a service station) during the mobile process, it can determine the location of the current location of the mobile device. If the mobile device receives multiple positioning signals at the same time, at least one positioning signal may be selected to determine the current location scene.
  • a database of unique identification codes and position coordinates of each transmitting node is established in advance. For example, it is selected to have a positioning node with high positioning accuracy (such as an RFID/IRID positioning transmitting node) installed on each floor access control, and the identification number of the access control has a floor identification (such as 26 floors).
  • the mobile device After receiving the identification code sent by the transmitting node on the access control of a certain floor, the mobile device queries the database for the location information of the floor corresponding to the received identification code, where the location information is the floor location where the mobile device is located, and Record the display in its positioning navigation path. This method is equally applicable to specific areas.
  • the positioning node of the floor can be installed on the upper end of the access control or on the ground.
  • the positioning node on the floor access control When the positioning node on the floor access control is set on the ground, it will be installed in the form of a wide light band. This way, the beam will not be completely blocked when the number of pedaling is too large, so that the reception of the positioning signal will not be affected.
  • the positioning node When the positioning node is set at the upper end of the access control, the signal transmitted by the positioning node is perpendicular to the ground reference plane.
  • the positioning signal of the positioning node in the foregoing embodiment includes at least one of a radio frequency identification signal, a Bluetooth signal, an infrared signal, and an optical signal.
  • the positioning signals for determining the set scene area of the mobile device in the above embodiments are mainly radio frequency identification signals, Bluetooth signals, infrared signals, and optical signals. These positioning signals are generated according to the positioning node (see Figure 2).
  • the setting area includes at least one of a service desk, a staircase, a sidewalk, an entrance and exit, and a store.
  • the service station can set the BLE Beacon positioning node
  • the airport shop prefers the LED white light positioning node
  • the entrance and exit, the sidewalk can optimize the RFID/IRID positioning node.
  • FIG. 3 shows an alternative embodiment of the method shown in FIG. 1.
  • the specific implementation process of step S12 in the method shown in FIG. 1 includes:
  • determining the priority mode of the mobile device is: satellite positioning > geomagnetic field positioning and visual positioning > wireless local area network positioning > radio frequency identification letter No. / Bluetooth signal / infrared signal / optical signal;
  • determining a priority mode of the mobile device is: wireless local area network positioning > radio frequency identification signal / Bluetooth signal / infrared signal / optical signal.
  • the corresponding positioning mode is determined according to the location scenario.
  • the location scene is mainly divided into two parts: the indoor top floor and the indoor bottom floor (indoor non-top floor).
  • the indoor top layer may be a building structure through which a satellite positioning signal can penetrate, specifically a skylight structure or a grid skeleton structure; for a non-top floor indoor, a building structure in which satellite signals cannot penetrate and work,
  • Other indoor positioning signals such as wireless local area network signals (WLAN), can be selected.
  • WLAN wireless local area network signals
  • the field of view is large, so the positioning signal with large coverage and stability is preferred, such as the satellite positioning signal.
  • the satellite positioning signal cannot be received, the combination of the magnetic field positioning and the visual positioning can be selected to move.
  • the device is positioned.
  • Wireless local area network positioning or other indoor positioning methods may also be selected when the mobile device is located at these signal shields.
  • the satellite non-top area cannot receive satellite positioning signals.
  • the received signal strength values are mainly compared and selected for positioning, mainly including wireless local area network positioning and radio frequency identification signals, Bluetooth signals, infrared signals, and optical signal positioning. Since the wireless LAN signal covers the indoor floor, the wireless LAN signal can be preferred.
  • step S12 in the method shown in FIG. 1 includes:
  • determining that the positioning mode of the mobile device to be applied is: satellite positioning > geomagnetic field positioning and visual positioning > wireless local area network positioning positioning mode priority combined with radio frequency identification signal a positioning method of at least one of a Bluetooth signal, an infrared signal, and an optical signal;
  • determining that the positioning mode of the mobile device to be applied is: wireless local area network positioning combined with at least one of a radio frequency identification signal, a Bluetooth signal, an infrared signal, and an optical signal. Positioning method.
  • the traffic volume in a large building is large, so there is a case where the population is dense and the received positioning signal is weak and the positioning is inaccurate. Therefore, when the mobile device is located in a non-set area, the corresponding positioning mode may be selected according to the priority of the positioning mode for positioning. When the mobile device is located in the set area, it can be selected to be positioned in combination with the specific area. The positioning result is more accurate by unifying and integrating the obtained location information of the mobile device. For example, in the setting area of the indoor floor, one positioning signal can be selected as the main beacon, and other positioning signals are used for positioning the auxiliary beacon.
  • the BLE Beacon positioning mode can be preferred, and the airport shop prefers the LED white light positioning mode, the entrance and exit, RFID/IRID positioning is preferred for stairways and sidewalks.
  • the satellite positioning and BLE Beacon positioning can be selected for positioning.
  • the mobile device after the mobile device is located to obtain specific location information according to the selected positioning signal, the mobile device sends a weak BLE or WiFi signal for the surrounding user to connect using a handheld terminal (such as a mobile phone or a tablet).
  • a handheld terminal such as a mobile phone or a tablet.
  • the location where the user is located is the location information of the mobile device.
  • the hotspot open control mechanism of the mobile device is preset.
  • the signal sent by each mobile device has a certain coverage (such as 5m), so the mobile device is likely to cause multiple mobile devices in a certain range during the mobile process.
  • the mobile device is sent to the background server for display.
  • the background server receives and counts the location information of multiple mobile devices, determines the number of mobile devices in a certain area, and the distance between the respective devices.
  • the mobile device implements hotspot AP (Access Point) open control to ensure that only one mobile device within the predetermined range can send weak BLE or WiFi. signal.
  • the signal frequency of the mobile device used is inconsistent with the operating frequency setting of other networks in large buildings.
  • the specific implementation process after step S13 in the method shown in FIG. 1 includes:
  • the mobile device can be applied to the place where the mobile device is prohibited from being on the upper and lower floors.
  • an alarm sounds to alert the passenger, and the ground management personnel can also quickly receive the alarm sound. Arrive at the scene to stop the violation.
  • the background server also detects that the mobile device is in the forbidden area, and can issue an alarm instruction to the mobile device.
  • the mobile device detects that it is located in the forbidden area, it can also issue an alarm command to operate the mobile device to issue an alarm, which may be a sound or a light beam.
  • the method provided by the embodiments of the present invention can be applied to a positioning and navigation scenario of a large building site such as an airport or a museum. Firstly, the location mode of the mobile device is determined by setting, and then the corresponding positioning mode is determined according to the location scenario of the mobile device, and at least one available positioning mode in the corresponding mode is selected to locate the mobile device.
  • the method shown fully utilizes the characteristics of multiple positioning modes, abandons the conventional single wireless indoor positioning technology, and sets corresponding positioning modes according to different scene regions, thereby realizing convenient and efficient accurate positioning of mobile devices;
  • the interference condition of the positioning signal satisfies the requirements of precise positioning of large complex indoors, improves the user positioning experience, and has broad application prospects.
  • the embodiment of the present invention further provides an algorithm for indoor positioning (PS-based Fast Screening Algorithm), which specifically includes:
  • a i ⁇ a it1 ,..., a itm ⁇ .
  • the multi-color positioning of the present invention can be expanded accordingly according to the actual application.
  • the concept of continuous time is defined to facilitate the establishment of a storage structure for the historical location information of the target node based on the integration of the multi-color set model, thereby facilitating the storage, reading and analysis of the historical location information.
  • the extension application can consider the following two aspects:
  • the historical data of various positioning methods are sampled and analyzed to determine the accuracy and error of various methods in different environments, and the error correction scheme is determined.
  • the stored data can be conveniently applied to various types of data analysis work, such as comprehensive analysis of motion habits and features of multiple target nodes.
  • the multi-color positioning technology consisting of seven positioning technologies in the illustrated method as an example to define GPS positioning, RFID/IRID positioning, WLAN-AP (WiFi-AP or LTE-AP) positioning, BLE Beacon positioning, and LED respectively.
  • White light localization, geomagnetic field localization and visual positioning are G 1 to G 7 , and the final position of the target node is defined as G 0 , as shown in Table 1.
  • F 1 , . . . , F x are X-axis discrete coordinates
  • F x+1 is X-axis discrete coordinates
  • F y is a Y-axis discrete coordinate
  • F y+1 , . . . , F z is a Z-axis discrete coordinate.
  • unified coloring select some of the positioning methods to use. Then, the selected positioning modes are defined as g 1 ⁇ g k , k ⁇ 7, which have the same names as the corresponding G 1 ⁇ G 7 respectively .
  • the position information format corresponding to g 1 to g k is arranged in the order of
  • the location information obtained by the nodes in the target node set A through these positioning methods can be expressed by a Boolean matrix as:
  • the positioning information is separately acquired using various positioning methods, and stored in the individual coloring set of the target node.
  • the priority of the positioning method there may be a plurality of different specific situations, and only the location data acquired by using several of the positioning methods is required.
  • the system causes some positioning methods to fail, and the data obtained by the positioning method needs to be eliminated. Therefore, at this time, the concept and method of unified coloring are adopted, and the position information obtained by several (k) specific positioning methods that need to be applied is composed to form a new set of position information, and this set is a unified coloring set.
  • Positioning method priority set Various positioning methods use priority order, which is represented by a set as:
  • the corresponding location mode is selected according to the priority order of the positioning modes in the set O to obtain the best location information.
  • a priority order set requires that the location information acquired by the two positioning methods be averaged as the final location information; another priority order set requires that one of the three pieces of location information obtained by the three positioning methods and the other two The closest is the final location information. In these cases, this step only needs to extract the location data obtained by multiple positioning methods at the same time, and then submit it to the subsequent application.
  • the background server can obtain the specific location of each target node and display it on the background server.
  • the target node is a smart cart
  • the background server determines the number of smart carts in a certain area and the distance between each other according to the specific location of each smart cart, for example, determining that only one trolley in the range of 5-10 meters is weak.
  • the BLE or WiFi signal the user's handheld positioning terminal around the smart cart is connected to the smart cart through a weak BLE or WiFi signal, enabling real-time positioning and navigation.
  • the algorithm provided by the illustrated embodiment can be applied to positioning navigation scenes of large building sites, such as airports and museums.
  • the location of the mobile device to be located is unified and integrated by using the multi-color positioning technology, and the optimal location information is selected according to the preset positioning mode priority order as the finally obtained target node location information.
  • the multi-color collection model based on the concept of individual coloring and unified coloring, the position information obtained by a single node using various positioning methods can be simply and efficiently arranged in a set array without additional definition and consideration of single method positioning information to obtain success or failure.
  • the data sequence, the node set sequence, the node time series, and the like obtained by the multiple positioning methods can be stored according to the fixed mapping relationship that has been defined, and the data mapping relationship is unified, thereby simplifying the storage and reading logic and further improving the data.
  • the multi-color positioning technology using multi-color set model realizes convenient and efficient accurate positioning of mobile devices.
  • the illustrated algorithm sets the corresponding positioning mode according to different application scenarios, and discards the conventional single wireless indoor positioning technology, and avoids the interference situation of multiple positioning signals, thereby realizing accurate positioning of the mobile device.
  • FIG. 6 shows a system for indoor positioning provided by an embodiment of the present invention, including:
  • a location scene determining module configured to determine a location scenario of the mobile device according to the information of the at least one positioning signal received by the mobile device;
  • a positioning mode determining module configured to determine a positioning mode to be applied by the mobile device based on the determined location scenario
  • a positioning execution module configured to select, by using the multi-color set model, at least one available positioning signal that matches the determined positioning mode to locate the mobile device.
  • the positioning signals may be various, such as satellite positioning, RFID/IRID positioning, WLAN-AP (WiFi-AP or LTE-AP) positioning, BLE Beacon positioning, LED white light positioning, geomagnetic field positioning, and visual positioning.
  • the mobile device is configured with a plurality of positioning signal receiving modules corresponding to a plurality of positioning signals, respectively, a satellite positioning module (GPS/BDS), an RFID/IRID, a WLAN-AP (WiFi-AP or LTE-AP), a BLE Beacon, and an LED.
  • GPS/BDS satellite positioning module
  • RFID/IRID RFID/IRID
  • WLAN-AP WiFi-AP or LTE-AP
  • BLE Beacon a plurality of positioning signals
  • LED LED white light positioning
  • geomagnetic field, visual positioning sensor Specifically, the satellite positioning module of the model ARGBD47NYSMA-1973 can be selected, which has the advantages of large antenna power and strong signal receiving capability compared with other common satellite positioning modules.
  • Figure 7 shows an embodiment of an application scenario of the present invention.
  • the mobile device can use smart trolley (such as Chinese design patent: CN303082064S; Chinese utility model patent: CN203126901U).
  • the smart cart has a plurality of positioning modules built in.
  • the user pushes the smart cart to move in a large building such as an airport, the user can locate himself based on the received positioning signal to realize self-positioning navigation; and simultaneously emit weak BLE or WiFi signal, the surrounding users can connect with the signal sent by the smart cart through the handheld mobile phone or tablet to realize the real-time positioning and navigation service of the user's location.
  • Embodiments of the present invention also provide a non-volatile computer storage medium storing computer-executable instructions that can perform the method for indoor positioning in any of the above-described embodiments of the method.
  • the non-volatile computer storage medium of the present invention stores a computer Executable instructions, the computer executable instructions being set to:
  • the mobile device is positioned using at least one available positioning signal that matches the determined positioning pattern using a multi-color set model.
  • non-volatile computer readable storage medium it can be used to store a non-volatile software program, a non-volatile computer executable program, and a module, such as a program corresponding to a method for indoor positioning in an embodiment of the present invention.
  • An instruction/module for example, a position scene determination module, a positioning mode determination module, and a positioning execution module shown in FIG. 6).
  • the one or more modules are stored in the non-transitory computer readable storage medium, and when executed by the processor, perform the method for indoor positioning in any of the method embodiments described above.
  • the non-transitory computer readable storage medium may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store a plurality of storages according to the memory The identification code corresponding to the transmitting node and the location information are located.
  • the non-transitory computer readable storage medium may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device.
  • the non-transitory computer readable storage medium optionally includes a memory remotely disposed relative to the processor, the remote memory being connectable to the background service processor over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Embodiments of the present invention also provide a computer program product comprising computer executable instructions stored in a non-transitory computer storage medium, the computer executable code causing an electronic device to perform any of the above described herein for indoor positioning Methods.
  • FIG. 8 is a schematic structural diagram of a mobile device for indoor positioning according to an embodiment of the present invention. As shown in FIG. 8, the device includes: one or more processors 510 and a memory 520, and one processor 510 in FIG. example.
  • the mobile device performing the indoor positioning method may further include: an input device 530 and an output device 540.
  • the processor 510, the memory 520, the input device 530, and the output device 540 can pass the total Wire or other connection, as shown in Figure 8 by bus connection.
  • the memory 520 is the above-described nonvolatile computer readable storage medium.
  • the processor 510 executes various functional applications and data processing of the server by running non-volatile software programs, instructions, and modules stored in the memory 520, that is, the method for indoor positioning in the above method embodiments.
  • the input device 530 can receive the positioning signal of the scene region where the mobile device is located, or receive the identification code transmitted by the transmitting node.
  • the output device 540 can include an output BLE signal or a WiFi signal for the user to connect using the mobile terminal.
  • the one or more modules are stored in the memory 520, and when executed by the at least one processor 510, perform the method for indoor positioning in any of the method embodiments described above.
  • the above product can perform the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the above product can perform the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the foregoing mobile device includes:
  • At least one processor and
  • a memory for storing at least one processor-executable operational instruction
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to:
  • the mobile device is positioned using at least one available positioning signal that matches the determined positioning pattern using a multi-color set model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

一种用于室内定位的方法及系统,包括:根据移动设备接收到的至少一种定位信号的信息,确定移动设备的位置场景(S11);基于所确定的位置场景,确定所述移动设备待应用的定位模式(S12);采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对所述移动设备进行定位(S13),充分利用多种定位技术的特点,依据不同的场景区域设置相应的定位方式,避免了多种定位信号的干扰情况,实现了对移动设备的准确定位,可满足大型复杂室内精确定位的需求,提高用户定位体验。

Description

用于室内定位的方法及系统
本发明要求在2016年07月25日提交中国专利局、申请号为201610591099.6、发明名称为“用于室内定位的方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及室内定位领域,尤其涉及一种用于室内定位的方法及系统。
背景技术
机场等公共环境具有场地大、布局和路径复杂、人流量大的特点。人们希望能够知道自身所在位置,并快速准确到达目标地点,避免迷失方向,延误时间,因而对于室内定位导航的需求越来越迫切。
全球卫星定位系统(GPS)和北斗卫星定位系统(BDS)已经广泛应用于室外定位导航,给人们的出行导航带来很大便利。卫星信号虽然具有一定的穿透性,可以透过屋顶或者窗户玻璃到达室内,但由于建筑结构的遮挡效应,卫星信号受到干扰而大大衰减,在室内卫星信号微弱的条件下,智能手机、平板电脑等由于本身卫星天线接收功率低,以至于出现接收不到的情况,从而无法实现室内定位。另外,卫星定位系统应用于室内定位,耗资成本较高,难以推广应用。
基于上述室内定位存在的问题,在不改变现有智能手机、平板电脑等配置的GPS/北斗导航芯片软硬件模块的条件下,目前通常采用的解决方案是在遍及建筑物或封闭区域内到处布建实体感应器网络,来实现室内定位导航,例如红外线、超声波、压力感应器或几者集成的无线信标模块。例如,已知的一种基于无线信标的室内定位系统和方法,通过在所需定位环境安装无线信标模块,确保整个室内环境的无线信标信号无死角覆盖,其无线信标模块上集成了RF射频、红外传感器和气压传感器,移动设备通过蓝牙与无线信标系统通信来实现室内定位。
然而,在实现本发明过程中,发明人发现相关技术中至少存在如下问题:大型建筑的室内环境复杂,例如机场,在通常区域通道、登机口与安全和警报相关区域,以及自动步梯口、楼梯口、商铺等不同场景和区域范围内,其磁场环境不尽相同,各种无线信号相互干扰。所以,在所有场所区域内采用常规单一的无线室内定位技术,难以实现面向旅客的室内定位导航服务。另外,大量布建无线信标,其实施的基础设施工程浩大,耗资成本较高,还会产生大量电磁污染。因此,在大型室内场所实现精确定位导航,还存在众多急需解决的问题。
发明内容
本发明实施例提供一种用于室内定位的方法及系统,用以解决现有技术中的至少一个问题。
第一方面,本发明实施例提供一种用于室内定位的方法,该方法包括:根据移动设备接收到的至少一种定位信号的信息,确定移动设备的位置场景;基于所确定的位置场景,确定移动设备的定位模式;采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对移动设备进行定位。
第二方面,本发明实施例提供一种用于室内定位的系统,该系统包括:位置场景确定模块,用于根据移动设备接收到的至少一种定位信号的信息,确定移动设备的位置场景;定位模式确定模块,用于基于所确定的位置场景,确定移动设备的定位模式;以及定位执行模块,用于采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对移动设备进行定位。
第三方面,本发明实施例还提供了一种非易失性计算机存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行本发明上述任一项用于室内定位的方法。
第四方面,本发明实施例还提供了一种电子设备,包括:至少一个处理器;以及存储器;其中,所述存储器存储有可被所述至少一个处理器执行的程序,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本发明上述任一项用于室内定位的方法。
第五方面,本发明实施例还提供了一种计算机程序产品,其包括存储 在非易失性计算机存储介质中的计算机可执行指令,所述计算机可执行代码使得电子设备执行本发明上述任一项用于室内定位的方法。
本发明实施例所提供的方法及系统,可以应用于大型建筑物场所的定位导航场景,比如机场、博物馆等。本发明采用多色集合模型,通过统一数据映射将采用各种定位方法获取的数据信息统一存储在集合数组中,简化了存储和读取逻辑,提高了数据读写和应用效率,而且无需额外定义和考虑单一方法定位信息获取成败的问题。充分利用了多种定位技术的特点,摒弃常规单一的无线室内定位技术,依据不同的场景区域及磁场环境设置相应的定位方式,实现对移动设备的方便、高效的准确定位,同时避免了多种定位方式之间的信号干扰问题。本发明实施例所提供的方法及系统能够有效节约生产成本,减少过多定位节点造成的电磁污染,同时提高了移动设备的操作灵活性,满足大型复杂室内精确定位的需求,提高用户定位体验,具有广阔的应用前景。
附图说明
图1为本发明实施例提供的一种用于室内定位的方法的流程图;
图2为本发明实施例提供的设定区域的定位方式实施示意图;
图3为本发明实施例提供的一种可选的用于室内定位的方法的流程图;
图4为本发明实施例提供的另一种可选的用于室内定位的方法的流程图;
图5为本发明实施例提供的又一种可选的用于室内定位的方法的流程图;
图6为本发明实施例提供的一种用于室内定位的系统的结构示意图;
图7为本发明实施例提供的一种具体实施例的结构示意图;
图8为本发明实施例提供的用于室内定位的移动设备的结构示意图。
具体实施方式
室内定位技术是随着信息技术发展产生的一个新兴应用。早期的研究和应用多是针对单一定位方法。目前随着各类室内智能信标的应用以及室内定位技术的不断发展,基于RFID/IRID、WLAN-AP、BLE Beacon、LED、 地磁场、视觉等方式的各类室内定位技术均已实现和完善并进入商业应用领域。然而,在复杂室内场所中,单一定位方法的应用存在局限性。例如,单一定位方法在不同场景下的定位性能会有差异,无法完全保证定位精度;对单一定位方法采用的信标进行全方位覆盖的布设也会存在困难。同时考虑和应用多种定位方法,并根据所处场景选取最优定位方法测得的位置数据是解决复杂室内场所精确定位的可行途径。
图1示出的是本发明实施例提供的一种用于室内定位的方法的流程图,其可包括如下步骤:
S11:根据移动设备接收到的至少一种定位信号的信息,确定移动设备的位置场景;
S12:基于所确定的位置场景,确定移动设备待应用的定位模式;
S13:采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对移动设备进行定位。
所示实施例中,定位信号可以是多种,比如卫星定位(GPS/BDS)、射频识别信号/红外信号定位(RFID/IRID)、无线局域网定位(WLAN-AP)、BLE Beacon定位、LED白光定位、地磁场定位和视觉定位信号,其中无线局域网定位可选用WiFi-AP或LTE-AP定位方式。移动设备(比如智能手推车)中可以搭载与所示多种定位信号相应的多种定位模块,并依据定位模块接收相应的定位信号,比如可以利用卫星定位模块接收卫星定位信号。
所示实施例提供的方法,可以应用于机场、博物馆等大型建筑物场所的定位导航场景。首先利用定位信号确定移动设备的位置场景,依据位置场景确定相应的定位模式,最终选取与位置场景相应的至少一种可用的定位方式对移动设备进行定位。所示方法充分利用多种定位方式的特点,摒弃常规单一的无线室内定位技术,依据不同的场景区域建立不同的定位节点,以此实现对移动设备的方便、高效的准确定位;同时避免了多种定位方式的信号干扰情况,满足大型复杂室内精确定位的需求,具有广阔的应用前景。
一种可选实施例中,图1所示方法中的定位信号包括:来自室内的楼层的定位节点的定位信号和/或来自设定区域的定位节点的定位信号。
所示实施例中,依据建筑物室内的具体场景设置相应的定位发射节点,且这些发射节点的位置坐标是已知的。当移动设备移动到楼梯层某一个定位 节点位置附近时,会接收到该定位节点的定位信号,从而得知移动设备的大致位置场景。当移动设备在移动过程中接收到某一设定区域(比如服务台)的定位节点发射的定位信号时,可以判断出移动设备当前所在的区域位置。如果移动设备同时接收到多种定位信号,此时可以选取至少一种定位信号来确定当前所在的位置场景。
进一步的,预先建立各个发射节点的唯一标识编码与位置坐标对应关系的数据库。比如选择在各个楼层门禁的上安装有定位精度高的定位节点(比如RFID/IRID定位发射节点),且门禁的标识编号带有楼层标识(比如26层)。移动设备在接收到某一楼层门禁上的发射节点发出的标识编码后,会在数据库中查询与所接收到的标识编码对应的楼层位置信息,该位置信息即为移动设备所在的楼层位置,并在其定位导航路径中记录显示。该方法对于特定区域同样适用。
进一步的,楼层的定位节点可以安装于门禁的上端或者地面上。当楼层门禁上的定位节点设置于地面时,会以宽光带的形式进行安装,这一方式能够在踩踏人数过多时光束不会被完全遮挡,从而不会影响定位信号的接收。当定位节点设置在门禁上端时,此时定位节点发射的信号垂直于地面基准面。
一种实施例中,上述实施例中的定位节点的定位信号包括射频识别信号、蓝牙信号、红外信号、光信号中的至少一种。
所示实施例中,对于多色定位技术中的卫星定位、地磁场定位以及视觉定位无需建立相应的定位节点,且这三种定位技术不适用于定位移动设备所在的具体位置场景。上述实施例中的用于确定移动设备的设定场景区域的定位信号主要是射频识别信号、蓝牙信号、红外信号以及光信号。这些定位信号均依据定位节点产生(参见图2)。其中设定区域至少包括:服务台、楼梯、人行道、出入口、店铺中的一种。比如对于服务台可以设定BLE Beacon定位节点,机场商铺优选LED白光定位节点,出入口、人行道则可优选RFID/IRID定位节点。
图3示出的图1所示方法中的一种可选实施例,图1所示方法中的步骤S12的具体实施过程包括:
S21:当确定移动设备的位置场景为室内顶层时,确定移动设备的定位方式优先级为:卫星定位>地磁场定位和视觉定位>无线局域网定位>射频识别信 号/蓝牙信号/红外信号/光信号;
S22:当确定移动设备的位置场景为室内非顶层时,确定移动设备的定位方式优先级为:无线局域网定位>射频识别信号/蓝牙信号/红外信号/光信号。
所示实施例中,在确定移动设备所在的位置场景后,会依据位置场景确定相应的定位模式。位置场景主要分为室内顶层与室内底层(室内非顶层)两个部分。对于室内顶层可以是卫星定位信号能够穿透的建筑结构,具体地是指一种天窗结构或者一种栅格骨架结构;对于室内非顶层可以是卫星信号无法穿透和工作的建筑物结构,此时可选择其他室内定位信号,比如无线局域网信号(WLAN)。
进一步,对于室内顶层,视野范围较大,因此首选覆盖范围较大且稳定的定位信号,比如卫星定位信号,当无法接收到卫星定位信号时,可选择地磁场定位与视觉定位结合的方式对移动设备进行定位。当移动设备位于这些信号屏蔽处时,也可选择无线局域网定位或者其他室内定位方式。室内非顶层区域无法接收到卫星定位信号。此时主要比较所接收到的信号强度值进行选择定位,主要的有无线局域网定位以及射频识别信号、蓝牙信号、红外信号、光信号定位。由于无线局域网信号覆盖室内底层,可以首选无线局域网信号。
参见图4示出的图1所示方法中的另一种可选实施例,图1所示方法中的步骤S12的具体实施过程包括:
S31:当确定移动设备的位置场景为室内顶层的设定区域时,确定移动设备待应用的定位模式为:卫星定位>地磁场定位和视觉定位>无线局域网定位的定位方式优先级结合射频识别信号、蓝牙信号、红外信号、光信号中的至少一种的定位方式;
S32:当确定移动设备的位置场景为室内非顶层的设定区域时,确定移动设备待应用的定位模式为:无线局域网定位结合射频识别信号、蓝牙信号、红外信号、光信号中的至少一种的定位方式。
所示实施例中,大型建筑物中的客流量较大,因此会存在人口较密集导致所接收到的定位信号强度较弱,定位不准确的情况。因此当移动设备位于非设定区域时,可以按照定位方式优先顺序选择相应的定位方式进行定位。当移动设备位于设定区域时,则可以选择结合具体区域的定位方式进行定位。 通过对所得到的移动设备的位置信息进行统一与整合,使得定位结果更加准确。比如在室内底层的设定区域,可以选择一种定位信号为主信标,其他定位信号为辅助信标进行定位,对于服务台可以优选BLE Beacon定位方式,机场商铺优选LED白光定位方式,出入口、楼梯处、人行道则可优选RFID/IRID定位方式。当移动设备位于室内顶层的服务台时,可以选择卫星定位与BLE Beacon定位融合的方式进行定位。
所示实施例中,在依据选定的定位信号对移动设备进行定位获取具体位置信息后,移动设备会发出弱的BLE或WiFi信号供周围用户使用手持终端(比如手机或者平板电脑)进行连接,此时用户所在的位置即为移动设备的位置信息。大型建筑物中在各个场景分别设有相应的移动设备,用户在行走过程中会与不同的移动设备进行连接定位,从而实现实时定位。
进一步的,预先设置移动设备的热点开放控制机制。每个移动设备发出的信号都有一定的覆盖范围(比如5m),因此移动设备在移动过程中很有可能会导致某一范围内有多个移动设备。所示方法在对移动设备定位后,会将其具体位置发送至后台服务器进行显示。后台服务器接收并统计多个移动设备的位置信息,判定某一区域内移动设备的数量以及各个设备之间的相隔距离。当后台服务器统计到某一区域内有多个移动设备时(比如5个),会对移动设备实行热点AP(Access Point)开放控制以保证预定范围内只有一个移动设备能够发出弱的BLE或WiFi信号。另外,为防止信号频率一致所导致的干扰情况,所使用的移动设备的信号频率与大型建筑物其他网络的工作频率设置不一致。
参见图5示出的本发明实施例的一种可选实施例,图1所示方法中的步骤S13之后的具体实施操作过程包括:
S41:若发现移动设备位于禁止区域时,则向移动设备发出报警指令,操作移动设备发出声/光报警。
所示实施例中,可以应用于禁止移动设备上下楼层的地方,比如移动设备被旅客强行搬运处于脱离地面状态时,会发出警报声提醒旅客,同时地面管理人员在接收到警报声后也可以快速到达现场制止该违规行为。同样,移动设备在对自身进行定位完毕并发送位置信息至后台服务器后,后台服务器也会检测到移动设备位于禁止区域,此时可以向移动设备发出报警指令。另 外,当移动设备检测到自身位于禁止区域时,也可以发出报警指令操作移动设备发出警报,警报可以是声音,也可以是光束。
本发明实施例所提供的方法,能够应用于机场、博物馆等大型建筑物场所的定位导航场景。首先通过设定方式确定移动设备所在的位置场景;之后依据移动设备所在的位置场景确定相应的定位模式,并选取相应模式下的至少一种可用的定位方式对移动设备进行定位。所示方法充分利用多种定位方式的特点,摒弃常规单一的无线室内定位技术,依据不同的场景区域设置相应的定位方式,以此实现对移动设备的方便、高效的准确定位;同时避免了多种定位信号的干扰情况,满足大型复杂室内精确定位的需求,提高用户定位体验,具有广阔的应用前景。
本发明实施例还提供了一种用于室内定位的算法(基于多色集合的快速筛选算法,PS-based Fast Screening Algorithm),具体地包括:
1、将多色定位技术中的单一目标节点定义为a,那么由一系列目标节点组成的集合为A={a1,…,ai,…,an}。对于具有潜在移动属性的目标节点ai,在连续时间t1~tm内每间隔△t时间时的该目标节点表示为Ai={ait1,…,aitm}。在某一时刻tm的所有目标节点表示为Atm={a1tm,…,aitm,…,antm}。在连续时间t1~tm内每间隔△t时间时的所有目标节点表示为A={a1t1,…,a1tm,…,ait1,…,aitm,…,ant1,…,antm}={A1,…,Ai,…,An}。这里通过定义连续时间的概念,使得本发明的多色定位可以根据实际的应用进行相应的扩展。定义连续时间的概念,便于对基于多色集合模型整合的目标节点历史位置信息建立一种存储结构,从而方便对历史位置信息进行存储、读取和分析。扩展应用可以考虑如下两方面:
第一方面,对多种定位方法的历史数据进行取样分析,确定在不同环境下,各种方法的精度和误差,并确定误差修正方案。
第二方面,可以方便将存储的数据应用于各类数据分析工作,例如多个目标节点运动习惯和特征的综合分析等。
2、以所示方法中的七种定位技术组成的多色定位技术为例,分别定义GPS定位、RFID/IRID定位、WLAN-AP(WiFi-AP或LTE-AP)定位、BLE Beacon定位、LED白光定位、地磁场定位和视觉定位为G1~G7,目标节点的最终位 置定义为G0,如表1所示。
定义通过某一单种方式获得的目标节点位置信息格式为G={F1,…,Fx,Fx+1,…,Fy,Fy+1,…,Fz}。其中,F1,…,Fx是X轴离散坐标,Fx+1,…,Fy是Y轴离散坐标,Fy+1,…,Fz是Z轴离散坐标。
表1.多种定位方式的多色描述
Figure PCTCN2017070236-appb-000001
3、个体着色:对于某单一目标节点ai,其通过七种定位方式获取的位置信息可以用行布尔矩阵整合为:
Figure PCTCN2017070236-appb-000002
Figure PCTCN2017070236-appb-000003
其中,
Figure PCTCN2017070236-appb-000004
是七种定位方式G1…G7对应的位置信息格式的顺序排列。若该目标节点位置信息与对应的坐标轴离散坐标位置相同,那么这个离散坐标位置对应的cj为1,否则为0。F(ai)被称为该节点的个体着色。
那么,目标节点集合A中所有节点的个体着色可以用布尔矩阵表示为:
Figure PCTCN2017070236-appb-000005
Figure PCTCN2017070236-appb-000006
4、统一着色:选取部分几种定位方式来使用。那么被选取的几种定位方式被定义为g1~gk,k≤7,其分别与对应的G1~G7同名。由g1~gk对应的位置信息格式顺序排列为
Figure PCTCN2017070236-appb-000007
目标节点集合A中节点通过这些定位方式获取的位置信息可以用布尔矩阵表示为:
Figure PCTCN2017070236-appb-000008
Figure PCTCN2017070236-appb-000009
以上被称为这些节点的统一着色。
当多种室内定位方法均可用时,分别使用各种定位方法独立获取位置信息,并存入目标节点的个体着色集合。然而,在确定定位方法优先顺序时,可能会存在多种不同的特定情形,且只需要使用其中几种定位方法获取的位置数据。例如,系统原因导致某种定位方法失效,需将该定位方法获取的数据剔除。所以,此时采用统一着色的概念和方法,抓取需要应用的几种(k种)特定定位方式获得的位置信息组成一个新的位置信息集合,这个集合就是统一着色集合。
5、对通过多色定位方式获取的目标节点的位置信息进行统一和整合,并按照预设的定位方式优先顺序选取最佳的位置信息作为最终获得的目标节点 位置信息。
定位方式优先集:各种定位方式使用优先顺序,将其用集合表示为:
Figure PCTCN2017070236-appb-000010
按照集合O中定位方式的优先顺序选择对应的定位方式获得最佳位置信息。
需要说明的是,在工程应用中,对这些位置信息按照优先顺序进行选取会存在多种不同的情形。某些情况下,对于几种定位方法获得的位置信息没有优先顺序要求。例如,一种优先顺序集合要求将两种定位方法获取的位置信息取平均值作为最终位置信息;另一种优先顺序集合要求将三种定位方法获取的位置信息中某一种与其他两种均最接近的作为最终位置信息。在这些情况下,本步骤只需同时提取多种定位方法获取的位置数据,然后提交给后续应用。
这样,通过以上步骤,后台服务器就可以获得每个目标节点的具体位置并在后台服务器上进行显示。例如,当目标节点为智能手推车时,后台服务器根据每个智能手推车的具体位置,判定某一区域内智能手推车的数量及彼此相隔距离,例如,确定5-10米范围内只有一辆手推车发出弱的BLE或WiFi信号,智能手推车周围的用户手持定位终端通过弱的BLE或WiFi信号与智能手推车相连,实现实时定位导航。
所示实施例所提供的算法,能够应用于大型建筑物场所的定位导航场景,比如机场、博物馆。利用多色定位技术对待定位的移动设备的位置进行统一与整合,并按照预设的定位方式优先顺序选取最佳的位置信息作为最终获得的目标节点位置信息。使用多色集合模型,基于个体着色和统一着色的概念可以将单一节点采用各种定位方法获取的位置信息简洁高效的整理在一个集合数组中,无需额外定义和考虑单一方法定位信息获取成败的问题;可以根据已经定义好的固定映射关系,将多种定位方法获取的数据序列、节点集合序列、节点时间序列等进行存储,统一了数据映射关系,从而简化了存储和读取逻辑,进一步提高数据读写和应用效率;通过对节点参数采用二进制存储,可以方便使用计算机进行存储和逻辑运算,从而简化位置数据的分析工 作。通过采用多色集合模型的多色定位技术实现了移动设备方便、高效的准确定位。所示算法依据不同的应用场景设定相应的定位方式,摒弃了常规单一的无线室内定位技术,同时避免了多种定位信号的干扰情况,实现了对移动设备的精确定位。
图6示出的是本发明实施例提供的一种用于室内定位的系统,包括:
位置场景确定模块,用于根据移动设备接收到的至少一种定位信号的信息,确定移动设备的位置场景;
定位模式确定模块,用于基于所确定的位置场景,确定移动设备待应用的定位模式;
定位执行模块,用于采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对移动设备进行定位。
所示实施方式中,定位信号可以是多种,比如卫星定位、RFID/IRID定位、WLAN-AP(WiFi-AP或LTE-AP)定位、BLE Beacon定位、LED白光定位、地磁场定位和视觉定位。移动设备配置有与多种定位信号相应的多种定位信号接收模块,分别为卫星定位模块(GPS/BDS)、RFID/IRID、WLAN-AP(WiFi-AP或LTE-AP)、BLE Beacon、LED白光、地磁场、视觉定位传感器。具体地,可以选用型号为ARGBD47NYSMA-1973的卫星定位模块,该模块较之其他普通卫星定位模块具有天线功率大、信号接收能力强的优点。
图7示出的是本发明的应用场景的实施例。其中移动设备可以选用智能手推车(如中国外观设计专利:CN303082064S;中国实用新型专利:CN203126901U)。该智能手推车内置有多种定位模块,当使用者推着智能手推车在机场等大型建筑物中移动时,可以基于所接收到的定位信号对自身进行定位,实现自身定位导航;同时发出弱的BLE或者WiFi信号,周围用户可以通过手持的手机或者平板电脑连接智能手推车发出的信号进行连接,实现用户位置的实时定位导航服务。
本发明实施例还提供了一种非易失性计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的用于室内定位的方法。
作为一种实施方式,本发明的非易失性计算机存储介质存储有计算机 可执行指令,所述计算机可执行指令设置为:
根据移动设备接收到的至少一种定位信号的信息,确定移动设备的位置场景;
基于所确定的位置场景,确定移动设备待应用的定位模式;
采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对移动设备进行定位。
作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的用于室内定位的方法对应的程序指令/模块(例如,附图6所示的位置场景确定模块、定位模式确定模块以及定位执行模块)。所述一个或者多个模块存储在所述非易失性计算机可读存储介质中,当被处理器执行时,执行上述任意方法实施例中的用于室内定位的方法。
非易失性计算机可读存储介质可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据存储器的存储与多种定位发射节点对应的标识编码以及位置信息等。此外,非易失性计算机可读存储介质可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,非易失性计算机可读存储介质可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至后台服务处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本发明实施例还提供一种计算机程序产品,其包括存储在非易失性计算机存储介质中的计算机可执行指令,所述计算机可执行代码使得电子设备执行本发明上述任一项用于室内定位的方法。
图8是本发明实施例提供的用于室内定位的移动设备的结构示意图,如图8所示,该设备包括:一个或多个处理器510以及存储器520,图8中以一个处理器510为例。
执行用于室内定位方法的移动设备还可以包括:输入装置530和输出装置540。
处理器510、存储器520、输入装置530和输出装置540可以通过总 线或者其他方式连接,图8中以通过总线连接为例。
存储器520为上述的非易失性计算机可读存储介质。处理器510通过运行存储在存储器520中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的用于室内定位的方法。
输入装置530可接收移动设备所在场景区域的定位信号,或接收发射节点发射的标识编码。输出装置540可包括输出BLE信号或者WiFi信号供用户使用移动终端进行连接。
所述一个或者多个模块存储在所述存储器520中,当被所述至少一个处理器510执行时,执行上述任意方法实施例中的用于室内定位的方法。
上述产品可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。
作为一种实施方式,上述移动设备包括:
至少一个处理器,以及
用于存储至少一个处理器可执行的操作指令的存储器;其中,
存储器存储有可被至少一个处理器执行的指令,所示指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
根据移动设备接收到的至少一种定位信号的信息,确定移动设备的位置场景;
基于所确定的位置场景,确定移动设备待应用的定位模式;
采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对移动设备进行定位。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种用于室内定位的方法,包括:
    根据移动设备接收到的至少一种定位信号的信息,确定所述移动设备的位置场景;
    基于所确定的位置场景,确定所述移动设备的定位模式;
    采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对所述移动设备进行定位。
  2. 根据权利要求1所述的方法,其中,所述定位信号包括:来自所述室内楼层的定位节点的定位信号和/或来自设定区域的定位节点的定位信号。
  3. 根据权利要求2所述的方法,其中,所述设定区域至少包括:服务台、楼梯、人行道、出入口、店铺中的一种。
  4. 根据权利要求2所述的方法,其中,所述基于所确定的位置场景,确定所述移动设备的定位模式包括:
    当确定所述移动设备的位置场景为室内顶层时,确定所述移动设备的定位方式优先级为:卫星定位>地磁场定位和视觉定位>无线局域网定位>射频识别信号/蓝牙信号/红外信号/光信号;或
    当确定所述移动设备的位置场景为室内非顶层时,确定所述移动设备的定位方式优先级为:无线局域网定位>射频识别信号/蓝牙信号/红外信号/光信号。
  5. 根据权利要求4所述的方法,其中,所述基于所确定的位置场景,确定所述移动设备的定位模式包括:
    当确定所述移动设备的位置场景为室内顶层的设定区域时,确定所述移动设备的定位方式优先级为:卫星定位>地磁场定位和视觉定位>无线局域网定位,结合射频识别信号、蓝牙信号、红外信号、光信号中的至少一种的定位方式;或
    当确定所述移动设备的位置场景为室内非顶层的设定区域时,确定所述 移动设备的定位模式为:无线局域网定位结合射频识别信号、蓝牙信号、红外信号、光信号中的至少一种定位方式。
  6. 根据权利要求4或5所述的方法,所述采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对所述移动设备进行定位包括:
    (1)建立由n个单一目标节点a在连续时间t1~tm内每间隔△t时间时的集合A={A1,A2,...An},其中,集合Ai={ait1,…,aitm}表示某一目标节点ai在所述时间t1~tm内每间隔△t时间时的集合;
    (2)建立目标节点的最终位置信息G0与h种定位方式所获取的所述目标节点位置信息G1~Gh集合,其中,第j种定位方式所获取的所述目标节点集合A的位置信息集合为
    Figure PCTCN2017070236-appb-100001
    为X轴离散坐标,
    Figure PCTCN2017070236-appb-100002
    为Y轴离散坐标,
    Figure PCTCN2017070236-appb-100003
    为Z轴离散坐标;
    (3)构建所述目标节点集合A位置信息的个体着色和统一着色的布尔矩阵;
    (4)按照所述定位模式的定位方式优先级在所述目标节点集合A的布尔矩阵中进行选取,确定所述目标节点的位置信息。
  7. 根据权利要求6所述的方法,其中,所述构建所述目标节点集合A位置信息的个体着色和统一着色的布尔矩阵包括:
    (1)对所述目标节点集合A中所有目标节点进行个体着色;
    通过所述h种定位方式对所述单一目标节点ai的位置信息的进行个体着色,所获取的行布尔矩阵为:
    Figure PCTCN2017070236-appb-100004
    其中,
    Figure PCTCN2017070236-appb-100005
    是h种定位方式G1…Gh对应的位置信息格式的顺序排列。若所述单一目标节点ai的位置信息与对应的坐标轴离散坐标位置相同,离散 坐标位置对应的cj为1,否则为0;
    所述目标节点集合A中所有目标节点的个体着色的布尔矩阵表示为:
    Figure PCTCN2017070236-appb-100006
    Figure PCTCN2017070236-appb-100007
    (2)对所述目标节点集合A中所有目标节点进行统一着色;
    在所述h种定位方式中选取k种定位方式,依据所述k种定位方式对所述目标节点集合A的位置信息进行统一着色,所获取的布尔矩阵为:
    Figure PCTCN2017070236-appb-100008
    Figure PCTCN2017070236-appb-100009
    其中,所述k种定位方式为g1~gk,k≤h,分别对应于G1~Gh中已选取的定位方式,由g1~gk对应的位置信息格式顺序排列为
    Figure PCTCN2017070236-appb-100010
  8. 一种用于室内定位的系统,包括:
    位置场景确定模块,用于根据移动设备接收到的至少一种定位信号的信息,确定所述移动设备的位置场景;
    定位模式确定模块,用于基于所确定的位置场景,确定所述移动设备的定位模式;
    定位执行模块,用于采用多色集合模型选择与所确定的定位模式匹配的至少一种可用的定位信号对所述移动设备进行定位。
  9. 根据权利要求8所述的系统,其中,所述定位信号包括:来自所述室内的楼层的定位节点的定位信号和/或来自设定区域的定位节点的定位信号。
  10. 根据权利要求9所述的系统,其中,所述设定区域包括:服务台、楼梯、人行道、出入口、店铺中的至少一种。
  11. 根据权利要求9所述的系统,其中,所述定位模式确定模块配置为:
    当确定所述移动设备的位置场景为室内顶层时,确定所述移动设备定位方式优先级为:卫星定位>地磁场定位和视觉定位>无线局域网定位>射频识别信号/蓝牙信号/红外信号/光信号;或
    当确定所述移动设备的位置场景为室内非顶层时,确定所述移动设备的定位方式优先级为:无线局域网定位>射频识别信号/蓝牙信号/红外信号/光信号。
  12. 根据权利要求11所述的系统,其中,所述定位模式确定模块用于:
    当确定所述移动设备的位置场景为室内顶层的设定区域时,确定所述移动设备的定位方式优先级为:卫星定位>地磁场定位和视觉定位>无线局域网定位,结合射频识别信号、蓝牙信号、红外信号、光信号中的至少一种的定位方式;或
    当确定所述移动设备的位置场景为室内非顶层的设定区域时,确定所述移动设备待应用的定位模式为:无线局域网定位结合射频识别信号、蓝牙信号、红外信号、光信号中的至少一种的定位方式。
  13. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7中任一项所述的用于室内定位的方法。
PCT/CN2017/070236 2016-07-25 2017-01-05 用于室内定位的方法及系统 WO2018018854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610591099.6 2016-07-25
CN201610591099.6A CN106291635A (zh) 2016-07-25 2016-07-25 用于室内定位的方法及系统

Publications (1)

Publication Number Publication Date
WO2018018854A1 true WO2018018854A1 (zh) 2018-02-01

Family

ID=57652800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070236 WO2018018854A1 (zh) 2016-07-25 2017-01-05 用于室内定位的方法及系统

Country Status (2)

Country Link
CN (1) CN106291635A (zh)
WO (1) WO2018018854A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679304A (zh) * 2020-05-20 2020-09-18 广州小鹏车联网科技有限公司 一种出入口位置的确定方法、更新方法及其装置
CN112312308A (zh) * 2020-10-29 2021-02-02 广东小天才科技有限公司 一种室内定位方法及终端设备
CN112884834A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 视觉定位方法及系统
CN112880689A (zh) * 2021-01-29 2021-06-01 北京百度网讯科技有限公司 一种领位方法、装置、电子设备及存储介质
CN113965878A (zh) * 2021-09-17 2022-01-21 中通服网盈科技有限公司 一种蓝牙信标的多点室内定位系统
CN114079693A (zh) * 2020-08-14 2022-02-22 北京金坤科创技术有限公司 基于移动载体识别的定位场景感知方法
CN114885284A (zh) * 2022-07-12 2022-08-09 南通飞旋智能科技有限公司 基于计算机视觉与无线通信的智能定位方法及系统
CN115203812A (zh) * 2022-09-15 2022-10-18 深圳小库科技有限公司 一种房间排布方案的生成方法和装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291635A (zh) * 2016-07-25 2017-01-04 无锡知谷网络科技有限公司 用于室内定位的方法及系统
CN106842270B (zh) * 2017-02-07 2021-08-10 惠州Tcl移动通信有限公司 一种提高室内定位精确度的方法及系统
CN107437393A (zh) * 2017-08-17 2017-12-05 重庆红村网络信息技术有限公司 自助导游的方法及装置
CN107816983A (zh) * 2017-08-28 2018-03-20 深圳市赛亿科技开发有限公司 一种基于ar眼镜的导购方法及系统
CN107728133A (zh) * 2017-08-31 2018-02-23 广州市驴迹科技有限责任公司 一种室内定位方法、电子设备、存储介质及装置
CN109579830A (zh) * 2017-09-29 2019-04-05 长沙理工大学 智能机器人的导航方法和导航系统
CN109115211B (zh) * 2018-08-01 2021-01-05 南京科远智慧科技集团股份有限公司 一种厂区高精度人员定位方法及定位系统
CN109471140A (zh) * 2018-11-01 2019-03-15 武汉理工大学 一种船舶定位系统及方法
CN109597110B (zh) * 2018-11-08 2021-06-04 昂科信息技术(上海)股份有限公司 跨区域设备定位方法、系统、装置及介质
CN112866897B (zh) * 2019-11-08 2022-11-11 大唐移动通信设备有限公司 一种定位测量方法、终端和网络节点
CN111537954A (zh) * 2020-04-20 2020-08-14 孙剑 一种实时高动态融合定位方法及装置
CN111885499B (zh) * 2020-07-16 2022-06-21 北京字节跳动网络技术有限公司 一种移动设备的定位方法、装置、电子设备及存储介质
CN112810488B (zh) * 2021-04-21 2021-07-02 北京有感科技有限责任公司 无线充电系统对准方法和无线充电系统对准设备
CN114390437A (zh) * 2021-12-27 2022-04-22 广西交控智维科技发展有限公司 定位信号处理方法及装置
CN116258314A (zh) * 2022-11-23 2023-06-13 东土科技(宜昌)有限公司 生产车间的场景管理方法、系统、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011938A1 (zh) * 2009-07-29 2011-02-03 中兴通讯股份有限公司 一种多媒体会议鉴权加入的方法和装置
CN104185225A (zh) * 2014-09-11 2014-12-03 南京大学 一种基于场景分类的室内外无缝定位切换方法
CN104302000A (zh) * 2014-10-15 2015-01-21 上海交通大学 基于信号接收强度指示相关性的室内定位方法
CN104574386A (zh) * 2014-12-26 2015-04-29 速感科技(北京)有限公司 一种基于三维环境模型匹配的室内定位方法
CN104677351A (zh) * 2015-01-26 2015-06-03 泰科智慧科技(北京)有限公司 一种基于多种信号融合的人员定位系统及方法
CN106291635A (zh) * 2016-07-25 2017-01-04 无锡知谷网络科技有限公司 用于室内定位的方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701388B2 (en) * 2005-11-15 2010-04-20 O2Micro International Ltd. Novas hybrid positioning technology using terrestrial digital broadcasting signal (DBS) and global positioning system (GPS) satellite signal
US9642110B2 (en) * 2013-05-09 2017-05-02 Marvell World Trade Ltd. GPS and WLAN hybrid position determination
CN103529465A (zh) * 2013-09-28 2014-01-22 曹元� 室内外人员无缝定位装置
CN105445776A (zh) * 2015-12-28 2016-03-30 天津大学 一种室内外无缝定位系统
CN105682022A (zh) * 2015-12-30 2016-06-15 华东师范大学 一种基于Android设备的室内外无缝定位系统及其定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011938A1 (zh) * 2009-07-29 2011-02-03 中兴通讯股份有限公司 一种多媒体会议鉴权加入的方法和装置
CN104185225A (zh) * 2014-09-11 2014-12-03 南京大学 一种基于场景分类的室内外无缝定位切换方法
CN104302000A (zh) * 2014-10-15 2015-01-21 上海交通大学 基于信号接收强度指示相关性的室内定位方法
CN104574386A (zh) * 2014-12-26 2015-04-29 速感科技(北京)有限公司 一种基于三维环境模型匹配的室内定位方法
CN104677351A (zh) * 2015-01-26 2015-06-03 泰科智慧科技(北京)有限公司 一种基于多种信号融合的人员定位系统及方法
CN106291635A (zh) * 2016-07-25 2017-01-04 无锡知谷网络科技有限公司 用于室内定位的方法及系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112884834A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 视觉定位方法及系统
CN111679304A (zh) * 2020-05-20 2020-09-18 广州小鹏车联网科技有限公司 一种出入口位置的确定方法、更新方法及其装置
CN111679304B (zh) * 2020-05-20 2023-05-16 广州小鹏自动驾驶科技有限公司 一种出入口位置的确定方法、更新方法及其装置
CN114079693A (zh) * 2020-08-14 2022-02-22 北京金坤科创技术有限公司 基于移动载体识别的定位场景感知方法
CN112312308A (zh) * 2020-10-29 2021-02-02 广东小天才科技有限公司 一种室内定位方法及终端设备
CN112312308B (zh) * 2020-10-29 2023-12-22 广东小天才科技有限公司 一种室内定位方法及终端设备
CN112880689A (zh) * 2021-01-29 2021-06-01 北京百度网讯科技有限公司 一种领位方法、装置、电子设备及存储介质
CN113965878A (zh) * 2021-09-17 2022-01-21 中通服网盈科技有限公司 一种蓝牙信标的多点室内定位系统
CN114885284A (zh) * 2022-07-12 2022-08-09 南通飞旋智能科技有限公司 基于计算机视觉与无线通信的智能定位方法及系统
CN115203812A (zh) * 2022-09-15 2022-10-18 深圳小库科技有限公司 一种房间排布方案的生成方法和装置
CN115203812B (zh) * 2022-09-15 2023-01-06 深圳小库科技有限公司 一种房间排布方案的生成方法和装置

Also Published As

Publication number Publication date
CN106291635A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018018854A1 (zh) 用于室内定位的方法及系统
US8954267B2 (en) Mobile device positioning
EP3619590B1 (en) Method and apparatus for privacy-sensitive routing of an aerial drone
RU2699376C2 (ru) Определение местоположения
CN107094319B (zh) 一种高精度室内外融合定位系统和方法
CN104837118B (zh) 一种基于WiFi和BLUETOOTH的室内融合定位系统及方法
CN110864690B (zh) 一种适用于车辆图像识别的室内定位系统和方法
CN103905992B (zh) 一种基于指纹数据的无线传感器网络的室内定位方法
CN104483658B (zh) 基于Wi-Fi和地磁场的室内定位方法
CN103476169A (zh) 一种基于led照明装置的室内导航控制系统及方法
US9906920B2 (en) Building design information based indoor positioning system
CN106961724B (zh) 一种基于可见光通信的移动目标实时定位方法
US9979559B2 (en) Feedback in a positioning system
US20160345129A1 (en) Positioning system for indoor and surrounding areas, positioning method and route-planning method thereof and mobile apparatus
CN105072681A (zh) 一种基于室内空间位置的定位系统的部署装置及方法
WO2023005814A1 (zh) 一种室内指纹地图的构建方法及相关装置
CN103298107B (zh) 一种基于加权无向图的室内无线定位ap快速部署方法
CN110933599A (zh) 一种融合uwb与wifi指纹的自适应定位方法
CN107801147A (zh) 一种基于rssi测距改进的多区域自适应室内定位方法
CN103369671A (zh) 一种基于wifi的近距离定位系统及定位方法
CN105592418A (zh) 一种AR眼镜通过WIFI和G-sensor的室内精确定位方法
KR102612887B1 (ko) 모바일 애플리케이션을 위한 건물 접근 구역 사양
KR102217911B1 (ko) 실내 및 실외 통합 측위 제공 방법 및 시스템
Qi et al. BLE-based floor positioning method for multi-level atrium spatial environments
Wang et al. [Retracted] Indoor and Outdoor Seamless Positioning Technology Based on Artificial Intelligence and Intelligent Switching Algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833172

Country of ref document: EP

Kind code of ref document: A1